Powered by Deep Web Technologies
Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

3-D Seismic Methods For Geothermal Reservoir Exploration And  

Open Energy Info (EERE)

Methods For Geothermal Reservoir Exploration And Methods For Geothermal Reservoir Exploration And Assessment-Summary Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: 3-D Seismic Methods For Geothermal Reservoir Exploration And Assessment-Summary Details Activities (5) Areas (1) Regions (0) Abstract: A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally

2

3-D Seismic Methods for Shallow Imaging Beneath Pavement  

E-Print Network [OSTI]

The research presented in this dissertation focuses on survey design and acquisition of near-surface 3D seismic reflection and surface wave data on pavement. Increased efficiency for mapping simple subsurface interfaces ...

Miller, Brian

2013-05-31T23:59:59.000Z

3

3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary  

SciTech Connect (OSTI)

A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the challenge has been to separate the ''background'' natural complexity and heterogeneity of the matrix from the fracture/fault heterogeneity controlling the fluid flow. Ideally one not only wants to find the fractures, but the fractures that are controlling the flow of the fluids. Evaluated in this work is current state-of-the-art surface (seismic reflection) and borehole seismic methods (Vertical Seismic Profiling (VSP), Crosswell and Single Well) to locate and quantify geothermal reservoir characteristics. The focus is on active methods; the assumption being that accuracy is needed for successful well siting. Passive methods are useful for exploration and detailed monitoring for in-fill drilling, but in general the passive methods lack the precision and accuracy for well siting in new or step out areas. In addition, MEQ activity is usually associated with production, after the field has been taken to a mature state, thus in most cases it is assumed that there is not enough MEQ activity in unproduced areas to accurately find the permeable pathways. The premise of this review is that there may new developments in theory and modeling, as well as in data acquisition and processing, which could make it possible to image the subsurface in much more detail than 15 years ago. New understanding of the effect of fractures on seismic wave propagation are now being applied to image fractures in gas and oil environments. It now may be appropriate to apply these methods, with modifications, to geothermal applications. It is assumed that to implement the appropriate methods an industry coupled program tightly linked to actual field cases, iterating between development and application will be pursued. The goal of this work is to evaluate the most promising methods and approaches that may be used for improved geothermal exploration and reservoir assessment. It is not a comprehensive review of all seismic methods used to date in geothermal environments. This work was motivated by a need to assess current and developing seismic technology that if applied in geothermal cases may greatly improve the chances for locating new geothermal resources and/or improve assessment of current ones.

Majer, E.L.

2003-07-14T23:59:59.000Z

4

A comparison of methods for 3D target localization from seismic and acoustic signatures  

SciTech Connect (OSTI)

An important application of seismic and acoustic unattended ground sensors (UGS) is the estimation of the three dimensional position of an emitting target. Seismic and acoustic data derived from UGS systems provide the taw information to determine these locations, but can be processed and analyzed in a number of ways using varying amounts of auxiliary information. Processing methods to improve arrival time picking for continuous wave sources and methods for determining and defining the seismic velocity model are the primary variables affecting the localization accuracy. Results using field data collected from an underground facility have shown that using an iterative time picking technique significantly improves the accuracy of the resulting derived target location. Other processing techniques show little advantage over simple crosscorrelation along in terms of accuracy, but may improve the ease with which time picks can be made. An average velocity model found through passive listening or a velocity model determined from a calibration source near the target source both result in similar location accuracies, although the use of station correction severely increases the location error.

ELBRING,GREGORY J.; GARBIN,H. DOUGLAS; LADD,MARK D.

2000-04-03T23:59:59.000Z

5

Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging  

DOE Patents [OSTI]

The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.

Anderson, Roger N. (New York, NY); Boulanger, Albert (New York, NY); Bagdonas, Edward P. (Brookline, MA); Xu, Liqing (New Milford, NJ); He, Wei (New Milford, NJ)

1996-01-01T23:59:59.000Z

6

Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging  

DOE Patents [OSTI]

The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.

Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.

1996-12-17T23:59:59.000Z

7

Hypocenter relocation using a fast grid search method and a 3-D seismic velocity model for the Sumatra region  

SciTech Connect (OSTI)

Determination of earthquake hypocenter in Indonesia conducted by the Meteorological, Climatological, and Geophysical Agency (MCGA) has still used a 1-D seismic velocity model. In this research, we have applied a Fast Grid Search (FGM) method and a 3-D velocity model resulting from tomographic imaging to relocate earthquakes in the Sumatran region. The data were taken from the MCGA data catalog from 2009 to 2011 comprising of subduction zone and on land fault earthquakes with magnitude greater than 4 Mw. Our preliminary results show some significant changes in the depths of the relocated earthquakes which are in general deeper than the depths of hypocenters from the MCGA data catalog. The residual times resulting from the relocation process are smaller than those prior to the relocation. Encouraged by these results, we will continue to conduct hypocenter relocation for all events from the MCGA data catalog periodically in order to produce a new data catalog with good quality. We hope that the new data catalog will be useful for further studies.

Nugroho, Hendro [Study Program of Earth Sciences, Faculty of Earth Sciences and Technology, Institute of Technology Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia and Meteorological, Climatological, and Geophysical Agency, Jl. Angkasa 1 No. 2, Kemayoran, Jakar (Indonesia)] [Study Program of Earth Sciences, Faculty of Earth Sciences and Technology, Institute of Technology Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia and Meteorological, Climatological, and Geophysical Agency, Jl. Angkasa 1 No. 2, Kemayoran, Jakar (Indonesia); Widiyantoro, Sri [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia); Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technologyc Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technologyc Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia)

2013-09-09T23:59:59.000Z

8

Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models  

DOE Patents [OSTI]

A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

He, W.; Anderson, R.N.

1998-08-25T23:59:59.000Z

9

Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models  

DOE Patents [OSTI]

A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.

He, Wei (New Milford, NJ); Anderson, Roger N. (New York, NY)

1998-01-01T23:59:59.000Z

10

Bridging 3D seismic onshore: Lodgepole play highlights promise and challenges  

SciTech Connect (OSTI)

Recent major discoveries by Conoco Inc. and Duncan Oil in the Lower Mississippian Lodgepole formation of the Williston basin show that finding major oil reserves is still possible in the US and that 3D seismic methods have the capability to locate them. The implications are profound for independent oil and gas producers, who traditionally concentrate their operations in the mature US. Like major companies, independents are profiting form use of 3D seismic methods. The Williston basin successes show how independents might use 3D seismic methods to identify opportunities in a region once considered to be drilled up. Both the increasing use of these technologies by independents as well as the experiences major companies have had with them are well-documented. The paper discusses the Lodgepole discoveries, rejuvenation of the US oil and gas industry, stratigraphic information available by 3D seismic means, economic impact, and implications of 30 seismic work in the US.

O`Connor, R.B. Jr. [Wavetech Geophysical Inc., Denver, CO (United States)

1995-11-20T23:59:59.000Z

11

NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT  

SciTech Connect (OSTI)

Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas and natural gas liquids production on a remote part of the Uintah & Ouray Reservation. Much of the natural gas and natural gas liquids are being produced from the Wingate Formation, which to our knowledge has never produced commercially anywhere. Another large percentage of the natural gas is being produced from the Entrada Formation which has not previously produced in this part of the Uinta Basin. In all, at least nine geologic formations are contributing hydrocarbons to these wells. This survey has clearly established the fact that high-quality data can be obtained in this area, despite the known obstacles.

Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

2004-05-06T23:59:59.000Z

12

Seismic characterization of fractured reservoirs using 3D double beams  

E-Print Network [OSTI]

We propose an efficient target-oriented method to characterize seismic properties of fractured reservoirs: the spacing between fractures and the fracture orientation. We use both singly scattered and multiply scattered ...

Zheng, Yingcai

2012-01-01T23:59:59.000Z

13

3D seismic imaging of buried Younger Dryas mass movement flows: Lake Windermere, UK  

E-Print Network [OSTI]

, , Luke J.W. Pinson a , Jonathan M. Bull a , Justin K. Dix a , Timothy J. Henstock a , John W. Davis offshore using tradi- tional 3D seismic methods (e.g., Frey-Martinez et al., 2005; Gee et al., 2006; Bull.g., Frey-Martinez et al., 2005). From this, a well- developed set of indicators for flow direction

Southampton, University of

14

Exploration 3-D Seismic Field Test/Native Tribes Initiative  

SciTech Connect (OSTI)

To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

1999-04-27T23:59:59.000Z

15

Widespread 3D seismic survey covers mature field in Gabon  

SciTech Connect (OSTI)

The exploration potential of the Port Gentil region, characterized by some of the earliest petroleum discoveries in Gabon, continues to be of important interest today. Available seismic data are of an older vintage (1974--82), recorded with low common mid-point (CMP) fold. They are critically void of coverage through the transition zone. The geology is highly complex, characterized by salt structures and strong tectonic activity. An intensive joint exploration and reservoir definition campaign is crucial to full evaluation of this area. This article describes the 3D survey conducted during 1992 and early 1993 over a mature oil field in an around Port Gentil and incorporating elements of land, transition zone, and shallow marine data acquisition -- the 3D Mandji program.

Riley, D.; Fleming, M. (Western Geophysical, Houston, TX (United States)); Delvaux, J. (Elf Gabon, Port Gentil (Gabon))

1993-12-06T23:59:59.000Z

16

A 3D-3C Reflection Seismic Survey and Data Integration to Identify the  

Open Energy Info (EERE)

D-3C Reflection Seismic Survey and Data Integration to Identify the D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The Soda Lake geothermal field is an ideal setting to test the applicability of the 3D-3C reflection seismic method because: it is a producing field with a great deal of geologic and drilling data already available; it is in an alluvial valley where the subsurface structures that carry the geothermal fluids have no surface manifestations; and, there are downhole geophysical logs of fractures and permeable zones that can be used to ground-truth the new data.

17

A 3D-3C Reflection Seismic Survey and Data Integration to Identify...  

Office of Environmental Management (EM)

to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchhill Co., NV A 3D-3C Reflection Seismic Survey and Data...

18

3-D seismic velocity and attenuation structures in the geothermal field  

SciTech Connect (OSTI)

We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

2013-09-09T23:59:59.000Z

19

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

20

Detection of azimuthal anisotropy from 3-D p-wave seismic data  

E-Print Network [OSTI]

DETECTION OF AZIMUTHAL ANISOTROPV FROM 3-D P-WAVE SEISMIC DATA A Thesis by ALI YILDIZEL Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1992 Major Subject: Geophysics DETECTION OF AZIMUTHAL ANISOTROPY FROM 3-D P-WAVE SEISMIC DATA A Thesis by ALI YILDIZEL Approved as to style and content by: Steve I . Iarder (Chair of Committee) Joel S. Watkins (Member) Robert R. Berg...

Yildizel, Ali

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Method of migrating seismic records  

DOE Patents [OSTI]

The present invention provides a method of migrating seismic records that retains the information in the seismic records and allows migration with significant reductions in computing cost. The present invention comprises phase encoding seismic records and combining the encoded seismic records before migration. Phase encoding can minimize the effect of unwanted cross terms while still allowing significant reductions in the cost to migrate a number of seismic records.

Ober, Curtis C. (Las Lunas, NM); Romero, Louis A. (Albuquerque, NM); Ghiglia, Dennis C. (Longmont, CO)

2000-01-01T23:59:59.000Z

22

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

23

Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration  

SciTech Connect (OSTI)

The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

2010-03-31T23:59:59.000Z

24

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This proposal takes direct aim at this shortcoming. P/GSI is developing a 400 level 3C clamped downhole seismic receiver array for borehole seismic 3D imaging. This array will remove the acquisition barrier to record the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. By using 3C surface seismic or borehole seismic sources the 400 level receiver array will furthermore facilitate 9C reservoir imaging. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2002-05-01T23:59:59.000Z

25

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This proposal takes direct aim at this shortcoming. P/GSI is developing a 400 level 3C clamped downhole seismic receiver array for borehole seismic 3D imaging. This array will remove the acquisition barrier to record the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore facilitate 9C reservoir imaging. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2002-09-01T23:59:59.000Z

26

3 D seismic interpretation, reservoir characteristics and petroleum prospects for South Marsh Island OCS Blocks, Gulf of Mexico  

E-Print Network [OSTI]

show great stratigraphic diversity within short distances, making the ability to accurately determine whether sand lenses have been adequately produced or bypassed essential for production opportunities for operators. New 3 D seismic processing...

Duan, Ling

2012-06-07T23:59:59.000Z

27

NETL: News Release - 3-D Seismic Technology Locates Natural Gas in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 10, 2005 January 10, 2005 3-D Seismic Technology Locates Natural Gas in Fractured Reservoirs DOE-Sponsored Project Taps New Supplies of "Tight" Gas RIO ARRIBA COUNTY, N.M. - Large volumes of natural gas are being tapped from the tight rocks of the San Juan Basin in New Mexico's Rio Arriba County using a new technology developed in a project sponsored by the U.S. Department of Energy (DOE). In this cost-shared project, GeoSpectrum, Inc., of Midland, Texas, uses 3-D seismic to locate fractures in the earth that provide access to millions of cubic feet of untapped natural gas in four new wells-including one well that is now producing up to 2 million cubic feet per day. "The key innovation in this project is the integration of technologies that map previously unseen fracture lineaments and perturbations in seismic data, and then target fracture "sweet spots" where multiple fractures intersect," said geophysicist Francis Toro, who manages the project for DOE's National Energy Technology Laboratory.

28

State of Seismic Methods For Geothermal Reservoir Exploration and Assessment  

Office of Scientific and Technical Information (OSTI)

3-D Seismic Methods For Geothermal Reservoir Exploration 3-D Seismic Methods For Geothermal Reservoir Exploration and Assessment - Summary E.L Majer Lawrence Berkeley National Laboratory Introduction A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the

29

Quantitative Data Analysis Methods for 3D Microstructure  

E-Print Network [OSTI]

of electrochemical ceramic devices such as solid oxide fuel and electrolyser cells depends on the distributionQuantitative Data Analysis Methods for 3D Microstructure Characterization of Solid Oxide Cells

30

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Principal Investigator: John H. Queen Hi-Q Geophysical Inc. Track Name: Seismicity and Reservoir Fracture...

31

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2005-03-31T23:59:59.000Z

32

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS.  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2003-01-01T23:59:59.000Z

33

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2005-08-21T23:59:59.000Z

34

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-05-31T23:59:59.000Z

35

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-09-30T23:59:59.000Z

36

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2002-12-01T23:59:59.000Z

37

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-05-01T23:59:59.000Z

38

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-06-30T23:59:59.000Z

39

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2003-09-01T23:59:59.000Z

40

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2003-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-12-31T23:59:59.000Z

42

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2006-05-05T23:59:59.000Z

43

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N. P. Paulsson

2005-09-30T23:59:59.000Z

44

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2003-12-01T23:59:59.000Z

45

3-D structural and seismic stratigraphic interpretation of the Guasare-Misoa Interval, VLE 196 Area, Block V, Lamar Field, Lake Maracaibo, Venezuela  

E-Print Network [OSTI]

In this study, the structure, depositional system, and the seismic stratigraphy of the VLE 196 area, Block V in Lamar Field were interpreted using 3-D seismic data and well logs to characterize structural and depositional settings of the Guasare...

Arzuman, Sadun

2004-09-30T23:59:59.000Z

46

Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes  

SciTech Connect (OSTI)

Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications, Kansas Geological Survey Open-file reports, Master's theses, and postings on the project website: http://www.kgs.ku.edu/SEISKARST.

Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

2009-03-31T23:59:59.000Z

47

Velocity model-building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic data  

E-Print Network [OSTI]

Velocity model-building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic, any approach that helps to auto- mate and optimize velocity model-building will speed up the output . The most common approaches for building a PSDM velocity model rely on reflection traveltime tomography e

Vallée, Martin

48

3-D multichannel seismic reflection study of variable-flux hydrocarbon seeps, continental slope, northern Gulf of Mexico  

E-Print Network [OSTI]

. The reprocessed 3D seismic data were used to map in greater detail near seafloor features and amplitude anomalies. Using remote sensing geophysical data, we were effectively able to map sub-surface features such as salt topography, seep-related faults...

Thomas, Ryan Douglas

2004-11-15T23:59:59.000Z

49

Finding of No Significant Impact for the Veritas 3D Seismic Project (DOE/EA-1544) (7/25/05)  

Broader source: Energy.gov (indexed) [DOE]

United States Government Department of Energy memorandum DATE : July 25, 2005 REPLY TO ATTN OF : FE-472 (Michael J. Taylor) Serial No:MJT/04.082 SUBJECT : FONSI for Veritas 3D Seismic Project (DOE/EA-1544) TO : File INTRODUCTION : Veritas DGC Land Inc. (Veritas) has notified the Department of Energy (DOE) through the Rocky Mountain Oilfield Testing Center (RMOTC) of their intent to conduct a 3D Vibroseis acquisition project in Natrona County, Wyoming. The proposed property is contained in Sections 20, 21, 22, 28, and 28 of T 39 N, R 78 W, at Naval Petroleum Reserve No. 3 (NPR-3). Veritas is the seismic contractor for the Salt Creek 3D Project. A verbal Notice of Intent (NOI) to Conduct Oil and Gas

50

Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997  

SciTech Connect (OSTI)

In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

Parra, J.O.; Collier, H.A.; Owen, T.E. [and others

1997-06-01T23:59:59.000Z

51

Computer power fathoms the depths: billion-bit data processors illuminate the subsurface. [3-D Seismic techniques  

SciTech Connect (OSTI)

Some of the same space-age signal technology being used to track events 200 miles above the earth is helping petroleum explorationists track down oil and natural gas two miles and more down into the earth. The breakthroughs, which have come in a technique called three-dimensional seismic work, could change the complexion of exploration for oil and natural gas. Thanks to this 3-D seismic approach, explorationists can make dynamic maps of sites miles beneath the surface. Then explorationists can throw these maps on space-age computer systems and manipulate them every which way - homing in sharply on salt domes, faults, sands and traps associated with oil and natural gas. ''The 3-D seismic scene has exploded within the last two years,'' says, Peiter Tackenberg, Marathon technical consultant who deals with both domestic and international exploration. The 3-D technique has been around for more than a decade, he notes, but recent achievements in space-age computer hardware and software have unlocked its full potential.

Ross, J.J.

1985-01-01T23:59:59.000Z

52

Multi-crosswell profile 3D imaging and method  

DOE Patents [OSTI]

Characterizing the value of a particular property, for example, seismic velocity, of a subsurface region of ground is described. In one aspect, the value of the particular property is represented using at least one continuous analytic function such as a Chebychev polynomial. The seismic data may include data derived from at least one crosswell dataset for the subsurface region of interest and may also include other data. In either instance, data may simultaneously be used from a first crosswell dataset in conjunction with one or more other crosswell datasets and/or with the other data. In another aspect, the value of the property is characterized in three dimensions throughout the region of interest using crosswell and/or other data. In still another aspect, crosswell datasets for highly deviated or horizontal boreholes are inherently useful. The method is performed, in part, by fitting a set of vertically spaced layer boundaries, represented by an analytic function such as a Chebychev polynomial, within and across the region encompassing the boreholes such that a series of layers is defined between the layer boundaries. Initial values of the particular property are then established between the layer boundaries and across the subterranean region using a series of continuous analytic functions. The continuous analytic functions are then adjusted to more closely match the value of the particular property across the subterranean region of ground to determine the value of the particular property for any selected point within the region.

Washbourne, John K. (Houston, TX); Rector, III, James W. (Kensington, CA); Bube, Kenneth P. (Seattle, WA)

2002-01-01T23:59:59.000Z

53

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

5 4.5.2 Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Presentation Number: 022 Investigator: Queen, John (Hi-Q Geophysical Inc.) Objectives: To develop...

54

3-D Seismic Methods For Geothermal Reservoir Exploration And...  

Open Energy Info (EERE)

imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured...

55

Quantifying the Permeability Heterogeneity of Sandstone Reservoirs in Boonsville Field, Texas by Integrating Core, Well Log and 3 D Seismic Data  

E-Print Network [OSTI]

the permeability heterogeneity of the target reservoir by integrating core, well log and 3 D seismic data. A set of permeability coefficients, variation coefficient, dart coefficient, and contrast coefficient, was defined in this study to quantitatively identify...

Song, Qian

2013-04-29T23:59:59.000Z

56

3D Wavelet-Based Filter and Method  

DOE Patents [OSTI]

A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

Moss, William C. (San Mateo, CA); Haase, Sebastian (San Francisco, CA); Sedat, John W. (San Francisco, CA)

2008-08-12T23:59:59.000Z

57

4D seismic data acquisition method during coal mining  

Science Journals Connector (OSTI)

In order to observe overburden media changes caused by mining processing, we take the fully-mechanized working face of the BLT coal mine in Shendong mine district as an example to develop a 4D seismic data acquisition methodology during coal mining. The 4D seismic data acquisition is implemented to collect 3D seismic data four times in different periods, such as before mining, during the mining process and after mining to observe the changes of the overburden layer during coal mining. The seismic data in the research area demonstrates that seismic waves are stronger in energy, higher in frequency and have better continuous reflectors before coal mining. However, all this is reversed after coal mining because the overburden layer has been mined, the seismic energy and frequency decrease, and reflections have more discontinuities. Comparing the records collected in the survey with those from newly mined areas and other records acquired in the same survey with the same geometry and with a long time for settling after mining, it clearly shows that the seismic reflections have stronger amplitudes and are more continuous because the media have recovered by overburden layer compaction after a long time of settling after mining. By 4D seismic acquisition, the original background investigation of the coal layers can be derived from the first records, then the layer structure changes can be monitored through the records of mining action and compaction action after mining. This method has laid the foundation for further research into the variation principles of the overburden layer under modern coal-mining conditions.

Wen-Feng Du; Su-Ping Peng

2014-01-01T23:59:59.000Z

58

The evolution of shallow seismic exploration methods  

E-Print Network [OSTI]

Near-surface seismic methods have developed considerably and have been applied much more widely since the 1970s. Improvements in instrumentation, along with cheaper computer power, have greatly affected the capabilities of these methods in recent...

Steeples, Don W.; Schmeissner, Chris M.; Macy, Brian

1995-07-01T23:59:59.000Z

59

A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays  

SciTech Connect (OSTI)

The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

Paulsson Geophysical Services

2008-03-31T23:59:59.000Z

60

A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchhill Co., NV  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project Summary: Understanding geothermal reservoirs requires multi-discipline, integrated 3D GIS: Access down hole geophysical logs, surface geophysics, isotherms, isoresistivity surfaces, seismic data, cross-sections, etc. instantaneously; Wells tell where youve been; MT shows the direction to go; Seismic provides the map; & Be prepared for discoveries.

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

3D Downtown Phoenix Modeling This project is to develop the efficient and effective method for  

E-Print Network [OSTI]

3D Downtown Phoenix Modeling ABSTRACT This project is to develop the efficient and effective method for creating 3D city models that will be used with GIS (Geographical Information Systems) data in VR (Virtual Reality) environment. Here introduces the modeling process to create 3D city model from aerial photos

Hall, Sharon J.

62

Blind seismic deconvolution using variational Bayesian method  

Science Journals Connector (OSTI)

Abstract Blind seismic deconvolution, which comprises seismic wavelet and reflectivity sequence, is a strongly ill-posed problem. The reflectivity sequence is modeled as a Bernoulli–Gaussian (BG) process, depending on four parameters (noise variance, high and low reflector variances, and reflector density). These parameters need to be estimated from the seismic record, which is the convolution of the reflectivity sequence and the seismic wavelet. In this paper, we propose a variational Bayesian method for blind seismic deconvolution which can determine the reflectivity sequence and the seismic wavelet. The connection between variational Bayesian blind deconvolution and the minimization of the Kullback–Leibler divergence of two probability distributions is also established. The gamma, beta distributions are used for the unknown parameters (hyperparameters) as prior distribution and also we give how these distributions can be inferred in actual situations. The proposed algorithms are tested by simulation and compared to existing blind deconvolution methods. The results show that variational Bayesian method has better agreement with the actual value.

Li Yanqin; Zhang Guoshan

2014-01-01T23:59:59.000Z

63

Ensemble Transform with 3D Rescaling Initialization Method  

Science Journals Connector (OSTI)

The ensemble transform with rescaling (ETR) method has been used to produce fast-growing components of analysis error in the NCEP Global Ensemble Forecast System (GEFS). The rescaling mask contained in the ETR method constrains the amplitude of ...

Juhui Ma; Yuejian Zhu; Dingchen Hou; Xiaqiong Zhou; Malaquias Peña

2014-11-01T23:59:59.000Z

64

3D periodic dielectric composite homogenization based on the Generalized Source Method  

E-Print Network [OSTI]

The article encloses a new Fourier space method for rigorous optical simulation of 3D periodic dielectric structures. The method relies upon rigorous solution of Maxwell's equations in complex composite structures by the Generalized Source Method. Extremely fast GPU enabled calculations provide a possibility for an efficient search of eigenmodes in 3D periodic complex structures on the basis of rigorously obtained resonant electromagnetic response. The method is applied to the homogenization problem demonstrating a complete anisotropic dielectric tensor retrieval.

Shcherbakov, Alexey A

2015-01-01T23:59:59.000Z

65

3D Weak-Dispersion Reverse-Time Migration with a StereoModeling Method  

E-Print Network [OSTI]

The finite difference method has been widely used in seismic modeling and reverse time migration. However, it generally has two issues: large computational cost and numerical dispersion. Recently, a nearly-analytic discrete ...

Li, Jingshuang

2013-01-01T23:59:59.000Z

66

A divide-and-conquer method for 3D capacitance extraction  

E-Print Network [OSTI]

This thesis describes a divide-and-conquer algorithm to improve the 3D boundary element method (BEM) for capacitance extraction. We divide large interconnect structures into small sections, set new boundary conditions using the borderfor each...

Yu, Fangqing

2004-09-30T23:59:59.000Z

67

Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California  

SciTech Connect (OSTI)

The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field.

NONE

1996-10-01T23:59:59.000Z

68

Integrating seismic exploration methods into a geological sciences curriculum at Brigham Young Unversity  

Science Journals Connector (OSTI)

The continuing expansion in petroleum and other resource exploration and in geological hazard assessment for infrastructure development have combined to dramatically increase the need for training of university students in seismic imaging methods. This need is being met at Brigham Young University (BYU) by forming alliances or collaborations with private industry and government in order to provide financial support for research using seismic techniques to obtain access to proprietary datasets and to place students in the workplace as part of their university experience. Infrastructure support has been provided by BYU in the form of acquisition of seismic recording equipment procuring of state?of?the?art software for data processing and geologic mapping and building of a dedicated 3D visualization lab. This infrastructure creates an environment that mimics research and exploration programs in private industry. Seismicgeophysical research foci at BYU include (1) seismic characterization of deep reservoirs for carbon sequestration (2) 3D seismic attribute analysis for petroleum prospecting (3) high?resolution seismicexploration applied to landslide and earthquake hazard assessments (4) exploration of deep sedimentary basins that may be prospective for oil or gas and (5) oilfield applications of seismic mapping in order to detect and map shallow faults that may function as leakage pathways.

2007-01-01T23:59:59.000Z

69

3D Matrix Burners: A Method for Small-Scale Syngas Production  

Science Journals Connector (OSTI)

3D Matrix Burners: A Method for Small-Scale Syngas Production ... After passing the mixer, a homogeneous fuel–oxidizer mixture of specified composition is fed through permeable walls and bottom of the 3D matrix burner into its inner cavity, where it burns near the surface. ... However, as is well-known from methane combustion studies,(12) the normal burning velocity decreases with increasing pressure, for both rich and lean methane–air mixtures. ...

Vladimir S. Arutyunov; Vladimir M. Shmelev; Ayan N. Rakhmetov; Oksana V. Shapovalova

2013-11-18T23:59:59.000Z

70

Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques  

Broader source: Energy.gov [DOE]

Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Justin Coleman, P.E. October 25th, 2011

71

Non-linear Seismic Soil Structure Interaction Method for Developing Nonlinear Seismic SSI  

Broader source: Energy.gov (indexed) [DOE]

Linear Seismic Soil Structure Interaction (SSI) Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Justin Coleman, P.E. October 25th, 2011 E102003020BDS Presentation Outline  Purpose of Presentation  Linear versus Non-Linear Seismic SSI  Non-Linear seismic Soil Structure Interaction (NLSSI) Studies  The NLSSI Introduction  Non-Linearity in Seismic SSI Analysis  Commercial Software Elements  Commercial Software Non-Linear Constitutive Models  Non-Linear Seismic SSI Damping  Demonstration of Time Domain 2D Model  NLSSI Validation Approach  NLSSI Implementation  Need For NLSSI  Conclusions E102003020BDS Purpose of Presentation  The purpose of the presentation is to establish the need for using non-linear analysis

72

An advanced 3D boundary element method for characterizations of composite materials  

E-Print Network [OSTI]

An advanced 3D boundary element method for characterizations of composite materials X.L. Chena , Y developments in the modeling of composite materials using the boundary element method (BEM) are presented in dealing with nearly-singular integrals, which arise in the BEM modeling of composite materials

Liu, Yijun

73

Linear Scaling 3D Fragment Method for Large-scale Electronic Structure Calculations  

E-Print Network [OSTI]

Linear Scaling 3D Fragment Method for Large-scale Electronic Structure Calculations Lin-Wang Wang) allocation time in the materials science category [1]. DFT codes can be used to calculate the electronic theory (DFT) calculations for large systems. This method cancels out the artificial boundary effects

74

Linearly Scaling 3D Fragment Method for Large-Scale Electronic Structure Calculations  

E-Print Network [OSTI]

Linearly Scaling 3D Fragment Method for Large-Scale Electronic Structure Calculations Lin-Wang Wang-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based. The fragments of the LS3DF algorithm can be calculated separately with different groups of processors

Bailey, David H.

75

Constitutive parameter identification of 3D printing material based on the virtual fields method  

Science Journals Connector (OSTI)

Abstract In recent years, 3D printing technology has grown rapidly, and also has shown the great potential to be utilized in different fields. The identification of the constitutive parameters of materials fabricated by 3D printing is very important for product designing and technique selection. In this paper, a constitutive parameter identification method for 3D printing materials combining the integrated deformation carriers with the virtual fields method (VFM) is presented. The experimental process consists of three steps: fabricating the specimen with integrated deformation carriers by 3D printing; measuring the deformation fields by a full-field optical method; identifying the constitutive parameters by VFM. In the first step, the design method of the integrated deformation carriers is described in detail. Serving as a practice of the above process, a bending specimen with integrated deformation carriers was manufactured by the stereolithography technique, and the orthotropic constitutive parameters of this specimen at different temperatures were identified. The successful experimental results verify the feasibility of the proposed method, and show its advantages on aspects of high efficiency and easy processing as well.

Xianglu Dai; Huimin Xie

2015-01-01T23:59:59.000Z

76

A Morphological Analysis of Audio Objects and their Control Methods for 3D Audio  

E-Print Network [OSTI]

A Morphological Analysis of Audio Objects and their Control Methods for 3D Audio Justin Mathew technological improvements in audio reproduction systems increased the possibilities to spatialize sources in a listening envi- ronment. The spatialization of reproduced audio is highly depen- dent on the recording

Paris-Sud XI, Université de

77

A fast new method for measuring hard-to-diagnose 3D plasmas in fusion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A fast new method for measuring hard-to-diagnose 3D plasmas in fusion A fast new method for measuring hard-to-diagnose 3D plasmas in fusion facilities By John Greenwald March 12, 2013 Tweet Widget Facebook Like Google Plus One A simulated plasma in the Large Helical Device showing the thin blue saddle coils that researchers used to make diagnostic measurements with the new computer code. (Photo by Graphic by Sam Lazerson) A simulated plasma in the Large Helical Device showing the thin blue saddle coils that researchers used to make diagnostic measurements with the new computer code. Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and the National Institute for Fusion Science (NIFS) in Japan have developed a rapid method for meeting a key challenge for fusion science. The challenge has been to simulate the diagnostic measurement of

78

A phase-field method for 3D simulation of two-phase heat transfer , H. Babaee a  

E-Print Network [OSTI]

the efficiency of the new method in simulating 3D multi-phase convective heat transfer on stationary gridsA phase-field method for 3D simulation of two-phase heat transfer X. Zheng a , H. Babaee a , S Keywords: Spectral element Non-moving grid Cahn­Hilliard equation Large thermal conductivity ratio a b

Dong, Suchuan "Steven"

79

Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma  

SciTech Connect (OSTI)

The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.

Wheeler,David M.; Miller, William A.; Wilson, Travis C.

