Sample records for 3-d seismic imaging

  1. 3-D Seismic Methods for Shallow Imaging Beneath Pavement

    E-Print Network [OSTI]

    Miller, Brian

    2013-05-31T23:59:59.000Z

    The research presented in this dissertation focuses on survey design and acquisition of near-surface 3D seismic reflection and surface wave data on pavement. Increased efficiency for mapping simple subsurface interfaces through a combined use...

  2. Ultra-Shallow Imaging Using 2D & 3D Seismic Reflection Methods

    E-Print Network [OSTI]

    Sloan, Steven D.

    2008-01-01T23:59:59.000Z

    The research presented in this dissertation focuses on the survey design, acquisition, processing, and interpretation of ultra-shallow seismic reflection (USR) data in two and three dimensions. The application of 3D USR ...

  3. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect (OSTI)

    Bjorn N.P. Paulsson

    2005-03-31T23:59:59.000Z

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  4. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N. P. Paulsson

    2005-09-30T23:59:59.000Z

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  5. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N.P Paulsson

    2006-05-05T23:59:59.000Z

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  6. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N.P. Paulsson

    2005-08-21T23:59:59.000Z

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  7. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N. P. Paulsson

    2006-09-30T23:59:59.000Z

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400 level receiver array can be used to obtain 3D 9C data. These 9C borehole seismic data provide both compressional wave and shear wave information that can be used for quantitative prediction of rock and pore fluid types. The 400-level borehole receiver array has been deployed successfully in a number of oil and gas wells during the course of this project, and each survey has resulted in marked improvements in imaging of geologic features that are critical for oil or gas production but were previously considered to be below the limits of seismic resolution. This added level of reservoir detail has resulted in improved well placement in the oil and gas fields that have been drilled using the Massive 3D VSP{reg_sign} images. In the future, the 400-level downhole seismic receiver array is expected to continue to improve reservoir characterization and drilling success in deep and complex oil and gas reservoirs.

  8. SHEAR WAVE SEISMIC STUDY COMPARING 9C3D SV AND SH IMAGES WITH 3C3D C-WAVE IMAGES

    SciTech Connect (OSTI)

    John Beecherl; Bob A. Hardage

    2004-07-01T23:59:59.000Z

    The objective of this study was to compare the relative merits of shear-wave (S-wave) seismic data acquired with nine-component (9-C) technology and with three-component (3-C) technology. The original proposal was written as if the investigation would be restricted to a single 9-C seismic survey in southwest Kansas (the Ashland survey), on the basis of the assumption that both 9-C and 3-C S-wave images could be created from that one data set. The Ashland survey was designed as a 9-C seismic program. We found that although the acquisition geometry was adequate for 9-C data analysis, the source-receiver geometry did not allow 3-C data to be extracted on an equitable and competitive basis with 9-C data. To do a fair assessment of the relative value of 9-C and 3-C seismic S-wave data, we expanded the study beyond the Ashland survey and included multicomponent seismic data from surveys done in a variety of basins. These additional data were made available through the Bureau of Economic Geology, our research subcontractor. Bureau scientists have added theoretical analyses to this report that provide valuable insights into several key distinctions between 9-C and 3-C seismic data. These theoretical considerations about distinctions between 3-C and 9-C S-wave data are presented first, followed by a discussion of differences between processing 9-C common-midpoint data and 3-C common-conversion-point data. Examples of 9-C and 3-C data are illustrated and discussed in the last part of the report. The key findings of this study are that each S-wave mode (SH-SH, SV-SV, or PSV) involves a different subsurface illumination pattern and a different reflectivity behavior and that each mode senses a different Earth fabric along its propagation path because of the unique orientation of its particle-displacement vector. As a result of the distinct orientation of each mode's particle-displacement vector, one mode may react to a critical geologic condition in a more optimal way than do the other modes. A conclusion of the study is that 9-C seismic data contain more rock and fluid information and more sequence and facies information than do 3-C seismic data; 9-C data should therefore be acquired in multicomponent seismic programs whenever possible.

  9. Imaging atoms in 3-D

    ScienceCinema (OSTI)

    Ercius, Peter

    2014-06-27T23:59:59.000Z

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  10. Imaging atoms in 3-D

    SciTech Connect (OSTI)

    Ercius, Peter

    2013-10-31T23:59:59.000Z

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  11. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOE Patents [OSTI]

    Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.

    1996-12-17T23:59:59.000Z

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.

  12. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOE Patents [OSTI]

    Anderson, Roger N. (New York, NY); Boulanger, Albert (New York, NY); Bagdonas, Edward P. (Brookline, MA); Xu, Liqing (New Milford, NJ); He, Wei (New Milford, NJ)

    1996-01-01T23:59:59.000Z

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.

  13. 3?D Surface Topography Boundary Conditions in Seismic Wave Modelling

    E-Print Network [OSTI]

    Hestholm, Stig

    2001-01-01T23:59:59.000Z

    New alternative formulations of exact boundary conditions for arbitrary three{dimensional (3?D) free surface topographies on seismic media have been derived. They are shown to be equivalent with previously published ...

  14. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D...

  15. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    SciTech Connect (OSTI)

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06T23:59:59.000Z

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas and natural gas liquids production on a remote part of the Uintah & Ouray Reservation. Much of the natural gas and natural gas liquids are being produced from the Wingate Formation, which to our knowledge has never produced commercially anywhere. Another large percentage of the natural gas is being produced from the Entrada Formation which has not previously produced in this part of the Uinta Basin. In all, at least nine geologic formations are contributing hydrocarbons to these wells. This survey has clearly established the fact that high-quality data can be obtained in this area, despite the known obstacles.

  16. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie [Los Alamos National Laboratory

    2012-07-09T23:59:59.000Z

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  17. Exploration 3-D Seismic Field Test/Native Tribes Initiative

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

    1999-04-27T23:59:59.000Z

    To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

  18. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    SciTech Connect (OSTI)

    Gao, Dengliang

    2013-03-01T23:59:59.000Z

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  19. Detection and extraction of fault surfaces in 3D seismic data Israel Cohen1

    E-Print Network [OSTI]

    Cohen, Israel

    for seismic interpretation. INTRODUCTION Fault surfaces are common subterranean structures that are asso that are unrelated to faults. Furthermore, creating a consistent geological interpretation from large 3D-seismicDetection and extraction of fault surfaces in 3D seismic data Israel Cohen1 , Nicholas Coult2

  20. A 3D-3C Reflection Seismic Survey and Data Integration to Identify...

    Open Energy Info (EERE)

    A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill...

  1. A 3D-3C Reflection Seismic Survey and Data Integration to Identify...

    Office of Environmental Management (EM)

    to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchhill Co., NV A 3D-3C Reflection Seismic Survey and Data...

  2. Frequency Enhancements for Visualizing 3D Seismic Data Cheng-Kai Chen Carlos Correa

    E-Print Network [OSTI]

    California at Davis, University of

    of an interactive interpretation seismic system, ge- ological study and prediction can be made on the seismic dataFrequency Enhancements for Visualizing 3D Seismic Data Cheng-Kai Chen Carlos Correa Department a suite of enhancement tech- niques for visualizing seismic data. These techniques provide a better

  3. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema (OSTI)

    Zhang, Song

    2012-08-29T23:59:59.000Z

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  4. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect (OSTI)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09T23:59:59.000Z

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  5. 3-D visualisation and interpretation of seismic attributes extracted from large 3-D seismic datasets: Subregional and prospect evaluation, deepwater Nigeria

    SciTech Connect (OSTI)

    Sola, M.; Haakon Nordby, L.; Dailey, D.V.; Duncan, E.A. [BP and Statoil Alliance, Stavanger (Norway)

    1996-12-31T23:59:59.000Z

    High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team`s ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, pattern recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.

  6. 3-D visualisation and interpretation of seismic attributes extracted from large 3-D seismic datasets: Subregional and prospect evaluation, deepwater Nigeria

    SciTech Connect (OSTI)

    Sola, M.; Haakon Nordby, L.; Dailey, D.V.; Duncan, E.A. (BP and Statoil Alliance, Stavanger (Norway))

    1996-01-01T23:59:59.000Z

    High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team's ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, pattern recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.

  7. Combining a New 3-D Seismic S-Wave Propagation Analysis for Remote Fracture Detection with a Robust Subsurface

    E-Print Network [OSTI]

    Texas at Austin, University of

    Combining a New 3-D Seismic S-Wave Propagation Analysis for Remote Fracture Detection with a Robust. This report culminates Phase 2 of the study, Combining a New 3-D Seismic S-Wave Propagation Analysis

  8. Identifying Complex Fluvial Sandstone Reservoirs Using Core, Well Log, and 3D Seismic Data: Cretaceous Cedar Mountain and Dakota Formations,

    E-Print Network [OSTI]

    Seamons, Kent E.

    core, well-log, and 3D seismic data. The detailed stratigraphy and sedimentology of the interval were

  9. Content-oriented 3D reconstruction from image streams

    E-Print Network [OSTI]

    Knoblauch, Daniel

    2011-01-01T23:59:59.000Z

    the automatisation of SaM from image sequences and videosby the input images to improve 3D reconstructions in SaMMo- tion (SaM). Structure and Motion from image sequences or

  10. Seismic characterization of fractured reservoirs using 3D double beams

    E-Print Network [OSTI]

    Zheng, Yingcai

    2012-01-01T23:59:59.000Z

    We propose an efficient target-oriented method to characterize seismic properties of fractured reservoirs: the spacing between fractures and the fracture orientation. We use both singly scattered and multiply scattered ...

  11. Analysis of seismic anisotropy in 3D multi-component seismic data 

    E-Print Network [OSTI]

    Qian, Zhongping

    2010-01-01T23:59:59.000Z

    The importance of seismic anisotropy has been recognized by the oil industry since its first observation in hydrocarbon reservoirs in 1986, and the application of seismic anisotropy to solve geophysical problems has been ...

  12. Integrated 3D Seismic, Core, and Well Log Study of an Upper Pleistocene Submarine Fan Reservoir

    E-Print Network [OSTI]

    Kulp, Mark

    of which is likely linked to deformations related to salt bodies surrounding the area. This study also identifies a potential exploration/drilling target to the northeast of the study area in block 193 and public 3D seismic and well data, depositional elements and potential drilling targets for continued

  13. 3-D capacitance density imaging system

    DOE Patents [OSTI]

    Fasching, G.E.

    1988-03-18T23:59:59.000Z

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

  14. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    SciTech Connect (OSTI)

    James Reeves

    2005-01-31T23:59:59.000Z

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  15. 3D seismic interpretation, reservoir characteristics and petroleum prospects for South Marsh Island OCS Blocks, Gulf of Mexico 

    E-Print Network [OSTI]

    Duan, Ling

    2003-01-01T23:59:59.000Z

    and interpretation techniques have been applied to interpret 3D seismic data with significantly improved accuracy. This has led to a renewed interest in the South Marsh area in an attempt to identify new plays and prospects. An interactive 3D-seismic...

  16. Rapid 3D Seismic Source Inversion Using Windows Azure and Amazon EC2 Vedaprakash Subramanian, Hongyi Ma,

    E-Print Network [OSTI]

    Wang, Liqiang

    Rapid 3D Seismic Source Inversion Using Windows Azure and Amazon EC2 Vedaprakash Subramanian seismic source inversion on both cluster (specif- ically, MPI-based) and cloud computing (specifically to seismic source in- version is feasible and has its advantages. In addition, we notice that both cluster

  17. INTERACTION WITH 3D IMAGE DATA THROUGH VOLUME RENDERED VIEWS.

    E-Print Network [OSTI]

    Pelizzari, Charles A.

    , since the 3D image dataset is operated on directly and not transformed into a simple 3 #12; binary weighted compositing with gradient and depth shading. The algorithm is highly optimized for rapid rendering large aggregate computimg power present in many hospitals and laboratories. Mapping from the rendered

  18. Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting

    SciTech Connect (OSTI)

    Christopher Liner

    2012-05-31T23:59:59.000Z

    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. Specifically, our focus is fundamental research on (1) innovative narrow-band seismic data decomposition and interpretation, and (2) numerical simulation of advanced seismic data (multi-component, high density, full azimuth data) ideal for mapping of cap rock integrity and potential leakage pathways.

  19. 3D seismic interpretation, reservoir characteristics and petroleum prospects for South Marsh Island OCS Blocks, Gulf of Mexico

    E-Print Network [OSTI]

    Duan, Ling

    2003-01-01T23:59:59.000Z

    show great stratigraphic diversity within short distances, making the ability to accurately determine whether sand lenses have been adequately produced or bypassed essential for production opportunities for operators. New 3D seismic processing...

  20. Chasing the Rose Run play with 3D seismic in New York

    SciTech Connect (OSTI)

    Hart, B. [New Mexico Bureau of Mines and Mineral Resources, Socorro, NM (United States); Copley, D.; Loewenstein, S. [Ardent Resources Inc., Buffalo, NY (United States)

    1996-10-14T23:59:59.000Z

    Chasing the Cambro-Ordovician Rose Run play into New York from neighboring Ohio and Pennsylvania, Buffalo-based Ardent Resources Inc. has acquired the first 3D seismic data from the Empire State and will soon be drilling an exploratory well based on its interpretations. The Rose Run play is fraught with the types of challenges that increasingly typify US domestic production. Comprised of heterolithic dolostones and sandstones in a subcrop belt beneath a regional unconformity (Knox unconformity), reservoir heterogeneity is associated with truncation and topography beneath the unconformity, faults, fractures and depositional features. Together, the seismic and well data have demonstrated that the structural and stratigraphic complexity that characterizes the Rose Run play in Ohio are present in New York. Furthermore, the 1 Matusik well demonstrated that significant porosity is present below the Knox unconformity. Some wells that tested gas, but were not completed, in the Cambrian are potential recompletion targets. Given the structural complexity associated with the Rose Run play, strategically chosen 3D seismic surveys can be a cost-effective technology for confidently identifying drilling targets.

  1. SEISMIC IMAGING WITH THE GENERALIZED RADON ...

    E-Print Network [OSTI]

    2008-07-29T23:59:59.000Z

    SEISMIC IMAGING WITH THE GENERALIZED RADON. TRANSFORM AND DOUBLE BEAMFORMING: A CURVELET. TRANSFORM PERSPECTIVE. M V DE ...

  2. Integration of 3-D seismic data with reservoir modeling of a stratigraphically complex reservoir, central Saudi Arabia

    SciTech Connect (OSTI)

    Simms, S.C. (Saudi Aramco, Dhahran (Saudi Arabia))

    1993-09-01T23:59:59.000Z

    A 425-km[sup 2], three-dimensional (3-D) seismic survey was shot in 1992 over one of the recently discovered oil fields in central Saudi Arabia. The primary objective of this survey was to provide stratigraphic control within a complex fluvial reservoir. The Permian age reservoir is a multistory, multilateral sequence of sandstones interbedded with nonproductive mudstones and siltstones. The seismic data were integrated with well control from over 50 wells to produce a 3-D geologic model of the reservoir. Numerous examples of the seismic and well data are presented in this case history. Stratigraphic cross sections through the wells illustrate that the complex nature of the reservoir and seismic sections through these wells show good correlation between seismic character and stratigraphy. Meandering channels and massive siltstone/mudstone bodies are clearly visible on seismic horizon slices and time slices. Faulting is evident on both seismic section at times slices. Acoustic impedance sections produced from both forward and inverse modeling of the seismic data are compared with geologic models of porosity and lithology based on well control alone. Good correlation between acoustic impedance and porosity/lithology allow the use of the seismic data to guide the model between well locations. A geostatistical approach was used to interpolate between well control using the inverted seismic as [open quotes]soft data.[close quotes] 3-D visualization of the geological model illustrates increasing complexity from well control only to an integrated model.

  3. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28T23:59:59.000Z

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  4. STRUCTURAL AND STRATIGRAPHIC CONTROLS ON MORROW SANDSTONE RESERVOIR DISTRIBUTION FROM 3-D SEISMIC DATA, POSTLE FIELD, TEXAS

    E-Print Network [OSTI]

    seismic data provides a useful tool to investigate the structural framework. Time structure maps, isochronSTRUCTURAL AND STRATIGRAPHIC CONTROLS ON MORROW SANDSTONE RESERVOIR DISTRIBUTION FROM 3-D SEISMIC and the thin, discontinuous nature of the reservoir sandstones. Modeling was conducted to investigate

  5. Q AS A LITHOLOGICAL/HYDROCARBON INDICATOR: FROM FULL WAVEFORM SONIC TO 3D SURFACE SEISMIC

    SciTech Connect (OSTI)

    Jorge O. Parra; C.L. Hackert; L. Wilson; H.A. Collier; J. Todd Thomas

    2006-03-31T23:59:59.000Z

    The goal of this project was to develop a method to exploit viscoelastic rock and fluid properties to greatly enhance the sensitivity of surface seismic measurements to the presence of hydrocarbon saturation. To reach the objective, Southwest Research Institute scientists used well log, lithology, production, and 3D seismic data from an oil reservoir located on the Waggoner Ranch in north central Texas. The project was organized in three phases. In the first phase, we applied modeling techniques to investigate seismic- and acoustic-frequency wave attenuation and its effect on observable wave attributes. We also gathered existing data and acquired new data from the Waggoner Ranch field, so that all needed information was in place for the second phase. During the second phase, we developed methods to extract attenuation from borehole acoustic and surface seismic data. These methods were tested on synthetic data constructed from realistic models and real data. In the third and final phase of the project, we applied this technology to a full data set from the Waggoner site. The results presented in this Final Report show that geological conditions at the site did not allow us to obtain interpretable results from the Q processing algorithm for 3D seismic data. However, the Q-log processing algorithm was successfully applied to full waveform sonic data from the Waggoner site. A significant part of this project was technology transfer. We have published several papers and conducted presentations at professional conferences. In particular, we presented the Q-log algorithm and applications at the Society of Exploration Geophysicists (SEG) Development and Production Forum in Austin, Texas, in May 2005. The presentation attracted significant interest from the attendees and, at the request of the SEG delegates, it was placed on the Southwest Research Institute Internet site. The presentation can be obtained from the following link: http://www.swri.org/4org/d15/elecsys/resgeo/ppt/Algorithm.pps In addition, we presented a second application of the Q algorithm at the SEG International Conference in Houston, Texas, in May 2005. The presentation attracted significant interest there as well, and it can be obtained from the following link: http://www.swri.org/4org/d15/elecsys/resgeo/ppt/attenuation.pps.

  6. Seismic imaging using higher order statistics

    E-Print Network [OSTI]

    Srinivasan, Karthik

    1999-01-01T23:59:59.000Z

    Improvements in seismic resolution beyond typical seismic wavelength will have significant implications for hydrocarbon exploration and production. Conventional imaging algorithms can be derived as a least squared optimization problem in which...

  7. Reservoir permeability from seismic attribute analysis

    E-Print Network [OSTI]

    Goloshubin, G.

    2008-01-01T23:59:59.000Z

    of the reservoir permeability based on seismic and log data.seismic reservoir response based on well and 3D seismic datadata analysis we suggest seismic imaging of the reservoir

  8. Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays

    SciTech Connect (OSTI)

    Jacobsen, Chris

    2014-12-07T23:59:59.000Z

    Final report on the project "High resolution lensless 3D imaging of nanostructures with coherent x-rays"

  9. 3-D structural and seismic stratigraphic interpretation of the Guasare-Misoa Interval, VLE 196 Area, Block V, Lamar Field, Lake Maracaibo, Venezuela 

    E-Print Network [OSTI]

    Arzuman, Sadun

    2004-09-30T23:59:59.000Z

    In this study, the structure, depositional system, and the seismic stratigraphy of the VLE 196 area, Block V in Lamar Field were interpreted using 3-D seismic data and well logs to characterize structural and depositional settings of the Guasare...

  10. A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays

    SciTech Connect (OSTI)

    Paulsson Geophysical Services

    2008-03-31T23:59:59.000Z

    The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

  11. Fully digital, phase-domain ?? 3D range image sensor in 130nm CMOS imaging technology 

    E-Print Network [OSTI]

    Walker, Richard John

    2012-06-25T23:59:59.000Z

    Three-Dimensional (3D) optical range-imaging is a field experiencing rapid growth, expanding into a wide variety of machine vision applications, most recently including consumer gaming. Time of Flight (ToF) cameras, akin ...

  12. GPU-accelerated denoising of 3D magnetic resonance images

    SciTech Connect (OSTI)

    Howison, Mark; Wes Bethel, E.

    2014-05-29T23:59:59.000Z

    The raw computational power of GPU accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. In practice, applying these filtering operations requires setting multiple parameters. This study was designed to provide better guidance to practitioners for choosing the most appropriate parameters by answering two questions: what parameters yield the best denoising results in practice? And what tuning is necessary to achieve optimal performance on a modern GPU? To answer the first question, we use two different metrics, mean squared error (MSE) and mean structural similarity (MSSIM), to compare denoising quality against a reference image. Surprisingly, the best improvement in structural similarity with the bilateral filter is achieved with a small stencil size that lies within the range of real-time execution on an NVIDIA Tesla M2050 GPU. Moreover, inappropriate choices for parameters, especially scaling parameters, can yield very poor denoising performance. To answer the second question, we perform an autotuning study to empirically determine optimal memory tiling on the GPU. The variation in these results suggests that such tuning is an essential step in achieving real-time performance. These results have important implications for the real-time application of denoising to MR images in clinical settings that require fast turn-around times.

  13. 3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary

    SciTech Connect (OSTI)

    Majer, E.L.

    2003-07-14T23:59:59.000Z

    A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the challenge has been to separate the ''background'' natural complexity and heterogeneity of the matrix from the fracture/fault heterogeneity controlling the fluid flow. Ideally one not only wants to find the fractures, but the fractures that are controlling the flow of the fluids. Evaluated in this work is current state-of-the-art surface (seismic reflection) and borehole seismic methods (Vertical Seismic Profiling (VSP), Crosswell and Single Well) to locate and quantify geothermal reservoir characteristics. The focus is on active methods; the assumption being that accuracy is needed for successful well siting. Passive methods are useful for exploration and detailed monitoring for in-fill drilling, but in general the passive methods lack the precision and accuracy for well siting in new or step out areas. In addition, MEQ activity is usually associated with production, after the field has been taken to a mature state, thus in most cases it is assumed that there is not enough MEQ activity in unproduced areas to accurately find the permeable pathways. The premise of this review is that there may new developments in theory and modeling, as well as in data acquisition and processing, which could make it possible to image the subsurface in much more detail than 15 years ago. New understanding of the effect of fractures on seismic wave propagation are now being applied to image fractures in gas and oil environments. It now may be appropriate to apply these methods, with modifications, to geothermal applications. It is assumed that to implement the appropriate methods an industry coupled program tightly linked to actual field cases, iterating between development and application will be pursued. The goal of this work is to evaluate the most promising methods and approaches that may be used for improved geothermal exploration and reservoir assessment. It is not a comprehensive review of all seismic methods used to date in geothermal environments. This work was motivated by a need to assess current and developing seismic technology that if applied in geothermal cases may greatly improve the chances for locating new geothermal resources and/or improve assessment of current ones.

  14. Reconstructing Plants in 3D from a Single Image using Analysis-by-Synthesis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Reconstructing Plants in 3D from a Single Image using Analysis-by-Synthesis J´er^ome Gu´enard1 G from images. However, due to high complexity of plant topology, dedicated methods for generating 3D plant models must be devised. We propose to generate a 3D model of a plant, using an analysis

  15. A multi-physics, integrated approach to formation evaluation using borehole geophysical measurements and 3D seismic data

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    porosity are obtained via active gamma ray density tools. Porosity estimates are subsequently used together with resistivity measurements to provide estimates of in- situ water saturation. Formation tester measurements of multi-physics borehole geophysical measurements and 3D seismic data. The objective is to estimate in-situ

  16. 3-D multichannel seismic reflection study of variable-flux hydrocarbon seeps, continental slope, northern Gulf of Mexico

    E-Print Network [OSTI]

    Thomas, Ryan Douglas

    2004-11-15T23:59:59.000Z

    3D multi-channel seismic (MCS) data augmented with side-scan sonar (Garden Banks site) to characterize hydrocarbon seep activity and develop an understanding of the processes that led to their formation. Side-scan sonar data provided high resolution...

  17. Development and Calibration of New 3-D Vector VSP Imaging Technology: Vinton Salt Dome, LA

    SciTech Connect (OSTI)

    Kurt J. Marfurt; Hua-Wei Zhou; E. Charlotte Sullivan

    2004-09-01T23:59:59.000Z

    Vinton salt dome is located in Southwestern Louisiana, in Calcasieu Parish. Tectonically, the piercement dome is within the salt dome minibasin province. The field has been in production since 1901, with most of the production coming from Miocene and Oligocene sands. The goal of our project was to develop and calibrate new processing and interpretation technology to fully exploit the information available from a simultaneous 3-D surface seismic survey and 3-C, 3-D vertical seismic profile (VSP) survey over the dome. More specifically the goal was to better image salt dome flanks and small, reservoir-compartmentalizing faults. This new technology has application to mature salt-related fields across the Gulf Coast. The primary focus of our effort was to develop, apply, and assess the limitations of new 3-C, 3-D wavefield separation and imaging technology that could be used to image aliased, limited-aperture, vector VSP data. Through 2-D and 3-D full elastic modeling, we verified that salt flank reflections exist in the horizontally-traveling portion of the wavefield rather than up- and down-going portions of the wavefield, thereby explaining why many commercial VSP processing flow failed. Since the P-wave reflections from the salt flank are measured primarily on the horizontal components while P-wave reflections from deeper sedimentary horizons are measured primarily on the vertical component, a true vector VSP analysis was needed. We developed an antialiased discrete Radon transform filter to accurately model P- and S-wave data components measured by the vector VSP. On-the-fly polarization filtering embedded in our Kirchhoff imaging algorithm was effective in separating PP from PS wave images. By the novel application of semblance-weighted filters, we were able to suppress many of the migration artifacts associated with low fold, sparse VSP acquisition geometries. To provide a better velocity/depth model, we applied 3-D prestack depth migration to the surface data. The reflector dip calculated from these images were used to further constrain the depth images from the less well sampled VSP data. In spite of the above technical success, we were less than pleased with our final VSP images. Since no extra sources are used, simultaneous recording of the surface and VSP data were believed to provide a cost-effective means to acquire 3-D VSP data. However, the subsurface sampling associated with the VSP is quite different from that associated with the surface seismic data. After our analysis, we find that considerable shot infill would result in a better, unaliased subsurface image. We were able to ascertain that the subsurface illuminated by the VSP was extremely small, with the PS image being even smaller than the PP image. One-way wave equation extrapolators do not work well for the VSP geometry, where we wish to extrapolate energy sideways (from the VSP well towards and away from the salt dome) as well as vertically (away from the shots on the earth surface). Merging separately-generated images proved to be both cumbersome and error-prone. Alternative, advanced multiarrival traveltime calculations that we obtained from research colleagues at other institutions could not be easily modified to image rays that had an upgoing component. In the end, we used a simpler first-arrival Eikonal-based traveltime algorithm with its well-known limitations. While the surface acquisition using radial receiver lines and concentric shot lines provided good illumination of the salt dome, this unconventional geometry proved to be particularly difficult to process using commercial software, where the lack of ''shot lines'' and ''receiver lines'' necessary for dip filtering, residual statics, and residual velocity analysis proved to be nearly intractable. We also learned that while commercial software available at UH works well for a bootstrapped velocity model computed from the seismic data alone, it was severely limited in its ability to include the dense well control available at Vinton Dome. To more accurately estimate velocities, we develope

  18. Predicting porosity in a Saudi Arabian carbonate reservoir using geologic constraints integrated with 3-D seismic and well data

    SciTech Connect (OSTI)

    Jeffery, R.; Thomsen, M. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-08-01T23:59:59.000Z

    A method for predicting lateral changes in reservoir porosity using 3-D seismic Aptitudes, calibrated against the amplitude response versus porosity measured at a select number of wells, was implemented and applied to produce a porosity map of a Saudi Arabian carbonate reservoir. The technique relies on the uniform lithologic seismic response of an overlying anhydrite, and thus assigns variations in amplitudes at the reservoir level to changes in reservoir average porosity. Throughout the study area, reservoir porosity and acoustic impedance logs exhibit a firm linear relationship. As reservoir porosity increases, its acoustic impedance decreases, and the greater contrast with the overlying anhydrite translates into larger seismic amplitudes. Thus, we expect the reservoir`s relative amplitude response to also increase linearly with increasing porosity. A check on this hypothesis was provided by computing synthetic seismograms at several wells, and measuring the reservoir`s theoretical amplitude response versus porosity averaged over the producing zone within the reservoir. This trend supported a linear seismic amplitude to porosity transform. Upon verification of the technique`s applicability, the reservoirs amplitude response was extracted from the 3-D seismic volume in the vicinity of several wells. These were used in conjunction with porosities averaged ever the reservoir to derive the amplitude to porosity transform. This transform was used in converting the mapped reservoir amplitudes into variations in average porosities. The success ratio for predicting porosities in wells not used in the analysis was nearly perfect, and the map continues to correctly predict porosities in subsequently drilled wells.

  19. Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities

    E-Print Network [OSTI]

    Barrash, Warren

    Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping August 2013; accepted 7 September 2013; published 13 November 2013. [1] 3-D Hydraulic tomography (3-D HT (primarily hydraulic conductivity, K) is estimated by joint inversion of head change data from multiple

  20. Simulation of Seismic Real and Virtual Data Using the 3d Finite-difference Technique and Representation Theorem

    E-Print Network [OSTI]

    Yang, Xiujun

    2009-05-15T23:59:59.000Z

    -difference modeling is not sufficient to study subsalt imaging or the demultiple of subsalt models. That is why I have developed a 3D finite-difference modeling code. One of the key challenges that I have met in developing the 3D finite-difference code is to adapt...

  1. 3D Harmonic Mapping and Tetrahedral Meshing of Brain Imaging Data

    E-Print Network [OSTI]

    Thompson, Paul

    3D Harmonic Mapping and Tetrahedral Meshing of Brain Imaging Data Yalin Wang1 , Xianfeng Gu2 , Paul algorithm finds a harmonic map from a 3-manifold to a 3D solid sphere and the second is a novel sphere of magnetic resonance images (MRI). A heat flow method is used to solve the volumetric harmonic mapping

  2. The application of seismic stratigraphic methods on exploration 3D seismic data to define a reservoir model in OPL 210, Deepwater Nigeria

    SciTech Connect (OSTI)

    Ragnhild, L.; Ventris, P. [Statoil and BP Alliance, Stavanger (Norway); Osahon, G. [Allied Energy Resources (Nig) Ltd., Lagos (Nigeria)

    1995-08-01T23:59:59.000Z

    OPL 210 lies in deepwater on the northwestern flank of the Niger Delta. The partners in this block are Allied Energy and The Statoil and BP Alliance. The license has a 5 year initial exploration phase and carries a 2 well commitment. At present the database comprises a 1 x 1 km grid of 2D seismic across the block, and 450 sq. km of 3D in an area of special interest. A larger 3D survey is planned for 1995. Little is known about the reservoir in the deep water, but we expect our main target to be ponded slope and basin turbidites. As such the bulk of the shelf well data available has little or no relevance to the play type likely to be encountered. Prior to drilling, seismic stratigraphy has been one of several methods used to generate a consistent predictive reservoir model. The excellent quality and high resolution of the 3D data have allowed identification and detailed description of several distinctive seismic facies. These facies are described in terms of their internal geometries and stacking patterns. The geometries are then interpreted based on a knowledge of depositional processes from analog slope settings. This enables a predictive model to be constructed for the distribution of reservoir within the observed facies. These predictions will be tested by one of the first wells drilled in the Nigerian deepwater in mid 1995.

