Powered by Deep Web Technologies
Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Electron-density comparisons between radar observations and 3-D ionospheric model calculations. Master's thesis  

SciTech Connect (OSTI)

A comparison of electron densities calculated from the Utah State University First-Principals Ionospheric Model with simultaneous observations taken at Sondrestrom, Millstone, and Arecibo incoherent-scatter radars was undertaken to better understanding the response of the ionosphere at these longitudinally similar yet latitudinally separated locations. The comparison included over 50 days distributed over 3 1/2 years roughly symmetrical about the last solar-minimum in 1986. The overall trend of the comparison was that to first-order the model reproduces electron densities responding to diurnal, seasonal, geomagnetic, and solar-cycle variations for all three radars. However, some model-observation discrepancies were found. These include, failure of the model to correctly produce an evening peak at Millstone, fall-spring equinox differences at Sondrestrom, tidal structure at Arecibo, and daytime NmF2 values at Arecibo.

Johnson, M.W.

1990-01-01T23:59:59.000Z

2

3D modeling with silhouettes  

E-Print Network [OSTI]

With the increasing power of computers and the spread of dedicated graphics hardware, 3D content has become ubiquitous in every field, from medicine to video games. However, designing 3D models remains a time-consuming and ...

Rivers, Alec (Alec Rothmyer)

2010-01-01T23:59:59.000Z

3

3-D capacitance density imaging system  

DOE Patents [OSTI]

A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

Fasching, G.E.

1988-03-18T23:59:59.000Z

4

3D modellering og pathfinding i Java; 3D Modeling and Pathfinding in Java.  

E-Print Network [OSTI]

??English: This project explores the performance of Java3D through a large 3D?model and the possibility of running this model with a pathfinding algorithm from an… (more)

Thorlund, Steffen

2009-01-01T23:59:59.000Z

5

BEAMS3D Neutral Beam Injection Model  

SciTech Connect (OSTI)

With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

Lazerson, Samuel

2014-04-14T23:59:59.000Z

6

3D Modeling with Silhouettes  

E-Print Network [OSTI]

We present a new sketch-based modeling approach in which models are interactively designed by drawing their 2D silhouettes from different views. The core idea of our paper is to limit the input to 2D silhouettes, removing ...

Rivers, Alec Rothmyer

7

3-D Model for Deactivation & Decommissioning  

Broader source: Energy.gov [DOE]

The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work...

8

3D Modeling Engine Representation Summary Report  

SciTech Connect (OSTI)

Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

2014-09-01T23:59:59.000Z

9

3D Engineered Models for Construction Support & Available Tools  

E-Print Network [OSTI]

3D Engineered Models for Construction Support & Available Tools #12;3D Engineered Models for Construction · New web page www.fhwa.dot.gov/3d (search "fhwa 3D") ­ Specs, Standards, Details, Tech Briefs ­ Provides initial response within 24 hours of inquiry National Website and TSSC 2 #12;3D Engineered Models

10

3-D hydro + cascade model at RHIC  

E-Print Network [OSTI]

We present a 3-D hydro + cascade model in which viscosity and a realistic freezeout process for the hadronic phase are taken into account. We compare our results to experimental data and discuss the finite state interaction effects on physical observables.

Chiho Nonaka; Steffen A. Bass

2005-11-07T23:59:59.000Z

11

Modelling Gaia CCD pixels with Silvaco 3D engineering software  

E-Print Network [OSTI]

Gaia will only achieve its unprecedented measurement accuracy requirements with detailed calibration and correction for radiation damage. We present our Silvaco 3D engineering software model of the Gaia CCD pixel and two of its applications for Gaia: (1) physically interpreting supplementary buried channel (SBC) capacity measurements (pocket-pumping and first pixel response) in terms of e2v manufacturing doping alignment tolerances; and (2) deriving electron densities within a charge packet as a function of the number of constituent electrons and 3D position within the charge packet as input to microscopic models being developed to simulate radiation damage.

Seabroke, G M; Hopkinson, G; Burt, D; Robbins, M; Holland, A

2010-01-01T23:59:59.000Z

12

3D Model Retrieval based on Adaptive Views Clustering  

E-Print Network [OSTI]

3D Model Retrieval based on Adaptive Views Clustering Tarik Filali Ansary1 , Mohamed Daoudi2 , Jean.daoudi@univ-tours.fr http://www-rech.enic.fr/miire Abstract. In this paper, we propose a method for 3D model indexing based selection of 2D views from a 3D model, and a probabilistic Bayesian method for 3D model retrieval from

Paris-Sud XI, Université de

13

Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint  

SciTech Connect (OSTI)

To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

2012-06-01T23:59:59.000Z

14

3D Engineered Models for Stringless Paving Workshop  

E-Print Network [OSTI]

3D Engineered Models for Stringless Paving Workshop As the highway industry looks for greater productivity through electronic tools and methods, 3D modeling is fast becoming a standard for project delivery quality, cost, and time benefits from using 3D modeling. For construction, this includes more accurate

15

3-D Earth model more accurately pinpoints explosions  

E-Print Network [OSTI]

- 1 - 3-D Earth model more accurately pinpoints explosions October 25, 2013 During the Cold War, U) have partnered to develop a 3-D model of the Earth's mantle and crust called SALSA3D (Sandia-Los Alamos of explosions. Significance of the research After an explosion, the energy travels through the Earth as waves

16

A 3D INTENSITY MODEL BASED ON SPHERICAL HARMONICS FOR AUTOMATIC 3D SEGMENTATION OF HETEROCHROMATIN FOCI  

E-Print Network [OSTI]

A 3D INTENSITY MODEL BASED ON SPHERICAL HARMONICS FOR AUTOMATIC 3D SEGMENTATION OF HETEROCHROMATIN DKFZ Heidelberg and BIOQUANT, Research Group Genome Organization & Function ABSTRACT We introduce a 3D model-based approach for automatic segmentation of 3D fluorescent heterochromatin foci from microscopy

Rippe, Karsten

17

3D GAUSSIAN DESCRIPTOR: A NEW DESCRIPTOR FOR 3D MODELS Mohamed Chaouch and Anne Verroust-Blondet  

E-Print Network [OSTI]

3D GAUSSIAN DESCRIPTOR: A NEW DESCRIPTOR FOR 3D MODELS Mohamed Chaouch and Anne Verroust.chaouch, anne.verroust}@inria.fr ABSTRACT This paper presents a new approach to 3D shape compari- son Shape Benchmark database. Index Terms-- 3D shape retrieval, Gaussian transform 1. INTRODUCTION

Paris-Sud XI, Université de

18

Automatic 3D modeling of palatal plaster casts Marco Andreetto  

E-Print Network [OSTI]

Automatic 3D modeling of palatal plaster casts Marco Andreetto Dept. of Information Engineer-form surfaces of anatomi- cal interest. 1. Introduction Plaster models derived from palate's impressions. A data-base with the 3D models of the plaster casts, which could be called a "virtual gypsotheque", can

Abu-Mostafa, Yaser S.

19

The Effect of Matrix Density on the Regulation of 3-D Capillary Morphogenesis  

E-Print Network [OSTI]

The Effect of Matrix Density on the Regulation of 3-D Capillary Morphogenesis Cyrus M. Ghajar completely eliminated this inhibitory effect, resulting in robustly vascularized matrices suitable- blast monolayer exceeds a critical threshold,

George, Steven C.

20

Oxygen line formation in 3D hydrodynamical model atmospheres  

E-Print Network [OSTI]

The formation of [O I], O I and OH lines in metal-poor stars has been studied by means of 3D hydrodynamical model atmospheres. For O I detailed 3D non-LTE calculations have been performed. While the influence of 3D model atmospheres is minor for [O I] and O I lines, the very low temperatures encountered at low metallicities have a drastic impact on the OH lines. As a result, the derived O abundances are found to be systematically overestimated in 1D analyses, casting doubts on the recent claims for a monotonic increase in [O/Fe] towards lower metallicities.

M. Asplund

2000-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Curating Architectural 3D CAD Models  

E-Print Network [OSTI]

Increasing demand to manage and preserve 3-dimensional models for a variety of physical phenomena (e.g., building and engineering designs, computer games, or scientific visualizations) is creating new challenges for digital ...

Smith, MacKenzie

22

STELLOPT Modeling of the 3D Diagnostic Response in ITER  

SciTech Connect (OSTI)

The ITER three dimensional diagnostic response to an n=3 resonant magnetic perturbation is modeled using the STELLOPT code. The in-vessel coils apply a resonant magnetic perturbation (RMP) fi eld which generates a 4 cm edge displacement from axisymmetry as modeled by the VMEC 3D equilibrium code. Forward modeling of flux loop and magnetic probe response with the DIAGNO code indicates up to 20 % changes in measured plasma signals. Simulated LIDAR measurements of electron temperature indicate 2 cm shifts on the low field side of the plasma. This suggests that the ITER diagnostic will be able to diagnose the 3D structure of the equilibria.

Lazerson, Samuel A

2013-05-07T23:59:59.000Z

23

3D culture models of normal and malignant breast epithelial cells  

E-Print Network [OSTI]

3D culture models of normal and malignant breast epithelialcells; Lee et al. 3D culture models of normal and malignantFor correspondence: mjbissell@lbl.gov 3D culture models of

Lee, Genee Y.; Kenny, Paraic A.; Lee, Eva H.; Bissell, Mina J.

2006-01-01T23:59:59.000Z

24

3D model-based tracking for UAV indoor localisation  

E-Print Network [OSTI]

3D model-based tracking for UAV indoor localisation C´eline Teuli`ere, Eric Marchand, Laurent Eck set toward the peaks of the distribution. Motivated by the UAV indoor localisation problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights. Index Terms

Paris-Sud XI, Université de

25

Metrological analysis of a procedure for the automatic 3D modeling of dental plaster casts  

E-Print Network [OSTI]

Metrological analysis of a procedure for the automatic 3D modeling of dental plaster casts Nicola to an automatic procedure recently proposed for the 3D modeling of dental plaster casts. This contribution derives of an automatic 3D modeling procedure recently proposed and it shows the accuracy of 3D modeling dental plaster

Abu-Mostafa, Yaser S.

26

3D Engineered Models for Highway Construction Gabe Nelson, P.E.  

E-Print Network [OSTI]

3D Engineered Models for Highway Construction Gabe Nelson, P.E. Snyder & Associates, Inc. Overview of 3D Engineered Models for Highway Construction Module 1 Introduction #12;3D Engineered Models & Quality ­ Protect the Environment · Every Day Counts 2 included 3D Engineered Models for Construction

27

ModelCraft: Capturing Freehand Annotations and Edits on Physical 3D Models  

E-Print Network [OSTI]

of affordable new desktop fabrication techniques such as 3D printing and laser cutting, physical models are used cur- rent 3D printing technology. ACM CLASSIFICATION: H5.2 [Information interfaces and presentation

Keinan, Alon

28

3D MODEL RETRIEVAL BASED ON DEPTH LINE DESCRIPTOR Mohamed Chaouch and Anne Verroust-Blondet  

E-Print Network [OSTI]

3D MODEL RETRIEVAL BASED ON DEPTH LINE DESCRIPTOR Mohamed Chaouch and Anne Verroust-Blondet INRIA.verroust}@inria.fr. ABSTRACT In this paper, we propose a novel 2D/3D approach for 3D model matching and retrieving. Each model information provides a more accurate description of 3D shape boundaries than using other 2D shape descriptors

Paris-Sud XI, Université de

29

3D Haptic Modeling System using Ungrounded Pen-shaped Kinesthetic Display  

E-Print Network [OSTI]

3D Haptic Modeling System using Ungrounded Pen-shaped Kinesthetic Display Sho Kamuro 1) Kouta-dimensional (3D) haptic modeling system that enables a user to create 3D models as though he/she is drawing and intuitively create various 3D shapes by drawing closed curves in air using the device. The created shapes

Tachi, Susumu

30

Modeling the GFR with RELAP5-3D  

SciTech Connect (OSTI)

Significant improvements have been made to the RELAP5-3D computer code for analysis of the Gas Fast Reactor (GFR). These improvements consisted of adding carbon dioxide as a working fluid, improving the turbine component, developing a compressor model, and adding the Gnielinski heat transfer correlation. The code improvements were validated, generally through comparisons with independent design calculations. A model of the power conversion unit of the GFR was developed. The model of the power conversion unit was coupled to a reactor model to develop a complete model of the GFR system. The RELAP5 model of the GFR was used to simulate two transients, one initiated by a reactor trip and the other initiated by a loss of load.

Cliff B. Davis; Theron D. Marshall; K. D. Weaver

2005-09-01T23:59:59.000Z

31

Modelling of aspherical nebulae. I. A quick pseudo-3D photoionization code  

E-Print Network [OSTI]

We describe a pseudo-3D photoionization code, NEBU_3D and its associated visualization tool, VIS_NEB3D, which are able to easily and rapidly treat a wide variety of nebular geometries, by combining models obtained with a 1D photoionization code. The only requirement for the code to work is that the ionization source is uniqu e and not extended. It is applicable as long as the diffuse ionizing radiation f ield is not dominant and strongly inhomogeneous. As examples of the capabilities of these new tools, we consider two very differ ent theoretical cases. One is that of a high excitation planetary nebula that ha s an ellipsoidal shape with two polar density knots. The other one is that of a blister HII region, for which we have also constructed a spherical model (the sp herical impostor) which has exactly the same Hbeta surface brightness distrib ution as the blister model and the same ionizing star. These two examples warn against preconceived ideas when interpreting spectroscop ic and imaging data of HII regions and planetary nebulae. The tools NEBU_3D and VIS_NEB3D, which will be made publicly available in the future, should facilitat e the performance of numerical experiments, to yield a better understanding of t he physics of aspherical ionized nebulae.

C. Morisset; G. Stasinska; M. Pena

2005-03-03T23:59:59.000Z

32

Topological order in an exactly solvable 3D spin model  

SciTech Connect (OSTI)

Research highlights: RHtriangle We study exactly solvable spin model with six-qubit nearest neighbor interactions on a 3D face centered cubic lattice. RHtriangle The ground space of the model exhibits topological quantum order. RHtriangle Elementary excitations can be geometrically described as the corners of rectangular-shaped membranes. RHtriangle The ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. RHtriangle Logical operators acting on the encoded qubits are described in terms of closed strings and closed membranes. - Abstract: We study a 3D generalization of the toric code model introduced recently by Chamon. This is an exactly solvable spin model with six-qubit nearest-neighbor interactions on an FCC lattice whose ground space exhibits topological quantum order. The elementary excitations of this model which we call monopoles can be geometrically described as the corners of rectangular-shaped membranes. We prove that the creation of an isolated monopole separated from other monopoles by a distance R requires an operator acting on {Omega}(R{sup 2}) qubits. Composite particles that consist of two monopoles (dipoles) and four monopoles (quadrupoles) can be described as end-points of strings. The peculiar feature of the model is that dipole-type strings are rigid, that is, such strings must be aligned with face-diagonals of the lattice. For periodic boundary conditions the ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. We describe a complete set of logical operators acting on the encoded qubits in terms of closed strings and closed membranes.

Bravyi, Sergey, E-mail: sbravyi@us.ibm.com [IBM Watson Research Center, Yorktown Heights, NY 10598 (United States); Leemhuis, Bernhard [Institute for Theoretical Physics, University of Amsterdam, Postbus 94485, 1090 GL Amsterdam (Netherlands); Terhal, Barbara M. [IBM Watson Research Center, Yorktown Heights, NY 10598 (United States)

2011-04-15T23:59:59.000Z

33

3D Downtown Phoenix Modeling This project is to develop the efficient and effective method for  

E-Print Network [OSTI]

3D Downtown Phoenix Modeling ABSTRACT This project is to develop the efficient and effective method for creating 3D city models that will be used with GIS (Geographical Information Systems) data in VR (Virtual Reality) environment. Here introduces the modeling process to create 3D city model from aerial photos

Hall, Sharon J.

34

Efficient 3D building model generation from 2D floor plans  

E-Print Network [OSTI]

3D building models are beneficial to architects, interior designers, and ordinary people in visualizing indoor space in three dimensions. 3D building models appear to be more aesthetic to ordinary people than architectural ...

Kashlev, Dmitry

2008-01-01T23:59:59.000Z

35

A new graphical user interface for a 3D topological mesh modeler  

E-Print Network [OSTI]

of Silo, SLIDE, Google SketchUp, Cheetah 3D, k3dSurf, and Sculpture Generator. . . . . . . . . . . . . 13 7 Screenshots from Quicksilver pop-up CLI for OS/X and Launchy, a similar interface for Windows. . . . . . . . . . . . . . . . . . . . . . 14 8... of Silo, SLIDE, Google SketchUp, Cheetah 3D, k3dSurf, and Sculpture Generator. 5. Other Applications There are a wide variety of other 3D modeling applications that provide unique in- terfaces, such as Silo, SLIDE, Google Sketchup, Cheetah 3D, k3d...

Morris, David Victor

2008-10-10T23:59:59.000Z

36

Painting-to-3D Model Alignment Via Discriminative Visual Elements  

E-Print Network [OSTI]

] as well as simplified models obtained from 3D mod- eling tools such as Google Sketchup. Example results

Paris-Sud XI, Université de

37

3D Model of the Neal Hot Springs Geothermal Area  

SciTech Connect (OSTI)

The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

Faulds, James E.

2013-12-31T23:59:59.000Z

38

3D Model of the San Emidio Geothermal Area  

SciTech Connect (OSTI)

The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

James E. Faulds

2013-12-31T23:59:59.000Z

39

3D Model of the San Emidio Geothermal Area  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

James E. Faulds

40

3D Model of the Neal Hot Springs Geothermal Area  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

Faulds, James E.

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

3D Model of the Tuscarora Geothermal Area  

SciTech Connect (OSTI)

The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.

Faulds, James E.

2013-12-31T23:59:59.000Z

42

3D Model of the Tuscarora Geothermal Area  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.

Faulds, James E.

43

A User Study Comparing 3D Modeling with Silhouettes and Google SketchUp  

E-Print Network [OSTI]

We describe a user study comparing 3D Modeling with Silhouettes and Google SketchUp. In the user study, ten users were asked to create 3D models of three different objects, using either 3D Modeling with Silhouettes or ...

Igarashi, Takeo

2010-05-05T23:59:59.000Z

44

3D-Model Search Engine from Photos Tarik Filali Ansary  

E-Print Network [OSTI]

3D-Model Search Engine from Photos Tarik Filali Ansary LIFL UMR CNRS/USTL 8022 Univ. Lille 1 Univ. Lille 1 ­ France daoudi@lifl.fr ABSTRACT In this paper, we present the FOX-MIIRE 3D-Model Search uses statisti- cal model distribution scores to select the optimal number of views to characterise a 3D

Vandeborre, Jean-Philippe

45

3D-Model view characterization using equilibrium planes Adrien Theetten1  

E-Print Network [OSTI]

3D-Model view characterization using equilibrium planes Adrien Theetten1 , Tarik Filali Ansary1 to characteristic views. Abstract We propose a new method for 3D-mesh model charac- teristic view selection. It consists in using the views that come from the equilibrium states of a 3D-model: they cor- respond

Paris-Sud XI, Université de

46

Assessing the protective effect of mountain forests against rockfall using a 3D simulation model  

E-Print Network [OSTI]

Assessing the protective effect of mountain forests against rockfall using a 3D simulation model and compared the results obtained with the 3D simulation model RockyFor with empirical data on tree impacts; Rockfall; 3D simulation model; Swiss Alps 1. Introduction Many mountain forests effectively protect people

Stoffel, Markus

47

Modeling and Dynamic Management of 3D Multicore Systems with Liquid Cooling  

E-Print Network [OSTI]

in the future to address the increasing power density. Considering the high power densities in 3D systems Mi- crosystems, UC MICRO, Center for Networked Systems (CNS) at UCSD, MARCO/DARPA GSRC and NSFModeling and Dynamic Management of 3D Multicore Systems with Liquid Cooling Ayse K. Coskun , Jos

Simunic, Tajana

48

Chopper: Partitioning models into 3D-printable parts  

E-Print Network [OSTI]

3D printing technology is rapidly maturing and becoming ubiquitous. One of the remaining obstacles to wide-scale adoption is that the object to be printed must fit into the working volume of the 3D printer. We propose a ...

Luo, Linjie

49

Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities  

E-Print Network [OSTI]

Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping August 2013; accepted 7 September 2013; published 13 November 2013. [1] 3-D Hydraulic tomography (3-D HT (primarily hydraulic conductivity, K) is estimated by joint inversion of head change data from multiple

Barrash, Warren

50

Validation of 3D Radiative Transfer in Coastal-Ocean Water Systems as Modeled by DIRSIG  

E-Print Network [OSTI]

Validation of 3D Radiative Transfer in Coastal-Ocean Water Systems as Modeled by DIRSIG FOR IMAGING SCIENCE Title of Dissertation: Validation of 3D Radiative Transfer in Coastal-Ocean Water Systems. Signature Date 3 #12;Validation of 3D Radiative Transfer in Coastal-Ocean Water Systems as Modeled by DIRSIG

Salvaggio, Carl

51

3D-mesh models: view-based indexing and structural analysis  

E-Print Network [OSTI]

3D-mesh models: view-based indexing and structural analysis Mohamed Daoudi, Tarik Filali Ansary.daoudi@lifl.fr, tarik.filali@lifl.fr, julien.tierny@lifl.fr, jean-philippe.vandeborre@lifl.fr Abstract. 3D-mesh models applications, medical or military simulations, video games and so on. Indexing and analyzing these 3D data

Paris-Sud XI, Université de

52

3D/4D MODELLING, VISUALIZATION AND INFORMATION FRAMEWORKS: CURRENT U.S. GEOLOGICAL SURVEY PRACTICE  

E-Print Network [OSTI]

33 3D/4D MODELLING, VISUALIZATION AND INFORMATION FRAMEWORKS: CURRENT U.S. GEOLOGICAL SURVEY to visualize and model geologic data and information in 3 spatial dimensions (3D) and sometimes adding time in visualizing and coupling geologic, hydrologic, atmospheric, and biologic processes together into 3D/4D

53

3D microstructure modeling of compressed fiber-based Gerd Gaiselmanna,  

E-Print Network [OSTI]

consideration of compression conditions as found in fuel cells. Given the input of a 3D microstructure of some compression states, an optimal vector field is estimated by simulated annealing. The model is applied to 3D im

Schmidt, Volker

54

Geometric modeling and optimization in 3D solar cells : implementation and algorithms  

E-Print Network [OSTI]

Conversion of solar energy in three-dimensional (3D) devices has been essentially untapped. In this thesis, I design and implement a C++ program that models and optimizes a 3D solar cell ensemble embedded in a given ...

Wan, Jin Hao, M. Eng. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

55

3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations  

SciTech Connect (OSTI)

Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

Howard Barker; Jason Cole

2012-05-17T23:59:59.000Z

56

Modelling of aspherical nebulae. I. A quick pseudo-3D photoionization code  

E-Print Network [OSTI]

We describe a pseudo-3D photoionization code, NEBU_3D and its associated visualization tool, VIS_NEB3D, which are able to easily and rapidly treat a wide variety of nebular geometries, by combining models obtained with a 1D photoionization code. The only requirement for the code to work is that the ionization source is uniqu e and not extended. It is applicable as long as the diffuse ionizing radiation f ield is not dominant and strongly inhomogeneous. As examples of the capabilities of these new tools, we consider two very differ ent theoretical cases. One is that of a high excitation planetary nebula that ha s an ellipsoidal shape with two polar density knots. The other one is that of a blister HII region, for which we have also constructed a spherical model (the sp herical impostor) which has exactly the same Hbeta surface brightness distrib ution as the blister model and the same ionizing star. These two examples warn against preconceived ideas when interpreting spectroscop ic and imaging data of HII regi...

Morisset, C; Peña, M

2005-01-01T23:59:59.000Z

57

Stochastic Simulation Model for the 3D Morphology of Composite Materials in Li-Ion Batteries  

E-Print Network [OSTI]

Stochastic Simulation Model for the 3D Morphology of Composite Materials in Li-Ion Batteries Ralf of composite materials used in Li-ion batteries. In this paper, we develop a stochastic simulation model in 3D, Stochastic Simulation Model, Structural Analysis, Marked Point Process, Germ-Grain Model, Model Fitting

Schmidt, Volker

58

3D Geological Modelling In Bavaria - State-Of-The-Art At A State...  

Open Energy Info (EERE)

has developed procedures and workflows for a variety of 3D modelling applications. With limited staffing and resources effective software tools and workflows have been developed...

59

Modeling 3D animals from a side-view sketch Even Entema,b  

E-Print Network [OSTI]

Modeling 3D animals from a side-view sketch Even Entema,b , Loic Barthea , Marie-Paule Canib. This paper tackles the problem of creating 3D models of animals from a single, side-view sketch. We use be an important step for generat- ing more lively virtual worlds. Animals are also among the models

Barthe, Loïc

60

Augmented Foam Sculpting for Capturing 3D Models Michael R. Marner Bruce H. Thomas  

E-Print Network [OSTI]

Augmented Foam Sculpting for Capturing 3D Models Michael R. Marner Bruce H. Thomas University. A designer physically sculpts a 3D model from foam using a hand-held hot wire foam cut- ter. Both the foamD model from foam using a hand-held hot wire foam cutter. Both the foam and cutting tool are tracked

Thomas, Bruce

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Modellers' Apprentice -Gesture-Based 3D Design in Immersive Environments  

E-Print Network [OSTI]

The Modellers' Apprentice - Gesture-Based 3D Design in Immersive Environments Franc¸ois Rioux techniques) INTRODUCTION The Modellers' Apprentice is a fully immersive 3D computer- augmented environment in Figure 1. Figure 1. The Modellers Apprentice running in The Shared Reality En- vironment. RELATED WORK

Cooperstock, Jeremy R.

62

Methods Mol Biol . Author manuscript 3D structural models of transmembrane proteins  

E-Print Network [OSTI]

proteins is a major research area. Due to the lack of available 3D structures, automatic homology modelingMethods Mol Biol . Author manuscript Page /1 9 3D structural models of transmembrane proteins: Alexandre De Brevern Abstract Summary Transmembrane proteins

Paris-Sud XI, Université de

63

3D Channel Model Emulation in a MIMO OTA , Pekka Kysti 2  

E-Print Network [OSTI]

1 3D Channel Model Emulation in a MIMO OTA Setup Wei Fan1 , Pekka Kyösti 2 , Fan Sun1 , Jesper � reconstruction technique for 3D geometry-based channels in a multi-probe based MIMO OTA setup. The proposed in realistic environ- ments in the lab, it would be desirable that the 3D radio channels can be accurately

Berning, Torsten

64

MODELING THE TRANSVERSE THERMAL CONDUCTIVITY OF 3D-SICF/SIC COMPOSITES  

SciTech Connect (OSTI)

Our previously developed hierarchical two-layer (H2L) model was modified to describe the effective transverse thermal conductivity (Keff) of a three-dimensional (3D) SiC/SiC composite plate made with cross-layered and Z-stitched X:Y:Z uniaxial fiber tow sub-units. As before, the model describes Keff in terms of constituent, microstructural and architectural properties that include the expected effects of fiber-matrix interfacial conductance, of high fiber packing fractions within individual tow sub-units and of the non-uniform porosity contents, shapes and orientations within these sub-units. Model predictions were obtained for two versions of a 3D-Tyranno SA?/PyC/ICVI-SiC composite that had similar fiber/matrix pyrocarbon (PyC) interfaces, relatively high bulk densities (~2.88 g/cc), and an X:Y configuration with fiber content ratios 1:1. The only major difference between the two versions was their Z-stitch fiber content where the relative fiber ratios were 0.1 and 1.2 in the Z sub-units.