2002-03-11T23:59:59.000Z

80

Accurate, finite-volume methods for 3D MHD on unstructured Lagrangian meshes  

SciTech Connect (OSTI)

Previous 2D methods for magnetohydrodynamics (MHD) have contributed both to development of core code capability and to physics applications relevant to AGEX pulsed-power experiments. This strategy is being extended to 3D by development of a modular extension of an ASCI code. Extension to 3D not only increases complexity by problem size, but also introduces new physics, such as magnetic helicity transport. The authors have developed a method which incorporates all known conservation properties into the difference scheme on a Lagrangian unstructured mesh. Because the method does not depend on the mesh structure, mesh refinement is possible during a calculation to prevent the well known problem of mesh tangling. Arbitrary polyhedral cells are decomposed into tetrahedrons. The action of the magnetic vector potential, A {center_dot} {delta}l, is centered on the edges of this extended mesh. For ideal flow, this maintains {del} {center_dot} B = 0 to round-off error. Vertex forces are derived by the variation of magnetic energy with respect to vertex positions, F = {minus}{partial_derivative}W{sub B}/{partial_derivative}r. This assures symmetry as well as magnetic flux, momentum, and energy conservation. The method is local so that parallelization by domain decomposition is natural for large meshes. In addition, a simple, ideal-gas, finite pressure term has been included. The resistive diffusion part is calculated using the support operator method, to obtain an energy conservative, symmetric method on an arbitrary mesh. Implicit time difference equations are solved by preconditioned, conjugate gradient methods. Results of convergence tests are presented. Initial results of an annular Z-pinch implosion problem illustrate the application of these methods to multi-material problems.

Barnes, D.C.; Rousculp, C.L.

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Small-scale faulting in the Upper Cretaceous of the Groningen block (The Netherlands): 3D seismic interpretation, fault plane analysis and regional paleostress  

Science Journals Connector (OSTI)

Over the last years, field-based studies have shown that fault surfaces can exhibit a considerable self-affine topography. It is reasonable to assume that similar undulations are also present in fault interpretations from 3D reflection seismic data, however both the interpretation uncertainty and geophysical resolution limits hinder their analysis. This study analyses a set of small-scale, non-reactivated faults in the Upper Cretaceous Chalk Group (Upper Ommelanden Formation) of the NW-part of the Groningen Block, the Netherlands, in a high quality Pre Stack Depth Migrated 3D seismic data set. The studied faults are fully contained inside the Chalk Group, in an area located between the major tectonic-bounding faults of the NW Groningen Block. Over 200 faults, with offsets in the order of 30–50 m, were interpreted across an area of ca. 150 km2, showing a clear preferential orientation for strike, dip and dip-direction. Detailed interpretations and 3D fault plane analyses show undulations on the fault plane. We show that these undulations are not an interpretation or gridding artefact, and interpret these to indicate direction of fault slip. These results were used to calculate a paleostress tensor, using all faults to calculate a single stress tensor for the entire study area by Numerical Dynamic Analysis. Based on the orientation, position and a thickness analysis, it is interpreted that these faults formed due to the tectonic reactivation of salt structures in the Latest Cretaceous. The calculated paleostress state shows a general NW–SE-extension, with a vertical maximum principle stress, and a stress ratio of about 0.3, indicating that the studied faults are not the result of dewatering. This interpretation agrees both with a nearby salt-tectonic reconstruction, as well as field-based paleostress results from the UK, Belgium and France. A first look at other surveys from the Dutch sector indicates that similar faults are present in other areas, with different orientations. We propose that a dedicated analysis of these faults across on- and offshore Europe would allow extending the stress map of the Late Cretaceous into areas where the Chalk is not outcropping.

Heijn van Gent; Stefan Back; Janos L. Urai; Peter Kukla

2010-01-01T23:59:59.000Z

82

Method to Remedy Image Degradations Due to Facet Braiding in 3D Integral-Imaging Monitors  

Science Journals Connector (OSTI)

One of the main challenges in 3D integral imaging (InI) is to overcome the limited depth of field of displayed 3D images. Although this limitation can ...

Navarro, Héctor; Martínez-Cuenca, Raúl; Molina-Martín, Ainhoa; Martínez-Corral, Manuel; Saavedra, Genaro; Javidi, Bahram

2010-01-01T23:59:59.000Z

83

3D shape reconstruction of medical images using a perspective shape-from-shading method  

Science Journals Connector (OSTI)

A 3D shape reconstruction approach for medical images using a shape-from-shading (SFS) method was proposed in this paper. A new reflectance map equation of medical images was analyzed with the assumption that the Lambertian reflectance surface was irradiated by a point light source located at the light center and the image was formed under perspective projection. The corresponding static Hamilton–Jacobi (H–J) equation of the reflectance map equation was established. So the shape-from-shading problem turned into solving the viscosity solution of the static H–J equation. Then with the conception of a viscosity vanishing approximation, the Lax–Friedrichs fast sweeping numerical method was used to compute the viscosity solution of the H–J equation and a new iterative SFS algorithm was gained. Finally, experiments on both synthetic images and real medical images were performed to illustrate the efficiency of the proposed SFS method.

Lei Yang; Jiu-qiang Han

2008-01-01T23:59:59.000Z

84

Abstract--This tutorial session covers recent developments in methods that utilize 2-D and 3-D imagery  

E-Print Network [OSTI]

imagery (e.g., from LADAR, visual, FLIR, acoustic-location) to enable aerial vehicles to autonomously covers methods that utilize 2-D and 3-D imagery (e.g., from LADAR, visual, FLIR, acoustic

Johnson, Eric N.

85

Parallel 3-D simulation of seismic wave propagation in heterogeneous anisotropic media: a grid method approach  

Science Journals Connector (OSTI)

......elastic wave equations in anisotropic media, in the absence of...constitutive relation for a general anisotropic medium. However, the anisotropy...constants. When we think of anisotropic earth models, we usually...layers, such as sand and shale. The anisotropy caused by......

Hongwei Gao; Jianfeng Zhang

2006-06-01T23:59:59.000Z

86

Ultra-Shallow Imaging Using 2D & 3D Seismic Reflection Methods  

E-Print Network [OSTI]

Dome in Brazoria County, Texas, in late 1926 (Weatherby, 1948). A successful discovery well that was drilled based on this information helped the reflection seismograph to gain acceptance. At the time, recording trucks had only one channel...

Sloan, Steven D.

2008-01-01T23:59:59.000Z

87

Reversible rigid coupling apparatus and method for borehole seismic transducers  

DOE Patents [OSTI]

An apparatus and method of high resolution reverse vertical seismic profile (VSP) measurements is shown. By encapsulating the seismic detector and heaters in a meltable substance (such as wax), the seismic detector can be removably secured in a borehole in a manner capable of measuring high resolution signals in the 100 to 1000 hertz range and higher. The meltable substance is selected to match the overall density of the detector package with the underground formation, yet still have relatively low melting point and rigid enough to transmit vibrations to accelerometers in the seismic detector. To minimize voids in the meltable substance upon solidification, the meltable substance is selected for minimum shrinkage, yet still having the other desirable characteristics. Heaters are arranged in the meltable substance in such a manner to allow the lowermost portion of the meltable substance to cool and solidify first. Solidification continues upwards from bottom-to-top until the top of the meltable substance is solidified and the seismic detector is ready for use. To remove, the heaters melt the meltable substance and the detector package is pulled from the borehole.

Owen, Thomas E. (Helotes, TX); Parra, Jorge O. (Helotes, TX)

1992-01-01T23:59:59.000Z

88

Chapter 5 - Seismic Attribute Analysis  

Science Journals Connector (OSTI)

Abstract Seismic attributes are the geometry, kinematics, dynamics, and statistical characteristics of seismic waves, which are extracted or derived from prestack and poststack seismic data by mathematical transformation. For a long time, seismic data only have been used to track lineups of seismic waves in order to delineate the geometry and structural characteristics of oil and gas reservoirs. In fact, there is rich information about lithology, physical properties, and fluid composition hidden in seismic data. As we all know, the characteristics of the seismic signal are caused by petrophysical characteristics and its variability. Geoscientists need to do seismic attribute analyses and calibration in order to eliminate data distortion and dig out lithological and physical properties hidden in seismic data. Especially when people are eager to cognize the heterogeneity of lithological and stratigraphic reservoirs, the rich information about the spatial variability in seismic data seems more precious. In recent years, with the advancement of reservoir interpretation and the needs of three dimensional (3-D) seismic data analysis, scientists have found out more and more new attributes on the basis of conventional seismic attributes. At the same time, methods and means used for the calculation and analysis of seismic attributes are increasing. Seismic attribute analysis has been successfully applied in reservoir lithological prediction, hydrocarbon potential prediction, and reservoir property estimates.

Ming Li; Yimin Zhao

2014-01-01T23:59:59.000Z

89

An interactive 3D movement path manipulation method in an augmented reality environment  

Science Journals Connector (OSTI)

......by Jeffrey Pierce. 1 3D Studio Max Product Information http://usa.autodesk.com/3ds-max (2010.9.1). 2 MAYA Product Information http://usa.autodesk.com/maya (2010.9.1). 3 Adobe Director, http://www.adobe......

Taejin Ha; Mark Billinghurst; Woontack Woo

2012-01-01T23:59:59.000Z

90

State-of-the-art 3-D radiation transport methods for fusion energy systems  

Science Journals Connector (OSTI)

Recent advances in radiation transport simulation tools enable an increased fidelity and accuracy in modeling complex geometries in fusion systems. Future neutronics calculations will increasingly be based directly on these 3-D CAD-based geometries, allowing enhanced model complexity and improved quality assurance. Improvements have been made in both stochastic and deterministic radiation transport methodologies and their new capabilities will be compared briefly. A code comparison benchmark exercise has been specified based on a 40° sector of the ITER machine and the analysis results show good agreement. Additional analyses will be discussed, with particular attention to how these new capabilities provide new insights for engineering design of ITER components.

P.P.H. Wilson; R. Feder; U. Fischer; M. Loughlin; L. Petrizzi; Y. Wu; M. Youssef

2008-01-01T23:59:59.000Z

91

Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods  

Science Journals Connector (OSTI)

......wave. P-wave energy enters the shadow...generally has a lower frequency content compared...simulate the seismic response of 2D and 3D geological...2006. Finite-frequency Kernels based upon...2004. Finite-frequency tomography reveals...Circumventing storage limitations in variational......

Qinya Liu; Jeroen Tromp

2008-07-01T23:59:59.000Z

92

Cardiac C-arm computed tomography using a 3D + time ROI reconstruction method with spatial and temporal regularization  

SciTech Connect (OSTI)

Purpose: Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congenital heart disease. To obtain such a reconstruction, the patient's electrocardiogram (ECG) must be recorded during the acquisition and used in the reconstruction. In this paper, the authors present a 4D reconstruction method aiming to reconstruct the heart from a single sweep 10 s acquisition. Methods: The authors introduce the 4D RecOnstructiOn using Spatial and TEmporal Regularization (short 4D ROOSTER) method, which reconstructs all cardiac phases at once, as a 3D + time volume. The algorithm alternates between a reconstruction step based on conjugate gradient and four regularization steps: enforcing positivity, averaging along time outside a motion mask that contains the heart and vessels, 3D spatial total variation minimization, and 1D temporal total variation minimization. Results: 4D ROOSTER recovers the different temporal representations of a moving Shepp and Logan phantom, and outperforms both ECG-gated simultaneous algebraic reconstruction technique and prior image constrained compressed sensing on a clinical case. It generates 3D + time reconstructions with sharp edges which can be used, for example, to estimate the patient's left ventricular ejection fraction. Conclusions: 4D ROOSTER can be applied for human cardiac C-arm CT, and potentially in other dynamic tomography areas. It can easily be adapted to other problems as regularization is decoupled from projection and back projection.

Mory, Cyril, E-mail: cyril.mory@philips.com [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, F-69621 Villeurbanne Cedex (France) [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, F-69621 Villeurbanne Cedex (France); Philips Research Medisys, 33 rue de Verdun, 92156 Suresnes (France); Auvray, Vincent; Zhang, Bo [Philips Research Medisys, 33 rue de Verdun, 92156 Suresnes (France)] [Philips Research Medisys, 33 rue de Verdun, 92156 Suresnes (France); Grass, Michael; Schäfer, Dirk [Philips Research, Röntgenstrasse 24–26, D-22335 Hamburg (Germany)] [Philips Research, Röntgenstrasse 24–26, D-22335 Hamburg (Germany); Chen, S. James; Carroll, John D. [Department of Medicine, Division of Cardiology, University of Colorado Denver, 12605 East 16th Avenue, Aurora, Colorado 80045 (United States)] [Department of Medicine, Division of Cardiology, University of Colorado Denver, 12605 East 16th Avenue, Aurora, Colorado 80045 (United States); Rit, Simon [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1 (France) [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1 (France); Centre Léon Bérard, 28 rue Laënnec, F-69373 Lyon (France); Peyrin, Françoise [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, F-69621 Villeurbanne Cedex (France) [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, F-69621 Villeurbanne Cedex (France); X-ray Imaging Group, European Synchrotron, Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Douek, Philippe; Boussel, Loïc [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1 (France) [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1 (France); Hospices Civils de Lyon, 28 Avenue du Doyen Jean Lépine, 69500 Bron (France)

2014-02-15T23:59:59.000Z

93

An interactive 3D movement path manipulation method in an augmented reality environment  

Science Journals Connector (OSTI)

......generation methods in experiment 1 and for comparing the control point selection methods in experiment 2, and the Kruskal-Wallis test for the three kinds of control point selection methods used in experiment 2. 4.2 Implementation The experiment......

Taejin Ha; Mark Billinghurst; Woontack Woo

2012-01-01T23:59:59.000Z

94

A fully implicit method for 3D quasi-steady state magnetic advection-diffusion.  

SciTech Connect (OSTI)

We describe the implementation of a prototype fully implicit method for solving three-dimensional quasi-steady state magnetic advection-diffusion problems. This method allows us to solve the magnetic advection diffusion equations in an Eulerian frame with a fixed, user-prescribed velocity field. We have verified the correctness of method and implementation on two standard verification problems, the Solberg-White magnetic shear problem and the Perry-Jones-White rotating cylinder problem.

Siefert, Christopher; Robinson, Allen Conrad

2009-09-01T23:59:59.000Z

95

A phase-field method for 3D simulation of two-phase heat transfer  

E-Print Network [OSTI]

stationary grids, different modes of heat transfer (e.g. convection/conduction), as well as its ... flow systems with sharp-interface models, moving-grid methods.

X. Zheng

2014-12-04T23:59:59.000Z

96

Convergence method for calculating solutions to the 3D invariant embedding integro-differential equations describing electron transport processes  

E-Print Network [OSTI]

The electron and photon transport processes in spectroscopy techniques described by the invariant embedding theory is here revisited. We report a convergence method to obtain closed analytical solutions to the 3D integro-differential equations. This method was successfully used in calculating the dependence of the electron backscattered fraction on the atomic number and on the energy. Also the fraction of absorbed electron as a function of incident angles was calculated. Using a states ladder model for the electron energies, this method provides a tool for testing physical parameters involved in the transport theory, such as the elastic and inelastic cross sections. The outstanding feature of the invariant embedding differential equations of considering observable quantities (such as the emergent flux of particles) as independent variables makes them a suitable tool to describe experimental situations.

Carlos Figueroa; Horacio Brizuela; Silvia P. Heluani

2010-06-19T23:59:59.000Z

97

Linearly Scaling 3D Fragment Method for Large-Scale Electronic Structure Calculations  

SciTech Connect (OSTI)

We present a new linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel patching scheme that effectively cancels out the artificial boundary effects due to the subdivision of the system. As a consequence, the LS3DF program yields essentially the same results as direct density functional theory (DFT) calculations. The fragments of the LS3DF algorithm can be calculated separately with different groups of processors. This leads to almost perfect parallelization on tens of thousands of processors. After code optimization, we were able to achieve 35.1 Tflop/s, which is 39percent of the theoretical speed on 17,280 Cray XT4 processor cores. Our 13,824-atom ZnTeO alloy calculation runs 400 times faster than a direct DFTcalculation, even presuming that the direct DFT calculation can scale well up to 17,280 processor cores. These results demonstrate the applicability of the LS3DF method to material simulations, the advantage of using linearly scaling algorithms over conventional O(N3) methods, and the potential for petascale computation using the LS3DF method.

Wang, Lin-Wang; Lee, Byounghak; Shan, Hongzhang; Zhao, Zhengji; Meza, Juan; Strohmaier, Erich; Bailey, David H.

2008-07-01T23:59:59.000Z

98

The milling process monitoring using 3D envelope method BISU Claudiu1,a  

E-Print Network [OSTI]

over the past decades that measure vibration (acceleration) [3], dynamic force [4], acoustic emission monitored, vibration measurement has been widely adopted as a popular tool. Effective utilization proposes a method to vibration analysis in order to on-line monitoring of milling process quality. Adapting

Paris-Sud XI, Université de

99

Abstract--This tutorial session covers recent results using methods that utilize 2-D and 3-D imagery (e.g., from LADAR,  

E-Print Network [OSTI]

imagery (e.g., from LADAR, visual, FLIR, acoustic-location) to enable aerial vehicles to autonomously results using methods that utilize 2-D and 3-D imagery (e.g., from LADAR, visual, FLIR, acoustic

Johnson, Eric N.

100

Schur-decomposition for 3D matrix equations and its application in solving radiative discrete ordinates equations discretized by Chebyshev collocation spectral method  

SciTech Connect (OSTI)

The Schur-decomposition for three-dimensional matrix equations is developed and used to directly solve the radiative discrete ordinates equations which are discretized by Chebyshev collocation spectral method. Three methods, say, the spectral methods based on 2D and 3D matrix equation solvers individually, and the standard discrete ordinates method, are presented. The numerical results show the good accuracy of spectral method based on direct solvers. The CPU time cost comparisons against the resolutions between these three methods are made using MATLAB and FORTRAN 95 computer languages separately. The results show that the CPU time cost of Chebyshev collocation spectral method with 3D Schur-decomposition solver is the least, and almost only one thirtieth to one fiftieth CPU time is needed when using the spectral method with 3D Schur-decomposition solver compared with the standard discrete ordinates method.

Li Benwen [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, P.O. Box 314, Shenyang, Liaoning 110004 (China)], E-mail: heatli@hotmail.com; Tian Shuai; Sun Yasong; Hu, Zhang-Mao [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, P.O. Box 314, Shenyang, Liaoning 110004 (China)

2010-02-20T23:59:59.000Z

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir  

E-Print Network [OSTI]

hydrothermal al- teration would combine to reduce the effectiveness of standard 3-D seismic processing.

Feighner, Mark A.

2010-01-01T23:59:59.000Z

102

3D printing in X-ray and gamma-ray imaging: A novel method for fabricating high-density imaging apertures  

Science Journals Connector (OSTI)

Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented.

Brian W. Miller; Jared W. Moore; Harrison H. Barrett; Teresa Fryé; Steven Adler; Joe Sery; Lars R. Furenlid

2011-01-01T23:59:59.000Z

103

Seismic methods for resource exploration in enhanced geothermal systems  

SciTech Connect (OSTI)

A finite-difference modeling study of seismic wave propagation was conducted to determine how to best investigate subsurface faults and fracture zones in geothermal areas. The numerical model was created based on results from a previous seismic reflection experiment. A suite of fault models was investigated including blind faults and faults with surface expressions. The seismic data suggest that blind faults can be detected by a sudden attenuation of seismic wave amplitudes, as long the fault is located below the receiver array. Additionally, a conversion from P- to S-waves indicates the reflection and refraction of the P-waves while propagating across the fault. The drop in amplitudes and the excitation of S-waves can be used to estimate the location of the fault at depth. The accuracy of the numerical modeling depends on the availability of a priori in situ information (velocity and density) from borehole experiments in the geothermal area.

Gritto, Roland; Majer, Ernest L.

2002-06-12T23:59:59.000Z

104

A Bayesian hierarchical method for multiple-event seismic location  

Science Journals Connector (OSTI)

......demonstrate BAYHLoc using the set of Nevada Test Site nuclear explosions, for which...location|multiple-event|Nevada Test Site|seismic|stochastic| INTRODUCTION...The Walter (2004) data set of Nevada Test Site (NTS) explosions (Fig. 2a......

Stephen C. Myers; Gardar Johannesson; William Hanley

2007-12-01T23:59:59.000Z

105

Utilising a collaborative macro-script to enhance student engagement: A mixed method study in a 3D virtual environment  

Science Journals Connector (OSTI)

This study examines the effect of using an online 3D virtual environment in teaching Mathematics in Primary Education. In particular, it explores the extent to which student engagement - behavioral, affective and cognitive - is fostered by such tools ... Keywords: 3D virtual environments, K-12 education, Online collaborative learning, Script, Student engagement

Hara Bouta; Symeon Retalis; Fotini Paraskeva

2012-01-01T23:59:59.000Z

106

Fast 3D keypoints detector and descriptor for view-based 3D objects recognition  

E-Print Network [OSTI]

Fast 3D keypoints detector and descriptor for view-based 3D objects recognition Ayet Shaiek1 Abstract. In this paper, we propose a new 3D object recognition method that employs a set of 3D keypoints extracted from point cloud representation of 3D views. The method makes use of the 2D organization of range

Paris-Sud XI, Université de

107

Stochastic and Deterministic Inversion Methods for History Matching of Production and Time-Lapse Seismic Data  

E-Print Network [OSTI]

-based inversion methods as a deterministic approach for integrating both production and time-lapse seismic data into high resolution reservoir models. For the ensemble Kalman filter, we develope a physically motivated phase streamline-based covariance...

Watanabe, Shingo

2013-08-26T23:59:59.000Z

108

3-D seismology in the Arabian Gulf  

SciTech Connect (OSTI)

Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.

Al-Husseini, M. [Gulf PetroLink, Manama (Bahrain); Chimblo, R. [Saudi Aramco, Dhahran (Saudi Arabia)

1995-08-01T23:59:59.000Z

109

Characterization of a sandstone reservoir using seismic methods: Yowlumne Field, Kern County, California  

E-Print Network [OSTI]

CHARACTERIZATION OF A SANDSTONE RESERVOIR USING SEISMIC METHODS: YOWLUMNE FIELD, KERN COUNTY, CALIFORNIA A Thesis by RODRIGO DIEZ PROUST Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE May 1988 Major Subject: Geophysics CHARACTERIZATION OF A SANDSTONE RESERVOIR USING SEISMIC METHODS: YOWLUMNE FIELD KERN COUNTY, CALIFORNIA A Thesis by RODRIGO DIEZ PROUST Approved as to style s. nd content by: Anth...

Proust, Rodrigo Diez

2012-06-07T23:59:59.000Z

110

An automated vision-based method for rapid 3D energy performance modeling of existing buildings using thermal and digital imagery  

Science Journals Connector (OSTI)

Abstract Modeling the energy performance of existing buildings enables quick identification and reporting of potential areas for building retrofit. However, current modeling practices of using energy simulation tools do not model the energy performance of buildings at their element level. As a result, potential retrofit candidates caused by construction defects and degradations are not represented. Furthermore, due to manual modeling and calibration processes, their application is often time-consuming. Current application of 2D thermography for building diagnostics is also facing several challenges due to a large number of unordered and non-geo-tagged images. To address these limitations, this paper presents a new computer vision-based method for automated 3D energy performance modeling of existing buildings using thermal and digital imagery captured by a single thermal camera. First, using a new image-based 3D reconstruction pipeline which consists of Graphic Processing Unit (GPU)-based Structure-from-Motion (SfM) and Multi-View Stereo (MVS) algorithms, the geometrical conditions of an existing building is reconstructed in 3D. Next, a 3D thermal point cloud model of the building is generated by using a new 3D thermal modeling algorithm. This algorithm involves a one-time thermal camera calibration, deriving the relative transformation by forming the Epipolar geometry between thermal and digital images, and the MVS algorithm for dense reconstruction. By automatically superimposing the 3D building and thermal point cloud models, 3D spatio-thermal models are formed, which enable the users to visualize, query, and analyze temperatures at the level of 3D points. The underlying algorithms for generating and visualizing the 3D spatio-thermal models and the 3D-registered digital and thermal images are presented in detail. The proposed method is validated for several interior and exterior locations of a typical residential building and an instructional facility. The experimental results show that inexpensive digital and thermal imagery can be converted into ubiquitous reporters of the actual energy performance of existing buildings. The proposed method expedites the modeling process and has the potential to be used as a rapid and robust building diagnostic tool.

Youngjib Ham; Mani Golparvar-Fard

2013-01-01T23:59:59.000Z

111

3-D seismic modelling of general material anisotropy in the presence of the free surface by a Chebyshev spectral method  

Science Journals Connector (OSTI)

......modelling in general anisotropic media is presented...the qSV and SH waves. Anisotropic free-surface modelling...wavefronts of Green River shale after 375 ms propagation...in the Green River shale model with 45" inclined...qSH-guided SH wave. Anisotropic free-surface modelling......

Ekkehart Tessmer

1995-05-01T23:59:59.000Z

112

Seismic amplitude and coherency response of channel sand, offshore Louisiana, Gulf of Mexico  

E-Print Network [OSTI]

hazard delineation. This paper describes a new technique for drilling hazard identification using a conventional 3 D seismic amplitude dataset. An event coherence calculation program is applied to a 3 D seismic dataset to derive seismic attributes...

Fischer, Elena Mikhaylovna

2012-06-07T23:59:59.000Z

113

SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic  

E-Print Network [OSTI]

#12;SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic ray method available. This method plays an important role in seismology, seismic exploration, and the interpretation of seismic measurements. The book presents a consistent treatment of the seismic ray method, based

Cerveny, Vlastislav

114

High-resolution seismic array imaging based on an SEM-FK hybrid method  

Science Journals Connector (OSTI)

......defined on a regular grid still presents limitations...2013) proposed a hybrid method that interfaces...studies of an SEM-FK hybrid method and its application...from Computational Infrastructure for Geodynamics...Martin R. A hybrid technique for 3-D...D. , Sen M.K. Grid dispersion and stability......

Ping Tong; Chin-wu Chen; Dimitri Komatitsch; Piero Basini; Qinya Liu

2014-01-01T23:59:59.000Z

115

Application of the SASSI soil structure interaction method to CANDU 6 NPP seismic analysis  

SciTech Connect (OSTI)

The standard CANDU 6 NPP has been conservatively qualified for a Design Basis Earthquake (DBE) peak horizontal ground acceleration of 0.2 g. Currently there are potential opportunities for siting the CANDU 6 at higher seismicity sites. In order to be able to extend the use of a standardized design for sites with higher seismicity than the standard plant, various design options, including the use of the SASSI Soil Structure Interaction (SSI) analysis method, are being evaluated. This paper presents the results of a study to assess the potential benefits from utilization of the SASSI computer program and the use of more realistic damping ratios for the structures.

Ricciuti, R.A.; Elgohary, M.; Usmani, S.A. [Atomic Energy of Canada Ltd., Mississauga, Ontario (Canada)

1996-12-01T23:59:59.000Z

116

Submarine Seismic Investigations  

Science Journals Connector (OSTI)

...March 1941 research-article Submarine Seismic Investigations E. C. Bullard T. F. Gaskell The refraction seismic method has been used to investigate the...techniques, and results of a refraction seismic survey of the rock surface underlying...

1941-01-01T23:59:59.000Z

117

Conducting a 3D Converted Shear Wave Project to Reduce Exploration...  

Broader source: Energy.gov (indexed) [DOE]

shear wave) seismic survey to reduce exploration risk by characterizing fault and fracture geometrics at Wister, CA.The intent of the proposed program is to use a 3D seismic...

118

Conducting a 3D Converted Shear Wave Project to Reduce Exploration...  

Broader source: Energy.gov (indexed) [DOE]

shear wave) seismic survey to reduce exploration risk by characterizing fault and fracture geometrics at Wister, CA. The intent of the proposed program is to use a 3D seismic...

119

3D NUCLEAR SEGMENTAT  

Energy Science and Technology Software Center (OSTI)

003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems  https://vision.lbl.gov/Software/3DMorphometry/ 

120

3D Keypoints Detection for Objects Recognition Ayet Shaiek1  

E-Print Network [OSTI]

3D Keypoints Detection for Objects Recognition Ayet Shaiek1 , and Fabien Moutarde1 1 Robotics a new 3D object recognition method that employs a set of 3D local features extracted from point cloud representation of 3D views. The method makes use of the 2D organization of range data produced by 3D sensor

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Method for enhancing low frequency output of impulsive type seismic energy sources and its application to a seismic energy source for use while drilling  

DOE Patents [OSTI]

A method for operating an impulsive type seismic energy source in a firing sequence having at least two actuations for each seismic impulse to be generated by the source. The actuations have a time delay between them related to a selected energy frequency peak of the source output. One example of the method is used for generating seismic signals in a wellbore and includes discharging electric current through a spark gap disposed in the wellbore in at least one firing sequence. The sequence includes at least two actuations of the spark gap separated by an amount of time selected to cause acoustic energy resulting from the actuations to have peak amplitude at a selected frequency.

Radtke, Robert P; Stokes, Robert H; Glowka, David A

2014-12-02T23:59:59.000Z

122

3D heart reconstruction.  

E-Print Network [OSTI]

??The purpose of this thesis was to achieve a 3D reconstruction of the four heart chambers using 2D echocardiographic images. A level set algorithm based… (more)

Roxo, Diogo

2011-01-01T23:59:59.000Z

123

F3D  

Energy Science and Technology Software Center (OSTI)

003188MLTPL00 F3D Image Processing and Analysis for Many - and Multi-core Platforms  http://camera.lbl.gov/software 

124

Frequency ratio method for seismic modeling of Gamma Doradus stars  

E-Print Network [OSTI]

A method for obtaining asteroseismological information of a Gamma Doradus oscillating star showing at least three pulsation frequencies is presented. This method is based on a first-order asymptotic g-mode expression, in agreement with the internal structure of Gamma Doradus stars. The information obtained is twofold: 1) a possible identification of the radial order n and degree l of observed frequencies (assuming that these have the same l), and 2) an estimate of the integral of the buoyancy frequency (Brunt-Vaisala) weighted over the stellar radius along the radiative zone. The accuracy of the method as well as its theoretical consistency are also discussed for a typical Gamma Doradus stellar model. Finally, the frequency ratios method has been tested with observed frequencies of the Gamma Doradus star HD 12901. The number of representative models verifying the complete set of constraints (the location in the HR diagram, the Brunt-Vaisala frequency integral, the observed metallicity and frequencies and a re...

Moya, A; Amado, P J; Martin-Ruiz, S; Garrido, R

2004-01-01T23:59:59.000Z

125

Subsurface imaging with reverse vertical seismic profiles  

E-Print Network [OSTI]

This thesis presents imaging results from a 3D reverse vertical seismic profile (RVSP) dataset measured at a hydrocarbon bearing pinnacle reef in northern Michigan. The study presented many challenges in seismic data ...

Krasovec, Mary L. (Mary Lee), 1972-

2001-01-01T23:59:59.000Z

126

Seismic Attenuation Inversion with t* Using tstarTomog.  

SciTech Connect (OSTI)

Seismic attenuation is defined as the loss of the seismic wave amplitude as the wave propagates excluding losses strictly due to geometric spreading. Information gleaned from seismic waves can be utilized to solve for the attenuation properties of the earth. One method of solving for earth attenuation properties is called t*. This report will start by introducing the basic theory behind t* and delve into inverse theory as it pertains to how the algorithm called tstarTomog inverts for attenuation properties using t* observations. This report also describes how to use the tstarTomog package to go from observed data to a 3-D model of attenuation structure in the earth.

Preston, Leiph

2014-09-01T23:59:59.000Z

127

Seismic wave generation systems and methods for cased wells  

DOE Patents [OSTI]

A vibration source (10) includes an armature bar (12) having a major length dimension, and a driver (20A) positioned about the armature bar. The driver (20A) is movably coupled to the armature bar (12), and includes an electromagnet (40). During operation the electromagnet (40) is activated such that the driver (20A) moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar. A described method for generating a vibratory signal in an object includes positioning the vibration source (10) in an opening of the object, coupling the armature bar (12) to a surface of the object within the opening, and activating the electromagnet (40) of the driver (20A) such that the driver moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar and the object.

Minto, James (Houston, TX); Sorrells, Martin H (Huffman, TX); Owen, Thomas E. (Helotes, TX); Schroeder, Edgar C. (San Antonio, TX)

2011-03-29T23:59:59.000Z

128

Method for migrating seismic data by using ray tracing in determining two way travel times  

SciTech Connect (OSTI)

A method is described for depth migrating ray traces before stacking comprising the steps of: receiving raw seismic data signals representing acoustic waves generated by a plurality of sources and detected by a plurality of receivers, each of said sources and said receivers having a surface position; generating a set of one way travel times for each surface position to all image points; storing said one way travel times; identifying a set of one way travel times from one source surface position to each of said image points; identifying a second set of one way travel times from one receiver surface position to each of said image points; calculating a two way travel time set to said image points by summing said set of one way travel times for said one source surface position and said second set of one way travel times for said one receiver surface position to each of said image points; mapping a seismic trace associated with a source and receiver combination represented by said two way travel time set; and displaying said map of said seismic trace associated with said source and receiver combination.

Wang, Sheinshion; Sinton, J.B.; Hanson, D.W.