  3. 3D Measurements in Images using CAD Models George Vosselman

    E-Print Network [OSTI]

    Vosselman, George

    is therefore subject of research at many institutes. Whereas efforts to fully automate the process of building the alignment. 1 Introduction Future geographical information systems will contain 3D and highly structured extraction show good progress [2, 5], it is clear that under many circumstances automation is extremely

  4. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    SciTech Connect (OSTI)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim [Geology Programme, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-03T23:59:59.000Z

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1–5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.

  5. Quantifying the Permeability Heterogeneity of Sandstone Reservoirs in Boonsville Field, Texas by Integrating Core, Well Log and 3D Seismic Data

    E-Print Network [OSTI]

    Song, Qian

    2013-04-29T23:59:59.000Z

    the permeability heterogeneity of the target reservoir by integrating core, well log and 3D seismic data. A set of permeability coefficients, variation coefficient, dart coefficient, and contrast coefficient, was defined in this study to quantitatively identify...

  6. EA-1188: Chevron U.S.A., Inc. and Santa Fe Energy Resources, Inc. Midway Valley 3D Seismic Project, Kern County, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed Midway Valley 3D Geophysical Exploration Project. Chevron U.S.A., Inc. and Santa Fe Energy Resources are proposing to conduct seismic...

  7. Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

    SciTech Connect (OSTI)

    Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

    2010-03-31T23:59:59.000Z

    The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

  8. Salvo: Seismic imaging software for complex geologies

    SciTech Connect (OSTI)

    OBER,CURTIS C.; GJERTSEN,ROB; WOMBLE,DAVID E.

    2000-03-01T23:59:59.000Z

    This report describes Salvo, a three-dimensional seismic-imaging software for complex geologies. Regions of complex geology, such as overthrusts and salt structures, can cause difficulties for many seismic-imaging algorithms used in production today. The paraxial wave equation and finite-difference methods used within Salvo can produce high-quality seismic images in these difficult regions. However this approach comes with higher computational costs which have been too expensive for standard production. Salvo uses improved numerical algorithms and methods, along with parallel computing, to produce high-quality images and to reduce the computational and the data input/output (I/O) costs. This report documents the numerical algorithms implemented for the paraxial wave equation, including absorbing boundary conditions, phase corrections, imaging conditions, phase encoding, and reduced-source migration. This report also describes I/O algorithms for large seismic data sets and images and parallelization methods used to obtain high efficiencies for both the computations and the I/O of seismic data sets. Finally, this report describes the required steps to compile, port and optimize the Salvo software, and describes the validation data sets used to help verify a working copy of Salvo.

  9. The use of exploration 3D seismic data to optimise oil exploration in OPL 210 deepwater, Nigeria

    SciTech Connect (OSTI)

    Nelson, L.C.; Lilletveit, R.; Sandvoll, T. [Statoil and BP Alliance, Stavanger (Norway)] [and others

    1995-08-01T23:59:59.000Z

    Allied Energy and the Statoil and BP Alliance are currently partners in the OPL 210 license, in deepwater Nigeria. The license has a 5 year initial exploration phase which carries a two well commitment. To optimize the location of these wells in this challenging and costly drilling environment the partnership has decided to acquire extensive exploration 3D seismic data within the block. Interpretation of the first of two planned 3D surveys has led to a much clearer understanding of: (a) The structural segmentation of the prospect and thus a clearer idea of the likely hydrocarbon pool size. (b) The distribution of amplitude anomalies and thus, hopefully, a superior understanding of reservoir distribution and hydrocarbons. Here the limiting factor is clearly the lack of deepwater geophysical calibration, due to the absence of wells. Consequently, conclusions at this stage, are qualitative either than quantative. Combined with detailed seismic stratigraphic and high tech geophysical analysis, these two aspects will assist in the highgrading of segments in the prospect, prior to final decisions on the well locations. The first well, planned for 1995, will be one of the first wells drilled in the Nigerian deepwater area. Examples of both 2D and 3D data will be used to demonstrate the above and some of the first well results will be integrated into our interpretation to highlight how some of our perceptions may have changed.

  10. Multi-crosswell profile 3D imaging and method

    DOE Patents [OSTI]

    Washbourne, John K. (Houston, TX); Rector, III, James W. (Kensington, CA); Bube, Kenneth P. (Seattle, WA)

    2002-01-01T23:59:59.000Z

    Characterizing the value of a particular property, for example, seismic velocity, of a subsurface region of ground is described. In one aspect, the value of the particular property is represented using at least one continuous analytic function such as a Chebychev polynomial. The seismic data may include data derived from at least one crosswell dataset for the subsurface region of interest and may also include other data. In either instance, data may simultaneously be used from a first crosswell dataset in conjunction with one or more other crosswell datasets and/or with the other data. In another aspect, the value of the property is characterized in three dimensions throughout the region of interest using crosswell and/or other data. In still another aspect, crosswell datasets for highly deviated or horizontal boreholes are inherently useful. The method is performed, in part, by fitting a set of vertically spaced layer boundaries, represented by an analytic function such as a Chebychev polynomial, within and across the region encompassing the boreholes such that a series of layers is defined between the layer boundaries. Initial values of the particular property are then established between the layer boundaries and across the subterranean region using a series of continuous analytic functions. The continuous analytic functions are then adjusted to more closely match the value of the particular property across the subterranean region of ground to determine the value of the particular property for any selected point within the region.

  11. Simulation of chemical vapor infiltration and deposition based on 3D images: a local scale approach

    E-Print Network [OSTI]

    Boyer, Edmond

    infiltration of ceramic matrix composites is presented. This computational model requires a 3D representation/reaction problems; Random walks; 3D image-based modeling 1. Introduction Ceramic Matrix Composites and Carbon with a matrix. One of the most efficient ones is Chemical Vapor Infiltration (CVI), by which gaseous precursors

  12. algorithm imf-osem 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partial similarities Andrzejak, Artur 45 Finite-difference migration of 3-D seismic data with a parallel algorithm CiteSeer Summary: INTRODUCTION Imaging within complex...

  13. 3D Mt Resistivity Imaging For Geothermal Resource Assessment...

    Open Energy Info (EERE)

    Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  14. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Broader source: Energy.gov (indexed) [DOE]

    - Iceland partners receiving own funding * Barriers - Barrier A: Site selection and resource assessment - Barrier B: Site characterization - Barrier I: Images of fractures...

  15. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    E-Print Network [OSTI]

    Zhang, Haijiang

    2012-01-01T23:59:59.000Z

    We describe the ongoing development of joint geophysical imaging methodologies for geothermal site characterization and demonstrate their potential in two regions: Krafla volcano and associated geothermal fields in ...

  16. acoustic 3-d imaging: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    landmarks or com- plete Delson, Eric 20 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  17. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop improved geophysical imaging method for characterizing subsurface structure, identify fluid locations, and characterize fractures.

  18. Synchrotron infrared confocal microscope: Application to infrared 3D spectral imaging

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Synchrotron infrared confocal microscope: Application to infrared 3D spectral imaging F Jamme1, 2 coupled to an infrared microscope allows imaging at the so-called diffraction limit. Thus, numerous infrared beamlines around the world have been developed for infrared chemical imaging. Infrared microscopes

  19. Distributed computing of Seismic Imaging Algorithms

    E-Print Network [OSTI]

    Emami, Masnida; Jaberi, Nasrin

    2012-01-01T23:59:59.000Z

    The primary use of technical computing in the oil and gas industries is for seismic imaging of the earth's subsurface, driven by the business need for making well-informed drilling decisions during petroleum exploration and production. Since each oil/gas well in exploration areas costs several tens of millions of dollars, producing high-quality seismic images in a reasonable time can significantly reduce the risk of drilling a "dry hole". Similarly, these images are important as they can improve the position of wells in a billion-dollar producing oil field. However seismic imaging is very data- and compute-intensive which needs to process terabytes of data and require Gflop-years of computation (using "flop" to mean floating point operation per second). Due to the data/computing intensive nature of seismic imaging, parallel computing are used to process data to reduce the time compilation. With introducing of Cloud computing, MapReduce programming model has been attracted a lot of attention in parallel and di...

  20. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A. (Lafayette, CA); Bakulin, Andrey (Houston, TX)

    2009-10-13T23:59:59.000Z

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  1. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A [LaFayette, CA

    2009-05-05T23:59:59.000Z

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  2. 3D and 4D magnetic susceptibility tomography based on complex MR images

    DOE Patents [OSTI]

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11T23:59:59.000Z

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  3. Image-based stochastic modeling of the 3D morphology of energy materials on various length scales

    E-Print Network [OSTI]

    Schmidt, Volker

    , to appear 3D image of uncompressed graphite electrode used in Li-ion batteries tomography: Helmholtz Center, 2013 | Volker Schmidt Contents Introduction 3D microstructure of uncompressed graphite electrodes 3D microstructure of compressed graphite electrodes 3D morphology of hybrid organic solar cells Charge transport

  4. INCREASING OIL RECOVERY THROUGH ADVANCED REPROCESSING OF 3D SEISMIC, GRANT CANYON AND BACON FLAT FIELDS, NYE COUNTY, NEVADA

    SciTech Connect (OSTI)

    Eric H. Johnson; Don E. French

    2001-06-01T23:59:59.000Z

    Makoil, Inc., of Orange, California, with the support of the U.S. Department of Energy has reprocessed and reinterpreted the 3D seismic survey of the Grant Canyon area, Railroad Valley, Nye County, Nevada. The project was supported by Dept. of Energy Grant DE-FG26-00BC15257. The Grant Canyon survey covers an area of 11 square miles, and includes Grant Canyon and Bacon Flat oil fields. These fields have produced over 20 million barrels of oil since 1981, from debris slides of Devonian rocks that are beneath 3,500 to 5,000 ft of Tertiary syntectonic deposits that fill the basin of Railroad Valley. High-angle and low-angle normal faults complicate the trap geometry of the fields, and there is great variability in the acoustic characteristics of the overlying valley fill. These factors combine to create an area that is challenging to interpret from seismic reflection data. A 3D seismic survey acquired in 1992-93 by the operator of the fields has been used to identify development and wildcat locations with mixed success. Makoil believed that improved techniques of processing seismic data and additional well control could enhance the interpretation enough to improve the chances of success in the survey area. The project involved the acquisition of hardware and software for survey interpretation, survey reprocessing, and reinterpretation of the survey. SeisX, published by Paradigm Geophysical Ltd., was chosen as the interpretation software, and it was installed on a Dell Precision 610 computer work station with the Windows NT operating system. The hardware and software were selected based on cost, possible addition of compatible modeling software in the future, and the experience of consulting geophysicists in the Billings area. Installation of the software and integration of the hardware into the local office network was difficult at times but was accomplished with some technical support from Paradigm and Hewlett Packard, manufacturer of some of the network equipment. A number of improvements in the processing of the survey were made compared to the original work. Pre-stack migration was employed, and some errors in muting in the original processing were found and corrected. In addition, improvements in computer hardware allowed interactive monitoring of the processing steps, so that parameters could be adjusted before completion of each step. The reprocessed survey was then loaded into SeisX, v. 3.5, for interpretation work. Interpretation was done on 2, 21-inch monitors connected to the work station. SeisX was prone to crashing, but little work was lost because of this. The program was developed for use under the Unix operating system, and some aspects of the design of the user interface betray that heritage. For example, printing is a 2-stage operation that involves creation of a graphic file using SeisX and printing the file with printer utility software. Because of problems inherent in using graphics files with different software, a significant amount of trial and error is introduced in getting printed output. Most of the interpretation work was done using vertical profiles. The interpretation tools used with time slices are limited and hard to use, but a number to tools and techniques are available to use with vertical profiles. Although this project encountered a number of delays and difficulties, some unavoidable and some self-inflicted, the result is an improved 3D survey and greater confidence in the interpretation. The experiences described in this report will be useful to those that are embarking on a 3D seismic interpretation project.

  5. A 3D reconstruction from real-time stereoscopic images using GPU

    E-Print Network [OSTI]

    Boyer, Edmond

    scene models in image- based rendering. Stereovision involves two processes: the binocular of features methods must be designed to establish the correct correspondence between images features in real-time 3D reconstruction feedback. Examples include machine vision in robotics task where feedback for autonomous control

  6. Distributed Image-Based 3-D Localization of Camera Sensor Networks Roberto Tron and Rene Vidal

    E-Print Network [OSTI]

    Distributed Image-Based 3-D Localization of Camera Sensor Networks Roberto Tron and Ren´e Vidal Abstract-- We consider the problem of distributed estimation of the poses of N cameras in a camera sensor network using image measurements only. The relative rotation and translation (up to a scale factor

  7. Imaging the 3-D cosmological mass distribution with weak gravitational lensing

    E-Print Network [OSTI]

    A. N. Taylor

    2001-11-30T23:59:59.000Z

    I show how weak gravitational lensing can be used to image the 3-D mass distribution in the Universe. An inverse relation to the lensing equation, relating the lensing potential evaluated at each source to the full 3-D Newtonian potential, is derived. I consider the normal modes of the lensing problem and clarify the equations using a small-angle approximation. Finally I consider the prospects of using this method to estimate the 3-D matter distribution from a realistic galaxy lensing survey.

  8. A 3D-3C Reflection Seismic Survey and Data Integration to Identify the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of Energy This document summarizesDepartmentSeismic

  9. A 3D-3C Reflection Seismic Survey and Data Integration to Identify the

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe CommissionEnergyEnergySeismic Response of Fractures

  10. 3D BLOB BASED BRAIN TUMOR DETECTION AND SEGMENTATION IN MR IMAGES Chen-Ping Yu1

    E-Print Network [OSTI]

    3D BLOB BASED BRAIN TUMOR DETECTION AND SEGMENTATION IN MR IMAGES Chen-Ping Yu1 , Guilherme Ruppert to 28,079 mm3 in volume. Us- ing 20 clinical 3D MR scans containing from 1 to 15 tumors per scan: (1) an automated brain tumor detection algorithm for clinical 3D MR images; (2) a novel unsupervised

  11. Joint Inversion of Reservoir Production Measurements and 3D Pre-Stack Seismic Data: Proof Carlos Torres-Verdn, Zhan Wu, Omar J. Varela, Mrinal K. Sen, and Indrajit G. Roy.

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    in this paper is also suitable for the quantitative interpretation of 4D seismic data. Simulation and InversionJoint Inversion of Reservoir Production Measurements and 3D Pre-Stack Seismic Data: Proof-stack seismic data and fluid production history. The production measurements and the seismic data

  12. Adaptive Multiresolution Denoising Filter for 3D MR Images Pierrick Coup1

    E-Print Network [OSTI]

    Boyer, Edmond

    Adaptive Multiresolution Denoising Filter for 3D MR Images Pierrick Coupé1 , José V. Manjon2 method has been applied on a T1-w MR image of 170x256x256 voxels acquired on a 1.5T Philips Gyroscan , Montserrat Robles2 , D. Louis Collins1 . 1 McConnell Brain Imaging Centre, Montréal Neurological Institute

  13. 3D optical sectioning with a new hyperspectral confocal fluorescence imaging system.

    SciTech Connect (OSTI)

    Nieman, Linda T.; Sinclair, Michael B.; Davidson, George S.; Van Benthem, Mark Hilary; Haaland, David Michael; Timlin, Jerilyn Ann; Sasaki, Darryl Yoshio; Bachand, George David; Jones, Howland D. T.

    2007-02-01T23:59:59.000Z

    A novel hyperspectral fluorescence microscope for high-resolution 3D optical sectioning of cells and other structures has been designed, constructed, and used to investigate a number of different problems. We have significantly extended new multivariate curve resolution (MCR) data analysis methods to deconvolve the hyperspectral image data and to rapidly extract quantitative 3D concentration distribution maps of all emitting species. The imaging system has many advantages over current confocal imaging systems including simultaneous monitoring of numerous highly overlapped fluorophores, immunity to autofluorescence or impurity fluorescence, enhanced sensitivity, and dramatically improved accuracy, reliability, and dynamic range. Efficient data compression in the spectral dimension has allowed personal computers to perform quantitative analysis of hyperspectral images of large size without loss of image quality. We have also developed and tested software to perform analysis of time resolved hyperspectral images using trilinear multivariate analysis methods. The new imaging system is an enabling technology for numerous applications including (1) 3D composition mapping analysis of multicomponent processes occurring during host-pathogen interactions, (2) monitoring microfluidic processes, (3) imaging of molecular motors and (4) understanding photosynthetic processes in wild type and mutant Synechocystis cyanobacteria.

  14. Impact of 3-D seismic data on the Nigerian National Petroleum Corporation/Chevron Nigeria Limited joint venture development drilling program

    SciTech Connect (OSTI)

    Quam, S. (Chevron Nigeria Ltd., Lagos (Nigeria))

    1993-09-01T23:59:59.000Z

    The Nigerian National Petroleum Corporation/Chevron Nigeria Limited joint venture has been acquiring three-dimensional (3-D) seismic data over its concessions since 1984. To date, 1700 km[sup 2] have been recorded and processed at a cumulative cost of US $39 million. During 1991 - 1992, 20 development wells were drilled based directly on new 3-D seismic interpretations. These wells have added 148 million bbl of oil in new recoverable reserves, and to date have added 37,000 bbl/day to the joint venture's production. In addition, the 3-D interpretations have resulted in a sizable inventory of wells for future development drilling. The new 3-D interpretations provided more accurate pictures of fault patterns, fluid contacts, channel trends, stratigraphic continuity, and velocity/amplitude anomalies. In addition, the 3-D data were invaluable in designing low risk, directional well trajectories to tap relatively thin oil legs under large gas caps. Wells often were programmed to hit several objectives at their respective gas/oil contacts, resulting in maximized net oil sand pays and reducing the risk of gas production. In order to do this, directional [open quotes]sharpshooting,[close quotes] accurate depth conversion of the seismic time maps, was critical. By using the 3-D seismic, checkshot, and sonic data to develop a variable velocity space, well-top prognoses within 50 ft at depths of 6,000-10,000 ft were possible, and were key to the success of the program. As the joint venture acreage becomes more mature, development wells will be drilled for smaller numbers of stacked objectives, and sometimes for single sands. Highly accurate 3-D interpretations and depth conversions will become even more critical in order to tap thinner pay zones in a cost-effect manner.

  15. Comparison of Petrophysical Rock Types from Core and Well-logs using Post-stack 3D Seismic Data: Field Example from Maracaibo-Venezuela

    E-Print Network [OSTI]

    Ramachandran, Kumar

    with post stack 3D seismic data analysis was used to assess the petrophysical rock type distribution core data: pore throat size distribution, porosity, and permeability. Permeability and rock type curves. The predominant structure in the study area is a faulted anticline striking NE-SW, which occupies the central

  16. 2D and 3D high-resolution imaging to reconstruct the microstructure of clay media

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2D and 3D high-resolution imaging to reconstruct the microstructure of clay media J.C. Robinet1 & S compacted clay (illite) system, considered to be an analogy for the clay matrix constituting clay-rocks, and three different clayrocks (Callovo-Oxfordian argilites (FR), Opalinus Clay (CH), Boom Clay (BE)). Part

  17. A REAL TIME 3D VISUALIZATION PROTOTYPE FOR INTERVENTIONAL MAGNETIC RESONANCE IMAGING

    E-Print Network [OSTI]

    Schumann, Heidrun

    A REAL TIME 3D VISUALIZATION PROTOTYPE FOR INTERVENTIONAL MAGNETIC RESONANCE IMAGING JENS FISCHER­invasive examinations. This prototype allows simultaneous visualization of three different types of data: a 3D­Magnetic@informatik.uni­rostock.de Abstract: This paper describes a prototype of a visualization system which is designed to support

  18. IEEE TRANS. MAGN., SUBMITTED 1 3D Eddy-Current Imaging of Metal Tubes by

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    IEEE TRANS. MAGN., SUBMITTED 1 3D Eddy-Current Imaging of Metal Tubes by Gradient-Based, Controlled, and Oliver Dorn Abstract--Eddy-current non-destructive testing is widely used to detect defects within-developed binary-specialized method. Index Terms--eddy-current non-destructive testing, impedance variations, level

  19. Science Highlight July 2011 Better Batteries through Nanoscale 3D Chemical Imaging

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Science Highlight ­ July 2011 Better Batteries through Nanoscale 3D Chemical Imaging Concerns battery technology. Although Li-ion batteries, crucial in the boom of portable electronics, stand energy density devices. Hence, monitoring changes in electrodes during battery operation (i.e., insertion

  20. 3D Reconstruction of the Femoral Bone using two X-ray Images from Orthogonal Views

    E-Print Network [OSTI]

    3D Reconstruction of the Femoral Bone using two X-ray Images from Orthogonal Views B. Nikkhahe of the femur and 97 % of the model femur shaft less than 2 mm from the CT scan. Also the femoral head visualization of the femur including the femoral collumn and condyles is important for the clinician in a number

  1. 3D Shape from Silhouette Points in Registered 2D Images Using Conjugate Gradient Method

    E-Print Network [OSTI]

    Hoff, William A.

    3D Shape from Silhouette Points in Registered 2D Images Using Conjugate Gradient Method Andrzej version of the conjugate gradient method. We take advantage of the structure of the problem to make polynomial function. The approximate problem is solved using a nonlinear conjugate gradient solver that takes

  2. 3-D airborne ultrasound synthetic aperture imaging based on capacitive micromachined ultrasonic transducers

    E-Print Network [OSTI]

    Khuri-Yakub, Butrus T. "Pierre"

    3-D airborne ultrasound synthetic aperture imaging based on capacitive micromachined ultrasonic was implemented by mechanical scanning a co-located transmitter and receiver using the classic synthetic aperture, silicone rubber, and foam plastics, in an attempt to overcome bad mechanical impedance matching between

  3. 3-D tomographic imaging of ocean mines from real and simulated lidar returns

    E-Print Network [OSTI]

    Singer, Andrew C

    3-D tomographic imaging of ocean mines from real and simulated lidar returns Nail C¸adalli, Peter J of underwater objects, where the trans- mitted laser beam can penetrate the air-water interface and illuminate by using an accurate statistical model that incorporates multiple scattering. Keywords: lidar, ocean optics

  4. d Technical Note RING ARRAY TRANSDUCERS FOR REAL-TIME 3-D IMAGING OF AN ATRIAL

    E-Print Network [OSTI]

    Smith, Stephen

    with a matching layer. Real-time 3-D rendered images of an en face view of a Gore Helex septal occluder in a water-Yakub and Oralkan 2011). Atrial septal defects (ASD) comprise up to 7% of total congenital heart lesions and as much as 25% of congenital heart disease in adults (Kaplan 1993). ASDs may go undetected for decades

  5. 3D multi-scale imaging of experimental fracture generation in shale gas reservoirs.

    E-Print Network [OSTI]

    Henderson, Gideon

    in research and shale unconventional reservoirs that will provide you with the skills to enter the oil and gas3D multi-scale imaging of experimental fracture generation in shale gas reservoirs. Supervisory-grained organic carbon-rich rocks (shales) are increasingly being targeted as shale gas "reservoirs". Due

  6. Staged Hybrid Genetic Search for Seismic Data Imaging

    E-Print Network [OSTI]

    Whitley, Darrell

    Christof Stork yy and Tony Kusuma yy Abstract --- Seismic data interpretation problems are typ­ icallyStaged Hybrid Genetic Search for Seismic Data Imaging Keith E. Mathias, y L. Darrell Whitley, y. Geological exploration em­ ploys seismic reflection surveys to obtain subsurface im­ ages of geologic beds

  7. Development Of Active Seismic Vector-Wavefield Imaging Technology...

    Open Energy Info (EERE)

    LibraryAdd to library Report: Development Of Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Abstract This report describes the development and...

  8. The application of high-resolution 3D seismic data to model the distribution of mechanical and hydrogeological properties of a potential host rock for the deep storage of radioactive waste in France

    E-Print Network [OSTI]

    Mari, Jean-Luc

    2014-01-01T23:59:59.000Z

    In the context of a deep geological repository of high-level radioactive wastes, the French National Radioactive Waste Management Agency (Andra) has conducted an extensive characterization of the Callovo-Oxfordian argillaceous rock and surrounding formations in the Eastern Paris Basin. As part of this project, an accurate 3D seismic derived geological model is needed. The paper shows the procedure used for building the 3D seismic constrained geological model in depth by combining time-to-depth conversion of seismic horizons, consistent seismic velocity model and elastic impedance in time. It also shows how the 3D model is used for mechanical and hydrogeological studies. The 3D seismic field data example illustrates the potential of the proposed depth conversion procedure for estimating density and velocity distributions, which are consistent with the depth conversion of seismic horizons using the Bayesian Kriging method. The geological model shows good agreement with well log data obtained from a reference we...

  9. High vertical resolution crosswell seismic imaging

    DOE Patents [OSTI]

    Lazaratos, Spyridon K. (Houston, TX)

    1999-12-07T23:59:59.000Z

    A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.

  10. 3D segmentation of mouse organs from MR images using deformable simplex mesh models G. Hamarneh1

    E-Print Network [OSTI]

    Hamarneh, Ghassan

    3D segmentation of mouse organs from MR images using deformable simplex mesh models G. Hamarneh1 , H. Delingette2 , M. Henkelman1 1 Hospital for Sick Children, Toronto, ON, Canada, 2 INRIA brains and kidneys from MR images. Algorithmic details and 3D segmentation results are presented

  11. Model--Based 3D Scene Analysis from Stereoscopic Image Sequences An approach for the modelling of complex 3D scenes like outdoor street views from a sequence of

    E-Print Network [OSTI]

    the problems stated above for building a true 3D model of a complex scene from a sequence of stereoscopic image for the modelling of complex 3D scenes like outdoor street views from a sequence of stereoscopic image pairs geometry is generated. Not only the scene geometry but also surface texture is stored within the model. 3D

  12. Application of smoothing algorithms to enhance quality of 3D reconstructed images in tissues and cultures

    E-Print Network [OSTI]

    Enloe, Lillian Charity

    1999-01-01T23:59:59.000Z

    . . . , . . . , . . . . . . . . . . 6 . . 6 III METHODS. 15 The Visualization Pipeline . . . . 15 Marching Cubes: Contouring in 3D. . . . . . . . . . . . . . 22 Decimation: Volume Dataset Compression. . . . . . . . 26 IV PROCEDURE . . 33 Image Acquisition. File Conversion... of the functional model and is used to describe visualization processes. . . . 16 3-3 The two types of object models. . . 3-4 The differences between (a)single-type and (b)multiple-type systems. . 17 . 19 3-5 The visualization pipeline "block" diagram flow...

  13. Submarine mass movement processes on the North Sea Fan as interpreted from the 3D seismic data 

    E-Print Network [OSTI]

    Gafeira Gonçalves, Joana

    2010-01-01T23:59:59.000Z

    allowed a detailed geomorpholocial analysis of these deposits, This study involved the interpretation of the seismic data and the detailed pickling of key reflectors followed by tge extraction of both horizon and window-based seismic attributes. Digital...

  14. Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field.

  15. An instrument for 3D x-ray nano-imaging

    SciTech Connect (OSTI)

    Holler, M.; Raabe, J.; Diaz, A.; Guizar-Sicairos, M.; Quitmann, C.; Menzel, A.; Bunk, O. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2012-07-15T23:59:59.000Z

    We present an instrument dedicated to 3D scanning x-ray microscopy, allowing a sample to be precisely scanned through a beam while the angle of x-ray incidence can be changed. The position of the sample is controlled with respect to the beam-defining optics by laser interferometry. The instrument achieves a position stability better than 10 nm standard deviation. The instrument performance is assessed using scanning x-ray diffraction microscopy and we demonstrate a resolution of 18 nm in 2D imaging of a lithographic test pattern while the beam was defined by a pinhole of 3 {mu}m in diameter. In 3D on a test object of copper interconnects of a microprocessor, a resolution of 53 nm is achieved.

  16. Time-lapse seismic monitoring of subsurface fluid flow

    E-Print Network [OSTI]

    Yuh, Sung H.

    2004-09-30T23:59:59.000Z

    Time-lapse seismic monitoring repeats 3D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic...

  17. In Situ Casting and Imaging of the Rat Airway Tree for Accurate 3D Reconstruction

    SciTech Connect (OSTI)

    Jacob, Rick E.; Colby, Sean M.; Kabilan, Senthil; Einstein, Daniel R.; Carson, James P.

    2013-08-01T23:59:59.000Z

    The use of anatomically accurate, animal-specific airway geometries is important for understanding and modeling the physiology of the respiratory system. One approach for acquiring detailed airway architecture is to create a bronchial cast of the conducting airways. However, typical casting procedures either do not faithfully preserve the in vivo branching angles, or produce rigid casts that when removed for imaging are fragile and thus easily damaged. We address these problems by creating an in situ bronchial cast of the conducting airways in rats that can be subsequently imaged in situ using 3D micro-CT imaging. We also demonstrate that deformations in airway branch angles resulting from the casting procedure are small, and that these angle deformations can be reversed through an interactive adjustment of the segmented cast geometry. Animal work was approved by the Institutional Animal Care and Use Committee of Pacific Northwest National Laboratory.

  18. 3D PET image reconstruction based on Maximum Likelihood Estimation Method (MLEM) algorithm

    E-Print Network [OSTI]

    S?omski, Artur; Bednarski, Tomasz; Bia?as, Piotr; Czerwi?ski, Eryk; Kap?on, ?ukasz; Kochanowski, Andrzej; Korcyl, Grzegorz; Kowal, Jakub; Kowalski, Pawe?; Kozik, Tomasz; Krzemie?, Wojciech; Molenda, Marcin; Moskal, Pawe?; Nied?wiecki, Szymon; Pa?ka, Marek; Pawlik, Monika; Raczy?ski, Lech; Salabura, Piotr; Gupta-Sharma, Neha; Silarski, Micha?; Smyrski, Jerzy; Strzelecki, Adam; Wi?licki, Wojciech; Zieli?ski, Marcin; Zo?, Natalia

    2015-01-01T23:59:59.000Z

    Positron emission tomographs (PET) do not measure an image directly. Instead, they measure at the boundary of the field-of-view (FOV) of PET tomograph a sinogram that consists of measurements of the sums of all the counts along the lines connecting two detectors. As there is a multitude of detectors build-in typical PET tomograph structure, there are many possible detector pairs that pertain to the measurement. The problem is how to turn this measurement into an image (this is called imaging). Decisive improvement in PET image quality was reached with the introduction of iterative reconstruction techniques. This stage was reached already twenty years ago (with the advent of new powerful computing processors). However, three dimensional (3D) imaging remains still a challenge. The purpose of the image reconstruction algorithm is to process this imperfect count data for a large number (many millions) of lines-of-responce (LOR) and millions of detected photons to produce an image showing the distribution of the l...