Youngblood, Gerald E.; Jones, Russell H.; Yamada, Reiji

2004-06-30T23:59:59.000Z

65

Ontologies for the Integration of Air Quality Models and 3D City Models  

E-Print Network [OSTI]

-city densification may limit air pollution, carbon emissions, and energy use through reduced transportation of the most important environmental problems is air pollution, mostly induced by vehicle traffic1 Ontologies for the Integration of Air Quality Models and 3D City Models Claudine Metral Institut

Genève, Université de

66

MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)  

SciTech Connect (OSTI)

MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.

Nutter, C.; Wannamaker, P.E.

1980-11-01T23:59:59.000Z

67

Supercomputers Model 3D Map of Adolescent Universe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

slice of the adolescent universe-just 3 billion years after the Big Bang. The map shows a web of hydrogen gas that varies from low to high density at a time when the universe was...

68

Spatial relations and properties for semantically enhanced 3D city models  

E-Print Network [OSTI]

Spatial relations and properties for semantically enhanced 3D city models and their relations (mostly aggregation and topology). Smart et al. (2011) extract is that, in the context of city models, explicit semantics in terms of spatial

Genève, Université de

69

Accepted in Methods Mol Biol. 2010 3D-structural models of transmembrane proteins.  

E-Print Network [OSTI]

of transmembrane proteins is a major research area. Due to the lack of available 3D structures, automatic homology1 Accepted in Methods Mol Biol. 2010 3D-structural models of transmembrane proteins. Alexandre G proteins are macromolecules implicated in major biological process and diseases. Due to their specific

Paris-Sud XI, Université de

70

PHOTOREALISTIC BUILDING MODELING AND VISUALIZATION IN 3-D GEOSPATIAL INFORMATION SYSTEM  

E-Print Network [OSTI]

PHOTOREALISTIC BUILDING MODELING AND VISUALIZATION IN 3-D GEOSPATIAL INFORMATION SYSTEM Yonghak: Despite geospatial information systems are widely used in many different fields as a powerful tool in geospatial information system (GIS). Such 3-D photorealistic visualization is able to provide geospatial

Shan, Jie

71

3D Statistical Models for Tooth Surface Reconstruction  

E-Print Network [OSTI]

, orthodontists regularly employ plaster casts of the patient's dentition, also known as study models. These plaster models are used to prepare treatment plans and for making accurate measurements. However

Boyer, Edmond

72

Fitting 3D Models on Central Catadioptric Images Eric Marchand, Franois Chaumette  

E-Print Network [OSTI]

Fitting 3D Models on Central Catadioptric Images Eric Marchand, François Chaumette Abstract, IRISA, Lagadic, F-35000 Rennes, France ; e- mail marchand@irisa.fr similar approaches can be considered

Boyer, Edmond

73

Lightweight 3D Modeling of Urban Buildings From Range Data Department of Computer Science  

E-Print Network [OSTI]

scanning, range data, segmentation, Google SketchUp, vectorization I. INTRODUCTION The 3D modeling of urban such as Google SketchUp. A key idea is that a simple set of extrusion and tapering operations applied to 2D

Wolberg, George

74

NUMERICAL MODELING FOR THE FORMATION MECHANISM OF 3D TOPOGRAPHY ON MICROBIAL MAT SURFACES  

E-Print Network [OSTI]

though, that nutrient limitation coupled with fluid motion may play a key role as a physical control. Under this model, competitions of nutrients were setup among growing microbial communities, which later evolve into specially arranged, 3D mats. However...

Patel, Harsh Jay

2013-09-27T23:59:59.000Z

75

3D Micromechanical modeling of packed beds Zi Lu, Mohamed Abdou *, Alice Ying  

E-Print Network [OSTI]

3D Micromechanical modeling of packed beds Zi Lu, Mohamed Abdou *, Alice Ying Mechanical: abdou@fusion.ucla.edu (M. Abdou). 0022-3115/01/$ - see front matter Ã? 2001 Elsevier Science B.

Abdou, Mohamed

76

Integrated generic 3D visualization of Modelica models.  

E-Print Network [OSTI]

?? OpenModelica is a complete environment for developing and simulatingModelica models based on free software. It is promoted and developed bythe OpenModelica Consortium. This thesis… (more)

Magnusson, Henrik

2008-01-01T23:59:59.000Z

77

Automated mask creation from a 3D model using Faethm.  

SciTech Connect (OSTI)

We have developed and implemented a method which given a three-dimensional object can infer from topology the two-dimensional masks needed to produce that object with surface micro-machining. The masks produced by this design tool can be generic, process independent masks, or if given process constraints, specific for a target process. This design tool calculates the two-dimensional mask set required to produce a given three-dimensional model by investigating the vertical topology of the model.

Schiek, Richard Louis; Schmidt, Rodney Cannon

2007-11-01T23:59:59.000Z

78

APPLICATION OF 2D AND 3D MODELS FOR TEACHING OF NATURAL SCIENCES  

E-Print Network [OSTI]

by three systems: the use of a 3D scanner, 3D photography and digital video camera, plus 3D SketchUp and 3D

Outerelo. Raimundo

79

Model--Based 3D Scene Analysis from Stereoscopic Image Sequences An approach for the modelling of complex 3D scenes like outdoor street views from a sequence of  

E-Print Network [OSTI]

the problems stated above for building a true 3D model of a complex scene from a sequence of stereoscopic image for the modelling of complex 3D scenes like outdoor street views from a sequence of stereoscopic image pairs geometry is generated. Not only the scene geometry but also surface texture is stored within the model. 3D

80

Modeling 3D Facial Shape from DNA Peter Claes1  

E-Print Network [OSTI]

Department of Genetics, Stanford University, Palo Alto, California, United States of America, 5 Hudson spatially dense quasi- landmarks to measure face shape in population samples with mixed West African (sex and population group). By jointly modeling sex, genomic ancestry, and genotype, the independent

Tang, Hua

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Evaluation of field development plans using 3-D reservoir modelling  

SciTech Connect (OSTI)

Three-dimensional reservoir modelling has become an accepted tool in reservoir description and is used for various purposes, such as reservoir performance prediction or integration and visualisation of data. In this case study, a small Northern North Sea turbiditic reservoir was to be developed with a line drive strategy utilising a series of horizontal producer and injector pairs, oriented north-south. This development plan was to be evaluated and the expected outcome of the wells was to be assessed and risked. Detailed analyses of core, well log and analogue data has led to the development of two geological {open_quotes}end member{close_quotes} scenarios. Both scenarios have been stochastically modelled using the Sequential Indicator Simulation method. The resulting equiprobable realisations have been subjected to detailed statistical well placement optimisation techniques. Based upon bivariate statistical evaluation of more than 1000 numerical well trajectories for each of the two scenarios, it was found that the wells inclinations and lengths had a great impact on the wells success, whereas the azimuth was found to have only a minor impact. After integration of the above results, the actual well paths were redesigned to meet external drilling constraints, resulting in substantial reductions in drilling time and costs.

Seifert, D.; Lewis, J.J.M. [Heriot-Watt Univ., Edinburgh (United Kingdom); Newbery, J.D.H. [Conoco, UK Ltd., Aberdeen (United Kingdom)] [and others

1997-08-01T23:59:59.000Z

82

3D Engineered Models for Stringless Paving Workshop Hosted by the Missouri Department Transportation and FHWA Missouri Division  

E-Print Network [OSTI]

3D Engineered Models for Stringless Paving Workshop Hosted by the Missouri Department Administrator 8:30 Overview of 3D Engineered Models for Highway Construction ­ Gabe Nelson, Snyder and Associates · State of Practice and Why Implement this Technology · Level of Details in 3D Models · How to Get

83

Constructing a GIS-based 3D urban model using LiDAR and aerial photographs  

E-Print Network [OSTI]

; Rau and Chen 2001; Shiode 2001; Zhou et al. 2004). The 3D urban modeling technique enables urban residents to visualize future urban construction and development. It also supports standard activities of urban design and city planning and allows... of geometric information about urban objects, and it is an efficient tool for designing and creating urban objects (Sinning-Meister et al 1996). The contemporary CAD systems also offer full 3D rendering capability to visualize urban objects and the urban...

Lin, Wei-Ming

2005-02-17T23:59:59.000Z

84

Fast, Automated, Scalable Generation of Textured 3D Models of Indoor Environments  

E-Print Network [OSTI]

, Student Member, IEEE, Peter Cheng, and Avideh Zakhor, Fellow, IEEE Abstract--3D modeling of building- realistic models. We apply these techniques to several data sets of building interiors, including multi or missing, especially after several remodelings. Such scans can be used to generate building models

Zakhor, Avideh

85

Author's personal copy A new 3D numerical model of cosmogenic nuclide 10  

E-Print Network [OSTI]

Author's personal copy A new 3D numerical model of cosmogenic nuclide 10 Be production's atmosphere cosmogenic isotopes A new quantitative model of production of the cosmogenic isotope 10 solar energetic particle events. The model was tested against the results of direct measurements

Usoskin, Ilya G.

86

Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers  

E-Print Network [OSTI]

Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth in revised form 13 February 2010 Accepted 10 March 2010 Keywords: Hydraulic fracture P3D Symmetric stress-called ``pseudo three-dimensional'' (P3D) model for a hydraulic fracture with equilibrium height growth across two

Peirce, Anthony

87

3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains  

E-Print Network [OSTI]

3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave July 2005; received in revised form 4 October 2005; accepted 8 October 2005 Abstract A detailed 3D using detailed 3D models of tree structure including the location and orientation of individual needles

Jones, Peter JS

88

Car Make and Model Recognition using 3D Curve Alignment Krishnan Ramnath, Sudipta N. Sinha, Richard Szeliski  

E-Print Network [OSTI]

. Steps in constructing our 3D car model for a 2011 Honda Civic Sedan: (top) three of the images used to generate the visual hull; (middle) the visual hull; (bottom) 3D space curves projected onto the visual hull

Gupta, Abhinav

89

A generalized 3D inverted pendulum model to represent human normal walking  

E-Print Network [OSTI]

A generalized 3D inverted pendulum model to represent human normal walking Sophie Sakka IRCCy,lacouture}@univ-poitiers.fr Abstract-- This paper compares different inverted pendulum models to represent the stance phase of human adapted to pathological walking as the walking symmetry hypothesis -needed to build classical inverted

Paris-Sud XI, Université de

90

Oil and Gas CDT Development of a SUNTANS Baroclinic Model for 3D Oil  

E-Print Network [OSTI]

Oil and Gas CDT Development of a SUNTANS Baroclinic Model for 3D Oil Pollution Tracking Heriot) Key Words Oil Spill, HF Radar, Trajectory Forecasting, Hydrodynamic Modelling, Oil Chemistry Overview In an oil spill emergency, an operational system must forecast ocean and weather conditions in addition

Henderson, Gideon

91

Real-time Rendering of Complex Vector Data on 3d Terrain Models  

E-Print Network [OSTI]

Real-time Rendering of Complex Vector Data on 3d Terrain Models M. Schneider, M. Guthe, and R of buildings, streets and runway (from left to right). Abstract. In this paper we present a hybrid technique model. The first part of this hybrid technique is a texture-based approach that is especially suited

Behnke, Sven

92

Parallel Implementation of a Large-Scale 3-D Air Pollution Model  

E-Print Network [OSTI]

Parallel Implementation of a Large-Scale 3-D Air Pollution Model Tzvetan Ostromsky1 and Zahari-4000 Roskilde, Denmark, zz@dmu.dk; http://www.dmu.dk/AtmosphericEnvironment Abstract. Air pollution and analyzed. Keywords: air pollution model, system of PDE's, parallel algorithm, shared memory computer

Ostromsky, Tzvetan

93

Modeling Three-Dimensional Shock Initiation of PBX 9501 in ALE3D  

SciTech Connect (OSTI)

A recent SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has provided 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate and study code predictions. These SMIS tests used a powder gun to shoot scaled NATO standard fragments into a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. This SMIS real-world shot scenario creates a unique test-bed because (1) SMIS tests facilitate the investigation of 3D Shock to Detonation Transition (SDT) within the context of a considerable suite of diagnostics, and (2) many of the fragments arrive at the impact plate off-center and at an angle of impact. A particular goal of these model validation experiments is to demonstrate the predictive capability of the ALE3D implementation of the Tarver-Lee Ignition and Growth reactive flow model [2] within a fully 3-dimensional regime of SDT. The 3-dimensional Arbitrary Lagrange Eulerian (ALE) hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations reproduce observed 'Go/No-Go' 3D Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied for the response of heterogeneous high explosives in the SDT regime.

Leininger, L; Springer, H K; Mace, J; Mas, E

2008-07-08T23:59:59.000Z

94

3D Relativistic Hartree-Bogoliubov model with a separable pairing interaction  

E-Print Network [OSTI]

A recently introduced separable pairing force for relativistic Hartree-Bogoliubov (RHB) calculations, adjusted in nuclear matter to the pairing gap of the Gogny force, is employed in the 3D RHB model for triaxial shapes. The pairing force is separable in momentum space but, when transformed to coordinate space in calculations of finite nuclei, it is no longer separable because of translational invariance. The corresponding pairing matrix elements are represented as a sum of a finite number of separable terms in the basis of a 3D harmonic oscillator. The 3D RHB model is applied to the calculation of binding energy surfaces and pairing energy maps for a sequence of even-A Sm isotopes.

T. Niksic; D. Vretenar; Y. Tian; Z. Y. Ma; P. Ring

2009-12-07T23:59:59.000Z

95

Fast 3D Modeling of Borehole Induction Measurements in Dipping and Anisotropic Formations using a Novel Approximation Technique  

E-Print Network [OSTI]

Fast 3D Modeling of Borehole Induction Measurements in Dipping and Anisotropic Formations using of subsurface geophysical problems have been reported, including 3D EM scattering in the presence of complex introduces a novel efficient 3D EM approx- imation based on a new integral equation formulation. The main

Torres-Verdín, Carlos

96

Using Immersive 3D Terrain Models For Fusion Of UAV Surveillance Imagery  

E-Print Network [OSTI]

Using Immersive 3D Terrain Models For Fusion Of UAV Surveillance Imagery Sean Owens , Katia Sycara and Paul Scerri Carnegie Mellon University, Pittsburgh, PA, 15213, USA Teams of small and micro UAVs a single operator to utilize data from several UAVs and interact with the data in a more natural and less

Scerri, Paul

97

Simulation Environment of X-Ray Rotational Angiography Using 3D+t Coronary Tree Model  

E-Print Network [OSTI]

Today, over 1 million Percutaneous transluminal coronary angioplasty (PTCA) interventions are performed to improve both the safety and the efficacy of coronary angiography or interventions. Recently, a new im- ageSimulation Environment of X-Ray Rotational Angiography Using 3D+t Coronary Tree Model Guanyu YANG1

Paris-Sud XI, Université de

98

Interactive 3D landscape assessment models Lewis GILL, Eckart LANGE, Ed MORGAN, Daniela ROMANO  

E-Print Network [OSTI]

, interactive 3D visualisations are also used as landscape design tools with the Google Sketchup1 software being that this will simplify the enhancement of the mental model of the designer. 1 http://www.sketchup.com #12;L.Gill, E

Romano, Daniela

99

Thoracic CT-PET Registration Using a 3D Breathing Model  

E-Print Network [OSTI]

Thoracic CT-PET Registration Using a 3D Breathing Model Antonio Moreno1 , Sylvie Chambon1 , Anand P Orlando, USA Abstract. In the context of thoracic CT-PET volume registration, we present a novel method applications. We consider Computed Tomography (CT) and Positron Emission Tomography (PET) in thoracic regions

Paris-Sud XI, Université de

100

3D imaging and mechanical modeling of helical buckling in Medicago truncatula plant roots  

E-Print Network [OSTI]

while facing a decline in agricultural soil quality including increased mechanical impe- dance of soil3D imaging and mechanical modeling of helical buckling in Medicago truncatula plant roots Jesse L as a combination of growth-induced mechanical buckling modulated by the growth medium and a simultaneous twisting

Cohen, Itai

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A PARALLEL ADAPTIVE 3D MHD SCHEME FOR MODELING CORONAL AND SOLAR WIND PLASMA FLOWS  

E-Print Network [OSTI]

A PARALLEL ADAPTIVE 3D MHD SCHEME FOR MODELING CORONAL AND SOLAR WIND PLASMA FLOWS C. P. T. GROTH, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109­2143, USA K. G. POWELL Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109­2118, USA Abstract. A parallel adaptive

De Zeeuw, Darren L.

102

Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays  

SciTech Connect (OSTI)

Results are presented from experimental studies of the characteristics of the soft X-ray (SXR) source formed in the implosion of quasi-spherical arrays made of tungsten wires and metalized kapron fibers. The experiments were carried out at the Angara-5-1 facility at currents of up to 3 MA. Analysis of the spatial distribution of hard X-ray emission with photon energies above 20 keV in the pinch images taken during the implosion of quasi-spherical tungsten wire arrays (QTWAs) showed that a compact quasi-spherical plasma object symmetric with respect to the array axis formed in the central region of the array. Using a diffraction grazing incidence spectrograph, spectra of SXR emission with wavelengths of 20–400 Å from the central, axial, and peripheral regions of the emission source were measured with spatial resolutions along the array radius and height in the implosion of QTWAs. It is shown that the emission spectra of the SXR sources formed under the implosion of quasi-spherical and cylindrical tungsten wire arrays at currents of up to 3 MA have a maximum in the wavelength range of 50–150 Å. It is found that, during the implosion of a QTWA with a profiled linear mass, a redistribution of energy in the emission spectrum takes place, which indicates that, during 3D implosion, the energy of longitudinal motion of the array material additionally contributes to the radiation energy. It is also found that, at close masses of the arrays and close values of the current in the range of 2.4{sup ?3} MA, the average energy density in the emission source formed during the implosion of a quasi-spherical wire array is larger by a factor of 7 than in the source formed during the implosion of a cylindrical wire array. The experimental data were compared with results of 3D simulations of plasma dynamics and radiation generation during the implosion of quasi-spherical wire arrays with a profiled mass by using the MARPLE-3D radiative magnetohydrodynamic code, developed at the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.

Aleksandrov, V. V., E-mail: alexvv@triniti.ru [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Gasilov, V. A. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Grabovski, E. V.; Gritsuk, A. N., E-mail: griar@triniti.ru; Laukhin, Ya. N.; Mitrofanov, K. N.; Oleinik, G. M. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Ol’khovskaya, O. G. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Sasorov, P. V.; Smirnov, V. P.; Frolov, I. N. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Shevel’ko, A. P. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

2014-12-15T23:59:59.000Z

103

Coastal Dynamics 2013 A 3-D PHASE-AVERAGED MODEL FOR SHALLOW WATER FLOW WITH WAVES IN  

E-Print Network [OSTI]

Coastal Dynamics 2013 1915 A 3-D PHASE-AVERAGED MODEL FOR SHALLOW WATER FLOW WITH WAVES in coastal vegetated waters with short waves. The model adopts the 3-D phase-averaged shallow water flow mesh in the vertical direction. The flow model is coupled with a spectral wave deformation model called

US Army Corps of Engineers

104

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

3D Computer Vision and Video Computing 3D Vision3D Vision CSC I6716 Fall 2010 Topic 1 of Part II Camera Models Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu #12;3D Computer Vision and Video Computing 3D Vision3D Vision Closely Related Disciplines Image Processing ­ images to mages Computer

Zhu, Zhigang

105

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

1 3D Computer Vision and Video Computing 3D Vision3D Vision Topic 1 of Part II Camera Models CSC I6716 Spring2011 Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing 3D Vision3D Vision Closely Related Disciplines Image Processing ­ images to mages Computer

Zhu, Zhigang

106

Virtualizing Ancient Rome: 3D acquisition and modeling of a large plaster-of-Paris model of imperial Rome  

E-Print Network [OSTI]

Virtualizing Ancient Rome: 3D acquisition and modeling of a large plaster-of-Paris model plaster-of-Paris model of imperial Rome (16x17 meters) created in the last century. Its overall size's urban history is well documented and studied. There is even a highly-regarded plaster-of-Paris model

Frischer, Bernard

107

A 3D Model for Ion Beam Formation and Transport Simulation  

E-Print Network [OSTI]

g magnet section. A. Solution of the 3D Poisson Equation inexcellent. B. Solution of the 3D Poisson Equation in Frenet-of distance from the 3D simulation and 2D simulation for a

Qiang, J.; Todd, D.; Leitner, D.

2006-01-01T23:59:59.000Z

108

Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.  

SciTech Connect (OSTI)

The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.

Mock, Raymond Cecil

2007-06-01T23:59:59.000Z

109

3D climate modeling of Earth-like extrasolar planets orbiting different types of host stars  

E-Print Network [OSTI]

The potential habitability of a terrestrial planet is usually defined by the possible existence of liquid water on its surface. The potential presence of liquid water depends on many factors such as, most importantly, surface temperatures. The properties of the planetary atmosphere and its interaction with the radiative energy provided by the planet's host star are thereby of decisive importance. In this study we investigate the influence of different main-sequence stars upon the climate of Earth-like extrasolar planets and their potential habitability by applying a 3D Earth climate model accounting for local and dynamical processes. The calculations have been performed for planets with Earth-like atmospheres at orbital distances where the total amount of energy received from the various host stars equals the solar constant. In contrast to previous 3D modeling studies, we include the effect of ozone radiative heating upon the vertical temperature structure of the atmospheres. The global orbital mean results o...

Godolt, M; Hamann-Reinus, A; Kitzmann, D; Kunze, M; Langematz, U; von Paris, P; Patzer, A B C; Rauer, H; Stracke, B

2015-01-01T23:59:59.000Z

110

Long-Range Atmospheric Transport of Polycyclic Aromatic Hydrocarbons: A Global 3-D Model Analysis Including Evaluation of Arctic Sources  

E-Print Network [OSTI]

We use the global 3-D chemical transport model GEOS-Chem to simulate long-range atmospheric transport of polycyclic aromatic hydrocarbons (PAHs). To evaluate the model’s ability to simulate PAHs with different volatilities, ...

Friedman, Carey

111

3D model-based tracking for UAV position control Celine Teuli`ere, Laurent Eck, Eric Marchand, Nicolas Guenard  

E-Print Network [OSTI]

3D model-based tracking for UAV position control C´eline Teuli`ere, Laurent Eck, Eric Marchand control of an unmanned aerial vehi- cle (UAV). Given a 3D model of the edges of its environment, the UAV approach. I. INTRODUCTION Unmanned aerial vehicles (UAVs) have a large range of in- door or outdoor

Paris-Sud XI, Université de

112

Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers  

E-Print Network [OSTI]

Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth t This paper deals with the so-called ``pseudo three-dimensional'' (P3D) model for a hydraulic fracture of the length, height, and aperture of the hydraulic fracture, in contrast to the numerical formulations adopted

Peirce, Anthony

113

Modeling of AAR affected structures using the GROW3D FEA program  

SciTech Connect (OSTI)

The objective of this paper is to present a rational and practical methodology for finite element stress analysis of AAR affected structures. The methodology is presented using case history studies which illustrate the practical application of the GROW3D program. GROW3D uses an anisotropic expansion strain function and concrete properties which simulates the following key characteristics of AAR affected concrete (1) concrete growth expansion rates dependent on the stress vectors at each point; (2) concrete growth rate variation due to changes in moisture content and temperature; and (3) time-dependent, enhanced creep behavior. GROW3D has been applied to several hydropower structures and case histories from the Mactaquac Generating Station are presented herein. Mactaquac is selected because extensive instrumentation data before and after remedial measures have been used to calibrate and test the model. The results of analyses of three different structures are given, i.e., the intake, diversion sluiceway and powerhouse. The analysis results are used to identify potential structural problems and the need and timing of remedial measures. The output from GROW3D includes displacement rates, total displacements, global stresses and local factors of safety. The local factors of safety (or strength to stress ratios) are computed for several modes of failure including crushing, cracking, shear and sliding on horizontal construction joints. The analysis results are compared with field measurements which are taken before and after slot cutting. The effects of including the above-mentioned characteristics and other modeling assumptions on the computed results is discussed herein. Finally, a brief discussion on the recent enhancements to the model is given. These enhancements include the implementation of a more rigorous treatment of concrete creep effects.

Curtis, D.D. [Acres International Limited, Niagara Falls, Ontario (Canada)

1995-12-31T23:59:59.000Z

114

The Asymptotic Behaviour of a Stochastic 3D LANS-{alpha} Model  

SciTech Connect (OSTI)

The long-time behaviour of a stochastic 3D LANS-{alpha} model on a bounded domain is analysed. First, we reformulate the model as an abstract problem. Next, we establish sufficient conditions ensuring the existence of stationary (steady state) solutions of this abstract nonlinear stochastic evolution equation, and study the stability properties of the model. Finally, we analyse the effects produced by stochastic perturbations in the deterministic version of the system (persistence of exponential stability as well as possible stabilisation effects produced by the noise). The general results are applied to our stochastic LANS-{alpha} system throughout the paper.

Caraballo, Tomas, E-mail: caraball@us.es; Marquez-Duran, Antonio M., E-mail: ammarquez@us.es; Real, Jose [Dpto. Ecuaciones Diferenciales y Analisis Numerico, Universidad de Sevilla, Apdo. Correos 1160, 41080-Sevilla (Spain)], E-mail: jreal@us.es

2006-03-15T23:59:59.000Z

115

Modeling The Shock Initiation of PBX-9501 in ALE3D  

SciTech Connect (OSTI)

The SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has determined the 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate the code predictions. The SMIS tests use a powder gun to shoot scaled NATO standard fragments at a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. The SMIS real-world shot scenario creates a unique test-bed because many of the fragments arrive at the impact plate off-center and at an angle of impact. The goal of this model validation experiments is to demonstrate the predictive capability of the Tarver-Lee Ignition and Growth (I&G) reactive flow model [2] in this fully 3-dimensional regime of Shock to Detonation Transition (SDT). The 3-dimensional Arbitrary Lagrange Eulerian hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations accurately reproduce the 'Go/No-Go' threshold of the Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied in a predictive fashion for the response of heterogeneous high explosives in the SDT regime.