1993-07-20T23:59:59.000Z

129

3D Model Retrieval based on Adaptive Views Clustering  

E-Print Network [OSTI]

3D Model Retrieval based on Adaptive Views Clustering Tarik Filali Ansary1 , Mohamed Daoudi2 , Jean.daoudi@univ-tours.fr http://www-rech.enic.fr/miire Abstract. In this paper, we propose a method for 3D model indexing based selection of 2D views from a 3D model, and a probabilistic Bayesian method for 3D model retrieval from

Paris-Sud XI, Université de

130

Graphene's 3D Counterpart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which...

131

Graphene's 3D Counterpart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

08:59 ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which...

132

3D Plasmon Ruler  

SciTech Connect (OSTI)

In this animation of a 3D plasmon ruler, the plasmonic assembly acts as a transducer to deliver optical information about the structural dynamics of an attached protein. (courtesy of Paul Alivisatos group)

None

2011-01-01T23:59:59.000Z

133

Final recommendations of the Peer Review Panel on the use of seismic methods for characterizing Yucca Mountain and vicinity  

SciTech Connect (OSTI)

The Peer Review Panel was charged with deciding whether seismic methods, which had been utilized at Yucca Mountain with mixed results in the past, could provide useful information about the Tertiary structure in the Yucca Mountain area. The objectives of using seismic methods at Yucca Mountain are to: (a) obtain information about the structural character of the Paleozoic-Tertiary (Pz-T) contact, and (b) obtain information about the structural and volcanic details within the Tertiary and Quaternary section. The Panel recommends that a four part program be undertaken to test the utility of seismic reflection data for characterizing the structural setting of the Yucca Mountain area. The Panel feels strongly that all four parts of the program must be completed in order to provide the highest probability of success. The four parts of the program are: (a) drill or extend a deep hole in Crater Flat to provide depth control and allow for the identification of seismic reflectors in an area where good quality seismic reflection data are expected; (b) undertake a full seismic noise test in Crater Flat, test 2D receiver arrays as well as linear arrays; perform an expanding spread test using both P and S wave sources to obtain a quick look at the reflection quality in the area and see if shear wave reflections might provide structural information in areas of unsaturated rock; (c) acquire a P wave seismic reflection profile across Crater Flat through the deep control well, across Yucca Mountain, and continuing into Jackass Flats; and (d) acquire a standard VSP (vertical seismic profiling) in the deep control well to tie the seismic data into depth and to identify reflectors correctly.

NONE

1991-01-22T23:59:59.000Z

134

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

3D Computer Vision and Video Computing 3D Vision3D Vision CSC I6716 Fall 2010 Topic 1 of Part II Camera Models Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu #12;3D Computer Vision and Video Computing 3D Vision3D Vision Closely Related Disciplines Image Processing ­ images to mages Computer

Zhu, Zhigang

135

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

1 3D Computer Vision and Video Computing 3D Vision3D Vision Topic 1 of Part II Camera Models CSC I6716 Spring2011 Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing 3D Vision3D Vision Closely Related Disciplines Image Processing ­ images to mages Computer

Zhu, Zhigang

136

ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS  

SciTech Connect (OSTI)

High-Resolution Source Parameters using Calibration from Ambient Seismic Noise (ASN) Zhongwen Zhan, Shengji Wei, Sidao Ni, and Don V. Helmberger Abstract Several new methods have been developed to retrieve local Green's functions based on the cross-correlation of ambient seismic noise (station-to-station) and conventional (source-to-station) inversions. The latter methods provide the most broadband results but require accurate source parameters for phase-delay recovery which depends on the starting model. Considerable progress is being made in providing such information from 3D modeling, Tape et al. (2008), using Adjoint Tomography. But to match waveforms for the recent Chino Hills event still requires shifting synthetics to align on data. This means that it is difficult to use 3D simulations to refine source locations in near-real time. We can avoid the 3D problems by applying the CAP method and storing shifts from past events, Tan (2006), and/or using ASN, Shapiro et al. (2005), to predict lags for surface waves. Here, we directly compare results from CAP predictions with ASN results using stations near the Chino Hills event. We use the same SC seismic model as used in the Library of Earthquakes to generate Green's functions for noise (single force) for comparison with ASN correlations and allow Cap delays. We apply these delays or corrections to determine precise Centroid locations.

Helmberger, Donald V.; Tromp, Jeroen; Rodgers, Arthur J.

2009-04-30T23:59:59.000Z

137

Chapter 7 - Prestack Seismic Inversion and Seismic Attribute Analysis  

Science Journals Connector (OSTI)

Abstract Based on seismic, logging, and geological data, the seismic inversion technique can reveal the spatial characteristics (including reservoir thickness, structural characteristics, extending direction, extending range, pinch-out location, and others) of the target layers, such as reservoirs or coal seams. By combining a large area of the continuous distribution of seismic data with high-resolution well logging data, this technique transforms conventional seismic data into a high-resolution well data volume, enabling us to use the acoustic characteristics of rock formations to ascertain lithological interfaces. So we can extrapolate the borehole lithological and physical properties and hydrocarbon features from points to lines and lines to faces, and predict lateral reservoir variations and reservoir properties from known reservoir characteristics. Seismic inversion technology has been one of the core technologies for reservoir characteristics and reservoir prediction. Seismic attribute analysis is the premise of fine reservoir characteristics and fine 3D seismic interpretation, which help us uncover information about lithology and reservoir heterogeneity from seismic data. The work of seismic attribute analysis includes (1) extracting various seismic attributes from poststack seismic data; (2) conducting crossplot analysis of seismic attributes and reservoir properties (including geology, well logging, and petrophysical parameters) to establish relationships between seismic attributes and reservoir parameters; and (3) dynamically interpreting 3D seismic, geological, and logging data, which helps us to study the relationships between seismic reflection characteristics and sedimentary and tectonic information, predict the reservoir spatial distribution, and reveal how fracture systems influence the reservoir distribution. Development of the seismic inversion technique in reservoir characterization can be summarized in four stages: the first stage was in the 1960s. In this stage, the exploration targets were structural reservoirs, and seismic inversion techniques were not used. The second stage was in the 1970s. The exploration targets were structural and lithological reservoirs, and no well-constraint seismic inversion techniques were used. The third stage was in the 1980s, when many new techniques were developed. Seismic inversion techniques, including the prestack amplitude versus offset (AVO) technique and wave impedance inversion technique, developed rapidly and greatly improved our understanding of seismic reservoir characterization. The fourth stage is the stage of reservoir characterization and dynamic monitoring in the 1990s. Seismic inversion techniques are used for reservoir dynamic characterization, such as 3D AVO inversion, well-seismic joint inversion, reservoir characteristics curve reconstruction, multiparameter reservoir inversion, and the elastic wave impedance inversion techniques. Prestack seismic data contain richer information than do poststack data, so prestack seismic inversion and attribute analysis are increasingly important in oil and gas exploration.

Ming Li; Yimin Zhao

2014-01-01T23:59:59.000Z

138

Quantum 3D superstrings  

Science Journals Connector (OSTI)

The classical Green-Schwarz superstring action, with N=1 or N=2 spacetime supersymmetry, exists for spacetime dimensions D=3, 4, 6, 10, but quantization in the light-cone gauge breaks Lorentz invariance unless either D=10, which leads to critical superstring theory, or D=3. We give details of results presented previously for the bosonic and N=1 closed 3D (super)strings and extend them to the N=2 3D superstring. In all cases, the spectrum is parity-invariant and contains anyons of irrational spin.

Luca Mezincescu and Paul K. Townsend

2011-11-08T23:59:59.000Z

139

Introduction to 3D Printing  

Science Journals Connector (OSTI)

Three-dimensional (3D) printing has evolved dramatically in the last few years. 3D printers have become plentiful and affordable enough ... can own one. Indeed, the cost of 3D printers (as little as $200 USD) ......

Charles Bell

2014-01-01T23:59:59.000Z

140

A Feasibility Study of Non-Seismic Geophysical Methods forMonitoring Geologic CO2 Sequestration  

SciTech Connect (OSTI)

Because of their wide application within the petroleumindustry it is natural to consider geophysical techniques for monitoringof CO2 movement within hydrocarbon reservoirs, whether the CO2 isintroduced for enhanced oil/gas recovery or for geologic sequestration.Among the available approaches to monitoring, seismic methods are by farthe most highly developed and applied. Due to cost considerations, lessexpensive techniques have recently been considered. In this article, therelative merits of gravity and electromagnetic (EM) methods as monitoringtools for geological CO2 sequestration are examined for two syntheticmodeling scenarios. The first scenario represents combined CO2 enhancedoil recovery (EOR) and sequestration in a producing oil field, theSchrader Bluff field on the north slope of Alaska, USA. The secondscenario is a simplified model of a brine formation at a depth of 1,900m.

Gasperikova, Erika; Hoversten, G. Michael

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Full Reviews: Seismicity and Seismic  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer reviewer comments for Seismicity and Seismic.

142

3d X 3d X SrTiO3Ti 2p 3d  

E-Print Network [OSTI]

XX 3d X 3d X X XX X XX SrTiO3Ti 2p 3d SrTiO3Ti 2p 3d 2p 2p SrTiO3 ts) 2p3/2 (t2g) 2p3/2 (e ) 2p1/2 (eg)2p SrTiO3 3d unit (t2g) (eg) (eg)2p1/2 (t2g)3d (Ti Fe Cu) arb. ( 2g) (Ti, Fe, Cu) y(ansitynten 3d In 3d 468464460456 · Photon Energy (e

Katsumoto, Shingo

143

3D scanning for personal 3D printing: build your own desktop 3D scanner  

Science Journals Connector (OSTI)

3D Printing has entered the mainstream. Multiple low cost desktop 3D printers are currently available from various vendors, and open source projects let hobbyists build their own. This course addresses the problem of creating 3D models for 3D printing. ...

Gabriel Taubin; Daniel Moreno; Douglas Lanman

2014-07-01T23:59:59.000Z

144

Simultaneous Inversion For 3-D Crustal Structure and Hypocentres Including Direct, Refracted and Reflected Phases—I. Development, Validation and Optimal Regularization of the Method  

Science Journals Connector (OSTI)

......remote measurements of thermal radiation, Rev. Geophys. Space Phys...regularized until Ilx,II Naturally the ideal xOpt of TR from...Rhine Graben seismic events occuring between 1971-1982 as used...remote measurements of thermal radiation, Rev. Geophys. Space Phys......

Manfred Koch

1993-03-01T23:59:59.000Z

145

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

1 3D Computer Vision and Video Computing 3D Vision3D Vision CSc I6716 Fall 2010 Topic 3 of Part II Stereo Vision Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing Stereo VisionStereo Vision Problem Infer 3D structure of a scene from two or more images taken

Zhu, Zhigang

146

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

1 3D Computer Vision and Video Computing 3D Vision3D Vision CSc I6716 Spring 2011 Topic 3 of Part II Stereo Vision p g Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing Stereo VisionStereo Vision Problem Infer 3D structure of a scene from two or more images

Zhu, Zhigang

147

Time-lapse seismic monitoring of subsurface fluid flow  

E-Print Network [OSTI]

Time-lapse seismic monitoring repeats 3 D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic...

Yuh, Sung H.

2004-09-30T23:59:59.000Z

148

Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal...  

Open Energy Info (EERE)

In 1998 a 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada) to determine if modern seismic techniques could be...

149

3D printing and simulation of naturally randomized cellular automata  

Science Journals Connector (OSTI)

3D printing technology usually aims at reproducing objects deterministically ... tools; however, the author has discovered that 3D printing can also generate self-organizing patterns similar ... proposed method w...

Yasusi Kanada

2014-11-01T23:59:59.000Z

150

Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic Activity Thanks to a groundbreaking new method, scientists have created the first 3D super-resolution maps of...

151

New Analytical Methods Reveal the Pattern of Seismic Activity in Western Washington  

Science Journals Connector (OSTI)

...Explosion-Generated Seismic Waves". 7. I. N. Gupta, "Resonant Oscillations of the Overburden Exeited by Seismic Waves". 8. P. L...galvanometer. The slat is illuminated 11 times a second by a Xenon flash lamp. Light pulses passing through the code piste are...

Frank Neumann

152

Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion  

Science Journals Connector (OSTI)

......reconstructed during the iterative process. However, preconditioning...Hagedoorn J.G. , 1954A process of seismic reflection interpretation...cross-borehole seismic data,57th Mtg. Eur. Assoc. Expl Geophys...estimation in 2D media,58th Mtg. Eur. Assoc. Expl Geophys......

R. Gerhard Pratt; Changsoo Shin; G. J. Hick

1998-05-01T23:59:59.000Z

153

Develpment of a low Cost Method to Estimate the Seismic Signiture...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Rocks Integration of Noise and Coda Correlation Data into Kinematic and Waveform Inversions Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization...

154

Development Of Active Seismic Vector-Wavefield Imaging Technology...  

Open Energy Info (EERE)

Also described is a 3-D seismic data-processing effort to create images of Rye Patch geothermal reservoir from 3-D sign-bit data recorded over the geothermal prospect. Two...

155

3D modeling with silhouettes  

E-Print Network [OSTI]

With the increasing power of computers and the spread of dedicated graphics hardware, 3D content has become ubiquitous in every field, from medicine to video games. However, designing 3D models remains a time-consuming and ...

Rivers, Alec (Alec Rothmyer)

2010-01-01T23:59:59.000Z

156

Slicing a 3D Model  

Science Journals Connector (OSTI)

This chapter and the next are the core of this book’s explanation of the 3D printing process. 3D printers cannot use a computer...slicing.

Joan Horvath

2014-01-01T23:59:59.000Z

157

The Desktop 3D Printer  

Science Journals Connector (OSTI)

In Chapter 1 we saw that 3D printing has a 30-year history spanning a ... technical, legal, and societal shifts in the 3D-printing market since the major patents in the...

Joan Horvath

2014-01-01T23:59:59.000Z

158

3 D interactive pictorial maps  

E-Print Network [OSTI]

of simplififcation and exaggeration.. . . . . . . . . . . . . . 21 8 3 D polygonal text in Maya. . . . . . . . . . . . . . . . . . . . . . . . 22 9 Final 3 D model of Italy with text. . . . . . . . . . . . . . . . . . . . 23 10 Top view of 3 D model of France... the files in a format that is suitable for web viewing. 15 CHAPTER IV METHODOLOGY There are three major steps to making an interactive pictorial map. The fifrst step is to build the 3 D model using a modeling software, Maya. The second step is to apply...

Naz, Asma

2005-02-17T23:59:59.000Z

159

3D Printed Bionic Ears  

Science Journals Connector (OSTI)

(bottom) a 3D printer used for the printing process. ... Figure 2A shows the 3D printed bionic ear immediately after printing. ... A student version of the Autodesk 3ds Max software package was used to modify and render the 3D images. ...

Manu S. Mannoor; Ziwen Jiang; Teena James; Yong Lin Kong; Karen A. Malatesta; Winston O. Soboyejo; Naveen Verma; David H. Gracias; Michael C. McAlpine

2013-05-01T23:59:59.000Z

160

3D Tissue Scaffolds BIOMATERIALS  

E-Print Network [OSTI]

3D Tissue Scaffolds BIOMATERIALS Our goal is to develop measurement tools and reference materials for assessing the impact of the physical and chemical properties of 3D tissue scaffolds on cellular response. These tools will be used to explore the relationship between cellular response on 2D surfaces to that in 3D

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA  

Broader source: Energy.gov [DOE]

DOE Geothermal Technologies Peer Review 2010 - Presentation. The primary objective of this project is to conduct a 3C 3D (converted shear wave) seismic survey to reduce exploration risk by characterizing fault and fracture geometrics at Wister, CA.The intent of the proposed program is to use a 3D seismic survey with converted shear waves combined with other available data to site and drill production wells at Wister, a blind geothermal resource.

162

Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates  

E-Print Network [OSTI]

Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates Mohammed Y is required to optimize hydrocarbon production. A rock containing parallel fractures can be seismically to the seismic wavelength. Seismic anisotropy may be detectable from attributes of pre-stack 3-D seismic data

Ali, Mohammed

163

3D imaging and ranging by time-correlated single  

E-Print Network [OSTI]

3D imaging and ranging by time-correlated single photon counting by A. M. Wallace, 6. S. Buller and A. C. Walker 3D imaging is an important tool for metrology and reverse engineering of components and architecturalsurveying. In this article, we review briefly the principal methods in current use for 3D imaging

Buller, Gerald S.

164

3D Engineered Models for Stringless Paving Workshop  

E-Print Network [OSTI]

3D Engineered Models for Stringless Paving Workshop As the highway industry looks for greater productivity through electronic tools and methods, 3D modeling is fast becoming a standard for project delivery quality, cost, and time benefits from using 3D modeling. For construction, this includes more accurate

165

Analyzing 3D Images of the Brain NICHOLAS AYACHE  

E-Print Network [OSTI]

Analyzing 3D Images of the Brain NICHOLAS AYACHE OVERVIEW During the past 5 years, there has been research. Along these lines, and focusing on 3D images of the brain obtained with CT, MRI, SPECT, and PET for an objective analysis of 3D images of the brain. Such methods include segmentation, shape analysis, rigid

Paris-Sud XI, Université de

166

Parametric Numerical Study of Seismic Slope Stability and Verification of the Newmark Method  

Science Journals Connector (OSTI)

...2D dynamic modelling of seismic slope stability is applied to a landslide-prone area in Central Asia, the Mailuu-Suu Valley, situated in the south of Kyrgyzstan...

Almaz Torgoev; Hans-Balder Havenith

2013-01-01T23:59:59.000Z

167

E-Print Network 3.0 - absorbed dose 3d Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

unit absorbed dose. Conclusions Polymer gel dosimetry offers a method of acquiring 3D... -dimensional (3D) dose measurements can be produced by position- ing lm in multiple...

168

3D World Building System  

SciTech Connect (OSTI)

This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

None

2013-10-30T23:59:59.000Z

169

3D World Building System  

ScienceCinema (OSTI)

This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

None

2014-02-26T23:59:59.000Z

170

Multicomponent 3-D characterization of a coalbed methane reservoir  

SciTech Connect (OSTI)

Methane is produced from fractured coalbed reservoirs at Cedar Hill Field in the San Juan Basin. Fracturing and local stress are critical to production because of the absence of matrix permeability in the coals. Knowledge of the direction of open fractures, the degree of fracturing, reservoir pressure, and compartmentalization is required to understand the flow of fluids through the reservoir. A multicomponent 3-D seismic survey was acquired to aid in coalbed methane reservoir characterization. Coalbed reservoir heterogeneities, including isolated pressure cells, zones of increased fracture density, and variable fracture directions, have been interpreted through the analysis of the multicomponent data and integration with petrophysical and reservoir engineering studies. Strike-slip faults, which compartmentalize the reservoir, have been identified by structural interpretation of the 3-D P-wave seismic data. These faults form boundaries for pressure cells that have been identified by P-wave reflection amplitude anomalies.

Shuck, E.L. [Advance Geophysical Corp., Englewood, CO (United States)] [Advance Geophysical Corp., Englewood, CO (United States); Davis, T.L.; Benson, R.D. [Colorado School of Mines, Golden, CO (United States). Geophysics Dept.] [Colorado School of Mines, Golden, CO (United States). Geophysics Dept.

1996-03-01T23:59:59.000Z

171

SALSA3D : a global 3D p-velocity model of the Earth's crust and mantle for improved event location.  

SciTech Connect (OSTI)

To test the hypothesis that high quality 3D Earth models will produce seismic event locations which are more accurate and more precise, we are developing a global 3D P wave velocity model of the Earth's crust and mantle using seismic tomography. In this paper, we present the most recent version of our model, SALSA3D version 1.5, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. Our model is derived from the latest version of the Ground Truth (GT) catalog of P and Pn travel time picks assembled by Los Alamos National Laboratory. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays to produce representative rays. Reduction in the total number of ray paths is {approx}50%. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified two layer crustal model derived from the Crust 2.0 model over a uniform AK135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only around areas with significant velocity changes from the starting model. At each grid refinement level except the last one we limit the number of iterations to prevent convergence thereby preserving aspects of broad features resolved at coarser resolutions. Our approach produces a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. This scheme is computationally expensive, so we use a distributed computing framework based on the Java Parallel Processing Framework, providing us with {approx}400 processors. Resolution of our model is assessed using a variation of the standard checkerboard method. We compare the travel-time prediction and location capabilities of SALSA3D to standard 1D models via location tests on a global event set with GT of 5 km or better. These events generally possess hundreds of Pn and P picks from which we generate different realizations of station distributions, yielding a range of azimuthal coverage and ratios of teleseismic to regional arrivals, with which we test the robustness and quality of relocation. The SALSA3D model reduces mislocation over standard 1D ak135 regardless of Pn to P ratio, with the improvement being most pronounced at higher azimuthal gaps.

Encarnacao, Andre Villanova; Begnaud, Michael A. (Los Alamos National Laboratories); Rowe, Charlotte A. (Los Alamos National Laboratories); Young, Christopher John; Chang, Marcus C.; Ballard, Sally C.; Hipp, James Richard

2010-06-01T23:59:59.000Z

172

A global 3D P-velocity model of the Earth's crust and mantle for improved event location : SALSA3D.  

SciTech Connect (OSTI)

To test the hypothesis that high quality 3D Earth models will produce seismic event locations which are more accurate and more precise, we are developing a global 3D P wave velocity model of the Earth's crust and mantle using seismic tomography. In this paper, we present the most recent version of our model, SALSA3D version 1.5, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. Our model is derived from the latest version of the Ground Truth (GT) catalog of P and Pn travel time picks assembled by Los Alamos National Laboratory. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays to produce representative rays. Reduction in the total number of ray paths is {approx}50%. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified two layer crustal model derived from the Crust 2.0 model over a uniform AK135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only around areas with significant velocity changes from the starting model. At each grid refinement level except the last one we limit the number of iterations to prevent convergence thereby preserving aspects of broad features resolved at coarser resolutions. Our approach produces a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. This scheme is computationally expensive, so we use a distributed computing framework based on the Java Parallel Processing Framework, providing us with {approx}400 processors. Resolution of our model is assessed using a variation of the standard checkerboard method. We compare the travel-time prediction and location capabilities of SALSA3D to standard 1D models via location tests on a global event set with GT of 5 km or better. These events generally possess hundreds of Pn and P picks from which we generate different realizations of station distributions, yielding a range of azimuthal coverage and ratios of teleseismic to regional arrivals, with which we test the robustness and quality of relocation. The SALSA3D model reduces mislocation over standard 1D ak135 regardless of Pn to P ratio, with the improvement being most pronounced at higher azimuthal gaps.

Young, Christopher John; Steck, Lee K. (Los Alamos National Laboratory); Phillips, William Scott (Los Alamos National Laboratory); Ballard, Sanford; Chang, Marcus C.; Rowe, Charlotte A. (Los Alamos National Laboratory); Encarnacao, Andre Villanova; Begnaud, Michael A. (Los Alamos National Laboratory); Hipp, James Richard

2010-07-01T23:59:59.000Z

173

3D Modeling Engine Representation Summary Report  

SciTech Connect (OSTI)

Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

2014-09-01T23:59:59.000Z

174

Definition: Vertical Seismic Profiling | Open Energy Information  

Open Energy Info (EERE)

Profiling Profiling Jump to: navigation, search Dictionary.png Vertical Seismic Profiling Vertical Seismic Profile (VSP) is a technique of seismic measurements used for high resolution seismic imaging. It can also be used for correlation with surface seismic data providing velocity information and information for processing such as deconvolution parameters. The defining characteristic of a VSP is that the detectors are in a borehole.[1][2][3] View on Wikipedia Wikipedia Definition Also Known As Advanced Borehole Seismology (ABS), Related Terms Seismic Techniques, High Resolution Imaging and Monitoring References ↑ Bob Hardage VSP Principles ↑ High resolution 3D seismic imaging using 3C data from large downhole seismic arrays Paulsson et al. (2004) ↑ Mueller Soroka Paulsson (2010)

175

3-D seismic tomography of the Adelaide fold belt  

Science Journals Connector (OSTI)

......the major factor. Temperature-induced P-wave...which smoothes the temperature contrast, resulting...structure of the eastern Snake River Plain and its...1996. Upper mantle temperatures from teleseismic tomography...implications for regolith development, 3rd Australian Regolith......

Peter Clifford; Stewart Greenhalgh; Greg Houseman; Frank Graeber

2008-01-01T23:59:59.000Z

176

Imaging atoms in 3-D  

ScienceCinema (OSTI)

Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

Ercius, Peter

2014-06-27T23:59:59.000Z

177

3D nonparametric neural identification  

Science Journals Connector (OSTI)

This paper presents the state identification study of 3D partial differential equations (PDEs) using the differential neural networks (DNNs) approximation. There are so many physical situations in applied mathematics and engineering that can be described ...

Rita Q. Fuentes; Isaac Chairez; Alexander Poznyak; Tatyana Poznyak

2012-01-01T23:59:59.000Z

178

Method for attenuating seismic shock from detonating explosive in an in situ oil shale retort  

DOE Patents [OSTI]

In situ oil shale retorts are formed in formation containing oil shale by excavating at least one void in each retort site. Explosive is placed in a remaining portion of unfragmented formation within each retort site adjacent such a void, and such explosive is detonated in a single round for explosively expanding formation within the retort site toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in each retort. This produces a large explosion which generates seismic shock waves traveling outwardly from the blast site through the underground formation. Sensitive equipment which could be damaged by seismic shock traveling to it straight through unfragmented formation is shielded from such an explosion by placing such equipment in the shadow of a fragmented mass in an in situ retort formed prior to the explosion. The fragmented mass attenuates the velocity and magnitude of seismic shock waves traveling toward such sensitive equipment prior to the shock wave reaching the vicinity of such equipment.

Studebaker, Irving G. (Grand Junction, CO); Hefelfinger, Richard (Grand Junction, CO)

1980-01-01T23:59:59.000Z

179

Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical  

Open Energy Info (EERE)

Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Fluid Imaging Project Description EGS has been defined as enhanced reservoirs that have been created to extract economical amounts of heat from low permeability and/or porosity geothermal resources. Critical to the success of EGS is the successful manipulation of fluids in the subsurface to enhance permeability. Knowledge in the change in volume and location of fluids in the rocks and fractures (both natural and induced) will be needed to manage injection strategies such as the number and location of step out wells, in-fill wells and the ratio of injection to production wells. The key difficulty in manipulating fluids has been our inability to reliably predict their locations, movements and concentrations. We believe combining data from MEQ and electrical surveys has the potential to overcome these problems and can meet many of the above needs, economically. Induced seismicity is currently viewed as one of the essential methods for inferring the success of creating fracture permeability and fluid paths during large scale EGS injections. Fluids are obviously playing a critical role in inducing the seismicity, however, other effects such as thermal, geochemical and stress redistribution, etc. may also play a role.

180

E-Print Network 3.0 - adaptively smoothed seismicity Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Zhan Wu, Omar J. Varela, Mrinal K. Sen, and Indrajit G. Roy. Summary: Joint Inversion of Reservoir Production Measurements and 3D Pre-Stack Seismic Data: Proof... -stack seismic...

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

3D Polygon Rendering Pipeline Michael Kazhdan  

E-Print Network [OSTI]

3D Polygon Rendering Pipeline Michael Kazhdan (600.357 / 600.457) HB Ch. 12 FvDFH Ch. 6, 18.3 #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination Half-Life 2

Kazhdan, Michael

182

3D Polygon Rendering Pipeline Michael Kazhdan  

E-Print Network [OSTI]

3D Polygon Rendering Pipeline Michael Kazhdan (600.357 / 600.457) HB Ch. 12 FvDFH Ch. 6, 18.3 #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination Crysis 3

Kazhdan, Michael

183

A cost-effective backward Lagrangian method for simulation of pollutant formation in gas turbine combustors by post-processing of complex 3D calculations  

Science Journals Connector (OSTI)

A backward Lagrangian Monte Carlo modelling is proposed to calculate by post-processing the PDF of the thermo-chemical parameters of complex turbulent reactive flows simulated with a simple turbulent combustion model. PDF's of minor species such as pollutant species (NOx, soot, unburnt hydrocarbons...) can be easily obtained as long as these species have no significant influence on the main features of the flow. A numerical validation and an example of application of the method to a real burner are presented. If the number of points where information is sought is limited the cost of the method in terms of CPU time is very low and the statistical error can be perfectly controlled. With a first application to a semi-technical scale combustor producing soot the method has been proved very promising for the prediction of pollutant in complex turbulent reactive flows of gas turbine combustors.

Francis Dupoirieux; Nicolas Bertier; Aymeric Boucher; Pascale Gilbank

2014-01-01T23:59:59.000Z

184

3D printing: a valuable resource in human anatomy education  

Science Journals Connector (OSTI)

In addition to known methods such as plastination and Thiel method embalming, a new three-dimensional printing system (3D printing) has been developed recently—an innovative approach...

Mauro Vaccarezza; Veronica Papa

2014-10-01T23:59:59.000Z

185

Voxel octree intersection based 3D scanning.  

E-Print Network [OSTI]

??Recent developments in the field of three dimensional (3D) printing have resulted in widely available low-cost 3D printers. These printers require 3D models, which are… (more)

Bennett, Joel

2014-01-01T23:59:59.000Z

186

3D-Printing Spatially Varying BRDFs  

Science Journals Connector (OSTI)

A new method fabricates custom surface reflectance and spatially varying bidirectional reflectance distribution functions (svBRDFs). Researchers optimize a microgeometry for a range of normal distribution functions and simulate the resulting surface's ... Keywords: Three-dimensional displays,Printing,Fabrication,Computational modeling,Solid modeling,Printers,Face recognition,computer graphics,bidirectional reflectance distribution function,BRDF,spatially varying bidirectional reflectance distribution function,svBRDF,3D printing,normal distribution function,NDF,microgeometry,surface reflectance

Olivier Rouiller; Bernd Bickel; Wojciech Matusik; Marc Alexa; Jan Kautz

2013-11-01T23:59:59.000Z

187

Paleostresses of the Groningen area, the Netherlands—Results of a seismic based structural reconstruction  

Science Journals Connector (OSTI)

We describe a novel workflow to reconstruct paleostresses in the subsurface where the traditional outcrop-based method that uses fault slip measurements is not possible. We use 3D seismic data and structural restoration to determine fault surfaces and slip vectors. These data are then used as input for paleostress-reconstruction algorithms. The study area of ca. 750 km2 is situated in the Groningen Block, the Netherlands. Excellent quality 3D seismic data were used to interpret 11 horizons and approximately 80 faults between the Tertiary and the Top Rotliegend. Indicators of fault slip direction are fault undulations, sedimentary structures offset by faults and shapes of horizon cut-outs. These indicators were used as a basis of 3D restoration of the interpreted horizons. A stepwise restoration approach was chosen that removed younger deformation to obtain slip vectors for older deformation events. In a following work step, Numeric Dynamic Analysis (NDA) was used to calculate paleostress tensors for the Middle and Lower Tertiary, Upper Cretaceous and Upper Rotliegend sequences. The results presented in this paper are consistent with existing paleostress interpretations for NW Europe; however, in contrast to previous studies they are derived from a subsurface volume where paleostress information was lacking until now. Issues that need further study include the effect of the size of the study area on the assumptions of a homogenous stress field, and an analysis of the ambiguity of the interpretation of fault slip indicators on 3D seismic data.

Heijn W. van Gent; Stefan Back; Janos L. Urai; Peter A. Kukla; Klaus Reicherter

2009-01-01T23:59:59.000Z

188

Characterization of 3D Photovoltaics  

E-Print Network [OSTI]

Characterization of 3D Photovoltaics SEMICONDUCTORS Our goal is to provide industry with test structures and models of next-generation photovoltaics, with an initial focus on cadmium telluride (Cd (nanostructured) photovoltaic devices. Objective Impact and Customers · The U.S. Photovoltaic Industry Roadmap

189

Seismic stations  

Science Journals Connector (OSTI)

In the previous chapters, the equipment used for seismic stations has been described. When putting this equipment out in the field, we have a seismic station. Unfortunately it is not as simple as just putting ...

Jens Havskov; Gerardo Alguacil

2004-01-01T23:59:59.000Z

190

Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy  

SciTech Connect (OSTI)

Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions: The proposed needle segmentation algorithm is accurate, robust, and suitable for 3D TRUS guided prostate transperineal therapy.

Qiu Wu [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario N6A 5K8 (Canada); Yuchi Ming; Ding Mingyue [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Tessier, David; Fenster, Aaron [Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

2013-04-15T23:59:59.000Z

191

3D Printed Shelby Cobra  

Broader source: Energy.gov [DOE]

ORNL's newly printed 3D car will be showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

192

3D Imaging Technology Conference & Applications Workshop  

E-Print Network [OSTI]

2nd London 3D Imaging Technology Conference & Applications Workshop 3D scanning and vertical, Greece, bilalis@dpem.tuc.gr Abstract. The new 3D scanning technology had changed the way and opened new from some 3D scanning approaches, which were applied for the first time in the southern part of Europe

Aristomenis, Antoniadis

193

3D N = 4 Gauge Theory Compactication  

E-Print Network [OSTI]

Outline 3D N = 4 Gauge Theory Compactication Twistors 3D N = 4 Supersymmetric Gauge Theories and Hyperk¨ahler Metrics Richard Eager UCSB Friday, October 17th, 2008, 4:00 p.m. Richard Eager UCSB 3D N = 4 Supersymmetric Gauge Theories and Hyperk¨ahler M #12;Outline 3D N = 4 Gauge Theory Compactication Twistors

Bigelow, Stephen

194

Effective elastic properties of randomly fractured soils: 3D numerical ...  