  19. 3D Temperature Dependence of Ultrasonic Backscattered Energy in3D Temperature Dependence of Ultrasonic Backscattered Energy in Images Compensated for Apparent Tissue MotionImages Compensated for Apparent Tissue Motion

    E-Print Network [OSTI]

    Arthur, R. Martin

    DBackscattered Energy in 3D Circulating Heater 7 MHz Transducer Tissue Sample Insulated Tank with Degassed in a water bath from 37 to 50oC. Images were formed by a Terason 2000 imager with a 7 MHz linear probe, Deionized Water Terason 2000 Imaging System Stepper Motor Motor Controller Needle Thermistor Temperature

  20. Deformation Analysis of Sand Specimens using 3D Digital Image Correlation for the Calibration of an Elasto-Plastic Model

    E-Print Network [OSTI]

    Song, Ahran

    2012-10-19T23:59:59.000Z

    and softening laws. In addition, a two-dimensional axisymmetric finite element model was built to simulate the actual experimental conditions, including both the global and local kinematics effects captured by 3D digital image correlation analysis...

  1. Seismic Signal Processing for Single Well Imaging Applications 

    E-Print Network [OSTI]

    Walsh, Brendan

    2007-01-01T23:59:59.000Z

    This thesis focuses on the concept of Single Well Imaging (SWI) in which a seismic source and receivers are deployed in a borehole to investigate the surrounding geology. The Uniwell project (1997-1999) was the first ...

  2. COLLOQUIUM: Seismic Imaging and Inversion Based on Spectral-Element...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 6, 2013, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Seismic Imaging and Inversion Based on Spectral-Element and Adjoint Methods Professor Jeroen Tromp Princeton...

  3. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOE Patents [OSTI]

    He, Wei (New Milford, NJ); Anderson, Roger N. (New York, NY)

    1998-01-01T23:59:59.000Z

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.

  4. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOE Patents [OSTI]

    He, W.; Anderson, R.N.

    1998-08-25T23:59:59.000Z

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

  5. Critical assessment of intramodality 3D ultrasound imaging for prostate IGRT compared to fiducial markers

    SciTech Connect (OSTI)

    Meer, Skadi van der; Bloemen-van Gurp, Esther; Hermans, Jolanda; Voncken, Robert; Heuvelmans, Denys; Gubbels, Carol; Fontanarosa, Davide; Visser, Peter; Lutgens, Ludy; Gils, Francis van [Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec H3G 1A4 (Canada)

    2013-07-15T23:59:59.000Z

    Purpose: A quantitative 3D intramodality ultrasound (US) imaging system was verified for daily in-room prostate localization, and compared to prostate localization based on implanted fiducial markers (FMs).Methods: Thirteen prostate patients underwent multiple US scans during treatment. A total of 376 US-scans and 817 matches were used to determine the intra- and interoperator variability. Additionally, eight other patients underwent daily prostate localization using both US and electronic portal imaging (EPI) with FMs resulting in 244 combined US-EPI scans. Scanning was performed with minimal probe pressure and a correction for the speed of sound aberration was performed. Uncertainties of both US and FM methods were assessed. User variability of the US method was assessed.Results: The overall US user variability is 2.6 mm. The mean differences between US and FM are: 2.5 {+-} 4.0 mm (LR), 0.6 {+-} 4.9 mm (SI), and -2.3 {+-} 3.6 mm (AP). The intramodality character of this US system mitigates potential errors due to transducer pressure and speed of sound aberrations.Conclusions: The overall accuracy of US (3.0 mm) is comparable to our FM workflow (2.2 mm). Since neither US nor FM can be considered a gold standard no conclusions can be drawn on the superiority of either method. Because US imaging captures the prostate itself instead of surrogates no invasive procedure is required. It requires more effort to standardize US imaging than FM detection. Since US imaging does not involve a radiation burden, US prostate imaging offers an alternative for FM EPI positioning.

  6. 3-D readout-electronics packaging for high-bandwidth massively paralleled imager

    DOE Patents [OSTI]

    Kwiatkowski, Kris (Los Alamos, NM); Lyke, James (Albuquerque, NM)

    2007-12-18T23:59:59.000Z

    Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.

  7. 3D Local Binary Pattern for PET image classification by SVM Application to early Alzheimer disease diagnosis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    3D Local Binary Pattern for PET image classification by SVM Application to early Alzheimer disease of Fluorodeoxyglucose PET scans might become a possibility to make early diagnosis more efficient. Temporal and parietal lobes are the main location of medical findings. We have clues that in PET images these lobes contain

  8. Phys. Med. Biol. 43 (1998) 10011013. Printed in the UK PII: S0031-9155(98)90627-3 High-resolution 3D Bayesian image reconstruction using

    E-Print Network [OSTI]

    Leahy, Richard M.

    1998-01-01T23:59:59.000Z

    -resolution 3D Bayesian image reconstruction using the microPET small-animal scanner Jinyi Qi, Richard M Leahy of high-resolution 3D images from the microPET small-animal scanner. Resolution recovery is achieved 2 mm when using an analytic 3D reprojection (3DRP) method with a ramp filter. These results also

  9. 3D Imaging of Microbial Biofilms: Integration of Synchrotron Imaging and an Interactive Visualization Interface

    SciTech Connect (OSTI)

    Thomas, Mathew; Marshall, Matthew J.; Miller, Erin A.; Kuprat, Andrew P.; Kleese van Dam, Kerstin; Carson, James P.

    2014-08-26T23:59:59.000Z

    Understanding the interactions of structured communities known as “biofilms” and other complex matrixes is possible through the X-ray micro tomography imaging of the biofilms. Feature detection and image processing for this type of data focuses on efficiently identifying and segmenting biofilms and bacteria in the datasets. The datasets are very large and often require manual interventions due to low contrast between objects and high noise levels. Thus new software is required for the effectual interpretation and analysis of the data. This work specifies the evolution and application of the ability to analyze and visualize high resolution X-ray micro tomography datasets.

  10. Seismic imaging with the generalized Radon transform: A curvelet transform perspective

    E-Print Network [OSTI]

    Smith, Hart F.

    Seismic imaging with the generalized Radon transform: A curvelet transform perspective M V de Hoop1@purdue.edu Abstract. A key challenge in the seismic imaging of reflectors using surface reflection data. Introduction 1.1. Seismic Imaging with Arrays ­ Beyond Current Capabilities Much research in modern

  11. F3D

    Energy Science and Technology Software Center (OSTI)

    003188MLTPL00 F3D Image Processing and Analysis for Many - and Multi-core Platforms  http://camera.lbl.gov/software 

  12. Augmenting BIM with 3D Imaging Data to Control Drilling for Embeds into Reinforced Concrete Bridge Decks

    E-Print Network [OSTI]

    Kamat, Vineet R.

    to the drill operator using a laser projector was also developed. Finally, a visualization method for comparingAugmenting BIM with 3D Imaging Data to Control Drilling for Embeds into Reinforced Concrete Bridge the locations of the rebar free spaces before pouring and controlling the drilling process in real-time could

  13. Accelerated Short-TE 3D Proton Echo-Planar Spectroscopic Imaging Using 2D-SENSE with

    E-Print Network [OSTI]

    imaging (PEPSI) with regularized 2D-SENSE reconstruction is developed. Regularization was performed SENSE. We show that the acquisition of short-TE (15 ms) 3D-PEPSI at 3 T with a 32 32 8 spatial matrix (PEPSI) (6,7) is an implementation of this technique with a trapezoidal readout gradient for simultaneous

  14. Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma

    SciTech Connect (OSTI)

    Wheeler,David M.; Miller, William A.; Wilson, Travis C.

    2002-03-11T23:59:59.000Z

    The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.

  15. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    SciTech Connect (OSTI)

    Greenberg, M.; Ebel, D.S. (AMNH)

    2009-03-19T23:59:59.000Z

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length of {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.

  16. Stratigraphic forward modelling & synthetic seismic images of carbonate Prof. Peter Burgess & Dr. Dave Waltham, Royal Holloway, University of London

    E-Print Network [OSTI]

    Royal Holloway, University of London

    of reservoir heterogeneities, allowing the seismic interpreter to make better-informed interpretation of reservoir intervals imaged on seismic data. The project will assess Stratigraphic forward modelling & synthetic seismic images of carbonate

  17. A Column-Row-Parallel ASIC architecture for 3D wearable / portable medical ultrasonic imaging

    E-Print Network [OSTI]

    Chen, Kailiang

    2014-01-01T23:59:59.000Z

    This work presents a scalable Column-Row-Parallel ASIC architecture for 3D wearable / portable medical ultrasound. It leverages programmable electronic addressing to achieve linear scaling for both hardware interconnection ...

  18. Correlative Nanoscale 3D Imaging of Structure and Composition in Extended Objects

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    'Environnement Industriel et des Risques, Verneuil en Halatte, France, 4 Centre Hospitalier Universitaire Amiens, Universite, the improvement of three-dimensional (3D) resolution is accomplished by tightening constraints: reduced manageable

  19. SU-E-J-135: An Investigation of Ultrasound Imaging for 3D Intra-Fraction Prostate Motion Estimation

    SciTech Connect (OSTI)

    O'Shea, T; Harris, E; Bamber, J [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Greater London (United Kingdom); Evans, P [Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford (United Kingdom)

    2014-06-01T23:59:59.000Z

    Purpose: This study investigates the use of a mechanically swept 3D ultrasound (US) probe to estimate intra-fraction motion of the prostate during radiation therapy using an US phantom and simulated transperineal imaging. Methods: A 3D motion platform was used to translate an US speckle phantom while simulating transperineal US imaging. Motion patterns for five representative types of prostate motion, generated from patient data previously acquired with a Calypso system, were using to move the phantom in 3D. The phantom was also implanted with fiducial markers and subsequently tracked using the CyberKnife kV x-ray system for comparison. A normalised cross correlation block matching algorithm was used to track speckle patterns in 3D and 2D US data. Motion estimation results were compared with known phantom translations. Results: Transperineal 3D US could track superior-inferior (axial) and anterior-posterior (lateral) motion to better than 0.8 mm root-mean-square error (RMSE) at a volume rate of 1.7 Hz (comparable with kV x-ray tracking RMSE). Motion estimation accuracy was poorest along the US probe's swept axis (right-left; RL; RMSE < 4.2 mm) but simple regularisation methods could be used to improve RMSE (< 2 mm). 2D US was found to be feasible for slowly varying motion (RMSE < 0.5 mm). 3D US could also allow accurate radiation beam gating with displacement thresholds of 2 mm and 5 mm exhibiting a RMSE of less than 0.5 mm. Conclusion: 2D and 3D US speckle tracking is feasible for prostate motion estimation during radiation delivery. Since RL prostate motion is small in magnitude and frequency, 2D or a hybrid (2D/3D) US imaging approach which also accounts for potential prostate rotations could be used. Regularisation methods could be used to ensure the accuracy of tracking data, making US a feasible approach for gating or tracking in standard or hypo-fractionated prostate treatments.

  20. Subsalt Depth Seismic Imaging and Structural Interpretation in Dumre Area, Albania

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Subsalt Depth Seismic Imaging and Structural Interpretation in Dumre Area, Albania A. Jardin1, F Interpretation in Dumre Area, Albania -- The challenge of seismic exploration in fold and thrust belt settings compte plus importante des données géologiques. Abstract -- Subsalt Depth Seismic Imaging and Structural

  1. Ambient noise seismic imaging Journal: McGraw Hill 2008 Yearbook of Science & Technology

    E-Print Network [OSTI]

    Ritzwolle, Mike

    ForReview Ambient noise seismic imaging Journal: McGraw Hill 2008 Yearbook of Science & Technology List of Authors: Ritzwoller, Michael Keywords: ambient noise, seismology, seismic tomography, Rayleigh wave, Love wave, surface wave Abstract: A recent innovation in seismic imaging based on using long time

  2. Analysis of the KROTOS KFC test by coupling X-Ray image analysis and MC3D calculations

    SciTech Connect (OSTI)

    Brayer, C.; Charton, A.; Grishchenko, D.; Fouquart, P.; Bullado, Y.; Compagnon, F.; Correggio, P.; Cassiaut-Louis, N.; Piluso, P. [Commissariat a l'Energie Atomique et Aux Energies Alternatives, CEA Cadarache, DEN, F-13108 Saint-Paul-Les-Durance (France)

    2012-07-01T23:59:59.000Z

    During a hypothetical severe accident sequence in a Pressurized Water Reactor (PWR), the hot molten materials (corium) issuing from the degraded reactor core may generate a steam explosion if they come in contact with water and may damage the structures and threaten the reactor integrity. The SERENA program is an international OECD project that aims at helping the understanding of this phenomenon also called Fuel Coolant Interaction (FCI) by providing data. CEA takes part in this program by performing tests in its KROTOS facility where steam explosions using prototypic corium can be triggered. Data about the different phases in the premixing are extracted from the KROTOS X-Ray radioscopy images by using KIWI software (KROTOS Image analysis of Water-corium Interaction) currently developed by CEA. The MC3D code, developed by IRSN, is a thermal-hydraulic multiphase code mainly dedicated to FCI studies. It is composed of two applications: premixing and explosion. An overall FCI calculation with MC3D requires a premixing calculation followed by an explosion calculation. The present paper proposes an alternative approach in which all the features of the premixing are extracted from the X-Ray pictures using the KIWI software and transferred to an MC3D dataset for a direct simulation of the explosion. The main hypothesis are discussed as well as the first explosion results obtained with MC3D for the KROTOS KFC test. These results are rather encouraging and are analyzed on the basis of comparisons with the experimental data. (authors)

  3. 2D and 3D Refraction Based X-ray Imaging Suitable for Clinical and Pathological Diagnosis

    SciTech Connect (OSTI)

    Ando, Masami [Institute of Science and Technology, Tokyo Univ. of Science, Yamasaki 2641, Noda, Chiba 278-8510 (Japan); Photon Factory, IMSS, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Dept. of Photo-Science, GUAS, Shonan, Hayama, Kanagawa 240-0193 (Japan); Bando, Hiroko; Ueno, Ei [Dept. of Breast-Thyroid-Endocrine Surgery, Univ. of Tsukuba, Ibaraki 305-8573 (Japan)] (and others)

    2007-01-19T23:59:59.000Z

    The first observation of micro papillary (MP) breast cancer by x-ray dark-field imaging (XDFI) and the first observation of the 3D x-ray internal structure of another breast cancer, ductal carcinoma in-situ (DCIS), are reported. The specimen size for the sheet-shaped MP was 26 mm x 22 mm x 2.8 mm, and that for the rod-shaped DCIS was 3.6 mm in diameter and 4.7 mm in height. The experiment was performed at the Photon Factory, KEK: High Energy Accelerator Research Organization. We achieved a high-contrast x-ray image by adopting a thickness-controlled transmission-type angular analyzer that allows only refraction components from the object for 2D imaging. This provides a high-contrast image of cancer-cell nests, cancer cells and stroma. For x-ray 3D imaging, a new algorithm due to the refraction for x-ray CT was created. The angular information was acquired by x-ray optics diffraction-enhanced imaging (DEI). The number of data was 900 for each reconstruction. A reconstructed CT image may include ductus lactiferi, micro calcification and the breast gland. This modality has the possibility to open up a new clinical and pathological diagnosis using x-ray, offering more precise inspection and detection of early signs of breast cancer.

  4. Dual FIB-SEM 3D imaging and lattice boltzmann modeling of porosimetry and multiphase flow in chalk.

    SciTech Connect (OSTI)

    Rinehart, Alex; Petrusak, Robin (Advanced Resources International, Inc., Arlington, VA); Heath, Jason E.; Dewers, Thomas A.; Yoon, Hongkyu

    2010-12-01T23:59:59.000Z

    Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage.

  5. TOWARDS ROBUST 3D FACE RECOGNITION FROM NOISY RANGE IMAGES WITH LOW RESOLUTION

    E-Print Network [OSTI]

    Nabben, Reinhard

    application or access control for high-security areas like an airport control tower. Face recognition systems. Our work resulted in the development of a real-time system for the process- ing of three data and process it efficiently and in real-time. Furthermore, our 3D face recognition system

  6. Automatic Bilateral Symmetry Midsagittal Plane Extraction from Pathological 3D Neuroradiological Images

    E-Print Network [OSTI]

    , bleed, stroke of the human brain can be determined by a symmetry-based analysis of neural scans showing the brain's 3D internal structure. Detecting departures of this internal structure from its normal bilateral the ideal symmetry plane midsagittalwith respect to which the brain is invariant under re ection

  7. Protein structure similarity based on multi-view images generated from 3D molecular visualization

    E-Print Network [OSTI]

    Fukui, Kazuhiro

    to protein structure comparison using canonical angles between two subspaces generated from multiple views extension alignment and the Gauss integral tuning. 1. Introduction In structural biology, finding representation of 3D protein structure as a 31- dimensional feature vector called Gauss Integral Tuning (GIT) [6

  8. Obtaining anisotropic velocity data for proper depth seismic imaging

    SciTech Connect (OSTI)

    Egerev, Sergey; Yushin, Victor; Ovchinnikov, Oleg; Dubinsky, Vladimir; Patterson, Doug [Andreyev Acoustics Institute, Moscow, 117036 (Russian Federation); Baker Hughes, Inc, 2001 Rankin Road, Houston, TX, 77073 (United States)

    2012-05-24T23:59:59.000Z

    The paper deals with the problem of obtaining anisotropic velocity data due to continuous acoustic impedance-based measurements while scanning in the axial direction along the walls of the borehole. Diagrams of full conductivity of the piezoceramic transducer were used to derive anisotropy parameters of the rock sample. The measurements are aimed to support accurate depth imaging of seismic data. Understanding these common anisotropy effects is important when interpreting data where it is present.

  9. Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir

    E-Print Network [OSTI]

    Feighner, Mark A.

    2010-01-01T23:59:59.000Z

    support in the interpretation of the seismic and tomographicinterpretation is partially supported by the re- h s flection seismic

  10. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability

    SciTech Connect (OSTI)

    Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

    2013-09-03T23:59:59.000Z

    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of permeability will result from images between 2 and 4 lm resolution. To reduce permeability underestimation from analyses of high-resolu- tion images, a resolution threshold between 3 and 15 lm was found to be effective, but it is not known whether this range is applicable beyond the samples studied here.

  11. High throughput 3D optical microscopy : from image cytometry to endomicroscopy

    E-Print Network [OSTI]

    Choi, Heejin

    2014-01-01T23:59:59.000Z

    Optical microscopy is an imaging technique that allows morphological mapping of intracellular structures with submicron resolution. More importantly, optical microscopy is a technique that can readily provide images with ...

  12. A 4-side tileable back illuminated 3D-integrated Mpixel CMOS image sensor

    E-Print Network [OSTI]

    Suntharalingam, Vyshnavi

    The dominant trend with conventional image sensors is toward scaled-down pixel sizes to increase spatial resolution and decrease chip size and cost. While highly capable chips, these monolithic image sensors devote substantial ...

  13. Tube-wave Seismic Imaging and Monitoring Method for Oil Reservoirs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tube-wave Seismic Imaging and Monitoring Method for Oil Reservoirs and Aquifers Lawrence Berkeley National Laboratory Contact LBL About This Technology Real-Time Reservoir...

  14. 3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014Energy,FNeedDepartmentD3D

  15. 3-D Spectral IP Imaging: Non-Invasive Characterization DE FG02 96ER 14714

    SciTech Connect (OSTI)

    Morgan, F. Dale; Rodi, William; Lesmes, David

    2000-06-01T23:59:59.000Z

    The Earth Resources Laboratory (ERL) performed a broad foundational study of spectral induced polarization (SIP) for site characterization. The project encompassed laboratory studies of microgeometry and chemistry effects on Induced Polarization (IP), an investigation of electromagnetic coupling (emc) noise, and development of 3D modeling and inversion codes. The major finding of the project is that emc noise presents a critical limitation for field implementation of SIP and conventional correction methods are inadequate. The project developed a frequency domain 3D complex resistivity modeling and inversion code Laboratory experiments were conducted to study the effects of solution chemistry and microgeometry on the SIP response of sandstone. Results indicate that changes in chemistry affect the magnitude of the spectral IP response and changes in microgeometry affect the shape of the spectral IP response. The developed physiochemical IP model can be used to invert spectral IP data for an apparent grain size distribution. Laboratory studies over the last twenty years have shown that SIP data must be acquired over several decades of frequency and include frequencies greater than 1kHz. A model of the components of emc noise has been developed and investigation with this model showed that inductive coupling is the most significant component. The study concluded that emc limits the frequency range of usable field data to approximately 100 Hz and below for typical site conditions. Several correction schemes have been developed based on treating emc as noise to be removed from the data, but our investigation has shown that these are not adequate for high frequencies, greater than 100Hz. Laboratory studies have demonstrated that the greatest response is the frequency range greater than 1KHz, hence the emc problem must be resolved for field implementation of SIP to advance. The ERL developed 2D/3D time domain codes that perform inversions for charge abilities based on schemes introduced by Siegel (1959). The ERL has also developed a 3D complex resistivity code for inversion of frequency domain IP data. The algorithm accommodates a general earth model with a complex electrical resistivity as a function of frequency and 3-D spatial position. The forward problem is solved by the complex biconjugate gradient method, while the regularized inverse problem is solved by the nonlinear conjugate gradient method. Time domain field data was acquired along a single survey line at the FS-12 plume, Massachusetts Military Reservation. The data was inverted with the developed 2D time domain code with the results having an excellent match to monitoring well data. The data was further analyzed by an innovative scheme where a ''gross spectral chargeability'' was determined from time domain data. The results show that there is valuable information in the spectra of the data.

  16. AN APPROACH FOR INTERSUBJECT ANALYSIS OF 3D BRAIN IMAGES BASED ON CONFORMAL GEOMETRY

    E-Print Network [OSTI]

    Hua, Jing

    ABSTRACT Recent advances in imaging technologies, such as Magnetic Resonance Imaging (MRI), Positron technologies have accelerated brain research in many aspects [10, 12, 13]. In order to enable comparison that it minimizes the landmark mismatch energy [4] and Wang et al. introduced the application of compound energy

  17. Ultrafast imaging of complex systems in 3-D at near atomic resolution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on ultrafast timescales using extremely intense X-ray free-electron laser (XFEL) pulses. One important step toward ultrafast imaging of samples with a single X-ray shot is...

  18. KIDNEY DETECTION AND REAL-TIME SEGMENTATION IN 3D CONTRAST-ENHANCED ULTRASOUND IMAGES

    E-Print Network [OSTI]

    Cohen, Laurent

    the bubbles are naturally eliminated by metabolism processes, this modality is considered as completely safe- formation algorithm described in Section 3.1. It consists in maximizing the image gradient flux through

  19. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-08-01T23:59:59.000Z

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. This information is then applied to stitch images together into largermore »views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  20. Fitting a 3-D Deformable Model To 2-D Images -Some Results Karl Skoglund

    E-Print Network [OSTI]

    ], which is used in this article, can be fitted to images of heads in a wide range of poses. In two ensemble of param- eters, an iterative, multidimensional optimization method is used. In this article two method would have any advantages over the widely used simplex method. The notation and descriptive ideas

  1. 3D RECONSTRUCTION OF PLANT ROOTS FROM MRI IMAGES Hannes Schulz1

    E-Print Network [OSTI]

    Behnke, Sven

    distance measure by a multi-scale vesselness measure. As a result, paths running within good root candidates are preferred over paths in bare soil. We test this method using both virtually generated MRI) and Nuclear Magnetic Resonance Imaging (MRI) (Brown et al., 1990; Jahnke et al., 2009; Southon and Jones, 1992

  2. CREATION OF 3D MODELS FROM LARGE UNSTRUCTURED IMAGE AND VIDEO J. Hollick1

    E-Print Network [OSTI]

    Vehicles (UAV) and Remotely Operated underwater Vehicles (ROV). In these applications commodity camera, Photogrammetry, Underwater, Video ABSTRACT: Exploration of various places using low-cost camera solutions over. This research can also be applied to the capture of image sets using sensor platforms such as Unmanned Aerial

  3. Semi-Automated DIRSIG Scene Modeling from 3D LIDAR and Passive Imaging Sources

    E-Print Network [OSTI]

    Kerekes, John

    powerful tool for algorithm testing and sensor evaluation. However, the extensive time required to create given the parameters of the sensor. This may be done to evaluate an existing sensor under a host synthetic multispectral and hyperspectral images from the visible to long wave infrared (0.4 to 20 microns

  4. Deformable model for 3D intramodal nonrigid breast image registration with fiducial skin markers

    E-Print Network [OSTI]

    of FSM, finite element method (FEM) is used to distribute the markers' displacements linearly over with rigid registration technique. Keywords: Intramodal image registration, finite element method, deformable, we developed a finite element method (FEM) deformable breast model to correct motion artifacts

  5. Frequency-domain seismic modeling with the MUMPS sparse direct solver: application to the imaging of the

    E-Print Network [OSTI]

    Uçar, Bora

    Frequency-domain seismic modeling with the MUMPS sparse direct solver: application to the imaging of the earth's interior. Abstract Seismic imaging has many applications in civil engineering, risk hazard, waste storage monitoring, oil exploration and tectonophysics. Among the different seismic imaging

  6. CROSSWELL SEISMIC REFLECTION IMAGING OF A SHALLOW COBBLE-AND-SAND AQUIFER: AN EXAMPLE FROM THE BOISE HYDROGEOPHYSICAL

    E-Print Network [OSTI]

    Barrash, Warren

    CROSSWELL SEISMIC REFLECTION IMAGING OF A SHALLOW COBBLE-AND- SAND AQUIFER: AN EXAMPLE FROM Crosswell seismic data contain first-arrival information for velocity inversion and reflec- tions for seismic stratigraphic analysis. Seismic velocity information is useful for directly com- paring to

  7. Three-dimensional subsurface imaging synthetic aperture radar (3D SISAR). Final report, September 22, 1993--September 22, 1996

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    The concept developed under this applied research and development contract is a novel Ground Penetrating Radar system capable of remotely detecting, analyzing, and mapping buried waste containers from a mobile platform. From the testing and analysis performed to date, the 3-D SISAR has achieved the detection, accurate location, and three-dimensional imaging of buried test objects from a stand-off geometry. Tests have demonstrated that underground objects have been located to within 0.1 meter of their actual position. This work validates that the key elements of the approach are performing as anticipated. The stand-off synthetic aperture radar (SAR) methodology has been demonstrated to be a feasible approach as a remote sensing technique. The radar sensor constructed under this project is providing adequate quality data for imaging, and the matched filters have been demonstrated to provide enhanced target detection. Additional work is on-going in the area of underground propagation and scattering phenomena to provide enhanced depth performance, as the current imaging results have been limited to a few feet of depth underground.

  8. Local volume changes of the corpus callosum from 3D MR images of wildtype and knockout mouse brains G. Hamarneh1

    E-Print Network [OSTI]

    Hamarneh, Ghassan

    CC from the MR images (Figure 1a) using Livewire, a semi-automatic segmentation tool provided by AmiraLocal volume changes of the corpus callosum from 3D MR images of wildtype and knockout mouse brains G. Hamarneh1 , J. Chen1 , N. Lifshitz1 , J. Henderson2 , M. Henkelman1 1 Hospital for Sick Children

  9. Seismic Imaging of Receiver Ghosts of Primaries Instead of Primaries Themselves

    E-Print Network [OSTI]

    Ma, Nan

    2010-10-12T23:59:59.000Z

    The three key steps of modern seismic imaging are (1) multiple attenuation, (2) velocity estimation, and (3) migration. The multiple-attenuation step is essentially designed to remove the energy that has bounces at the free surface (also known...

  10. Automatic deployment of a 2-D geophone array for efficient ultra-shallow seismic imaging

    E-Print Network [OSTI]

    Tsoflias, Georgios P.; Steeples, Don W.; Czarnecki, Gerard P.; Sloan, Steven D.; Eslick, Robert C.

    2006-01-01T23:59:59.000Z

    : Data acquisition and preliminary processing strate- 324gies, Geophysics, 63, 1434?1450. 325Burridge, R., J. Graham, K. Shillcutt, R. Hirsh, and D. Kortenkamp (2003), 326Experiments with an EVA assistant Robot, paper presented at 7th Inter- 327national.... Copyright 2006 by the American Geophysical Union. 0094-8276/06/2006GL025902$05.00 LXXXXX 1of4 103 acquire conventional ultra-shallow 3-D seismic data. The 104 method could be adapted to allow robotic shallow seismic 105 surveys in areas where people cannot...

  11. Seismic Imaging and Inversion: Application of Linear Theory (2012), Cambridge University Press, co-authored with Bob Stolt

    SciTech Connect (OSTI)

    Weglein, Arthur B.; Stolt, Bob H.

    2012-03-01T23:59:59.000Z

    Extracting information from seismic data requires knowledge of seismic wave propagation and reflection. The commonly used method involves solving linearly for a reflectivity at every point within the Earth, but this book follows an alternative approach which invokes inverse scattering theory. By developing the theory of seismic imaging from basic principles, the authors relate the different models of seismic propagation, reflection and imaging - thus providing links to reflectivity-based imaging on the one hand and to nonlinear seismic inversion on the other. The comprehensive and physically complete linear imaging foundation developed presents new results at the leading edge of seismic processing for target location and identification. This book serves as a fundamental guide to seismic imaging principles and algorithms and their foundation in inverse scattering theory and is a valuable resource for working geoscientists, scientific programmers and theoretical physicists.

  12. Seismic Imaging of the Earth's Interior (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Romanowicz, Barbara

    2011-04-28T23:59:59.000Z

    Summer Lecture Series 2006: Earth scientist Barbara Romanowicz discusses how she explores the deep structure and dynamics of the Earth using seismic tomography.

  13. Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution within Carbonate Oil Reservoirs

    E-Print Network [OSTI]

    Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution, and demonstrate a method of using crosswell seismic profiling for identification of trapped oil, bypassed reservoir compartments, and location of fluid fronts in carbonate reefs. The method of crosswell seismic

  14. Reconstruction of 3D rigid body motion in a virtual environment from a 2D image sequence

    E-Print Network [OSTI]

    Dasgupta, Sumantra

    2004-09-30T23:59:59.000Z

    object within the ROI. The refined mask is used to model a spline template of the object to be tracked. The tracking algorithm then employs a motion model to track the template through a sequence of frames and gathers the 3D affine motion parameters...