Leininger, L; Springer, H K; Mace, J; Mas, E

2008-07-01T23:59:59.000Z

116

Modeling the RXTE light curve of $?$ Carinae from a 3-D SPH simulation of its binary wind collision  

E-Print Network [OSTI]

The very massive star system $\\eta$ Carinae exhibits regular 5.54-year (2024-day) period disruptive events in wavebands ranging from the radio to X-ray. There is a growing consensus that these events likely stem from periastron passage of an (as yet) unseen companion in a highly eccentric ($\\epsilon \\sim 0.9$) orbit. This paper presents three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the orbital variation of the binary wind-wind collision, and applies these to modeling the X-ray light curve observed by the Rossi X-ray Timing Explorer (RXTE). By providing a global 3-D model of the phase variation of the density of the interacting winds, the simulations allow computation of the associated variation in X-ray absorption, presumed here to originate from near the apex of the wind-wind interaction cone. We find that the observed RXTE light curve can be readily fit if the observer's line of sight is within this cone along the general direction of apastron. Specifically, the data are well fit by an assumed inclination $i = 45^{\\circ}$ for the orbit's polar axis, which is thus consistent with orbital angular momentum being along the inferred polar axis of the Homunculus nebula. The fits also constrain the position angle $\\phi$ that an orbital-plane projection makes with the apastron side of the semi-major axis, strongly excluding positions $\\phi wind binary system.

A. T. Okazaki; S. P. Owocki; C. M. Russell; M. F. Corcoran

2008-05-13T23:59:59.000Z

117

Genome-Wide Identification and 3D Modeling of Proteins involved in DNA Damage Recognition and Repair (Final Report)  

SciTech Connect (OSTI)

OAK-B135 DNA Damage Recognition and Repair (DDR and R) proteins play a critical role in cellular responses to low-dose radiation and are associated with cancer. the authors have performed a systematic, genome-wide computational analysis of genomic data for human genes involved in the DDR and R process. The significant achievements of this project include: (1) Construction of the computational pipeline for searching DDR and R genes, building and validation of 3D models of proteins involved in DDR and R; (2) Functional and structural annotation of the 3D models and generation of comprehensive lists of suggested knock-out mutations; (3) Important improvement of macromolecular docking technology and its application to predict the DNA-Protein complex conformation; (4) Development of a new algorithm for improved analysis of high-density oligonucleotide arrays for gene expression profiling; (5) Construction and maintenance of the DNA Damage Recognition and Repair Database; and (6) Producing 14 research papers (10 published and 4 in preparation).

Ruben A. Abagyan, PhD

2004-04-15T23:59:59.000Z

118

KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES  

E-Print Network [OSTI]

KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES R OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES INTRODUCTION Engines running on HCCI-like efficiencies and extremely low emissions. HCCI engines rely on a lean combustion process (in excess of air

Paris-Sud XI, Université de

119

3D segmentation of mouse organs from MR images using deformable simplex mesh models G. Hamarneh1  

E-Print Network [OSTI]

3D segmentation of mouse organs from MR images using deformable simplex mesh models G. Hamarneh1 , H. Delingette2 , M. Henkelman1 1 Hospital for Sick Children, Toronto, ON, Canada, 2 INRIA brains and kidneys from MR images. Algorithmic details and 3D segmentation results are presented

Hamarneh, Ghassan

120

Chopper: Partitioning Models into 3D-Printable Parts Linjie Luo1,2 Ilya Baran3 Szymon Rusinkiewicz1 Wojciech Matusik4  

E-Print Network [OSTI]

: Chopper partitions a given 3D model into parts that are small enough to be 3D-printed and assembled as a reference), printed parts, and assembled chair. Abstract 3D printing technology is rapidly maturing printing, mesh segmentation and decomposition Links: DL PDF 1 Introduction As 3D printing technology

Popovic, Jovan

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

3D-Printing of Non-Assembly, Articulated Models Jacques Cal Dan A. Calian Cristina Amati Rebecca Kleinberger Anthony Steed Jan Kautz Tim Weyrich  

E-Print Network [OSTI]

3D-Printing of Non-Assembly, Articulated Models Jacques Calì Dan A. Calian Cristina Amati Rebecca (left), our system allows to intuitively add 3D-printable joints (center) that, when 3D-printed, create to use; no manual assembly is required. Abstract Additive manufacturing (3D printing) is commonly used

Weyrich, Tim

122

3D chaotic model for sub-grid turbulent dispersion in Large Eddy Simulations  

E-Print Network [OSTI]

We introduce a 3D multiscale kinematic velocity field as a model to simulate Lagrangian turbulent dispersion. The incompressible velocity field is a nonlinear deterministic function, periodic in space and time, that generates chaotic mixing of Lagrangian trajectories. Relative dispersion properties, e.g. the Richardson's law, are correctly reproduced under two basic conditions: 1) the velocity amplitudes of the spatial modes must be related to the corresponding wavelengths through the Kolmogorov scaling; 2) the problem of the lack of "sweeping effect" of the small eddies by the large eddies, common to kinematic simulations, has to be taken into account. We show that, as far as Lagrangian dispersion is concerned, our model can be successfully applied as additional sub-grid contribution for Large Eddy Simulations of the planetary boundary layer flow.

Guglielmo Lacorata; Andrea Mazzino; Umberto Rizza

2007-11-15T23:59:59.000Z

123

Kinetic modelling of a surrogate diesel fuel applied to 3D auto-ignition in HCCI engines  

E-Print Network [OSTI]

The prediction of auto-ignition delay times in HCCI engines has risen interest on detailed chemical models. This paper described a validated kinetic mechanism for the oxidation of a model Diesel fuel (n-decane and ?-methylnaphthalene). The 3D model for the description of low and high temperature auto-ignition in engines is presented. The behavior of the model fuel is compared with that of n-heptane. Simulations show that the 3D model coupled with the kinetic mechanism can reproduce experimental HCCI and Diesel engine results and that the correct modeling of auto-ignition in the cool flame region is essential in HCCI conditions.

Bounaceur, Roda; Fournet, René; Battin-Leclerc, Frédérique; Jay, S; Da Cruz, A Pires

2007-01-01T23:59:59.000Z

124

Numerical determination of OPE coefficients in the 3D Ising model from off-critical correlators  

E-Print Network [OSTI]

We propose a general method for the numerical evaluation of OPE coefficients in three dimensional Conformal Field Theories based on the study of the conformal perturbation of two point functions in the vicinity of the critical point. We test our proposal in the three dimensional Ising Model, looking at the magnetic perturbation of the $$, $$ and $$ correlators from which we extract the values of $C^{\\sigma}_{\\sigma\\epsilon}=1.07(3)$ and $C^{\\epsilon}_{\\epsilon\\epsilon}=1.45(30)$. Our estimate for $C^{\\sigma}_{\\sigma\\epsilon}$ agrees with those recently obtained using conformal bootstrap methods, while $C^{\\epsilon}_{\\epsilon\\epsilon}$, as far as we know, is new and could be used to further constrain conformal bootstrap analyses of the 3d Ising universality class.

Caselle, M; Magnoli, N

2015-01-01T23:59:59.000Z

125

Parallel 3D Finite Element Numerical Modelling of DC Electron Guns  

SciTech Connect (OSTI)

In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation time from days to some hours.

Prudencio, E.; Candel, A.; Ge, L.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; /SLAC

2008-02-04T23:59:59.000Z

126

Comparison of the PHISICS/RELAP5-3D Ring and Block Model Results for Phase I of the OECD MHTGR-350 Benchmark  

SciTech Connect (OSTI)

The INL PHISICS code system consists of three modules providing improved core simulation capability: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. Coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been finalized, and as part of the code verification and validation program the exercises defined for Phase I of the OECD/NEA MHTGR 350 MW Benchmark were completed. This paper provides an overview of the MHTGR Benchmark, and presents selected results of the three steady state exercises 1-3 defined for Phase I. For Exercise 1, a stand-alone steady-state neutronics solution for an End of Equilibrium Cycle Modular High Temperature Reactor (MHTGR) was calculated with INSTANT, using the provided geometry, material descriptions, and detailed cross-section libraries. Exercise 2 required the modeling of a stand-alone thermal fluids solution. The RELAP5-3D results of four sub-cases are discussed, consisting of various combinations of coolant bypass flows and material thermophysical properties. Exercise 3 combined the first two exercises in a coupled neutronics and thermal fluids solution, and the coupled code suite PHISICS/RELAP5-3D was used to calculate the results of two sub-cases. The main focus of the paper is a comparison of the traditional RELAP5-3D “ring” model approach vs. a much more detailed model that include kinetics feedback on individual block level and thermal feedbacks on a triangular sub-mesh. The higher fidelity of the block model is illustrated with comparison results on the temperature, power density and flux distributions, and the typical under-predictions produced by the ring model approach are highlighted.

Gerhard Strydom

2014-04-01T23:59:59.000Z

127

The application of high-resolution 3D seismic data to model the distribution of mechanical and hydrogeological properties of a potential host rock for the deep storage of radioactive waste in France  

E-Print Network [OSTI]

In the context of a deep geological repository of high-level radioactive wastes, the French National Radioactive Waste Management Agency (Andra) has conducted an extensive characterization of the Callovo-Oxfordian argillaceous rock and surrounding formations in the Eastern Paris Basin. As part of this project, an accurate 3D seismic derived geological model is needed. The paper shows the procedure used for building the 3D seismic constrained geological model in depth by combining time-to-depth conversion of seismic horizons, consistent seismic velocity model and elastic impedance in time. It also shows how the 3D model is used for mechanical and hydrogeological studies. The 3D seismic field data example illustrates the potential of the proposed depth conversion procedure for estimating density and velocity distributions, which are consistent with the depth conversion of seismic horizons using the Bayesian Kriging method. The geological model shows good agreement with well log data obtained from a reference we...

Mari, Jean-Luc

2014-01-01T23:59:59.000Z

128

3 D interactive pictorial maps  

E-Print Network [OSTI]

of simplififcation and exaggeration.. . . . . . . . . . . . . . 21 8 3 D polygonal text in Maya. . . . . . . . . . . . . . . . . . . . . . . . 22 9 Final 3 D model of Italy with text. . . . . . . . . . . . . . . . . . . . 23 10 Top view of 3 D model of France... the files in a format that is suitable for web viewing. 15 CHAPTER IV METHODOLOGY There are three major steps to making an interactive pictorial map. The fifrst step is to build the 3 D model using a modeling software, Maya. The second step is to apply...

Naz, Asma

2005-02-17T23:59:59.000Z

129

On-machine 3D vision system for machining setup modeling  

E-Print Network [OSTI]

3 ORIGINAL ARTICLE On-machine 3D vision system for machiningIn computer numerical control machine tools, using machiningIn this paper, an on-machine vision system is presented to

Zhang, Xi; Tian, Xiaodong; Yamazaki, Kazuo

2010-01-01T23:59:59.000Z

130

Spec2Fab : a reducer-tuner model for translating specifications to 3D prints  

E-Print Network [OSTI]

Multi-material 3D printing allows objects to be composed of complex, heterogeneous arrangements of materials. It is often more natural to define a functional goal than to define the material composition of an object. ...

Chen, Desai

2013-01-01T23:59:59.000Z

131

Spec2Fab: A reducer-tuner model for translating specifications to 3D prints  

E-Print Network [OSTI]

Multi-material 3D printing allows objects to be composed of complex, heterogenous arrangements of materials. It is often more natural to define a functional goal than to define the material composition of an object. ...

Chen, Desai

132

3D Model of the McGinness Hills Geothermal Area  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

Faulds, James E.

133

3D Model of the McGinness Hills Geothermal Area  

SciTech Connect (OSTI)

The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

Faulds, James E.

2013-12-31T23:59:59.000Z

134

3D CFD Model of High Temperature H2O/CO2 Co-electrolysis  

SciTech Connect (OSTI)

3D CFD Model of High Temperature H2O/CO2 Co-Electrolysis Grant Hawkes1, James O’Brien1, Carl Stoots1, Stephen Herring1 Joe Hartvigsen2 1 Idaho National Laboratory, Idaho Falls, Idaho, grant.hawkes@inl.gov 2 Ceramatec Inc, Salt Lake City, Utah INTRODUCTION A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature co-electrolysis of steam and carbon dioxide in a planar solid oxide electrolyzer (SOE) using solid oxide fuel cell technology. A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of planar solid-oxide electrolysis cell technology for syn-gas production from CO2 and steam. Various runs have been performed under different run conditions to help assess the performance of the SOE. This paper presents CFD results of this model compared with experimental results. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to produce syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. A strong interest exists in the large-scale production of syn-gas from CO2 and steam to be reformed into a usable transportation fuel. If biomass is used as the carbon source, the overall process is climate neutral. Consequently, there is a high level of interest in production of syn-gas from CO2 and steam electrolysis. With the price of oil currently around $60 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of syn-gas production from CO2 and water, with no consumption of fossil fuels, and no production of greenhouse gases. Thermal CO2-splitting and water splitting for syn-gas production can be accomplished via high-temperature electrolysis, using high-temperature nuclear process heat and electricity. A high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-syn-gas conversion efficiency of 45 to 55%.

Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring; Joe Hartvigsen

2007-06-01T23:59:59.000Z

135

A Grid of 3D Stellar Atmosphere Models of Solar Metallicity: I. General Properties, Granulation and Atmospheric Expansion  

E-Print Network [OSTI]

Present grids of stellar atmosphere models are the workhorses in interpreting stellar observations, and determining their fundamental parameters. These models rely on greatly simplified models of convection, however, lending less predictive power to such models of late type stars. We present a grid of improved and more reliable stellar atmosphere models of late type stars, based on deep, 3D, convective, stellar atmosphere simulations. This grid is to be used in general for interpreting observations, and improve stellar and asteroseismic modeling. We solve the Navier Stokes equations in 3D and concurrent with the radiative transfer equation, for a range of atmospheric parameters, covering most of stellar evolution with convection at the surface. We emphasize use of the best available atomic physics for quantitative predictions and comparisons with observations. We present granulation size, convective expansion of the acoustic cavity, asymptotic adiabat, as function of atmospheric parameters. These and other re...

Trampedach, Regner; Collet, Remo; Nordlund, Åke; Stein, Robert F

2013-01-01T23:59:59.000Z

136

A Fuzzy-Convolution Model for Physical Action and Behaviour Pattern Recognition of 3D Time Series  

E-Print Network [OSTI]

A Fuzzy-Convolution Model for Physical Action and Behaviour Pattern Recognition of 3D Time Series-- Pattern Classification, Action Recognition, Fuzzy Classifiers, Signal Convolution. I. INTRODUCTION researchers in pattern recognition on the field of intelligent surveillance. Fuzzy logic has been extensively

Hu, Huosheng

137

3D Model Based Pose Estimation For Omnidirectional Stereovision Guillaume Caron, Eric Marchand and El Mustapha Mouaddib  

E-Print Network [OSTI]

3D Model Based Pose Estimation For Omnidirectional Stereovision Guillaume Caron, Eric Marchand, FRANCE; e-mail {guillaume.caron, mouaddib}@u-picardie.fr Eric Marchand is with INRIA, IRISA, Lagadic, 35000 Rennes, France; e-mail {Eric.Marchand}@irisa.fr Fig. 1. Our sensor: orthographic camera, parabolic

Paris-Sud XI, Université de

138

3-D Mobile-to-Mobile channel tracking with first-order autoregressive model-based Kalman filter  

E-Print Network [OSTI]

1 3-D Mobile-to-Mobile channel tracking with first-order autoregressive model-based Kalman filter estimation in Mobile- to-Mobile communication assuming three-dimensional scattering environment and the approximated expression of the estimation variance in output of the Kalman filter, both for Fixed-to-Mobile

Paris-Sud XI, Université de

139

ON THE DYNAMICS OF THE SOLAR CORONA: FIRST RESULTS OBTAINED WITH A NEW 3D MHD MODEL  

E-Print Network [OSTI]

1 ON THE DYNAMICS OF THE SOLAR CORONA: FIRST RESULTS OBTAINED WITH A NEW 3D MHD MODEL J. Kleimann 1) is applied to the problem of the dynamics of the solar corona. First, we present the basic system of equations for a two- uid description of the solar wind plasma and point out possible numerical di

Grauer, Rainer

140

Towards evaluating the map literacy of planners in 2D maps and 3D models in South Africa  

E-Print Network [OSTI]

1 Towards evaluating the map literacy of planners in 2D maps and 3D models in South Africa, Department of Geography, Geoinformatics and Metereology, University of Pretoria, Pretoria, South Africa 2 GIScience Center, University of Zurich, Zurich, Switzerland. Abstract South Africa is faced

�öltekin, Arzu

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Vortex Proliferation and the Dual Superconductor Scenario for Confinement: The 3D Compact U(1) Lattice Higgs Model  

E-Print Network [OSTI]

It is argued that the phase diagram of the 3D Compact U(1) Lattice Higgs Model is more refined than generally thought. The confined and Higgs phases are separated by a well-defined phase boundary, marked by proliferating vortices. It is shown that the confinement mechanism at work is precisely the dual superconductor scenario.

Sandro Wenzel; Elmar Bittner; Wolfhard Janke; Adriaan M. J. Schakel; Arwed Schiller

2005-10-24T23:59:59.000Z

142

MODELLING OF P450 ACTIVE SITE BASED ON CONSENSUS 3D Jean-Christophe Nebel  

E-Print Network [OSTI]

.nebel@kingston.ac.uk ABSTRACT P450 enzymes constitute a large superfamily of haem- thiolate proteins involved in the metabolism known structures of P450 proteins. The generation of biologically meaningful 3D patterns or motifs from the simultaneous alignment of several P450 structures is a way of overcoming that lack of data. In order to address

Nebel, Jean-Christophe

143

Elliptic Flow from a Hybrid CGC, Full 3D Hydro and Hadronic Cascade Model  

E-Print Network [OSTI]

We investigate the robustness of the discovery of the perfect fluid through comparison of hydrodynamic calculations with the elliptic flow coefficient v_2 at midrapidity in Au+Au collisions at sqrt{s_{NN}}=200 GeV. Employing the Glauber model for initial entropy density distributions, the centrality dependence of v_2 is reasonably reproduced by using an ideal fluid description of the early QGP stage followed by a hadronic cascade in the late hadronic stage. On the other hand, initial conditions based on the Colour Glass Condensate model are found to generate larger elliptic flow due to larger initial eccentricity epsilon. We further predict v_2/epsilon at a fixed impact parameter as a function of collision energy sqrt{s_{NN}} up to the LHC energy.

Tetsufumi Hirano; Ulrich W. Heinz; Dmitri Kharzeev; Roy Lacey; Yasushi Nara

2007-03-27T23:59:59.000Z

144

3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration  

SciTech Connect (OSTI)

We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion-decay from protons.

Lee, Shiu-Hang; Kamae, Tuneyoshi; Ellison, Donald C.

2008-07-02T23:59:59.000Z

145

Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities  

SciTech Connect (OSTI)

Prediction of human response to potential therapeutic drugs is through conventional methods of in vitro cell culture assays and expensive in vivo animal testing. Alternatives to animal testing require sophisticated in vitro model systems that must replicate in vivo like function for reliable testing applications. Advancements in biomaterials have enabled the development of three-dimensional (3D) cell encapsulated hydrogels as in vitro drug screening tissue model systems. In this study, we have developed an in vitro platform to enable high density 3D culture of liver cells combined with a monolayer growth of target breast cancer cell line (MCF-7) in a static environment as a representative example of screening drug compounds for hepatotoxicity and drug efficacy. Alginate hydrogels encapsulated with serial cell densities of HepG2 cells (10{sup 5}-10{sup 8} cells/ml) are supported by a porous poly-carbonate disc platform and co-cultured with MCF-7 cells within standard cell culture plates during a 3 day study period. The clearance rates of drug transformation by HepG2 cells are measured using a coumarin based pro-drug. The platform was used to test for HepG2 cytotoxicity 50% (CT{sub 50}) using commercially available drugs which further correlated well with published in vivo LD{sub 50} values. The developed test platform allowed us to evaluate drug dose concentrations to predict hepatotoxicity and its effect on the target cells. The in vitro 3D co-culture platform provides a scalable and flexible approach to test multiple-cell types in a hybrid setting within standard cell culture plates which may open up novel 3D in vitro culture techniques to screen new chemical entity compounds. - Graphical abstract: Display Omitted Highlights: > A porous support disc design to support the culture of desired cells in 3D hydrogels. > Demonstrated the co-culture of two cell types within standard cell-culture plates. > A scalable, low cost approach to toxicity screening involving multiple cell types.

Lan, Shih-Feng [University of Oklahoma Bioengineering Center, University of Oklahoma, Norman, OK 73019 (United States); Starly, Binil, E-mail: starlyb@ou.edu [University of Oklahoma Bioengineering Center, University of Oklahoma, Norman, OK 73019 (United States); School of Industrial Engineering, University of Oklahoma, Norman, OK 73019 (United States)

2011-10-01T23:59:59.000Z

146

Reconstruction quasi-dense et mod`eles 3D `a partir d'une sequence d'images Quasi-Dense Reconstruction and 3D Models from Image Sequence  

E-Print Network [OSTI]

, Kowloon, Hong Kong SAR. lhuillie@lasmea.univ-bpclermont.fr quan@cs.ust.hk Papiers et d´emos: wwwlasmea calibr´ees ainsi qu'un syst`eme associ´e de reconstruction de mod`eles 3D. La principale in- novation est). Abstract This paper proposes a quasi-dense reconstruction from un- calibrated sequence and a companion

Paris-Sud XI, Université de

147

P-wave re ections in 3-D model of coal basin with boulders (has been accepted for poster presentation at EAGE conference, Leipzig 1998)  

E-Print Network [OSTI]

P-wave re ections in 3-D model of coal basin with boulders (has been accepted for poster to the computation of re ections in 3-D model of coal basin with four boulders located in the upper bed of the coal. Tselentis, pers. comm.). The model is composed of a low velocity layer, upper bed, four boulders, coal seam

Cerveny, Vlastislav

148

The solar photospheric abundance of hafnium and thorium. Results from CO5BOLD 3D hydrodynamic model atmospheres  

E-Print Network [OSTI]

Context: The stable element hafnium (Hf) and the radioactive element thorium (Th) were recently suggested as a suitable pair for radioactive dating of stars. The applicability of this elemental pair needs to be established for stellar spectroscopy. Aims: We aim at a spectroscopic determination of the abundance of Hf and Th in the solar photosphere based on a \\cobold 3D hydrodynamical model atmosphere. We put this into a wider context by investigating 3D abundance corrections for a set of G- and F-type dwarfs. Method: High-resolution, high signal-to-noise solar spectra were compared to line synthesis calculations performed on a solar CO5BOLD model. For the other atmospheres, we compared synthetic spectra of CO5BOLD 3D and associated 1D models. Results: For Hf we find a photospheric abundance A(Hf)=0.87+-0.04, in good agreement with a previous analysis, based on 1D model atmospheres. The weak Th ii 401.9 nm line constitutes the only Th abundance indicator available in the solar spectrum. It lies in the red wing of an Ni-Fe blend exhibiting a non-negligible convective asymmetry. Accounting for the asymmetry-related additional absorption, we obtain A(Th)=0.09+-0.03, consistent with the meteoritic abundance, and about 0.1 dex lower than obtained in previous photospheric abundance determinations. Conclusions: Only for the second time, to our knowledge, has am non-negligible effect of convective line asymmetries on an abundance derivation been highlighted. Three-dimensional hydrodynamical simulations should be employed to measure Th abundances in dwarfs if similar blending is present, as in the solar case. In contrast, 3D effects on Hf abundances are small in G- to mid F-type dwarfs and sub-giants, and 1D model atmospheres can be conveniently used.

Elisabetta Caffau; L. Sbordone; H. -G. Ludwig; P. Bonifacio; M. Steffen; N. T. Behara

2008-03-25T23:59:59.000Z

149

Quark-Antiquark and Diquark Condensates in Vacuum in a 3D Two-Flavor Gross-Neveu Model  

E-Print Network [OSTI]

The effective potential analysis indicates that, in a 3D two-flavor Gross-Neveu model in vacuum, depending on less or bigger than the critical value 2/3 of $G_S/H_P$, where $G_S$ and $H_P$ are respectively the coupling constants of scalar quark-antiquark channel and pseudoscalar diquark channel, the system will have the ground state with pure diquark condensates or with pure quark-antiquark condensates, but no the one with coexistence of the two forms of condensates. The similarities and differences in the interplay between the quark-antiquark and the diquark condensates in vacuum in the 2D, 3D and 4D two-flavor four-fermion interaction models are summarized.

Bang-Rong Zhou

2007-06-23T23:59:59.000Z

150

Model reliability for 3D electrical resistivity tomography: Application of the volume of investigation index to a time-lapse monitoring experiment  

E-Print Network [OSTI]

Model reliability for 3D electrical resistivity tomography: Application of the volume reliability for 3D ERTand as a method of survey design. We show how the VOI provides a measure of model, we utilize the VOI for judging the degree of reliability of hydrogeologi- cal interpretations

Barrash, Warren

151

A Heightmap Model for Efficient 3D Reconstruction from Street-Level Video David Gallup1  

E-Print Network [OSTI]

platforms or manually created models for ex- ample Google Sketchup models, providing greater detail from

Frahm, Jan-Michael

152

Millimeter radiation from a 3D model of the solar atmosphere I. Diagnosing chromospheric thermal structure  

E-Print Network [OSTI]

Aims. We use advanced 3D NLTE radiative magnetohydrodynamic simulations of the solar atmosphere to carry out detailed tests of chromospheric diagnostics at millimeter and submillimeter wavelengths. Methods. We focused on the diagnostics of the thermal structure of the chromosphere in the wavelength bands from 0.4 mm up to 9.6 mm that can be accessed with the Atacama Large Millimeter/Submillimeter Array (ALMA) and investigated how these diagnostics are affected by the instrumental resolution. Results. We find that the formation height range of the millimeter radiation depends on the location in the simulation domain and is related to the underlying magnetic structure. Nonetheless, the brightness temperature is a reasonable measure of the gas temperature at the effective formation height at a given location on the solar surface. There is considerable scatter in this relationship, but this is significantly reduced when very weak magnetic fields are avoided. Our results indicate that although instrumental smearin...

Loukitcheva, Maria; Carlsson, Mats; White, Stephen

2015-01-01T23:59:59.000Z

153

Stochastic 3D Modeling of the GDL Structure in PEMFCs Based on Thin Section Detection  

E-Print Network [OSTI]

Pharma GmbH and Company KG, 88397 Biberach, Germany c Center for Solar Energy and Hydrogen Research Baden density. Hence, the balance between water drainage and wa- ter storage is the key to high performance

Schmidt, Volker

154

Modelling of bubbly and annular two-phase flow in subchannel geometries with BACCHUS-3D/TP  

SciTech Connect (OSTI)

The theoretical and computational bases of the BACCHUS-3D/TP computer program are reviewed. The computer program is used for thermal-hydraulic analyses of nuclear fuel bundles under normal and accident conditions. The present program combines two models and solution procedures previously used separately, namely, the Improved Slip Model (ISM) and the Separated-Phases Model (SPM). The former model uses mixture equations with accounting for slip between the phases, whereas the latter uses separate continuity and momentum equations. At the present stage of development, both assume thermodynamic equilibrium. Techniques used to affect smooth transition between the two models are described. including treatment of frictional pressure drop and solution of the Poisson and momentum equations. A detailed derivation of the computation of mass transfer between the phases is given because it is a central and novel feature of the model.

Bottoni, M.; Lyczkowski, R.W.