E-Print Network [OSTI]

The standard Gassmann equation cannot be applied to our 3D fractured media ... Finite-difference methods discretize the wave equation on a grid. They replace ...... 55/2-2) and the Wave Inversion Technology (WIT) Consor- tium project for ...

Pinnacle

2004-04-23T23:59:59.000Z

195

Observing Warm Clouds in 3D Using ARM Scanning Cloud  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Observing Warm Clouds in 3D Using ARM Scanning Cloud Radars and a Novel Ensemble Method For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

196

On 3D retrieval from photos Tarik Filali Ansary, Jean-Phillipe Vandeborre, Mohamed Daoudi  

E-Print Network [OSTI]

On 3D retrieval from photos Tarik Filali Ansary, Jean-Phillipe Vandeborre, Mohamed Daoudi FOX}@enic.fr http://www-rech.enic.fr/fox-miire Abstract In this paper, we propose a method for 3D-model retrieval from one or more photos. This method provides an "opti- mal" selection of 2D views to represent a 3D

Vandeborre, Jean-Philippe

197

Efficient Generation of Video Hologram Using Spatio-Temporal Redundant Data of 3-D Video  

Science Journals Connector (OSTI)

In this paper, a new method for efficient generation of video hologram for 3-D video is proposed by combined use of redundant data of 3-D video and look-up table techniques.

Kim, Seung-Cheol; Kim, Eun-Soo

198

Design and analysis of a concrete modular housing system constructed with 3D panels  

E-Print Network [OSTI]

An innovative modular house system design utilizing an alternative concrete residential building system called 3D panels is presented along with an overview of 3D panels as well as relevant methods and markets. The proposed ...

Sarcia, Sam Rhea, 1982-

2004-01-01T23:59:59.000Z

199

Towards a unified treatment of 3D display using partially coherent light  

E-Print Network [OSTI]

This thesis develops a novel method of decomposing a 3D phase space description of light into multiple partially coherent modes, and applies this decomposition to the creation of a more flexible 3D display format. Any type ...

Horstmeyer, Roarke (Roarke William)

2011-01-01T23:59:59.000Z

200

Chapter 6 - Seismic Inversion Techniques  

Science Journals Connector (OSTI)

Abstract Seismic inversion techniques were developed as a discipline at the same time that seismic technologies were widely applied in oil exploration and development starting in the 1980s. Except for basic theories and principles, seismic inversion techniques are different from traditional seismic exploration methods in geological tasks, involving basic information as well as study approaches. In the early stages of exploration, the geological task of seismic exploration was to find structures and identify traps, and seismic exploration techniques always focused on the ups and downs of reflection interfaces. They mainly relied on the travel time for structural interpretation. The main work of reservoir geophysics is to study the heterogeneity of a reservoir, and the main geological task is to make predictions on the reservoir parameters. Scientists focus on the lateral variation of reservoir characteristics and conduct seismic interpretation based on the information extracted from the results of reservoir seismic inversion. Seismic inversion has developed rapidly in recent years, including recursive inversion, log-constrained inversion, and multiparameter lithological seismic inversion. We choose different methods according to the geological characteristics and specific problems of the study area.

Ming Li; Yimin Zhao

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fluorescence Detector for Capillary Separations Fabricated by 3D Printing  

Science Journals Connector (OSTI)

Fluorescence Detector for Capillary Separations Fabricated by 3D Printing ... Additive manufacturing, also known as 3D printing, rapid prototyping, or solid-freeform technology, has become an efficient method for rapid prototyping and fabrication applications ranging from small home projects to architecture and industrial machining. ... Compared to the more expensive alternatives using the standard optic component, the 3D printing provides significant cost reduction and, especially, sharing of information between laboratories for easy replication or further modifications, customization of the spatial arrangement, and miniaturization. ...

Jan Prikryl; Frantisek Foret

2014-11-26T23:59:59.000Z

202

Prediction of Shale Plugs between Wells in Heavy Oil Sands using Seismic Attributes  

SciTech Connect (OSTI)

A fundamental geologic problem in the Steam-Assisted Gravity Drainage (SAGD) heavy oil developments in the McMurray Formation of Northern Alberta is to determine the location of shales in the reservoirs that may interfere with the steaming or recovery process. Petrophysical analysis shows that a key acoustic indicator of the presence of shale is bulk density. In theory, density can be derived from seismic data using Amplitude Versus Offset (AVO) analysis of conventional or multicomponent seismic data, but this is not widely accepted in practice. However, with billions of dollars slated for SAGD developments in the upcoming years, this technology warrants further investigation. In addition, many attributes can be investigated using modern tools like neural networks; so, the density extracted from seismic using AVO can be compared and combined with more conventional attributes in solving this problem. Density AVO attributes are extracted and correlated with 'density synthetics' created from the logs just as the seismic stack correlates to conventional synthetics. However, multiattribute tests show that more than density is required to best predict the volume proportion of shale (Vsh). Vsh estimates are generated by passing seismic attributes derived from conventional PP, and multicomponent PS seismic, AVO and inversion from an arbitrary line following the pilot SAGD wells through a neural network. This estimate shows good correlation to shale proportions estimated from core. The results have encouraged the application of the method to the entire 3D.

Gray, F. David [Veritas DGC, Inc., 2200 (Canada); Anderson, Paul F. [Apache Canada Ltd. (Canada); Gunderson, Jay A. [Veritas DGC, Inc., 2200 (Canada)

2006-06-15T23:59:59.000Z

203

3-D physical modeling of a complex salt canopy  

SciTech Connect (OSTI)

Recent drilling has confirmed both significant reservoir potential and the presence of commercial hydrocarbons below salt structures in the Gulf of Mexico. Obtaining definitive seismic images with standard processing schemes beneath these salt structures is very difficult if not impossible. Because of the complicated seismic behavior of these structures, full volume 3-D prestack depth migration is required. Unfortunately, carrying out the multitude of calculations needed to create a proper image requires the largest and fastest supercomputers and rather complex numerical algorithms. Furthermore, developing and testing the imaging algorithms is quite involved and requires appropriate test data sets. To better understand the problems and issues of subsalt imaging, Marathon Oil Company and Louisiana Land and Exploration Company contracted with the University of Houston`s Allied Geophysical Laboratories (AGL) to construct a salt canopy physical model. The model is patterned after the SEG/EAEG Salt Model and is made from synthetic materials. It is a full three-dimensional model with an irregularly shaped, lateral salt structure embedded in five distinct sedimentary layers. The model was used to acquire a multi-offset 3-D marine-style survey. These data are being used to address problems of subsalt imaging. In addition to standard processing techniques, the authors investigate algorithms for multiple removal and prestack depth migration.

Wiley, R.W. [Marathon Oil Co., Littleton, CO (United States); Sekharan, K.K. [Univ. of Houston, TX (United States). Allied Geophysical Labs.

1996-12-31T23:59:59.000Z

204

Software: DIF3D - Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

D D Software: ETOE-2 MC2-2 SDX DIF3D DIF3DK VIM REBUS-3 RCT ORIGEN-RA VARI3D SE2-ANL (SUPERENERGY2) SAS4A/SASSYS-1 SAS-DIF3DK MSET PRODIAG Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Software DIF3D (Diffusion and Transport Theory Codes) Bookmark and Share Standard Code Description NAME AND TITLE DIF3D 10.0: Code System Using Variational Nodal Methods and Finite Difference Methods to Solve Neutron Diffusion and Transport Theory Problems. CONTRIBUTOR K. L. Derstine Nuclear Engineering Division Argonne National Laboratory, Argonne, Illinois 60439. CODING LANGUAGE AND COMPUTER Fortran 90 and C source code for Linux PCs, MacOSX and SUN, (C00784MNYCP00).

205

MO-A-9A-01: Innovation in Medical Physics Practice: 3D Printing Applications  

Science Journals Connector (OSTI)

3D printing also called additive manufacturing has great potential to advance the field of medicine. Many medical uses have been exhibited from facial reconstruction to the repair of pulmonary obstructions. The strength of 3D printing is to quickly convert a 3D computer model into a physical object. Medical use of 3D models is already ubiquitous with technologies such as computed tomography and magnetic resonance imaging. Thus tailoring 3D printing technology to medical functions has the potential to impact patient care. This session will discuss applications to the field of Medical Physics. Topics discussed will include introduction to 3D printing methods as well as examples of real-world uses of 3D printing spanning clinical and research practice in diagnostic imaging and radiation therapy. The session will also compare 3D printing to other manufacturing processes and discuss a variety of uses of 3D printing technology outside the field of Medical Physics.

2014-01-01T23:59:59.000Z

206

A Brief History of 3D Printing  

Science Journals Connector (OSTI)

Enormous hype surrounds 3D printing, with predictions that it will spur a ... manufacturing facility. There are many areas where 3D printing really is creating significant change, particularly in...

Joan Horvath

2014-01-01T23:59:59.000Z

207

Part removal of 3D printed parts  

E-Print Network [OSTI]

An experimental study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D printing using a patent ...

Peña Doll, Mateo

2014-01-01T23:59:59.000Z

208

Development Of Active Seismic Vector-Wavefield Imaging Technology For  

Open Energy Info (EERE)

Of Active Seismic Vector-Wavefield Imaging Technology For Of Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Development Of Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Details Activities (2) Areas (2) Regions (0) Abstract: This report describes the development and testing of vector-wavefield seismic sources that can generate shear (S) waves that may be valuable in geothermal exploration and reservoir characterization. Also described is a 3-D seismic data-processing effort to create images of Rye Patch geothermal reservoir from 3-D sign-bit data recorded over the geothermal prospect. Two seismic sources were developed and tested in this study that can be used to illuminate geothermal reservoirs with S-waves.

209

ArrangePak-3D User's Manual  

E-Print Network [OSTI]

ArrangePak-3D User's Manual File Planes Options Help Quit Planes: 5 ­120.2732,+28.2707 poweredbyLEDA ArrangePak­3D #12; #12; ArrangePak-3D User's Manual Manipulating Arrangements of Planes in Three- chantability or #12;tness for a particular purpose. version 1.0x License: The ArrangePak-3D source code

Wismath, Stephen

210

Real time 3D and heterogeneous data fusion  

SciTech Connect (OSTI)

This project visualizes characterization data in a 3D setting, in real time. Real time in this sense means collecting the data and presenting it before it delays the user, and processing faster than the acquisition systems so no bottlenecks occur. The goals have been to build a volumetric viewer to display 3D data, demonstrate projecting other data, such as images, onto the 3D data, and display both the 3D and projected images as fast as the data became available. The authors have examined several ways to display 3D surface data. The most effective was generating polygonal surface meshes. They have created surface maps form a continuous stream of 3D range data, fused image data onto the geometry, and displayed the data with a standard 3D rendering package. In parallel with this, they have developed a method to project real-time images onto the surface created. A key component is mapping the data on the correct surfaces, which requires a-priori positional information along with accurate calibration of the camera and lens system.

Little, C.Q.; Small, D.E.

1998-03-01T23:59:59.000Z

211

Digital Pygmalion Accurate 3D reconstruction  

E-Print Network [OSTI]

;Overview · Accurate 3D reconstruction from uncalibrated cameras (motion and lighting) · Multi-view stereo - 3D shape from uncalibrated images (review) · Multi-view photometric stereo with uncalibrated lights reconstruction of streets #12;Trumpington Street Data #12;3D reconstruction #12;Reconstruction texture mapped #12

Cipolla, Roberto

212

3D Printing Prof. Hank Dietz  

E-Print Network [OSTI]

3D Printing Prof. Hank Dietz TCMS, March 14, 2014 University of Kentucky Electrical & Computer #12;3D With Glue Layers of paper: printed with glue & cut Layers of powder: printed with glue Can also be printed in full color #12;3D Extrusion (RepRaps) FDM: Fused Deposition Modeling FFF: Fused

Dietz, Henry G. "Hank"

213

3D Sparse Representations Lanusse F. a  

E-Print Network [OSTI]

3D Sparse Representations Lanusse F. a Starck J.-L. a Woiselle A. c Fadili M.J. b a Laboratoire AIM Securite, 95101 Argenteuil CEDEX, France. Abstract In this chapter we review a variety of 3D sparse representations developed in recent years and adapted to different kinds of 3D signals. In particular, we describe

Starck, Jean-Luc

214

3D Imaging Of Wet Granular Matter  

E-Print Network [OSTI]

3D Imaging Of Wet Granular Matter Leonard Goff Advisor: Dr. Wolfgang Losert With Application to Penetrometer Insertion #12;3D Imaging Of Wet Granular Matter Leonard Goff, Advisor: Dr. Wolfgang Losert CoffeeSand Gravel Oops! #12;3D Imaging Of Wet Granular Matter Leonard Goff, Advisor: Dr. Wolfgang Losert

Anlage, Steven

215

3D Postprozessor Diplomarbeit von Samuel Gerber  

E-Print Network [OSTI]

3D Postprozessor Diplomarbeit von Samuel Gerber Fachhochschule Aargau FHA University of Applied¨angsschnitt . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.4 Querschnit . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.5 3D-Bilder . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 3D Ansicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Bericht

Gerber, Samuel

216

Supersymmetric Gauge Theories in 3d  

E-Print Network [OSTI]

Supersymmetric Gauge Theories in 3d Nathan Seiberg IAS #12;The Search for Fundamental Physics Dine. 8 #12;Supersymmetric Gauge Theories in 3d Nathan Seiberg IAS Based on work with Aharony, Intriligator, Razamat, and Willett, to appear #12;3d SUSY Gauge Theories · New lessons about dynamics

California at Santa Cruz, University of

217

A 3D radiative transfer framework: II. line transfer problems  

E-Print Network [OSTI]

Higher resolution telescopes as well as 3D numerical simulations will require the development of detailed 3D radiative transfer calculations. Building upon our previous work we extend our method to include both continuum and line transfer. We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in 3D static atmospheres. The scattering problem for line transfer is solved via means of an operator splitting (OS) technique. The formal solution is based on a long-characteristics method. The approximate $\\Lambda$ operator is constructed considering nearest neighbors {\\em exactly}. The code is parallelized over both wavelength and solid angle using the MPI library. We present the results of several test cases with different values of the thermalization parameter and two choices for the temperature structure. The results are directly compared to 1D spherical tests. With our current grid setup the interior resolution is much lower in 3D than in 1D, nevertheless the 3D results agree very well with the well-tested 1D calculations. We show that with relatively simple parallelization that the code scales to very large number of processors which is mandatory for practical applications. Advances in modern computers will make realistic 3D radiative transfer calculations possible in the near future. Our current code scales to very large numbers of processors, but requires larger memory per processor at high spatial resolution.

E. Baron; Peter H. Hauschildt

2007-03-16T23:59:59.000Z

218

Crosswell seismic imaging in the Permian Basin, West Texas, USA  

SciTech Connect (OSTI)

Crosswell seismic imaging technology has advanced rapidly over the last three years as the processing methods have become more robust, the cost of data acquisition has fallen, and the interwell distances of operation have increased. The Permian Basin of west Texas, USA is proving to be an ideal environment in which to develop this technology because of the relatively low seismic attenuation of the carbonate-dominated lithology, the moderate well spacings in the large number of mature fields, and the unusually high number of reflecting horizons. Current technology permits us to operate in carbonates at well spacings on the order of 2000 ft (650 m) and to image P- and S-wave reflecting horizons on a scale of 8 to 25 ft (2.4 to 7.6 m). Crosswell technology is not limited to carbonates, although the majority of recent applications have been in this environment. We are involved in three separate crosswell experiments in the Permian Basin, each with unique objectives. The first experiment involves a CO{sub 2} pilot project in a Grayburg Formation reservoir on the eastern edge of the Central Basin Platform. Here we are attempting to characterize the reservoir at a scale unobtainable from 3-D surface seismic data and to image CO{sub 2} fronts directly. The second experiment deals with a waterflood in a Middle Clearfork Formation reservoir on the Eastern Shelf, where we are trying to explain the erratic response of adjacent wells to water injection. In the third project we are trying to image the structure and stratigraphy of subtle {open_quotes}anomalies{close_quotes} in 3-D surface seismic images of the Wolfcamp Formation.

Langan, R.T.; Harris, J.M.; Jensen, T.L. [and others

1995-12-31T23:59:59.000Z

219

2D 3D * iklee)@yonsei.ac.kr  

E-Print Network [OSTI]

1 2012 2D 3D * 0 , 1 , 2 0,2 1 ( 0 skrcjstk, 2 iklee)@yonsei.ac.kr 1 rinthel Science, Yonsei University. 1 Dept. of Information Media, The University of Suwon. 2D 3D . 2D - , 3D (Disparity) 3D . . 1. 3D 3D . 3D 3D [1

Lee, In-Kwon

220

18 - Seismic Design  

Science Journals Connector (OSTI)

Abstract The damages and disruptions of the subsea pipelines caused by an earthquake may have severe effects on the service life, since it may lead to a significant financial loss due to service interruptions, fires, explosions, and environmental contamination. In general, the seismic analyses of the permanent ground deformation for buried and unburied pipes, and seismic ground waves for unburied pipes are required for designing pipeline systems. Many subsea pipelines are often buried for stability and mechanical protection in the shallow water area; otherwise, they are laid on the seabed. This chapter addresses available seismic design codes, standards and design criteria for subsea pipelines, a general design and analysis methodology for fault crossing and seismic ground wave, design and analysis examples using a static model for buried pipe subjected to permanent ground deformations due to the foundation failure, a time history dynamic model for unburied pipelines subjected to seismic ground waves, the mitigation methods for subsea pipelines to avoid seismic hazards including modifying loading and boundary conditions, modifying pipeline configuration, modifying pipeline route selection, and improving emergency response.

Qiang Bai; Yong Bai

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Custom 3D-Printed Rollers for Frieze Pattern Cookies Robert Hanson  

E-Print Network [OSTI]

Custom 3D-Printed Rollers for Frieze Pattern Cookies Robert Hanson Towson University, Emeritus a method for converting images of repeating patterns, e.g., Roman friezes or Escher tessellations, into 3D-printed the world of mathematics and the art of cooking. Fractal cookies based on stretching and folding [1] and 3D-printed

222

3D-Model view characterization using equilibrium planes Adrien Theetten1  

E-Print Network [OSTI]

3D-Model view characterization using equilibrium planes Adrien Theetten1 , Tarik Filali Ansary1 to characteristic views. Abstract We propose a new method for 3D-mesh model charac- teristic view selection. It consists in using the views that come from the equilibrium states of a 3D-model: they cor- respond

Paris-Sud XI, Université de

223

3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups  

Science Journals Connector (OSTI)

There are several full-color 3D printers available that can print multiple colors within one object. ... In contrast to the fragile color printing molecular model attempts, models printed on the Stratasys Dimension Elite 3D printer reported in this article using the ABS P430 model material and P400SR dissolvable support material consistently produced structures with excellent mechanical integrity. ... Both file preparation methods produced successful 3D prints of equal quality using a Stratasys Dimension Elite 3D printer. ...

Vincent F. Scalfani; Thomas P. Vaid

2014-04-18T23:59:59.000Z

224

Comparison of 2D and 3D gamma analyses  

SciTech Connect (OSTI)

Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must be noted that clinical 2D versus 3D datasets may have additional differences—for example, if 2D measurements are made with a different dosimeter than 3D measurements. Factors such as inherent dosimeter differences may be an important additional consideration to the extra dimension of available data that was evaluated in this study.

Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F., E-mail: sfkry@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); Bosca, Ryan [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States)] [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); O’Daniel, Jennifer [Department of Radiation Oncology, Duke University, Durham, North Carolina 27705 (United States)] [Department of Radiation Oncology, Duke University, Durham, North Carolina 27705 (United States)

2014-02-15T23:59:59.000Z

225

Hollywood 3D: Recognizing Actions in 3D Natural Scenes Simon Hadfield Richard Bowden  

E-Print Network [OSTI]

Hollywood 3D: Recognizing Actions in 3D Natural Scenes Simon Hadfield Richard Bowden Centre-class variations. It is made even more challenging when complex 3D actions are projected down to the image plane, losing a great deal of information. The recent emergence of 3D data, both in broadcast content

Bowden, Richard

226

3D Imaging Symposium, Friday 11:00 3D APPROACHES IN PALEOANTHROPOLOGY USING GEOMETRIC MOR-  

E-Print Network [OSTI]

3D Imaging Symposium, Friday 11:00 3D APPROACHES IN PALEOANTHROPOLOGY USING GEOMETRIC MOR, Eugene, OR; ROSENBERGER, Alfred, Brooklyn College/CUNY, Brooklyn, NY The emergence of 3D GM (geometric- ble to easily collect data in a true 3D sense, such as sets of homologous landmarks or com- plete

Delson, Eric

227

Seismic Wave Scattering Through a Compressed Hybrid BEM/FEM Method  

E-Print Network [OSTI]

Approximated numerical techniques, for the solution of the elastic wave scattering problem over semi-infinite domains are reviewed. The approximations involve the representation of the half-space by a boundary condition described in terms of 2D boundary element discretizations. The classical BEM matrices are initially re-written into the form of a dense dynamic stiffness matrix and later approximated to a banded matrix. The resulting final banded matrix is then used like a standard finite element to solve the wave scattering problem at lower memory requirements. The accuracy of the reviewed methods is benchmarked against the classical problems of a semi-circular and a rectangular canyon. Results are presented in the time and frequency domain, as well as in terms of relative errors in the considered approximations. The main goal of the paper is to give the analyst a method that can be used at the practising level where an approximate solution is enough in order to support engineering decisions.

Guarín-Zapata, Nicolás; Jaramillo, Juan

2014-01-01T23:59:59.000Z

228

Seismic interpretation and regional geologic correlation established for offshore Togo, West Africa: a preliminary evaluation of hydrocarbon potential in deep water  

E-Print Network [OSTI]

3-D seismic data acquired by Petroleum Geo-Services Inc. (PGS), Houston, Texas. The study area ranges from approximately 180 m - 2500 m water depth. Research included regional geologic correlation, seismic interpretation, and structural modeling...

Gray, Max Daniel

2012-06-07T23:59:59.000Z

229

3-D Density Model Of Mt Etna Volcano (Southern Italy) | Open Energy  

Open Energy Info (EERE)

3-D Density Model Of Mt Etna Volcano (Southern Italy) 3-D Density Model Of Mt Etna Volcano (Southern Italy) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3-D Density Model Of Mt Etna Volcano (Southern Italy) Details Activities (0) Areas (0) Regions (0) Abstract: A detailed density model of Mt. Etna and its surrounding areas has been evaluated using a 3-D inversion of the gravimetric data acquired in the 1980's. Several high-density and low-density bodies are found, penetrating from shallow depths as far down as 12 km bsl. A positive correlation (in terms of location, extent, density, and velocity) is established between several anomalies of the density model and features identified in previously published seismic tomographies. A prominent high-density body extending down to 7 km bsl is recognized in the southern

230

3D Multiprocessor with 3D NoC Architecture Based on Tezzaron Technology  

E-Print Network [OSTI]

1 3D Multiprocessor with 3D NoC Architecture Based on Tezzaron Technology M.H Jabbar1,2 , D. Houzet the architecture and implementation of 3D multiprocessor with 3D NoC. The 2 tiers design is based on 16 processors simulation, the purpose of this work is to accurately measure NoC performances in real 3D chip when running

Paris-Sud XI, Université de

231

Seismic Activity of the Earth, the Cosmological Vectorial Potential And Method of a Short-term Earthquakes Forecasting  

E-Print Network [OSTI]

To the foundation of a principally new short-term forecasting method there has been laid down a theory of surrounding us world's creation and of physical vacuum as a result of interaction of byuons - discrete objects. The definition of the byuon contains the cosmological vector-potential A_g - a novel fundamental vector constant. This theory predicts a new anisotropic interaction of nature objects with the physical vacuum. A peculiar "tap" to gain new energy (giving rise to an earthquake) are elementary particles because their masses are proportional to the modulus of some summary potential A_sum that contains potentials of all known fields. The value of A_sum cannot be larger than the modulus of A_g. In accordance with the experimental results a new force associated with A_sum ejects substance from the area of the weakened A_sum along a conical formation with the opening of 100 +- 10 and the axis directed along the vector A_sum. This vector has the following coordinates in the second equatorial coordinate system: right ascension alpha = 293 +- 10, declination delta = 36 +- 10. Nearly 100% probability of an earthquake (earthquakes of 6 points strong and more by the Richter scale) arises when in the process of the earth rotation the zenith vector of a seismically dangerous region and/or the vectorial potential of Earth's magnetic fields are in a certain way oriented relative to the vector A_g. In the work, basic models and standard mechanisms of earthquakes are briefly considered, results of processing of information on the earthquakes in the context of global spatial anisotropy caused by the existence of the vector A_g, are presented, and an analysis of them is given.

Yu. A. Baurov; Yu. A. Baurov; Yu. A. Baurov Jr.; A. A. Spitalnaya; A. A. Abramyan; V. A. Solodovnikov

2008-08-20T23:59:59.000Z

232

Patient specific 3D printed phantom for IMRT quality assurance  

Science Journals Connector (OSTI)

The purpose of this study was to test the feasibility of a patient specific phantom for patient specific dosimetric verification.Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. Calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was compared for a parallel-opposed head and neck field geometry to establish tissue equivalence. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom as well as traditional standard phantoms.The maximum difference in calculated dose was 1.8% for the parallel-opposed configuration. Passing rates of various dosimetric parameters were compared for the IMRT plan measurements; the 3D printed phantom results showed greater disagreement at superficial depths than other methods.A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine use.

Eric D Ehler; Brett M Barney; Patrick D Higgins; Kathryn E Dusenbery

2014-01-01T23:59:59.000Z

233

3D Site Response using NLSSI  

Broader source: Energy.gov [DOE]

3D Site Response using NLSSI Justin Coleman, P.E. Bob Spears Nuclear Science and Technology Idaho National Laboratory October 22, 2014

234

Evaporation-Driven Fast Crystallization of 3D Micro- and Nano-particle Assemblies via Micro Mechanical Systems  

E-Print Network [OSTI]

3D ZnO Nanoparticle Assemblies on Gold Electrodes A novel manufacturing method, “High resolution screen printing

Choi, Sun

2012-01-01T23:59:59.000Z

235

Seismic Monitoring - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Curation Services Ecological Monitoring Environmental Surveillance Meteorology and Climatology Services Seismic Monitoring Seismic Monitoring Email Email Page | Print Print Page...

236

3D analysis of magnetization distribution magnetized by capacitor-discharge impulse magnetizer  

Science Journals Connector (OSTI)

Method for calculating the magnetization distribution magnetized by capacitor-discharge impulse magnetizer is expanded to 3D, and the calculated flux distribution is compared with measured one.

Norio Takahashi

2001-01-01T23:59:59.000Z

237

3, 35433588, 2003 3-D air pollution  

E-Print Network [OSTI]

ACPD 3, 3543­3588, 2003 3-D air pollution modelling L. M. Frohn et al. Title Page Abstract hemispheric nested air pollution model L. M. Frohn, J. H. Christensen, J. Brandt, C. Geels, and K. M. Hansen 2003 Correspondence to: L. M. Frohn (lmf@dmu.dk) 3543 #12;ACPD 3, 3543­3588, 2003 3-D air pollution

Boyer, Edmond

238

BEAMS3D Neutral Beam Injection Model  

SciTech Connect (OSTI)

With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

Lazerson, Samuel

2014-04-14T23:59:59.000Z

239

Metrology of 3D nanostructures.  

SciTech Connect (OSTI)

We propose a superresolution technique to resolve dense clusters of blinking emitters. The method relies on two basic assumptions: the emitters are statistically independent, and a model of the imaging system is known. We numerically analyze the performance limits of the method as a function of the emitter density and the noise level. Numerical simulations show that five closely packed emitters can be resolved and localized to a precision of 17nm. The experimental resolution of five quantum dots located within a diffraction limited spot confirms the applicability of this approach.

Barsic, Anthony [University of Colorado at Boulder, Boulder, CO] [University of Colorado at Boulder, Boulder, CO; Piestun, Rafael [University of Colorado at Boulder, Boulder, CO] [University of Colorado at Boulder, Boulder, CO; Boye, Robert R.

2012-10-01T23:59:59.000Z

240

3D modellering og pathfinding i Java; 3D Modeling and Pathfinding in Java.  

E-Print Network [OSTI]

??English: This project explores the performance of Java3D through a large 3D?model and the possibility of running this model with a pathfinding algorithm from an… (more)

Thorlund, Steffen

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

3D view with pst-vue3d Manuel Luque (mluque5130@aol.com)  

E-Print Network [OSTI]

3D view with pst-vue3d Manuel Luque (mluque5130@aol.com) in cooperation with Herbert Vo� (voss@perce.de) 13th August 2004 1 Presentation The 3D representation of an object or a landscape is one of the most (cube, sphere etc. . . ) and many other things. I want to signal that · Regarding 3D representation, one

Mintmire, John W.

242

3D2D3D photonic crystal heterostructures fabricated by direct laser writing  

E-Print Network [OSTI]

3D­2D­3D photonic crystal heterostructures fabricated by direct laser writing M. Deubel and M fabricate photoresist templates for 3D­2D­3D photonic crystal heterostruc- tures for what we believe for the microfabrication and testing of broadband, 3D air­waveguide microcir- cuitry in photonic bandgap materials. © 2006

John, Sajeev

243

Electromagnetic Waves Propagation in 3D Plasma Configurations  

E-Print Network [OSTI]

Electromagnetic Waves Propagation in 3D Plasma Configurations Pavel Popovich, W. Anthony Cooper such method is based on heating the plasma by electromagnetic waves with various frequencies. Wave behaviour that allows to simulate mode-conversion effects. The wave equation is formulated in terms of electromagnetic

244

An Approach to Mapping of Shallow Petroleum Reservoirs Using Integrated Conventional 3D and Shallow P- and SH-Wave Seismic Reflection Methods at Teapot Dome Field in Casper, Wyoming.  

E-Print Network [OSTI]

??Using the famous Teapot Dome oil field in Casper, Wyoming, USA as a test case, we demonstrate how high-resolution compressional (P) and horizontally polarized shear… (more)

Okojie-Ayoro, Anita Onohuome 1981-

2007-01-01T23:59:59.000Z

245

Seismicity Maps  

Science Journals Connector (OSTI)

...density, highly porous airborne vol- canic ejecta near...explosions for such stress-release experiments cannot be...a)+e2 /7 f is the fraction of stress drop and a...Steinbrugge Pacific Fire Rating Bureau San Francisco...fault belt without the release of seismic energy. Hence...

246

3D packaging for integrated circuit systems  

SciTech Connect (OSTI)

A goal was set for high density, high performance microelectronics pursued through a dense 3D packing of integrated circuits. A {open_quotes}tool set{close_quotes} of assembly processes have been developed that enable 3D system designs: 3D thermal analysis, silicon electrical through vias, IC thinning, mounting wells in silicon, adhesives for silicon stacking, pretesting of IC chips before commitment to stacks, and bond pad bumping. Validation of these process developments occurred through both Sandia prototypes and subsequent commercial examples.

Chu, D.; Palmer, D.W. [eds.

1996-11-01T23:59:59.000Z

247

Investigations in massive 3D gravity  

SciTech Connect (OSTI)

Some interesting gravitational properties of the Bergshoeff-Hohm-Townsend model (massive 3D gravity), such as the presence of a short-range gravitational force in the nonrelativistic limit and the existence of an impact-parameter-dependent gravitational deflection angle, are studied. Interestingly enough, these phenomena have no counterpart in the usual Einstein 3D gravity. In order to better understand the two aforementioned gravitational properties, they are also analyzed in the framework of 3D higher-derivative gravity with the Einstein-Hilbert term with the 'wrong sign'.

Accioly, Antonio [Laboratorio de Fisica Experimental (LAFEX), Centro Brasileiro de Pesquisas Fisicas (CBPF), Rua Dr. Xavier Sigaud 150, Urca, 22290-180, Rio de Janeiro, RJ (Brazil); Instituto de Fisica Teorica (IFT), Sao Paulo State University (UNESP), Rua Dr. Bento Teobaldo Ferraz 271, Bloco II-Barra Funda, 01140-070, Sao Paulo, SP (Brazil); Helayeel-Neto, Jose; Morais, Jefferson; Turcati, Rodrigo [Laboratorio de Fisica Experimental (LAFEX), Centro Brasileiro de Pesquisas Fisicas (CBPF), Rua Dr. Xavier Sigaud 150, Urca, 22290-180, Rio de Janeiro, RJ (Brazil); Scatena, Eslley [Instituto de Fisica Teorica (IFT), Sao Paulo State University (UNESP), Rua Dr. Bento Teobaldo Ferraz 271, Bloco II-Barra Funda, 01140-070, Sao Paulo, SP (Brazil)

2011-05-15T23:59:59.000Z

248

3D MHD Modeling of the Galaxy  

Science Journals Connector (OSTI)

We show the results of our 3D MHD simulations of the flow of the Galactic ... synthetic l - v and v - b diagrams for an imaginary observer inside our modeled...