  15. NON PARAMETRIC CELL NUCLEI SEGMENTATION BASED ON A TRACKING OVER DEPTH FROM 3D FLUORESCENCE CONFOCAL IMAGES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , Gustavo Leone1,2 1 Human Cancer Genetics Program, 2 Department of Molecular Genetics, 3 Computer Science And Engineering, 4 Biomedical Informatics, The Ohio State University, Columbus, Ohio ABSTRACT 3D cell nuclei projection cri- terion. Experimental results on real data demonstrate the effi- cacy of the proposed method

  16. Adaptive Geometric Tessellation For 3D Reconstruction of Anisotropically Developing Cells In Multilayer Tissues From Sparse Volumetric Microscopy Images

    E-Print Network [OSTI]

    Chakraborty, Anirban; Perales, Mariano Manuel; Reddy, Venugopala Gonehal; Roy-Chowdhury, Amit

    2013-01-01T23:59:59.000Z

    sparse confocal stacks of SAM images we show that this modelcell pair between two SAM slice images using ‘local graphthe boundary of the image slice for each SAM cross section,

  17. Reconstruction quasi-dense et mod`eles 3D `a partir d'une sequence d'images Quasi-Dense Reconstruction and 3D Models from Image Sequence

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , Kowloon, Hong Kong SAR. lhuillie@lasmea.univ-bpclermont.fr quan@cs.ust.hk Papiers et d´emos: wwwlasmea calibr´ees ainsi qu'un syst`eme associ´e de reconstruction de mod`eles 3D. La principale in- novation est). Abstract This paper proposes a quasi-dense reconstruction from un- calibrated sequence and a companion

  18. 3-D seismology in the Arabian Gulf

    SciTech Connect (OSTI)

    Al-Husseini, M. [Gulf PetroLink, Manama (Bahrain); Chimblo, R. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-08-01T23:59:59.000Z

    Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.

  19. Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0 T of the knee—image quality and diagnostic performance

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    standard 2D imaging at 3.0 T of the knee—image quality andMR imaging was performed at 3.0 T in 50 patients. Imagesat 1.5 T, while we used 3.0 T, which can potentially enhance

  20. Seismic velocity estimation and time to depth conversion of time-migrated images Maria Cameron, University of California at Berkeley, Sergey Fomel, University of Texas at Austin, and

    E-Print Network [OSTI]

    Sethian, James A.

    Seismic velocity estimation and time to depth conversion of time-migrated images Maria Cameron migrated seismic images and show that the Dix velocities estimated from time migration velocities are the true seismic velocities divided by the ge- ometrical spreading of image rays. We pose an inverse

  1. Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays

    E-Print Network [OSTI]

    Wetzstein, Gordon

    We develop tomographic techniques for image synthesis on displays composed of compact volumes of light-attenuating material. Such volumetric attenuators recreate a 4D light field or high-contrast 2D image when illuminated ...

  2. 3-D seismic surveys generate 5-D data volume. In order to estimate the horizons for interpretation and further processing, the traveltime picking needs to be performed on n-D subsets of this 5-D data volume (n5). Horizon

    E-Print Network [OSTI]

    Nicoli, Monica

    Abstract 3-D seismic surveys generate 5-D data volume. In order to estimate the horizons for interpretation and further processing, the traveltime picking needs to be performed on n-D subsets of this 5-D to support the interpreters in the estimation of the events by preserving their depth continuity. The HP

  3. Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran)

    E-Print Network [OSTI]

    Hatzfeld, Denis

    Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran) ANNE PAUL1*, DENIS International Institute of Earthquake Engineering and Seismology, Tehran, Iran 3 Institute for Advanced Studies in Basic Sciences (IASBS), PO Box 45195-1159, Zanjan, Iran *Corresponding author (e-mail: Anne

  4. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

    SciTech Connect (OSTI)

    Pyka, Grzegorz, E-mail: gregory.pyka@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Kerckhofs, Greet [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Biomechanics Research Unit, Université de Liege, Chemin des Chevreuils 1 - BAT 52/3, B-4000 Ličge (Belgium); Schrooten, Jan; Wevers, Martine [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium)

    2014-01-15T23:59:59.000Z

    In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution on ?CT-based morphological analysis. • Surface properties influence accuracy of ?CT-based morphology of porous structures. • Total porosity was the least sensitive to surface complexity and scan voxel size. • The beam thickness analysis was overestimated by the surface roughness. • Voxel size customization can significantly reduce a cost of the ?CT-based analysis.

  5. Seismic imaging of the shallow subsurface with high frequency seismic measurements

    SciTech Connect (OSTI)

    Kaelin, B [Univ. of California, Berkeley, CA (United States). Dept. of Geology and Geophysics

    1998-07-01T23:59:59.000Z

    Elastic wave propagation in highly heterogeneous media is investigated and theoretical calculations and field measurements are presented. In the first part the dynamic composite elastic medium (DYCEM) theory is derived for one-dimensional stratified media. A self-consistent method using the scattering functions of the individual layers is formulated, which allows the calculation of phase velocity, attenuation and waveform. In the second part the DYCEM theory has been generalized for three-dimensional inclusions. The specific case of spherical inclusions is calculated with the exact scattering functions and compared with several low frequency approximations. In the third part log and VSP data of partially water saturated tuffs in the Yucca Mountain region of Nevada are analyzed. The anomalous slow seismic velocities can be explained by combining self-consistent theories for pores and cracks. The fourth part analyzes an air injection experiment in a shallow fractured limestone, which has shown large effects on the amplitude, but small effects on the travel time of the transmitted seismic waves. The large amplitude decrease during the experiment is mainly due to the impedance contrast between the small velocities of gas-water mixtures inside the fracture and the formation. The slow velocities inside the fracture allow an estimation of aperture and gas concentration profiles.

  6. Incorporation of time-dependent thermodynamic models and radiation propagation models into JR 3-D synthetic image generation models

    E-Print Network [OSTI]

    Salvaggio, Carl

    images representing what an airborne or satellite thermal infrared imaging sensor would record. The scene sensors to a point where the model can be usedas a research tool to evaluate the limitations in our infrared (TIR) imagery generated by midwave (3-5 Rm) and longwave (8-14 pm) sensors is being increasingly

  7. Advanced seismic imaging for geothermal development John N. Louie*, Nevada Seismological Laboratory, University of Nevada, Reno; Satish K. Pullammanappallil

    E-Print Network [OSTI]

    advanced seismic attribute analyses, model testing, and verification of tectonic hypotheses. We the development of the region's full geothermal-power potential. The development of advanced seismic imaging of eastern California, Nevada, and Utah, magmatic geothermal systems are found at the edges of the province

  8. Chemical imaging at 30 nm spatial resolution in 2-d and 3-d with Scanning Transmission X-ray Microscopy

    E-Print Network [OSTI]

    Fisher, Frank

    sensitive imaging of environmental biofilms; speciation and quantitative mapping of metals in natural river in January 1997, after serving on the editorial board since 1986. He has worked with AFCC since 2008 on fuel

  9. Seismic imaging of hydraullically-stimulated fractures: A numerical study of the effect of the source mechanism

    E-Print Network [OSTI]

    Shabelansky, Andrey Hanan

    2012-01-01T23:59:59.000Z

    We present a numerical study of seismic imaging of hydraulically stimulated fractures using a single source from an adjacent fracturing-process. The source is either a point force generated from the perforation of the ...

  10. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    SciTech Connect (OSTI)

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N. (Connecticut); (USARL)

    2012-01-20T23:59:59.000Z

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  11. Imaging and Radiography with Nuclear Resonance Fluorescence and Effective-Z (EZ-3D) Determination; SNM Detection Using Prompt Neutrons from Photon Induced Fission

    SciTech Connect (OSTI)

    Bertozzi, William; Hasty, Richard; Klimenko, Alexei; Korbly, Stephen E.; Ledoux, Robert J.; Park, William [Passport Systems, Inc., 70 Treble Cove Road, N. Billerica MA 01862 (United States)

    2009-03-10T23:59:59.000Z

    Four new technologies have been developed for use in non-intrusive inspection systems to detect nuclear materials, explosives and contraband. Nuclear Resonance Fluorescence (NRF) provides a three dimensional image of the isotopic content of a container. NRF determines the isotopic composition of a region and specifies the isotopic structure of the neighboring regions, thus providing the detailed isotopic composition of any threat. In transmission mode, NRF provides a two dimensional projection of the isotopic content of a container, much as standard X-ray radiography provides for density. The effective-Z method (EZ-3D) uses electromagnetic scattering processes to yield a three-dimensional map of the effective-Z and the density in a container. The EZ-3D method allows for a rapid discrimination based on effective Z and mass of materials such as those with high Z, as well as specifying regions of interest for other contraband. The energy spectrum of prompt neutrons from photon induced fission (PNPF) provides a unique identification of the presence of actinides and SNM. These four new technologies can be used independently or together to automatically determine the presence of hazardous materials or contraband. They can also be combined with other technologies to provide added specificity.

  12. Comparison of 2D Radiographic Images and 3D Cone Beam Computed Tomography for Positioning Head-and-Neck Radiotherapy Patients

    SciTech Connect (OSTI)

    Li Heng [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Zhu, X. Ronald [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)], E-mail: xrzhu@mdanderson.org; Zhang Lifei; Dong Lei; Tung, Sam [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Ahamad, Anesa M.D.; Chao, K. S. Clifford; Morrison, William H.; Rosenthal, David I.; Schwartz, David L. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Mohan, Radhe [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Garden, Adam S. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2008-07-01T23:59:59.000Z

    Purpose: To assess the positioning accuracy using two-dimensional kilovoltage (2DkV) imaging and three-dimensional cone beam CT (CBCT) in patients with head and neck (H and N) cancer receiving radiation therapy. To assess the benefit of patient-specific headrest. Materials and Methods: All 21 patients studied were immobilized using thermoplastic masks with either a patient-specific vacuum bag (11 of 21, IMA) or standard clear plastic (10 of 21, IMB) headrests. Each patient was imaged with a pair of orthogonal 2DkV images in treatment position using onboard imaging before the CBCT procedure. The 2DkV and CBCT images were acquired weekly during the same session. The 2DkV images were reviewed by oncologists and also analyzed by a software tool based on mutual information (MI). Results: Ninety-eight pairs of assessable 2DkV-CBCT alignment sets were obtained. Systematic and random errors were <1.6 mm for both 2DkV and CBCT alignments. When we compared shifts determined by CBCT and 2DkV for the same patient setup, statistically significant correlations were observed in all three major directions. Among all CBCT couch shifts, 4.1% {>=} 0.5 cm and 18.7% {>=} 0.3 cm, whereas among all 2DkV (MI) shifts, 1.7% {>=} 0.5 cm and 11.2% {>=} 0.3 cm. Statistically significant difference was found on anteroposterior direction between IMA and IMB with the CBCT alignment only. Conclusions: The differences between 2D and 3D alignments were mainly caused by the relative flexibility of certain H and N structures and possibly by rotation. Better immobilization of the flexible neck is required to further reduce the setup errors for H and N patients receiving radiotherapy.

  13. 3D Printing Electronics

    E-Print Network [OSTI]

    Stryk, Oskar von

    Login Register Home Videos Jobs Games 3D Printing Electronics Design Software Designer Edge for 3D Printing · -- B6 Sigma Labs (ticker SGLB) is not the same company as Sigma Technologies

  14. 3D inpatient dose reconstruction from the PET-CT imaging of {sup 90}Y microspheres for metastatic cancer to the liver: Feasibility study

    SciTech Connect (OSTI)

    Fourkal, E.; Veltchev, I.; Lin, M.; Meyer, J. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)] [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States); Koren, S. [Department of Radiation Oncology, Beth Israel Comprehensive Cancer Center, New York, New York 10011 (United States)] [Department of Radiation Oncology, Beth Israel Comprehensive Cancer Center, New York, New York 10011 (United States); Doss, M.; Yu, J. Q. [Department of Diagnostic Imaging, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)] [Department of Diagnostic Imaging, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

    2013-08-15T23:59:59.000Z

    Purpose: The introduction of radioembolization with microspheres represents a significant step forward in the treatment of patients with metastatic disease to the liver. This technique uses semiempirical formulae based on body surface area or liver and target volumes to calculate the required total activity for a given patient. However, this treatment modality lacks extremely important information, which is the three-dimensional (3D) dose delivered by microspheres to different organs after their administration. The absence of this information dramatically limits the clinical efficacy of this modality, specifically the predictive power of the treatment. Therefore, the aim of this study is to develop a 3D dose calculation technique that is based on the PET imaging of the infused microspheres.Methods: The Fluka Monte Carlo code was used to calculate the voxel dose kernel for {sup 90}Y source with voxel size equal to that of the PET scan. The measured PET activity distribution was converted to total activity distribution for the subsequent convolution with the voxel dose kernel to obtain the 3D dose distribution. In addition, dose-volume histograms were generated to analyze the dose to the tumor and critical structures.Results: The 3D inpatient dose distribution can be reconstructed from the PET data of a patient scanned after the infusion of microspheres. A total of seven patients have been analyzed so far using the proposed reconstruction method. Four patients underwent treatment with SIR-Spheres for liver metastases from colorectal cancer and three patients were treated with Therasphere for hepatocellular cancer. A total of 14 target tumors were contoured on post-treatment PET-CT scans for dosimetric evaluation. Mean prescription activity was 1.7 GBq (range: 0.58–3.8 GBq). The resulting mean maximum measured dose to targets was 167 Gy (range: 71–311 Gy). Mean minimum dose to 70% of target (D70) was 68 Gy (range: 25–155 Gy). Mean minimum dose to 90% of target (D90) was 53 Gy (range: 13–125 Gy).Conclusions: A three-dimensional inpatient dose reconstruction method has been developed that is based on the PET/CT data of a patient treated with {sup 90}Y microspheres. It allows for a complete description of the absorbed dose by the tumor and critical structures. It represents the first step in building predictive models for treatment outcomes for patients receiving this therapeutic modality as well as it allows for better analysis of patients' dose response and will ultimately improve future treatment administration.

  15. 3D NUCLEAR SEGMENTAT

    Energy Science and Technology Software Center (OSTI)

    003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems  https://vision.lbl.gov/Software/3DMorphometry/ 

  16. Seismic Imaging of Transition Zone Discontinuities Suggests Hot

    E-Print Network [OSTI]

    Rhoads, James

    inconclusive. To investigate pertinent thermal anomalies, we imaged with inverse scattering of SS waves interior concerns mantle plumes, and as the archetype for plume-related hotspot activity, Hawaii has long upwelling from a thermal boundary near the base of the transition zone (11) and shallow-mantle processes (12

  17. Near-Surface imaging of a hydrogeothermal system at Mount Princeton...

    Open Energy Info (EERE)

    imaging of a hydrogeothermal system at Mount Princeton, Colorado using 3D seismic, self-potential, and dc resistivity data Jump to: navigation, search OpenEI Reference LibraryAdd...

  18. Imaging Reservoir Quality: Seismic Signatures of Geologic Processes

    SciTech Connect (OSTI)

    Department of Geophysics

    2008-06-30T23:59:59.000Z

    Lithofacies successions from diverse depositional environments show distinctive patterns in various rock-physics planes (velocity-porosity, velocity-density and porosity-clay). Four clear examples of decameter-scale lithofacies sequences are documented in this study: (1) Micocene fluvial deposits show an inverted-V pattern indicative of dispersed fabric, (2) a fining-upward sequence of mud-rich deep deposits shows a linear trend associated with laminated sand-clay mixtures, (3) sand-rich deposits show a pattern resulting from the scarcity of mixed lithofacies, and (4) a coarsening-upward sequence shows evidence of both dispersed and horizontally laminated mixed lithofacies, with predominating dispersed mixtures generated by bioturbation. It was observed that carbonate-cemented sandstones are extremely heterogeneous in the project deep-water study area. Those from the base of incisions are usually associated with lower shaliness, lower porosity and higher P-impedance, while from the top of flooding surfaces exhibit higher shaliness, higher porosity and lower P-impedance. One rock physics model that captures the observed impedance-porosity trend is the 'stiff-sand model'. For this model, the high-porosity end-member is unconsolidated sand whose initial porosity is a function of sorting and shaliness, while the low-porosity end-member is solid mineral. These two end points are joined with a Hashin-Shtrikman equation. A systematic variation of quartz:clay ratio from proximal to distal locations was observed in the study area even within a single facies. The quartz:clay ratio changes from [0.5:0.5] to [1:0] along the direction of flow, based on the trends of P-impedance vs. porosity as predicted by the rock model for uncemented sands. The results are in agreement with spill-and-fill sequence stratigraphic model in mini-basin setting. In addition, porosity at the distal location ({approx}25 % to 35%) is higher than the porosity at the proximal location ({approx}20 % to 23%). This trend is explained by a sequence stratigraphic model which predicts progressive increase in sorting by turbidity current along the flow, as well as, quantified by a rock model that heuristically accounts for sorting. The results can be applied to improve quantitative predication of sediment parameters from seismic impedance, away from well locations.

  19. Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs

    DOE Patents [OSTI]

    Goloshubin, Gennady M. (Sugar Land, TX); Korneev, Valeri A. (Lafayette, CA)

    2005-09-06T23:59:59.000Z

    A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

  20. Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs

    DOE Patents [OSTI]

    Goloshubin, Gennady M.; Korneev, Valeri A.

    2006-11-14T23:59:59.000Z

    A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

  1. Impact of the cracks lost in the imaging process on computing linear elastic properties from 3D microtomographic images of Berea sandstone

    E-Print Network [OSTI]

    Toksoz, M. Nafi

    With the current developments in imaging/computational techniques and resources, computational rock physics has been emerging as a new field of study. Properties of rocks are examined by carrying out extensive numerical ...

  2. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Qussai Marashdeh

    2012-09-30T23:59:59.000Z

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energyâ??s National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi-phase flow systems in high temperature and high pressure conditions, typical in many industrial applications.

  3. Final Report (O1-ERD-051) Dynamic InSAR: Imaging Seismic Waves Remotely from Space

    SciTech Connect (OSTI)

    Vincent, P; Rodgers, A; Dodge, D; Zucca, J; Schultz, C; Walter, B; Portnoff, M

    2003-02-07T23:59:59.000Z

    The purpose of this LDRD project was to determine the feasibility of using InSAR (interferometric synthetic aperture radar) to image seismic waves remotely from space. If shown to be feasible, the long-term goal of this project would be to influence future SAR satellite missions and airborne SAR platforms to include a this new capability. This final report summarizes the accomplishments of the originally-planned 2-year project that was cut short to 1 year plus 2 months due to a funding priority change that occurred in the aftermath of the September 11th tragedy. The LDRD-ER project ''Dynamic InSAR: Imaging Seismic Waves from Space'' (01-ERD-051) began in October, (FY01) and ended in December (FY02). Consequently, most of the results and conclusions for this project are represented in the FY0l Annual Report. Nonetheless, additional conclusions and insights regarding the progress of this work are included in this report. In should be noted that this work was restarted and received additional funding under the NA-22 DOE Nonproliferation Program in FY03.

  4. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08:59 ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which...

  5. adaptive 3-d segmentation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farag, Aly A. 343 946 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 10, OCTOBER 1999 Model-Based Quantitation of 3-D Magnetic Biology and Medicine Websites Summary: of 3-D...

  6. Seismic Evaluation of the Fruitland Formation with Implications on Leakage Potential of Injected CO2

    E-Print Network [OSTI]

    Wilson, Thomas H.

    on the analysis of 3D seismic from the area. 3D seismic interpretation reveals that the Late Cretaceous FruitlandSeismic Evaluation of the Fruitland Formation with Implications on Leakage Potential of Injected CO Basin pilot test include acquisition of geophysical logs, time lapse VSP and analysis of 3D seismic data

  7. Bottom-Up Top-Down 3D Human Pose Estimation Integrating Bottom-Up and Top-Down Approach from Monocular Image

    E-Print Network [OSTI]

    Takiguchi, Tetsuya

    Bottom-Up Top-Down 3 3D Human Pose Estimation Integrating Bottom-Up and Top-Down Approach from and Technology, Kobe University 2 Organization of Advanced Science and Technology 1 3 HOG 3 Bottom-up Top-down 2 3 x web [1] HOG [2] 3 3D Bottom-Up Top-Down Bottom-Up Top-Down 3.1 Bottom-Up HOG z 3 x x = Rz + (1

  8. Seismic imaging of oil production rate Valeri A. Korneev, Dmitry Silin, Lawrence Berkeley National Laboratory, Berkeley, California

    E-Print Network [OSTI]

    Korneev, Valeri A.

    1 Seismic imaging of oil production rate Valeri A. Korneev, Dmitry Silin, Lawrence Berkeley to the square root of the product of frequency of the signal and the mobility of the fluid in the reservoir. This provides an opportunity for locating the most productive zones of the field before drilling

  9. Simulation of production and elastic properties of reservoirs to validate time-lapse seismics.

    E-Print Network [OSTI]

    Guerin, Gilles

    , including the 3D seismic processing and inversion, and the preliminary time- lapse interpretation. We-lapse seismics. 3.1 Introduction Time-lapse, or 4-D, seismic monitoring is an integrated reservoir exploitation technique based on the analysis of successive 3-D seismic surveys. Differences over time in seismic

  10. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    santos

    SEISMIC MONITORING OF. CARBON DIOXIDE FLUID FLOW. J. E. Santos. 1. , G. B. Savioli. 2. , J. M. Carcione. 3. , D. Gei. 3. 1. CONICET, IGPUBA, Fac.

  11. 3D engine for immersive virtual environments 

    E-Print Network [OSTI]

    Anderson, Christopher Dean

    2005-02-17T23:59:59.000Z

    The purpose of this project is to develop a software framework, a 3D engine, which will generate images to be projected onto facets of a spatially immersive display (SID). The goal is to develop a software library to support the creation of images...

  12. Relationships of seismic amplitudes and gas content of the Miocene Amos Sand, Mobile Bay area, offshore Alabama

    SciTech Connect (OSTI)

    Reif, L.T. (Mobil Oil Company, New Orleans, LA (United States)); Kinsland, G.L. (Univ. of Southwestern Louisiana, Lafayette, LA (United States))

    1993-09-01T23:59:59.000Z

    Mobil Oil Company has collected three-dimensional (3-D) seismic data over Mary Ann field in the Mobile Bay area, Alabama. Although the survey was designed and collected so as to image the deeper Norphlet Sands, amplitude anomalies in the image of the shallow Miocene Amos Sand are evident. Relationships are developed between the seismic amplitudes and net feet of gas in the Amos Sand at the few existing wells. These relationships are used to predict net feet of gas everywhere in the area of the seismic survey. The result is a contoured map of net feet of gas in the Miocene Amos Sand in Mary Ann field.

  13. 3-D cinematography with approximate and no geometry

    E-Print Network [OSTI]

    Magnor, Marcus

    3-D cinematography with approximate and no geometry Martin Eisemann, Timo Stich and Marcus Magnor Abstract 3-D cinematography is a new step towards full immersive video, allow- ing complete control of the book Image and Geometry Processing for 3-D Cinematography published by Springer. 1 Introduction

  14. Temporal Integration of Seismic Traveltime Tomography

    E-Print Network [OSTI]

    Ajo-Franklin, Jonathan B.

    2005-06-01T23:59:59.000Z

    Time-lapse geophysical measurements and seismic imaging methods in particular are powerful techniques

  15. Tomographic imaging of rock conditions ahead of mining using the shearer as a seismic source - A feasibility study

    SciTech Connect (OSTI)

    Luo, X.; King, A.; Van de Werken, M. [CSIRO, Brisbane, Qld. (Australia)

    2009-11-15T23:59:59.000Z

    Roof falls due to poor rock conditions in a coal longwall panel may threaten miner's life and cause significant interruption to mine production. There has been a requirement for technologies that are capable of imaging the rock conditions in longwall coal mining, ahead of the working face and without any interruption to production. A feasibility study was carried out to investigate the characteristics of seismic signals generated by the continuous coal cutter (shearer) and recorded by geophone arrays deployed ahead of the working face, for the purpose of seismic tomographic imaging of roof strata condition before mining. Two experiments were conducted at a coal mine using two arrays of geophones. The experiments have demonstrated that the longwall shearer generates strong and low-frequency (similar to 40 Hz) seismic energy that can be adequately detected by geophones deployed in shallow boreholes along the roadways as far as 300 m from the face. Using noise filtering and signal cross correlation techniques, the seismic arrival times associated with the shearer cutting can be reliably determined. It has proved the concept that velocity variations ahead of the face can be mapped out using tomographic techniques while mining is in progress.

  16. Evaluation of PC-ISO for customized, 3D printed, gynecologic 192Ir HDR brachytherapy applicators

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    A, Iuliano L, Violante MG. 3D printing technique applied toTengg-Kobligk H, et al. 3D printing based on imaging data:biocompatible, sterilizable 3D printing material, and its

  17. 3D Spectroscopy and the Virtual Observatory

    E-Print Network [OSTI]

    Bryan W. Miller

    2007-08-15T23:59:59.000Z

    Integral field, or 3D, spectroscopy is the technique of obtaining spectral information over a two-dimensional, hopefully contiguous, field of view. While there is some form of astronomical 3D spectroscopy at all wavelengths, there has been a rapid increase in interest in optical and near-infrared 3D spectroscopy. This has resulted in the deployment of a large variety of integral-field spectrographs on most of the large optical/infrared telescopes. The amount of IFU data available in observatory archives is large and growing rapidly. The complications of treating IFU data as both imaging and spectroscopy make it a special challenge for the virtual observatory. This article describes the various techniques of optical and near-infrared spectroscopy and some of the general needs and issues related to the handling of 3D data by the virtual observatory.

  18. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC) GettingGitGraduateGrantsGraphene's 3D

  19. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Annual Report, 1993SemiconductorGraphene's 3D

  20. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Annual Report,Graphene's 3D Counterpart Print

  1. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Annual Report,Graphene's 3D Counterpart

  2. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Annual Report,Graphene's 3D

  3. Imaging Permafrost Velocity Structure Using High Resolution 3D Seismic Tomography K.Ramachandran, The University of Tulsa, Tom Brent, Gilles Bellefleur and Scott Dallimore, Geological Survey of

    E-Print Network [OSTI]

    Ramachandran, Kumar

    .Ramachandran, The University of Tulsa, Tom Brent, Gilles Bellefleur and Scott Dallimore, Geological Survey of Canada, Michael

  4. 3D Wavelet-Based Filter and Method

    DOE Patents [OSTI]

    Moss, William C. (San Mateo, CA); Haase, Sebastian (San Francisco, CA); Sedat, John W. (San Francisco, CA)

    2008-08-12T23:59:59.000Z

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  5. Sample measurement Choose 3D, for 3D scan

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Sample measurement M Choose 3D, for 3D scan -> load method ("3D_EEM.xml") -> Run Signal: save S1/R1 column names etc once saved, close all plots before taking next sample Processing via Matlab script "EEM

  6. Idea Generation 3D printing

    E-Print Network [OSTI]

    Papadopouli, Maria

    2012 Idea Generation 3D printing at nanoscale Cruising on electrical roads Pushing back against Centre micro and nanoscale 15 Taking 3D printing to the nanoscale 18 Fighting cancer with a "lab

  7. Speed-line for 3D animation 

    E-Print Network [OSTI]

    Song, Won Chan

    2007-04-25T23:59:59.000Z

    My thesis describes a tool which creates speed-lines automatically in 3D computer animations. Speed-lines are usually used in comic books to express fast motions in a still image. They are also used in 2D animations. ...

  8. Seismic reflection imaging of hydrostratigraphic facies in Boise: A tale of three scales Lee M. Liberty, Spencer H. Wood, and Warren Barrash, Center for Geophysical Investigation of the Shallow

    E-Print Network [OSTI]

    Barrash, Warren

    Seismic reflection imaging of hydrostratigraphic facies in Boise: A tale of three scales Lee M Subsurface (CGISS), Boise State University Summary We have acquired, processed and interpreted seismic groundwater studies and to better understand the hydrostratigraphic significance of seismic boundaries. We use

  9. Conducting a 3D Converted Shear Wave Project to Reduce Exploration...

    Broader source: Energy.gov (indexed) [DOE]

    The primary objective of this project is to conduct a 3C 3D (converted shear wave) seismic survey to reduce exploration risk by characterizing fault and fracture geometrics at...

  10. Real-time cylindrical curvilinear 3-D ultrasound imaging E.C. PUA, J.T. YEN AND S.W. SMITH

    E-Print Network [OSTI]

    Smith, Stephen

    and increase visualization close to the transducer face. In this project, a 440 channel 5 MHz two the transducer face, these arrays are ideal for cardiac imaging, avoiding the interference posed by the ribs

  11. Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA

    Broader source: Energy.gov [DOE]

    DOE Geothermal Technologies Peer Review 2010 - Presentation. The primary objective of this project is to conduct a 3C 3D (converted shear wave) seismic survey to reduce exploration risk by characterizing fault and fracture geometrics at Wister, CA.The intent of the proposed program is to use a 3D seismic survey with converted shear waves combined with other available data to site and drill production wells at Wister, a blind geothermal resource.

  12. Seismic reflection imaging of underground cavities using open-source software

    SciTech Connect (OSTI)

    Mellors, R J

    2011-12-20T23:59:59.000Z

    The Comprehensive Nuclear Test Ban Treaty (CTBT) includes provisions for an on-site inspection (OSI), which allows the use of specific techniques to detect underground anomalies including cavities and rubble zones. One permitted technique is active seismic surveys such as seismic refraction or reflection. The purpose of this report is to conduct some simple modeling to evaluate the potential use of seismic reflection in detecting cavities and to test the use of open-source software in modeling possible scenarios. It should be noted that OSI inspections are conducted under specific constraints regarding duration and logistics. These constraints are likely to significantly impact active seismic surveying, as a seismic survey typically requires considerable equipment, effort, and expertise. For the purposes of this study, which is a first-order feasibility study, these issues will not be considered. This report provides a brief description of the seismic reflection method along with some commonly used software packages. This is followed by an outline of a simple processing stream based on a synthetic model, along with results from a set of models representing underground cavities. A set of scripts used to generate the models are presented in an appendix. We do not consider detection of underground facilities in this work and the geologic setting used in these tests is an extremely simple one.