1992-01-01T23:59:59.000Z

155

3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report  

SciTech Connect (OSTI)

The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

Wagoner, J

2009-04-24T23:59:59.000Z

156

3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report  

SciTech Connect (OSTI)

The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

Wagoner, J

2009-02-23T23:59:59.000Z

157

MODELING STATISTICAL PROPERTIES OF SOLAR ACTIVE REGIONS THROUGH DIRECT NUMERICAL SIMULATIONS OF 3D-MHD TURBULENCE  

SciTech Connect (OSTI)

Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of the observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.

Malapaka, Shiva Kumar; Mueller, Wolf-Christian [Max-Planck Institute for Plasma Physics, Boltzmannstrasse 2, D-85748 Garching bei Muenchen (Germany)

2013-09-01T23:59:59.000Z

158

Modeling, measurement, and 3-D equilibrium reconstruction of the bootstrap current in the Helically Symmetric Experiment  

SciTech Connect (OSTI)

The bootstrap current for three electron cyclotron resonance heated plasma scenarios in a quasihelically symmetric stellarator (the Helically Symmetric Experiment) are analyzed and compared to a neoclassical transport code PENTA. The three conditions correspond to 50?kW input power with a resonance that is off-axis, 50?kW on-axis heating and 100?kW on-axis heating. When the heating location was moved from off-axis to on-axis with 50?kW heating power, the stored energy and the extrapolated steady-state current were both observed to increase. When the on-axis heating power was increased from 50?kW to 100?kW, the stored energy continued to increase while the bootstrap current slightly decreased. This trend is qualitatively in agreement with the calculations which indicate that a large positive electric field for the 100?kW case was driving the current negative in a small region close to the magnetic axis and accounting for the decrease in the total integrated current. This trend in the calculations is only observed to occur when momentum conservation between particle species is included. Without momentum conservation, the calculated bootstrap current increases monotonically. We show that the magnitude of the bootstrap current as calculated by PENTA agrees better with the experiment when momentum conservation between plasma species is included in the calculation. The total current was observed in all cases to flow in a direction to unwind the transform, unlike in a tokamak in which the bootstrap current adds to the transform. The 3-D inductive response of the plasma is simulated to predict the evolution of the current profile during the discharge. The 3-D equilibrium reconstruction code V3FIT is used to reconstruct profiles of the plasma pressure and current constrained by measurements with a set of magnetic diagnostics. The reconstructed profiles are consistent with the measured plasma pressure profile and the simulated current profile when the reconstruction is constrained by the measured data from a diagnostic array that is internal to the vacuum chamber.

Schmitt, J. C.; Talmadge, J. N.; Anderson, D. T. [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Hanson, J. D. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

2014-09-15T23:59:59.000Z

159

3D World Building System  

SciTech Connect (OSTI)

This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

None

2013-10-30T23:59:59.000Z

160

3D World Building System  

ScienceCinema (OSTI)

This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

None

2014-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Non-linear approximations for solving 3D-packing MIP models: a ...  

E-Print Network [OSTI]

MIP models: a heuristic approach ... three-dimensional packing, MIP/MINLP models, linear/non-linear ..... Springer Science + Business Media, New York.

Manlio.Parisch

2011-02-21T23:59:59.000Z

162

Density Functional Theory Models for Radiation Damage  

E-Print Network [OSTI]

Density Functional Theory Models for Radiation Damage S.L. Dudarev EURATOM/CCFE Fusion Association, DFT Abstract Density functional theory models developed over the past decade provide unique phenomena. Density functional theory models have effectively created a new paradigm for the scientific

163

Spatial modeling of the 3D morphology of hybrid polymer-ZnO solar cells, based on electron tomography data  

E-Print Network [OSTI]

A spatial stochastic model is developed which describes the 3D nanomorphology of composite materials, being blends of two different (organic and inorganic) solid phases. Such materials are used, for example, in photoactive layers of hybrid polymer zinc oxide solar cells. The model is based on ideas from stochastic geometry and spatial statistics. Its parameters are fitted to image data gained by electron tomography (ET), where adaptive thresholding and stochastic segmentation have been used to represent morphological features of the considered ET data by unions of overlapping spheres. Their midpoints are modeled by a stack of 2D point processes with a suitably chosen correlation structure, whereas a moving-average procedure is used to add the radii of spheres. The model is validated by comparing physically relevant characteristics of real and simulated data, like the efficiency of exciton quenching, which is important for the generation of charges and their transport toward the electrodes.

O. Stenzel; V. Schmidt; H. Hassfeld; R. Thiedmann; L. J. A. Koster; S. D. Oosterhout; S. S. van Bavel; M. M. Wienk; J. Loos; R. A. J. Janssen

2011-11-22T23:59:59.000Z

164

3-D Density Model Of Mt Etna Volcano (Southern Italy) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin:YBR14InformationInformation Of Mt

165

Rigging the world : 3D modeling and the seduction of the real  

E-Print Network [OSTI]

Evidence from history, archaeology, and the social sciences suggests that making models of the world has anchored our understanding of it since the earliest days. From models of deities, dwellings and weapons to molecules ...

Perry, Rebecca Ann

2014-01-01T23:59:59.000Z

166

Component-based Face Recognition with 3D Morphable Models B. Weyrauch  

E-Print Network [OSTI]

@mpi-sb.mpg.de Honda Research Institute USA, Inc. Max-Planck-Institute for Computer Science Boston, MA Saarbr. In this paper, we combine morphable models and component-based recognition. The morphable model is em- ployed

Poggio, Tomaso

167

Use of a 3D liver microreactor as an in vitro model for the study of bile acid synthesis and hepatobiliary circulation  

E-Print Network [OSTI]

The liver regulates a myriad of vital functions including bile acid synthesis, hepatobiliary circulation, cholesterol homeostasis, drug metabolism, etc. This thesis focuses on the use of a 3D in vitro model of liver to ...

Llamas Vidales, Jose Ricardo

2009-01-01T23:59:59.000Z

168

GEOPHYSICAL RESEARCH LETTERS, VOL. 30. NO. 10, 10.1029/2003GL038308, 2003 A 3-D geodynamic model of lateral crustal flow  

E-Print Network [OSTI]

GEOPHYSICAL RESEARCH LETTERS, VOL. 30. NO. 10, 10.1029/2003GL038308, 2003 A 3-D geodynamic model 2003 by the American Geophysical Union. Paper number 2003GL018308. 0094-8762/2003GL018308 This volume

Liu, Mian

169

A 3D finite-element modelling investigation into optimal survey parameters and direct imaging for marine controlled-source electromagnetic surveys  

E-Print Network [OSTI]

Relatively little is known about marine controlled-source electromagnetic surveys (MCSEM) used to detect hydrocarbon reservoirs. Typical MCSEM require the use of inversion to generate a model of the subsurface. We utilize a 3D finite-element forward...

Lau, Ryan

2007-09-17T23:59:59.000Z

170

Measuring the Kernel of Time-Dependent Density Functional Theory with X-Ray Absorption Spectroscopy of 3d Transition Metals  

E-Print Network [OSTI]

of 3d Transition Metals A. Scherz,* E. K. U. Gross, H. Appel, C. Sorg, K. Baberschke, and H. Wende, and a new approximation suggested. But the true value of DFT is in constructing one XC approxi- mation

Gross, E.K.U.

171

Headcut retreat resulting from plunge pool erosion in a 3D landscape evolution model  

E-Print Network [OSTI]

Headcut retreat produced by plunge pools is represented using existing concepts about this type of erosion. The model estimates retreat rates, given flow, height of the headcut, upstream slope and Manning's roughness, and ...

Flores Cervantes, Javier Homero, 1977-

2004-01-01T23:59:59.000Z

172

3D Weak-Dispersion Reverse-Time Migration with a StereoModeling Method  

E-Print Network [OSTI]

The finite difference method has been widely used in seismic modeling and reverse time migration. However, it generally has two issues: large computational cost and numerical dispersion. Recently, a nearly-analytic discrete ...

Li, Jingshuang

2013-01-01T23:59:59.000Z

173

Application of the 3-D Hydro-Mechanical Model GEOFRAC in enhanced geothermal systems  

E-Print Network [OSTI]

GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristic of GEOFRAC is that it is based on statistical input representing ...

Vecchiarelli, Alessandra

2013-01-01T23:59:59.000Z

174

A 3-D mathematical model to identify organ-specific risks in rats during thermal stress  

E-Print Network [OSTI]

- vention and management. computational modeling; core temperature; finite element method; multiorgan obtained from medical imaging and incorporates the key mechanisms of heat transfer during thermoregulation outcomes associated with heat stress is critical for effective management and mitigation of injury, which

175

A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model.  

SciTech Connect (OSTI)

A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.

English, Shawn Allen

2014-09-01T23:59:59.000Z

176

Benchmark of Atucha-2 PHWR RELAP5-3D control rod model by Monte Carlo MCNP5 core calculation  

SciTech Connect (OSTI)

Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and peculiarities require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Therefore core models of Atucha-2 PHWR were developed using MCNP5. In this work a methodology was set up to collect the flux in the hexagonal mesh by which the Atucha-2 core is represented. The scope of this activity is to evaluate the effect of obliquely inserted control rod on neutron flux in order to validate the RELAP5-3D{sup C}/NESTLE three dimensional neutron kinetic coupled thermal-hydraulic model, applied by GRNSPG/UNIPI for performing selected transients of Chapter 15 FSAR of Atucha-2. (authors)

Pecchia, M.; D'Auria, F. [San Piero A Grado Nuclear Research Group GRNSPG, Univ. of Pisa, via Diotisalvi, 2, 56122 - Pisa (Italy); Mazzantini, O. [Nucleo-electrica Argentina Societad Anonima NA-SA, Buenos Aires (Argentina)

2012-07-01T23:59:59.000Z

177

Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

2011-01-01T23:59:59.000Z

178

Stellar models with mixing length and T(tau) relations calibrated on 3D convection simulations  

E-Print Network [OSTI]

(abridged) The calculation of the thermal stratification in the superadiabatic layers of stellar models with convective envelopes is a long standing problem of stellar astrophysics, and has a major impact on predicted observational properties like radius and effective temperature. The Mixing Length Theory, almost universally used to model the superadiabatic convective layers, contains effectively one free parameter to be calibrated --alpha(ml)-- whose value controls the resulting effective temperature. Here we present the first self-consistent stellar evolution models calculated by employing the atmospheric temperature stratification, Rosseland opacities, and calibrated variable alpha(ml) (dependent on effective temperature and surface gravity) from a large suite of three-dimensional radiation hydrodynamics simulations of stellar convective envelopes and atmospheres for solar stellar composition (Trampedach et al. 2013). From our calculations (with the same composition of the radiation hydrodynamics simulatio...

Salaris, Maurizio

2015-01-01T23:59:59.000Z

179

Towards 3D modeling of interacting TM helix pairs based on  

E-Print Network [OSTI]

% of currently known protein structures are from TM proteins [2]. Thus, the lack of experimental structures. Spatial structures of transmembrane proteins are difficult to obtain either experimentally of many transmembrane proteins, is essential in the modeling. Majority of helix-helix interactions

Nebel, Jean-Christophe

180

A Demonstration of MobiTree: Progressive 3D Tree Models Streaming on Mobile Clients  

E-Print Network [OSTI]

representation of plants [2]. We discuss how foliage is rendered in Section 4 and the technical challenges in rendering plant on mobile devices in Section 5. The demonstration and further applications are described Systems Applications]: Miscellaneous General Terms Design, Human Factors Keywords Streaming, Plant Models

Boyer, Edmond

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Deformable model for 3D intramodal nonrigid breast image registration with fiducial skin markers  

E-Print Network [OSTI]

of FSM, finite element method (FEM) is used to distribute the markers' displacements linearly over with rigid registration technique. Keywords: Intramodal image registration, finite element method, deformable, we developed a finite element method (FEM) deformable breast model to correct motion artifacts

182

QUANTITATIVE ASSESSMENT OF THE IMPACT OF 3D MODELLING OF BUILDING STRUCTURES ON  

E-Print Network [OSTI]

to the firm's overall activity, because the greatest increase in productivity is achieved in this area; that construction companies can leverage the benefits in error reduction and logistics improvements that result PRODUCTIVITY Rafael Sacks1 and Ronen Barak2 ABSTRACT Parametric three-dimensional modelling of buildings

Sacks, Rafael

183

Solar dynamo models with alpha-effect and turbulent pumping from local 3D convection calculations  

E-Print Network [OSTI]

(abridged) Results from kinematic solar dynamo models employing alpha-effect and turbulent pumping from local convection calculations are presented. We estimate the magnitude of these effects to be around 2-3 m/s. The rotation profile of the Sun as obtained from helioseismology is applied. We obtain an estimate of the ratio of the two induction effects, C_alpha/C_Omega \\approx 10^-3, which we keep fixed in all models. We also include a one-cell meridional circulation pattern having a magnitude of 10-20 m/s near the surface and 1-2 m/s at the bottom of the convection zone. The model essentially represents a distributed turbulent dynamo, as the alpha-effect is nonzero throughout the convection zone, although it concentrates near the bottom of the convection zone obtaining a maximum around 30 degrees of latitude. Turbulent pumping of the mean fields is predominantly down- and equatorward. We find that, when all these effects are included in the model, it is possible to correctly reproduce many features of the solar activity cycle, namely the correct equatorward migration at low latitudes and the polar branch at high latitudes, and the observed negative sign of B_r B_phi. Although the activity clearly shifts towards the equator in comparison to previous models due to the combined action of the alpha-effect peaking at midlatitudes, meridional circulation and latitudinal pumping, most of the activity still occurs at too high latitudes (between 5-60 degrees). Other problems include the relatively narrow parameter space within which the preferred solution is dipolar (A0), and the somewhat too short cycle lengths of the solar-type solutions. The role of the surface shear layer is found to be important only in the case where the alpha-effect has an appreciable magnitude near the surface.

P. J. Käpylä; M. J. Korpi; I. Tuominen

2006-06-05T23:59:59.000Z

184

3D Field-Scale Reactive Transport Modeling of In Situ Immobilization of Uranium in Structured Porous Media via Biostimulation  

SciTech Connect (OSTI)

A several-month-long ethanol injection experiment is being conducted to study the impacts of porous media structure (i.e., heterogeneity existing at multiple scales) on the effectiveness of metal/radionuclide bioremediation in a highly heterogeneous unconfined aquifer near Oak Ridge, TN, USA. We have constructed a 3D field-scale groundwater flow and multicomponent reactive transport model to simulate the experimental observations. The model incorporates a suite of abiotic reactions and microbially-mediated redox reactions for multiple terminal electron accepting processes (TEAPs) including soluble oxygen, nitrate, U(VI) and sulfate and solid-phase electron acceptors. Different biomass populations are considered in the model. Growth of these populations is derived from the bioenergetics-based approach in which the partitioning of electron flow between energy generation and cell biomass production is dependent on the free energy of the corresponding TEAP. TEAP reaction rates were free energy constrained. The TEAP model and reaction system have been formulated and used to simulate laboratory batch experimental observations. We conducted the field-scale simulation starting with the reaction system and parameters obtained from the batch experiment and hydrologic parameters estimated from the results of pumping tests, water level monitoring and model interpretation of a tracer test conducted in August 2004. Reaction parameters were investigated to compare simulation results and field experiment observations.

Fang, Yilin; Scheibe, Timothy D.; Roden, Eirc E.; Kamolpornwijit, Wiwat; Brooks, Scott C.

2006-09-12T23:59:59.000Z

185

Development of a randomized 3D cell model for Monte Carlo microdosimetry simulations  

SciTech Connect (OSTI)

Purpose: The objective of the current work was to develop an algorithm for growing a macroscopic tumor volume from individual randomized quasi-realistic cells. The major physical and chemical components of the cell need to be modeled. It is intended to import the tumor volume into GEANT4 (and potentially other Monte Carlo packages) to simulate ionization events within the cell regions. Methods: A MATLAB Copyright-Sign code was developed to produce a tumor coordinate system consisting of individual ellipsoidal cells randomized in their spatial coordinates, sizes, and rotations. An eigenvalue method using a mathematical equation to represent individual cells was used to detect overlapping cells. GEANT4 code was then developed to import the coordinate system into GEANT4 and populate it with individual cells of varying sizes and composed of the membrane, cytoplasm, reticulum, nucleus, and nucleolus. Each region is composed of chemically realistic materials. Results: The in-house developed MATLAB Copyright-Sign code was able to grow semi-realistic cell distributions ({approx}2 Multiplication-Sign 10{sup 8} cells in 1 cm{sup 3}) in under 36 h. The cell distribution can be used in any number of Monte Carlo particle tracking toolkits including GEANT4, which has been demonstrated in this work. Conclusions: Using the cell distribution and GEANT4, the authors were able to simulate ionization events in the individual cell components resulting from 80 keV gamma radiation (the code is applicable to other particles and a wide range of energies). This virtual microdosimetry tool will allow for a more complete picture of cell damage to be developed.

Douglass, Michael; Bezak, Eva; Penfold, Scott [School of Chemistry and Physics, University of Adelaide, North Terrace, Adelaide 5005, South Australia (Australia) and Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide 5000, South Australia (Australia)

2012-06-15T23:59:59.000Z

186

1-D closure models for slender 3-D viscoelastic free jets: von Karman flow geometry and elliptical cross section  

SciTech Connect (OSTI)

In this paper we derive one space dimensional, reduced systems of equations (1-D closure models) for viscoelastic free jets. We begin with the three-dimensional system of conservation laws and a Maxwell-Jeffreys constitutive law for an incompressible viscoelastic fluid. First, we exhibit exact truncations to a finite, closed system of 1-D equations based on classical velocity assumptions of von Karman. Next, we demonstrate that the 3-D free surface boundary conditions overconstrain these truncated systems, so that only a very limited class of solutions exist. We then proceed to derive approximate 1-D closure theories through a slender jet asymptotic scaling, combined with appropriate definitions of velocity, pressure and stress unknowns. Our nonaxisymmetric 1-D slender jet models incorporate the physical effects of inertia, viscoelasticity (viscosity, relaxation and retardation), gravity, surface tension, and properties of the ambient fluid, and include shear stresses and time dependence. Previous special 1-D slender jet models correspond to the lowest order equations in the present asymptotic theory by an a posteriori suppression to leading order of some of these effects, and a reduction to axisymmetry. Solutions of the lowest order system of equations in this asymptotic analysis are presented: For the special cases of elliptical inviscid and Newtonian free jets, subject to the effects of surface tension and gravity, our model predicts oscillation of the major axis of the free surface elliptical cross section between perpendicular directions with distance down the jet, and drawdown of the cross section, in agreement with observed behavior. 15 refs.

Bechtel, S.E.; Forest, M.G.; Holm, D.D.; Lin, K.J.

1988-01-01T23:59:59.000Z

187

In vivo 3D modeling of the femoropopliteal artery in human subjects based on x-ray angiography: Methodology and validation  

SciTech Connect (OSTI)

Endovascular revascularization of the femoropopliteal (FP) artery has been limited by high rates of restenosis and stent fracture. The unique physical forces that are applied to the FP artery during leg movement have been implicated in these phenomena. The foundation for measuring the effects of physical forces on the FP artery in a clinically relevant environment is based on the ability to develop 3D models of this vessel in different leg positions in vivo in patients with peripheral arterial disease (PAD). By acquiring paired angiographic images of the FP artery, and using angiography-based 3D modeling algorithms previously validated in the coronary arteries, the authors generated 3D models of ten FP arteries in nine patients with PAD with the lower extremity in straight leg (SL) and crossed leg (CL) positions. Due to the length of the FP artery, overlapping paired angiographic images of the entire FP artery were required to image the entire vessel, which necessitated the development of a novel fusion process in order to generate a 3D model of the entire FP artery. The methodology of angiographic acquisition and 3D model generation of the FP artery is described. In a subset of patients, a third angiographic view (i.e., validation view) was acquired in addition to the standard paired views for the purpose of validating the 3D modeling process. The mean root-mean-square (rms) error of the point-to-point distances between the centerline of the main FP artery from the 2D validation view and the centerline from the 3D model placed in the validation view for the SL and CL positions were 0.93{+-}0.19 mm and 1.12{+-}0.25 mm, respectively. Similarly, the mean rms error of the same comparison for the main FP artery and sidebranches for the SL and CL positions were 1.09{+-}0.38 mm and 1.21{+-}0.25 mm, respectively. A separate validation of the novel fusion process was performed by comparing the 3D model of the FP artery derived from fusion of 3D models of adjacent FP segments with the 2D validation view incorporating the region of fusion. The mean rms error of vessel centerline points of the main FP artery, the main FP artery plus directly connected sidebranches, and the mean rms error of upstream, downstream, and sidebranch directional vectors at bifurcation points in the overlap region were 1.41{+-}0.79 mm, 2.13{+-}1.12 mm, 3.16{+-}3.72 deg., 3.60{+-}5.39 deg., and 8.68{+-}8.42 deg. in the SL position, respectively, and 1.29{+-}0.35 mm, 1.61{+-}0.78 mm, 4.68{+-}4.08 deg., 3.41{+-}2.23 deg., and 5.52{+-}4.41 deg. in the CL position, respectively. Inter- and intraobserver variability in the generation of 3D models of individual FP segments and the fusion of overlapping FP segments were assessed. The mean rms errors between the centerlines of nine 3D models of individual FP segments generated by two independent observers, and repeated measurement by the same observer were 2.78{+-}1.26 mm and 3.50{+-}1.15 mm, respectively. The mean rms errors between the centerline of four 3D models of fused overlapping FP segments generated by two independent observers, and repeated measurement by the same observer were 4.99{+-}0.99 mm and 5.98{+-}1.22 mm, respectively. This study documents the ability to generate 3D models of the entire FP artery in vivo in patients with PAD in both SL and CL positions using routine angiography, and validates the methodologies used.

Klein, Andrew J.; Casserly, Ivan P.; Messenger, John C.; Carroll, John D.; Chen, S.-Y. James [University of Colorado Denver, Aurora, Colorado 80045 (United States); University of Colorado Denver, Aurora, Colorado 80045 and Denver VA Medical Center, Denver, Colorado 80220 (United States); University of Colorado Denver, Aurora, Colorado 80045 (United States)

2009-02-15T23:59:59.000Z

188

3D Printing Electronics  

E-Print Network [OSTI]

Login Register Home Videos Jobs Games 3D Printing Electronics Design Software Designer Edge for 3D Printing · -- B6 Sigma Labs (ticker SGLB) is not the same company as Sigma Technologies

Stryk, Oskar von

189

Modeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The main purpose of this report is to design a printed circuit heat exchanger (PCHE) for the Next Generation Nuclear Plant and carry out Loss of Coolant Accident (LOCA) simulation using RELAP5-3D. Helium was chosen as the coolant in the primary and secondary sides of the heat exchanger. The design of PCHE is critical for the LOCA simulations. For purposes of simplicity, a straight channel configuration was assumed. A parallel intermediate heat exchanger configuration was assumed for the RELAP5 model design. The RELAP5 modeling also required the semicircular channels in the heat exchanger to be mapped to rectangular channels. The initial RELAP5 run outputs steady state conditions which were then compared to the heat exchanger performance theory to ensure accurate design is being simulated. An exponential loss of pressure transient was simulated. This LOCA describes a loss of coolant pressure in the primary side over a 20 second time period. The results for the simulation indicate that heat is initially transferred from the primary loop to the secondary loop, but after the loss of pressure occurs, heat transfers from the secondary loop to the primary loop.

Not Available

2010-12-01T23:59:59.000Z

190

Hypocenter relocation using a fast grid search method and a 3-D seismic velocity model for the Sumatra region  

SciTech Connect (OSTI)

Determination of earthquake hypocenter in Indonesia conducted by the Meteorological, Climatological, and Geophysical Agency (MCGA) has still used a 1-D seismic velocity model. In this research, we have applied a Fast Grid Search (FGM) method and a 3-D velocity model resulting from tomographic imaging to relocate earthquakes in the Sumatran region. The data were taken from the MCGA data catalog from 2009 to 2011 comprising of subduction zone and on land fault earthquakes with magnitude greater than 4 Mw. Our preliminary results show some significant changes in the depths of the relocated earthquakes which are in general deeper than the depths of hypocenters from the MCGA data catalog. The residual times resulting from the relocation process are smaller than those prior to the relocation. Encouraged by these results, we will continue to conduct hypocenter relocation for all events from the MCGA data catalog periodically in order to produce a new data catalog with good quality. We hope that the new data catalog will be useful for further studies.

Nugroho, Hendro [Study Program of Earth Sciences, Faculty of Earth Sciences and Technology, Institute of Technology Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia and Meteorological, Climatological, and Geophysical Agency, Jl. Angkasa 1 No. 2, Kemayoran, Jakar (Indonesia)] [Study Program of Earth Sciences, Faculty of Earth Sciences and Technology, Institute of Technology Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia and Meteorological, Climatological, and Geophysical Agency, Jl. Angkasa 1 No. 2, Kemayoran, Jakar (Indonesia); Widiyantoro, Sri [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia); Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technologyc Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technologyc Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia)

2013-09-09T23:59:59.000Z

191

3D NUCLEAR SEGMENTAT  

Energy Science and Technology Software Center (OSTI)

003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems  https://vision.lbl.gov/Software/3DMorphometry/ 

192

3D Simulations of Plasma Filaments in the Scrape Off Layer: A Comparison with Models of Reduced Dimensionality  

E-Print Network [OSTI]

This paper presents simulations of isolated 3D filaments in a slab geometry obtained using a 3D reduced fluid code. First, systematic scans were performed to investigate how the dynamics of a filament are affected by its amplitude, perpendicular size and parallel extent. The perpendicular size of the filament was found to have a strong influence on its motions, as it determined the relative importance of parallel currents to polarisation and viscous currents, whilst drift-wave instabilities were observed if the initial amplitude of the blob was increased sufficiently. Next, the 3D simulations were compared to 2D simulations using different parallel closures; namely, the sheath dissipation closure, which neglects parallel gradients, and the vorticity advection closure, which neglects the influence of parallel currents. The vorticity advection closure was found to not replicate the 3D perpendicular dynamics and overestimated the initial radial acceleration of all the filaments studied. In contrast, a more satis...