G. C. Gómez; D. P. Cox

2005-01-01T23:59:59.000Z

249

Printed 3D Multi-View Images  

Science Journals Connector (OSTI)

The technique to produce full-parallax 3D multi-view still pictures is described. The matrix of source views (from 6x6 to 15x15 views) is built from computer-generated images or...

Kim, Sung-Sik; Son, Kwang-Hun; Saveljev, V V; Son, Jung-Young

2001-01-01T23:59:59.000Z

250

Internet video streaming using 3-D SPIHT  

E-Print Network [OSTI]

several years. Video streaming involves video compression, protocols selection for streaming media, client/receiver buffer management and packet loss recovery. This thesis documents a new Internet video streaming system based on the state-of-the-art 3-D...

Jiang, Jianhong

2012-06-07T23:59:59.000Z

251

3D face recognition with wireless transportation  

E-Print Network [OSTI]

In this dissertation, we focus on two related parts of a 3D face recognition system with wireless transportation. In the ?rst part, the core components of the system, namely, the feature extraction and classi?cation component, are introduced...

Zou, Le

2009-05-15T23:59:59.000Z

252

Three dimensional (3D) optical information processing  

E-Print Network [OSTI]

Light exhibits dramatically different properties when it propagates in or interacts with 3D structured media. Comparing to 2D optical elements where the light interacts with a sequence of surfaces separated by free space, ...

Tian, Kehan

2006-01-01T23:59:59.000Z

253

3D Spectroscopy and the Virtual Observatory  

E-Print Network [OSTI]

Integral field, or 3D, spectroscopy is the technique of obtaining spectral information over a two-dimensional, hopefully contiguous, field of view. While there is some form of astronomical 3D spectroscopy at all wavelengths, there has been a rapid increase in interest in optical and near-infrared 3D spectroscopy. This has resulted in the deployment of a large variety of integral-field spectrographs on most of the large optical/infrared telescopes. The amount of IFU data available in observatory archives is large and growing rapidly. The complications of treating IFU data as both imaging and spectroscopy make it a special challenge for the virtual observatory. This article describes the various techniques of optical and near-infrared spectroscopy and some of the general needs and issues related to the handling of 3D data by the virtual observatory.

Bryan W. Miller

2007-08-15T23:59:59.000Z

254

3D TORUS V1.0  

Energy Science and Technology Software Center (OSTI)

002440MLTPL00 3D Torus Routing Engine Module for OFA OpenSM v. 1.0  http://www.openfabrics.org/git?p=sashak/management.git;a=sum 

255

Review paper Seismic interferometry and ambient noise tomography in the British Isles  

E-Print Network [OSTI]

Review paper Seismic interferometry and ambient noise tomography in the British Isles Heather. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2. Theory and method of seismic interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2. Seismic interferometry across the Scottish Highlands

256

3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological  

Open Energy Info (EERE)

D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological Survey Details Activities (0) Areas (0) Regions (0) Abstract: Many Geological Survey Organisations (GSOs) are using 3D modelling software technology for a vast variety of applications. Initially many 3D tools were designed for the exploitation of digital seismic mass data existing in hydrocarbon exploration industry. Accordingly, GSOs have to adapt available software and to modify it to their special requirements, defining their own best practice. The Geological Survey of the Bavarian Environment Agency has developed procedures and workflows for a variety of

257

Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea  

Open Energy Info (EERE)

Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii Abstract The local fault and dike structures in Puna, southeastern Hawaii, are of interest both in terms of electricity productionand volcanic hazard monitoring. The geothermal powerplant at Puna has a 30 MW capacity and is built on a sectionof the Kilauea Lower East Rift Zone that was resurfaced by lava flows as recently as 1955 and 1960.The Puna Borehole Network was established in 2006 inorder to provide detailed seismic data about the Puna geothermal field. The array consists of eight 3-component borehole

258

3D Magnetotelluric characterization of the COSO GeothermalField  

SciTech Connect (OSTI)

Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring and analyzing MT data in three dimensions are still few in number. This project will address said issue, by applying 3D MT forward modeling and inversion to a MT data set acquired over the Coso geothermal field. The goal of the project is to provide the capability to image large geothermal reservoirs in a single self-consistent model. Initial analysis of the Coso MT data has been carried out using 2D MT imaging technology to construct an initial 3D resistivity model from a series of 2D resistivity images obtained using the inline electric field measurements (Zxy impedance elements) along different measurement transects. This model will be subsequently refined through a 3D inversion process. The initial 3D resistivity model clearly shows the controlling geological structures possibly influencing well production at Coso. The field data however, also show clear three dimensionality below 1 Hz, demonstrating the limitations of 2D resistivity imaging. The 3D MT predicted data arising from this starting model show good correspondence in dominant components of the impedance tensor (Zxy and Zyx) above 1Hz. Below 1 Hz there is significant differences between the field data and the 2D model data.

Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.

2005-01-01T23:59:59.000Z

259

Analyses of azimuthal seismic anisotrophy in the vertically fractured Spraberry and Dean formations, Midland County, Texas  

E-Print Network [OSTI]

The configuration of a CDP gather from 3-D seismic reflection has source-receiver pairs located at different azimuths. This can be exploited to observe azimuthal variations of P- wave velocity related to azimuthal anisotropy in fractured media...

Sudarmo, Bernadus Supraptomo

2012-06-07T23:59:59.000Z

260

Rock Physics-Based Carbonate Reservoir Pore Type Evaluation by Combining Geological, Petrophysical and Seismic Data  

E-Print Network [OSTI]

model, similar to modern marine hydrological environments within carbonate islands. How to evaluate carbonate reservoir permeability heterogeneity from 3 D seismic data has been a dream for reservoir geoscientists, which is a key factor to optimize...

Dou, Qifeng

2012-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Seismic attribute analyses of lower Permian (Wolfcampian-Leonardian) carbonate buildups, SW Midland, Texas  

E-Print Network [OSTI]

set of attributes that directly indicate the buildup locations. After extensive trial of various attributes, the variance attribute was selected as the optimum seismic attribute. The resultant 3 D variance volume was used to detect the buildup locations...

Decalf, Carole Christiane

2012-06-07T23:59:59.000Z

262

Demonstration of a Novel, Integrated, Multi-Scale Procedure for High-Resolution 3D Reservoir Characterization and Improved CO2-EOR/Sequestration Management, SACROC Unit  

SciTech Connect (OSTI)

The primary goal of this project was to demonstrate a new and novel approach for high resolution, 3D reservoir characterization that can enable better management of CO{sub 2} enhanced oil recovery (EOR) projects and, looking to the future, carbon sequestration projects. The approach adopted has been the subject of previous research by the DOE and others, and relies primarily upon data-mining and advanced pattern recognition approaches. This approach honors all reservoir characterization data collected, but accepts that our understanding of how these measurements relate to the information of most interest, such as how porosity and permeability vary over a reservoir volume, is imperfect. Ideally the data needed for such an approach includes surface seismic to provide the greatest amount of data over the entire reservoir volume of interest, crosswell seismic to fill the resolution gap between surface seismic and wellbore-scale measurements, geophysical well logs to provide the vertical resolution sought, and core data to provide the tie to the information of most interest. These data are combined via a series of one or more relational models to enable, in its most successful application, the prediction of porosity and permeability on a vertical resolution similar to logs at each surface seismic trace location. In this project, the procedure was applied to the giant (and highly complex) SACROC unit of the Permian basin in West Texas, one of the world's largest CO{sub 2}-EOR projects and a potentially world-class geologic sequestration site. Due to operational scheduling considerations on the part of the operator of the field, the crosswell data was not obtained during the period of project performance (it is currently being collected however as part of another DOE project). This compromised the utility of the surface seismic data for the project due to the resolution gap between it and the geophysical well logs. An alternative approach was adopted that utilized a relational model to predict porosity and permeability profiles from well logs at each well location, and a 3D geostatistical variogram to generate the reservoir characterization over the reservoir volume of interest. A reservoir simulation model was built based upon this characterization and history-matched without making significant changes to it, thus validating the procedure. While not the same procedure as originally planned, the procedure ultimately employed proved successful and demonstrated that the general concepts proposed (i.e., data mining and advanced pattern recognition methods) have the flexibility to achieve the reservoir characterization objectives sought even with imperfect or incomplete data.

Scott R. Reeves

2007-09-30T23:59:59.000Z

263

Seismic Array Software System  

E-Print Network [OSTI]

Seismic Array Software System Sam Irvine, Martin Lukac,of a Portable Broadband Seismic Array Long - • Part of theStudy the propagation of seismic waves in Mexico City • Line

2005-01-01T23:59:59.000Z

264

Austin chalk fracture mapping using frequency data derived from seismic data  

E-Print Network [OSTI]

and below the fractured layer. The Austin Chalk in South Central Texas is a fractured layer, and it produces hydrocarbons from fracture zones with the layer (Sweet Spots). 2D and 3 D P-wave seismic data are used from Burleson and Austin Counties... showing how azimuths were taken for the two additional data sets derived from the initial 3 D data..............??????????..........18 Figure 9. Burleson County 2D data represented as line locations...........????..?.20 Figure 10. Seismic section...

Najmuddin, Ilyas Juzer

2004-09-30T23:59:59.000Z

265

3D Self-Portraits Etienne Vouga2  

E-Print Network [OSTI]

scanning pose change output reconstruction textured reconstruction large variety of examples3D print Figure for applications such as online avatars or 3D printing (the miniature shown here was printed using a ZPrinter 650 and accurate cap- ture system for 3D self-portraits using a single 3D sensor. Figure 2: 3D printed miniatures

O'Brien, James F.

266

3D Engineered Models for Construction Support & Available Tools  

E-Print Network [OSTI]

3D Engineered Models for Construction Support & Available Tools #12;3D Engineered Models for Construction · New web page www.fhwa.dot.gov/3d (search "fhwa 3D") ­ Specs, Standards, Details, Tech Briefs ­ Provides initial response within 24 hours of inquiry National Website and TSSC 2 #12;3D Engineered Models

267

3D Periodic Human Motion Reconstruction from 2D Motion Sequences Zonghua Zhang and Nikolaus F. Troje  

E-Print Network [OSTI]

1 3D Periodic Human Motion Reconstruction from 2D Motion Sequences Zonghua Zhang and Nikolaus F@psyc.queensu.ca Abstract In this report, we present and evaluate a method of reconstructing three-dimensional (3D) periodic set of 3D data, we construct a linear, morphable representation. Using this representation a low

Troje, Nikolaus

268

Spiso-3D operation manual (US Patent 8,077,945 B2) Section 1. Introduction : Spiso-3D is an automated software calculating optical 3D  

E-Print Network [OSTI]

1 Spiso-3D operation manual (US Patent 8,077,945 B2) Section 1. Introduction : Spiso-3D is an automated software calculating optical 3D images of neurons mathematically to analyze dendrites and spines (= post synapses). Spiso-3D software was developed by Kawato's laboratory (University of Tokyo

Kawato, Suguru

269

Method for FractMethod for Fracture Detection Using Multicomponent...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Method for FractMethod for Fracture Detection Using Multicomponent Seismic Dataure Detection Using Multicomponent Seismic Data Dr. Bryan DeVault Department of Geophysics Colorado...

270

Superplastic forming using NIKE3D  

SciTech Connect (OSTI)

The superplastic forming process requires careful control of strain rates in order to avoid strain localizations. A load scheduler was developed and implemented into the nonlinear finite element code NIKE3D to provide strain rate control during forming simulation and process schedule output. Often the sheets being formed in SPF are very thin such that less expensive membrane elements can be used as opposed to shell elements. A large strain membrane element was implemented into NIKE3D to assist in SPF process modeling.

Puso, M.

1996-12-04T23:59:59.000Z

271

3D printing of multifunctional nanocomposites  

Science Journals Connector (OSTI)

Summary Additive manufacturing (aka, 3D printing) holds strong potential for the formation of a new class of multifunctional nanocomposites. With the ability to print complex 3D objects layer by layer, additive manufacturing with nanomaterials could be leveraged in new ways toward greater control over material properties across part dimensions. Multifunctionality through embedding of nanomaterials can further extend capabilities of nanocomposites to properties such as gradients in thermal and electrical conductivity, photonic emissions tunable for wavelength, and increased strength and reduced weight. Here we discuss the promises offered by nanomaterials-based additive manufacturing as a new paradigm for nanocomposite functionality.

Thomas A. Campbell; Olga S. Ivanova

2013-01-01T23:59:59.000Z

272

Sculplexity: Sculptures of Complexity using 3D printing  

E-Print Network [OSTI]

We show how to convert models of complex systems such as 2D cellular automata into a 3D printed object. Our method takes into account the limitations inherent to 3D printing processes and materials. Our approach automates the greater part of this task, bypassing the use of CAD software and the need for manual design. As a proof of concept, a physical object representing a modified forest fire model was successfully printed. Automated conversion methods similar to the ones developed here can be used to create objects for research, for demonstration and teaching, for outreach, or simply for aesthetic pleasure. As our outputs can be touched, they may be particularly useful for those with visual disabilities.

Reiss, D S; Evans, T S

2014-01-01T23:59:59.000Z

273

Sculplexity: Sculptures of Complexity using 3D printing  

Science Journals Connector (OSTI)

We show how to convert models of complex systems such as 2D cellular automata into a 3D printed object. Our method takes into account the limitations inherent to 3D printing processes and materials. Our approach automates the greater part of this task, bypassing the use of CAD software and the need for manual design. As a proof of concept, a physical object representing a modified forest fire model was successfully printed. Automated conversion methods similar to the ones developed here can be used to create objects for research, for demonstration and teaching, for outreach, or simply for aesthetic pleasure. As our outputs can be touched, they may be particularly useful for those with visual disabilities.

D. S. Reiss; J. J. Price; T. S. Evans

2013-01-01T23:59:59.000Z

274

3D-3D registration of free formed objects using shape and texture Fernando C. M. Martins  

E-Print Network [OSTI]

3D-3D registration of free formed objects using shape and texture Fernando C. M. Martins , Hirohisa and orientation of the object in 3D space with respect to an arbitrary fixed reference, given the current measurement and the 3D object model under construction. Measurement integration is the updating of the 3D

Moura, José

275

Advanced Seismic While Drilling System  

SciTech Connect (OSTI)

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30T23:59:59.000Z

276

A 3D Printed Fluidic Device that Enables Integrated Features  

Science Journals Connector (OSTI)

Fluorescence Detector for Capillary Separations Fabricated by 3D Printing ... Fluorescence Detector for Capillary Separations Fabricated by 3D Printing ... Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences ...

Kari B. Anderson; Sarah Y. Lockwood; R. Scott Martin; Dana M. Spence

2013-05-21T23:59:59.000Z

277

A 3D Computer Simulation Test of the Leibowitz Hypothesis  

E-Print Network [OSTI]

Barton & Cohn A 3D Computer Simulation Test of the Leibowitzan experiment using a 3D visual simulator in which differentthan smaller ones. The use of 3D visual simulators to assess

Barton, Joseph E.; Cohn, Theodore E

2007-01-01T23:59:59.000Z

278

3D Magnetotelluic characterization of the Coso Geothermal Field  

E-Print Network [OSTI]

and Neubauer, F. M. , 2003, 3D inversion of a scalar radio3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMALMT imaging. An initial 3D conductivity model was constructed

Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

2008-01-01T23:59:59.000Z

279

Using blocks to construct 3D shapes and create transformation animations  

E-Print Network [OSTI]

The objective of this research is to develop methods by which we can use blocks to approximate the shapes of 3D objects and to generate shape transformation animations. Two graphic tools are developed. One assists the animator in constructing 3D...

Liu, Lu

2007-04-25T23:59:59.000Z

280

Bulletin of the Seismological Society of America, 90, 6B, pp. S65S76, December 2000 The SCEC Southern California Reference Three-Dimensional Seismic  

E-Print Network [OSTI]

Southern California Reference Three-Dimensional Seismic Velocity Model Version 2 by Harold Magistrale-dimensional (3D) seismic velocity model of southern California developed by the Southern California Earthquake mesh of seismic velocity and density values. This parameterization is convenient to store, transfer

Clayton, Robert W.

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Physical sectioning in 3D biological microscopy  

E-Print Network [OSTI]

developed in the Brain Networks Laboratory at Texas A&M University, has been used for the purpose of this study. However, the modes of characterizing chatter and its measurement are equally applicable to all current variants of 3D biological microscopy using...

Guntupalli, Jyothi Swaroop

2008-10-10T23:59:59.000Z

282

Physical sectioning in 3D biological microscopy  

E-Print Network [OSTI]

developed in the Brain Networks Laboratory at Texas A&M University, has been used for the purpose of this study. However, the modes of characterizing chatter and its measurement are equally applicable to all current variants of 3D biological microscopy using...

Guntupalli, Jyothi Swaroop

2009-05-15T23:59:59.000Z

283

Printing 3D Catalytic Devices | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Printing 3D Catalytic Devices Ames Laboratory scientist Igor Slowing discusses using 3D printers to create new materials, including catalysts...

284

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced...

285

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization DOE...

286

3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD | Open  

Open Energy Info (EERE)

CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: 3D Magnetotelluric characterization of the COSO Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring

287

Seismic Refraction Shooting in an Area of the Eastern Atlantic  

Science Journals Connector (OSTI)

17 June 1952 research-article Seismic Refraction Shooting in an Area of the...described in this paper a new method of seismic refraction shooting was developed. With...1952002328 Interpretation of results of seismic refraction shooting carried out in the...

1952-01-01T23:59:59.000Z

288

A global 3D P-velocity model of the Earth's crust and mantle for improved event location.  

SciTech Connect (OSTI)

To test the hypothesis that high quality 3D Earth models will produce seismic event locations which are more accurate and more precise, we are developing a global 3D P wave velocity model of the Earth's crust and mantle using seismic tomography. In this paper, we present the most recent version of our model, SALSA3D (SAndia LoS Alamos) version 1.4, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. Our model is derived from the latest version of the Ground Truth (GT) catalog of P and Pn travel time picks assembled by Los Alamos National Laboratory. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays to produce representative rays. Reduction in the total number of ray paths is > 55%. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified two layer crustal model derived from the Crust 2.0 model over a uniform AK135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only around areas with significant velocity changes from the starting model. At each grid refinement level except the last one we limit the number of iterations to prevent convergence thereby preserving aspects of broad features resolved at coarser resolutions. Our approach produces a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. This scheme is computationally expensive, so we use a distributed computing framework based on the Java Parallel Processing Framework, providing us with {approx}400 processors. Resolution of our model is assessed using a variation of the standard checkerboard method, as well as by directly estimating the diagonal of the model resolution matrix based on the technique developed by Bekas, et al. We compare the travel-time prediction and location capabilities of this model over standard 1D models. We perform location tests on a global, geographically-distributed event set with ground truth levels of 5 km or better. These events generally possess hundreds of Pn and P phases from which we can generate different realizations of station distributions, yielding a range of azimuthal coverage and proportions of teleseismic to regional arrivals, with which we test the robustness and quality of relocation. The SALSA3D model reduces mislocation over standard 1D ak135, especially with increasing azimuthal gap. The 3D model appears to perform better for locations based solely or dominantly on regional arrivals, which is not unexpected given that ak135 represents a global average and cannot therefore capture local and regional variations.

Ballard, Sanford; Encarnacao, Andre Villanova; Begnaud, Michael A. (Los Alamos National Laboratories); Rowe, Charlotte A. (Los Alamos National Laboratories); Lewis, Jennifer E.; Young, Christopher John; Chang, Marcus C.; Hipp, James Richard

2010-04-01T23:59:59.000Z

289

Seismic sources  

DOE Patents [OSTI]

Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Longitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements for more than about one minute. 9 figs.

Green, M.A.; Cook, N.G.W.; McEvilly, T.V.; Majer, E.L.; Witherspoon, P.A.

1987-04-20T23:59:59.000Z

290

3-D Model for Deactivation & Decommissioning  

Broader source: Energy.gov (indexed) [DOE]

Project & Identifier Project & Identifier Tech Stage: Deployment In-Situ Decommissioning: SR09171 SRS Area Closure Projects: PBS SR-0040 3-D models of the R reactor building and P reactor vessel were delivered to SRS Area Closure Projects Page 1 of 2 Tech Fact Sheet Savannah River Site South Carolina 3-D Model for Deactivation & Decommissioning Challenge Planning for the safe and controlled deactivation and decommissioning (D&D) of highly contaminated nuclear facilities requires that engineers and managers fully understand the work space in which personnel and equipment will operate. It also requires that they effectively communicate safety concerns and work sequences to the personnel who will perform the work. This crucial knowledge is conveyed in

291

Fiber reinforcement during 3D printing  

Science Journals Connector (OSTI)

Abstract Three-dimensional (3D) printing is an attractive rapid prototyping technology for the fabrication of 3D structures by the localized deposition of a reactive binder liquid onto thin powder layers in predominantly technical applications. A practical limitation is often the low green strength of printed samples, which can lead to a collapse of large and fragile structures during removal from the powder bed and the following depowdering procedure. Fibre reinforcement may improve green mechanical properties of printed samples, which was investigated in this study using a range of different short fibres added to a matrix of cellulose-modified gypsum powder. Mechanical testing of printed samples revealed a bending strength increase of 180% and up to 10 times higher work of fracture values compared to non-reinforced printed samples.

Susanne Christ; Martin Schnabel; Elke Vorndran; Jürgen Groll; Uwe Gbureck

2015-01-01T23:59:59.000Z

292

3-D Metals | Open Energy Information  

Open Energy Info (EERE)

Metals Metals Jump to: navigation, search Name 3-D Metals Facility 3-D Metals Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Valley City OH Coordinates 41.2481362°, -81.88305616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2481362,"lon":-81.88305616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

3D Imaging with Holographic Tomography  

Science Journals Connector (OSTI)

There are two main types of tomography that enable the 3D internal structures of objects to be reconstructed from scattered data. The commonly known computerized tomography (CT) give good results in the x?ray wavelength range where the filtered back?projection theorem and Radon transform can be used. These techniques rely on the Fourier projection?slice theorem where rays are considered to propagate straight through the object. Another type of tomography called ‘diffraction tomography’ applies in applications in optics and acoustics where diffraction and scattering effects must be taken into account. The latter proves to be a more difficult problem as light no longer travels straight through the sample. Holographic tomography is a popular way of performing diffraction tomography and there has been active experimental research on reconstructing complex refractive index data using this approach recently. However there are two distinct ways of doing tomography: either by rotation of the object or by rotation of the illumination while fixing the detector. The difference between these two setups is intuitive but needs to be quantified. From Fourier optics and information transformation point of view we use 3D transfer function analysis to quantitatively describe how spatial frequencies of the object are mapped to the Fourier domain. We first employ a paraxial treatment by calculating the Fourier transform of the defocused OTF. The shape of the calculated 3D CTF for tomography by scanning the illumination in one direction only takes on a form that we might call a ’peanut ’ compared to the case of object rotation where a diablo is formed the peanut exhibiting significant differences and non?isotropy. In particular there is a line singularity along one transverse direction. Under high numerical aperture conditions the paraxial treatment is not accurate and so we make use of 3D analytical geometry to calculate the behaviour in the non?paraxial case. This time we obtain a similar peanut but without the line singularity.

Colin J. R. Sheppard; Shan Shan Kou

2010-01-01T23:59:59.000Z

294

CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY  

E-Print Network [OSTI]

CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY ­ Master Thesis Proposal ­ BACKGROUND 3D printing (or additive manufacturing) is not an entirely new phenomenon. First introduced and president of Foxconn, calls it a nice "gimmick" and even Nick Allen, founder of 3D printing company 3D Print

295

3D Printing of Functional and Biological Materials  

E-Print Network [OSTI]

! 3D Printing of Functional and Biological Materials Jennifer A. Lewis Wyss Professor)! Multimaterial 3D printing ! #12;3D antennas! Li ion microbatteries! Lightweight microlattices!Flexible sensors! 3D Printing of Integrated Electronic Devices ! #12;20 nm average , 5 ­ 50 nm

296

Stress relief: improving structural strength of 3D printable objects  

Science Journals Connector (OSTI)

The use of 3D printing has rapidly expanded in the past couple of years. It is now possible to produce 3D-printed objects with exceptionally high fidelity and precision. However, although the quality of 3D printing has improved, both the time to print ... Keywords: 3D printing, physics-based modeling, structural analysis

Ondrej Stava; Juraj Vanek; Bedrich Benes; Nathan Carr; Radomír M?ch

2012-08-01T23:59:59.000Z

297

Identifying fracture zones in the Austin Chalk using seismic attributes  

E-Print Network [OSTI]

An attribute analysis was conducted in an attempt to reduce the risks involved in developing the Austin Chalk. The objective is to identify a set of attributes that directly indicate regions of intense fracturing using short offset 3-D seismic data...

Bafia, Daniel Joseph

2012-06-07T23:59:59.000Z

298

Automatic high-fidelity 3D road network modeling based on 2D GIS data  

Science Journals Connector (OSTI)

Abstract Many computer applications such as racing games and driving simulations demand high-fidelity 3D road network models. However, few methods exist for the automatic generation of 3D realistic road networks, especially for those in the real world. On the other hand, vast 2D road network data in various geographical information systems (GIS) have been collected in the past and are used by a wide range of applications. A method that can automatically produce 3D high-fidelity road network models from 2D real road GIS data will significantly reduce both the labor and time cost, and greatly benefit applications involving road networks. Based on a set of carefully selected civil engineering rules for road design, this paper proposes a novel approach that transforms existing road GIS data that contain only 2D road centerline information into high-fidelity 3D road network models. The proposed method consists of several major components, including road GIS data preprocessing, 3D centerline modeling, and 3D geometric modeling. With this approach, basic road elements such as road segments, road intersections and traffic interchanges are generated automatically to compose sophisticated road networks in a seamless manner. Results show that this approach provides a rapid and efficient 3D road modeling method for applications that have stringent requirements on high-fidelity road models.

Jie Wang; Gary Lawson; Yuzhong Shen

2014-01-01T23:59:59.000Z

299

2-Dimensional Seismic Refraction Mapping Study of the Cretaceous-Paleogene Boundary Complex from the Brazos, Texas Section  

E-Print Network [OSTI]

, associated with the KTB complex. A detailed 3-D seismic refraction survey at this site is recommended to generate a high-resolution 2-D terrain map of the top of the HCS layer....

Gowan, Joshua Smith

2012-07-16T23:59:59.000Z

300

Single molecule microscopy in 3D cell cultures and tissues  

Science Journals Connector (OSTI)

Abstract From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy.

Florian M. Lauer; Elke Kaemmerer; Tobias Meckel

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Development of a physical 3D anthropomorphic breast phantom  

SciTech Connect (OSTI)

Purpose: Develop a technique to fabricate a 3D anthropomorphic breast phantom with known ground truth for image quality assessment of 2D and 3D breast x-ray imaging systems. Methods: The phantom design is based on an existing computer model that can generate breast voxel phantoms of varying composition, size, and shape. The physical phantom is produced in two steps. First, the portion of the voxel phantom consisting of the glandular tissue, skin, and Cooper's ligaments is separated into sections. These sections are then fabricated by high-resolution rapid prototyping using a single material with 50% glandular equivalence. The remaining adipose compartments are then filled using an epoxy-based resin (EBR) with 100% adipose equivalence. The phantom sections are stacked to form the physical anthropomorphic phantom. Results: The authors fabricated a prototype phantom corresponding to a 450 ml breast with 45% dense tissue, deformed to a 5 cm compressed thickness. Both the rapid prototype (RP) and EBR phantom materials are radiographically uniform. The coefficient of variation (CoV) of the relative attenuation between RP and EBR phantom samples was <1% and the CoV of the signal intensity within RP and EBR phantom samples was <1.5% on average. Digital mammography and reconstructed digital breast tomosynthesis images of the authors' phantom were reviewed by two radiologists; they reported that the images are similar in appearance to clinical images, noting there are still artifacts from air bubbles in the EBR. Conclusions: The authors have developed a technique to produce 3D anthropomorphic breast phantoms with known ground truth, yielding highly realistic x-ray images. Such phantoms may serve both qualitative and quantitative performance assessments for 2D and 3D breast x-ray imaging systems.

Carton, Ann-Katherine; Bakic, Predrag; Ullberg, Christer; Derand, Helen; Maidment, Andrew D. A. [Department of Radiology, University of Pennsylvania, 1 Silverstein Building, 3400 Spruce Street, Philadelphia, Pennsylvania 19104-4206 (United States); XCounter AB, Svaerdvaegen 11, SE-182 33 Danderyd (Sweden); Department of Radiology, University of Pennsylvania, 1 Silverstein Building, 3400 Spruce Street, Philadelphia, Pennsylvania 19104-4206 (United States)

2011-02-15T23:59:59.000Z

302

Mapping textures on 3d terrains: a hybrid cellular automata approach  

E-Print Network [OSTI]

. I propose a method for generating textures for 3D terrains using various approaches - in particular, a hybrid approach that integrates the concepts of cellular automata, probabilistic distribution according to height and Wang tiles. I also look...

Sinvhal, Swapnil

2007-04-25T23:59:59.000Z

303

2D/3D Discrete Duality Finite Volume Scheme (DDFV) applied to ECG simulation.  

E-Print Network [OSTI]

2D/3D Discrete Duality Finite Volume Scheme (DDFV) applied to ECG simulation. DDFV scheme part, the method is used for the resolution of a problem arising in bio-mathematics: the ECG

Coudière, Yves

304

Effect of 3d doping on the electronic structure of BaFe2As2  

SciTech Connect (OSTI)

The electronic structure of BaFe2As2 doped with Co, Ni and Cu has been studied by a variety of experimental and theoretical methods, but a clear picture of the dopant 3d states has not yet emerged. Herein we provide experimental evidence of the distribution of Co, Ni and Cu 3d states in the valence band. We conclude that the Co and Ni 3d states provide additional free carriers to the Fermi level, while the Cu 3d states are found at the bottom of the valence band in a localized 3d10 shell. These findings help shed light on why superconductivity can occur in BaFe2As2 doped with Co and Ni but not Cu.

McLeod, John A.; Buling, A.; Green, R.J.; Boyko, T.D.; Skorikov, N.A.; Kurmaev, E.Z.; Neumann, M.; Finkelstein, L.D.; Ni, Ni; Thaler, Alexander; Budko, Serguei L.; Canfield, Paul; Moewes, A.