  13. 1618 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 4, AUGUST 2004 4 Compton Imaging Using a 3-D Position-Sensitive

    E-Print Network [OSTI]

    He, Zhong

    Engineering and Health Physics Fellowship sponsored by the U.S. Department of Energy Office of Nuclear Energy1618 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 4, AUGUST 2004 4 Compton Imaging Using a 3, Student Member, IEEE, Zhong He, Senior Member, IEEE, and Feng Zhang, Student Member, IEEE Abstract

  14. 3D Fingerprint Phantoms Sunpreet S. Arora, Kai Cao and Anil K. Jain

    E-Print Network [OSTI]

    ) printing the 3D fingerprint phantoms using a commodity 3D printer. Preliminary experimental results show3D Fingerprint Phantoms Sunpreet S. Arora, Kai Cao and Anil K. Jain Department of Computer Science, we propose creating 3D fin- gerprint phantoms (phantoms or imaging phantoms are specially designed

  15. Stereo Matching and 3D Visualization for Gamma-Ray Cargo Inspection Zhigang Zhu*ab

    E-Print Network [OSTI]

    Zhu, Zhigang

    Stereo Matching and 3D Visualization for Gamma-Ray Cargo Inspection Zhigang Zhu*ab , Yu-Chi Hubc visualization issues are studied for a linear pushbroom stereo model built for 3D gamma-ray (or x-ray) cargo results are presented for real gamma-ray images of a 3D cargo container and the objects inside. The 3D

  16. Imaging dipping sediments at a salt dome flank -VSP seismic interferometry and reverse-time Rongrong Lu*, Mark Willis, Xander Campman, Jonathan Ajo-Franklin, M. Nafi Toksz, ERL, MIT

    E-Print Network [OSTI]

    Ajo-Franklin, Jonathan

    Imaging dipping sediments at a salt dome flank - VSP seismic interferometry and reverse We present results of applying seismic interferometry to image dipping sediments abutting a salt dome overhanging salt dome. The sediment reflectors in the model dip up towards the salt dome flank. To process

  17. 3D World Building System

    SciTech Connect (OSTI)

    None

    2013-10-30T23:59:59.000Z

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  18. 3D World Building System

    ScienceCinema (OSTI)

    None

    2014-02-26T23:59:59.000Z

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  19. Converted wave imaging in anisotropic media using sea-floor seismic data 

    E-Print Network [OSTI]

    Mancini, Fabio

    velocity ratio is derived conventionally by event matching in the P-wave and converted wave stacks. I present an attempt to use well-log derived velocity ratios to avoid this interpretative step. The velocity ratio derived from 4C seismic data is about 30...

  20. Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates

    E-Print Network [OSTI]

    Ali, Mohammed

    Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates Mohammed Y is required to optimize hydrocarbon production. A rock containing parallel fractures can be seismically to the seismic wavelength. Seismic anisotropy may be detectable from attributes of pre-stack 3-D seismic data

  1. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-04-01T23:59:59.000Z

    In this report we will show results of seismic and well log derived attenuation attributes from a deep water Gulf of Mexico data set. This data was contributed by Burlington Resources and Seitel Inc. The data consists of ten square kilometers of 3D seismic data and three well penetrations. We have computed anomalous seismic absorption attributes on the seismic data and have computed Q from the well log curves. The results show a good correlation between the anomalous absorption (attenuation) attributes and the presence of gas as indicated by well logs.

  2. Building a database of 3D scenes from user annotations

    E-Print Network [OSTI]

    Russell, Bryan C.

    In this paper, we wish to build a high quality database of images depicting scenes, along with their real-world three-dimensional (3D) coordinates. Such a database is useful for a variety of applications, including training ...

  3. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    SciTech Connect (OSTI)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01T23:59:59.000Z

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  4. DeepNet: An Ultrafast Neural Learning Code for Seismic Imaging

    SciTech Connect (OSTI)

    Barhen, J.; Protopopescu, V.; Reister, D.

    1999-07-10T23:59:59.000Z

    A feed-forward multilayer neural net is trained to learn the correspondence between seismic data and well logs. The introduction of a virtual input layer, connected to the nominal input layer through a special nonlinear transfer function, enables ultrafast (single iteration), near-optimal training of the net using numerical algebraic techniques. A unique computer code, named DeepNet, has been developed, that has achieved, in actual field demonstrations, results unattainable to date with industry standard tools.

  5. 4D Seismic to Image a Thin Carbonate Reservoir During a Miscible CO2 Flood: Hall-Gurney Field, Kansas, USA

    E-Print Network [OSTI]

    Raef, A.E.; Miller, Richard D.; Franseen, Evan K.; Byrnes, A.P.; Watney, W.L.; Harrison, W.E.

    2005-05-01T23:59:59.000Z

    and processing, and use of amplitude envelope 4D horizon attributes. Comparison of production data and reservoir simulations to seismic images provided a measure of the effectiveness of time-lapse (TL) to detect weak anomalies associated with changes in fluid...

  6. Real time 3D and heterogeneous data fusion

    SciTech Connect (OSTI)

    Little, C.Q.; Small, D.E.

    1998-03-01T23:59:59.000Z

    This project visualizes characterization data in a 3D setting, in real time. Real time in this sense means collecting the data and presenting it before it delays the user, and processing faster than the acquisition systems so no bottlenecks occur. The goals have been to build a volumetric viewer to display 3D data, demonstrate projecting other data, such as images, onto the 3D data, and display both the 3D and projected images as fast as the data became available. The authors have examined several ways to display 3D surface data. The most effective was generating polygonal surface meshes. They have created surface maps form a continuous stream of 3D range data, fused image data onto the geometry, and displayed the data with a standard 3D rendering package. In parallel with this, they have developed a method to project real-time images onto the surface created. A key component is mapping the data on the correct surfaces, which requires a-priori positional information along with accurate calibration of the camera and lens system.

  7. Accepting the T3D

    SciTech Connect (OSTI)

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01T23:59:59.000Z

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  8. Projecting 2D Gene Expression Data Into 3D and 4D Space

    E-Print Network [OSTI]

    Vize, Peter D.

    imaging of wholemount stained sam- ples. The two-dimensional images thus generated are, in fact games typically generate virtual 3D objects by texture mapping an image onto a 3D polygonal frame mapping images of gene expression data onto b-spline based embryo models. This approach, known as UV

  9. COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD

    E-Print Network [OSTI]

    Sheehan, Anne F.

    COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado, seismic, seismicity, crust, fault, hazard ABSTRACT Construction of seismic hazard and risk maps depends upon carefully constrained input parameters including background seismicity, seismic attenuation

  10. Joint inversion of electrical and seismic data for Fracture char...

    Broader source: Energy.gov (indexed) [DOE]

    Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char....

  11. TOPAZ3D. 3-D Finite Element Heat Transfer

    SciTech Connect (OSTI)

    Shapiro, A.B. [Lawrence Livermore National Lab., CA (United States)

    1992-02-24T23:59:59.000Z

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  12. 3-D Seismic Methods For Geothermal Reservoir Exploration And...

    Open Energy Info (EERE)

    permeable pathways. The premise of this review is that there may new developments in theory and modeling, as well as in data acquisition and processing, which could make it...

  13. 3-D Seismic Methods For Geothermal Reservoir Exploration And

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's APTA

  14. INTEGRATING DATA FROM 3D CAD AND 3D CAMERAS

    E-Print Network [OSTI]

    Bosché, Frédéric

    camera, 3D CAD, data fusion, construction automation 1 PhD Candidate, Department of Civil Engineering in Civil and Building Engineering Page 37 #12;INTRODUCTION Over the last fifty years, the construction2 , Carl T. Haas3 and Carlos H. Caldas4 ABSTRACT In a reversal of historic trends, the capital

  15. Characterization of 3D Photovoltaics

    E-Print Network [OSTI]

    Characterization of 3D Photovoltaics SEMICONDUCTORS Our goal is to provide industry with test structures and models of next-generation photovoltaics, with an initial focus on cadmium telluride (Cd (nanostructured) photovoltaic devices. Objective Impact and Customers · The U.S. Photovoltaic Industry Roadmap

  16. LITHOLOGY-FLUID INVERSION FROM PRESTACK SEISMIC DATA

    E-Print Network [OSTI]

    Eidsvik, Jo

    LITHOLOGY-FLUID INVERSION FROM PRESTACK SEISMIC DATA MARIT ULVMOEN Department of Mathematical of the study is on lithology-fluid inversion from prestack seismic data in a 3D reservoir. The inversion relates the lithology-fluid classes to elastic variables and the seismic data, and it follows the lines

  17. Lithology-Fluid Inversion based on Prestack Seismic Data

    E-Print Network [OSTI]

    Eidsvik, Jo

    Lithology-Fluid Inversion based on Prestack Seismic Data Marit Ulvmoen Summary The focus of the study is on lithology-fluid inversion from prestack seismic data. The target zone is a 3D reservoir model. The likelihood model relates the lithology-fluid classes to elastic variables and the seismic

  18. Applicability of 2-D Time-Lapse High-Resolution Seismic Reflection Approach to Image Natural Salt-Dissolution and Subsidence in Central Kansas and Improved Post-Processed Vibroseis Data Characteristics

    E-Print Network [OSTI]

    Rice, Daniel

    2009-01-12T23:59:59.000Z

    The effectiveness of 2-D time-lapse imaging for monitoring natural dissolution of the Hutchinson Salt in eastern Reno County, Kansas was shown to be restricted when comparing high-resolution seismic reflection data acquired ...

  19. 3D reconstruction of tensors and vectors

    SciTech Connect (OSTI)

    Defrise, Michel; Gullberg, Grant T.

    2005-02-17T23:59:59.000Z

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  20. Custom 3D-Printed Rollers for Frieze Pattern Cookies Robert Hanson

    E-Print Network [OSTI]

    Custom 3D-Printed Rollers for Frieze Pattern Cookies Robert Hanson Towson University, Emeritus a method for converting images of repeating patterns, e.g., Roman friezes or Escher tessellations, into 3D-printed the world of mathematics and the art of cooking. Fractal cookies based on stretching and folding [1] and 3D-printed

  1. Interactive 3D Animation System for Web3D Masayuki Furukawa, Shinya Fukumoto, Hiroshi Kawasaki

    E-Print Network [OSTI]

    Tokyo, University of

    of state model using a printer as a 3D object. In the example, three states of 3D object are defined can try 3D manual of printer by using tablet PC to learn the effectiveness of our 3D animation systemInteractive 3D Animation System for Web3D Masayuki Furukawa, Shinya Fukumoto, Hiroshi Kawasaki

  2. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2002-10-01T23:59:59.000Z

    RSI has access to two synthetic seismic programs: Osiris seismic modeling system provided by Odegaard (Osiris) and synthetic seismic program, developed by SRB, implementing the Kennett method for normal incidence. Achieving virtually identical synthetic seismic traces from these different programs serves as cross-validation for both. The subsequent experiments have been performed with the Kennett normal incidence code because: We have access to the source code, which allowed us to easily control computational parameters and integrate the synthetics computations with our graphical and I/O systems. This code allows to perform computations and displays on a PC in MatLab or Octave environment, which is faster and more convenient. The normal incidence model allows us to exclude from the synthetic traces some of the physical effects that take place in 3-D models (like inhomogeneous waves) but have no relevance to the topic of our investigation, which is attenuation effects on seismic reflection and transmission.

  3. Revised 1/19/06 Reflection Seismic Data Interpretation -GEY 772/772L Spring 2006

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Revised 1/19/06 Reflection Seismic Data Interpretation - GEY 772/772L ­ Spring 2006 Room TEC 104 Processing, Yilmaz; and Practical Seismic Interpretation, Badley; A Lab Manual of Seismic Reflection the fundamentals of geologic interpretation of 2D and 3D reflection seismic data. The class provides hands

  4. Image resolution analysis: a new, robust approach to seismic survey design

    E-Print Network [OSTI]

    Tzimeas, Constantinos

    2005-08-29T23:59:59.000Z

    to optimize o?set and azimuth coverage are prone to fail (especially in complex geological or structural settings) in their imaging predictions. The reason for the potential failure of these commonly used approaches derives from the fact that they do not take...

  5. Impact of seismic resolution on geostatistical techniques

    SciTech Connect (OSTI)

    Mukerji, T.; Rio, P.; Mavko, G.M.

    1995-12-31T23:59:59.000Z

    Seismic measurements are often incorporated in geostatistical techniques for estimation and simulation of petrophysical properties such as porosity. The good correlation between seismic and rock properties provides a basis for these techniques. Seismic data have a wide spatial coverage not available in log or core data. However, each seismic measurement has a characteristic response function determined by the source-receiver geometry and signal bandwidth. The image response of the seismic measurement gives a filtered version of the true velocity image. Therefore the seismic image we obtain cannot reflect exactly the true seismic velocity at all scales of spatial heterogeneities present in the earth. The seismic response function can be conveniently approximated in the spatial spectral domain using a Born approximation. Our goal is to study how the seismic image response affects the estimation of variograms and spatial scales, and its impact on geostatistical results. Limitations of view angles and signal bandwidth not only smoothes the seismic image, increasing the variogram range, but can also introduce anisotropic spatial structures in the image. We can add value to the seismic data by better characterizing an quantifying these attributes. As an exercise we present example of seismically assisted cosimulation of porosity between wells.

  6. PRISACARIU, REID: PWP3D 1 PWP3D: Real-time segmentation and

    E-Print Network [OSTI]

    Oxford, University of

    method allows for fast 2D­3D pose tracking and 2D segmentation using a single, unified, energy function in print or electronic forms. #12;2 PRISACARIU, REID: PWP3D The most closely related work to our ownPRISACARIU, REID: PWP3D 1 PWP3D: Real-time segmentation and tracking of 3D objects Victor A

  7. Car Make and Model Recognition using 3D Curve Alignment Krishnan Ramnath, Sudipta N. Sinha, Richard Szeliski

    E-Print Network [OSTI]

    Gupta, Abhinav

    . Steps in constructing our 3D car model for a 2011 Honda Civic Sedan: (top) three of the images used to generate the visual hull; (middle) the visual hull; (bottom) 3D space curves projected onto the visual hull

  8. High throughput 3-D tissue cytometry

    E-Print Network [OSTI]

    Kwon, Hyuk-Sang, 1971-

    2007-01-01T23:59:59.000Z

    This thesis presents the ongoing technological development of high throughput 3-D tissue cytometry.and its applications in biomedicine. 3-D tissue cytometry has been developed in our laboratory based on two-photon microscopy ...

  9. Part removal of 3D printed parts

    E-Print Network [OSTI]

    Peńa Doll, Mateo

    2014-01-01T23:59:59.000Z

    An experimental study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D printing using a patent ...

  10. A view-sequential 3D display

    E-Print Network [OSTI]

    Cossairt, Oliver S. (Oliver Strider), 1978-

    2003-01-01T23:59:59.000Z

    This thesis outlines the various techniques for creating electronic 3D displays and analyzes their commercial potential. The thesis argues for the use of view-sequential techniques in the design of 3D displays based on ...

  11. The Makerbot: Desktop 3D printing

    E-Print Network [OSTI]

    Roughan, Matthew

    The Makerbot: Desktop 3D printing Matthew Roughan School of Mathematical Sciences matthew is Lots of maths hidden in something like 3D printing Geometry and Linear algebra ++ Same math used

  12. ECG Gated Tomographic reconstruction for 3-D Rotational Coronary Angiography

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    imaging techniques to improve both the safety and the efficacy of coronary angiography interventions the ground for a platform dedicated to the planning and execution of percutaneous coronary inter- ventionsECG Gated Tomographic reconstruction for 3-D Rotational Coronary Angiography Yining HU, Lizhe XIE

  13. Seismic Modelling for the Sub-Basalt Imaging Problem Including an Analysis and Development of the Boundary Element Method 

    E-Print Network [OSTI]

    Dobson, Andrew

    The north-east Atlantic margin (NEAM) is important for hydrocarbon exploration because of the growing evidence of hydrocarbon reserves in the region. However, seismic exploration of the sub-surface is hampered by large ...

  14. 3D Printing Prof. Hank Dietz

    E-Print Network [OSTI]

    Dietz, Henry G. "Hank"

    3D Printing Prof. Hank Dietz TCMS, March 14, 2014 University of Kentucky Electrical & Computer #12;3D With Glue Layers of paper: printed with glue & cut Layers of powder: printed with glue Can also be printed in full color #12;3D Extrusion (RepRaps) FDM: Fused Deposition Modeling FFF: Fused

  15. A single channel and point bar deposit are examined in the subsurface of northeastern Alberta from the Lower Cretaceous McMurray Formation. High-quality 3-D seismic, core and wireline log data were used in order to constrain the stratigraphic

    E-Print Network [OSTI]

    -dominated abandoned channel fill provides a mold of the 32­36 m deep paleo-channel; seismic time slices reveal, and siltstone. Reservoir quality in the McMurray Formation is directly related to numerous factors, including

  16. Quantifying Performance Benefits of Overlap using MPI-2 in a Seismic

    E-Print Network [OSTI]

    Panda, Dhabaleswar K.

    Work ICS '10 #12;AWM-ODC - Seismic Modeling · The 3D volume representing the ground area is decomposed into 3D rectangular sub-grids · Each processor performs stress and velocity calculations, each elementQuantifying Performance Benefits of Overlap using MPI-2 in a Seismic Modeling Application Sreeram

  17. Printing 3D Models to the Genisys Xs 3D Printer By Sotiri Koyonos

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    Printing 3D Models to the Genisys Xs 3D Printer By Sotiri Koyonos VMIL Consultant 28 February 2003's Genisys Xs 3D printer. This document assumes that you have created a stereo lithography file (*.stl Abstract This document outlines the process for manufacturing three dimensional (3D) models on the ITG

  18. 3D Velocity from 3D Doppler Radial Velocity J. L. Barron,1

    E-Print Network [OSTI]

    Barron, John

    to compute local 3D velocity (local 3D optical flow). Radial velocity (measured by the Doppler effect3D Velocity from 3D Doppler Radial Velocity J. L. Barron,1 R. E. Mercer,1 X. Chen,1 P. Joe2 1 velocity data and qualitatively on real radial velocity data, obtained from the Doppler radar at Kurnell

  19. Microtomography with 3-D visualization

    SciTech Connect (OSTI)

    Peskin, A.; Andrews, B.; Dowd, B.; Jones, K.; Siddons, P.

    1996-11-01T23:59:59.000Z

    The facility has been developed for producing high quality tomographs of order one micrometer resolution. Three dimensional volumes derived from groups of adjacent tomographic slices are then viewed and navigated in a stereographic viewing facility. This facility is being applied to problems in geological evaluation of oil reservoir rock, medical imaging, protein chemistry, and CADCAM.

  20. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    SciTech Connect (OSTI)

    Marzolf, A.; Folsom, M.

    2010-08-31T23:59:59.000Z

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame time-of-flight data (3D image) collected with a single laser pulse, high frame rates, direct calculation of range, blur-free images without motion distortion, no need for precision scanning mechanisms, ability to combine 3D flash LIDAR with 2D cameras for 2D texture over 3D depth, and no moving parts. The major disadvantage of the 3D flash LIDAR camera is the cost of approximately $150,000, not including the software development time and repackaging of the camera for deployment in the waste tanks.

  1. Exploring the Earth’s subsurface with virtual seismic sources and receivers 

    E-Print Network [OSTI]

    Nicolson, Heather Johan

    2011-11-24T23:59:59.000Z

    Traditional methods of imaging the Earth’s subsurface using seismic waves require an identifiable, impulsive source of seismic energy, for example an earthquake or explosive source. Naturally occurring, ambient seismic waves form an ever...

  2. 1610 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 11, 2012 MRI-Derived 3-D-Printed Breast Phantom

    E-Print Network [OSTI]

    Hagness, Susan C.

    1610 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 11, 2012 MRI-Derived 3-D-Printed Breast--We propose a 3-D-printed breast phantom for use in preclinical experimental microwave imaging studies the proce- dure for generating the 3-D-printed breast phantom and present the measured dielectric properties

  3. DIJKSTRA'S ALGORITHM APPLIED TO 3D SKELETONIZATION OF THE CEREBRAL VASCULAR TREE: EVALUATION AND APPLICATION TO SYMBOLIC DESCRIPTION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and evaluate a 3D skeletonization method based on the construction of the minimum-cost spanning tree thanks for cerebral vascular tree 3D skeletonization. This methodis based on the application of the minimum cost symbolically. Index Terms-- Medical imaging, vascular tree, angiography, 3D skeletonization, symbolic

  4. Metrology of 3D nanostructures.

    SciTech Connect (OSTI)

    Barsic, Anthony [University of Colorado at Boulder, Boulder, CO] [University of Colorado at Boulder, Boulder, CO; Piestun, Rafael [University of Colorado at Boulder, Boulder, CO] [University of Colorado at Boulder, Boulder, CO; Boye, Robert R.

    2012-10-01T23:59:59.000Z

    We propose a superresolution technique to resolve dense clusters of blinking emitters. The method relies on two basic assumptions: the emitters are statistically independent, and a model of the imaging system is known. We numerically analyze the performance limits of the method as a function of the emitter density and the noise level. Numerical simulations show that five closely packed emitters can be resolved and localized to a precision of 17nm. The experimental resolution of five quantum dots located within a diffraction limited spot confirms the applicability of this approach.

  5. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    SciTech Connect (OSTI)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30T23:59:59.000Z

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  6. Time lapse seismic signal analysis for Cranfield, MS, EOR and CCS site Ditkof, J.1

    E-Print Network [OSTI]

    Texas at Austin, University of

    -delay along a horizon below the reservoir. Keywords: time lapse, 4D seismic, CO2 sequestration, EOR, seismic under continuous CO2 injection by Denbury Onshore LLC since 2008. To date, more than 3 million tons of CO2 remain in the subsurface. In 2007 and 2010, 3D seismic surveys were shot and an initial 4D

  7. Mapping DNAPL transport contamination in sedimentary and fractured rock aquifers with high resolution borehole seismic imaging Project No. SF11SS13 FY01 Annual Report

    SciTech Connect (OSTI)

    Geller, J.T.; Majer, E.L.; Peterson, J.E.; Williams, K.H.; Flexser, S.

    2001-12-01T23:59:59.000Z

    This report covers the work performed in the first year of a three-year project funded by the USDOE's Subsurface Contaminant Focus Area (SCFA). The objectives of this project are to develop, demonstrate and evaluate, at appropriate field sites, the utility of high frequency seismic imaging methods to detect and characterize non-aqueous phase liquid (NAPL) contamination in sedimentary and fractured rock aquifers. Field tests consist of crosswell seismic tomography acquired before, during and after any remediation action that would potentially affect fluid distributions. Where feasible, other characterization data is obtained, such as crosswell radar, borehole conductivity and cone penetration testing (CPT). Crosswell data are processed to obtain tomographic images, or two-dimensional distributions, of velocity and attenuation. The interpretation of the tomograms utilizes all available site characterization data to relate the geophysical attributes to lithology and fluid phase heterogeneities. Interpretations are validated by evaluation and testing of field cores. Laboratory tests on core retrieved from surveyed locations are performed to determine the relationships between geophysical parameters and solid and fluid phase composition. In the case of sedimentary aquifers, proof of principle has been demonstrated previously in homogeneous sand-packs at the centimeter and half-meter scale (Geller and Myer, 1995; Geller et al., 2000). The field tests will provide proof-of-principle at the field-scale, by working in an unconsolidated sand aquifer with known presence of NAPL. The ability to upscale from the laboratory to the field is evaluated by conducting field measurements over a range of frequencies that overlap the lowest frequencies used in the laboratory tests. In the fractured rock case, previous field work has shown that fracture zones can be detected by crosswell seismic tomography (Daley et al., 2001; Daley et al., 2000). Laboratory studies have demonstrated that the seismic wave signature is sensitive to the fracture stiffness, and that stiffness is affected by fracture-filling fluids (Pyrak-Nolte and Morris, 2000; Pyrak-Nolte, 1996). The field and laboratory experience provide a physical basis for the potential detection of fractures that would be the important flow paths for NAPL contaminants.

  8. Surface Shape Description of 3D Data from Under Vehicle Inspection Robot

    E-Print Network [OSTI]

    Abidi, Mongi A.

    Surface Shape Description of 3D Data from Under Vehicle Inspection Robot Sreenivas R. Sukumar1 capabilities to a multi-modal under vehicle inspection robot. In this paper, we outline the various design challenges towards the automation of the 3D scene modeling task. We employ laser-based range imaging

  9. Optical Snow Analysis using the 3D-Xray Transform A. Averbuch2

    E-Print Network [OSTI]

    Averbuch, Amir

    -Xray transform, which is situated as a core algorithm in medical imaging when 3D reconstructions from projectionsOptical Snow Analysis using the 3D-Xray Transform N. Peled1 A. Averbuch2 Y. Keller3 Y. Shkolnisky4 estimation scenario which analyzes motions such as snowfall, tree movements, cars traffic and people walking

  10. IN THIS ISSUE 2 3D Printing

    E-Print Network [OSTI]

    Hill, Wendell T.

    IN THIS ISSUE 2 3D Printing in McKeldin 3 Saving WMUC Radio 4 You Did What?!? 7 Dance at UMD, in this issue. Our Terrapin Learning Commons is embracing all things digital, and the acquisition of a 3D printer allows any student the op- portunity to make their visions a reality. This little addition

  11. 3, 35433588, 2003 3-D air pollution

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 3, 3543­3588, 2003 3-D air pollution modelling L. M. Frohn et al. Title Page Abstract hemispheric nested air pollution model L. M. Frohn, J. H. Christensen, J. Brandt, C. Geels, and K. M. Hansen 2003 Correspondence to: L. M. Frohn (lmf@dmu.dk) 3543 #12;ACPD 3, 3543­3588, 2003 3-D air pollution

  12. 3D Object Modelling via Registration

    E-Print Network [OSTI]

    matching on the GPU. So with the increasing demand for cheap 3D scanners and the advances of computer power, Iterative Closest Point, real time preview. #12;#12;Resumé Stereo vision har mange fordele frem for andre 3D

  13. Fabrication of 3D Silicon Sensors

    SciTech Connect (OSTI)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06T23:59:59.000Z

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  14. BEAMS3D Neutral Beam Injection Model

    SciTech Connect (OSTI)

    Lazerson, Samuel

    2014-04-14T23:59:59.000Z

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  15. Fast Freehand Acquisition of 3D Objects and their Visualization

    E-Print Network [OSTI]

    Peters, Gabriele

    -world objects in a large number of fields of applications, such as the entertainment industry, design], and the application of structured light [3]. Image-based methods are, e.g., stereo vi- sion or multi-camera techniques://www.inf.fh-dortmund.de/personen/professoren/peters/ Abstract. In many applications 3d models of real-world objects are re- quired. We introduce a tool which

  16. Seismic Reflection Studies in Long Valley Caldera, Califomia

    E-Print Network [OSTI]

    Black, Ross A.; Deemer, Sharon J.; Smithson, Scott B.

    1991-03-10T23:59:59.000Z

    Seismic reflection studies in Long Valley caldera, California, indicate that seismic methods may be successfully employed to image certain types of features in young silicic caldera environments. However, near-surface ...

  17. A smartphone interface for a wireless EEG headset with real-time 3D reconstruction

    E-Print Network [OSTI]

    and 3D reconstruction. Introduction Functional brain imaging techniques including fMRI and PET provide gestures (see Fig. 1). Evaluation A major concern in mobile real-time systems is the power consumption

  18. Reconstruction of 3D Neuronal Structures from Densely Packed Electron Microscopy Data Stacks 

    E-Print Network [OSTI]

    Yang, Huei-Fang

    2012-10-19T23:59:59.000Z

    The goal of fully decoding how the brain works requires a detailed wiring diagram of the brain network that reveals the complete connectivity matrix. Recent advances in high-throughput 3D electron microscopy (EM) image ...

  19. Virtual reality 3D headset based on DMD light modulators

    SciTech Connect (OSTI)

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    2014-06-13T23:59:59.000Z

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the user’s own eye lens forms a real image on the user’s retina.

  20. Computer Modelling of 3D Geological Surface

    E-Print Network [OSTI]

    Kodge, B G

    2011-01-01T23:59:59.000Z

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  1. 3-D Model for Deactivation & Decommissioning

    Broader source: Energy.gov [DOE]

    The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work...

  2. 3D Hardware Canaries Sebastien Briais4

    E-Print Network [OSTI]

    surround the whole target and protect its content from physical attacks. 3D ICs are rel- atively hard reporting pre- liminary implementation results on silicon), we introduce a "hardware canary". The ca- nary

  3. 3D TORUS V1.0

    Energy Science and Technology Software Center (OSTI)

    002440MLTPL00 3D Torus Routing Engine Module for OFA OpenSM v. 1.0  http://www.openfabrics.org/git?p=sashak/management.git;a=sum 

  4. 3D deformation field throughout the interior of materials.

    SciTech Connect (OSTI)

    Jin, Huiqing; Lu, Wei-Yang

    2013-09-01T23:59:59.000Z

    This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.

  5. A simple backprojection algorithm for 3D in vivo EPID dosimetry of IMRT treatments

    SciTech Connect (OSTI)

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Sonke, Jan-Jakob; Herk, Marcel van; Mijnheer, Ben J. [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2009-07-15T23:59:59.000Z

    Treatment plans are usually designed, optimized, and evaluated based on the total 3D dose distribution, motivating a total 3D dose verification. The purpose of this study was to develop a 2D transmission-dosimetry method using an electronic portal imaging device (EPID) into a simple 3D method that provides 3D dose information. In the new method, the dose is reconstructed within the patient volume in multiple planes parallel to the EPID for each gantry angle. By summing the 3D dose grids of all beams, the 3D dose distribution for the total treatment fraction is obtained. The algorithm uses patient contours from the planning CT scan but does not include tissue inhomogeneity corrections. The 3D EPID dosimetry method was tested for IMRT fractions of a prostate, a rectum, and a head-and-neck cancer patient. Planned and in vivo-measured dose distributions were within 2% at the dose prescription point. Within the 50% isodose surface of the prescribed dose, at least 97% of points were in agreement, evaluated with a 3D {gamma} method with criteria of 3% of the prescribed dose and 0.3 cm. Full 3D dose reconstruction on a 0.1x0.1x0.1 cm{sup 3} grid and 3D {gamma} evaluation took less than 15 min for one fraction on a standard PC. The method allows in vivo determination of 3D dose-volume parameters that are common in clinical practice. The authors conclude that their EPID dosimetry method is an accurate and fast tool for in vivo dose verification of IMRT plans in 3D. Their approach is independent of the treatment planning system and provides a practical safety net for radiotherapy.

  6. T-HEMP3D user manual

    SciTech Connect (OSTI)

    Turner, D.