Easy, Luke; Omotani, John; Dudson, Benjamin; Havlí?ková, Eva; Tamain, Patrick; Naulin, Volker; Nielsen, Anders H

2014-01-01T23:59:59.000Z

193

3D Printing Prof. Hank Dietz  

E-Print Network [OSTI]

3D Printing Prof. Hank Dietz TCMS, March 14, 2014 University of Kentucky Electrical & Computer #12;3D With Glue Layers of paper: printed with glue & cut Layers of powder: printed with glue Can also be printed in full color #12;3D Extrusion (RepRaps) FDM: Fused Deposition Modeling FFF: Fused

Dietz, Henry G. "Hank"

194

3D Modeling of One and Two Component Gas Flow in Fibrous Microstructures in Fuel Cells by Using the Lattice-Boltzmann Method  

E-Print Network [OSTI]

In fuel cells, a homogeneous distribution of gas flow is desirable for optimal performance. The gas3D Modeling of One and Two Component Gas Flow in Fibrous Microstructures in Fuel Cells by Using: Fuel Cells, 52425 Jülich, Germany b Institute of Stochastics, Ulm University, 89069 Ulm, Germany

Schmidt, Volker

195

Proceedings of CELLmicrocosmos neXt 2014 (DOI: 10.2390/biecoll-next2014-2) 7 Towards a 3D Cell Model of Chlamydomonas reinhardtii  

E-Print Network [OSTI]

Proceedings of CELLmicrocosmos neXt 2014 (DOI: 10.2390/biecoll-next2014-2) 7 Towards a 3D Cell Photonics Group, Bielefeld University Universitätsstr. 25, 33615 Bielefeld, Germany 1 Introduction is the production of biofuels. 2 Cell Modeling A visualization approach of the interpretative abstraction level

Moeller, Ralf

196

3D-Model-based Face Replacement in Video Virginia Tzeng*, Yi-Ting Cheng*, Yu Liang*, Chuan-Chang Wang  

E-Print Network [OSTI]

3D-Model-based Face Replacement in Video Virginia Tzeng*, Yi-Ting Cheng*, Yu Liang*, Chuan and important topic. In this paper, we present a system for face replacement in video. Most digital processing software can perform face replacement only when the poses for the source and target faces are similar

Ouhyoung, Ming

197

Optimized 3D simulation method for modeling of out-of-plane radiation in silicon photonic integrated circuits  

E-Print Network [OSTI]

We present an accurate and fast 3D simulation scheme for out-of-plane grating couplers, based on two dimensional rigorous (finite difference time domain) grating simulations, the effective index method (EIM), and the Rayleigh-Sommerfeld diffraction formula. In comparison with full 3D FDTD simulations, the rms difference in electric field is below 5% and the difference in power flux is below 3%. A grating coupler for coupling from a silicon-on-insulator photonic integrated circuit to an optical fiber positioned 0.1 mm above the circuit is designed as example.

Westerveld, W J; Yousefi, M

2015-01-01T23:59:59.000Z

198

3D heart reconstruction.  

E-Print Network [OSTI]

??The purpose of this thesis was to achieve a 3D reconstruction of the four heart chambers using 2D echocardiographic images. A level set algorithm based… (more)

Roxo, Diogo

2011-01-01T23:59:59.000Z

199

F3D  

Energy Science and Technology Software Center (OSTI)

003188MLTPL00 F3D Image Processing and Analysis for Many - and Multi-core Platforms  http://camera.lbl.gov/software 

200

3D Magnetotelluic characterization of the Coso Geothermal Field  

E-Print Network [OSTI]

and Neubauer, F. M. , 2003, 3D inversion of a scalar radio3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMALMT imaging. An initial 3D conductivity model was constructed

Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

3D-3D registration of free formed objects using shape and texture Fernando C. M. Martins  

E-Print Network [OSTI]

3D-3D registration of free formed objects using shape and texture Fernando C. M. Martins , Hirohisa and orientation of the object in 3D space with respect to an arbitrary fixed reference, given the current measurement and the 3D object model under construction. Measurement integration is the updating of the 3D

Moura, José

202

Localization and 3D Reconstruction of Urban Scenes Using GPS  

E-Print Network [OSTI]

D models in Google earth · Manual modeling and texturing (sketch-up) · 3D model covers limited area

Haro, Antonio

203

TOPAZ3D. 3-D Finite Element Heat Transfer  

SciTech Connect (OSTI)

TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

Shapiro, A.B. [Lawrence Livermore National Lab., CA (United States)

1992-02-24T23:59:59.000Z

204

Phase diagram of chiral and diquark condensates at finite temperature and density in the 2-dimensional Gross Neveu model  

E-Print Network [OSTI]

We construct the phase diagram of the chiral and diquark condensates at finite temperature and density in the 1+1 dimensional (2D) two flavor massless Gross Neveu model. The resultant phase diagram shows (I) the chiral condensed phase at low temperature and density, (II) the diquark condensed phase at low temperature and high density, and (III) the chiral and diquark coexisting phase at low temperature and intermediate density. This phase structure is also seen in the 3D Gross Neveu model and the 4D Nambu Jona-Lasinio (NJL) model. Thus the phase diagrams of the chiral and diquark condensates in the NJL-type models do not change qualitatively in 2D, 3D and 4D.

Hiroaki Kohyama

2008-04-30T23:59:59.000Z

205

Characterization of 3D Photovoltaics  

E-Print Network [OSTI]

Characterization of 3D Photovoltaics SEMICONDUCTORS Our goal is to provide industry with test structures and models of next-generation photovoltaics, with an initial focus on cadmium telluride (Cd (nanostructured) photovoltaic devices. Objective Impact and Customers · The U.S. Photovoltaic Industry Roadmap

206

Density waves in the Calogero model - revisited  

SciTech Connect (OSTI)

The Calogero model bears, in the continuum limit, collective excitations in the form of density waves and solitary modulations of the density of particles. This sector of the spectrum of the model was investigated, mostly within the framework of collective-field theory, by several authors, over the past 15 years or so. In this work we shall concentrate on periodic solutions of the collective BPS-equation (also known as 'finite amplitude density waves'), as well as on periodic solutions of the full static variational equations which vanish periodically (also known as 'large amplitude density waves'). While these solutions are not new, we feel that our analysis and presentation add to the existing literature, as we explain in the text. In addition, we show that these solutions also occur in a certain two-family generalization of the Calogero model, at special points in parameter space. A compendium of useful identities associated with Hilbert transforms, including our own proofs of these identities, appears in Appendix A. In Appendix B we also elucidate in the present paper some fine points having to do with manipulating Hilbert-transforms, which appear ubiquitously in the collective field formalism. Finally, in order to make this paper self-contained, we briefly summarize in Appendix C basic facts about the collective field formulation of the Calogero model.

Bardek, V. [Rudjer Boskovic Institute, Bijenicka c.54, HR-10002 Zagreb (Croatia)], E-mail: bardek@irb.hr; Feinberg, J. [Department of Physics, University of Haifa at Oranim, Tivon 36006 (Israel); Department of Physics, Technion-Israel Inst. of Technology, Haifa 32000 (Israel); KITP, University of California, Santa Barbara, CA 93106-4030 (United States)], E-mail: joshua@physics.technion.ac.il; Meljanac, S. [Rudjer Boskovic Institute, Bijenicka c.54, HR-10002 Zagreb (Croatia)], E-mail: meljanac@irb.hr

2010-03-15T23:59:59.000Z

207

Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling  

SciTech Connect (OSTI)

The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of work in section F.

Pannala, S; D'Azevedo, E; Zacharia, T

2002-02-26T23:59:59.000Z

208

3D Plasmon Ruler  

SciTech Connect (OSTI)

In this animation of a 3D plasmon ruler, the plasmonic assembly acts as a transducer to deliver optical information about the structural dynamics of an attached protein. (courtesy of Paul Alivisatos group)

None

2011-01-01T23:59:59.000Z

209

Graphene's 3D Counterpart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

08:59 ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which...

210

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 1, JANUARY 2012 77 Modeling and Compressing 3-D Facial Expressions  

E-Print Network [OSTI]

results on real-world datasets demonstrate that GV is very effective for modeling the high-resolution 3-D Technological University, 639798, Singapore (e-mail: xiaj0002@e.ntu.edu.sg; daot0006@e.ntu.edu.sg; yhe@ntu.edu.sg; xmchen@ntu.edu.sg; chhoi@ntu. edu.sg). Color versions of one or more of the figures in this paper

Hoi, Steven Chu-Hong

211

3, 35433588, 2003 3-D air pollution  

E-Print Network [OSTI]

ACPD 3, 3543­3588, 2003 3-D air pollution modelling L. M. Frohn et al. Title Page Abstract hemispheric nested air pollution model L. M. Frohn, J. H. Christensen, J. Brandt, C. Geels, and K. M. Hansen 2003 Correspondence to: L. M. Frohn (lmf@dmu.dk) 3543 #12;ACPD 3, 3543­3588, 2003 3-D air pollution

Boyer, Edmond

212

SummitView 1.0: a code to automatically generate 3D solid models of surface micro-machining based MEMS designs.  

SciTech Connect (OSTI)

This report describes the SummitView 1.0 computer code developed at Sandia National Laboratories. SummitView is designed to generate a 3D solid model, amenable to visualization and meshing, that represents the end state of a microsystem fabrication process such as the SUMMiT (Sandia Ultra-Planar Multilevel MEMS Technology) V process. Functionally, SummitView performs essentially the same computational task as an earlier code called the 3D Geometry modeler [1]. However, because SummitView is based on 2D instead of 3D data structures and operations, it has significant speed and robustness advantages. As input it requires a definition of both the process itself and the collection of individual 2D masks created by the designer and associated with each of the process steps. The definition of the process is contained in a special process definition file [2] and the 2D masks are contained in MEM format files [3]. The code is written in C++ and consists of a set of classes and routines. The classes represent the geometric data and the SUMMiT V process steps. Classes are provided for the following process steps: Planar Deposition, Planar Etch, Conformal Deposition, Dry Etch, Wet Etch and Release Etch. SummitView is built upon the 2D Boolean library GBL-2D [4], and thus contains all of that library's functionality.

McBride, Cory L. (Elemental Technologies, American Fort, UT); Yarberry, Victor R.; Schmidt, Rodney Cannon; Meyers, Ray J. (Elemental Technologies, American Fort, UT)

2006-11-01T23:59:59.000Z

213

Science Highlight July 2011 Better Batteries through Nanoscale 3D Chemical Imaging  

E-Print Network [OSTI]

as the technology of choice in soon-to-be marketed models, further improvements in their energy density, cost, cycle energy density devices. Hence, monitoring changes in electrodes during battery operation (i.e., insertion the promise of adding a new dimension, 3D nanoscale chemical and architectural visualization

Wechsler, Risa H.

214

Exploration of 3D Printing.  

E-Print Network [OSTI]

??3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most… (more)

Lin, Zeyu

2014-01-01T23:59:59.000Z

215

3d X 3d X SrTiO3Ti 2p 3d  

E-Print Network [OSTI]

XX 3d X 3d X X XX X XX SrTiO3Ti 2p 3d SrTiO3Ti 2p 3d 2p 2p SrTiO3 ts) 2p3/2 (t2g) 2p3/2 (e ) 2p1/2 (eg)2p SrTiO3 3d unit (t2g) (eg) (eg)2p1/2 (t2g)3d (Ti Fe Cu) arb. ( 2g) (Ti, Fe, Cu) y(ansitynten 3d In 3d 468464460456 · Photon Energy (e

Katsumoto, Shingo

216

A workflow for handling heterogeneous 3D models with the TOUGH2 family of codes: Applications to numerical modeling of CO2 geological storage  

E-Print Network [OSTI]

) is straightforward. Three examples are shown for validation: i) leakage of CO2 up through an abandoned well, ii) 3D of pilot sites for CCS. Extrapolation of laboratory results from core to reservoir scale can be done

Paris-Sud XI, Université de

217

Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes  

SciTech Connect (OSTI)

Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications, Kansas Geological Survey Open-file reports, Master's theses, and postings on the project website: http://www.kgs.ku.edu/SEISKARST.

Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

2009-03-31T23:59:59.000Z

218

RELAP5-3D Modeling of Heat Transfer Components (Intermediate Heat Exchanger and Helical-Coil Steam Generator) for NGNP Application  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant project is aimed at the research and development of a helium-cooled high-temperature gas reactor that could generate both electricity and process heat for the production of hydrogen. The heat from the high-temperature primary loop must be transferred via an intermediate heat exchanger to a secondary loop. Using RELAP5-3D, a model was developed for two of the heat exchanger options a printed-circuit heat exchanger and a helical-coil steam generator. The RELAP5-3D models were used to simulate an exponential decrease in pressure over a 20 second period. The results of this loss of coolant analysis indicate that heat is initially transferred from the primary loop to the secondary loop, but after the decrease in pressure in the primary loop the heat is transferred from the secondary loop to the primary loop. A high-temperature gas reactor model should be developed and connected to the heat transfer component to simulate other transients.

N. A. Anderson; P. Sabharwall

2014-01-01T23:59:59.000Z

219

3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING  

SciTech Connect (OSTI)

This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

2002-11-18T23:59:59.000Z

220

3D-Face Model Tracking Based on a Multi-Resolution Active Search Chaumont M. and Puech W.  

E-Print Network [OSTI]

and the illustration, trough a complete implementation, that our face tracking solution is near real cylindrical model. Our model's deformations are proceeded directly during the tracking which gives additional

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reservoir Characterization, Formation Evaluation, and 3D Geologic Modeling of the Upper Jurassic Smackover Microbial Carbonate Reservoir and Associated Reservoir Facies at Little Cedar Creek Field, Northeastern Gulf of Mexico  

E-Print Network [OSTI]

characterization, formation evaluation, and 3D geologic modeling provides a sound framework in the establishment of a field/reservoir-wide development plan for optimal primary and enhanced recovery for these Upper Jurassic microbial carbonate and associated...

Al Haddad, Sharbel

2012-10-19T23:59:59.000Z

222

Graphene's 3D Counterpart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGet AssistanceCatalyticNationalMansfieldGraphene's 3D

223

Graphene's 3D Counterpart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGetGraphene's 3D Counterpart Print ALS researchers have

224

Graphene's 3D Counterpart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGetGraphene's 3D Counterpart Print ALS researchers

225

Graphene's 3D Counterpart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGetGraphene's 3D Counterpart Print ALS

226

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

1 3D Computer Vision and Video Computing 3D Vision3D Vision CSc I6716 Fall 2010 Topic 3 of Part II Stereo Vision Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing Stereo VisionStereo Vision Problem Infer 3D structure of a scene from two or more images taken

Zhu, Zhigang

227

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

1 3D Computer Vision and Video Computing 3D Vision3D Vision CSc I6716 Spring 2011 Topic 3 of Part II Stereo Vision p g Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing Stereo VisionStereo Vision Problem Infer 3D structure of a scene from two or more images

Zhu, Zhigang

228

Deformation Analysis of Sand Specimens using 3D Digital Image Correlation for the Calibration of an Elasto-Plastic Model  

E-Print Network [OSTI]

of the kinematic and volumetric conditions of the specimen at different stages of deformation, combined with the readings of the global axial compression of the specimen. This allowed for the characterization of a Mohr-Coulomb plasticity model with hardening...

Song, Ahran

2012-10-19T23:59:59.000Z

229

Impact of utilizing 3D digital urban models on the design content of urban design plans in US cities  

E-Print Network [OSTI]

Some experts suggest that urban design plans in US cities may lack adequate coverage of the essential design aspects, particularly three-dimensional design aspects of the physical environment. Digital urban models and information technology tools...

Al-Douri, Firas A. Salman

2006-10-30T23:59:59.000Z

230

Mapping thin resistors and hydrocarbons with marine EM methods, Part II --Modeling and analysis in 3D  

E-Print Network [OSTI]

be used in the ma- rine environment to map geological structure e.g., Hoversten et al., 2000; Key et al of the canonical disk model 100 m, 100 m thick, variable radius, 1 km deep in 1- m sediments showed that the inline

Constable, Steve

231

A New Stochastic Modeling of 3-D Mud Drapes Inside Point Bar Sands in Meandering River Deposits  

SciTech Connect (OSTI)

The environment of major sediments of eastern China oilfields is a meandering river where mud drapes inside point bar sand occur and are recognized as important factors for underground fluid flow and distribution of the remaining oil. The present detailed architectural analysis, and the related mud drapes' modeling inside a point bar, is practical work to enhance oil recovery. This paper illustrates a new stochastic modeling of mud drapes inside point bars. The method is a hierarchical strategy and composed of three nested steps. Firstly, the model of meandering channel bodies is established using the Fluvsim method. Each channel centerline obtained from the Fluvsim is preserved for the next simulation. Secondly, the curvature ratios of each meandering river at various positions are calculated to determine the occurrence of each point bar. The abandoned channel is used to characterize the geometry of each defined point bar. Finally, mud drapes inside each point bar are predicted through random sampling of various parameters, such as number, horizontal intervals, dip angle, and extended distance of mud drapes. A dataset, collected from a reservoir in the Shengli oilfield of China, was used to illustrate the mud drapes' building procedure proposed in this paper. The results show that the inner architectural elements of the meandering river are depicted fairly well in the model. More importantly, the high prediction precision from the cross validation of five drilled wells shows the practical value and significance of the proposed method.

Yin, Yanshu, E-mail: yys6587@126.com [Yangtze University, School of Geosciences (China)] [Yangtze University, School of Geosciences (China)

2013-12-15T23:59:59.000Z

232

adaptive 3-d segmentation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Farag, Aly A. 343 946 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 10, OCTOBER 1999 Model-Based Quantitation of 3-D Magnetic Biology and Medicine Websites Summary: of 3-D...

233

Idea Generation 3D printing  

E-Print Network [OSTI]

2012 Idea Generation 3D printing at nanoscale Cruising on electrical roads Pushing back against Centre micro and nanoscale 15 Taking 3D printing to the nanoscale 18 Fighting cancer with a "lab

Papadopouli, Maria

234

Growth of sheets in 3D confinements - a model for the C-S-H meso 2 structure  

E-Print Network [OSTI]

- and dicalcium silicate surfaces on particle aggre-41 gation [8]. Particle based models have also been used by the group of Ulm to successfully interpret nano42 indentation results [9]. Small-angle neutron scattering data of cement paste has been interpreted... -vectors, both curves show a q?4 dependence which corresponds to203 the experimental Porod regime. The simulated data is compared to experimental small-angle neutron204 scattering data for cement from Allen et al. (dashed) [30]. For large and intermediate...

Etzold, Merlin A.; McDonald, Peter J.; Routh, Alexander F.

2014-06-21T23:59:59.000Z

235

Overall Dynamic Properties of 3-D periodic elastic composites  

E-Print Network [OSTI]

A method for the homogenization of 3-D periodic elastic composites is presented. It allows for the evaluation of the averaged overall frequency dependent dynamic material constitutive tensors relating the averaged dynamic ?eld variable tensors of velocity, strain, stress, and linear momentum. The formulation is based on micromechanical modeling of a representative unit cell of a composite proposed by Nemat-Nasser & Hori (1993), Nemat-Nasser et. al. (1982) and Mura (1987) and is the 3-D generalization of the 1-D elastodynamic homogenization scheme presented by Nemat-Nasser & Srivastava (2011). We show that for 3-D periodic composites the overall compliance (stiffness) tensor is hermitian, irrespective of whether the corresponding unit cell is geometrically or materially symmetric.Overall mass density is shown to be a tensor and, like the overall compliance tensor, always hermitian. The average strain and linear momentum tensors are, however, coupled and the coupling tensors are shown to be each others' hermitian transpose. Finally we present a numerical example of a 3-D periodic composite composed of elastic cubes periodically distributed in an elastic matrix. The presented results corroborate the predictions of the theoretical treatment.

Ankit Srivastava; Sia Nemat-Nasser

2011-05-27T23:59:59.000Z

236

METRIC FOR AUTOMATED DETECTION AND IDENTIFICATION OF 3D CAD ELEMENTS IN 3D SCANNED  

E-Print Network [OSTI]

of 3D Computer-Aided Design (CAD) engines and more generally of Building Information Models on one side states is critical for performing efficient building and infrastructure construction, maintenance, and management. Three- dimensional (3D) laser scanners have the potential to be successfully applied

Bosché, Frédéric

237

3D Tissue Scaffolds BIOMATERIALS  

E-Print Network [OSTI]

3D Tissue Scaffolds BIOMATERIALS Our goal is to develop measurement tools and reference materials for assessing the impact of the physical and chemical properties of 3D tissue scaffolds on cellular response. These tools will be used to explore the relationship between cellular response on 2D surfaces to that in 3D

238

Convergence of Ginzburg-Landau functionals in 3-d superconductivity  

E-Print Network [OSTI]

In this paper we consider the asymptotic behavior of the Ginzburg- Landau model for superconductivity in 3-d, in various energy regimes. We rigorously derive, through an analysis via {\\Gamma}-convergence, a reduced model for the vortex density, and we deduce a curvature equation for the vortex lines. In a companion paper, we describe further applications to superconductivity and superfluidity, such as general expressions for the first critical magnetic field H_{c1}, and the critical angular velocity of rotating Bose-Einstein condensates.

Sisto Baldo; Robert L. Jerrard; Giandomenico Orlandi; Mete Soner

2011-02-23T23:59:59.000Z

239

What causes the large extensions of red-supergiant atmospheres? Comparisons of interferometric observations with 1-D hydrostatic, 3-D convection, and 1-D pulsating model atmospheres  

E-Print Network [OSTI]

We present the atmospheric structure and the fundamental parameters of three red supergiants, increasing the sample of RSGs observed by near-infrared spectro-interferometry. Additionally, we test possible mechanisms that may explain the large observed atmospheric extensions of RSGs. We carried out spectro-interferometric observations of 3 RSGs in the near-infrared K-band with the VLTI/AMBER instrument at medium spectral resolution. To comprehend the extended atmospheres, we compared our observational results to predictions by available hydrostatic PHOENIX, available 3-D convection, and new 1-D self-excited pulsation models of RSGs. Our near-infrared flux spectra are well reproduced by the PHOENIX model atmospheres. The continuum visibility values are consistent with a limb-darkened disk as predicted by the PHOENIX models, allowing us to determine the angular diameter and the fundamental parameters of our sources. Nonetheless, in the case of V602 Car and HD 95686, the PHOENIX model visibilities do not predict ...

Arroyo-Torres, B; Chiavassa, A; Scholz, M; Freytag, B; Marcaide, J M; Hauschildt, P H; Wood, P R; Abellan, F J

2015-01-01T23:59:59.000Z

240

neutron density. The neutron density (nn) of the source was modeled by solving the simul-  

E-Print Network [OSTI]

neutron density. The neutron density (nn) of the source was modeled by solving the simul- taneousT is the thermal neutron velocity, l is the decay constant, Ns is the s-process abun- dance, bsÃ? is the maxwellian-averaged neutron capture cross-section, and t0 is the average neutron exposure (21). The branching decay of 186Re

West, Stuart

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fuzzy Control for Enforcing Energy Efficiency in High-Performance 3D Systems  

E-Print Network [OSTI]

to remove the heat from 3D ICs. 3D systems are also prone to large thermal variations; e.g., cores located and DVFS-based thermal management in 3D multicore systems [28], [8], [27]. However, as power densities micro- channels (or pin-fin structures) between the tiers of a 3D stack using a pump to remove the heat

Coskun, Ayse

242

Statistical inference for density dependent Markovian forestry models  

E-Print Network [OSTI]

Statistical inference for density dependent Markovian forestry models Abstract A stochastic forestry model with a density-dependence structure is studied. The population evolves in discrete roughly speaking, becomes large. From the perspective of the analysis of forestry data and predict

Paris-Sud XI, Université de

243

Enhanced 2D/3D Approaches Based on Relevance Index for 3D-Shape Retrieval Mohamed Chaouch, Anne Verroust-Blondet  

E-Print Network [OSTI]

Enhanced 2D/3D Approaches Based on Relevance Index for 3D-Shape Retrieval Mohamed Chaouch, Anne.Chaouch,Anne.Verroust}@inria.fr Shape Modeling International'06, Matsushima, June 14-16, 2006 Abstract We present a new approach for 3D model indexing and retrieval using 2D/3D shape descriptors based on silhou- ettes or depth-buffer images

Paris-Sud XI, Université de

244

3D Hydrodynamical Simulations of Surface Convection in Red Giant Stars. Impact on spectral line formation and abundance analysis  

E-Print Network [OSTI]

We investigate the impact of 3D hydrodynamical model atmospheres of red giant stars at different metallicities on the formation of spectral lines of a number of ions and molecules. We carry out realistic 3D simulations of surface convection in red giant stars with varying stellar parameters. We use the simulations as time-dependent hydrodynamical model stellar atmospheres to compute atomic (Li, O, Na, Mg, Ca, Fe) and molecular (CH, NH, OH) spectral lines under the assumption of local thermodynamic equilibrium (LTE). We compare the line strengths computed in 3D with the results of analogous line formation calculations for 1D, hydrostatic, plane-parallel MARCS model atmospheres in order to estimate the impact of 3D models on the derivation of elemental abundances. The temperature and density inhomogeneities and correlated velocities in 3D models, as well as the differences between the 1D and mean 3D structures significantly affect the predicted line strengths. Under the assumption of LTE, the low atmospheric temperatures of very metal-poor 3D model atmospheres cause the lines from neutral species and molecules to appear stronger than in 1D. Therefore, elemental abundances derived from these lines using 3D models are significantly lower than according to 1D analyses. Differences between 3D and 1D abundances of C, N, and O derived from CH, NH, and OH weak low-excitation lines are found to be in the range -0.5 dex to -1.0 dex for the the red giant stars at [Fe/H]=-3 considered here. At this metallicity, large negative corrections (about -0.8 dex) are also found for weak low-excitation Fe I lines. We caution, however, that departures from LTE might be significant for these and other elements and comparable to the effects due to stellar granulation.

Remo Collet; Martin Asplund; Regner Trampedach

2007-03-26T23:59:59.000Z

245

Superplastic forming using NIKE3D  

SciTech Connect (OSTI)

The superplastic forming process requires careful control of strain rates in order to avoid strain localizations. A load scheduler was developed and implemented into the nonlinear finite element code NIKE3D to provide strain rate control during forming simulation and process schedule output. Often the sheets being formed in SPF are very thin such that less expensive membrane elements can be used as opposed to shell elements. A large strain membrane element was implemented into NIKE3D to assist in SPF process modeling.

Puso, M.

1996-12-04T23:59:59.000Z

246

Conformal Higgs model: predicted dark energy density  

E-Print Network [OSTI]

Postulated universal Weyl conformal scaling symmetry provides an alternative to the $\\Lambda$CDM paradigm for cosmology. Recent applications to galactic rotation velocities, Hubble expansion, and a model of dark galactic halos explain qualitative phenomena and fit observed data without invoking dark matter. Significant revision of theory relevant to galactic collisions and clusters is implied, but not yet tested. Dark energy is found to be a consequence of conformal symmetry for the Higgs scalar field of electroweak physics. The present paper tests this implication. The conformal Higgs model acquires a gravitational effect described by a modified Friedmann cosmic evolution equation, shown to fit cosmological data going back to the cosmic microwave background epoch. The tachyonic mass parameter of the Higgs model becomes dark energy in the Friedmann equation. A dynamical model of this parameter, analogous to the Higgs mechanism for gauge boson mass, is derived and tested here. An approximate calculation yields a result consistent with the empirical magnitude inferred from Hubble expansion.

R. K. Nesbet

2014-11-03T23:59:59.000Z

247

Imaging atoms in 3-D  

SciTech Connect (OSTI)

Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

Ercius, Peter

2013-10-31T23:59:59.000Z

248

Imaging atoms in 3-D  

ScienceCinema (OSTI)

Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

Ercius, Peter

2014-06-27T23:59:59.000Z

249

Accepting the T3D  

SciTech Connect (OSTI)

In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

Rich, D.O.; Pope, S.C.; DeLapp, J.G.

1994-10-01T23:59:59.000Z

250

Density Evolution in the New Modified Chaplygin Gas Model  

E-Print Network [OSTI]

In this paper, we have considered new modified Chaplygin gas (NMCG) model which interpolates between radiation at early stage and $\\Lambda$CDM at late stage. This model is regarded as a unification of dark energy and dark matter (with general form of matter). We have derived the density parameters from the equation of motion for the interaction between dark energy and dark matter. Also we have studied the evolution of the various components of density parameters.