2012-04-25T23:59:59.000Z

305

3D Lattice Boltzmann Magneto-hydrodynamics Sam Williams1,2, Jonathan Carter2, Leonid Oliker2,  

E-Print Network [OSTI]

1 3D Lattice Boltzmann Magneto-hydrodynamics (LBMHD3D) Sam Williams1,2, Jonathan Carter2, Leonid;5 Quick Introduction to Lattice Methods and LBMHD #12;6 Lattice Methods · Lattice Boltzmann models Lab samw@cs.berkeley.edu October 26, 2006 #12;2 · Previous Cell Work · Lattice Methods & LBMHD

306

3D REGULARIZED VELOCITY FROM 3D DOPPLER RADIAL VELOCITY X. Chen, J.L. Barron, R.E. Mercer  

E-Print Network [OSTI]

3D REGULARIZED VELOCITY FROM 3D DOPPLER RADIAL VELOCITY X. Chen, J.L. Barron, R.E. Mercer Dept, Ontario, M3H 5T4 Paul.Joe@ec.gc.ca ABSTRACT The recent availability of sequences of 3D Doppler radial velocity datasets provides sufficient information to estimate the 3D velocity of Doppler storms. We present

Barron, John

307

Spiso-3D (USA Patent 8,077,945 B2) Section 1. "Spiso-3D" 3  

E-Print Network [OSTI]

1 Spiso-3D (USA Patent 8,077,945 B2) Section 1. "Spiso-3D" 3 BioInfomatics I(x) Taylor, Java 3D . graphic card graphic card . Trial version of Spiso Google down-load Neurolucida 2%Spiso-3D Kawato's laboratory Homepage http://glia.c.u-tokyo.ac.jp #12;2 Section 1, Introduction

Kawato, Suguru

308

3D as a content, 3D as a metaphor. Experiments on distributing and interfacing information about historic artefacts using  

E-Print Network [OSTI]

3D as a content, 3D as a metaphor. Experiments on distributing and interfacing information about MAP, France jyb@gamsau.map.archi.fr idu@gamsau.map.archi.fr Key Words Architectural heritage, 3D The importance we attach to 3D is probably related to the manner we perceive the world. Humans in general seem

Paris-Sud XI, Université de

309

A 3D INTENSITY MODEL BASED ON SPHERICAL HARMONICS FOR AUTOMATIC 3D SEGMENTATION OF HETEROCHROMATIN FOCI  

E-Print Network [OSTI]

A 3D INTENSITY MODEL BASED ON SPHERICAL HARMONICS FOR AUTOMATIC 3D SEGMENTATION OF HETEROCHROMATIN DKFZ Heidelberg and BIOQUANT, Research Group Genome Organization & Function ABSTRACT We introduce a 3D model-based approach for automatic segmentation of 3D fluorescent heterochromatin foci from microscopy

Rippe, Karsten

310

3D GAUSSIAN DESCRIPTOR: A NEW DESCRIPTOR FOR 3D MODELS Mohamed Chaouch and Anne Verroust-Blondet  

E-Print Network [OSTI]

3D GAUSSIAN DESCRIPTOR: A NEW DESCRIPTOR FOR 3D MODELS Mohamed Chaouch and Anne Verroust.chaouch, anne.verroust}@inria.fr ABSTRACT This paper presents a new approach to 3D shape compari- son Shape Benchmark database. Index Terms-- 3D shape retrieval, Gaussian transform 1. INTRODUCTION

Paris-Sud XI, Université de

311

1998 3D GIS vs Advanced visualisation -Hack & Ozmutlu -LWI Seminar 1 3D-GIS vs Advanced Visualization  

E-Print Network [OSTI]

1998 3D GIS vs Advanced visualisation - Hack & Ozmutlu - LWI Seminar 1 3D-GIS vs Advanced Visualization Hack H.R.G.K. and Ozmutlu S. LWI seminar 1998 Delft, The Netherlands #12;1998 3D GIS vs Advanced visualisation - Hack & Ozmutlu - LWI Seminar 2 3D-GIS vs Advanced Visualization Visualization Strategy At source

Hack, Robert

312

Does 3D increase the enjoyment experience? A comparative experiment on the psychological effects of 3D  

Science Journals Connector (OSTI)

[Figure not available: see fulltext.] Keywords: 3D, Emotional Fatigue, Enjoyment, Experiment, Limited Capacity

Qihao Ji; Jessica Tanca; Sophie Janicke

2013-12-01T23:59:59.000Z

313

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model  

SciTech Connect (OSTI)

A principal goal of the Atmospheric Radiation Measurement (ARM) Program is to understand the 3D cloud-radiation problem from scales ranging from the local to the size of global climate model (GCM) grid squares. For climate models using typical cloud overlap schemes, 3D radiative effects are minimal for all but the most complicated cloud fields. However, with the introduction of ''superparameterization'' methods, where sub-grid cloud processes are accounted for by embedding high resolution 2D cloud system resolving models within a GCM grid cell, the impact of 3D radiative effects on the local scale becomes increasingly relevant (Randall et al. 2003). In a recent study, we examined this issue by comparing the heating rates produced from a 3D and 1D shortwave radiative transfer model for a variety of radar derived cloud fields (O'Hirok and Gautier 2005). As demonstrated in Figure 1, the heating rate differences for a large convective field can be significant where 3D effects produce areas o f intense local heating. This finding, however, does not address the more important question of whether 3D radiative effects can alter the dynamics and structure of a cloud field. To investigate that issue we have incorporated a 3D radiative transfer algorithm into the Weather Research and Forecasting (WRF) model. Here, we present very preliminary findings of a comparison between cloud fields generated from a high resolution non-hydrostatic mesoscale numerical weather model using 1D and 3D radiative transfer codes.

O'Hirok, W.; Ricchiazzi, P.; Gautier, C.

2005-03-18T23:59:59.000Z

314

Vertical Seismic Profiling At Rye Patch Area (Feighner, Et Al., 1999) |  

Open Energy Info (EERE)

Feighner, Et Al., 1999) Feighner, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Seismic Profiling At Rye Patch Area (Feighner, Et Al., 1999) Exploration Activity Details Location Rye Patch Area Exploration Technique Vertical Seismic Profiling Activity Date Usefulness useful DOE-funding Unknown Notes In December 1997 LBNL obtained a VSP in well 46-28 to determine the seismic reflectivity in the area and to obtain velocity information for the design and potential processing of the proposed 3-D seismic survey Feighner et al. (1998). Because the results of the VSP indicated apparent reflections, TGI proceeded with the collection of 3.0 square miles of 3-D surface seismic data over the Rye Patch reservoir. References M. Feighner, R. Gritto, T. M. Daley, H. Keers, E. L. Majer (1999)

315

Seismic sources  

DOE Patents [OSTI]

Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.

Green, Michael A. (Oakland, CA); Cook, Neville G. W. (Lafayette, CA); McEvilly, Thomas V. (Berkeley, CA); Majer, Ernest L. (El Cirrito, CA); Witherspoon, Paul A. (Berkeley, CA)

1992-01-01T23:59:59.000Z

316

3D reconstruction of tensors and vectors  

SciTech Connect (OSTI)

Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

Defrise, Michel; Gullberg, Grant T.

2005-02-17T23:59:59.000Z

317

MULTICOMPONENT SEISMIC ANALYSIS AND CALIBRATION TO IMPROVE RECOVERY FROM ALGAL MOUNDS: APPLICATION TO THE ROADRUNNER/TOWAOC AREA OF THE PARADOX BASIN, UTE MOUNTAIN UTE RESERVATION, COLORADO  

SciTech Connect (OSTI)

This report describes the results made in fulfillment of contract DE-FG26-02NT15451, ''Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc Area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado''. Optimizing development of highly heterogeneous reservoirs where porosity and permeability vary in unpredictable ways due to facies variations can be challenging. An important example of this is in the algal mounds of the Lower and Upper Ismay reservoirs of the Paradox Basin in Utah and Colorado. It is nearly impossible to develop a forward predictive model to delineate regions of better reservoir development, and so enhanced recovery processes must be selected and designed based upon data that can quantitatively or qualitatively distinguish regions of good or bad reservoir permeability and porosity between existing well control. Recent advances in seismic acquisition and processing offer new ways to see smaller features with more confidence, and to characterize the internal structure of reservoirs such as algal mounds. However, these methods have not been tested. This project will acquire cutting edge, three-dimensional, nine-component (3D9C) seismic data and utilize recently-developed processing algorithms, including the mapping of azimuthal velocity changes in amplitude variation with offset, to extract attributes that relate to variations in reservoir permeability and porosity. In order to apply advanced seismic methods a detailed reservoir study is needed to calibrate the seismic data to reservoir permeability, porosity and lithofacies. This will be done by developing a petrological and geological characterization of the mounds from well data; acquiring and processing the 3D9C data; and comparing the two using advanced pattern recognition tools such as neural nets. In addition, should the correlation prove successful, the resulting data will be evaluated from the perspective of selecting alternative enhanced recovery processes, and their possible implementation. The work is being carried out on the Roadrunner/Towaoc Fields of the Ute Mountain Ute Tribe, located in the southwestern corner of Colorado. Although this project is focused on development of existing resources, the calibration established between the reservoir properties and the 3D9C seismic data can also enhance exploration success. During the time period covered by this report, the majority of the project effort has gone into the permitting, planning and design of the 3D seismic survey, and to select a well for the VSP acquisition. The business decision in October, 2002 by WesternGeco, the projects' seismic acquisition contractor, to leave North America, has delayed the acquisition until late summer, 2003. The project has contracted Solid State, a division of Grant Geophysical, to carry out the acquisition. Moreover, the survey has been upgraded to a 3D9C from the originally planned 3D3C survey, which should provide even greater resolution of mounds and internal mound structure.

Paul La Pointe; Claudia Rebne; Steve Dobbs

2003-07-10T23:59:59.000Z

318

Speed-line for 3D animation  

E-Print Network [OSTI]

Committee Members, Carol LaFayette John Keyser Head of Department, Mardelle Shepley December 2005 Major Subject: Visualization Sciences iii ABSTRACT Speed-Line for 3D Animation. (December 2005) Won Chan Song, B.F.A., Ringling School of Art and Design Chair... to thank my committee members, Prof. Carol LaFayette and Dr. John Keyser for their advice and feedback. My gratitude also goes to Hobart Chan for letting me borrow his car model, which saved me a huge amount of time when I was making an animation as a...

Song, Won Chan

2007-04-25T23:59:59.000Z

319

Over the past 10 years, there has been a consistent increase in using 3D P-wave data to characterize fractures, which is  

E-Print Network [OSTI]

to characterize fractures, which is critical for ensuring economic oil and gas production in tight formations of otherwise low permeability. Here, we pre- sent a case study of fracture detection using 3D P-wave seismic, of zones of high fracture density that are residual-oil-charged. A major aspect of this study is to compare

Edinburgh, University of

320

A 3D Magnetic Structure Of Izu-Oshima Volcano And Their Changes After The  

Open Energy Info (EERE)

Magnetic Structure Of Izu-Oshima Volcano And Their Changes After The Magnetic Structure Of Izu-Oshima Volcano And Their Changes After The Eruption In 1986 As Estimated From Repeated Airborne Magnetic Surveys Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A 3D Magnetic Structure Of Izu-Oshima Volcano And Their Changes After The Eruption In 1986 As Estimated From Repeated Airborne Magnetic Surveys Details Activities (0) Areas (0) Regions (0) Abstract: A 3D magnetic inversion method using a conjugate gradient method (CG method) was developed for constructing 3D magnetization models of a volcanic edifice and applied to aeromagnetic anomalies of Izu-Oshima Volcano surveyed in 1986 and in 1997. The calculated results of the 1986 data show that the volcanic edifice of Izu-Oshima Volcano has a mean magnetization intensity ranging from 10.4 to 12.1 A/m. The derived 3D

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Application Of 3D Inversion To Magnetotelluric Data In The Ogiri Geothermal  

Open Energy Info (EERE)

Of 3D Inversion To Magnetotelluric Data In The Ogiri Geothermal Of 3D Inversion To Magnetotelluric Data In The Ogiri Geothermal Area, Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Application Of 3D Inversion To Magnetotelluric Data In The Ogiri Geothermal Area, Japan Details Activities (0) Areas (0) Regions (0) Abstract: A stable inversion technique has been developed for threedimensional (3D) interpretation of magnetotelluric (MT) data. The inversion method is based on the Gauss-Newton (linearized least-squares) method with smoothness regularization. Static shifts are also treated as unknown parameters in the inversion. The forward modeling is done by using the staggered-grid finite difference method. A Bayesian criterion ABIC is applied to searching for the optimum trade-off among the minimization of

322

3D tomodosimetry using long scintillating fibers: A feasibility study  

SciTech Connect (OSTI)

Purpose: 3D dosimetry is recognized as an ideal for patient-specific quality assurance (QA) of highly conformal radiotherapy treatments. However, existing 3D dosimeters are not straightforward to implement in the clinic, as their read-out procedure is often tedious and their accuracy, precision, and/or sample size exhibit limitations. The purpose of this work is to develop a 3D dosimeter based on the concept of tomodosimetry inside concentric cylindrical planes using long scintillating fibers for the QA of modern radiotherapy techniques such as intensity-modulated radiation therapy (IMRT) or intensity-modulated arc therapy (IMAT).Methods: Using a model-based simulation, scintillating fibers were modeled on three concentric cylindrical planes of radii 2.5, 5.0, and 7.5 cm, inside a 10 cm radius water-equivalent cylinder phantom. The phantom was set to rotate around its central axis, made parallel to the linac gantry axis of rotation. Light acquisitions were simulated using the calculated dose from the treatment planning software and reconstructed in each cylindrical plane at a resolution of 1 mm{sup 2} using a total-variation minimization iterative reconstruction algorithm. The 3D dose was then interpolated from the reconstructed cylindrical plane doses at a resolution of 1 mm{sup 3}. Different scintillating fiber patterns were compared by varying the angle of each fiber in its cylindrical plane and introducing a light-tight cut in each fiber. The precision of the reconstructed cylindrical dose distribution was evaluated using a Poisson modeling of the acquired light signals and the accuracy of the interpolated 3D dose was evaluated using an IMRT clinical plan for a prostate case.Results: Straight scintillating fiber patterns with light-tight cuts were the most accurate in cylindrical dose reconstruction, showing less than 0.5 mm distance-to-agreement in dose gradients and a mean local dose difference of less than 0.2% in the high dose region for a 10 × 10 cm{sup 2} field. The precision attained with this fiber configuration was less than 0.9% in the high dose, low gradient region of an IMRT segment for light acquisitions of 0.1 MU over a 360 degree rotation of the cylinder phantom. 3D dose interpolation for the IMRT clinical plan yielded an overall dose difference with the reference input of less than 1%, except in high dose gradients.Conclusions: Using long scintillating fibers inside rotating, concentric cylindrical planes, the authors demonstrate that their tomodosimetry method has the potential for high resolution, precise, and accurate 3D dosimetry. Moreover, because of its water-equivalence and rotational symmetry, this design should find interesting application for both treatment QA and machine commissioning.

Goulet, Mathieu; Archambault, Louis; Beaulieu, Luc; Gingras, Luc [Département de Physique, de Génie Physique et d’Optique et Centre de Recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada, and Département de Radio-Oncologie and CRCHU de Quebec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada)] [Département de Physique, de Génie Physique et d’Optique et Centre de Recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada, and Département de Radio-Oncologie and CRCHU de Quebec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada)

2013-10-15T23:59:59.000Z

323

APPLICATION OF 2D AND 3D MODELS FOR TEACHING OF NATURAL SCIENCES  

E-Print Network [OSTI]

by three systems: the use of a 3D scanner, 3D photography and digital video camera, plus 3D SketchUp and 3D

Outerelo. Raimundo

324

EXPLORING FOR SUBTLE MISSION CANYON STRATIGRAPHIC TRAPS WITH ELASTIC WAVEFIELD SEISMIC TECHNOLOGY  

SciTech Connect (OSTI)

The 9C3D seismic data that will form the principal data base needed for this research program have been successfully acquired. The seismic field data exhibit a good signal-to-noise (S/N) ratio for all elastic-wave modes. Thus the major hurdle of acquiring optimal-quality 9-C seismic data has been cleared. The stratigraphic oil-reservoir target that will be the imaging objective of the seismic data-processing effort is described in this report to indicate the challenge that now confronts the data-processing phase of the project.

John Beecherl

2004-02-01T23:59:59.000Z

325

Seismic Design Expectations Report  

Broader source: Energy.gov [DOE]

The Seismic Design Expectations Report (SDER) is a tool that assists DOE federal project review teams in evaluating the technical sufficiency of the project seismic design activities prior to...

326

Assessing Beyond Design Basis Seismic Events and Implications on Seismic  

Broader source: Energy.gov (indexed) [DOE]

Assessing Beyond Design Basis Seismic Events and Implications on Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk September 19, 2012 Presenter: Jeffrey Kimball, Technical Specialist (Seismologist) Defense Nuclear Facilities Safety Board Topics Covered: Department of Energy Approach to Natural Phenomena Hazards Analysis and Design (Seismic) Design Basis and Beyond Design Basis Seismic Events Seismic Risk Implications - Key Parameters and Insights Conclusions Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk More Documents & Publications DOE's Approach to Nuclear Facility Safety Analysis and Management Results from Beyond Design Basis Event Pilots Idaho National Laboratory Advanced Test Reactor Probabilistic Risk

327

Rheology of nearly ideal 3d foams  

E-Print Network [OSTI]

We probe the complex rheology of nearly ideal 3d foam by flowing through a narrow column. The foams we investigate have large bubble size, to minimize the effects of coarsening, and are very dry. Foams of this type cannot be studied via conventional rheometry. The foam flows upward through a vertical rectangular column with a 4:1 cross-sectional aspect ratio, by bubbling gas through a soapy solution at the base of our apparatus. At the column's narrow surfaces are sticky boundaries, which create shear due to the zero velocity boundary condition. As expected, the flow profile between the adjacent slippery broad faces is flat, however the profile between the narrow, sticky faces exhibits a curved velocity profile that is dependent on gas flow rate. We are able to analyze a 2d velocity profile from a 3d bulk system. We employ particle image velocimetry to measure the strain rate, and compute the stress from the pressure drop along the channel, to investigate the local stress-strain relationships in a flowing foam. We find these dry foams to have a Hershel-Bulkley exponent of 0.21, which is significantly lower (more shear thinning) than other results shown in the literature for much wetter foams.

C. D. Jones; K. N. Nordstrom; D. J. Durian

2014-04-10T23:59:59.000Z

328

Monitoring Seismic Attenuation Changes Using a 4D Relative Spectrum Method in Athabsca Heavy Oil Reservoir, Canada  

E-Print Network [OSTI]

Heating heavy oil reservoirs is a common method for reducing the high viscosity of heavy oil and thus increasing the recovery factor. Monitoring these changes in the reservoir is essential for delineating the heated region ...

Shabelansky, Andrey Hanan

2012-01-01T23:59:59.000Z

329

Study of induced seismicity for reservoir characterization  

E-Print Network [OSTI]

The main goal of the thesis is to characterize the attributes of conventional and unconventional reservoirs through passive seismicity. The dissertation is comprised of the development and applications of three new methods, ...

Li, Junlun, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

330

Probabilistic seismic hazard maps for Panama  

Science Journals Connector (OSTI)

Probabilistic seismic hazard maps in term of Modified Mercalli (MM) intensity are derived by applying the ‘Cornell-McGuire’ method to four earthquake source zones in Panama and adjacent areas. The maps contain es...

Aristoteles Vergara Muñoz

1991-01-01T23:59:59.000Z

331

Reservoir fracture characterizations from seismic scattered waves  

E-Print Network [OSTI]

The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

Fang, Xinding

2012-01-01T23:59:59.000Z

332

COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD  

E-Print Network [OSTI]

; Herrmann, 1981) and secondary oil recovery in western Colorado at the Rangely oil field (Gibbs et al. 1973COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 John D. Godchaux Trinity University, San Antonio, TX Noah

Sheehan, Anne F.

333

Seismic velocity estimation from time migration  

E-Print Network [OSTI]

Seismic images . . . . . . . . . . . . . . . . .Algorithms producing the seismic velocities from thethe Dix velocities and the true seismic velocities in 2D . .

Cameron, Maria Kourkina

2007-01-01T23:59:59.000Z

334

Seismic Performance Assessment in Dense Urban Environments  

E-Print Network [OSTI]

Kinematic interaction . . 4.4.2 Seismic footing response 6Deterministic seismic hazard analysis . . . . . . . . . .Probabilistic seismic hazard analysis . . . . . . . . .

Mason, Henry Benjamin

2011-01-01T23:59:59.000Z

335

Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: In 1998 a 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada) to determine if modern seismic techniques could be successfully applied in geothermal environments. Furthermore, it was intended to map the structural features which may control geothermal production in the reservoir. The results

336

Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada |  

Open Energy Info (EERE)

Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: A 3-D surface seismic reflection survey, covering an area of over 3 square miles, was conducted at the Rye Patch geothermal reservoir (Nevada) to explore the structural features that may control geothermal production in the area. In addition to the surface sources and receivers, a high-temperature three-component seismometer was deployed in a borehole at a depth of 3900 ft within the basement below the reservoir, which recorded the waves generated by all surface sources. A total of 1959 first-arrival travel times were determined out of 2134 possible traces. Two-dimensional

337

Toward a compact underwater structured light 3-D imaging system  

E-Print Network [OSTI]

A compact underwater 3-D imaging system based on the principles of structured light was created for classroom demonstration and laboratory research purposes. The 3-D scanner design was based on research by the Hackengineer ...

Dawson, Geoffrey E

2013-01-01T23:59:59.000Z

338

Contributions to the 3D city modeling : 3D polyhedral building model reconstruction from aerial images and 3D facade modeling from terrestrial 3D point cloud and images.  

E-Print Network [OSTI]

??The aim of this work is to develop research on 3D building modeling. In particular, the research in aerial-based 3D building reconstruction is a topic… (more)

Hammoudi, Karim

2011-01-01T23:59:59.000Z

339

Stereoscopic Presentations Taking the Difficulty out of 3D  

E-Print Network [OSTI]

1 Stereoscopic Presentations ­ Taking the Difficulty out of 3D Andrew Woods, Centre for Marine of the two projectors. The audience then wear appropriately polarised 3D video projector (CRT/LCD/DMD) video

340

Computational 3D and reflectivity imaging with high photon efficiency  

E-Print Network [OSTI]

Imaging the 3D structure and reflectivity of a scene can be done using photon-counting detectors. Traditional imagers of this type typically require hundreds of detected photons per pixel for accurate 3D and reflectivity ...

Shin, Dongeek

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

3-D Earth model more accurately pinpoints explosions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3-D Earth model more accurately pinpoints explosions 3-D Earth model more accurately pinpoints explosions The purpose of this model is to assist the U.S. Air Force and the...

342

Ames Laboratory 3D printing technology research taking shape...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3D printing technology research taking shape Insider Scientists at the U.S. Department of Energy's Ames Laboratory see amazing potential in 3D printing and additive manufacturing,...

343

3D Printing Comes of Age | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3D Printing Comes of Age 3D Printing Comes of Age September 19, 2014 - 5:25pm Addthis The highlight of this year's International Manufacturing Technology Show (IMTS), held earlier...

344

FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...  

Open Energy Info (EERE)

Geomechanics and 3D Reservoir Modeling Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...

345

Characterizing tensile loading responses of 3D printed samples  

E-Print Network [OSTI]

An experimental study was performed to characterize the loading response of samples manufactured through 3D printing. Tensile testing was performed on a number of 3D printed samples created through Fused Filament Fabrication ...

Haid, Christopher M

2014-01-01T23:59:59.000Z

346

Ames Lab 101: Real-Time 3D Imaging  

ScienceCinema (OSTI)

Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

Zhang, Song

2012-08-29T23:59:59.000Z

347

Automating the determination of 3D protein structure  

SciTech Connect (OSTI)

The creation of an automated method for determining 3D protein structure would be invaluable to the field of biology and presents an interesting challenge to computer science. Unfortunately, given the current level of protein knowledge, a completely automated solution method is not yet feasible, therefore, our group has decided to integrate existing databases and theories to create a software system that assists X-ray crystallographers in specifying a particular protein structure. By breaking the problem of determining overall protein structure into small subproblems, we hope to come closer to solving a novel structure by solving each component. By generating necessary information for structure determination, this method provides the first step toward designing a program to determine protein conformation automatically.

Rayl, K.D.

1993-12-31T23:59:59.000Z

348

3-D GRMHD Simulations of Generating Jets  

E-Print Network [OSTI]

We have performed a first fully 3-D GRMHD simulation with Schwarzschild black hole with a free falling corona. The initial simulation results show that a jet is created as in the previous simulations using the axisymmetric geometry with the mirror symmetry at the equator. However, the time to generate the jet is longer than in the 2-D axisymmetric simulations. We expect that due to the additional freedom in the azimuthal dimension without axisymmetry with respect to the z axis and reflection symmetry with respect to the equatorial plane, the dynamics of jet formation can be modified. Further simulations are required for the study of instabilities along the azimuthal direction such as accretion-eject instability

Nishikawa, K I; Shibata, K; Kudoh, T; Sol, H

2002-01-01T23:59:59.000Z

349

3-D GRMHD Simulations of Generating Jets  

E-Print Network [OSTI]

We have performed a first fully 3-D GRMHD simulation with Schwarzschild black hole with a free falling corona. The initial simulation results show that a jet is created as in the previous simulations using the axisymmetric geometry with the mirror symmetry at the equator. However, the time to generate the jet is longer than in the 2-D axisymmetric simulations. We expect that due to the additional freedom in the azimuthal dimension without axisymmetry with respect to the z axis and reflection symmetry with respect to the equatorial plane, the dynamics of jet formation can be modified. Further simulations are required for the study of instabilities along the azimuthal direction such as accretion-eject instability

K. -I. Nishikawa; S. Koide; K. Shibata; T. Kudoh; H. Sol

2002-08-05T23:59:59.000Z

350

The Frequency Ratio Method for the seismic modelling of gamma Doradus stars. II The role of rotation  

E-Print Network [OSTI]

The effect of rotation on the Frequency Ratio Method (Moya et al. 2005) is examined. Its applicability to observed frequencies of rotating gamma Doradus stars is discussed taking into account the following aspects: the use of a perturbative approach to compute adiabatic oscillation frequencies; the effect of rotation on the observational Brunt-Vaisala integral determination and finally, the problem of disentangling multiplet-like structures from frequency patterns due to the period spacing expected for high-order gravity modes in asymptotic regime. This analysis reveals that the FRM produces reliable results for objects with rotational velocities up to 70 kms/s, for which the FRM intrinsic error increases one order of magnitude with respect to the typical FRM errors given in Moya et al. (2005). Our computations suggest that, given the spherical degree "l" identification, the FRM may be discriminating for m = 0 modes, in the sense that the method avoids any misinterpretation induced by the presence of rotation...

Suárez, J C; Martin-Ruiz, S; Amado, P J; Garrido, A G R

2005-01-01T23:59:59.000Z

351

A 3D scanning system for biomedical purposes  

Science Journals Connector (OSTI)

The use of three-dimensional (3D) scanning systems for acquiring the external shape features of biological objects has recently been gaining popularity in the biomedical field. A simple, low cost, 3D scanning system is presented, which employs ... Keywords: 3D geometric modelling, 3D scanning, EFDs, biological objects, biomedical scanners, camera calibration, data acquisition, direct linear transformation, elliptical Fourier descriptors, laser light-sectioning, medical imaging, shape features

B. D. Bradley; A. D. C. Chan; M. J. D. Hayes

2009-06-01T23:59:59.000Z

352

Localization and 3D Reconstruction of Urban Scenes Using GPS  

E-Print Network [OSTI]

D models in Google earth · Manual modeling and texturing (sketch-up) · 3D model covers limited area

Haro, Antonio

353

3D Rendering and Ray Casting Michael Kazhdan  

E-Print Network [OSTI]

3D Rendering and Ray Casting Michael Kazhdan (600.357 / 600.457) HB Ch. 13.7, 14.6 FvDFH 15.5, 15.10 #12;Rendering · Generate an image from geometric primitives Rendering Geometric Primitives (3D) Raster Image (2D) #12;3D Rendering Example What issues must be addressed by a 3D rendering system? #12;Overview

Kazhdan, Michael

354

AUTOMATED, HIGHLY ACCURATE VERIFICATION OF RELAP5-3D  

SciTech Connect (OSTI)

Computer programs that analyze light water reactor safety solve complex systems of governing, closure and special process equations to model the underlying physics. In addition, these programs incorporate many other features and are quite large. RELAP5-3D[1] has over 300,000 lines of coding for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. Verification ensures that a program is built right by checking that it meets its design specifications. Recently, there has been an increased importance on the development of automated verification processes that compare coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions[2]. For the first time, the ability exists to ensure that the data transfer operations associated with timestep advancement/repeating and writing/reading a solution to a file have no unintended consequences. To ensure that the code performs as intended over its extensive list of applications, an automated and highly accurate verification method has been modified and applied to RELAP5-3D. Furthermore, mathematical analysis of the adequacy of the checks used in the comparisons is provided.

George L Mesina; David Aumiller; Francis Buschman

2014-07-01T23:59:59.000Z

355

3D and 4D magnetic susceptibility tomography based on complex MR images  

DOE Patents [OSTI]

Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

Chen, Zikuan; Calhoun, Vince D

2014-11-11T23:59:59.000Z

356

Using interactive 3-D visualization for public consultation  

Science Journals Connector (OSTI)

......www.presagis.com/products/content_creation/creator ) was used to create the model and Autodesk 3D Studio Max ( http://usa.autodesk.com/ ) was used to add further details to the model. The 3D games graphics engine Ogre 3D......

Paul van Schaik

2010-11-01T23:59:59.000Z

357

3D Printing Prof. Hank Dietz & Paul Eberhart  

E-Print Network [OSTI]

3D Printing Prof. Hank Dietz & Paul Eberhart September 28, 2013 University of Kentucky Electrical/Craft: paper moves in Y, knife in X EDM/Laser: X/Y bed, vaporizes material #12;Subtractive 3D CNC: Computer "The whole is greater than the sum of its parts." ­ Aristotle #12;Additive 3D Building Material

Dietz, Henry G. "Hank"

358

3-D Earth model more accurately pinpoints explosions  

E-Print Network [OSTI]

- 1 - 3-D Earth model more accurately pinpoints explosions October 25, 2013 During the Cold War, U) have partnered to develop a 3-D model of the Earth's mantle and crust called SALSA3D (Sandia-Los Alamos of explosions. Significance of the research After an explosion, the energy travels through the Earth as waves

359

Issues in the Development of 3D Icons Rob Erbacher  

E-Print Network [OSTI]

Issues in the Development of 3D Icons Rob Erbacher Georges Grinstein Institute for Visualization dimensions through the use of 3D icons. We briefly discuss geometric and color icons and the 2D textures they generate. We then exhibit a 3D icon, explain its parameters and features, and demonstrate how this icon

Erbacher, Robert F.

360

3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1  

E-Print Network [OSTI]

3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1 , D. De Baere2 , M. Rombouts3 , SSHM system is produced by 3D printing or additive manufacturing. Additive Manufacturing (AM) is a "process to enable its implementation. This work demonstrates the feasibility study of eSHM systems produced by 3D

Boyer, Edmond

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

3D RECONSTRUCTION FROM A SINGLE IMAGE Diego Rother  

E-Print Network [OSTI]

3D RECONSTRUCTION FROM A SINGLE IMAGE By Diego Rother and Guillermo Sapiro IMA Preprint Series. 1 3D Reconstruction from a Single Image Diego Rother and Guillermo Sapiro Abstract-- A probabilistic framework for 3D object reconstruction from a single image is introduced in this work. First

362

Fast 3D Scanning for Biometric Identification and Verification  

E-Print Network [OSTI]

Fast 3D Scanning for Biometric Identification and Verification June 2011 Authors Anselmo., & Chen, A. (2011). Fast 3D Scanning for Biometric Identification and Verification. (Prepared by RTI..................................................10 Summary and Findings for Integration of Imperceptible Structured Lighting and SIS's 3D Snapshot

McShea, Daniel W.

363

3D Scanning for Biometric Identification and Verification  

E-Print Network [OSTI]

June 2010 3D Scanning for Biometric Identification and Verification Project Leads Anselmo Lastra visibility, cannot be controlled. A relatively new biometric, 3D facial recognition, holds great promise performance using 3D shape and texture matched that of the much more mature technologies of high

McShea, Daniel W.

364

3D discrete rotations using hinge angles Yohan Thibaulta,  

E-Print Network [OSTI]

3D discrete rotations using hinge angles Yohan Thibaulta, , Akihiro Sugimotob , Yukiko Kenmochia a of Informatics, Japan Abstract In this paper, we study 3D rotations on grid points computed by using only integers. For that purpose, we investigate the intersection between the 3D half- grid and the rotation

Paris-Sud XI, Université de

365

3D Laser Imaging at Highway Speed Kelvin CP Wang  

E-Print Network [OSTI]

3D Laser Imaging at Highway Speed Kelvin CP Wang And the Team Formerly at the University Concrete Consortium Meeting Oklahoma City Sheraton Hotel #12;3D Laser Imaging for Pavements Mature Potential to Cover Most if Not All Data Collection on Pavement Surface How to Obtain True 1mm 3D Visual

366

The 3D jigsaw puzzle: mapping large indoor spaces  

E-Print Network [OSTI]

The 3D jigsaw puzzle: mapping large indoor spaces Ricardo Martin-Brualla1 , Yanling He1 , Bryan C of famous tourist sites. While current 3D reconstruction algorithms often produce a set of disconnected components (3D pieces) for indoor scenes due to scene coverage or matching failures, we make use

Anderson, Richard

367

Automating Shallow Seismic Imaging  

SciTech Connect (OSTI)

This seven-year, shallow-seismic reflection research project had the aim of improving geophysical imaging of possible contaminant flow paths. Thousands of chemically contaminated sites exist in the United States, including at least 3,700 at Department of Energy (DOE) facilities. Imaging technologies such as shallow seismic reflection (SSR) and ground-penetrating radar (GPR) sometimes are capable of identifying geologic conditions that might indicate preferential contaminant-flow paths. Historically, SSR has been used very little at depths shallower than 30 m, and even more rarely at depths of 10 m or less. Conversely, GPR is rarely useful at depths greater than 10 m, especially in areas where clay or other electrically conductive materials are present near the surface. Efforts to image the cone of depression around a pumping well using seismic methods were only partially successful (for complete references of all research results, see the full Final Technical Report, DOE/ER/14826-F), but peripheral results included development of SSR methods for depths shallower than one meter, a depth range that had not been achieved before. Imaging at such shallow depths, however, requires geophone intervals of the order of 10 cm or less, which makes such surveys very expensive in terms of human time and effort. We also showed that SSR and GPR could be used in a complementary fashion to image the same volume of earth at very shallow depths. The primary research focus of the second three-year period of funding was to develop and demonstrate an automated method of conducting two-dimensional (2D) shallow-seismic surveys with the goal of saving time, effort, and money. Tests involving the second generation of the hydraulic geophone-planting device dubbed the ''Autojuggie'' showed that large numbers of geophones can be placed quickly and automatically and can acquire high-quality data, although not under rough topographic conditions. In some easy-access environments, this device could make SSR surveying considerably more efficient and less expensive, particularly when geophone intervals of 25 cm or less are required. The most recent research analyzed the difference in seismic response of the geophones with variable geophone spike length and geophones attached to various steel media. Experiments investigated the azimuthal dependence of the quality of data relative to the orientation of the rigidly attached geophones. Other experiments designed to test the hypothesis that the data are being amplified in much the same way that an organ pipe amplifies sound have so far proved inconclusive. Taken together, the positive results show that SSR imaging within a few meters of the earth's surface is possible if the geology is suitable, that SSR imaging can complement GPR imaging, and that SSR imaging could be made significantly more cost effective, at least in areas where the topography and the geology are favorable. Increased knowledge of the Earth's shallow subsurface through non-intrusive techniques is of potential benefit to management of DOE facilities. Among the most significant problems facing hydrologists today is the delineation of preferential permeability paths in sufficient detail to make a quantitative analysis possible. Aquifer systems dominated by fracture flow have a reputation of being particularly difficult to characterize and model. At chemically contaminated sites, including U.S. Department of Energy (DOE) facilities and others at Department of Defense (DOD) installations worldwide, establishing the spatial extent of the contamination, along with the fate of the contaminants and their transport-flow directions, is essential to the development of effective cleanup strategies. Detailed characterization of the shallow subsurface is important not only in environmental, groundwater, and geotechnical engineering applications, but also in neotectonics, mining geology, and the analysis of petroleum reservoir analogs. Near-surface seismology is in the vanguard of non-intrusive approaches to increase knowledge of the shallow subsurface; our

Steeples, Don W.