    1983-08-01T23:59:59.000Z

    The T-HEMP3D (Transportable HEMP3D) computer program is a derivative of the STEALTH three-dimensional thermodynamics code developed by Science Applications, Inc., under the direction of Ron Hofmann. STEALTH, in turn, is based entirely on the original HEMP3D code written at Lawrence Livermore National Laboratory. The primary advantage STEALTH has over its predecessors is that it was designed using modern structured design techniques, with rigorous programming standards enforced. This yields two benefits. First, the code is easily changeable; this is a necessity for a physics code used for research. The second benefit is that the code is easily transportable between different types of computers. The STEALTH program was transferred to LLNL under a cooperative development agreement. Changes were made primarily in three areas: material specification, coordinate generation, and the addition of sliding surface boundary conditions. The code was renamed T-HEMP3D to avoid confusion with other versions of STEALTH. This document summarizes the input to T-HEMP3D, as used at LLNL. It does not describe the physics simulated by the program, nor the numerical techniques employed. Furthermore, it does not describe the separate job steps of coordinate generation and post-processing, including graphical display of results. (WHK)

  7. The effectiveness of 3-D marine systems as an exploration tool in the offshore Niger Delta

    SciTech Connect (OSTI)

    Idowu, A.O. (Nigerian National Petroleum Corp., Lagos (Nigeria))

    1993-09-01T23:59:59.000Z

    From inception in 1984, three-dimensional (3-D) marine surveys have been used widely for field development where commercial hydrocarbons were known to exist in Nigeria. The high-trace density and full 3-D migration provide a data set that allows detailed interpretation of complex geologic structures and, in many cases, provides good stratigraphic information as well. The result has been better placement of development wells, making field development more efficient and cost effective. Previous application of the 3-d method (i.e., reconaissance 3-D) as an exploration tool in 1987 has demonstrated its effectiveness for predrilling detailing of prospects in offshore Niger Delta in a situation where a large volume of seismic data were acquired at relatively reduced unit costs. The technique involves acquiring data along a line every 200 m spacing, while interpretation in 3-D data processing is applied for subsequent 3-D migration. Based on pattern recognition of events on the input traces, the links are established to allow traces to be formed between input locations by comparing several attributes of events on neighboring traces. A case history example from the offshore Niger delta shows that the collection costs for the reconnaissance 3-D method are comparable to two-dimensional detailing based on similar line kilometer and time duration for the survey. A trade-off between cost and technical specifications can be programmed by focusing on the geologic objective. The technique brings the advantage of 3-D methods, but not their costs, to the exploration phase of the search for petroleum, and it is highly recommended for exploration in frontier areas, particularly the deep offshore of the Niger Delta.

  8. 3D Self-Portraits Etienne Vouga2

    E-Print Network [OSTI]

    O'Brien, James F.

    scanning pose change output reconstruction textured reconstruction large variety of examples3D print Figure for applications such as online avatars or 3D printing (the miniature shown here was printed using a ZPrinter 650 and accurate cap- ture system for 3D self-portraits using a single 3D sensor. Figure 2: 3D printed miniatures

  9. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    SciTech Connect (OSTI)

    John Rogers

    2011-12-31T23:59:59.000Z

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO{sub 2} injection and a fully saturated CO{sub 2} fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO{sub 2} to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.

  10. Simnple, portable, 3-D projection routine

    SciTech Connect (OSTI)

    Wagner, J.S.

    1987-04-01T23:59:59.000Z

    A 3-D projection routine is presented for use in computer graphics applications. The routine is simple enough to be considered portable, and easily modified for special problems. There is often the need to draw three-dimensional objects on a two-dimensional plotting surface. For the object to appear realistic, perspective effects must be included that allow near objects to appear larger than distant objects. Several 3-D projection routines are commercially available, but they are proprietary, not portable, and not easily changed by the user. Most are restricted to surfaces that are functions of two variables. This makes them unsuitable for viewing physical objects such as accelerator prototypes or propagating beams. This report develops a very simple algorithm for 3-D projections; the core routine is only 39 FORTRAN lines long. It can be easily modified for special problems. Software dependent calls are confined to simple drivers that can be exchanged when different plotting software packages are used.

  11. Ames Lab 101: 3D Metals Printer

    SciTech Connect (OSTI)

    Ott, Ryan

    2014-02-13T23:59:59.000Z

    To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

  12. 3D Modeling Engine Representation Summary Report

    SciTech Connect (OSTI)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01T23:59:59.000Z

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  13. Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture

    SciTech Connect (OSTI)

    Han, Ju; Chang, Hang; Giricz, Orsi; Lee, Genee; Baehner, Frederick; Gray, Joe; Bissell, Mina; Kenny, Paraic; Parvin, Bahram

    2010-02-01T23:59:59.000Z

    Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.

  14. STOCHASTIC SEISMIC EMISSION FROM ACOUSTIC GLORIES AND THE QUIET SUN

    E-Print Network [OSTI]

    Braun, Douglas C.

    STOCHASTIC SEISMIC EMISSION FROM ACOUSTIC GLORIES AND THE QUIET SUN A.-C. DONEA1, C. LINDSEY2 and D; accepted 8 January 2000) Abstract. Helioseismic images of multipolar active regions show enhanced seismic'. The acoustic glories contain elements that sustain an average seismic emission 50% greater than similar

  15. Note: Design and construction of a multi-scale, high-resolution, tube-generated X-Ray computed-tomography system for three-dimensional (3D) imaging

    SciTech Connect (OSTI)

    Mertens, J. C. E.; Williams, J. J.; Chawla, Nikhilesh [Materials Science and Engineering, Security and Defense Systems Initiative, Arizona State University, 781 E. Terrace Road, ISTB4, Tempe, Arizona 85287-5604 (United States)] [Materials Science and Engineering, Security and Defense Systems Initiative, Arizona State University, 781 E. Terrace Road, ISTB4, Tempe, Arizona 85287-5604 (United States)

    2014-01-15T23:59:59.000Z

    The design and construction of a high resolution modular x-ray computed tomography (XCT) system is described. The approach for meeting a specified set of performance goals tailored toward experimental versatility is highlighted. The instrument is unique in its detector and x-ray source configuration, both of which enable elevated optimization of spatial and temporal resolution. The process for component selection is provided. The selected components are specified, the custom component design discussed, and the integration of both into a fully functional XCT instrument is outlined. The novelty of this design is a new lab-scale detector and imaging optimization through x-ray source and detector modularity.

  16. Labeling 3D scenes for Personal Assistant Robots

    E-Print Network [OSTI]

    Koppula, Hema Swetha; Joachims, Thorsten; Saxena, Ashutosh

    2011-01-01T23:59:59.000Z

    Inexpensive RGB-D cameras that give an RGB image together with depth data have become widely available. We use this data to build 3D point clouds of a full scene. In this paper, we address the task of labeling objects in this 3D point cloud of a complete indoor scene such as an office. We propose a graphical model that captures various features and contextual relations, including the local visual appearance and shape cues, object co-occurrence relationships and geometric relationships. With a large number of object classes and relations, the model's parsimony becomes important and we address that by using multiple types of edge potentials. The model admits efficient approximate inference, and we train it using a maximum-margin learning approach. In our experiments over a total of 52 3D scenes of homes and offices (composed from about 550 views, having 2495 segments labeled with 27 object classes), we get a performance of 84.06% in labeling 17 object classes for offices, and 73.38% in labeling 17 object classe...

  17. Seismic Studies

    SciTech Connect (OSTI)

    R. Quittmeyer

    2006-09-25T23:59:59.000Z

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (2) For probabilistic analyses supporting the demonstration of compliance with preclosure performance objectives, provide a mean seismic hazard curve for the surface facilities area. Results should be consistent with the PSHA for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (3) For annual ground motion exceedance probabilities appropriate for postclosure analyses, provide site-specific seismic time histories (acceleration, velocity, and displacement) for the waste emplacement level. Time histories should be consistent with the PSHA and reflect available knowledge on the limits to extreme ground motion at Yucca Mountain. (4) In support of ground-motion site-response modeling, perform field investigations and laboratory testing to provide a technical basis for model inputs. Characterize the repository block and areas in which important-to-safety surface facilities will be sited. Work should support characterization and reduction of uncertainties in inputs to ground-motion site-response modeling. (5) On the basis of rock mechanics, geologic, and seismic information, determine limits on extreme ground motion at Yucca Mountain and document the technical basis for them. (6) Update the ground-motion site-response model, as appropriate, on the basis of new data. Expand and enhance the technical basis for model validation to further increase confidence in the site-response modeling. (7) Document seismic methodologies and approaches in reports to be submitted to the NRC. (8) Address condition reports.

  18. Fourier transform of the 3d NS equations The 3d NS equations are

    E-Print Network [OSTI]

    Salmon, Rick

    1 Fourier transform of the 3d NS equations The 3d NS equations are (1) vi t + vj vi xj = - p xi easily add it in at the end. Our interest is in the advection and pressure terms. Introducing the Fourier transforms (2) vi x( ) = ui k( )eikx k p x( ) = p k( )eikx k we obtain the Fourier transform of (1

  19. METRIC FOR AUTOMATED DETECTION AND IDENTIFICATION OF 3D CAD ELEMENTS IN 3D SCANNED

    E-Print Network [OSTI]

    Bosché, Frédéric

    of 3D Computer-Aided Design (CAD) engines and more generally of Building Information Models on one side states is critical for performing efficient building and infrastructure construction, maintenance, and management. Three- dimensional (3D) laser scanners have the potential to be successfully applied

  20. Energy Savings in 3-D | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy savings in 3-D ORNL researchers show production, energy advantages of additive manufacturing ORNL 3-D printer in use. ORNL 3-D printer in use. Researchers at the Department...

  1. Seismic Technology Adapted to Analyzing and Developing Geothermal...

    Open Energy Info (EERE)

    GEDCO, RARE Technology, and Sercel, Inc. to combine multicomponent seismic technology and rock physics modeling that will lead to the ability to image and analyze geothermal...

  2. Joint inversion of electrical and seismic data for Fracture char...

    Broader source: Energy.gov (indexed) [DOE]

    Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Michael Batzle, PI Colorado School of Mines Track Name: Fluid...

  3. Data-driven estimation of the sensitivity of target-oriented time-lapse seismic imaging to source geometry

    E-Print Network [OSTI]

    Fehler, Michael

    The goal of time-lapse imaging is to identify and characterize regions in which the earth’s material properties have changed between surveys. This requires an effective deployment of sources and receivers to monitor the ...

  4. Infrasound Generation from the HH Seismic Hammer.

    SciTech Connect (OSTI)

    Jones, Kyle Richard

    2014-10-01T23:59:59.000Z

    The HH Seismic hammer is a large, %22weight-drop%22 source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.

  5. 3-D hydro + cascade model at RHIC

    E-Print Network [OSTI]

    Chiho Nonaka; Steffen A. Bass

    2005-11-07T23:59:59.000Z

    We present a 3-D hydro + cascade model in which viscosity and a realistic freezeout process for the hadronic phase are taken into account. We compare our results to experimental data and discuss the finite state interaction effects on physical observables.

  6. Integration of geostatistical techniques and intuitive geology in the 3-D modeling process

    SciTech Connect (OSTI)

    Heine, C.J.; Cooper, D.H. (Saudi ARAMCO, Dhahran (Saudi Arabia))

    1996-01-01T23:59:59.000Z

    The development of 3-D geologic models for reservoir description and simulation has traditionally relied on the computer derived interpolation of well data in a geocelluar stratigraphic framework. The quality of the interpolation has been directly dependent on the nature of the interpolation method, and ability of the Interpolation scheme to accurately predict the value of geologic attributes away from the well. Typically, interpolation methods employ deterministic or geostatistical algorithms which offer limited capacity for Integrating data derived from secondary analyses. These secondary analyses, which might include the results from 3-D seismic inversion, borehole imagery studies, or deductive reasoning, introduce a subjective component into what would otherwise be restricted to a purely mathematical treatment of geologic data. At Saudi ARAMCO an increased emphases is being placed on the role of the reservoir geologist in the development of 3-D geologic models. Quantitative results, based on numerical computations, are being enhanced with intuitive geology, derived from years of cumulative professional experience and expertise. Techniques such as template modeling and modified conditional simulation, are yielding 3-D geologic models, which not only more accurately reflect the geology of the reservoir, but also preserve geologic detail throughout the simulation process. This incorporation of secondary data sources and qualitative analysis has been successfully demonstrated in a clastic reservoir environment in Central Saudi Arabia, and serves as a prototype for future 3-D geologic model development.

  7. Integration of geostatistical techniques and intuitive geology in the 3-D modeling process

    SciTech Connect (OSTI)

    Heine, C.J.; Cooper, D.H. [Saudi ARAMCO, Dhahran (Saudi Arabia)

    1995-08-01T23:59:59.000Z

    The development of 3-D geologic models for reservoir description and simulation has traditionally relied on the computer derived interpolation of well data in a geocelluar stratigraphic framework. The quality of the interpolation has been directly dependent on the nature of the interpolation method, and ability of the interpolation scheme to accurately predict the value of geologic attributes away from the well. Typically, interpolation methods employ deterministic or geostatistical algorithms which offer limited capacity for integrating data derived from secondary analyses. These secondary analyses, which might include the results from 3-D seismic inversion, borehole imagery studies, or deductive reasoning, introduce a subjective component into what would otherwise be restricted to a purely mathematical treatment of geologic data. At Saudi ARAMCO an increased emphasis is being placed on the role of the reservoir geologist in the development of 3-D geologic models. Quantitative results, based on numerical computations, are being enhanced with intuitive geology, derived from years of cumulative professional experience and expertise. Techniques such as template modeling and modified conditional simulation, are yielding 3-D geologic models, which not only more accurately reflect the geology of the reservoir, but also preserve geologic detail throughout the simulation process. This incorporation of secondary data sources and qualitative analysis has been successfully demonstrated in a clastic reservoir environment in Central Saudi Arabia, and serves as a prototype for future 3-D geologic model development.

  8. Integration of geostatistical techniques and intuitive geology in the 3-D modeling process

    SciTech Connect (OSTI)

    Heine, C.J.; Cooper, D.H. [Saudi ARAMCO, Dhahran (Saudi Arabia)

    1996-12-31T23:59:59.000Z

    The development of 3-D geologic models for reservoir description and simulation has traditionally relied on the computer derived interpolation of well data in a geocelluar stratigraphic framework. The quality of the interpolation has been directly dependent on the nature of the interpolation method, and ability of the Interpolation scheme to accurately predict the value of geologic attributes away from the well. Typically, interpolation methods employ deterministic or geostatistical algorithms which offer limited capacity for Integrating data derived from secondary analyses. These secondary analyses, which might include the results from 3-D seismic inversion, borehole imagery studies, or deductive reasoning, introduce a subjective component into what would otherwise be restricted to a purely mathematical treatment of geologic data. At Saudi ARAMCO an increased emphases is being placed on the role of the reservoir geologist in the development of 3-D geologic models. Quantitative results, based on numerical computations, are being enhanced with intuitive geology, derived from years of cumulative professional experience and expertise. Techniques such as template modeling and modified conditional simulation, are yielding 3-D geologic models, which not only more accurately reflect the geology of the reservoir, but also preserve geologic detail throughout the simulation process. This incorporation of secondary data sources and qualitative analysis has been successfully demonstrated in a clastic reservoir environment in Central Saudi Arabia, and serves as a prototype for future 3-D geologic model development.

  9. A 3D Statistical Shape Model Of The Pelvic Bone For Segmentation

    E-Print Network [OSTI]

    Andrzejak, Artur

    patient models from 3D image data. Within the setting of a hybrid system (applicator plus MR tomograph. Left: hybrid system (MRT plus applicator), Right: MRT slice image from the abdomen with pelvic bone. 1 on heating up affected tissue compartments to temperatures above 42 degree Celsius without damaging

  10. XEDS STEM Tomography For 3D Chemical Characterization Of Nanoscale Particles

    SciTech Connect (OSTI)

    Genc, Arda; Kovarik, Libor; Gu, Meng; Cheng, Huikai; Plachinda, Pavel; Pullan, Lee; Freitag, Bert; Wang, Chong M.

    2013-08-01T23:59:59.000Z

    We present a tomography technique which couples scanning transmission electron microscopy (STEM) and X-ray energy dispersive spectrometry (XEDS) to resolve 3D distribution of elements in nanoscale materials. STEM imaging when combined with a symmetrically arranged XEDS detector design around the specimen overcomes many of the obstacles in 3D spectroscopic tomography of nanoscale materials and successfully elucidate the 3D chemical information in a large field of view of the TEM sample. We employed this technique to investigate 3D distribution of Nickel (Ni), Manganese (Mn) and Oxygen (O) in Li(NiMn)O2 battery cathode material. For this purpose, 2D elemental maps were acquired for a range of tilt angles and reconstructed to obtain 3D elemental distribution in an isolated Li(NiMnO2) nanoparticle. The results highlight the strength of this technique in 3D chemical analysis of nanoscale materials by successfully resolving Ni, Mn and O elemental distributions in 3D and discovering the new phenomenon of Ni surface segregation in this material. Furthermore, the comparison of simultaneously acquired HAADF STEM and XEDS STEM tomography results show that XEDS STEM tomography provides additional 3D chemical information of the material especially when there is low atomic number (Z) contrast in the material of interest.

  11. 3-D Force-balanced Magnetospheric Configurations

    SciTech Connect (OSTI)

    Sorin Zaharia; C.Z. Cheng; K. Maezawa

    2003-02-10T23:59:59.000Z

    The knowledge of plasma pressure is essential for many physics applications in the magnetosphere, such as computing magnetospheric currents and deriving magnetosphere-ionosphere coupling. A thorough knowledge of the 3-D pressure distribution has however eluded the community, as most in-situ pressure observations are either in the ionosphere or the equatorial region of the magnetosphere. With the assumption of pressure isotropy there have been attempts to obtain the pressure at different locations by either (a) mapping observed data (e.g., in the ionosphere) along the field lines of an empirical magnetospheric field model or (b) computing a pressure profile in the equatorial plane (in 2-D) or along the Sun-Earth axis (in 1-D) that is in force balance with the magnetic stresses of an empirical model. However, the pressure distributions obtained through these methods are not in force balance with the empirical magnetic field at all locations. In order to find a global 3-D plasma pressure distribution in force balance with the magnetospheric magnetic field, we have developed the MAG-3D code, that solves the 3-D force balance equation J x B = (upside-down delta) P computationally. Our calculation is performed in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials as B = (upside-down delta) psi x (upside-down delta) alpha. The pressure distribution, P = P(psi,alpha), is prescribed in the equatorial plane and is based on satellite measurements. In addition, computational boundary conditions for y surfaces are imposed using empirical field models. Our results provide 3-D distributions of magnetic field and plasma pressure as well as parallel and transverse currents for both quiet-time and disturbed magnetospheric conditions.

  12. acquisition facilitates 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Websites Summary: measurements and finally its instantiation through 3D printing, are presented. Laser scanner acquisition, reconstruction and 3D printing lend well...

  13. automatic 3d fe: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Technologies and Information Sciences Websites Summary: by means of the "3D printing" devices used in mechanical rapid prototyping. Another one is that 3D...

  14. atomic resolution 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed 3D video database of spontaneous facial Cohn, Jeffrey F. 16 Improvement of 3D Printing Resolution by the Development of Shrinkable Materials University of California...

  15. angular resolution 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed 3D video database of spontaneous facial Cohn, Jeffrey F. 18 Improvement of 3D Printing Resolution by the Development of Shrinkable Materials University of California...

  16. 3D Printing in 30 Seconds | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Printing in 30 Seconds 3D Printing in 30 Seconds Addthis An error occurred. Unable to execute Javascript. Duration :38 Topic Science & Technology...

  17. Seismic interpretation of hydrocarbon seep features, Garden Banks, Gulf of Mexico

    E-Print Network [OSTI]

    Mullins, Adam Joseph

    2001-01-01T23:59:59.000Z

    The purpose of this study was to interpret and characterize hydrocarbon seeps using a 3D seismic data set. The information gained from this interpretation was then used to develop an understanding of the processes that resulted in the development...

  18. Spatial Orientation And Distribution Of Reservoir Fractures From Scattered Seismic Energy

    E-Print Network [OSTI]

    Vetri, Laura

    2005-01-01T23:59:59.000Z

    We present the details of a new method for determining the reflection and scattering characteristics of seismic energy from subsurface fractured formations. The method is based upon observations we have made from 3D finite ...

  19. Double-beam stacking to infer seismic properties of fractured reservoirs

    E-Print Network [OSTI]

    Zheng, Yingcai

    2011-01-01T23:59:59.000Z

    We develop a theory for using 3D beam interference to infer scattering properties of a fractured reservoir using reflected seismic P data. For the sake of simplicity, we use Gaussian beams. The scattering properties are ...

  20. Seismic interpretation of hydrocarbon seep features, Garden Banks, Gulf of Mexico 

    E-Print Network [OSTI]

    Mullins, Adam Joseph

    2001-01-01T23:59:59.000Z

    The purpose of this study was to interpret and characterize hydrocarbon seeps using a 3D seismic data set. The information gained from this interpretation was then used to develop an understanding of the processes that resulted in the development...

  1. Coupling: Impact and Implications for High-Resolution Time-Lapse Seismic Surveying

    E-Print Network [OSTI]

    Walters, Shelby Lynn

    2008-07-28T23:59:59.000Z

    conditions with repeat shots has a different effect on surface waves and compressional waves. This observation has potential application to wavefield separation. Acquisition approaches typically used to optimize 2D or 3D high-resolution seismic surveys may...

  2. Seismic Velocity Estimation from Time Migration Velocities M. K. Cameron, S. B. Fomel, J. A. Sethian

    E-Print Network [OSTI]

    Sethian, James A.

    Seismic Velocity Estimation from Time Migration Velocities M. K. Cameron, S. B. Fomel, J. A the problem of estimating seismic velocities inside the earth which is necessary for obtaining seismic images in regular Cartesian coordinates. We derive a relation between the true seismic velocities and the routinely

  3. ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. X, NO. X, JANUARY 2013 1 MRI-derived 3D-printed breast phantom for

    E-Print Network [OSTI]

    Van Veen, Barry D.

    ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. X, NO. X, JANUARY 2013 1 MRI-derived 3D-printed--We propose a 3D-printed breast phantom for use in pre-clinical experimental microwave imaging studies the procedure for generating the 3D-printed breast phantom and present the measured dielectric properties

  4. Realizacao domestica e escolar de foto e video 3D

    E-Print Network [OSTI]

    Jose J. Lunazzi

    2012-12-19T23:59:59.000Z

    English: Industry does not give attention to the small domestic or professional market of digital technologies for 3D images. What was done on the XX century by using photographic film is not know available to the common people, though the facilities are even better. Some technique developed in Brasil twenty years ago and the use of conventional domestic photo or video cameras allows fot making pictures and films at home by using digital conversions for editing, and two-color goggles. The anaglyphic technique, the same NASA employs to show Mars images to the public, is not employed in Brazil yet. We must analize the reasons for that. Portugues: A industria nao tem dado atencao ao mercado domestico ou profissional de pequena escala nas novas tecnologias digitais para imagem 3D. O que foi feito ao longo do seculo XX usando filme fotografico nao esta hoje ao alcance das pessoas, sendo que a facilidade de uso e muito maior. Tecnicas desenvolvidas no Brasil ha mais de vinte anos, e o uso de simples cameras convencionais de fotografia e video permitem realizar fotos e filmes caseiros por meio de conversoes digitais na edicao e o uso de oculos bicolor. A tecnica anagifica, a mesma que a NASA usa para mostrar ao publico as imagens de Marte, por exemplo, nao teve espaco no Brasil ainda. Devemos analisar os motivos que podem estar influenciando e os caminhos para mudar isso.

  5. Seismic amplitude and coherency response of channel sand, offshore Louisiana, Gulf of Mexico 

    E-Print Network [OSTI]

    Fischer, Elena Mikhaylovna

    1999-01-01T23:59:59.000Z

    saturated sandstones. . . . . , . . 19 5 Traditional 3D seismic time slice vs. coherency time slice. . . . . 6 Example of waveform similarity estimation . . . . . . 2 1 22 7 Time slices through a seismic amplitude data volume . . 25 8 Coherency time... difference calculation. . . . . . . . . 51 22 3D difference data cube . 52 23 Amplitude/difference data cube 24 Time-structure map of Horizon A. 54 56 25 Horizon-based difference slice. 57 26 Difference time slice at 1200 ms showing the location...

  6. Optical 3-D Measurement Techniques, 9-12 July 2007, Zurich Kohoutek, T. Monitoring of an Industrial Robot by Processing of 3D Range

    E-Print Network [OSTI]

    of an Industrial Robot by Processing of 3D Range Imaging Data Measured by the SwissRanger®SR-3000 Diploma Thesis TU (Switzerland) Industrial robots are commonly used in manufacturing industry, especially in automobile industry environments. The weight and high speeds of industrial robots, and resulting high tuning moments cause harmful

  7. Techniques for interactive 3-D scientific visualization

    SciTech Connect (OSTI)

    Glinert, E.P. (Rensselaer Polytechnic Inst., Troy, NY (USA). Dept. of Computer Science); Blattner, M.M. (Anderson (M.D.) Hospital and Tumor Inst., Houston, TX (USA). Dept. of Biomathematics California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National Lab., CA (USA)); Becker, B.G. (California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National La

    1990-09-24T23:59:59.000Z

    Interest in interactive 3-D graphics has exploded of late, fueled by (a) the allure of using scientific visualization to go where no-one has gone before'' and (b) by the development of new input devices which overcome some of the limitations imposed in the past by technology, yet which may be ill-suited to the kinds of interaction required by researchers active in scientific visualization. To resolve this tension, we propose a flat 5-D'' environment in which 2-D graphics are augmented by exploiting multiple human sensory modalities using cheap, conventional hardware readily available with personal computers and workstations. We discuss how interactions basic to 3-D scientific visualization, like searching a solution space and comparing two such spaces, are effectively carried out in our environment. Finally, we describe 3DMOVE, an experimental microworld we have implemented to test out some of our ideas. 40 refs., 4 figs.

  8. 3D Printing of Scintillating Materials

    E-Print Network [OSTI]

    Y. Mishnayot; M. Layani; I. Cooperstein; S. Magdassi; G. Ron

    2014-06-15T23:59:59.000Z

    We demonstrate, for the first time, the applicability of 3D printing technique to the manufacture of scintillation detectors. We report of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30\\% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various application.

  9. 3D Printing of Scintillating Materials

    E-Print Network [OSTI]

    Mishnayot, Y; Cooperstein, I; Magdassi, S; Ron, G

    2014-01-01T23:59:59.000Z

    We demonstrate, for the first time, the applicability of 3D printing technique to the manufacture of scintillation detectors. We report of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30\\% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various application.

  10. Automatic 3D modeling of palatal plaster casts Marco Andreetto

    E-Print Network [OSTI]

    Abu-Mostafa, Yaser S.

    duplicated by 3D printers. A second application where 3D models of palatal casts could also be usefulAutomatic 3D modeling of palatal plaster casts Marco Andreetto Dept. of Information Engineer corte@dei.unipd.it Abstract This work introduces a procedure for automatic 3D model- ing and discusses

  11. Scanning and Printing Persons in 3D Jurgen Sturm1

    E-Print Network [OSTI]

    Cremers, Daniel

    miniatures of persons using a Kinect sensor and a 3D color printer. To achieve this, we acquire color- through in rapid prototyping in recent years. Modern 3D printers are able to print colored 3D models at resolutions comparable to 2D paper printers. On the one hand, the creation of a detailed, printable 3D model

  12. Engineering Workshop 3D Modeling Using TinkerCAD

    E-Print Network [OSTI]

    Ohta, Shigemi

    using TinkerCAD · TinkerCad is used for online 3D modeling · Learn how to print the clip on a 3D printer the hole and the clip #12;Congratulations! You made a 3D model! #12;Now To Print It... Our Printers · MakerEngineering Workshop 3D Modeling Using TinkerCAD Sci-Ed Day 2014 Brookhaven National Laboratory

  13. CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY

    E-Print Network [OSTI]

    CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY ­ Master Thesis Proposal ­ BACKGROUND 3D printing (or additive manufacturing) is not an entirely new phenomenon. First introduced and president of Foxconn, calls it a nice "gimmick" and even Nick Allen, founder of 3D printing company 3D Print

  14. 3D Printing of Functional and Biological Materials

    E-Print Network [OSTI]

    ! 3D Printing of Functional and Biological Materials Jennifer A. Lewis Wyss Professor)! Multimaterial 3D printing ! #12;3D antennas! Li ion microbatteries! Lightweight microlattices!Flexible sensors! 3D Printing of Integrated Electronic Devices ! #12;20 nm average , 5 ­ 50 nm

  15. Advanced Seismic While Drilling System

    SciTech Connect (OSTI)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30T23:59:59.000Z

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

  16. Restructuring of RELAP5-3D

    SciTech Connect (OSTI)

    George Mesina; Joshua Hykes

    2005-09-01T23:59:59.000Z

    The RELAP5-3D source code is unstructured with many interwoven logic flow paths. By restructuring the code, it becomes easier to read and understand, which reduces the time and money required for code development, debugging, and maintenance. A structured program is comprised of blocks of code with one entry and exit point and downward logic flow. IF tests and DO loops inherently create structured code, while GOTO statements are the main cause of unstructured code. FOR_STRUCT is a commercial software package that converts unstructured FORTRAN into structured programming; it was used to restructure individual subroutines. Primarily it transforms GOTO statements, ARITHMETIC IF statements, and COMPUTED GOTO statements into IF-ELSEIF-ELSE tests and DO loops. The complexity of RELAP5-3D complicated the task. First, FOR_STRUCT cannot completely restructure all the complex coding contained in RELAP5-3D. An iterative approach of multiple FOR_STRUCT applications gave some additional improvements. Second, FOR_STRUCT cannot restructure FORTRAN 90 coding, and RELAP5-3D is partially written in FORTRAN 90. Unix scripts for pre-processing subroutines into coding that FOR_STRUCT could handle and post-processing it back into FORTRAN 90 were written. Finally, FOR_STRUCT does not have the ability to restructure the RELAP5-3D code which contains pre-compiler directives. Variations of a file were processed with different pre-compiler options switched on or off, ensuring that every block of code was restructured. Then the variations were recombined to create a completely restructured source file. Unix scripts were written to perform these tasks, as well as to make some minor formatting improvements. In total, 447 files comprising some 180,000 lines of FORTRAN code were restructured. These showed significant reduction in the number of logic jumps contained as measured by reduction in the number of GOTO statements and line labels. The average number of GOTO statements per subroutine dropped from 8.8 before restructuring to 5.3 afterwards, a reduction of 40%. The maximum number of GOTO statements in any subroutine dropped from 213 to 99, a factor of 2.1. Finally, the maximum number of statement labels dropped from 210 to 43, a factor of nearly 5. While many blocks of code remain unstructured, a much greater fraction of the code is now structured. These measurements indicate a serious reduction in degree of interweaving of logic paths.