Surajit Chattopadhyay; Ujjal Debnath

2008-05-01T23:59:59.000Z

251

Rubrique : Tectonique Modlisation gomtrique 3D des granites Stphaniens du massif du Pelvoux (Alpes, France).  

E-Print Network [OSTI]

1 Rubrique : Tectonique Modélisation géométrique 3D des granites Stéphaniens du massif du Pelvoux (Alpes, France). 3D geometrical modelling of Stephanian granite from the Pelvoux massif (French Alps, granite, modélisation 3D, Carbonifère. Key words : Alps, Granite, 3D modelling, Carbonifere

Paris-Sud XI, Université de

252

Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models  

DOE Patents [OSTI]

A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.

He, Wei (New Milford, NJ); Anderson, Roger N. (New York, NY)

1998-01-01T23:59:59.000Z

253

Polycrystal model of the mechanical behavior of a Mo-TiC30vol.% metal-ceramic composite using a 3D microstructure map obtained by a dual beam FIB-SEM  

E-Print Network [OSTI]

The mechanical behavior of a Mo-TiC30 vol.% ceramic-metal composite was investigated over a large temperature range (25^{\\circ}C to 700^{\\circ}C). High-energy X-ray tomography was used to reveal the percolation of the hard titanium carbide phase through the composite. Using a polycrystal approach for a two-phase material, finite element simulations were performed on a real 3D aggregate of the material. The 3D microstructure, used as starting configuration for the predictions, was obtained by serial-sectioning in a dual beam Focused Ion Beam (FIB)-Scanning Electron Microscope (SEM) coupled to an Electron Back Scattering Diffraction system (3D EBSD, EBSD tomography). The 3D aggregate consists of a molybdenum matrix and a percolating TiC skeleton. As most BCC metals, the molybdenum matrix phase is characterized by a change in the plasticity mechanisms with temperature. We used a polycrystal model for the BCC material, which was extended to two phases (TiC and Mo). The model parameters of the matrix were determin...

Cédat, Denis; Rey, Colette; Raabe, Dierk; 10.1016/actamat.2011.11.55

2013-01-01T23:59:59.000Z

254

Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models  

DOE Patents [OSTI]

A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

He, W.; Anderson, R.N.

1998-08-25T23:59:59.000Z

255

3-D Cavern Enlargement Analyses  

SciTech Connect (OSTI)

Three-dimensional finite element analyses simulate the mechanical response of enlarging existing caverns at the Strategic Petroleum Reserve (SPR). The caverns are located in Gulf Coast salt domes and are enlarged by leaching during oil drawdowns as fresh water is injected to displace the crude oil from the caverns. The current criteria adopted by the SPR limits cavern usage to 5 drawdowns (leaches). As a base case, 5 leaches were modeled over a 25 year period to roughly double the volume of a 19 cavern field. Thirteen additional leaches where then simulated until caverns approached coalescence. The cavern field approximated the geometries and geologic properties found at the West Hackberry site. This enabled comparisons are data collected over nearly 20 years to analysis predictions. The analyses closely predicted the measured surface subsidence and cavern closure rates as inferred from historic well head pressures. This provided the necessary assurance that the model displacements, strains, and stresses are accurate. However, the cavern field has not yet experienced the large scale drawdowns being simulated. Should they occur in the future, code predictions should be validated with actual field behavior at that time. The simulations were performed using JAS3D, a three dimensional finite element analysis code for nonlinear quasi-static solids. The results examine the impacts of leaching and cavern workovers, where internal cavern pressures are reduced, on surface subsidence, well integrity, and cavern stability. The results suggest that the current limit of 5 oil drawdowns may be extended with some mitigative action required on the wells and later on to surface structure due to subsidence strains. The predicted stress state in the salt shows damage to start occurring after 15 drawdowns with significant failure occurring at the 16th drawdown, well beyond the current limit of 5 drawdowns.

EHGARTNER, BRIAN L.; SOBOLIK, STEVEN R.

2002-03-01T23:59:59.000Z

256

Determining Greenland Ice Sheet sensitivity to regional climate change: one-way coupling of a 3-D thermo-mechanical ice sheet model with a mesoscale climate model  

E-Print Network [OSTI]

in running RCM’s over Greenland to produce high-qualityoutlet glaciers. For Greenland, this detail is specificallyCurrently, no coupled Greenland Ice Sheet model experiment

Schlegel, Nicole-Jeanne

2011-01-01T23:59:59.000Z

257

3D Polygon Rendering Pipeline Michael Kazhdan  

E-Print Network [OSTI]

3D Polygon Rendering Pipeline Michael Kazhdan (600.357 / 600.457) HB Ch. 12 FvDFH Ch. 6, 18.3 #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination Half-Life 2

Kazhdan, Michael

258

3D Polygon Rendering Pipeline Michael Kazhdan  

E-Print Network [OSTI]

3D Polygon Rendering Pipeline Michael Kazhdan (600.357 / 600.457) HB Ch. 12 FvDFH Ch. 6, 18.3 #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination Crysis 3

Kazhdan, Michael

259

Universal iso-density polarizable continuum model for molecular solvents  

E-Print Network [OSTI]

Implicit electron-density solvation models based on joint density-functional theory offer a computationally efficient solution to the problem of calculating thermodynamic quantities of solvated systems from first-principles quantum mechanics. However, despite much recent interest in such models, to date the applicability of such models to non-aqueous solvents has been limited because the determination of the model parameters requires fitting to a large database of experimental solvation energies for each new solvent considered. This work presents an alternate approach which allows development of new solvation models for a large class of protic and aprotic solvents from only simple, single-molecule ab initio calculations and readily available bulk thermodynamic data. We find that this model is accurate to nearly 1.7 kcal/mol even for solvents outside our development set.

Gunceler, Deniz

2014-01-01T23:59:59.000Z

260

Metrology of 3D nanostructures.  

SciTech Connect (OSTI)

We propose a superresolution technique to resolve dense clusters of blinking emitters. The method relies on two basic assumptions: the emitters are statistically independent, and a model of the imaging system is known. We numerically analyze the performance limits of the method as a function of the emitter density and the noise level. Numerical simulations show that five closely packed emitters can be resolved and localized to a precision of 17nm. The experimental resolution of five quantum dots located within a diffraction limited spot confirms the applicability of this approach.

Barsic, Anthony [University of Colorado at Boulder, Boulder, CO] [University of Colorado at Boulder, Boulder, CO; Piestun, Rafael [University of Colorado at Boulder, Boulder, CO] [University of Colorado at Boulder, Boulder, CO; Boye, Robert R.

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

3D Graph Visualization with the Oculus Rift Virtual Graph Reality  

E-Print Network [OSTI]

3D Graph Visualization with the Oculus Rift Virtual Graph Reality Farshad Barahimi, Stephen Wismath regarding three- dimensional (3D) representations of graphs. However, the actual usefulness of such 3D reality environment such as a CAVE, or · printed as a physical model with a 3D printer. Early studies

Wismath, Stephen

262

ILLUSTRATING MATHEMATICS USING 3D PRINTERS OLIVER KNILL AND ELIZABETH SLAVKOVSKY  

E-Print Network [OSTI]

printing technology can help to visualize proofs in mathematics. This talk aims to illustrate how 3D Greece, models allows to make mathematics more accessible. The new 3D printing technology makes unmatched. 3D printers allow us to do that with relative little effort. 2. 3D printing The industry of rapid

Knill, Oliver

263

ILLUSTRATING MATHEMATICS USING 3D PRINTERS OLIVER KNILL AND ELIZABETH SLAVKOVSKY  

E-Print Network [OSTI]

3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology that with relatively little effort. 2. 3D printing The industry of rapid prototyping and 3D printing in particular em

Knill, Oliver

264

Statistical hadronization model description for rapidity densities at RHIC  

E-Print Network [OSTI]

The rapidity densities in Au-Au collisions at center-of-mass energies 200 and 130 A GeV measured at Relativistic Heavy-Ion Collider by STAR and PHENIX collaborations are analyzed within the statistical hadronization model at chemical freeze-out. We find that the model can describe the experimental rapidity densities well. The corresponding chemical freeze-out parameters are determined and they are seen to be in agreement with what we expect from our previous analyzes at lower beam energies at AGS and SPS.

Jaakko Manninen

2007-03-14T23:59:59.000Z

265

A Model for the Density Distribution of Virialized CDM Halos  

E-Print Network [OSTI]

An analytic collapse model for the formation and density distribution of virialized cold dark matter halos is proposed. Hierarchical structure formation is taken into account explicitly. Monte Carlo methods are used to generate samples of mass histories of virialized halos. The mean density distribution found from the collapse model is in good agreement with numerical results in the mass range from $10^{11}M_\\odot$ to $10^{15}M_\\odot$ and in the radial range form $0.05 r_{200}$ to $r_{200}$.

A. Kull

1999-02-20T23:59:59.000Z

266

FRAMES-2.0 Software System: Linking to the Groundwater Modeling System (GMS) RT3D and MT3DMS Models  

SciTech Connect (OSTI)

Linkages to the Groundwater Modeling System have been developed at Pacific Northwest National Laboratory to enable the Nuclear Regulatory Commission (NRC) to more realistically assess the risk to the public of radioactive contaminants at NRC-licensed sites. Common software tools presently in use are limited in that they cannot assess contaminant migration through complex natural environments. The purpose of this initiative is to provide NRC with a licensing safety-analysis tool with sufficient power, flexibility, and utility that it can serve as the primary software platform for analyzing the hazards associated with licensing actions at those “complex” sites at which the traditional tools are inappropriate. As a tool designed to realistically approximate prospective doses to the public, this initiative addresses NRC’s safety-performance goal by confirming that licensing actions do not result in undue risk to the public.

Whelan, Gene; Castleton, Karl J.; Pelton, Mitch A.

2007-08-08T23:59:59.000Z

267

A systematic approach for 2D-image to 3D-range registration in urban environments  

E-Print Network [OSTI]

applicable to models of any type (i.e. 3D point clouds, 3D meshes, CAD, SketchUp, etc.). Our system first

Stamos, Ioannis

268

Experimental observation of 3-D, impulsive reconnection events in a laboratory plasma  

SciTech Connect (OSTI)

Fast, impulsive reconnection is commonly observed in laboratory, space, and astrophysical plasmas. In this work, impulsive, local, 3-D reconnection is identified for the first time in a laboratory current sheet. The two-fluid, impulsive reconnection events observed on the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys Plasmas 4, 1936 (1997)] cannot be explained by 2-D models and are therefore fundamentally three-dimensional. Several signatures of flux ropes are identified with these events; 3-D high current density regions with O-point structure form during a slow buildup period that precedes a fast disruption of the reconnecting current layer. The observed drop in the reconnection current and spike in the reconnection rate during the disruption are due to ejection of these flux ropes from the layer. Underscoring the 3-D nature of the events, strong out-of-plane gradients in both the density and reconnecting magnetic field are found to play a key role in this process. Electromagnetic fluctuations in the lower hybrid frequency range are observed to peak at the disruption time; however, they are not the key physics responsible for the impulsive phenomena observed. Important features of the disruption dynamics cannot be explained by an anomalous resistivity model. An important discrepancy in the layer width and force balance between the collisionless regime of MRX and kinetic simulations is also revisited. The wider layers observed in MRX may be due to the formation of flux ropes with a wide range of sizes; consistent with this hypothesis, flux rope signatures are observed down to the smallest scales resolved by the diagnostics. Finally, a 3-D two-fluid model is proposed to explain how the observed out-of-plane variation may lead to a localized region of enhanced reconnection that spreads in the direction of the out-of-plane electron flow, ejecting flux ropes from the layer in a 3-D manner.

Dorfman, S.; Ji, H.; Yamada, M.; Yoo, J.; Lawrence, E.; Myers, C.; Tharp, T. D. [Center for Magnetic Self-Organization, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Center for Magnetic Self-Organization, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

2014-01-15T23:59:59.000Z

269

3D Imaging Technology Conference & Applications Workshop  

E-Print Network [OSTI]

2nd London 3D Imaging Technology Conference & Applications Workshop 3D scanning and vertical, Greece, bilalis@dpem.tuc.gr Abstract. The new 3D scanning technology had changed the way and opened new from some 3D scanning approaches, which were applied for the first time in the southern part of Europe

Aristomenis, Antoniadis

270

3D N = 4 Gauge Theory Compactication  

E-Print Network [OSTI]

Outline 3D N = 4 Gauge Theory Compactication Twistors 3D N = 4 Supersymmetric Gauge Theories and Hyperk¨ahler Metrics Richard Eager UCSB Friday, October 17th, 2008, 4:00 p.m. Richard Eager UCSB 3D N = 4 Supersymmetric Gauge Theories and Hyperk¨ahler M #12;Outline 3D N = 4 Gauge Theory Compactication Twistors

Bigelow, Stephen

271

Accepted Manuscript Kinetic modelling of high density polyethylene pyrolysis: Part 2. Reduction of existing  

E-Print Network [OSTI]

Accepted Manuscript Kinetic modelling of high density polyethylene pyrolysis: Part 2. Reduction density polyethylene pyrolysis: Part 2. Reduction of existing detailed mechanism, Polymer Degradation Modelling of High Density PolyEthylene Pyrolysis: Part 2. Reduction of existing detailed mechanism. N

Paris-Sud XI, Université de

272

Modeling variable density effects in turbulent flames -- Some basic considerations  

SciTech Connect (OSTI)

The paper discusses the basic physical phenomena involved in pressure-density interactions, and presents models of pressure-velocity, pressure-scalar, baroclinic and dilatation effects for variable density low Mach-number turbulence. Their implementation in the {kappa}-{epsilon} framework is then described and their performance evaluated. The models assume that both scalar transport and turbulence generation arising from pressure-density interactions in flames are caused by the motion of large scale turbulent thermals superposed on the normal turbulence mechanism. The velocity of the thermals is related directly to the mean pressure gradient and local density differences in the flames. It is furthermore assumed that the correction for dilatation effects in the {kappa}-{epsilon} system can be determined from the constraint of conservation of the angular momentum of turbulence per unit mass. Simple corrections of the {kappa}-{epsilon} system are proposed for fast chemistry diffusion and premixed flames subject to variable pressure gradients, which offer substantial improvements in the predictions of the flames. some problems remain, particularly in predictions of turbulence in premixed flames, owing to large scale instabilities of the flames observed in the experiments.

Chomiak, J.; Nisbet, J.R. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Thermo and Fluid Dynamics] [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Thermo and Fluid Dynamics

1995-08-01T23:59:59.000Z

273

Topobo : a 3-D constructive assembly system with kinetic memory  

E-Print Network [OSTI]

We introduce Topobo, a 3-D constructive assembly system em- bedded with kinetic memory, the ability to record and playback physical motion. Unique among modeling systems is Topobo's coincident physical input and output ...

Raffle, Hayes Solos, 1974-

2004-01-01T23:59:59.000Z

274

An alternative derivation of the Minimal massive 3D gravity  

E-Print Network [OSTI]

By using the algebra of exterior forms and the first order formalism with constraints, an alternative derivation of the field equations for the Minimal massive 3D gravity model is presented.

Ahmet Baykal

2014-08-22T23:59:59.000Z

275

3D pose estimation and segmentation using specular cues  

E-Print Network [OSTI]

We present a system for fast model-based segmentation and 3D pose estimation of specular objects using appearance based specular features. We use observed (a) specular reflection and (b) specular flow as cues, which are ...

Raskar, Ramesh

276

3D Structures of Biomolecules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value4 3.P D AT E3D

277

Fast 3D keypoints detector and descriptor for view-based 3D objects recognition  

E-Print Network [OSTI]

Fast 3D keypoints detector and descriptor for view-based 3D objects recognition Ayet Shaiek1 Abstract. In this paper, we propose a new 3D object recognition method that employs a set of 3D keypoints extracted from point cloud representation of 3D views. The method makes use of the 2D organization of range

Paris-Sud XI, Université de

278

Speed-line for 3D animation  

E-Print Network [OSTI]

Committee Members, Carol LaFayette John Keyser Head of Department, Mardelle Shepley December 2005 Major Subject: Visualization Sciences iii ABSTRACT Speed-Line for 3D Animation. (December 2005) Won Chan Song, B.F.A., Ringling School of Art and Design Chair... to thank my committee members, Prof. Carol LaFayette and Dr. John Keyser for their advice and feedback. My gratitude also goes to Hobart Chan for letting me borrow his car model, which saved me a huge amount of time when I was making an animation as a...

Song, Won Chan

2007-04-25T23:59:59.000Z

279

Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape  

SciTech Connect (OSTI)

Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

Filice, Luigino; Gagliardi, Francesco; Umbrello, Domenico [Department of Mechanical Engineering, University of Calabria, P. Bucci, 87036 Rende (Serbia and Montenegro) (Italy); Shivpuri, Rajiv [Department of Industrial, Welding and System Engineering, Ohio State University, 1971 Neil Avenue, 210 Baker Systems, Columbus, OH 43210-1217 (United States)

2007-05-17T23:59:59.000Z

280

3D Spectroscopy in the Virtual Observatory: Current Status  

E-Print Network [OSTI]

Three cornerstones for the 3D data support in the Virtual Observatory are: (1) data model to describe them, (2) data access services providing access to fully-reduced datasets, and (3) client applications which can deal with 3D data. Presently all these components became available in the VO. We demonstrate an application of the IVOA Characterisation data model to description of IFU and Fabry-Perot datasets. Two services providing SSA-like access to 3D-spectral data and Characterisation metadata have been implemented by us: ASPID-SR at SAO RAS for accessing IFU and Fabry-Perot data from the Russian 6-m telescope, and the Giraffe Archive at the VO Paris portal for the VLT FLAMES-Giraffe datasets. We have implemented VO Paris Euro3D Client, handling Euro3D FITS format, that interacts with CDS Aladin and ESA VOSpec using PLASTIC to display spatial and spectral cutouts of 3D datasets. Though the prototype we are presenting is yet rather simple, it demonstrates how 3D spectroscopic data can be fully integrated into the VO infrastructure.

Igor Chilingarian; Francois Bonnarel; Mireille Louys; Ivan Zolotukhin; Frederic Royer; Isabelle Jegouzo; Pierre Le Sidaner; Pierre Fernique; Thomas Boch

2007-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Efficient 3D shape matching and retrieval using a concrete radialized spherical projection representation  

E-Print Network [OSTI]

Efficient 3D shape matching and retrieval using a concrete radialized spherical projection We present a 3D shape retrieval methodology based on the theory of spherical harmonics. Using PCA on the face normals of the model. The 3D model is decomposed into a set of spherical functions

Paris-Sud XI, Université de

282

Topological Reconstruction of Complex 3D Buildings and Automatic Extraction of Levels of Detail  

E-Print Network [OSTI]

and outdoor topology of a detailed 3D building model from its geometry and to extract different levelsTopological Reconstruction of Complex 3D Buildings and Automatic Extraction of Levels of Detail A is needed for most of the applications using 3D building models after the architects design it. While

Boyer, Edmond

283

Comparison of 2D and 3D gamma analyses  

SciTech Connect (OSTI)

Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must be noted that clinical 2D versus 3D datasets may have additional differences—for example, if 2D measurements are made with a different dosimeter than 3D measurements. Factors such as inherent dosimeter differences may be an important additional consideration to the extra dimension of available data that was evaluated in this study.

Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F., E-mail: sfkry@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); Bosca, Ryan [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States)] [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); O’Daniel, Jennifer [Department of Radiation Oncology, Duke University, Durham, North Carolina 27705 (United States)] [Department of Radiation Oncology, Duke University, Durham, North Carolina 27705 (United States)

2014-02-15T23:59:59.000Z

284

NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration  

E-Print Network [OSTI]

NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration and Microstructure Development Modeling Package. Version 3.0 Dale P. Bentz #12;NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration

Bentz, Dale P.

285

Program stat3d.c /* Program: stat3d.c */  

E-Print Network [OSTI]

85 Program stat3d.c /************************************************************************/ /* */ /* Program: stat3d.c */ /* Purpose: To read in a 3-D image and output phase volumes */ /* and report("Phase Volume Surface Volume Surface \

Bentz, Dale P.

286

Part removal of 3D printed parts  

E-Print Network [OSTI]

An experimental study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D printing using a patent ...

Peña Doll, Mateo

2014-01-01T23:59:59.000Z

287

The Makerbot: Desktop 3D printing  

E-Print Network [OSTI]

The Makerbot: Desktop 3D printing Matthew Roughan School of Mathematical Sciences matthew is Lots of maths hidden in something like 3D printing Geometry and Linear algebra ++ Same math used

Roughan, Matthew

288

Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison  

E-Print Network [OSTI]

models (SSA, A–HySSA) produce larger ice sheets than modelsplan-view ice-sheet models they produce different results.the Antarctic ice sheet should at least produce grounding-

2013-01-01T23:59:59.000Z

289

3D BUILDING MODEL AS AN INTERFACE FOR A WEB INFORMATION SYSTEM CASE STUDY OF THE PONTONNIERS HIGH SCHOOL IN STRASBOURG  

E-Print Network [OSTI]

and the completeness of the model are aimed at this stage. To reach this goal, the Sketchup software package dedicated

Paris-Sud XI, Université de

290

ArrangePak-3D User's Manual  

E-Print Network [OSTI]

ArrangePak-3D User's Manual File Planes Options Help Quit Planes: 5 ­120.2732,+28.2707 poweredbyLEDA ArrangePak­3D #12; #12; ArrangePak-3D User's Manual Manipulating Arrangements of Planes in Three- chantability or #12;tness for a particular purpose. version 1.0x License: The ArrangePak-3D source code

Wismath, Stephen

291

3D Sparse Representations Lanusse F. a  

E-Print Network [OSTI]

3D Sparse Representations Lanusse F. a Starck J.-L. a Woiselle A. c Fadili M.J. b a Laboratoire AIM Securite, 95101 Argenteuil CEDEX, France. Abstract In this chapter we review a variety of 3D sparse representations developed in recent years and adapted to different kinds of 3D signals. In particular, we describe

Starck, Jean-Luc

292

3D Imaging Of Wet Granular Matter  

E-Print Network [OSTI]

3D Imaging Of Wet Granular Matter Leonard Goff Advisor: Dr. Wolfgang Losert With Application to Penetrometer Insertion #12;3D Imaging Of Wet Granular Matter Leonard Goff, Advisor: Dr. Wolfgang Losert CoffeeSand Gravel Oops! #12;3D Imaging Of Wet Granular Matter Leonard Goff, Advisor: Dr. Wolfgang Losert

Anlage, Steven

293

3D Postprozessor Diplomarbeit von Samuel Gerber  

E-Print Network [OSTI]

3D Postprozessor Diplomarbeit von Samuel Gerber Fachhochschule Aargau FHA University of Applied¨angsschnitt . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.4 Querschnit . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.5 3D-Bilder . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 3D Ansicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Bericht

Gerber, Samuel

294

Supersymmetric Gauge Theories in 3d  

E-Print Network [OSTI]

Supersymmetric Gauge Theories in 3d Nathan Seiberg IAS #12;The Search for Fundamental Physics Dine. 8 #12;Supersymmetric Gauge Theories in 3d Nathan Seiberg IAS Based on work with Aharony, Intriligator, Razamat, and Willett, to appear #12;3d SUSY Gauge Theories · New lessons about dynamics

California at Santa Cruz, University of

295

The 3D Geometry of Dark Matter Halos  

E-Print Network [OSTI]

The thickness of the neutral hydrogen layer, coupled with the rotation curve, traces the outer dark matter potential. We estimate the amplitude of the flaring in spiral galaxies from a 3D model of the HI gas. Warps in particular are explicitly parametrized in the form of an harmonical density wave. Applying our method to the galaxy NGC 891, the only model that could fit the observations, and in particular the HI at large height above the plane, includes a strong warp with a line of node almost coinciding with the line of sight. This high-Z HI is not observed at the most extreme velocity channels, those corresponding to high rotational velocities. This is accounted for by the model, since orbits in the tilted planes are not circular, but elongated, with their minor axis in the galaxy plane. Their velocity on the major axis (i.e. at their maximal height above the plane) is then 30% less than in the plane. We finally connect the modelled vertical outer gaseous distribution to the dark matter through hydrodynamical and gravitational equations. Under the assumption of isotropy of the gaseous velocity dispersion, we conclude on a very flattened halo geometry for the galaxy NGC 891 ($q \\approx 0.2$), while a vertical velocity dispersion smaller that the radial one would lead to a less flattened Dark Matter Halo ($q \\approx 0.4-0.5$). Both results however suggests that dark matter is dissipative or has been strongly influenced by the gas dynamics.

J. -F. Becquaert; F. Combes

1997-04-10T23:59:59.000Z

296

NEBU_3D: A fast pseudo-3D photoionization code for aspherical planetary nebulae and HII regions  

E-Print Network [OSTI]

We describe a pseudo-3D photoionization code, NEBU_3D and its associated visualization tool, VIS_NEB3D, which are able to easily and rapidly treat a wide variety of nebular geometries, by combining models obtained with a 1D photoionization code. We also present a tool, VELNEB_3D, which can be applied to the results of 1D or 3D photoionization codes to generate emission line profiles, position-velocity maps and 3D maps in any emission line by assuming an arbitrary velocity field. As examples of the capabilities of these new tools, we consider three very different theoretical cases. The first one is a blister HII region, for which we have also constructed a spherical model (the spherical impostor) which has exactly the same Hbeta surface brightness distribution as the blister model and the same ionizing star. The second example shows how complex line profiles can be obtained even with a simple expansion law if the nebula is bipolar and the slit slightly off-center. The third example shows different ways to produce line profiles that could be attributed to a turbulent velocity field while there is no turbulence in the model.

C. Morisset; G. Stasinska; M. Pena

2005-09-22T23:59:59.000Z

297

2D 3D * iklee)@yonsei.ac.kr  

E-Print Network [OSTI]

1 2012 2D 3D * 0 , 1 , 2 0,2 1 ( 0 skrcjstk, 2 iklee)@yonsei.ac.kr 1 rinthel Science, Yonsei University. 1 Dept. of Information Media, The University of Suwon. 2D 3D . 2D - , 3D (Disparity) 3D . . 1. 3D 3D . 3D 3D [1

Lee, In-Kwon

298

RELAP5-3D Code Validation for RBMK Phenomena  

SciTech Connect (OSTI)

The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

Fisher, James Ebberly

1999-09-01T23:59:59.000Z

299

RELAP5-3D code validation for RBMK phenomena  

SciTech Connect (OSTI)

The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

Fisher, J.E.

1999-09-01T23:59:59.000Z

300

Improving the Quality of 3D-QSAR by Using Flexible-Ligand Receptor Models Jianfeng Pei,, Hao Chen,, Zhenming Liu,, Xiaofeng Han,, Qi Wang,, Bin Shen,  

E-Print Network [OSTI]

. In 1994, Jain et al. reported a pseudoreceptor model consisting of receptor shape factors and van der and Center for Theoretical Biology, Peking University, Beijing 100871, China, and Computer Network receptor shapes; and (3) void receptor sites are specially favored in order to obtain open receptor models

Luhua, Lai

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Using a 3D finite element forward modeling code to analyze resistive structures with controlled-source electromagnetics in a marine environment  

E-Print Network [OSTI]

to simulate CSEM experiments. The objective of the present study is to model the changes in electromagnetic response for a resistive disk and a more geometrically complex structure, which are rough approximations of hydrocarbon reservoirs. The parameters...