2004-12-09T23:59:59.000Z

368

Non-linear traveltime inversion for 3-D seismic tomography in strongly anisotropic media  

Science Journals Connector (OSTI)

......low velocity body (Shale 2) and produces many...of the non-linear anisotropic inversion, we obtained...high velocity body (Shale 1) and fails to indicate...low velocity block (Shale 2). By contrast...of the non-linear anisotropic inversion yields clear......

Bing Zhou; Stewart Greenhalgh

2008-01-01T23:59:59.000Z

369

Role of 3D seismic for quantitative shallow hazard assessment in deepwater sediments  

Science Journals Connector (OSTI)

...attention. These are global problems. In the GOM...attention. These are global problems. In the GOM...Man-made hazards include pipelines, wellheads, shipwrecks...became unusable due to buckling of the casing strings...important unknown in the global methane budget. No matter...

Nader C. Dutta; Randal W. Utech; Dianna Shelander

370

On 3D modeling of seismic wave propagation via a structured ...  

E-Print Network [OSTI]

... from MKL (Math Ker- nel Library), which contains BLAS (Basic Linear Algebra ..... Chandrasekaran S., Dewilde P., Gu M., Pals T., Sun X., van der. Veen A. and

2011-07-27T23:59:59.000Z

371

Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir |  

Open Energy Info (EERE)

Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Details Activities (3) Areas (1) Regions (0) Abstract: A 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada), to determine if modern seismic techniques could be successfully applied in geothermal environments. Furthermore, it was intended to map the structural features which may control geothermal production in the reservoir. The seismic survey covered an area of 3.03 square miles and was designed with 12 north-south receiver lines and 25 east-west source lines. The receiver group interval was 100 feet and the receiver line spacing was 800 feet. The

372

Stack and cell modelling with SOFC3D: a computer program for the 3D simulations of  

E-Print Network [OSTI]

Stack and cell modelling with SOFC3D: a computer program for the 3D simulations of solid oxide fuel, France 1 Introduction SOFC3D is a computer program, which simulates the behaviour of a solid oxide fuel model A detailed cell model was obtained [9] by writing the conservation laws in the solid parts

Herbin, Raphaèle

373

Phys. Med. Biol. 43 (1998) 10011013. Printed in the UK PII: S0031-9155(98)90627-3 High-resolution 3D Bayesian image reconstruction using  

E-Print Network [OSTI]

-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner Jinyi Qi, Richard M Leahy of high-resolution 3D images from the microPET small-animal scanner. Resolution recovery is achieved 2 mm when using an analytic 3D reprojection (3DRP) method with a ramp filter. These results also

Leahy, Richard M.

374

Computational methods for improving the resolution of subsurface seismic images. Progress report, September 15, 1991--September 14, 1993  

SciTech Connect (OSTI)

Our interactive modeling for Gaussian beam modeling in two-dimensional, triangulated complex geologic structure, has been generalized to include transmission losses at interfaces, and density and Q-characterization of attenuation in layers. Also, multiple reflections and the option to model data from VSP acquisition geometry have been included. Shortcomings when the structure contains first-order discontinuities, however, limit the full geologic complexity that presently can be modeled by the Gaussian beam method. Other studies of wave filtering that arises for waves propagating nearly parallel to bedding reveal the importance of tunneling evanescent filtering on the propagating wavelet. Likewise, for reflections from steep interfaces, we have developed a dip-divergence correction to compensate for shortcomings in the conventional divergence correction for energy spreading. A new direction this past year, which we will be pursuing in the year ahead is analysis of errors in migration and dip-moveout (DMO) that arise when conventional imaging processing, which ignores anisotropy, is applied to data acquired where the subsurface is transversely isotropic. We are also developing approaches for taking anisotropy into account in these important imaging processes. Similarly, we have developed an efficient approach to performing DMO on P-SV-mode-converted data. Our interests in taking anisotropy into account have led us to study the importance of anisotropy in the overburden on reflection amplitude variations with offset (AVO).

Larner, K.; Hale, D.; Bleistein, N.; Cohen, J.

1993-05-01T23:59:59.000Z

375

3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field,  

Open Energy Info (EERE)

3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, 3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, Indonesia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: 3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, Indonesia Details Activities (0) Areas (0) Regions (0) Abstract: Three-dimensional (3-D) interpretation was carried out for the magnetotelluric (MT) data obtained in a geothermal area in Indonesia. The inversion scheme was based on the linearized leastsquares method with smoothness regularization. In addition to the subsurface resistivity structure, static shifts were also included as unknown parameters in the inversion. Forward modeling was by the finite difference scheme. The sensitivity matrix was computed once for a homogeneous half space and used

376

A supercoarsening multigrid method for poroelasticity in 3D coupled ...  

E-Print Network [OSTI]

Jun 14, 2012 ... Springer Science+Busincss Media B.V. 2012. Abstract The ..... practical observations of Wheeler and Smith [50] made on subsurface flow ...

2012-06-14T23:59:59.000Z

377

A support-operator method for 3-D rupture dynamics  

Science Journals Connector (OSTI)

......faulting) is also capable of handling geometries appropriate to low-angle...variables by deltat/2. The material variables incorporate the hexahedral...elastic isotropic medium. The material and fault parameters for TPV3...parameters. Figure 2. Schematic diagram of the model configuration......

Geoffrey P. Ely; Steven M. Day; Jean-Bernard Minster

2009-06-01T23:59:59.000Z

378

Application of Evolutionary Methods to 3D Geoscience Brad Alexander  

E-Print Network [OSTI]

and Geophysics University of Adelaide Adelaide, South Australia jared.peacock@adelaide.edu.au Stephan Thiel Geology and Geophysics University of Adelaide Adelaide, South Australia stephan.thiel@adelaide.edu.au ABSTRACT Geoscience modelling plays a vital role in mapping and track- ing Earth's resources

Alexander, Brad

379

Seismic Isolation and Decrease of Seismic Effects on Bridges  

Science Journals Connector (OSTI)

A planned road bridge in an active seismic zone near the city of Žilina in Slovakia was analysed for seismic effects. The seismic analysis has shown that an inelastic structural ... is very likely. Because of the...

Associate Professor Rudolf Ároch…

2014-01-01T23:59:59.000Z

380

A 3D radiative transfer framework: I. non-local operator splitting and continuum scattering problems  

E-Print Network [OSTI]

We describe a highly flexible framework to solve 3D radiation transfer problems in scattering dominated environments based on a long characteristics piece-wise parabolic formal solution and an operator splitting method. We find that the linear systems are efficiently solved with iterative solvers such as Gauss-Seidel and Jordan techniques. We use a sphere-in-a-box test model to compare the 3D results to 1D solutions in order to assess the accuracy of the method. We have implemented the method for static media, however, it can be used to solve problems in the Eulerian-frame for media with low velocity fields.

Peter H. Hauschildt; E. Baron

2006-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Compatible hybrid 3D printing of metal and nonmetal inks for direct manufacture of end functional devices  

Science Journals Connector (OSTI)

The currently available 3D printing still cannot simultaneously deal with the metal...35In48.6Sn16Zn0.4...and silicone rubber as functional inks, we proposed a compatible hybrid 3D printing method for manufacturi...

Lei Wang; Jing Liu

2014-11-01T23:59:59.000Z

382

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2009)&oldid=425640"

383

Seismic characterization of fractures  

E-Print Network [OSTI]

Seismic characterization of fractures. José M. Carcione, OGS, Italy. Fractured geological formations are generally represented with a stress-strain relation.

JM Carcione

2014-06-07T23:59:59.000Z

384

Seismic Imaging and Monitoring  

SciTech Connect (OSTI)

I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

Huang, Lianjie [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

385

Twisted 3D $N=4$ Supersymmetric YM on deformed $\\mathbb{A}_3^\\ast$ Lattice  

E-Print Network [OSTI]

We study a class of twisted 3D $N=4$ supersymmetric Yang-Mills (SYM) theory on particular 3-dimensional lattice denoted as $\\mathcal{L}_{3D}^{su_3\\times u_1}$ and given by non trivial fibration $\\mathcal{L}_{1D}^{u_1}\\times \\mathcal{L}_{2D}^{su_3}$ with base $\\mathcal{L}_{2D}^{su_3}=\\mathbb{A}_2^\\ast$, the weight lattice of $SU(3)$. We first, develop the twisted 3D $N=4$ SYM in continuum by using superspace method where the scalar supercharge $Q$ is manifestly exhibited. Then, we show how to engineer the 3D lattice $\\mathcal{L}_{3D}^{su_3\\times u_1}$ that host this theory. After that we build the lattice action $\\mathcal{S}_{latt}$ invariant under the 3 following: (i) $U(N)$ gauge invariance, (ii) BRST symmetry, (iii) the hidden $SU(3) \\times U(1)$ symmetry of $\\mathcal{L}_{3D}^{su_3\\times u_1}$. Other features such as reduction to twisted 2D supersymmetry with 8 supercharges living on $\\mathcal{L}_{2D}^{su_2\\times u_1}$, the extension to twisted maximal 5D SYM with 16 supercharges on lattice $\\mathcal{L}_{5D}^{su_4\\times u_1}$ as well as the relation with known results are also given.

El Hassan Saidi

2014-07-13T23:59:59.000Z

386

Twisted 3D $N=4$ Supersymmetric YM on deformed $\\mathbb{A}_3^\\ast$ Lattice  

E-Print Network [OSTI]

We study a class of twisted 3D $N=4$ supersymmetric Yang-Mills (SYM) theory on particular 3-dimensional lattice denoted as $\\mathcal{L}_{3D}^{su_3\\times u_1}$ and given by non trivial fibration $\\mathcal{L}_{1D}^{u_1}\\times \\mathcal{L}_{2D}^{su_3}$ with base $\\mathcal{L}_{2D}^{su_3}=\\mathbb{A}_2^\\ast$, the weight lattice of $SU(3)$. We first, develop the twisted 3D $N=4$ SYM in continuum by using superspace method where the scalar supercharge $Q$ is manifestly exhibited. Then, we show how to engineer the 3D lattice $\\mathcal{L}_{3D}^{su_3\\times u_1}$ that host this theory. After that we build the lattice action $\\mathcal{S}_{latt}$ invariant under the 3 following: (i) $U(N)$ gauge invariance, (ii) BRST symmetry, (iii) the hidden $SU(3) \\times U(1)$ symmetry of $\\mathcal{L}_{3D}^{su_3\\times u_1}$. Other features such as reduction to twisted 2D supersymmetry with 8 supercharges living on $\\mathcal{L}_{2D}^{su_2\\times u_1}$, the extension to twisted maximal 5D SYM with 16 supercharges on lattice $\\mathcal{L}_{5D...

Saidi, El Hassan

2014-01-01T23:59:59.000Z

387

3D turtle geometry: artwork, theory, program equivalence and symmetry  

Science Journals Connector (OSTI)

We define a 3D variant of turtle graphics and present the theoretical foundations of 3D turtle geometry. This theory enables one to reason about open and closed 3D polygonal paths by means of algebraic calculations. In particular, we introduce several equivalence relations on turtle programs and theorems that define corresponding standard forms. Also we express the relationship between the symmetries of a 3D polygonal path and the symmetries of a generating turtle program in a suitable standard form. Finally, we discuss software tool support for 3D turtle geometry. Along the way, we present some artworks designed through 3D turtle graphics. These artworks have never been described in the literature before.

Tom Verhoeff

2010-01-01T23:59:59.000Z

388

3-D Model for Deactivation & Decommissioning | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3-D Model for Deactivation & Decommissioning 3-D Model for Deactivation & Decommissioning 3-D Model for Deactivation & Decommissioning The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work space, which would give managers and supervisors a more powerful tool for planning and communicating safety issues and work sequences to personnel executing the physical D&D tasks. 3-D Model for Deactivation & Decommissioning More Documents & Publications D&D Toolbox Robotic Deployment of High Resolution Laser Imaging for Characterization D&D and Risk Assessment Tools 3-D Model for Deactivation & Decommissioning Deactivation & Decommissioning Knowledge Management Information Tool (D&D

389

Shear wave seismic velocity profiling and depth to water table earthquake site  

E-Print Network [OSTI]

..................................................................................................... 6 Summary of seismic refraction/reflection methodsShear wave seismic velocity profiling and depth to water table ­ earthquake site response measurements for Valley County, Idaho Lee M. Liberty and Gabriel M. Gribler, Boise State University Center

Barrash, Warren

390

NASA to send 3D printer into space  

Science Journals Connector (OSTI)

... time that a 3D printer flies in space. The agency has already embraced ground-based 3D printing as a fast, cheap way to make spacecraft parts, including rocket engine components that ... to make spacecraft parts literally on the fly. Space experts say that the promise of 3D printing is real, but a long way from the hype that surrounds it. “There’ ...

Alexandra Witze

2014-09-10T23:59:59.000Z

391

Climate Change Capacity Development (C3D+) | Open Energy Information  

Open Energy Info (EERE)

C3D+) C3D+) Jump to: navigation, search Logo: Climate Change Capacity Development (C3D+) Name Climate Change Capacity Development (C3D+) Agency/Company /Organization United Nations Institute for Training and Research (UNITAR) Partner Caribbean Climate Change Community Centre (CCCCC), Climate System Analysis Group at UCT Cape Town (CSAG), Environment and Development Action in the Third World (ENDA-TM), University of Cape Town-Energy Research Centre, South Pacific Regional Environment Programme (SPREP), Munasinghe Institute (MIND), Center for International Forestry Research, International Institute for Sustainable Development (IISD), Stockholm Environment Institute Sector Climate Topics Low emission development planning Resource Type Training materials

392

Coordination Polymers A Unique 3D Alternating Ferro-and  

E-Print Network [OSTI]

(3-ptz)] (3-ptz = 5-(3-pyridyl)tetrazolate),[7e] in which the metal centers are diamagnetic 3d10 cadmium

Gao, Song

393

Identificering af teknologi gennem narrativer; 3D print.  

E-Print Network [OSTI]

??Denne rapport arbejder med en gennemgang af den såkaldte 3D printer teknologi. Denne vil sættes i sammenhæng med et teknologifilosofisk ’form of life ? forståelse… (more)

Petersen, Mikael

2011-01-01T23:59:59.000Z

394

3D Printing of nanostructured catalytic materials | The Ames...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3D Printing of nanostructured catalytic materials Over the last couple of decades, scientists have been able to develop a tremendous control over the synthesis and properties of...

395

From Digital to Physical: Computational Aspects of 3D Manufacturing.  

E-Print Network [OSTI]

??The desktop publishing revolution of the 1980s is currently repeating itself in 3D, referred to as desktop manufacturing. Online services such as Shapeways have become… (more)

Baecher, Moritz Niklaus

2013-01-01T23:59:59.000Z

396

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

Broader source: Energy.gov [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization presentation at the April 2013 peer review meeting held in Denver, Colorado.

397

Just Plain Cool, the 3D Printed Shelby Cobra  

Broader source: Energy.gov [DOE]

Indistinguishable from conventional production vehicles on display, the 3D printed Shelby Cobra celebrated its 50th anniversary at the Detroit Auto Show in early January.

398

Ames Laboratory 3D printing technology research taking shape...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3D printing technology research taking shape Contacts: For Release: Sept. 23, 2014 Igor Slowing, Chemical and Biological Sciences, 515-294-1959 Laura Millsaps, Public Affairs,...

399

Making 3D Printed Christmas Ornaments | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

enjoys baking cookies and snowball fights. Recent Posts by This Contributor Using 3D Printing to Redesign Santa's Sleigh A Sneak Peek Into Santa's Smarter Sleigh Subscribe to...

400

Homogeneous and Interfacial Catalysis in 3D Controlled Environment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Homogeneous and Interfacial Catalysis in 3D Controlled Environment FWPProject Description: Project Leader(s): Marek Pruski Principal Investigators: Andreja Bakac, Marek Pruski,...

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

RELAP5-3D V. 4.X.X  

Energy Science and Technology Software Center (OSTI)

000191MLTPL01 NON-NRC FUNDED RELAP5-3D VERSION 4.x.x SOFTWARE REACTOR EXCURSION AND LEAK ANALYSIS PACKAGE - THREE DIMENSIONAL   

402

Nano, photonic research gets boost from new 3-D visualization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

imaging (CSSI) data. An image as 2-D coherent surface scattering imaging (CSSI) data. Nano, photonic research gets boost from new 3-D visualization technology By Tona Kunz *...

403

Dynamic response of underground gas storage salt cavern under seismic loads  

Science Journals Connector (OSTI)

Abstract A dynamic elastoplastic damage constitutive model is proposed based on the failure characteristic of rock salt under seismic loads. The coding of the proposed model is achieved by the embedded FISH (short for FLACish) language of FLAC3D (Fast Lagrangian Analysis of Continua). Numerical models of bedded salt cavern gas storage facilities in China are developed by using FLAC3D, and the proposed constitutive model is used in the simulations. The effects of seismic input angle, seismic acceleration, seismic moment, types of seismic waves, and gas pressure on the dynamic response, stress, displacement, plastic zone, and safety factor (SF) of rock masses that surround salt cavern gas storage facilities are studied. Results show that the seismic wave perpendicular to the surface poses the greatest risk to the safety of the cavern. With an increase in seismic acceleration, the cavern’s SF decreases and that of the lower structure of the cavern decreases more than that of the upper section. Plastic zones propagate from the cavern’s internal surface to the pillar, and then to the pillar and floor along the right and left corners of the cavern bottom. Higher internal gas pressure improves cavern safety. The acceleration and duration of seismic waves are critical factors in ensuring the safety of the cavern. The SF of the cavern’s lower structure is more sensitive to changes in seismic parameters than that of the other locations, which makes the cavern bottom more likely to be destroyed during an earthquake. Therefore, the lower structure should be the study target in the seismic design for a salt cavern gas storage facility. Results have been used in the seismic design of salt cavern gas storage facilities in China.

Tongtao Wang; Chunhe Yang; Xiangzhen Yan; Yinping Li; Wei Liu; Cheng Liang; Jie Li

2014-01-01T23:59:59.000Z

404

Seismic image waves  

Science Journals Connector (OSTI)

......involved in the seismic imaging process, for example the migration...revisited, 60th Ann. Int. Mtg., Soc. Expl. Geophys...involved in the seismic imaging process, for example the migration...revisited, 60th Ann. Int. Mtg., SOC. Expl. Geophys......

Peter Hubral; Martin Tygel; Jörg Schleicher

1996-05-01T23:59:59.000Z

405

Solution accelerators for large scale 3D electromagnetic inverse problems  

SciTech Connect (OSTI)

We provide a framework for preconditioning nonlinear 3D electromagnetic inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate adjoint method that allows for an economical approximation of the Hessian that is updated at each inversion iteration. Using this approximate Hessian as a preconditoner, we show that the preconditioned NLCG iteration converges significantly faster than the non-preconditioned iteration, as well as converging to a data misfit level below that observed for the non-preconditioned method. Similar conclusions are also observed for the LM iteration; preconditioned with the approximate Hessian, the LM iteration converges faster than the non-preconditioned version. At this time, however, we see little difference between the convergence performance of the preconditioned LM scheme and the preconditioned NLCG scheme. A possible reason for this outcome is the behavior of the line search within the LM iteration. It was anticipated that, near convergence, a step size of one would be approached, but what was observed, instead, were step lengths that were nowhere near one. We provide some insights into the reasons for this behavior and suggest further research that may improve the performance of the LM methods.

Newman, Gregory A.; Boggs, Paul T.

2004-04-05T23:59:59.000Z

406

A global 3D P-Velocity model of the Earth%3CU%2B2019%3Es crust and mantle for improved event location.  

SciTech Connect (OSTI)

To test the hypothesis that high quality 3D Earth models will produce seismic event locations which are more accurate and more precise, we are developing a global 3D P wave velocity model of the Earth's crust and mantle using seismic tomography. In this paper, we present the most recent version of our model, SALSA3D (SAndia LoS Alamos) version 1.4, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. Our model is derived from the latest version of the Ground Truth (GT) catalog of P and Pn travel time picks assembled by Los Alamos National Laboratory. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays to produce representative rays. Reduction in the total number of ray paths is > 55%. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified two layer crustal model derived from the Crust 2.0 model over a uniform AK135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only around areas with significant velocity changes from the starting model. At each grid refinement level except the last one we limit the number of iterations to prevent convergence thereby preserving aspects of broad features resolved at coarser resolutions. Our approach produces a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. This scheme is computationally expensive, so we use a distributed computing framework based on the Java Parallel Processing Framework, providing us with {approx}400 processors. Resolution of our model is assessed using a variation of the standard checkerboard method, as well as by directly estimating the diagonal of the model resolution matrix based on the technique developed by Bekas, et al. We compare the travel-time prediction and location capabilities of this model over standard 1D models. We perform location tests on a global, geographically-distributed event set with ground truth levels of 5 km or better. These events generally possess hundreds of Pn and P phases from which we can generate different realizations of station distributions, yielding a range of azimuthal coverage and proportions of teleseismic to regional arrivals, with which we test the robustness and quality of relocation. The SALSA3D model reduces mislocation over standard 1D ak135, especially with increasing azimuthal gap. The 3D model appears to perform better for locations based solely or dominantly on regional arrivals, which is not unexpected given that ak135 represents a global average and cannot therefore capture local and regional variations.

Ballard, Sanford; Encarnacao, Andre Villanova; Begnaud, Michael A. (Los Alamos National Laboratories); Rowe, Charlotte A. (Los Alamos National Laboratories); Lewis, Jennifer E.; Young, Christopher John; Chang, Marcus C.; Hipp, James Richard

2010-05-01T23:59:59.000Z

407

Large Scale Computing Requirements for Basic Energy Sciences (An BES / ASCR / NERSC Workshop) Hilton Washington DC/Rockville Meeting Center, Rockville MD 3D Geophysical Imaging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Requirements Requirements for Basic Energy Sciences (An BES / ASCR / NERSC Workshop) Hilton Washington DC/Rockville Meeting Center, Rockville MD 3D Geophysical Modeling and Imaging G. A. Newman Lawrence Berkeley National Laboratory February 9 - 10 , 2010 Talk Outline * SEAM Geophysical Modeling Project - Its Really Big! * Geophysical Imaging (Seismic & EM) - Its 10 to 100x Bigger! - Reverse Time Migration - Full Waveform Inversion - 3D Imaging & Large Scale Considerations - Offshore Brazil Imaging Example (EM Data Set) * Computational Bottlenecks * Computing Alternatives - GPU's & FPGA's - Issues Why ? So that the resource industry can tackle grand geophysical challenges (Subsalt imaging, land acquisition, 4-D, CO2, carbonates ......) SEAM Mission Advance the science and technology of applied

408

New Paradigm for Seismic Networks: Crowd-Sourced Seismic Networks,  

E-Print Network [OSTI]

#12;New Paradigm for Seismic Networks: Crowd-Sourced Seismic Networks, including Buildings Tom Egill Hauksson #12;SCSN: what does it encompass? · ~360 Seismic Stations · ~60 stations from partners SCSN/SCEDC total of ~26 FTE's #12;Crowd Sourced Networks · Current broadband seismic network

Greer, Julia R.

409

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Biasi, Et Al., 2008) Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2008) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Ileana Tibuleac, Leiph Preston (2008) Regional Resource Area Mapping In Nevada Using The Usarray Seismic Network Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2008)&oldid=425638" Category: Exploration Activities What links here

410

Statistical study of seismicity associated with geothermal reservoirs in  

Open Energy Info (EERE)

study of seismicity associated with geothermal reservoirs in study of seismicity associated with geothermal reservoirs in California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Statistical study of seismicity associated with geothermal reservoirs in California Details Activities (5) Areas (5) Regions (0) Abstract: Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related events are identified by the distribution of the interoccurrence times. The regions studied to date include the Imperial Valley, Coso, The Geysers, Lassen, and the San Jacinto fault. The spatial characteristics of the random and clustered components of the seismicity

411

Shape-based retrieval and analysis of 3D models  

Science Journals Connector (OSTI)

Large repositories of 3D data are rapidly becoming available in several fields, including mechanical CAD, molecular biology, and computer graphics. As the number of 3D models grows, there is an increasing need for computer algorithms to help people find ...

Thomas Funkhouser; Michael Kazhdan

2004-08-01T23:59:59.000Z

412

WirePrint: 3D printed previews for fast prototyping  

Science Journals Connector (OSTI)

Even though considered a rapid prototyping tool, 3D printing is so slow that a reasonably sized object requires printing overnight. This slows designers down to a single iteration per day. In this paper, we propose to instead print low-fidelity wireframe ... Keywords: 3D printing, rapid prototyping

Stefanie Mueller, Sangha Im, Serafima Gurevich, Alexander Teibrich, Lisa Pfisterer, François Guimbretière, Patrick Baudisch

2014-10-01T23:59:59.000Z

413

Surface light fields for 3D photography Daniel N. Wood  

E-Print Network [OSTI]

Surface light fields for 3D photography Daniel N. Wood A dissertation submitted in partial This is to certify that I have examined this copy of a doctoral dissertation by Daniel N. Wood and have found for 3D photography by Daniel N. Wood Chair of Supervisory Committee: Associate Professor Brian L

Washington at Seattle, University of

414

Mastering AutoCAD Civil 3D 2011  

Science Journals Connector (OSTI)

The only comprehensive reference and tutorial for Civil 3D 2011 Civil 3D is Autodesks popular, robust civil engineering software, and this fully updated guide is the only one endorsed by Autodesk to help students prepare for certification exams. Packed ...

P. James E. Wedding; Scott McEachron

2010-08-01T23:59:59.000Z

415

Automatic 3D modeling of palatal plaster casts Marco Andreetto  

E-Print Network [OSTI]

Automatic 3D modeling of palatal plaster casts Marco Andreetto Dept. of Information Engineer-form surfaces of anatomi- cal interest. 1. Introduction Plaster models derived from palate's impressions. A data-base with the 3D models of the plaster casts, which could be called a "virtual gypsotheque", can

Abu-Mostafa, Yaser S.

416

Surround structured lighting: 3-D scanning with orthographic illumination  

Science Journals Connector (OSTI)

This paper presents a new system for rapidly acquiring complete 3-D surface models using a single orthographic structured light projector, a pair of planar mirrors, and one or more synchronized cameras. Using the mirrors, we project structured light ... Keywords: 3-D reconstruction, Full object scanning, Gray codes, Orthographic projection, Structured lighting

Douglas Lanman; Daniel Crispell; Gabriel Taubin

2009-11-01T23:59:59.000Z

417

Chopper: Partitioning models into 3D-printable parts  

E-Print Network [OSTI]

3D printing technology is rapidly maturing and becoming ubiquitous. One of the remaining obstacles to wide-scale adoption is that the object to be printed must fit into the working volume of the 3D printer. We propose a ...

Luo, Linjie

418

3D THERMOGRAPHY FOR QUANTIFICATION OF HEAT GENERATION RESULTING FROM  

E-Print Network [OSTI]

been used for decades by biologists and clinicians to isolate main sites of body heat loss by biologists and clinicians to isolate main sites of body heat loss and to assist with diagnosis3D THERMOGRAPHY FOR QUANTIFICATION OF HEAT GENERATION RESULTING FROM INFLAMMATION THERMOGRAPHIE 3D

Nebel, Jean-Christophe

419

ESG2006, Grenoble, 30/08-01/09/2006 Third International Symposium on the Effects of Surface Geology on Seismic Motion  

E-Print Network [OSTI]

Lawrence Livermore National Laboratory (LLNL), USA. E3D is listed by the OECD's Nuclear Energy AgencyESG2006, Grenoble, 30/08-01/09/2006 1 Third International Symposium on the Effects of Surface Benchmark: Seismic Modeling Trials Using E3D with the ModelAssembler Community Modeling Environment John N

420

Distributed Acoustic and Seismic Sensing  

Science Journals Connector (OSTI)

An overview of fiber optic distributed acoustic and seismic sensor system architectures is presented.

Kirkendall, Clay

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Seismicity and Reservoir Fracture Characterization  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Seismicity and Reservoir Fracture Characterization.

422

Fracture Properties From Seismic Scattering  

E-Print Network [OSTI]

Fractures scatter seismic energy and this energy can be analyzed to provide information about fracture

Burns, Daniel R.

2007-01-01T23:59:59.000Z

423

3D printing rises to the occasion | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Features Features 2014 2013 2012 2011 2010 News Home | ORNL | News | Features | 2013 SHARE 3D printing rises to the occasion ORNL group shows how it's done, one layer at a time A perforated metal box produced by an Arcam 3D printer. This detailed A perforated metal box produced by an Arcam 3D printer. This detailed "calibration" part illustrates some of the versatility of 3D printing. Photo: Jason Richards (hi-res image) Things have come a long way since the mid-1980s when 3D Systems cofounder Chuck Hull worked out the technology to print objects in three dimensions, one very thin layer at a time. Hull called his new technology "stereolithography." In it, a guided beam of ultraviolet light is focused on a vat of liquid polymer, solidifying areas where it hits. When one layer is complete, the

424

Energy Savings in 3-D | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy savings in 3-D Energy savings in 3-D ORNL researchers show production, energy advantages of additive manufacturing ORNL 3-D printer in use. ORNL 3-D printer in use. Researchers at the Department of Energy's Oak Ridge National Laboratory are working with aircraft makers to determine energy savings through the use of additive manufacturing, also known as 3-D printing. Sachin Nimbalkar and his ORNL colleagues are printing airplane parts to show additive manufacturing's potential as a technology that should be considered foundational to processes seeking more energy efficiency. Additive manufacturing builds products precisely, layer by layer, and is distinctly different from traditional subtractive manufacturing processes, which take raw material and cut it down into a desired shape and size.

425

Twisted 3D N=4 supersymmetric YM on deformed A{sub 3}{sup *} lattice  

SciTech Connect (OSTI)

We study a class of twisted 3D N=4 supersymmetric Yang-Mills (SYM) theory on particular 3-dimensional lattice L{sub 3D} formally denoted as L{sub 3D}{sup su{sub 3}×u{sub 1}} and given by non-trivial fibration L{sub 1D}{sup u{sub 1}}×L{sub 2D}{sup su{sub 3}} with base L{sub 2D}{sup su{sub 3}}=A{sub 2}{sup *}, the weight lattice of SU(3). We first, develop the twisted 3D N=4 SYM in continuum by using superspace method where the scalar supercharge Q is manifestly exhibited. Then, we show how to engineer the 3D lattice L{sub 3D}{sup su{sub 3}×u{sub 1}} that host this theory. After that we build the lattice action S{sub latt} invariant under the following three points: (i) U(N) gauge invariance, (ii) BRST symmetry, (iii) the S{sub 3} point group symmetry of L{sub 3D}{sup su{sub 3}×u{sub 1}}. Other features such as reduction to twisted 2D supersymmetry with 8 supercharges living on L{sub 2D}?L{sub 2D}{sup su{sub 2}×u{sub 1}}, the extension to twisted maximal 5D SYM with 16 supercharges on lattice L{sub 5D}?L{sub 5D}{sup su{sub 4}×u{sub 1}} as well as the relation with known results are also given.