  17. Interactive initialization of 2D/3D rigid registration

    SciTech Connect (OSTI)

    Gong, Ren Hui; Güler, Özgür [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC 20010 (United States)] [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC 20010 (United States); Kürklüoglu, Mustafa [Department of Cardiac Surgery, Children's National Medical Center, Washington, DC 20010 (United States)] [Department of Cardiac Surgery, Children's National Medical Center, Washington, DC 20010 (United States); Lovejoy, John [Department of Orthopaedic Surgery and Sports Medicine, Children's National Medical Center, Washington, DC 20010 (United States)] [Department of Orthopaedic Surgery and Sports Medicine, Children's National Medical Center, Washington, DC 20010 (United States); Yaniv, Ziv, E-mail: ZYaniv@childrensnational.org [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC 20010 and Departments of Pediatrics and Radiology, George Washington University, Washington, DC 20037 (United States)] [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC 20010 and Departments of Pediatrics and Radiology, George Washington University, Washington, DC 20037 (United States)

    2013-12-15T23:59:59.000Z

    Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on the authors' evaluation, the authors conclude that the registration approaches are sufficiently accurate for initializing 2D/3D registration in the OR setting, both when a tracking system is not in use (gesture based approach), and when a tracking system is already in use (AR based approach)

  18. 3-Phase Recognition Approach to Pseudo 3D Building Generation from 2D Floor Plan

    E-Print Network [OSTI]

    Moloo, Raj Kishen; Auleear, Abu Salmaan

    2011-01-01T23:59:59.000Z

    Nowadays three dimension (3D) architectural visualisation has become a powerful tool in the conceptualisation, design and presentation of architectural products in the construction industry, providing realistic interaction and walkthrough on engineering products. Traditional ways of implementing 3D models involves the use of specialised 3D authoring tools along with skilled 3D designers with blueprints of the model and this is a slow and laborious process. The aim of this paper is to automate this process by simply analyzing the blueprint document and generating the 3D scene automatically. For this purpose we have devised a 3-Phase recognition approach to pseudo 3D building generation from 2D floor plan and developed a software accordingly. Our 3-phased 3D building system has been implemented using C, C++ and OpenCV library [24] for the Image Processing module; The Save Module generated an XML file for storing the processed floor plan objects attributes; while the Irrlitch [14] game engine was used to impleme...

  19. Bulletin of the Seismological Society of America, 90, 6B, pp. S65S76, December 2000 The SCEC Southern California Reference Three-Dimensional Seismic

    E-Print Network [OSTI]

    Clayton, Robert W.

    Southern California Reference Three-Dimensional Seismic Velocity Model Version 2 by Harold Magistrale-dimensional (3D) seismic velocity model of southern California developed by the Southern California Earthquake mesh of seismic velocity and density values. This parameterization is convenient to store, transfer

  20. Minimal Massive 3D Gravity Unitarity Redux

    E-Print Network [OSTI]

    Arvanitakis, Alex S.; Townsend, Paul K.

    2015-01-01T23:59:59.000Z

    be written as the integral of a Lagrangian 3-form constructed from three Lorentz-vector one-forms: the dreibein e, the (dual) Lorentz connection ? and a Lagrange multipler field h imposing a zero-torsion constraint [6, 7]. Using a 3D vector algebra notation... for Lorentz vectors we can write this Lagrangian 3-form as LTMG[e, ?, h] = ??e ·R + 1 6 ?0 e · e× e+ h · T + 1 µ LLCS(?) , (2.1) where T and R are the torsion and curvature 2-forms, respectively, and LLCS is the Lorentz-Chern-Simons (LCS) 3-form for ?...

  1. Interchanging Interactive 3-d Graphics for Astronomy

    E-Print Network [OSTI]

    C. J. Fluke; D. G. Barnes; N. T. Jones

    2008-12-09T23:59:59.000Z

    We demonstrate how interactive, three-dimensional (3-d) scientific visualizations can be efficiently interchanged between a variety of mediums. Through the use of an appropriate interchange format, and a unified interaction interface, we minimize the effort to produce visualizations appropriate for undertaking knowledge discovery at the astronomer's desktop, as part of conference presentations, in digital publications or as Web content. We use examples from cosmological visualization to address some of the issues of interchange, and to describe our approach to adapting S2PLOT desktop visualizations to the Web. Supporting demonstrations are available at http://astronomy.swin.edu.au/s2plot/interchange/

  2. Seismic Attenuation Inversion with t* Using tstarTomog.

    SciTech Connect (OSTI)

    Preston, Leiph

    2014-09-01T23:59:59.000Z

    Seismic attenuation is defined as the loss of the seismic wave amplitude as the wave propagates excluding losses strictly due to geometric spreading. Information gleaned from seismic waves can be utilized to solve for the attenuation properties of the earth. One method of solving for earth attenuation properties is called t*. This report will start by introducing the basic theory behind t* and delve into inverse theory as it pertains to how the algorithm called tstarTomog inverts for attenuation properties using t* observations. This report also describes how to use the tstarTomog package to go from observed data to a 3-D model of attenuation structure in the earth.

  3. DSI3D - RCS user manual

    SciTech Connect (OSTI)

    Madsen, N.; Steich, D.; Cook, G. [and others

    1995-08-23T23:59:59.000Z

    The DSI3D-RCS code is designed to numerically evaluate radar cross sections on complex objects by solving Maxwell`s curl equations in the time-domain and in three space dimensions. The code has been designed to run on the new parallel processing computers as well as on conventional serial computers. The DSI3D-RCS code is unique for the following reasons: Allows the use of unstructured non-orthogonal grids, allows a variety of cell or element types, reduces to be the Finite Difference Time Domain (FDTD) method when orthogonal grids are used, preserves charge or divergence locally (and globally), is conditionally stable, is selectively non-dissipative, and is accurate for non-orthogonal grids. This method is derived using a Discrete Surface Integration (DSI) technique. As formulated, the DSI technique can be used with essentially arbitrary unstructured grids composed of convex polyhedral cells. This implementation of the DSI algorithm allows the use of unstructured grids that are composed of combinations of non-orthogonal the use of unstructured grids that are composed of combinations of non-orthogonal hexahedrons, tetrahedrons, triangular prisms and pyramids. This algorithm reduces to the conventional FDTD method when applied on a structured orthogonal hexahedral grid.

  4. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Broader source: Energy.gov (indexed) [DOE]

    Krafla MEQ Network 11 | US DOE Geothermal Office eere.energy.gov East-West Profile Joint Analysis of Krafla MT-MEQ Data Not Coupled to Resistivity Structure Coupled to...

  5. Fluid Imaging of Enhanced Geothermal Systems through Joint 3D...

    Open Energy Info (EERE)

    defined as enhanced reservoirs that have been created to extract economical amounts of heat from low permeability andor porosity geothermal resources. Critical to the success...

  6. Deformable Surface 3D Reconstruction from Monocular Images

    E-Print Network [OSTI]

    Fua, Pascal

    virtually the same projection, such monocular shape recovery is inherently ambiguous. In this survey, we will review the two main classes of techniques that have proved most effective so far: The template Template-Based Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3

  7. 3D-FFT for Signature Detection in LWIR Images

    SciTech Connect (OSTI)

    Medvick, Patricia A.; Lind, Michael A.; Mackey, Patrick S.; Nuffer, Lisa L.; Foote, Harlan P.

    2007-11-20T23:59:59.000Z

    Improvements in analysis detection exploitation are possible by applying whitened matched filtering within the Fourier domain to hyperspectral data cubes. We describe an implementation of a Three Dimensional Fast Fourier Transform Whitened Matched Filter (3DFFTMF) approach and, using several example sets of Long Wave Infra Red (LWIR) data cubes, compare the results with those from standard Whitened Matched Filter (WMF) techniques. Since the variability in shape of gaseous plumes precludes the use of spatial conformation in the matched filtering, the 3DFFTMF results were similar to those of two other WMF methods. Including a spatial low-pass filter within the Fourier space can improve signal to noise ratios and therefore improve detection limit by facilitating the mitigation of high frequency clutter. The improvement only occurs if the low-pass filter diameter is smaller than the plume diameter.

  8. Content-oriented 3D reconstruction from image streams

    E-Print Network [OSTI]

    Knoblauch, Daniel

    2011-01-01T23:59:59.000Z

    pages 3099–3104, 2004. [PLM + 10] B. Petit, J. -D. Lesage,AFM + 06] [AMR + 07] [PLM + 10] nevertheless supports+ 07], and the Grimage project [PLM + 10] have focused on

  9. Shape Analysis Methods for 3D Brain and Skull Imaging

    E-Print Network [OSTI]

    Gutman, Boris Alexander

    2013-01-01T23:59:59.000Z

    in Computational Anatomy (MFCA ’08), 2008. B. Gutman, Y.in Computational Anatomy (MFCA ’08), 2008. xvii INTRODUCTIONin Computational Anatomy (MFCA ’08), 2008. L. Yuan, Y. Wang,

  10. 3D thermography imaging standardization technique for inflammation diagnosis

    E-Print Network [OSTI]

    Ju, X.

    Ju,X. Nebel,J.C. Siebert,J.P. Photonics Asia 2004, Proceedings of SPIE, Vol. 5640-46, 8-12 November 2004, Beijing, China pp 5640-46 Society of photo optical instrumentation engineers

  11. 3D Mt Resistivity Imaging For Geothermal Resource Assessment And

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S. National Software

  12. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated aging of1.1EnergyEnergy8-00621

  13. Process for 3D chip stacking

    DOE Patents [OSTI]

    Malba, Vincent (Livermore, CA)

    1998-01-01T23:59:59.000Z

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: 1) holding individual chips for batch processing, 2) depositing a dielectric passivation layer on the top and sidewalls of the chips, 3) opening vias in the dielectric, 4) forming the interconnects by laser pantography, and 5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume.

  14. Process for 3D chip stacking

    DOE Patents [OSTI]

    Malba, V.

    1998-11-10T23:59:59.000Z

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: (1) holding individual chips for batch processing, (2) depositing a dielectric passivation layer on the top and sidewalls of the chips, (3) opening vias in the dielectric, (4) forming the interconnects by laser pantography, and (5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume. 3 figs.

  15. A Desktop 3D Printer in Safety-Critical Java

    E-Print Network [OSTI]

    A Desktop 3D Printer in Safety-Critical Java Tórur Biskopstř Strřm Kongens Lyngby 2012 IMM-MSc-2012-critical use cases implemented according to the specification. This thesis presents a RepRap 3D desktop printer

  16. 3D Visualization of Water Transport in Ferns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Visualization of Water Transport in Ferns 3D Visualization of Water Transport in Ferns Print Monday, 08 April 2013 00:00 Plants transport water through elongated cells called...

  17. al modelado 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael 72 ILLUSTRATING MATHEMATICS USING 3D PRINTERS CiteSeer Summary: Abstract. 3D printing technology can help to visualize proofs in mathematics. In this document we aim to...

  18. abnormal 3-d mri: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D...

  19. axial 3-d pet: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D...

  20. auslese von 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D...

  1. autostereoscopic 3d display: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or restrict themselves to light dif- fusion in volumes. We use multi-material 3D printing to fabricate objects Additional Key Words and Phrases: 3D printing, optical fibers...

  2. Characterizing tensile loading responses of 3D printed samples

    E-Print Network [OSTI]

    Haid, Christopher M

    2014-01-01T23:59:59.000Z

    An experimental study was performed to characterize the loading response of samples manufactured through 3D printing. Tensile testing was performed on a number of 3D printed samples created through Fused Filament Fabrication ...

  3. Fab trees for designing complex 3D printable materials

    E-Print Network [OSTI]

    Wang, Ye, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    With more 3D printable materials being invented, 3D printers nowadays could replicate not only geometries, but also appearance and physical properties. On the software side, the tight coupling between geometry and material ...

  4. 3D printing rises to the occasion | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D printing rises to the occasion ORNL group shows how it's done, one layer at a time A perforated metal box produced by an Arcam 3D printer. This detailed A perforated metal box...

  5. Animation : 2D versus 3D and their combined effect

    E-Print Network [OSTI]

    Au, Kristin C

    2014-01-01T23:59:59.000Z

    This thesis studies the differences in the perception of space and character movement between 2D and 3D animation. 2D animation is defined by elements constructed in a 2D environment while 3D animation by elements constructed ...

  6. Tracking Objects Using 3D Edge Detectors February 2013

    E-Print Network [OSTI]

    O'Leary, Dianne P.

    Tracking Objects Using 3D Edge Detectors February 2013 SIAM CSE 2013 Dianne P. O'Leary c 2013 1 #12;Tracking Objects Using 3D Edge Detectors Dianne P. O'Leary Computer Science Dept. and Institute

  7. Multimedia Authoring: A 3D Interactive Visualization Interface based on a Structured

    E-Print Network [OSTI]

    Joseph Fourier Grenoble-I, Université

    Multimedia Authoring: A 3D Interactive Visualization Interface based on a Structured Document Model E!mail: {Nabil.Layaida, Jean!Yves.Vion!Dury}@imag.fr Multimedia authoring process is inherently a complex and tedious task, users have to specify all the details of a multimedia presentation (temporal

  8. In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical optical imaging of historical artifacts by combining Second Harmonic Generation (SHG) and Two commonly encountered in coatings of cultural heritage artifacts by analyzing one- and multi-layered model

  9. Seismic sequence stratigraphy of Pliocene-Pleistocene turbidite systems, Ship Shoal South Addition, Northwestern Gulf of Mexico

    E-Print Network [OSTI]

    Kim, Booyong

    2004-09-30T23:59:59.000Z

    of the Northern Gulf of Mexico. The main purpose of this study was to identify and characterize these sand-prone sediments. Sequence stratigraphic analysis of well logs, biostratigraphic data, and 3-D seismic data provided a chronostratigraphic framework...

  10. Multicomponent seismic data, combining P-wave and converted P-to-SV wave (C-wave) wavefields, provide inde-

    E-Print Network [OSTI]

    Texas at Austin, University of

    (fast and slow) with differing polarization. The 4C, 3D ocean-bottom cable (OBC) multicomponent seismic and stratigraphic features within the gas-charged intervals. C- waves (Figure 3) penetrate these P-wave wipeout

  11. Running Head: IMMERSIVE 3D ENVIRONMENTS AND MUTLINGUALITY 1 Immersive 3D Environments and Multilinguality

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and Multilinguality: Some Non-Intrusive and Dynamic e-learning-oriented Scenarios based on Textual Information Samuel (Metaverse Roadmap Report, 2007). We will present some non-intrusive and dynamic e-learning based scenarios to these scenarios as non-intrusive because they do not interrupt the user's activities within the immersive 3D en

  12. C § ? Was ist X3D/VRML?

    E-Print Network [OSTI]

    Virtuelle Realität; Xd Vrml; G. Zachmann; Verhalten Und Animationen; Achtung Vrml Vr; G. Zachmann; Virtuelle Realität; Simulation Ws; Xd Vrml; Vorteile Von Xd

    C § ? Die Spezifikation von VRML ist an einigen Stellen nicht eindeutig § ? In X3D präzisiert § ? X3D hat 100+ Knoten (aufgeteilt in Components / Profiles) § ? VRML hat nur 54 Knoten § ? X3D hat 3 verschiedene sog. "File Encodings": § ? Classic: sieht aus wie VRML; Suffix =.wrl oder.x3dv- Jede Software, die X3D lesen kann, kann (im Prinzip) auch VRML lesen

  13. Power-Supply-Network Design in 3D Integrated Systems

    E-Print Network [OSTI]

    Lim, Sung Kyu

    Power-Supply-Network Design in 3D Integrated Systems Michael B. Healy and Sung Kyu Lim School power-supply noise in a layout- level 3D design prototype, and the impact of possible 3D-specific changes to the power-supply network design and topology. Our results show that distributing power-supply

  14. Deep Learning Representation using Autoencoder for 3D Shape Retrieval

    E-Print Network [OSTI]

    benchmarks. I. INTRODUCTION With the fast development of 3D printer, Microsoft Kinect sensor and laserDeep Learning Representation using Autoencoder for 3D Shape Retrieval Zhuotun Zhu, Xinggang Wang@hust.edu.cn Abstract--We study the problem of how to build a deep learning representation for 3D shape. Deep learning

  15. Dynamic 3D Graphics Workload Characterization and the Architectural Implications

    E-Print Network [OSTI]

    Mitra, Tulika

    for this de#12;ciency is the absence of a detailed workload characterization of 3D applications. This paper previous similar studies because it focuses on dynamic behaviors of 3D applications, speci#12;cally, corre- lations of workload statistics among neighboring frames in interactive 3D applications. Such inter

  16. 3-D Earth model more accurately pinpoints explosions

    E-Print Network [OSTI]

    - 1 - 3-D Earth model more accurately pinpoints explosions October 25, 2013 During the Cold War, U) have partnered to develop a 3-D model of the Earth's mantle and crust called SALSA3D (Sandia-Los Alamos of explosions. Significance of the research After an explosion, the energy travels through the Earth as waves

  17. Tips and Tricks for Using the 3D Interpolation Tool

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    Tips and Tricks for Using the 3D Interpolation Tool This document describes how to download the 3D interpolation tool and use it for the purpose of performing multidimensional analysis on Marine, Atmospheric, Petroleum, Geological, and Groundwater point data. The 3D interpolation tool leverages new methods to solve

  18. Making a 3D Model of the Moon's Surface

    E-Print Network [OSTI]

    Christian, Eric

    information are we lack- ing? What additional information could we learn from a 3D model of the space shuttle? Show the students a 3D model of the space shuttle. What can we learn about the space shuttle from1 Making a 3D Model of the Moon's Surface Learning Objectives: · Students will make estimates about

  19. Hardware Assistance for Trustworthy Systems through 3-D Integration

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Hardware Assistance for Trustworthy Systems through 3-D Integration Jonathan Valamehr , Mohit a separate control plane, stacked using 3- D integration, that allows for the function and economics computation plane by at- taching an optional control plane using 3-D integration. In a developed example we

  20. 3-D Graphics in R Ohio State University

    E-Print Network [OSTI]

    Gotelli, Nicholas J.

    3-D Graphics in R Luke Keele Ohio State University December 6, 2005 Three dimensional graphics may. And it is a good choice, but to get publication quality 3-D graphics requires more work than typically re- quired to produce quality graphics with the wireframe command. The standard 3-D plot command in R is persp. While

  1. 3D Printing Prof. Hank Dietz & Paul Eberhart

    E-Print Network [OSTI]

    Dietz, Henry G. "Hank"

    3D Printing Prof. Hank Dietz & Paul Eberhart September 28, 2013 University of Kentucky Electrical/Craft: paper moves in Y, knife in X EDM/Laser: X/Y bed, vaporizes material #12;Subtractive 3D CNC: Computer "The whole is greater than the sum of its parts." ­ Aristotle #12;Additive 3D Building Material

  2. 3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1

    E-Print Network [OSTI]

    Boyer, Edmond

    3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1 , D. De Baere2 , M. Rombouts3 , SSHM system is produced by 3D printing or additive manufacturing. Additive Manufacturing (AM) is a "process to enable its implementation. This work demonstrates the feasibility study of eSHM systems produced by 3D

  3. 3D face recognition with wireless transportation 

    E-Print Network [OSTI]

    Zou, Le

    2009-05-15T23:59:59.000Z

    , we consider the wireless transportation problem of range images, which are captured by scattered sensor nodes from target objects and are forwarded to the core components (i.e., feature extraction and classi?cation components) of the face recognition...

  4. 3D face recognition with wireless transportation

    E-Print Network [OSTI]

    Zou, Le

    2009-05-15T23:59:59.000Z

    , we consider the wireless transportation problem of range images, which are captured by scattered sensor nodes from target objects and are forwarded to the core components (i.e., feature extraction and classi?cation components) of the face recognition...

  5. Speed-line for 3D animation

    E-Print Network [OSTI]

    Song, Won Chan

    2007-04-25T23:59:59.000Z

    point moved to a CV on the circle . . . . . . . . . . . . . . 38 39 Ending point placed between the starting point and the goal object . 38 40 Speed-lines with another cartoon effect . . . . . . . . . . . . . . . . . 41 ix FIGURE Page 41 Image sequences... from the result animation . . . . . . . . . . . . . . . 42 1 CHAPTER I INTRODUCTION One of the earliest artists who tried to convey dynamic movement in a static image is Hokusai Katsushika, who is one of the best known Ukiyo-e1 artists. He is called...

  6. Seismic sources

    DOE Patents [OSTI]

    Green, M.A.; Cook, N.G.W.; McEvilly, T.V.; Majer, E.L.; Witherspoon, P.A.

    1987-04-20T23:59:59.000Z

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Longitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements for more than about one minute. 9 figs.

  7. PWP3D: Real-time Segmentation and Tracking of 3D Objects Victor A. Prisacariu Ian D. Reid

    E-Print Network [OSTI]

    Oxford, University of

    the discrimination between statistical foreground and background appearance models, via direct optimisation of the 3D segmentation and 2D to 3D pose tracking, using a known 3D model. Given such a model, we aim to maximise embedding function, and we define an energy over this region and its immediate background surroundings based

  8. 3D Least Squares Velocity from 3D Doppler Radial X. Chen, J.L. Barron, R.E. Mercer

    E-Print Network [OSTI]

    Barron, John

    neighbourhoods to compute local 3D velocity. Radial velocity (measured by the Doppler effect) is the component3D Least Squares Velocity from 3D Doppler Radial Velocity X. Chen, J.L. Barron, R.E. Mercer Dept. Radial velocity can be used to predict the motion of storms in sequences of Doppler radar datasets

  9. Nano-Structural Elucidation in Carbon Black Loaded NR Vulcanizate by 3D-TEM and In Situ WAXD Measurements

    SciTech Connect (OSTI)

    Ikeda,Y.; Kato, A.; Shimanuki, J.; Kohjiya, S.; Tosaka, M.; Poompradub, S.; Toki, S.; Hsiao, B.

    2007-01-01T23:59:59.000Z

    Three dimensional (3D) visualization of nanometer structure of carbon black dispersion in rubbery matrix has successfully been studied and reported in this paper. Use of 3D-TEM, which is computerized tomography combined with transmission electron microscopy (TEM), enabled us to reconstruct 3D images of carbon black aggregates in natural rubber (NR) matrix. The TEM measurements were conducted by a bright-field method on thin samples without any electron staining. The sample was subject to uni-axial tilting (+65 degree to -65 degree with 2 degree increment) in the sample chamber, and 66 TEM images were taken on each sample. These TEM images were used for computerized tomography to reconstruct the 3D image. This technique is designated as 3D-TEM. The nano-structural features observed by 3D-TEM were in conformity with the electron-conductivity results, and the percolation behavior was recognized. These results were further supplemented by in situ wide-angle X-ray diffraction (WAXD), i.e., simultaneous WAXD and tensile measurements on the sample to observe the strain-induced crystallization in NR vulcanizate. Upon tensile elongation, the crystallization was clearly observed in WAXD in the presence of carbon black, and it contributed to the tensile properties. In order to understand the performances of filled NR vulcanizates, it surely is necessary to know the structural states of the mixed nano-filler and the crystallites produced upon elongation.

  10. High-resolution geostatistical inversion of a seismic data set acquired in a Gulf of Mexico gas reservoir.

    E-Print Network [OSTI]

    Torres-VerdĂ­n, Carlos

    High-resolution geostatistical inversion of a seismic data set acquired in a Gulf of Mexico gas, UNOCAL Corporation Summary Geostatistical inversion is applied on a Gulf-of-Mexico, 3D post-stack seismic in this paper is located in the Gulf of Mexico, off the coast of Louisiana. Existing development wells reach two

  11. 3D Film Making Cary Kornfeld

    E-Print Network [OSTI]

    Zanibbi, Richard

    Institute of Technology, Zurich (ETHZ) 4pm, Wed., Jan. 23, 2008 Auditorium of the Center for Imaging Science traditional cinema. At ETH in Zurich Switzerland, students are required to build the equipment they use cannot be attained in a home cinema setting. Ignored is the question of viewer fatigue. Viewers begin

  12. Imaging short-period seismic radiation from the 27 February 2010 Chile (MW 8.8) earthquake by back-projection of P, PP,

    E-Print Network [OSTI]

    Madariaga, Raúl

    -period seismic waves, geodetic data, and/or tsunami observations. Citation: Koper, K. D., A. R. Hutko, T. Lay of teleseismic short-period ($0.5­5.0 s) body waves (P and PKIKP) to track the evolution of the rupture front [e; Tong et al., 2010; Lorito et al., 2011; Pollitz et al., 2011; Vigny et al., 2011], as have tsunami

  13. Introduction Report 21 of the Consortium project "Seismic Waves in Complex 3D Structures"

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Bakulin (SaudiAramco, Dhahran, Saudi Arabia; SEG distinguished lec- turer), Norman Bleistein (Colorado

  14. 3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary

    E-Print Network [OSTI]

    Majer, E.L.

    2003-01-01T23:59:59.000Z

    Seismological Studies at the Cerro Prieto Field: 1978-1982,Fourth Symposium on Cerro Prieto Geothermal Field,

  15. AN INTEGRATED MULTI-COMPONENT PROCESSING AND INTERPRETATION FRAMEWORK FOR 3D BOREHOLE SEISMIC DATA

    SciTech Connect (OSTI)

    M. Karrenbach

    2005-04-15T23:59:59.000Z

    This report covers the November 2004-March 2005 time period. A mid year project review meeting was held at DOE facilities on November 30th. Work has been performed successfully on several tasks 3 through 15. Most of these tasks have been executed independently. We progressed steadily and completed some of the sub-tasks, while others are still on going. We achieved the goals that we had set up in the task schedule. Reviewing the results of this work period indicates that our plan is solid and we did not encounter any unforeseen problems. The work plan will continue as projected.

  16. On 3D modeling of seismic wave propagation via a structured ...

    E-Print Network [OSTI]

    2011-07-27T23:59:59.000Z

    Hackbusch B.K.W. and Sauter S.A. 2003. On H2-matrices, Lectures on Applied Mathematics. Springer. Hoffman A., Martin M. and Rose D. 1973. Complexity ...

  17. Fast probabilistic petrophysical mapping of reservoirs from 3D seismic data

    E-Print Network [OSTI]

    of rock and fluid properties such as porosity, clay con- tent, and water saturation is essential for exploration and develop- ment of hydrocarbon reservoirs. Rock and fluid property maps obtained from impedances for rock-fluid properties given a petrophysical relationship between the acoustic properties

  18. Detection of azimuthal anisotropy from 3-D p-wave seismic data

    E-Print Network [OSTI]

    Yildizel, Ali

    1992-01-01T23:59:59.000Z

    the equation; (II ? 1) for u(z) = V t(z) is wave slowness. Velocity estimation using reflections and the tau-p approach was first suggested by Schultz and Claerbout (1978), They showed that velocity analysis can be done in a ' similar manner... to conventional analysis by looking for maximum coherency over each ' trajectory of ellipses in r-p domain instead of a hyperbola in conventional analysis. Schultz (1982) also suggested a method of layer-stripping for velocity estimation in the r-p domain...

  19. Exploiting intensive multithreading for the efficient simulation of 3D seismic wave propagation

    E-Print Network [OSTI]

    Komatitsch, Dimitri

    of damage in future earthquake scenarios. Re- cent advances in high-performance computing technologies make of large interconnected shared memory nodes and generates an im- portant number of potentially useless

  20. Seismic sources

    DOE Patents [OSTI]

    Green, Michael A. (Oakland, CA); Cook, Neville G. W. (Lafayette, CA); McEvilly, Thomas V. (Berkeley, CA); Majer, Ernest L. (El Cirrito, CA); Witherspoon, Paul A. (Berkeley, CA)

    1992-01-01T23:59:59.000Z

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.

  1. SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    , and the interpretation of seismic measurements. The book presents a consistent treatment of the seismic ray method, based#12;SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic ray method available. This method plays an important role in seismology, seismic exploration

  2. The unique dynamics of the Pacic Hemisphere mantle and its signature on seismic anisotropy

    E-Print Network [OSTI]

    Long, Bernard

    over su/ciently long length scales it can be detected by seismic waves, and consequently seismic-resolution seismic images of mantle structure. In the Pacific Hemisphere we find a dome-like upwelling, originating of the Pacific plate to the dome-like upwelling below the central Pacific Ocean and it also provides

  3. Interpretation of seismic anisotropy in terms of mantle flow when melt is present

    E-Print Network [OSTI]

    Kaminski, Edouard

    Interpretation of seismic anisotropy in terms of mantle flow when melt is present E. Kaminski scale. Citation: Kaminski, E. (2006), Interpretation of seismic anisotropy in terms of mantle flow when of seismic anisotropy to image upper mantle flow is usually based on the assumption that the direction

  4. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

  5. 3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal...

    Open Energy Info (EERE)

    Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, Indonesia Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: 3-D...

  6. 3-D Combustion Simulation Strategy Status, Future Potential,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Simulation Strategy Status, Future Potential, and Application Issues 3-D Combustion Simulation Strategy Status, Future Potential, and Application Issues 2004 Diesel...

  7. automated 3-d voxel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: from a real-life application. 1 Introduction Recent advances in 3D printing technology have made of materials, higher printing speeds, and lower costs....

  8. automated 3d correlative: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bosch, Frdric 8 Bridging the Gap: Automated Steady Scaffoldings for 3D Printing Jrmie Dumas Computer Technologies and Information Sciences Websites Summary:...

  9. assess 3d bone: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: from a real-life application. 1 Introduction Recent advances in 3D printing technology have made of materials, higher printing speeds, and lower costs....

  10. Making 3D Printed Christmas Ornaments | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This Contributor Santa's sleigh becomes "Intelligent Machine" this Christmas Using 3D Printing to Redesign Santa's Sleigh A Sneak Peek Into Santa's Smarter Sleigh Subscribe to...

  11. RELAP5-3D V. 4.X.X

    Energy Science and Technology Software Center (OSTI)

    000191MLTPL01 NON-NRC FUNDED RELAP5-3D VERSION 4.x.x SOFTWARE REACTOR EXCURSION AND LEAK ANALYSIS PACKAGE - THREE DIMENSIONAL   

  12. Further Analysis of 3D Magnetotelluric Measurements Over the...

    Open Energy Info (EERE)

    Coso Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Further Analysis of 3D Magnetotelluric Measurements Over the Coso...

  13. Novel 3-D Printed Inverters for Electric Vehicles Can Improve...

    Energy Savers [EERE]

    density of the prototype. In addition to the improvements to the inverter itself, 3-D printing uses less energy compared to conventional manufacturing, making the manufacturing...

  14. SPIE Medical Imaging Medical Imaging

    E-Print Network [OSTI]

    Miga, Michael I.

    CT and SPECT (GE Hawkeye) SPIE Medical Imaging 2006 28 CT/PET System Combined CT and PET (Siemens Medical Imaging 2006 10 Computed Tomography (CT) 3D Tomography from multiple projections #12;6 SPIE: Scintillation Camera SPIE Medical Imaging 2006 26 PET and SPECT PET = Positron Emission Tomography SPECT

  15. The Impact of Injection on Seismicity at The Geyses, California Geothermal Field

    E-Print Network [OSTI]

    Majer, Ernest L.; Peterson, John E.