King, Joshua David

2005-02-17T23:59:59.000Z

302

Testprint gemaakt met een zelfgemaakte 3D printer (Reprap) in het "advanced prototyping for design" project  

E-Print Network [OSTI]

" project Lamp ontworpen en gemaakt tijdens het "lightstyle" project 3D print van een sieraad, gebaseerd op! #12;3D prints gemaakt in gips bij Bouwkunde CT scan van middeleeuws glas om een digitale reproductie, modeling, data massaging, 3D printing. · Objet trouvé Prototyping in verschillende domeinen en hoe domein

303

3D CONTENT-BASED RETRIEVAL IN ARTWORK DATABASES David Gorisse(1)  

E-Print Network [OSTI]

3D CONTENT-BASED RETRIEVAL IN ARTWORK DATABASES David Gorisse(1) , Matthieu Cord(2) , Michel Jordan, France ABSTRACT In this paper, we present first results obtained in the frame of the EROS-3D project, which aims at dealing with a collection of artwork 3D models, i.e. visualize them, classify them

Paris-Sud XI, Université de

304

On 3D retrieval from photos Tarik Filali Ansary, Jean-Phillipe Vandeborre, Mohamed Daoudi  

E-Print Network [OSTI]

On 3D retrieval from photos Tarik Filali Ansary, Jean-Phillipe Vandeborre, Mohamed Daoudi FOX}@enic.fr http://www-rech.enic.fr/fox-miire Abstract In this paper, we propose a method for 3D-model retrieval from one or more photos. This method provides an "opti- mal" selection of 2D views to represent a 3D

Vandeborre, Jean-Philippe

305

Make It Stand: Balancing Shapes for 3D Fabrication Romain Prvost1  

E-Print Network [OSTI]

modeling Keywords: Static equilibrium, structural stability, 3D printing, optimization, interactive shape intended, stable pose. With the advent of 3D printing technologies, it becomes very simple to produce in a computer this is of no consequence: the laws of physics do not apply. However, fabrication through 3D

Lévy, Bruno

306

3D gravity and non-linear cosmology  

E-Print Network [OSTI]

By the inclusion of an additional term, non-linear in the scalar curvature $R$, it is tested if dark energy could rise as a geometrical effect in 3D gravitational formulations. We investigate a cosmological fluid obeying a non-polytropic equation of state (the van der Waals equation) that is used to construct the energy-momentum tensor of the sources, representing the hypothetical inflaton in gravitational interaction with a matter contribution. Following the evolution in time of the scale factor, its acceleration, and the energy densities of constituents it is possible to construct the description of an inflationary 3D universe, followed by a matter dominated era. For later times it is verified that, under certain conditions, the non-linear term in $R$ can generate the old 3D universe in accelerated expansion, where the ordinary matter is represented by the barotropic limit of the van der Waals constituent.

F. P. Devecchi; M. L. Froehlich

2005-10-11T23:59:59.000Z

307

Hollywood 3D: Recognizing Actions in 3D Natural Scenes Simon Hadfield Richard Bowden  

E-Print Network [OSTI]

Hollywood 3D: Recognizing Actions in 3D Natural Scenes Simon Hadfield Richard Bowden Centre-class variations. It is made even more challenging when complex 3D actions are projected down to the image plane, losing a great deal of information. The recent emergence of 3D data, both in broadcast content

Bowden, Richard

308

3D Mapping Solutions GmbH Kinematic 3D Laser Scanning  

E-Print Network [OSTI]

1 3D Mapping Solutions GmbH Kinematic 3D Laser Scanning for Road or Railway Construction Surveys 1. International Conference on Machine Control & Guidance ­ June 24­26, 2008, ETH Zürich 3D Mapping Solutions GmbH info@3d-mapping.de · Kinematic Survey of Road and Railway Networks for What we are doing

309

3D Imaging Symposium, Friday 11:00 3D APPROACHES IN PALEOANTHROPOLOGY USING GEOMETRIC MOR-  

E-Print Network [OSTI]

3D Imaging Symposium, Friday 11:00 3D APPROACHES IN PALEOANTHROPOLOGY USING GEOMETRIC MOR, Eugene, OR; ROSENBERGER, Alfred, Brooklyn College/CUNY, Brooklyn, NY The emergence of 3D GM (geometric- ble to easily collect data in a true 3D sense, such as sets of homologous landmarks or com- plete

Delson, Eric

310

Mass dependence of the vacuum energy density in the massive Schwinger model  

E-Print Network [OSTI]

The vacuum energy density of the massive Schwinger model is shown to be not power expandable in the fermion mass.

Taekoon Lee

2007-03-09T23:59:59.000Z

311

3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming  

SciTech Connect (OSTI)

The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

La Pointe, Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike; Whitney, John; Eubanks, Darrel

2002-09-09T23:59:59.000Z

312

Chinese Journal of Polar Science, Vol. 19, No.2, 218 -229, December 2008 A coupled ice-ocean ecosystem model for I-D and 3-D applica-  

E-Print Network [OSTI]

Chinese Journal of Polar Science, Vol. 19, No.2, 218 - 229, December 2008 A coupled ice and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton

313

3D Multiprocessor with 3D NoC Architecture Based on Tezzaron Technology  

E-Print Network [OSTI]

1 3D Multiprocessor with 3D NoC Architecture Based on Tezzaron Technology M.H Jabbar1,2 , D. Houzet the architecture and implementation of 3D multiprocessor with 3D NoC. The 2 tiers design is based on 16 processors simulation, the purpose of this work is to accurately measure NoC performances in real 3D chip when running

Paris-Sud XI, Université de

314

Accepted Manuscript Kinetic Modelling of High Density PolyEthylene Pyrolysis: Part 1. Comparison of  

E-Print Network [OSTI]

Accepted Manuscript Kinetic Modelling of High Density PolyEthylene Pyrolysis: Part 1. Comparison this article as: Gascoin N, Navarro-Rodriguez A, Gillard P, Mangeot A, Kinetic Modelling of High Density PolyEthylene.polymdegradstab.2012.05.008 #12;M ANUSCRIPT ACCEPTED ACCEPTED MANUSCRIPT 1 Kinetic Modelling of High Density PolyEthylene

Paris-Sud XI, Université de

315

Modeling the steady-state ISV (in situ vitrification) process: A 3-D finite element analysis of coupled thermal-electric fields  

SciTech Connect (OSTI)

Steady-state modeling considerations for simulating the in situ vitrification (ISV) process are documented based upon the finite element numerical approach. Recommendations regarding boundary condition specifications and mesh discretization are presented. The effects of several parameters on the ISV process response are calculated and the results discussed. The parameters investigated include: (1) electrode depth, (2) ambient temperature, (3) supplied current, (4) electrical conductivity, (5) electrode separation, and (6) soil/waste characterization. 13 refs., 29 figs., 1 tab.

Langerman, M.A.

1990-09-01T23:59:59.000Z

316

Rethinking the Wirelength Benefit of 3D Integration Wai-Kei Mak, Member, IEEE, and Chris Chu, Senior Member, IEEE  

E-Print Network [OSTI]

, Senior Member, IEEE Abstract--To sustain the pace of integration density improve- ment, 3D IC technology advantages to go 3D including smaller foot- print, reduced interconnect delay, higher system performance1 Rethinking the Wirelength Benefit of 3D Integration Wai-Kei Mak, Member, IEEE, and Chris Chu

Chu, Chris C.-N.

317

3D Magnetotelluric characterization of the COSO GeothermalField  

SciTech Connect (OSTI)

Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring and analyzing MT data in three dimensions are still few in number. This project will address said issue, by applying 3D MT forward modeling and inversion to a MT data set acquired over the Coso geothermal field. The goal of the project is to provide the capability to image large geothermal reservoirs in a single self-consistent model. Initial analysis of the Coso MT data has been carried out using 2D MT imaging technology to construct an initial 3D resistivity model from a series of 2D resistivity images obtained using the inline electric field measurements (Zxy impedance elements) along different measurement transects. This model will be subsequently refined through a 3D inversion process. The initial 3D resistivity model clearly shows the controlling geological structures possibly influencing well production at Coso. The field data however, also show clear three dimensionality below 1 Hz, demonstrating the limitations of 2D resistivity imaging. The 3D MT predicted data arising from this starting model show good correspondence in dominant components of the impedance tensor (Zxy and Zyx) above 1Hz. Below 1 Hz there is significant differences between the field data and the 2D model data.

Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.

2005-01-01T23:59:59.000Z

318

Ice Formation in Arctic Mixed-Phase Clouds: Insights from a 3-D Cloud-Resolving Model with Size-Resolved Aerosol and Cloud Microphysics  

SciTech Connect (OSTI)

The single-layer mixed-phase clouds observed during the Atmospheric Radiation Measurement (ARM) program’s Mixed-Phase Arctic Cloud Experiment (MPACE) are simulated with a 3-dimensional cloud-resolving model the System for Atmospheric Modeling (SAM) coupled with an explicit bin microphysics scheme and a radar-lidar simulator. Two possible ice enhancement mechanisms – activation of droplet evaporation residues by condensation-followed-by-freezing and droplet freezing by contact freezing inside-out, are scrutinized by extensive comparisons with aircraft and radar and lidar measurements. The locations of ice initiation associated with each mechanism and the role of ice nuclei (IN) in the evolution of mixed-phase clouds are mainly addressed. Simulations with either mechanism agree well with the in-situ and remote sensing measurements on ice microphysical properties but liquid water content is slightly underpredicted. These two mechanisms give very similar cloud microphysical, macrophysical, dynamical, and radiative properties, although the ice nucleation properties (rate, frequency and location) are completely different. Ice nucleation from activation of evaporation nuclei is most efficient near cloud top areas concentrated on the edges of updrafts, while ice initiation from the drop freezing process has no significant location preference (occurs anywhere that droplet evaporation is significant). Both enhanced nucleation mechanisms contribute dramatically to ice formation with ice particle concentration of 10-15 times higher relative to the simulation without either of them. The contribution of ice nuclei (IN) recycling from ice particle evaporation to IN and ice particle concentration is found to be very significant in this case. Cloud can be very sensitive to IN initially and form a nonquilibrium transition condition, but become much less sensitive as cloud evolves to a steady mixed-phase condition. The parameterization of Meyers et al. [1992] with the observed MPACE IN concentration is able to predict the observed mixed-phase clouds reasonably well. This validation may facilitate the application of this parameterization in the cloud and climate models to simulate Arctic clouds.

Fan, Jiwen; Ovtchinnikov, Mikhail; Comstock, Jennifer M.; McFarlane, Sally A.; Khain, Alexander

2009-02-27T23:59:59.000Z

319

3D PRINTING FOR END PRODUCTS.  

E-Print Network [OSTI]

?? Our aim is to answer whether or not 3D printing is capable of achieving mass customization and mass production, since answering this might help… (more)

Morales Cantú, Karina Marisol

2012-01-01T23:59:59.000Z

320

Model hamiltonians in density functional theory Paola Gori-Giorgi, Julien Toulouse, and Andreas Savin  

E-Print Network [OSTI]

Model hamiltonians in density functional theory Paola Gori-Giorgi, Julien Toulouse, and Andreas, density functional theory. 1 hal-00981803,version1-22Apr2014 Author manuscript, published in "High (density functional theory [3], and density matrix functional theory [4], that is somehow in between

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced 3D Sensing and Visualization System for Unattended Monitoring  

SciTech Connect (OSTI)

The purpose of this project was to create a reliable, 3D sensing and visualization system for unattended monitoring. The system provides benefits for several of Sandia's initiatives including nonproliferation, treaty verification, national security and critical infrastructure surety. The robust qualities of the system make it suitable for both interior and exterior monitoring applications. The 3D sensing system combines two existing sensor technologies in a new way to continuously maintain accurate 3D models of both static and dynamic components of monitored areas (e.g., portions of buildings, roads, and secured perimeters in addition to real-time estimates of the shape, location, and motion of humans and moving objects). A key strength of this system is the ability to monitor simultaneous activities on a continuous basis, such as several humans working independently within a controlled workspace, while also detecting unauthorized entry into the workspace. Data from the sensing system is used to identi~ activities or conditions that can signi~ potential surety (safety, security, and reliability) threats. The system could alert a security operator of potential threats or could be used to cue other detection, inspection or warning systems. An interactive, Web-based, 3D visualization capability was also developed using the Virtual Reality Modeling Language (VRML). The intex%ace allows remote, interactive inspection of a monitored area (via the Internet or Satellite Links) using a 3D computer model of the area that is rendered from actual sensor data.

Carlson, J.J.; Little, C.Q.; Nelson, C.L.

1999-01-01T23:59:59.000Z

322

Higher-order compositional modeling of three-phase flow in 3D fractured porous media based on cross-flow equilibrium  

SciTech Connect (OSTI)

Numerical simulation of multiphase compositional flow in fractured porous media, when all the species can transfer between the phases, is a real challenge. Despite the broad applications in hydrocarbon reservoir engineering and hydrology, a compositional numerical simulator for three-phase flow in fractured media has not appeared in the literature, to the best of our knowledge. In this work, we present a three-phase fully compositional simulator for fractured media, based on higher-order finite element methods. To achieve computational efficiency, we invoke the cross-flow equilibrium (CFE) concept between discrete fractures and a small neighborhood in the matrix blocks. We adopt the mixed hybrid finite element (MHFE) method to approximate convective Darcy fluxes and the pressure equation. This approach is the most natural choice for flow in fractured media. The mass balance equations are discretized by the discontinuous Galerkin (DG) method, which is perhaps the most efficient approach to capture physical discontinuities in phase properties at the matrix-fracture interfaces and at phase boundaries. In this work, we account for gravity and Fickian diffusion. The modeling of capillary effects is discussed in a separate paper. We present the mathematical framework, using the implicit-pressure-explicit-composition (IMPEC) scheme, which facilitates rigorous thermodynamic stability analyses and the computation of phase behavior effects to account for transfer of species between the phases. A deceptively simple CFL condition is implemented to improve numerical stability and accuracy. We provide six numerical examples at both small and larger scales and in two and three dimensions, to demonstrate powerful features of the formulation.

Moortgat, Joachim, E-mail: jmoortgat@rerinst.org; Firoozabadi, Abbas, E-mail: abbas.firoozabadi@yale.edu

2013-10-01T23:59:59.000Z

323

Fabrication of 3D Silicon Sensors  

SciTech Connect (OSTI)

Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

2012-06-06T23:59:59.000Z

324

Modeling of free electronic state density in hydrogenic plasmas based on nearest neighbor approximation  

SciTech Connect (OSTI)

Most conventional atomic models in a plasma do not treat the effect of the plasma on the free-electron state density. Using a nearest neighbor approximation, the state densities in hydrogenic plasmas for both bound and free electrons were evaluated and the effect of the plasma on the atomic model (especially for the state density of the free electron) was studied. The model evaluates the electron-state densities using the potential distribution formed by the superposition of the Coulomb potentials of two ions. The potential from one ion perturbs the electronic state density on the other. Using this new model, one can evaluate the free-state density without making any ad-hoc assumptions. The resulting contours of the average ionization degree, given as a function of the plasma temperature and density, are shifted slightly to lower temperatures because of the effect of the increasing free-state density.

Nishikawa, Takeshi, E-mail: nishikawa.takeshi@okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan)

2014-07-15T23:59:59.000Z

325

How 3D Printers Work | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How 3D Printers Work How 3D Printers Work June 19, 2014 - 9:28am Addthis How does 3D printing work? Watch a 3D printing timelapse video and read on below to learn everything you...

326

3D view with pst-vue3d Manuel Luque (mluque5130@aol.com)  

E-Print Network [OSTI]

3D view with pst-vue3d Manuel Luque (mluque5130@aol.com) in cooperation with Herbert Vo� (voss@perce.de) 13th August 2004 1 Presentation The 3D representation of an object or a landscape is one of the most (cube, sphere etc. . . ) and many other things. I want to signal that · Regarding 3D representation, one

Mintmire, John W.

327

3D2D3D photonic crystal heterostructures fabricated by direct laser writing  

E-Print Network [OSTI]

3D­2D­3D photonic crystal heterostructures fabricated by direct laser writing M. Deubel and M fabricate photoresist templates for 3D­2D­3D photonic crystal heterostruc- tures for what we believe for the microfabrication and testing of broadband, 3D air­waveguide microcir- cuitry in photonic bandgap materials. © 2006

John, Sajeev

328

3D Magnetotelluic characterization of the Coso GeothermalField  

SciTech Connect (OSTI)

Electrical resistivity may contribute to progress inunderstanding geothermal systems by imaging the geometry, bounds andcontrolling structures in existing production, and thereby perhapssuggesting new areas for field expansion. To these ends, a dense grid ofmagnetotelluric (MT) stations plus a single line of contiguous bipolearray profiling has been acquired over the east flank of the Cosogeothermal system. Acquiring good quality MT data in producing geothermalsystems is a challenge due to production related electromagnetic (EM)noise and, in the case of Coso, due to proximity of a regional DCintertie power transmission line. To achieve good results, a remotereference completely outside the influence of the dominant source of EMnoise must be established. Experimental results so far indicate thatemplacing a reference site in Amargosa Valley, NV, 65 miles from the DCintertie, isstill insufficient for noise cancellation much of the time.Even though the DC line EM fields are planar at this distance, theyremain coherent with the nonplanar fields in the Coso area hence remotereferencing produces incorrect responses. We have successfully unwrappedand applied MT times series from the permanent observatory at Parkfield,CA, and these appear adequate to suppress the interference of thecultural EM noise. The efficacy of this observatory is confirmed bycomparison to stations taken using an ultra-distant reference site eastof Socorro, NM. Operation of the latter reference was successful by usingfast ftp internet communication between Coso Junction and the New MexicoInstitute of Mining and Technology, using the University of Utah site asintermediary, and allowed referencing within a few hours of datadownloading at Coso. A grid of 102 MT stations was acquired over the Cosogeothermal area in 2003 and an additional 23 stations were acquired toaugment coverage in the southern flank of the first survey area in 2005.These data have been inverted to a fully three-dimensional conductivitymodel. Initial analysis of the Coso MT data was carried out using 2D MTimaging. An initial 3D conductivity model was constructed from a seriesof 2D resistivity images obtained using the inline electric fieldmeasurements (Zyx impedance elements) along several measurementtransects. This model was then refined through a 3D inversion process.This model shows the controlling geological structures possiblyinfluencing well production at Coso and correlations with mapped surfacefeatures such as faults and regional geoelectric strike. The 3D modelalso illustrates the refinement in positioning of conductivity contactswhen compared to isolated 2D inversion transects. The conductivity modelhas also been correlated with microearthquake locations, well fluidproduction intervals and most importantly with an acoustic and shearvelocity model derived by Wu and Lees (1999). This later correlationshows the near-vertical high conductivity structure on the eastern flankof the producing field is also a zone of increased acoustic velocity andincreased Vp/Vs ratio bounded by mapped fault traces. South of theDevil's Kitchen is an area of high geothermal well density, where highlyconductive near surface material is interpreted as a clay cap alterationzone manifested from the subsurface geothermal fluids and relatedgeochemistry. Beneath the clay cap, however, the conductivity isnondescript, whereas the Vp/Vs ratio is enhanced over the productionintervals. It is recommended that more MT data sites be acquired to thesouthwest of the Devil's Kitchen area to better refine the conductivitymodel in that area.

Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

2007-04-23T23:59:59.000Z

329

Inverse Modeling for Coastal Seawater Intrusion  

E-Print Network [OSTI]

, USA) #12;INTRODUCTION · Inverse modeling ­ standard tool for groundwater modeling ­ uncommonD3D.1 ­ 2D and 3D finite-element code for simulating variable-density groundwater problems · UCODE 3 and given time (i.e. at one observation location) on one of the parameters in the groundwater model

Politècnica de Catalunya, Universitat

330

3D Hardware Canaries Sebastien Briais4  

E-Print Network [OSTI]

surround the whole target and protect its content from physical attacks. 3D ICs are rel- atively hard reporting pre- liminary implementation results on silicon), we introduce a "hardware canary". The ca- nary

331

3D Printing: Convergences, Frictions, Fluidity.  

E-Print Network [OSTI]

??The emergence of desktop ‘3D printing’ is not only a technological development, but equally a social and economic phenomenon that actively (and often contentiously) co-produces… (more)

Ree, Robert

2011-01-01T23:59:59.000Z

332

3D TORUS V1.0  

Energy Science and Technology Software Center (OSTI)

002440MLTPL00 3D Torus Routing Engine Module for OFA OpenSM v. 1.0  http://www.openfabrics.org/git?p=sashak/management.git;a=sum 

333

Three dimensional (3D) optical information processing  

E-Print Network [OSTI]

Light exhibits dramatically different properties when it propagates in or interacts with 3D structured media. Comparing to 2D optical elements where the light interacts with a sequence of surfaces separated by free space, ...

Tian, Kehan

2006-01-01T23:59:59.000Z

334

3D Spectroscopy and the Virtual Observatory  

E-Print Network [OSTI]

Integral field, or 3D, spectroscopy is the technique of obtaining spectral information over a two-dimensional, hopefully contiguous, field of view. While there is some form of astronomical 3D spectroscopy at all wavelengths, there has been a rapid increase in interest in optical and near-infrared 3D spectroscopy. This has resulted in the deployment of a large variety of integral-field spectrographs on most of the large optical/infrared telescopes. The amount of IFU data available in observatory archives is large and growing rapidly. The complications of treating IFU data as both imaging and spectroscopy make it a special challenge for the virtual observatory. This article describes the various techniques of optical and near-infrared spectroscopy and some of the general needs and issues related to the handling of 3D data by the virtual observatory.

Bryan W. Miller

2007-08-15T23:59:59.000Z

335

Radial pulsations of neutron stars: computing alternative polytropic models regarding density and adiabatic index  

E-Print Network [OSTI]

We revisit the problem of radial pulsations of neutron stars by computing four general-relativistic polytropic models, in which "density" and "adiabatic index" are involved with their discrete meanings: (i) "rest-mass density" or (ii) "mass-energy density" regarding the density, and (i) "constant" or (ii) "variable" regarding the adiabatic index. Considering the resulting four discrete combinations, we construct corresponding models and compute for each model the frequencies of the lowest three radial modes. Comparisons with previous results are made. The deviations of respective frequencies of the resolved models seem to exhibit a systematic behavior, an issue discussed here in detail.

Vassilis Geroyannis; Georgios Kleftogiannis

2014-06-14T23:59:59.000Z

336

Supplementary data for "Relativistic density functional theory modeling of plutonium and  

E-Print Network [OSTI]

Supplementary data for "Relativistic density functional theory modeling of plutonium and americium equilibrium geometries of plutonium and americium oxide molecules (standard .xyz files separated by empty

Titov, Anatoly

337

Multicomponent 3-D characterization of a coalbed methane reservoir  

SciTech Connect (OSTI)

Methane is produced from fractured coalbed reservoirs at Cedar Hill Field in the San Juan Basin. Fracturing and local stress are critical to production because of the absence of matrix permeability in the coals. Knowledge of the direction of open fractures, the degree of fracturing, reservoir pressure, and compartmentalization is required to understand the flow of fluids through the reservoir. A multicomponent 3-D seismic survey was acquired to aid in coalbed methane reservoir characterization. Coalbed reservoir heterogeneities, including isolated pressure cells, zones of increased fracture density, and variable fracture directions, have been interpreted through the analysis of the multicomponent data and integration with petrophysical and reservoir engineering studies. Strike-slip faults, which compartmentalize the reservoir, have been identified by structural interpretation of the 3-D P-wave seismic data. These faults form boundaries for pressure cells that have been identified by P-wave reflection amplitude anomalies.

Shuck, E.L. [Advance Geophysical Corp., Englewood, CO (United States)] [Advance Geophysical Corp., Englewood, CO (United States); Davis, T.L.; Benson, R.D. [Colorado School of Mines, Golden, CO (United States). Geophysics Dept.] [Colorado School of Mines, Golden, CO (United States). Geophysics Dept.

1996-03-01T23:59:59.000Z

338

Generating 3D volumetric meshes of internal and external fruit Mikolaj Cieslak1,2  

E-Print Network [OSTI]

Generating 3D volumetric meshes of internal and external fruit structure Mikolaj Cieslak1, Université Montpellier 2, 34090 Montpellier, France Keywords: Solanum lycopersicum, 3D fruit modelling, fruit quality, functional-structural plant models Abstract Two essential functions in determining fruit quality

Paris-Sud XI, Université de

339

Simulation of chemical vapor infiltration and deposition based on 3D images: a local scale approach  

E-Print Network [OSTI]

infiltration of ceramic matrix composites is presented. This computational model requires a 3D representation/reaction problems; Random walks; 3D image-based modeling 1. Introduction Ceramic Matrix Composites and Carbon with a matrix. One of the most efficient ones is Chemical Vapor Infiltration (CVI), by which gaseous precursors

Boyer, Edmond

340

Wavelet Based Density Estimators for Modeling Multidimensional Data Sets  

E-Print Network [OSTI]

the distribution of this random variable. We exhibit an estimator for the wavelet coeÃ?cients of this density and ionospheric data. After three levels of o#11;-line pre-processing, observations of temperature, water vapor agreement nr. F30602-99-1-0524, and unrestricted cash/equipment gifts from NCR, IBM, Intel and SUN. #12; 1

Shahabi, Cyrus

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

T-HEMP3D user manual  

SciTech Connect (OSTI)

The T-HEMP3D (Transportable HEMP3D) computer program is a derivative of the STEALTH three-dimensional thermodynamics code developed by Science Applications, Inc., under the direction of Ron Hofmann. STEALTH, in turn, is based entirely on the original HEMP3D code written at Lawrence Livermore National Laboratory. The primary advantage STEALTH has over its predecessors is that it was designed using modern structured design techniques, with rigorous programming standards enforced. This yields two benefits. First, the code is easily changeable; this is a necessity for a physics code used for research. The second benefit is that the code is easily transportable between different types of computers. The STEALTH program was transferred to LLNL under a cooperative development agreement. Changes were made primarily in three areas: material specification, coordinate generation, and the addition of sliding surface boundary conditions. The code was renamed T-HEMP3D to avoid confusion with other versions of STEALTH. This document summarizes the input to T-HEMP3D, as used at LLNL. It does not describe the physics simulated by the program, nor the numerical techniques employed. Furthermore, it does not describe the separate job steps of coordinate generation and post-processing, including graphical display of results. (WHK)

Turner, D.