Saidi, El Hassan [Lab of High Energy Physics, Modeling and Simulations, Faculty of Science, University Mohamed V-Agdal, Morocco and Centre of Physics and Mathematics, CPM, Rabat (Morocco)] [Lab of High Energy Physics, Modeling and Simulations, Faculty of Science, University Mohamed V-Agdal, Morocco and Centre of Physics and Mathematics, CPM, Rabat (Morocco)

2014-01-15T23:59:59.000Z

426

On simulating 3D fluorescent microscope images  

Science Journals Connector (OSTI)

In recent years many various biomedical image segmentation methods have appeared. Though typically presented to be successful the majority of them was not properly tested against ground truth images. The obvious way of testing the quality of new segmentation ... Keywords: convolution, fluorescent optical microscope, procedural texture, simulator, synthetic image

David Svoboda; Marek Kašík; Martin Maška; Jan Hubeny; Stanislav Stejskal; Michal Zimmermann

2007-08-01T23:59:59.000Z

427

A High-Throughput 3-D X-ray Microtomography System with Real-Time 3-D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Throughput 3-D X-ray Microtomography System with Real-Time 3-D Throughput 3-D X-ray Microtomography System with Real-Time 3-D Reconstruction A high-throughput x-ray microtomography system (XMS) that can acquire, reconstruct, and interactively display rendered 3-D images of a sample at micrometer-scale resolution within minutes has been developed at Advanced Photon Source (APS) beamline 2-BM, which is managed by the Synchrotron Radiation Instrumentation Collaborative Access Team (SRI-CAT). This system could bring better understanding of an array of scientific and technological problems, ranging from failure in microelectronic devices to structures in biological samples. A rendered image from a three-dimensional tomographic reconstruction of a cricket, obtained with the x-ray microtomography system. The image has been digitally cut at different planes to show the internal structures of the cricket's head.

428

Prototype Development Capabilities of 3D Spatial Interactions and Failures During Scenario Simulation  

SciTech Connect (OSTI)

Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This report addressed the methods, techniques, and resources used to develop a prototype for using 3D modeling and simulation engine to improve risk analysis and evaluate reactor structures and components for a given scenario. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

Steven Prescott; Ramprasad Sampath; Curtis Smith; Tony Koonce

2014-09-01T23:59:59.000Z

429

Resonant seismic emission of subsurface objects  

E-Print Network [OSTI]

E . , and S. Keydar, 1998, Seismic monitoring of diffractionthe barrel. The Resonant Seismic Emission Source ReceiverFigure 1. Geometry o f the seismic experiment to locate a

Korneev, Valeri A.

2010-01-01T23:59:59.000Z

430

SEI0: CENS Seismic Research: Overview  

E-Print Network [OSTI]

catastrophe (from Berry 2002). Seismic waves show a smearedSeismology/index.html CENS Seismic Research: OverviewRecent developments in seismic source theory argue that

2005-01-01T23:59:59.000Z

431

Seismic demands in precast concrete diaphragms  

E-Print Network [OSTI]

and Mander, J. B. (2003). “Seismic Performance of PrecastState-of-the-Art Report on Seismic Resistance of Prestresseddevelopment of a diaphragm seismic design methodology,” PCI

Schoettler, Matthew John

2010-01-01T23:59:59.000Z

432

Two-stage Recognition of Raw Acceleration Signals for 3-D Gesture-Understanding Cell Phones  

E-Print Network [OSTI]

Two-stage Recognition of Raw Acceleration Signals for 3-D Gesture-Understanding Cell Phones Sung players are converged to cell phones, more intuitive interaction methods are essential beyond tiny keypads). The algorithms have been adopted in the world-first gesture-recognizing Samsung cell phones since 2005. Keywords

Paris-Sud XI, Université de

433

Validation of Plaster Endocast Morphology Through 3D CT Image Analysis  

E-Print Network [OSTI]

Validation of Plaster Endocast Morphology Through 3D CT Image Analysis P. Thomas Schoenemann,1 by creating endo- casts out of rubber latex shells filled with plaster. The extent to which the method questions. Pairs of virtual endocasts (VEs) created from high-resolution CT scans of corresponding latex/plaster

Schoenemann, P. Thomas

434

DGPF Tagungsband 18 / 2009 Genauigkeitsanalyse der 3D-Trajektorie von Mini-UAVs  

E-Print Network [OSTI]

DGPF Tagungsband 18 / 2009 407 Genauigkeitsanalyse der 3D-Trajektorie von Mini-UAVs HENRI EISENBEISS 1 , WERNER STEMPFHUBER 1 & MICHAEL KOLB 2 Zusammenfassung: Nach einer Einführung über UAVs und einer Beschreibung von ver- schiedenen UAV-Systemen wird im vorliegenden Artikel eine Methode für die

435

Null Space Optimization for Effective Coverage of 3D Surfaces using Redundant Manipulators  

E-Print Network [OSTI]

using a PR2 robot and complex objects. Our results demonstrate that our method outperforms Euclidean surfaces is becoming an important and interesting problem for personal robotics, mainly due to its interesting and potential applications (e.g., autonomous cleaning, painting, or scraping of complex 3D objects

Teschner, Matthias

436

Narrow band region-based active contours and surfaces for 2D and 3D segmentation  

Science Journals Connector (OSTI)

We describe a narrow band region approach for deformable curves and surfaces in the perspective of 2D and 3D image segmentation. Basically, we develop a region energy involving a fixed-width band around the curve or surface. Classical region-based methods, ... Keywords: Active contour, Active surface, Deformable model, Level sets, Narrow band region energy, Segmentation

Julien Mille

2009-09-01T23:59:59.000Z

437

Towards locally and globally shape-aware reverse 3D modeling  

Science Journals Connector (OSTI)

The process of re-creating CAD models from actual physical parts, formally known as digital shape reconstruction (DSR) is an integral part of product development, especially in re-design. While, the majority of current methods used in DSR are surface-based, ... Keywords: CAD model parameterization, Digital shape reconstruction, Reverse 3D modeling, Volumetric segmentation

Manish Goyal; Sundar Murugappan; Cecil Piya; William Benjamin; Yi Fang; Min Liu; Karthik Ramani

2012-06-01T23:59:59.000Z

438

A parallel algorithm for 3D dislocation dynamics  

SciTech Connect (OSTI)

Dislocation dynamics (DD), a discrete dynamic simulation method in which dislocations are the fundamental entities, is a powerful tool for investigation of plasticity, deformation and fracture of materials at the micron length scale. However, severe computational difficulties arising from complex, long-range interactions between these curvilinear line defects limit the application of DD in the study of large-scale plastic deformation. We present here the development of a parallel algorithm for accelerated computer simulations of DD. By representing dislocations as a 3D set of dislocation particles, we show here that the problem of an interacting ensemble of dislocations can be converted to a problem of a particle ensemble, interacting with a long-range force field. A grid using binary space partitioning is constructed to keep track of node connectivity across domains. We demonstrate the computational efficiency of the parallel micro-plasticity code and discuss how O(N) methods map naturally onto the parallel data structure. Finally, we present results from applications of the parallel code to deformation in single crystal fcc metals.

Wang Zhiqiang [University of California - Los Angeles, Los Angeles, CA 90095-1597 (United States)]. E-mail: zhiqiang@lanl.gov; Ghoniem, Nasr [University of California - Los Angeles, Los Angeles, CA 90095-1597 (United States); Swaminarayan, Sriram [University of California, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); LeSar, Richard [University of California, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2006-12-10T23:59:59.000Z

439

The solar photospheric abundance of phosphorus: results from co5bold 3D model atmospheres  

E-Print Network [OSTI]

aims: We determine the solar abundance of phosphorus using co5bold 3D hydrodynamic model atmospheres. method: High resolution, high signal-to-noise solar spectra of the PI lines of Multiplet 1 at 1051-1068 nm are compared to line formation computations performed on a co5bold solar model atmosphere. results: We find A(P)=5.46+- 0.04, in good agreement with previous analysis based on 1D model atmospheres, due to the fact that the PI lines of Mult. 1 are little affected by 3D effects. We cannot confirm an earlier claim by other authors of a downward revision of the solar P abundance by 0.1 dex employing a 3D model atmosphere. Concerning other stars, we found modest (<0.1 dex) 3D abundance corrections for P among four F dwarf model atmospheres of different metallicity, being largest at lowest metallicity. conclusions: We conclude that 3D abundance corrections are generally rather small for the PI lines studied in this work. They are marginally relevant for metal-poor stars, but may be neglected in the Sun.

Elisabetta Caffau; Matthias Steffen; Luca Sbordone; Hans-G. Ludwig; Piercarlo Bonifacio

2007-08-12T23:59:59.000Z

440

THE VALUE OF BOREHOLE -TO-SURFACE INFORMATION IN NEAR-SURFACE CROSSWELL SEISMIC TOMOGRAPHY  

E-Print Network [OSTI]

seismic reflection cannot (e.g. Liberty et al., 1999; Musil et al., 2002). The images producedTHE VALUE OF BOREHOLE -TO-SURFACE INFORMATION IN NEAR-SURFACE CROSSWELL SEISMIC TOMOGRAPHY Geoff J properties is important in many fields. One method that can image the seismic velocity structure

Barrash, Warren

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Seismic Modelling of the Earth's Large-Scale Three-Dimensional Structure  

Science Journals Connector (OSTI)

4 July 1989 research-article Seismic Modelling of the Earth's Large-Scale...article we describe several methods of seismic inversion and intercompare the resulting...is that the magnitude of the observed seismic anomalies is of the order expected in...

1989-01-01T23:59:59.000Z

442

High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization  

SciTech Connect (OSTI)

In this project, we develop new theories and methods for multi-domain one-way wave-equation based propagators, and apply these techniques to seismic modeling, seismic imaging, seismic illumination and model parameter estimation in 3D complex environments. The major progress of this project includes: (1) The development of the dual-domain wave propagators. We continue to improve the one-way wave-equation based propagators. Our target is making propagators capable of handling more realistic velocity models. A wide-angle propagator for transversely isotropic media with vertically symmetric axis (VTI) has been developed for P-wave modeling and imaging. The resulting propagator is accurate for large velocity perturbations and wide propagation angles. The thin-slab propagator for one-way elastic-wave propagation is further improved. With the introduction of complex velocities, the quality factors Qp and Qs have been incorporated into the thin-slab propagator. The resulting viscoelastic thin-slab propagator can handle elastic-wave propagation in models with intrinsic attenuations. We apply this method to complex models for AVO modeling, random media characterization and frequency-dependent reflectivity simulation. (2) Exploring the Information in the Local Angle Domain. Traditionally, the local angle information can only be extracted using the ray-based method. We develop a wave-equation based technique to process the local angle domain information. The approach can avoid the singularity problem usually linked to the high-frequency asymptotic method. We successfully apply this technique to seismic illumination and the resulting method provides a practical tool for three-dimensional full-volume illumination analysis in complex structures. The directional illumination also provides information for angle-domain imaging corrections. (3) Elastic-Wave Imaging. We develop a multicomponent elastic migration method. The application of the multicomponent one-way elastic propagator and the wide-angle correction preserve more dynamic information carried by the elastic waves. The vector imaging condition solves the polarization problem of converted wave imaging. Both P-P and P-S images can be calculated. We also use converted waves to improve the image of steep sub-salt structures. The synthetic data for the SEG/EAGE salt model are migrated with a generalized screen algorithm and for the converted PSS-wave path. All the sub-salt faults are properly imaged.

Ru-Shan Wu, Xiao-Bi Xie, Thorne Lay

2005-06-06T23:59:59.000Z

443

Retrieving the 3D matter power spectrum and galaxy biasing parameters from lensing tomography  

E-Print Network [OSTI]

With the availability of galaxy distance indicators in weak lensing surveys, lensing tomography can basically be harnessed to constrain the spatial 3D matter power spectrum over a range in redshift and physical scale. Furthermore, by adding galaxy-galaxy lensing and galaxy clustering this can be extended to probe the 3D galaxy-matter and galaxy-galaxy power spectrum or, alternatively, galaxy biasing parameters. To achieve this aim, this paper introduces and discusses minimum variance estimators and a more general Bayesian approach to statistically invert a set of noisy tomography 2-point correlation functions, measured within a confined opening angle. Both methods are constructed such that they probe deviations of the 3D power spectrum from a fiducial power spectrum. Thereby a direct comparison of theory and data is achieved, the physical scale and redshift of deviations can in principle be identified. By devising a new Monte Carlo technique the measurement noise in the correlators is quantified for a fiducia...

Simon, Patrick

2012-01-01T23:59:59.000Z

444

3D Spectroscopy in the Virtual Observatory: Current Status  

E-Print Network [OSTI]

Three cornerstones for the 3D data support in the Virtual Observatory are: (1) data model to describe them, (2) data access services providing access to fully-reduced datasets, and (3) client applications which can deal with 3D data. Presently all these components became available in the VO. We demonstrate an application of the IVOA Characterisation data model to description of IFU and Fabry-Perot datasets. Two services providing SSA-like access to 3D-spectral data and Characterisation metadata have been implemented by us: ASPID-SR at SAO RAS for accessing IFU and Fabry-Perot data from the Russian 6-m telescope, and the Giraffe Archive at the VO Paris portal for the VLT FLAMES-Giraffe datasets. We have implemented VO Paris Euro3D Client, handling Euro3D FITS format, that interacts with CDS Aladin and ESA VOSpec using PLASTIC to display spatial and spectral cutouts of 3D datasets. Though the prototype we are presenting is yet rather simple, it demonstrates how 3D spectroscopic data can be fully integrated into the VO infrastructure.

Igor Chilingarian; Francois Bonnarel; Mireille Louys; Ivan Zolotukhin; Frederic Royer; Isabelle Jegouzo; Pierre Le Sidaner; Pierre Fernique; Thomas Boch

2007-11-02T23:59:59.000Z

445

Seismic functionality of essential relays in operating nuclear plants  

Science Journals Connector (OSTI)

The regulatory criteria for licensing of nuclear power plants require that certain safety-related equipment and systems be designed to function during and following a postulated, design basis earthquake. Demonstration of seismic adequacy must be performed and formally documented by shake-table testing, analysis or other specified methods. Since many older, operating nuclear power plants were designed and constructed prior to the issuance of the current seismic qualification criteria, the NRC has questioned whether the seismic adequacy of the essential equipment has been adequately demonstrated and documented. This concern is identified in Unresolved Safety Issue A-46, “Seismic Qualification of Equipment in Operating Nuclear Power Plants”. In response to this concern, a group of affected plant owners, the Seismic Qualification Utility Group (SQUG), with support from the Electric Power Research Institute (EPRI), has undertaken a program to demonstrate the seismic adequacy of essential equipment by the use of actual experience with such equipment in plants which have undergone significant earthquakes and by the use of available seismic qualification data for similar equipment. An important part of this program is the development of data and the methodology for verifying the functionality of electrical relays used in essential circuits needed for plant shutdown during a seismic event. This paper describes this part of the Seismic Qualification Utility Group program. The relay functionality evaluation methodology is being developed under EPRI Project No. RP2849-1.

W.R. Schmidt; R.P. Kassawara

1988-01-01T23:59:59.000Z

446

Grafta: A 3D environment for biomolecular networks  

Science Journals Connector (OSTI)

The importance of a comprehensive environment for the depiction of biomolecular networks in the domain of system biology has been emphasised after the completion of genomic, proteomic and metabolomic initatives. Grafta is a software application developed for the three dimensional illustration of biomolecular interactions such as protein interaction networks. Grafta allows its user to move in a 3D environment through a complex assembly of biomolecules represented by 3D objects such as spheres. Their interactions are displayed by an array of 3D tubes. One novelty in Grafta is its anthropomorphic navigation of the viewpoint with respect to the displayed biomolecular network.

Peyman Najmabadi; Hans He Lee; Tony Aung; Aung Thuya; Julio Ng; James J. La Clair; Michael D. Burkart

2009-01-01T23:59:59.000Z

447

Controlling Tokamak Geometry with 3D Magnetic Perturbations  

E-Print Network [OSTI]

It is shown that small externally applied magnetic perturbations can significantly alter important geometric properties of magnetic flux surfaces in tokamaks. Through 3D shaping, experimentally relevant perturbation levels are large enough to influence turbulent transport and MHD stability in the pedestal region. It is shown that the dominant pitch-resonant flux surface deformations are primarily induced by non-resonant 3D fields, particularly in the presence of significant axisymmetric shaping. The spectral content of the applied 3D field can be used to control these effects.

Bird, Thomas M

2014-01-01T23:59:59.000Z

448

Shallow quantum well excitons: 2D or 3D?  

Science Journals Connector (OSTI)

A new regime is obtained in semiconductor heterostructures with constituents of nearly identical band gaps. Previously, it has been shown that even extremely shallow quantum wells (SHQWs) exhibit excitonic and electroabsorption properties typical of a 2D system, but 3D transport features. We show that, surprisingly, even when carriers are two-dimensionally confined in SHQWs, the hole spin relaxation is extremely fast (?400 fsec) as in the bulk (3D) limit and that a 2D-3D transition in the hole spin dynamics in GaAs/AlxGa1-xAs SHQWs takes place at x?5%.

I. Brener; W. H. Knox; K. W. Goossen; J. E. Cunningham

1993-01-18T23:59:59.000Z

449

Approaches for Additive Manufacturing of 3D Electronic Applications  

Science Journals Connector (OSTI)

Abstract Additive manufacturing processes typically used for mechanical parts can be combined with enhanced technologies for electronics production to enable a highly flexible manufacturing of personalized 3D electronic devices. To illustrate different approaches for implementing electrical and electronic functionality, conductive paths and electronic components were embedded in a powder bed printed substrate using an enhanced 3D printer. In addition, a modified Aerosol Jet printing process and assembly technologies adapted from the technology of Molded Interconnect Devices were applied to print circuit patterns and to electrically interconnect components on the surface of the 3D substrates.

J. Hoerber; J. Glasschroeder; M. Pfeffer; J. Schilp; M. Zaeh; J. Franke

2014-01-01T23:59:59.000Z

450

Numerical aspects of 3D stellar winds  

E-Print Network [OSTI]

This paper explores and compares the pitfalls of modelling the three-dimensional wind of a spherical star with a cartesian grid. Several numerical methods are compared, using either uniform and stretched grid or adaptative mesh refinement (AMR). An additional numerical complication is added, when an orbiting planet is considered. In this case a rotating frame is added to the model such that the orbiting planet is at rest in the frame of work. The three-dimensional simulations are systematically compared to an equivalent two-dimensional, axisymmetric simulation. The comparative study presented here suggests to limit the rotation rate of the rotating frame below the rotating frame of the star and provides guidelines for further three-dimensional modelling of stellar winds in the context of close-in star-planet interactions.

Strugarek, A; Matt, S P; Reville, V

2014-01-01T23:59:59.000Z

451

Three-dimensional seismic stratigraphic study of downdip Yegua sandstones, Edna Field, Jackson County, Texas  

E-Print Network [OSTI]

This study reports an investigation of the structure and stratigraphy of the downdip Yegua sandstones at Edna Field, Jackson County, South Texas. The study is based on 22.9 square miles of three dimensional (3-D) seismic data, well-logs from 15...

Trikania, Andra

2012-06-07T23:59:59.000Z

452

3-D Earth model more accurately pinpoints explosions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3-D Earth model more accurately pinpoints explosions 3-D Earth model more accurately pinpoints explosions 3-D Earth model more accurately pinpoints explosions The purpose of this model is to assist the U.S. Air Force and the international Comprehensive Nuclear Test Ban Treaty Organization with more accurately locating all types of explosions. October 25, 2013 A one-dimensional velocity profile with depth plotted within a three-dimensional Earth. The colors are compressional wave velocity in km/s. The rays are examples coming from a pseudo station at the North Pole. This model is used as the starting point to calculate the full SALSA3D velocity model. A one-dimensional velocity profile with depth plotted within a three-dimensional Earth. The colors are compressional wave velocity in km/s. The rays are examples coming from a pseudo station at the North Pole.

453

3D Photonic Crystals for Photon Management in Solar Cells  

Science Journals Connector (OSTI)

Photon management is a key element to optimize the optical and electro-optical performance of solar cells. The potential of 3D photonic crystals for photon management in solar cells...

Wehrspohn, Ralf; Sprafke, Alexander

454

3-D Thermoconvection in an Anisotropic Inclined Sedimentary Layer  

Science Journals Connector (OSTI)

......3-D thermoconvection in an anisotropic inclined sedimentary layer...basin generally present an anisotropic structure with maximum permeability...We extend these results to anisotropic media, with anisotropies...are usually embedded in a shale matrix (Busch 1974; Pettijohn......

Anne Ormond; Pierre Genthon

1993-02-01T23:59:59.000Z

455

3D Printing a Classic | Department of Energy  

Energy Savers [EERE]

a Classic 3D Printing a Classic January 15, 2015 - 4:02pm Addthis The team from the Oak Ridge Manufacturing Demonstration Facility is at the Detroit Auto Show this week to...

456

3D Modelling of Enhanced Surface Emission by Surface Roughening  

Science Journals Connector (OSTI)

3D FDTD is used to study the effect of surface roughening on the emission of a point source embedded in GaAs with a mirror behind the dipole. Enhancement factors of 10:1 are observed.

Buss, Ian J; Cryan, Martin J; Ho, Daniel; Craddock, Ian; Nash, Geoff; Haigh, Mary K; Railton, Chris; Rarity, John G

457

Investigation of 3-D Heat Transfer Effects in Fenestration Products.  

E-Print Network [OSTI]

??ABSTRACT INVESTIGATION OF 3-D HEAT TRANSFER EFFECTS IN FENESTRATION PRODUCTS SEPTEMBER 2010 SNEH KUMAR B. TECH., INDIAN INSTITUTE OF TECHNOLOGY, CHENNAI INDIA M.S.M.E., UNIVERSITY OF… (more)

Kumar, Sneh

2010-01-01T23:59:59.000Z

458

3D Printed Car at the International Manufacturing Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Courtesy of Local Motors Carbon Fiber Pellets 4 of 6 Carbon Fiber Pellets Pellets of plastic mixed with carbon fiber were used in the production process of the 3D-printed car....

459

Introducing 3D Venn and Euler Diagrams Peter Rodgers1  

E-Print Network [OSTI]

University of Kent, UK p.j.rodgers@kent.ac.uk 2 Autodesk, UK 3 Visual Modelling Group, University of Brighton Venn-3s. www.eulerdiagrams.com/3D/workshop/. Using the freely available Autodesk Design Review software

Kent, University of

460

BUILD YOUR OWN 3D GLASSES! Oaktag (sturdy poster board)  

E-Print Network [OSTI]

BUILD YOUR OWN 3D GLASSES! Materials · Oaktag (sturdy poster board) · Scissors · Clear tape · Basic or sturdy poster board. Cut the glasses out making sure to also cut out the eyeholes. Step 3 Tape the red

Christian, Eric

Note: This page contains sample records for the topic "3-d seismic methods" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

3D Maneuvers For Asymmetric Under-Actuated Rigid Body  

E-Print Network [OSTI]

single-axis maneuvers and (ii) three-dimensional (3D) coupled maneuvers. The sequential single-axis maneuver strategies are established for torque, time, and fuel minimization applications. The resulting control laws are more complicated than...

Kim, Dong Hoon

2013-08-01T23:59:59.000Z

462

3D Printed Quantum Dot Light-Emitting Diodes  

Science Journals Connector (OSTI)

Developing the ability to 3D print various classes of materials possessing distinct properties could enable the freeform generation of active electronics in unique functional, interwoven architectures. ... Finally, we show that novel architectures that are not easily accessed using standard microfabrication techniques can be constructed, by 3D printing a 2 × 2 × 2 cube of encapsulated LEDs, in which every component of the cube and electronics are 3D printed. ... These include (1) increasing the resolution of the 3D printer such that smaller devices can be printed, (2) improving the performance and yield of the printed devices, and (3) incorporating other classes of nanoscale functional building blocks and devices, including semiconductor, plasmonic, and ferroelectric materials. ...

Yong Lin Kong; Ian A. Tamargo; Hyoungsoo Kim; Blake N. Johnson; Maneesh K. Gupta; Tae-Wook Koh; Huai-An Chin; Daniel A. Steingart; Barry P. Rand; Michael C. McAlpine

2014-10-31T23:59:59.000Z

463

3-D Earth model more accurately pinpoints explosions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3-D Earth model more accurately pinpoints explosions The purpose of this model is to assist the U.S. Air Force and the international Comprehensive Nuclear Test Ban Treaty...

464

3D EMHD reconnection in a laboratory plasma  

Science Journals Connector (OSTI)

In a large laboratory plasma, reconnection of three-dimensional (3D) magnetic fields is studied in the parameter regime of electron magnetohydrodynamics (EMHD). The field topologies are spheromak-like with two-di...

R. L. Stenzel; J. M. Urrutia; M. C. Griskey; K. D. Strohmaier

2001-06-01T23:59:59.000Z

465

A fast 3D full-wave solver for nanophotonics  

E-Print Network [OSTI]

Conventional fast integral equation solvers seem to be ideal approaches for simulating 3-D nanophotonic devices, as these devices are considered to be open structures, generating fields in both an interior channel and in ...

Zhang, Lei, Ph. D. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.

2007-01-01T23:59:59.000Z

466

Segmentation of 3D Meshes through Spectral Clustering  

E-Print Network [OSTI]

2 , 2/ , ji eji D W - = 2/12/1 -- = WLLO L : diagonal matrix of W 's row sums Normalization PG '04Segmentation of 3D Meshes through Spectral Clustering Rong Liu, Hao Zhang GrUVi Lab, Simon Fraser

Zhang, Richard "Hao"

467

3D pose estimation and segmentation using specular cues  

E-Print Network [OSTI]

We present a system for fast model-based segmentation and 3D pose estimation of specular objects using appearance based specular features. We use observed (a) specular reflection and (b) specular flow as cues, which are ...

Raskar, Ramesh

468

3D Tracking at the Nanoscale | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3D Tracking at the Nanoscale A new theory shows that reactivity at catalytic sites inside narrow pores is controlled by how molecules move at the pore openings. Like cars...

469

An alternative derivation of the Minimal massive 3D gravity  

E-Print Network [OSTI]

By using the algebra of exterior forms and the first order formalism with constraints, an alternative derivation of the field equations for the Minimal massive 3D gravity model is presented.

Ahmet Baykal

2014-08-22T23:59:59.000Z

470

Computational imaging for 3D phase and coherence retrieval |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computational imaging for 3D phase and coherence retrieval Wednesday, December 10, 2014 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Laura Waller (UC Berkeley) Program...

471

3D Representations for Software Visualization Andrian Marcus  

E-Print Network [OSTI]

research from software analysis, information visualization, human-computer interaction, and cognitive, texture, abstraction mechanism, and by supporting new manipulation techniques and user interfaces.2 [Information Interfaces and Presentation] User Interfaces Keywords: Software visualization, 3D visualization

472

Further Analysis of 3D Magnetotelluric Measurements Over the Coso  

Open Energy Info (EERE)

Further Analysis of 3D Magnetotelluric Measurements Over the Coso Further Analysis of 3D Magnetotelluric Measurements Over the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Further Analysis of 3D Magnetotelluric Measurements Over the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: At last year's GRC annual meeting we presented initial results of a 3D investigation of the Coso Geothermal field utilizing a dense grid of magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling over the east flank of the field (Newman et al., 2005). Motivation for this study is that electrical resistivity/ conductivity mapping can contribute to better improved understanding of enhanced geothermal systems (EGS) by imaging the geometry, bounds and controlling

473

3-D Earth model more accurately pinpoints explosions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3-D Earth model more accurately pinpoints explosions 3-D Earth model more accurately pinpoints explosions 3-D Earth model more accurately pinpoints explosions The purpose of this model is to assist the U.S. Air Force and the international Comprehensive Nuclear Test Ban Treaty Organization with more accurately locating all types of explosions. October 25, 2013 A one-dimensional velocity profile with depth plotted within a three-dimensional Earth. The colors are compressional wave velocity in km/s. The rays are examples coming from a pseudo station at the North Pole. This model is used as the starting point to calculate the full SALSA3D velocity model. A one-dimensional velocity profile with depth plotted within a three-dimensional Earth. The colors are compressional wave velocity in km/s. The rays are examples coming from a pseudo station at the North Pole.

474

D3-D7 holographic dual of a perturbed 3D CFT  

Science Journals Connector (OSTI)

An appropriately oriented D3-D7-brane system is the holographic dual of relativistic fermions occupying a 2+1-dimensional defect embedded in a 3+1-dimensional spacetime. The fermions interact via fields of N=4 Yang-Mills theory in the 3+1-dimensional bulk. Recently, using internal flux to stabilize the system in the probe N7?N3 limit, a number of solutions which are dual to conformal field theories with fermion content have been found. We use holographic techniques to study perturbations of a particular one of the conformal field theories by relevant operators. Generally, the response of a conformal field theory to such a perturbation grows and becomes nonperturbative at low energy scales. We shall find that a perturbation which switches on a background magnetic field B and fermion mass m induces a renormalization group flow that can be studied perturbatively in the limit of small m2/B. We solve the leading order explicitly. We find that, for one particular value of internal flux, the system exhibits magnetic catalysis, the spontaneous breaking of chiral symmetry enhanced by the presence of the magnetic field. In the process, we derive formulas predicting the Debye screening length of the fermion-antifermion plasma at finite density and the diamagnetic moment of the ground state of the fermion system in the presence of a magnetic field.

Hamid Omid and Gordon W. Semenoff

2013-07-10T23:59:59.000Z

475

Seismic properties of a Venezuelan heavy oil in water emulsion  

SciTech Connect (OSTI)

Several procedures for the production of low-viscosity, surfactant-stabilized, easy-transportable dispersions of heavy crude oil in water-briefly, oil in water (or o/w) emulsions - have been recently patented. Some of them propose to form the o/w emulsion in the reservoir, after the injection of a mixture of water and surfactants, increasing significantly the per well daily production. Progression of the o/w emulsion front, through the reservoir to the production wells, can be monitored in seismic planar slices with successive 3D seismic surveys (413 seismic), if enough contrast exists between the seismic velocity value of the o/w emulsion and the one of the oil in place. To facilitate the analysis of the contrast, this study presents high frequency acoustic velocity measurements performed in the laboratory. The experimental setup includes two reflectors and an ultrasonic transducer with double burst train emission. The estimated velocity precision is 0.02%. The measured samples are: a Venezuelan heavy o/w emulsion, a mixture of the same heavy oil and gasoil and a saturated sandstone core containing the o/w emulsion. Additionally, seismic velocities of the actual pore fluids - live oil and five o/w emulsion - and saturated sandstone are calculated using the above laboratory measurements, Wood`s equation, and Gassman`s and Biot`s models.

Maldonado, F.; Liu, Y.; Mavko, G.; Mukerji, T. [Stanford Univ., CA (United States)

1996-08-01T23:59:59.000Z

476

Seismic monitoring at The Geysers  

SciTech Connect (OSTI)

During the last several years Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL) have been working with industry partners at The Geysers geothermal field to evaluate and develop methods for applying the results of microearthquake (MEQ) monitoring. It is a well know fact that seismicity at The Geysers is a common occurrence, however, there have been many studies and papers written on the origin and significance of the seismicity. The attitude toward MEQ data ranges from being nothing more than an curious artifact of the production activities, to being a critical tool in evaluating the reservoir performance. The purpose of the work undertaken b y LBL and LLNL is to evaluate the utility, as well as the methods and procedures used in of MEQ monitoring, recommend the most cost effective implementation of the methods, and if possible link physical processes and parameters to the generation of MEQ activity. To address the objectives above the MEQ work can be categorized into two types of studies. The first type is the direct analysis of the spatial and temporal distribution of MEQ activity and studying the nature of the source function relative to the physical or chemical processes causing the seismicity. The second broad area of study is imaging the reservoir/geothermal areas with the energy created by the MEQ activity and inferring the physical and/or chemical properties within the zone of imaging. The two types of studies have obvious overlap, and for a complete evaluation and development require high quality data from arrays of multicomponent stations. Much of the effort to date at The Geysers by both DOE and the producers has concentrated establishing a high quality data base. It is only within the last several years that this data base is being fully evaluated for the proper and cost effective use of MEQ activity. Presented here are the results to date of DOE`s effort in the acquisition and analysis of the MEQ data.

Majer, E.L.; Romero, A.; Vasco, D.; Kirkpatrick, A.; Peterson, J.E. [Lawrence Berkeley Lab., CA (United States); Zucca, J.J.; Hutchings, L.J.; Kasameyer, P.W. [Lawrence Livermore National Lab., CA (United States)

1993-04-01T23:59:59.000Z

477

Development of an embedded 3D graphics processor  

E-Print Network [OSTI]

DEVELOPMENT OF AN EMBEDDED 3D GRAPHICS PROCESSOR A Thesis by BRIAN MURRAY Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2002 Major... Subject: Computer Engineering DEVELOPMENT OF AN EMBEDDED 3D GRAPHICS PROCESSOR A Thesis by BRIAN MURRAY Submitted to Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style...

Murray, Brian

2012-06-07T23:59:59.000Z

478

Object segmentation and classification using 3-D range camera  

Science Journals Connector (OSTI)

This paper proposes a vision system using a 3-D range camera for scene segmentation and pedestrian classification. The system detects and segments objects in the foreground, measures their distances to the camera, and classifies them into pedestrians ... Keywords: 3-D range image segmentation, Assistive navigation, Feature extraction, Image segmentation evaluation, Object classification, Pedestrian classification, RGB-D image processing, Range/intensity image processing

Xue Wei; Son Lam Phung; Abdesselam Bouzerdoum

2014-01-01T23:59:59.000Z