    2008-01-01T23:59:59.000Z

    The Geysers, California, geothermal area, U.S. Geol. Surv.seismicity at The Geysers geothermal reservoir, Californiaseismic image of a geothermal reservoir: The Geysers,

  16. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks

    Broader source: Energy.gov [DOE]

    Improved seismic imaging of geology across high-velocity Earth surfaces will allow more rigorous evaluation of geothermal prospects beneath volcanic outcrops. Seismic-based quantification of fracture orientation and intensity will result in optimal positioning of geothermal wells.

  17. Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc area of the Paradox Basin, UTE Mountain UTE Reservation, Colorado

    SciTech Connect (OSTI)

    Joe Hachey

    2007-09-30T23:59:59.000Z

    The goals of this project were: (1) To enhance recovery of oil contained within algal mounds on the Ute Mountain Ute tribal lands. (2) To promote the use of advanced technology and expand the technical capability of the Native American Oil production corporations by direct assistance in the current project and dissemination of technology to other Tribes. (3) To develop an understanding of multicomponent seismic data as it relates to the variations in permeability and porosity of algal mounds, as well as lateral facies variations, for use in both reservoir development and exploration. (4) To identify any undiscovered algal mounds for field-extension within the area of seismic coverage. (5) To evaluate the potential for applying CO{sub 2} floods, steam floods, water floods or other secondary or tertiary recovery processes to increase production. The technical work scope was carried out by: (1) Acquiring multicomponent seismic data over the project area; (2) Processing and reprocessing the multicomponent data to extract as much geological and engineering data as possible within the budget and time-frame of the project; (3) Preparing maps and data volumes of geological and engineering data based on the multicomponent seismic and well data; (4) Selecting drilling targets if warranted by the seismic interpretation; (5) Constructing a static reservoir model of the project area; and (6) Constructing a dynamic history-matched simulation model from the static model. The original project scope covered a 6 mi{sup 2} (15.6 km{sup 2}) area encompassing two algal mound fields (Towaoc and Roadrunner). 3D3C seismic data was to acquired over this area to delineate mound complexes and image internal reservoir properties such as porosity and fluid saturations. After the project began, the Red Willow Production Company, a project partner and fully-owned company of the Southern Ute Tribe, contributed additional money to upgrade the survey to a nine-component (3D9C) survey. The purpose of this upgrade to nine components was to provide additional shear wave component data that might prove useful in delineating internal mound reservoir attributes. Also, Red Willow extended the P-wave portion of the survey to the northwest of the original 6 mi{sup 2} (15.6 km{sup 2}) 3D9C area in order to extend coverage further to the northwest to the Marble Wash area. In order to accomplish this scope of work, 3D9C seismic data set covering two known reservoirs was acquired and processed. Three-dimensional, zero-offset vertical seismic profile (VSP) data was acquired to determine the shear wave velocities for processing the sh3Dseismic data. Anisotropic velocity, and azimuthal AVO processing was carried out in addition to the conventional 3D P-wave data processing. All P-, PS- and S-wave volumes of the seismic data were interpreted to map the seismic response. The interpretation consisted of conventional cross-plots of seismic attributes vs. geological and reservoir engineering data, as well as multivariate and neural net analyses to assess whether additional resolution on exploration and engineering parameters could be achieved through the combined use of several seismic variables. Engineering data in the two reservoirs was used to develop a combined lithology, structure and permeability map. On the basis of the seismic data, a well was drilled into the northern mound trend in the project area. This well, Roadrunner No.9-2, was brought into production in late April 2006 and continues to produce modest amounts of oil and gas. As of the end of August 2007, the well has produced approximately 12,000 barrels of oil and 32,000 mcf of gas. A static reservoir model was created from the seismic data interpretations and well data. The seismic data was tied to various markers identified in the well logs, which in turn were related to lithostratigraphy. The tops and thicknesses of the various units were extrapolated from well control based upon the seismic data that was calibrated to the well picks. The reservoir engineering properties were available from a number of wel

  18. MPSalsa 3D Simulations of Chemically Reacting Flows

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).

    This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.

  19. Micro-CT for the quantification of 3D voids within damaged structures

    SciTech Connect (OSTI)

    Patterson, Brian M [Los Alamos National Laboratory; Hamilton, Christopher E [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory; Dennis - Koller, Darcie [Los Alamos National Laboratory; Bronkhorst, C. A. [Los Alamos National Laboratory; Hansen, B. L. [Los Alamos National Laboratory

    2011-01-26T23:59:59.000Z

    Micro X-ray Computed Tomography (MXCT) is widely used in the materials community to examine the internal structure of materials for voids and cracks due to damage or casting, or other defects. Most research in this area focuses on the qualitative aspect of the image, simply answering; Are there voids present? Here we present an ongoing study of the quantified incipient spall voids in Cu with different grain sizes, using a gas gun with various velocities. Data analysis packages for MXCT are just now becoming able to dimensionally measure and produce statistics on the voids-present. In order to make the size of the features in the 3D image quantifiable, the question, how many radiographs are required to render the object dimensionally accurate in 3D, must be answered. A series of data sets has been coUected, varying the number of radiographs collected in order to determine the appropriate number required.

  20. Interactive 3D Gene Expression Viewer Victor E. Gerth*

    E-Print Network [OSTI]

    Vize, Peter D.

    Interactive 3D Gene Expression Viewer Victor E. Gerth* University of Calgary, Department. The Interactive Gene Expression viewer provides a way to view spatial relationships between different gene expression patterns and anatomic features. Web based 3D enabled technologies such as the Interactive Gene

  1. Anatomic measurement accuracy: CT parameters and 3D rendering effects

    E-Print Network [OSTI]

    Vorperian, Houri K.

    Anatomic measurement accuracy: CT parameters and 3D rendering effects Brian J Whyms a, E Michael of Neuroscience #12;INTRODUCTION · Measurements from 3D-CT rendering are used in research and clinical management-CT rendering techniques on measurements #12;METHODS Scanned: · 3 human mandibles · a phantom object Phantom

  2. An Improved Vertex Caching Scheme for 3D Mesh Rendering

    E-Print Network [OSTI]

    Lin, Gang

    An Improved Vertex Caching Scheme for 3D Mesh Rendering Gang Lin and Thomas P.-Y. Yu Abstract to the graphics pipeline during rendering. To make effective use of the cache and facilitate rendering, it is key effective algorithm for generating a sequence for efficient rendering of 3D polygonal meshes based on greedy

  3. PREASYMPTOTIC CHARGE OSCILLATIONS AROUND 3d IMPURITIES IN ALUMINIUM

    E-Print Network [OSTI]

    Boyer, Edmond

    on aluminium based transi- tion metal alloys can be explained in the LSF approxi- mation of the Anderson modelL-87 PREASYMPTOTIC CHARGE OSCILLATIONS AROUND 3d IMPURITIES IN ALUMINIUM V. ZLATI0106 and G. GRÜNER modčle d'Anderson la perturbation de densité électronique autour de certaines impuretés 3d dans l'aluminium

  4. 3D FFT for FPGAs Ben Humphries Martin C. Herbordt

    E-Print Network [OSTI]

    Herbordt, Martin

    computations such as those used in Molecular Dynamics simulations. On FPGAs, however, the 3D FFT was thought Dynamics simulations (MD). Somewhat sur- prisingly, although MD on FPGAs has been widely studied, we3D FFT for FPGAs Ben Humphries Martin C. Herbordt Department of Electrical and Computer

  5. Collaborative 3D Visualization on Large Screen Displays

    E-Print Network [OSTI]

    Barbosa, Alberto

    reality (VR) system designed to support collaborative visualization of 3D environments, applied in collaborative work. This paper presents a system that uses remotely located wall sized displays, to offer immersive, interactive collaborative visualization and review of 3D CAD models for engineering applications

  6. BIOLOGICALLY MOTIVATED 3D FACE RECOGNITION Albert Ali Salah

    E-Print Network [OSTI]

    BIOLOGICALLY MOTIVATED 3D FACE RECOGNITION by Albert Ali Salah B.S, in Computer Engineering, Bogazi of Doctor of Philosophy Graduate Program in Bogazi¸ci University 2007 #12;ii BIOLOGICALLY MOTIVATED 3D FACE. Hayim Molinas. #12;iv ACKNOWLEDGEMENTS With gratitude to my PhD advisor Lale Akarun for her boundless

  7. CREATING 3D ANIMATED HUMAN BEHAVIORS FOR VIRTUAL WORLDS

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    i CREATING 3D ANIMATED HUMAN BEHAVIORS FOR VIRTUAL WORLDS Jan M. Allbeck A DISSERTATION in Computer, and a scholar. #12;iv ABSTRACT CREATING 3D ANIMATED HUMAN BEHAVIORS FOR VIRTUAL WORLDS Jan M. Allbeck Norman I. Badler Creating virtual scenarios that simulate a substantial human population with typical and varied

  8. Chopper: Partitioning models into 3D-printable parts

    E-Print Network [OSTI]

    Luo, Linjie

    3D printing technology is rapidly maturing and becoming ubiquitous. One of the remaining obstacles to wide-scale adoption is that the object to be printed must fit into the working volume of the 3D printer. We propose a ...

  9. The Influence of Basalt Layers on Seismic Wave Propagation 

    E-Print Network [OSTI]

    Hanssen, Peter

    are to examine the effects of basalts on seismic wave propagation and the concequent implications for imaging sedimentary structures beneath them. From studies of basalt propertiesand borehole data in connection with foreward modelling and real data, I show...

  10. Mapping bedrock beneath glacial till using CDP seismic reflection methods

    E-Print Network [OSTI]

    Keiswetter, Dean; Black, Ross A.; Steeples, Don W.

    1994-03-01T23:59:59.000Z

    This paper is a case history demonstrating the applicability of the common depth point (CDP) seismic reflection method to image bedrock beneath glacial till in northwestern Iowa. Reflections from the base of the 40-m thick glacial till are clearly...

  11. Seismic metamaterials based on isochronous mechanical oscillators

    SciTech Connect (OSTI)

    Finocchio, G., E-mail: gfinocchio@unime.it; Garescě, F.; Azzerboni, B. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, C.da di Dio, I-98166 Messina (Italy); Casablanca, O.; Chiappini, M. [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via Vigna Murata 605, 00143 Roma (Italy); Ricciardi, G. [Department of Civil, Informatic, Architectural, and Environmental Engineering and Applied Mathematics, C.da di Dio, I-98166 Messina (Italy); Alibrandi, U. [Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576 (Singapore)

    2014-05-12T23:59:59.000Z

    This Letter introduces a seismic metamaterial (SM) composed by a chain of mass-in-mass system able to filter the S-waves of an earthquake. We included the effect of the SM into the mono dimensional model for the soil response analysis. The SM modifies the soil behavior and in presence of an internal damping the amplitude of the soil amplification function is reduced also in a region near the resonance frequency. This SM can be realized by a continuous structure with inside a 3d-matrix of isochronous oscillators based on a sphere rolling over a cycloidal trajectory.

  12. Nondestructive volumetric 3-D chemical mapping of nickel-sulfur compounds at the nanoscale

    SciTech Connect (OSTI)

    Harris W. M.; Chu Y.; Nelson, G.J.; Kiss, A.M.; Izzo Jr, J.R.; Liu, Y.; Liu, M.; Wang, S.; Chiu W.K.S.

    2012-04-04T23:59:59.000Z

    Nano-structures of nickel (Ni) and nickel subsulfide (Ni{sub 3}S{sub 2}) materials were studied and mapped in 3D with high-resolution x-ray nanotomography combined with full field XANES spectroscopy. This method for characterizing these phases in complex microstructures is an important new analytical imaging technique, applicable to a wide range of nanoscale and mesoscale electrochemical systems.

  13. 3D pattern of brain changes in deaf subjects using Tensor-Based Morphometry

    E-Print Network [OSTI]

    Thompson, Paul

    , Patrick Vachon2 , Franco Lepore2 , Yi-Yu Chou1 , Patrice Voss2 , Caroline Brun1 , Agatha D. Lee1 , Arthur W. Toga1 , and Paul M. Thompson1 1 Laboratory of Neuro Imaging, Department of Neurology, David. N. Lepore, Y-Y. Chou, O.L. Lopez, H.J. Aizenstein, J.T. Becker, A.W. Toga, P.M. Thompson, Fast 3D

  14. FSU Office of Research Program in Interdisciplinary Computing (PIC) What is 3D printing?

    E-Print Network [OSTI]

    Ronquist, Fredrik

    (PIC) What is 3D printing? 3D printing is a process of making. 3D printing is distinct from traditional machining techniques, which mostly organs, meat, circuit boards and batteries. 3D printing impacts nearly every

  15. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xi'an Jiaotong Univ., Xi'an, Shaanxi (China); Zhang, Lei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tong, Huimin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Peng, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rames, Matthew J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Shengli [Xi'an Jiaotong Univ., Xi'an, Shaanxi (China); Ren, Gang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-05T23:59:59.000Z

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.

  16. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05T23:59:59.000Z

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore »derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less

  17. Suitability for 3D Printed Parts for Laboratory Use

    SciTech Connect (OSTI)

    Zwicker, Andrew P. [PPPL; Bloom, Josh [PPPL; Albertson, Robert [PPPL; Gershman, Sophia [PPPL

    2014-08-01T23:59:59.000Z

    3D printing has become popular for a variety of users, from industrial to the home hobbyist, to scientists and engineers interested in producing their own laboratory equipment. In order to determine the suitability of 3D printed parts for our plasma physics laboratory, we measured the accuracy, strength, vacuum compatibility, and electrical properties of pieces printed in plastic. The flexibility of rapidly creating custom parts has led to the 3D printer becoming an invaluable resource in our laboratory and is equally suitable for producing equipment for advanced undergraduate laboratories.

  18. USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE...

    Open Energy Info (EERE)

    GEOTHERMAL FIELD, CALIFORNIA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP...

  19. Using Micro-Seismicity and Seismic Velocities to Map Subsurface...

    Open Energy Info (EERE)

    Geothermal Field California Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Using Micro-Seismicity and Seismic Velocities to Map Subsurface...

  20. Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At...

  1. Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2008) Exploration...

  2. Newberry EGS Seismic Velocity Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Templeton, Dennise

    We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.

  3. Newberry EGS Seismic Velocity Model

    SciTech Connect (OSTI)

    Templeton, Dennise

    2013-10-01T23:59:59.000Z

    We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.

  4. Seismic characterization of fractures

    E-Print Network [OSTI]

    JM Carcione

    2014-06-07T23:59:59.000Z

    Seismic characterization of fractures. José M. Carcione, OGS, Italy. Fractured geological formations are generally represented with a stress-strain relation.

  5. 3D-Printed Car by Local Motors- The Strati

    Broader source: Energy.gov [DOE]

    A timelapse video of the production process behind The Strati - the 3D-printed car by Local Motors, which manufactured with Oak Ridge National Laboratory (ORNL) and delivered at the International Manufacturing Technology Show (IMTS) in September of 2014.

  6. 3D Representations for Software Visualization Andrian Marcus

    E-Print Network [OSTI]

    research from software analysis, information visualization, human-computer interaction, and cognitive, texture, abstraction mechanism, and by supporting new manipulation techniques and user interfaces.2 [Information Interfaces and Presentation] User Interfaces Keywords: Software visualization, 3D visualization

  7. Polymer Solar Cells: New Materials, 3D Morphology, and Tandem...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polymer Solar Cells: New Materials, 3D Morphology, and Tandem Devices March 2, 2010 at 3pm36-428 Ren Janssen Molecular Materials and Nanosystems, Eindhoven University of...

  8. EVENT CLASSIFICATION FOR 3-D POSITION SENSITIVE SEMICONDUCTOR DETECTORS

    E-Print Network [OSTI]

    He, Zhong

    Generation Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 Charge Cloud Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 iv #12;3.1.2 Experimental 3-D Detectors . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 IV

  9. A fast 3D full-wave solver for nanophotonics

    E-Print Network [OSTI]

    Zhang, Lei, Ph. D. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.

    2007-01-01T23:59:59.000Z

    Conventional fast integral equation solvers seem to be ideal approaches for simulating 3-D nanophotonic devices, as these devices are considered to be open structures, generating fields in both an interior channel and in ...

  10. 3D/4D geospatial visualization using Makai Voyager

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    3D/4D geospatial visualization using Makai Voyager John C. Anderson Makai Ocean Engineering, Inc-based, geospatially-enabled software that can fuse and visualize large, multi-variable data sets that change in space

  11. Topobo : a 3-D constructive assembly system with kinetic memory

    E-Print Network [OSTI]

    Raffle, Hayes Solos, 1974-

    2004-01-01T23:59:59.000Z

    We introduce Topobo, a 3-D constructive assembly system em- bedded with kinetic memory, the ability to record and playback physical motion. Unique among modeling systems is Topobo's coincident physical input and output ...

  12. aperture radar 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a...

  13. accuracy 3d quantum: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a...

  14. Towards an Intelligent Storyboarding Tool for 3D Arnav Jhala

    E-Print Network [OSTI]

    Young, R. Michael

    cinematography. 1. OVERVIEW Storyboarding tools enable authors/designers of cinematic narratives in games such as The Rule of Thirds in building cinematography systems for 3D virtual environments. The trend in recent

  15. 3D-2D ASYMPTOTIC ANALYSIS FOR INHOMOGENEOUS THIN FILMS

    E-Print Network [OSTI]

    3D-2D ASYMPTOTIC ANALYSIS FOR INHOMOGENEOUS THIN FILMS plate models, periodic pr* *o- files, and within the context of optimal design for thin films 5. Third application - Optimal design of a thin film 19 6. Final Remarks

  16. 2013 Santa Sleigh 3D Printing Winner | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineers Pick Winner of 2013 Santa Sleigh 3D Printing Design Contest Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share...

  17. Beyond 3D Printing: The New Dimensions of Additive Fabrication

    E-Print Network [OSTI]

    Keating, Steven John

    Additive fabrication, often referred to as 3D printing, is the construction of objects by adding material. This stands in contrast to subtractive methods, which involve removing material by means of milling or cutting. ...

  18. Fitting of Constrained Models to Poor 3D Data 

    E-Print Network [OSTI]

    Robertson, Craig; Fisher, Robert B.; Werghi, Naoufel; Ashbrook, Anthony

    2000-01-01T23:59:59.000Z

    In this work we have addressed the question of whether it is possible to extract parametric models of features from poor quality 3D data. In doing this we have examined the applicability of an evolutionary strategy to the ...

  19. 3D assembly and actuation of nanopatterned membranes using nanomagnets

    E-Print Network [OSTI]

    Nichol, Anthony John

    2011-01-01T23:59:59.000Z

    A new method for aligning and actuating membranes for 3D nano-assembly based on the interactions of nanomagnets has been developed. Arrays of nanopatterned magnetic material are integrated onto thin-film membranes. It is ...

  20. Automatic 3D facial expression analysis in videos

    E-Print Network [OSTI]

    Chang, Y; Vieira, M; Turk, M; Velho, L

    2005-01-01T23:59:59.000Z

    with the background in videos [26] are important topics forSystem for Real-Time 3D Video. IEEE Int. Workshop onExpression Analysis in Videos Ya Chang 1 , Marcelo Vieira

  1. 3D Printed Microscope for Mobile Devices that Cost Pennies

    SciTech Connect (OSTI)

    Erikson, Rebecca; Baird, Cheryl; Hutchinson, Janine

    2014-09-15T23:59:59.000Z

    Scientists at PNNL have designed a 3D-printable microscope for mobile devices using pennies worth of plastic and glass materials. The microscope has a wide range of uses, from education to in-the-field science.

  2. 3D Object Digitization: Topology Preserving Reconstruction Peer Stelldinger

    E-Print Network [OSTI]

    Latecki, Longin Jan

    is the 3D generalization of #12;the 2D Gauss digitization (see [4]) which has been used by Gauss to compute 2. There are 14 different cases of canonical configurations. In dense digitiza- tions of r

  3. 3D Module Placement for Congestion and Power Noise Reduction

    E-Print Network [OSTI]

    Lim, Sung Kyu

    3D Module Placement for Congestion and Power Noise Reduction Jacob R. Minz School of ECE Georgia that copies are not made or distributed for profit or commercial advantage and that copies bear this notice

  4. Review: 3D Printing: Social and Cultural Trajectories Symposium -3D Printing Industry http://3dprintingindustry.com/2013/12/11/review-3d-printing-social-cultural-trajectories-symposium/[12/12/2013 11:25:00 AM

    E-Print Network [OSTI]

    Review: 3D Printing: Social and Cultural Trajectories Symposium - 3D Printing Industry http://3dprintingindustry.com/2013/12/11/review-3d-printing-social-cultural-trajectories-symposium/[12/12/2013 11:25:00 AM] Review: 3D Printing: Social and Cultural Trajectories Symposium BY ANGELA DALY & DARCY ALLEN ON WED

  5. Toward single cell traction microscopy within 3D collagen matrices

    SciTech Connect (OSTI)

    Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-01T23:59:59.000Z

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  6. Seismic Behavior of Spent Fuel Dry Cask Storage Systems

    SciTech Connect (OSTI)

    Shaukat, Syed K. [U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States); Luk, Vincent K. [Sandia National Laboratories, PO Box 5800. Albuquerque, New Mexico 87185-0744 (United States)

    2002-07-01T23:59:59.000Z

    The U. S. Nuclear Regulatory Commission (NRC) is conducting a research program to investigate technical issues concerning the dry cask storage systems of spent nuclear fuel by conducting confirmatory research for establishing criteria and review guidelines for the seismic behavior of these systems. The program focuses on developing 3-D finite element analysis models that address the dynamic coupling of a module/cask, a flexible concrete pad, and an underlying soil/rock foundation, in particular, the soil-structure-interaction. Parametric analyses of the coupled models are performed to include variations in module/cask geometry, site seismicity, underlying soil properties, and cask/pad interface friction. The analyses performed include: 1) a rectangular dry cask module typical of Transnuclear West design at a site in Western USA where high seismicity is expected; 2) a cylindrical dry cask typical of Holtec design at a site in Eastern USA where low seismicity is expected; and 3) a cylindrical dry cask typical of Holtec design at a site in Western USA with medium high seismicity. The paper includes assumptions made in seismic analyses performed, results, and conclusions. (authors)

  7. Imaging, Characterizing, and Modeling of Fracture Networks and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    objectives: Improve image resolution for microseismicimaging and time-lapse active seismic imaging; Enhance the prediction of fluid flow and temperature distributions and...

  8. Imaging, Characterizing, and Modeling of Fracture Networks and...

    Broader source: Energy.gov (indexed) [DOE]

    novel imaging methods for monitoring EGS reservoirs. - Innovation: Use time-lapse seismic data and elastic-waveform inversion for high-resolution reservoir imaging; Improve...

  9. RGUI 1.0, New Graphical User Interface for RELAP5-3D

    SciTech Connect (OSTI)

    Mesina, George Lee; Galbraith, James Andrew

    1999-04-01T23:59:59.000Z

    With the advent of three-dimensional modeling in nuclear safety analysis codes, the need has arisen for a new display methodology. Currently, analysts either sort through voluminous numerical displays of data at points in a region, or view color coded interpretations of the data on a two-dimensional rendition of the plant. RGUI 1.0 provides 3D capability for displaying data. The 3D isometric hydrodynamic image is built automatically from the input deck without additional input from the user. Standard view change features allow the user to focus on only the important data. Familiar features that are standard to the nuclear industry, such as run, interact, and monitor, are included. RGUI 1.0 reduces the difficulty of analyzing complex three dimensional plants.

  10. Pos3D: Um pos-processador generico para modelos 3D de elementos finitos MARCELO TILIO M. CARVALHO1

    E-Print Network [OSTI]

    Pos3D: Um p´os-processador gen´erico para modelos 3D de elementos finitos MARCELO TILIO M. CARVALHO interpretac¸~ao e visualizac¸~ao dos resultados. Um dos m´etodos num´ericos mais utilizado neste tipo de´os-processador deve ser gen´erico, o que im- plica em ser independente do programa utilizado na an´alise num

  11. Pos3D: Um p osprocessador gen erico para modelos 3D de elementos finitos MARCELO TILIO M. CARVALHO 1

    E-Print Network [OSTI]

    Pos3D: Um pâ?? os­processador genâ?? erico para modelos 3D de elementos finitos MARCELO TILIO Mâ??ďż˝sico) e interpretacâ?şâ?ťao e visualizacâ?şâ?ťao dos resultados. Um dos mâ??etodos numâ??ericos mais utilizado nesteâ??os­processador deve ser genâ??erico, o que im­ plica em ser independente do programa utilizado na anâ??alise num

  12. Source-independent full waveform inversion of seismic data

    DOE Patents [OSTI]

    Lee, Ki Ha

    2006-02-14T23:59:59.000Z

    A set of seismic trace data is collected in an input data set that is first Fourier transformed in its entirety into the frequency domain. A normalized wavefield is obtained for each trace of the input data set in the frequency domain. Normalization is done with respect to the frequency response of a reference trace selected from the set of seismic trace data. The normalized wavefield is source independent, complex, and dimensionless. The normalized wavefield is shown to be uniquely defined as the normalized impulse response, provided that a certain condition is met for the source. This property allows construction of the inversion algorithm disclosed herein, without any source or source coupling information. The algorithm minimizes the error between data normalized wavefield and the model normalized wavefield. The methodology is applicable to any 3-D seismic problem, and damping may be easily included in the process.

  13. New Paradigm for Seismic Networks: Crowd-Sourced Seismic Networks,

    E-Print Network [OSTI]

    Greer, Julia R.

    #12;New Paradigm for Seismic Networks: Crowd-Sourced Seismic Networks, including Buildings Tom Egill Hauksson #12;SCSN: what does it encompass? · ~360 Seismic Stations · ~60 stations from partners SCSN/SCEDC total of ~26 FTE's #12;Crowd Sourced Networks · Current broadband seismic network

  14. 2D?3D polycatenated and 3D?3D interpenetrated metal–organic frameworks constructed from thiophene-2,5-dicarboxylate and rigid bis(imidazole) ligands

    SciTech Connect (OSTI)

    Erer, Hakan [Department of Chemistry, Faculty of Arts and Sciences, Eski?ehir Osmangazi University, 26480 Eski?ehir (Turkey); Ye?ilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eski?ehir Osmangazi University, 26480 Eski?ehir (Turkey); Ar?c?, Mürsel [Department of Chemistry, Faculty of Arts and Sciences, Eski?ehir Osmangazi University, 26480 Eski?ehir (Turkey); Keskin, Seda [Department of Chemical and Biological Engineering, Koç University, ?stanbul (Turkey); Büyükgüngör, Orhan [Department of Physics, Faculty of Arts and Sciences, Ondokuz May?s University, 55139 Samsun (Turkey)

    2014-02-15T23:59:59.000Z

    Hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks, namely, [Zn(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (1), [Cd(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (2), and ([Cd{sub 2}(µ{sub 3}-tdc){sub 2}(µ-dimb){sub 2}]·(H{sub 2}O)){sub n}(3). These MOFs were characterized by FT-IR spectroscopy, elemental, thermal (TG, DTA, DTG and DSC), and single-crystal X-ray diffraction analyses. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D?3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. Moreover, these coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. - Graphical abstract: In this study, hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D?3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. These coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. Display Omitted - Highlights: • Complexes 1 and 2 display polycatenated 2D+2D?3D framework. • Complex 3 exhibits a new 4-fold interpenetrating 3D framework. • Complex 1 adsorbs the highest amount of H{sub 2} at 100 bar and 298 K. • Complexes display blue fluorescent emission bands.

  15. Advanced 3D Sensing and Visualization System for Unattended Monitoring

    SciTech Connect (OSTI)

    Carlson, J.J.; Little, C.Q.; Nelson, C.L.

    1999-01-01T23:59:59.000Z

    The purpose of this project was to create a reliable, 3D sensing and visualization system for unattended monitoring. The system provides benefits for several of Sandia's initiatives including nonproliferation, treaty verification, national security and critical infrastructure surety. The robust qualities of the system make it suitable for both interior and exterior monitoring applications. The 3D sensing system combines two existing sensor technologies in a new way to continuously maintain accurate 3D models of both static and dynamic components of monitored areas (e.g., portions of buildings, roads, and secured perimeters in addition to real-time estimates of the shape, location, and motion of humans and moving objects). A key strength of this system is the ability to monitor simultaneous activities on a continuous basis, such as several humans working independently within a controlled workspace, while also detecting unauthorized entry into the workspace. Data from the sensing system is used to identi~ activities or conditions that can signi~ potential surety (safety, security, and reliability) threats. The system could alert a security operator of potential threats or could be used to cue other detection, inspection or warning systems. An interactive, Web-based, 3D visualization capability was also developed using the Virtual Reality Modeling Language (VRML). The intex%ace allows remote, interactive inspection of a monitored area (via the Internet or Satellite Links) using a 3D computer model of the area that is rendered from actual sensor data.

  16. Evaluation of Cross-Hole Seismic Tomography for Imaging Low Resistance Intervals and Associated Carbonate Sediments in Coastal Plain Sequences on the Savannah River Site, South Carolina

    SciTech Connect (OSTI)

    Cumbest, R. J.

    1999-01-05T23:59:59.000Z

    The objectives of the pilot study were to investigate the limitations of the technique for imaging the presence, extent, and boundaries of the low-resistance intervals and associated carbonate sediments.

  17. Fracture Properties From Seismic Scattering

    E-Print Network [OSTI]

    Burns, Daniel R.

    2007-01-01T23:59:59.000Z

    Fractures scatter seismic energy and this energy can be analyzed to provide information about fracture

  18. Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors

    E-Print Network [OSTI]

    M. Bubna; E. Alagoz; A. Krzywda; O. Koybasi; K. Arndt; D. Bortoletto; I. Shipsey; G. Bolla; A. Kok; T. -E. Hansen; T. A. Hansen; G. U. Jensen; J. M. Brom; M. Boscardin; J. Chramowicz; J. Cumalat; G. F. Dalla Betta; M. Dinardo; A. Godshalk; M. Jones; M. D. Krohn; A. Kumar; C. M. Lei; L. Moroni; L. Perera; M. Povoli; A. Prosser; R. Rivera; A. Solano; M. M. Obertino; S. Kwan; L. Uplegger; C. D. Via; L. Vigani; S. Wagner

    2014-04-30T23:59:59.000Z

    The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.

  19. Three-dimensional seismic stratigraphic study of downdip Yegua sandstones, Edna Field, Jackson County, Texas

    E-Print Network [OSTI]

    Trikania, Andra

    1996-01-01T23:59:59.000Z

    This study reports an investigation of the structure and stratigraphy of the downdip Yegua sandstones at Edna Field, Jackson County, South Texas. The study is based on 22.9 square miles of three dimensional (3-D) seismic data, well-logs from 15...

  20. Efficient Smoothing and Interpolation of Velocity Models for Seismic Wavefront Construction Algorithms

    E-Print Network [OSTI]

    Chen, Bo

    2012-10-19T23:59:59.000Z

    The wavefront construction (WFC) method is an effective tool to compute seismic ray fields and has wide applications. This paper applies the WFC method to a heterogeneous earth model represented as a 3-D grid instead of a sequence of smooth layers...