1983-08-01T23:59:59.000Z

342

A restoration model of distorted electron density in wave-cutoff probe measurement  

SciTech Connect (OSTI)

This study investigates the problem of electron density distortion and how the density can be restored in a wave-cutoff probe. Despite recent plasma diagnostics research using a wave-cutoff probe, the problem of electron density distortion caused by plasma conditions has not been resolved. Experimental results indicate that electron density measured using the wave-cutoff method is highly susceptible to variations in the probe tip gap. This electron density distortion is caused by the bulk plasma disturbance between probe tips, and it must be removed for calculating the absolute electron density. To do this, a detailed analytic model was developed using the power balance equation near probe tips. This model demonstrates the characteristics of plasma distortion in wave-cutoff probe measurement and successfully restored the absolute value of electron density with varying probe tip gaps.

Jun, Hyun-Su, E-mail: mtsconst@kaist.ac.kr; Lee, Yun-Seong [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)] [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

2014-02-15T23:59:59.000Z

343

3D Self-Portraits Etienne Vouga2  

E-Print Network [OSTI]

scanning pose change output reconstruction textured reconstruction large variety of examples3D print Figure for applications such as online avatars or 3D printing (the miniature shown here was printed using a ZPrinter 650 and accurate cap- ture system for 3D self-portraits using a single 3D sensor. Figure 2: 3D printed miniatures

O'Brien, James F.

344

3D Keypoints Detection for Objects Recognition Ayet Shaiek1  

E-Print Network [OSTI]

3D Keypoints Detection for Objects Recognition Ayet Shaiek1 , and Fabien Moutarde1 1 Robotics a new 3D object recognition method that employs a set of 3D local features extracted from point cloud representation of 3D views. The method makes use of the 2D organization of range data produced by 3D sensor

Paris-Sud XI, Université de

345

Simnple, portable, 3-D projection routine  

SciTech Connect (OSTI)

A 3-D projection routine is presented for use in computer graphics applications. The routine is simple enough to be considered portable, and easily modified for special problems. There is often the need to draw three-dimensional objects on a two-dimensional plotting surface. For the object to appear realistic, perspective effects must be included that allow near objects to appear larger than distant objects. Several 3-D projection routines are commercially available, but they are proprietary, not portable, and not easily changed by the user. Most are restricted to surfaces that are functions of two variables. This makes them unsuitable for viewing physical objects such as accelerator prototypes or propagating beams. This report develops a very simple algorithm for 3-D projections; the core routine is only 39 FORTRAN lines long. It can be easily modified for special problems. Software dependent calls are confined to simple drivers that can be exchanged when different plotting software packages are used.

Wagner, J.S.

1987-04-01T23:59:59.000Z

346

Spiso-3D operation manual (US Patent 8,077,945 B2) Section 1. Introduction : Spiso-3D is an automated software calculating optical 3D  

E-Print Network [OSTI]

1 Spiso-3D operation manual (US Patent 8,077,945 B2) Section 1. Introduction : Spiso-3D is an automated software calculating optical 3D images of neurons mathematically to analyze dendrites and spines (= post synapses). Spiso-3D software was developed by Kawato's laboratory (University of Tokyo

Kawato, Suguru

347

S-duality in 3D gravity with torsion  

SciTech Connect (OSTI)

The deformation of the connection in three spacetime dimensions by the kinematically equivalent coframe is shown to induce a duality between the (Lorentz-) rotational and translational field momenta, for which the coupling to the deformation parameter is inverted. This new kind of strong/weak duality, pertinent to 3D, is instrumental for studying exact solutions of the 3D Poincare gauge field equations and the particle content of propagating modes on a background of constant curvature. For a topological Chern-Simons model of gravity, the propagating modes 'living' on an Anti-de Sitter (AdS) background correspond to real massive particles. Yang-Mills type generalizations and new cubic Lagrangians are found and completely classified in 3D. AdS or black hole type solutions with constant axial torsion emerge, also for these higher-order Lagrangians with new 'exotic' torsion-curvature couplings. Their pattern complies with our S-duality, with new repercussions for the field redefinition of the metric in 3D quantum gravity and the cosmological constant problem.

Mielke, Eckehard W. [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico D.F. (Mexico)]. E-mail: ekke@xanum.uam.mx; Maggiolo, Ali A. Rincon [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico D.F. (Mexico)

2007-02-15T23:59:59.000Z

348

Simulation of High Density Pedestrian Flow: Microscopic Model  

E-Print Network [OSTI]

In recent years modelling crowd and evacuation dynamics has become very important, with increasing huge numbers of people gathering around the world for many reasons and events. The fact that our global population grows dramatically every year and the current public transport systems are able to transport large amounts of people, heightens the risk of crowd panic or crush. Pedestrian models are based on macroscopic or microscopic behaviour. In this paper, we are interested in developing models that can be used for evacuation control strategies. This model will be based on microscopic pedestrian simulation models, and its evolution and design requires a lot of information and data. The people stream will be simulated, based on mathematical models derived from empirical data about pedestrian flows. This model is developed from image data bases, so called empirical data, taken from a video camera or data obtained using human detectors. We consider the individuals as autonomous particles interacting through socia...

Dridi, Mohamed H

2015-01-01T23:59:59.000Z

349

A 3D Computer Simulation Test of the Leibowitz Hypothesis  

E-Print Network [OSTI]

Barton & Cohn A 3D Computer Simulation Test of the Leibowitzan experiment using a 3D visual simulator in which differentthan smaller ones. The use of 3D visual simulators to assess

Barton, Joseph E.; Cohn, Theodore E

2007-01-01T23:59:59.000Z

350

Parallel 3-D S{sub N} performance for DANTSYS/MPI on the Cray T3D  

SciTech Connect (OSTI)

A data parallel version of the 3-D transport solver in DANTSYS has been in use on the SIMD CM-200`s at LANL since 1994. This version typically obtains grind times of 150--200 nanoseconds on a 2,048 PE CM-200. The authors have now implemented a new message passing parallel version of DANTSYS, referred to as DANTSYS/MPI, on the 512 PE Cray T3D at Los Alamos. By taking advantage of the SPMD architecture of the Cray T3D, as well as its low latency communications network, they have managed to achieve grind times of less than 10 nanoseconds on real problems. DANTSYS/MPI is fully accelerated using DSA on both the inner and outer iterations. This paper describes the implementation of DANTSYS/MPI on the Cray T3D, and presents two simple performance models for the transport sweep which accurately predict the grind time as a function of the number of PE`s and problem size, or scalability.

Baker, R.S.; Alcouffe, R.E. [Los Alamos National Lab., NM (United States). Transport Methods Group

1997-05-01T23:59:59.000Z

351

3D NUMERICAL STUDY OF MHD FLOW IN A RECTANGULAR DUCT WITH A FLOW CHANNEL INSERT Damien Sutevski, Sergey Smolentsev, Neil Morley, Mohamed Abdou  

E-Print Network [OSTI]

3D NUMERICAL STUDY OF MHD FLOW IN A RECTANGULAR DUCT WITH A FLOW CHANNEL INSERT Damien Sutevski flow channel insert (FCI). We report our first 3D modeling results for an approximately ideally non with the experimental results in the MHD pressure drop, indicating 3D effects may be significant. The new 3D results

Abdou, Mohamed

352

Sculplexity: Sculptures of Complexity using 3D printing  

E-Print Network [OSTI]

We show how to convert models of complex systems such as 2D cellular automata into a 3D printed object. Our method takes into account the limitations inherent to 3D printing processes and materials. Our approach automates the greater part of this task, bypassing the use of CAD software and the need for manual design. As a proof of concept, a physical object representing a modified forest fire model was successfully printed. Automated conversion methods similar to the ones developed here can be used to create objects for research, for demonstration and teaching, for outreach, or simply for aesthetic pleasure. As our outputs can be touched, they may be particularly useful for those with visual disabilities.

Reiss, D S; Evans, T S

2014-01-01T23:59:59.000Z

353

Fast Freehand Acquisition of 3D Objects and their Visualization  

E-Print Network [OSTI]

-world objects in a large number of fields of applications, such as the entertainment industry, design], and the application of structured light [3]. Image-based methods are, e.g., stereo vi- sion or multi-camera techniques://www.inf.fh-dortmund.de/personen/professoren/peters/ Abstract. In many applications 3d models of real-world objects are re- quired. We introduce a tool which

Peters, Gabriele

354

890 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 47, NO. 3, JUNE 2000 A Modeling Method to Calibrate the Interaction Depth in 3-D Position Sensitive CdZnTe  

E-Print Network [OSTI]

(CIAratio). In expcriments with our 3-D CdZnTe dctectors, thc photopeak area as a fuuction of the CIA ratio deviates from the expected exponential attcnuation with depth. This indicatcs that the CIA ratio is not proportional to thc true interaction depth. This paper proposes a method to calibrate the measured CIA ratio

He, Zhong

355

Projecting 2D Gene Expression Data Into 3D and 4D Space  

E-Print Network [OSTI]

imaging of wholemount stained sam- ples. The two-dimensional images thus generated are, in fact games typically generate virtual 3D objects by texture mapping an image onto a 3D polygonal frame mapping images of gene expression data onto b-spline based embryo models. This approach, known as UV

Vize, Peter D.

356

Surface Shape Description of 3D Data from Under Vehicle Inspection Robot  

E-Print Network [OSTI]

Surface Shape Description of 3D Data from Under Vehicle Inspection Robot Sreenivas R. Sukumar1 capabilities to a multi-modal under vehicle inspection robot. In this paper, we outline the various design challenges towards the automation of the 3D scene modeling task. We employ laser-based range imaging

Abidi, Mongi A.

357

PHYSICAL DESIGN TRADEOFFS IN POWER DISTRIBUTION NETWORKS FOR 3-D ICs  

E-Print Network [OSTI]

PHYSICAL DESIGN TRADEOFFS IN POWER DISTRIBUTION NETWORKS FOR 3-D ICs Ioannis Tsioutsios, Vasilis F the tradeoffs among the different interconnects resources in the design process of 3- D power distribution.tsioutsios, vasileios.pavlidis, giovanni.demicheli}@epfl.ch Abstract--A physical model for the design of the power

De Micheli, Giovanni

358

State-of-the-Art 3-D Assessment of Elements Degrading TBR of  

E-Print Network [OSTI]

accurate modeling of complex devices by integrating CAD geometry directly with 3-D MCNP code. · To point presentation of blanket geometry with high fidelity in 3-D TBR results. #12;6 Stepwise Approach ­ Build CAD of Fusion Energy August 27- 31, 2012 Nashville, TN, USA #12;2 ARIES Designs (1988 ­ 2012) #12;3 ARIES

359

Measurements from 3D-CT renderings are used in research and clinical management  

E-Print Network [OSTI]

Measurements from 3D-CT renderings are used in research and clinical management: · Characterization for the prism]) RENDERING TECHNIQUES USED in ANALYZE 10.0: - Volume Render - (2) Volumes of Interest 1) VOI-Auto & 2) VOI-Manual TOTAL 3D-CT MODELS: 3 mandibles X 18 CT series X 3 rendering techniques = 162 mandible

Vorperian, Houri K.

360

Estimation of Methane and Carbon Dioxide Surface Fluxes using a 3-D Global Atmospheric  

E-Print Network [OSTI]

Estimation of Methane and Carbon Dioxide Surface Fluxes using a 3-D Global Atmospheric Chemical@mit.edu Website: http://mit.edu/cgcs/ Printed on recycled paper #12;Estimation of Methane and Carbon Dioxide of Methane and Carbon Dioxide Surface Fluxes using a 3-D Global Atmospheric Chemical Transport Model by Yu

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Colorado Basin 3D Structure and Evolution, Argentine passive J. Autin (1)  

E-Print Network [OSTI]

1 Colorado Basin 3D Structure and Evolution, Argentine passive margin J. Autin (1) , M. Scheck, department of Geophysics, Christian-Albrechts-University, Kiel, Germany. Highlights The Colorado Basin. ABSTRACT This 3D structural model of the Colorado Basin provides new insights into the crustal geometry

Boyer, Edmond

362

A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation  

E-Print Network [OSTI]

A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation Y. Coudi`ere Universit-10Oct2008 #12;A 2D/3D DDFV scheme for ECG simulation 1 Introduction Computer models of the electrical-known electrocardiogram (ECG). It gives a non-invasive representation of the cardiac electrical function. Un- derstanding

Paris-Sud XI, Université de

363

3D Numerical Experimentation on the Core Helium Flash of low-mass Red Giants  

E-Print Network [OSTI]

We model the core helium flash in a low-mass red giant using Djehuty, a fully three-dimensional (3D) code. The 3D structures were generated from converged models obtained during the 1D evolutionary calculation of a 1$\\Msun$ star. Independently of which starting point we adopted, we found that after some transient relaxation the 3D model settled down with a briskly convecting He-burning shell that was not very different from what the 1D model predicted.

David S. P. Dearborn; John C. Lattanzio; Peter P. Eggleton

2005-12-02T23:59:59.000Z

364

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced...

365

Printing 3D Catalytic Devices | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Printing 3D Catalytic Devices Ames Laboratory scientist Igor Slowing discusses using 3D printers to create new materials, including catalysts...

366

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization DOE...

367

3d transition metal impurities in aluminum: A first-principles study M. Mantina, S. L. Shang, Y. Wang, L. Q. Chen, and Z. K. Liu  

E-Print Network [OSTI]

3d transition metal impurities in aluminum: A first-principles study M. Mantina, S. L. Shang, Y September 2009; published 18 November 2009 In this work, appropriate description of interactions of 3d transition metals in aluminum Al-3d is attained from first-principles using LDA+U potential within density

Chen, Long-Qing

368

Labeling 3D scenes for Personal Assistant Robots  

E-Print Network [OSTI]

Inexpensive RGB-D cameras that give an RGB image together with depth data have become widely available. We use this data to build 3D point clouds of a full scene. In this paper, we address the task of labeling objects in this 3D point cloud of a complete indoor scene such as an office. We propose a graphical model that captures various features and contextual relations, including the local visual appearance and shape cues, object co-occurrence relationships and geometric relationships. With a large number of object classes and relations, the model's parsimony becomes important and we address that by using multiple types of edge potentials. The model admits efficient approximate inference, and we train it using a maximum-margin learning approach. In our experiments over a total of 52 3D scenes of homes and offices (composed from about 550 views, having 2495 segments labeled with 27 object classes), we get a performance of 84.06% in labeling 17 object classes for offices, and 73.38% in labeling 17 object classe...

Koppula, Hema Swetha; Joachims, Thorsten; Saxena, Ashutosh

2011-01-01T23:59:59.000Z

369

Focusing Quantum Many-body Dynamics II: The Rigorous Derivation of the 1D Focusing Cubic Nonlinear Schrödinger Equation from 3D  

E-Print Network [OSTI]

We consider the focusing 3D quantum many-body dynamic which models a dilute bose gas strongly confined in two spatial directions. We assume that the microscopic pair interaction is attractive and given by $a^{3\\beta-1}V(a^{\\beta}\\cdot)$ where $\\int V\\leqslant 0$ and $a$ matches the Gross-Pitaevskii scaling condition. We carefully examine the effects of the fine interplay between the strength of the confining potential and the number of particles on the 3D $N$-body dynamic. We overcome the difficulties generated by the attractive interaction in 3D and establish new focusing energy estimates. We study the corresponding BBGKY hierarchy which contains a diverging coefficient as the strength of the confining potential tends to $\\infty $. We prove that the limiting structure of the density matrices counterbalances this diverging coefficient. We establish the convergence of the BBGKY sequence and hence the propagation of chaos for the focusing quantum many-body system. We derive rigorously the 1D focusing cubic NLS as the mean-field limit of this 3D focusing quantum many-body dynamic and obtain the exact 3D to 1D coupling constant.

Xuwen Chen; Justin Holmer

2014-07-31T23:59:59.000Z

370

Fab trees for designing complex 3D printable materials ; Material design by fab trees for 3D printing .  

E-Print Network [OSTI]

??With more 3D printable materials being invented, 3D printers nowadays could replicate not only geometries, but also appearance and physical properties. On the software side,… (more)

Wang, Ye, M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

371

Beam Optics Analysis - An Advanced 3D Trajectory Code  

SciTech Connect (OSTI)

Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike [Calabazas Creek Research, Inc., 20937 Comer Drive, Saratoga, CA 95070-3753 (United States); Shephard, Mark; Bauer, Andrew; Datta, Dibyendu [Scientific Center for Computational Research, Rensselaer Polytechnic Institute, Troy NY 12180 (United States); Beal, Mark [Simmetrix, Inc., Clifton Park, NY 12065 (United States)

2006-01-03T23:59:59.000Z

372

Hydrodynamical modeling of targets compression to high densities  

E-Print Network [OSTI]

by composite schemes on moving grid. Both models also include heat conductivity. The quotidian equation, E is total energy and heat flux W is given by W = - grad T (2) where T is temperature and is heat note that for most presented computations the heat conductivity is negligible. The above system

Limpouch, Jiri

373

Techniques for interactive 3-D scientific visualization  

SciTech Connect (OSTI)

Interest in interactive 3-D graphics has exploded of late, fueled by (a) the allure of using scientific visualization to go where no-one has gone before'' and (b) by the development of new input devices which overcome some of the limitations imposed in the past by technology, yet which may be ill-suited to the kinds of interaction required by researchers active in scientific visualization. To resolve this tension, we propose a flat 5-D'' environment in which 2-D graphics are augmented by exploiting multiple human sensory modalities using cheap, conventional hardware readily available with personal computers and workstations. We discuss how interactions basic to 3-D scientific visualization, like searching a solution space and comparing two such spaces, are effectively carried out in our environment. Finally, we describe 3DMOVE, an experimental microworld we have implemented to test out some of our ideas. 40 refs., 4 figs.

Glinert, E.P. (Rensselaer Polytechnic Inst., Troy, NY (USA). Dept. of Computer Science); Blattner, M.M. (Anderson (M.D.) Hospital and Tumor Inst., Houston, TX (USA). Dept. of Biomathematics California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National Lab., CA (USA)); Becker, B.G. (California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National La

1990-09-24T23:59:59.000Z

374

3D Printing of Scintillating Materials  

E-Print Network [OSTI]

We demonstrate, for the first time, the applicability of 3D printing technique to the manufacture of scintillation detectors. We report of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30\\% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various application.

Mishnayot, Y; Cooperstein, I; Magdassi, S; Ron, G

2014-01-01T23:59:59.000Z

375

3D Printing of Scintillating Materials  

E-Print Network [OSTI]

We demonstrate, for the first time, the applicability of 3D printing technique to the manufacture of scintillation detectors. We report of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30\\% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various application.

Y. Mishnayot; M. Layani; I. Cooperstein; S. Magdassi; G. Ron

2014-06-15T23:59:59.000Z

376

Collective enhancement of nuclear state densities by the shell model Monte Carlo approach  

E-Print Network [OSTI]

The shell model Monte Carlo (SMMC) approach allows for the microscopic calculation of statistical and collective properties of heavy nuclei using the framework of the configuration-interaction shell model in very large model spaces. We present recent applications of the SMMC method to the calculation of state densities and their collective enhancement factors in rare-earth nuclei.

Özen, C; Nakada, H

2015-01-01T23:59:59.000Z

377

Image Appraisal for 2D and 3D Electromagnetic Inversion  

SciTech Connect (OSTI)

Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

Alumbaugh, D.L.; Newman, G.A.

1999-01-28T23:59:59.000Z

378

CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY  

E-Print Network [OSTI]

CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY ­ Master Thesis Proposal ­ BACKGROUND 3D printing (or additive manufacturing) is not an entirely new phenomenon. First introduced and president of Foxconn, calls it a nice "gimmick" and even Nick Allen, founder of 3D printing company 3D Print

379

3D Printing of Functional and Biological Materials  

E-Print Network [OSTI]

! 3D Printing of Functional and Biological Materials Jennifer A. Lewis Wyss Professor)! Multimaterial 3D printing ! #12;3D antennas! Li ion microbatteries! Lightweight microlattices!Flexible sensors! 3D Printing of Integrated Electronic Devices ! #12;20 nm average , 5 ­ 50 nm

380

Restructuring of RELAP5-3D  

SciTech Connect (OSTI)

The RELAP5-3D source code is unstructured with many interwoven logic flow paths. By restructuring the code, it becomes easier to read and understand, which reduces the time and money required for code development, debugging, and maintenance. A structured program is comprised of blocks of code with one entry and exit point and downward logic flow. IF tests and DO loops inherently create structured code, while GOTO statements are the main cause of unstructured code. FOR_STRUCT is a commercial software package that converts unstructured FORTRAN into structured programming; it was used to restructure individual subroutines. Primarily it transforms GOTO statements, ARITHMETIC IF statements, and COMPUTED GOTO statements into IF-ELSEIF-ELSE tests and DO loops. The complexity of RELAP5-3D complicated the task. First, FOR_STRUCT cannot completely restructure all the complex coding contained in RELAP5-3D. An iterative approach of multiple FOR_STRUCT applications gave some additional improvements. Second, FOR_STRUCT cannot restructure FORTRAN 90 coding, and RELAP5-3D is partially written in FORTRAN 90. Unix scripts for pre-processing subroutines into coding that FOR_STRUCT could handle and post-processing it back into FORTRAN 90 were written. Finally, FOR_STRUCT does not have the ability to restructure the RELAP5-3D code which contains pre-compiler directives. Variations of a file were processed with different pre-compiler options switched on or off, ensuring that every block of code was restructured. Then the variations were recombined to create a completely restructured source file. Unix scripts were written to perform these tasks, as well as to make some minor formatting improvements. In total, 447 files comprising some 180,000 lines of FORTRAN code were restructured. These showed significant reduction in the number of logic jumps contained as measured by reduction in the number of GOTO statements and line labels. The average number of GOTO statements per subroutine dropped from 8.8 before restructuring to 5.3 afterwards, a reduction of 40%. The maximum number of GOTO statements in any subroutine dropped from 213 to 99, a factor of 2.1. Finally, the maximum number of statement labels dropped from 210 to 43, a factor of nearly 5. While many blocks of code remain unstructured, a much greater fraction of the code is now structured. These measurements indicate a serious reduction in degree of interweaving of logic paths.

George Mesina; Joshua Hykes

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Ab initio study of structural stability of small 3d late transition metal clusters: Interplay of magnetization and hybridization  

E-Print Network [OSTI]

Using first-principles density-functional-theory–based calculations, we analyze the structural stability of small clusters of 3d late transition metals. We consider the relative stability of the two structures: layer-like ...

Datta, Soumendu

382

Parameterization and Analysis of 3-D Solar Radiative Transfer in Clouds: Final Report  

SciTech Connect (OSTI)

This document reports on the research that we have done over the course of our two-year project. The report also covers the research done on this project during a 1 year no-cost extension of the grant. Our work has had two main, inter-related thrusts: The first thrust was to characterize the response of stratocumulus cloud structure and dynamics to systematic changes in cloud infrared radiative cooling and solar heating using one-dimensional radiative transfer models. The second was to couple a three-dimensional (3-D) solar radiative transfer model to the Large Eddy Simulation (LES) model that we use to simulate stratocumulus. The purpose of the studies with 3-D radiative transfer was to examine the possible influences of 3-D photon transport on the structure, evolution, and radiative properties of stratocumulus. While 3-D radiative transport has been examined in static cloud environments, few studies have attempted to examine whether the 3-D nature of radiative absorption and emission influence the structure and evolution of stratocumulus. We undertook this dual approach because only a small number of LES simulations with the 3-D radiative transfer model are possible due to the high computational costs. Consequently, LES simulations with a 1-D radiative transfer solver were used in order to examine the portions of stratocumulus parameter space that may be most sensitive to perturbations in the radiative fields. The goal was then to explore these sensitive regions with LES using full 3-D radiative transfer. Our overall goal was to discover whether 3-D radiative processes alter cloud structure and evolution, and whether this may have any indirect implications for cloud radiative properties. In addition, we collaborated with Dr. Tamas Varni, providing model output fields for his attempt at parameterizing 3-D radiative effects for cloud models.

Jerry Y. Harrington

2012-09-21T23:59:59.000Z

383

GyPSuM: A Detailed Tomographic Model of Mantle Density and Seismic Wave Speeds  

SciTech Connect (OSTI)

GyPSuM is a tomographic model fo mantle seismic shear wave (S) speeds, compressional wave (P) speeds and detailed density anomalies that drive mantle flow. the model is developed through simultaneous inversion of seismic body wave travel times (P and S) and geodynamic observations while considering realistic mineral physics parameters linking the relative behavior of mantle properties (wave speeds and density). Geodynamic observations include the (up to degree 16) global free-air gravity field, divergence of the tectonic plates, dynamic topography of the free surface, and the flow-induced excess ellipticity of the core-mantle boundary. GyPSuM is built with the philosophy that heterogeneity that most closely resembles thermal variations is the simplest possible solution. Models of the density field from Earth's free oscillations have provided great insight into the density configuration of the mantle; but are limited to very long-wavelength solutions. Alternatively, simply scaling higher resolution seismic images to density anomalies generates density fields that do not satisfy geodynamic observations. The current study provides detailed density structures in the mantle while directly satisfying geodynamic observations through a joint seismic-geodynamic inversion process. Notable density field observations include high-density piles at the base of the superplume structures, supporting the fundamental results of past normal mode studies. However, these features are more localized and lower amplitude than past studies would suggest. When we consider all seismic anomalies in GyPSuM, we find that P and S-wave speeds are strongly correlated throughout the mantle. However, correlations between the high-velocity S zones in the deep mantle ({approx} 2000 km depth) and corresponding P-wave anomalies are very low suggesting a systematic divergence from simplified thermal effects in ancient subducted slab anomalies. Nevertheless, they argue that temperature variations are the primary cause of P-wave, S-wave, and density anomalies in the mantle.

Simmons, N A; Forte, A M; Boschi, L; Grand, S P

2010-03-30T23:59:59.000Z

384

3D REGULARIZED VELOCITY FROM 3D DOPPLER RADIAL VELOCITY X. Chen, J.L. Barron, R.E. Mercer  

E-Print Network [OSTI]

3D REGULARIZED VELOCITY FROM 3D DOPPLER RADIAL VELOCITY X. Chen, J.L. Barron, R.E. Mercer Dept, Ontario, M3H 5T4 Paul.Joe@ec.gc.ca ABSTRACT The recent availability of sequences of 3D Doppler radial velocity datasets provides sufficient information to estimate the 3D velocity of Doppler storms. We present

Barron, John

385

Spiso-3D (USA Patent 8,077,945 B2) Section 1. "Spiso-3D" 3  

E-Print Network [OSTI]

1 Spiso-3D (USA Patent 8,077,945 B2) Section 1. "Spiso-3D" 3 BioInfomatics I(x) Taylor, Java 3D . graphic card graphic card . Trial version of Spiso Google down-load Neurolucida 2%Spiso-3D Kawato's laboratory Homepage http://glia.c.u-tokyo.ac.jp #12;2 Section 1, Introduction

Kawato, Suguru

386

3D as a content, 3D as a metaphor. Experiments on distributing and interfacing information about historic artefacts using  

E-Print Network [OSTI]

3D as a content, 3D as a metaphor. Experiments on distributing and interfacing information about MAP, France jyb@gamsau.map.archi.fr idu@gamsau.map.archi.fr Key Words Architectural heritage, 3D The importance we attach to 3D is probably related to the manner we perceive the world. Humans in general seem

Paris-Sud XI, Université de

387

Improvement of 3D Printing Resolution by the Development of Shrinkable Materials.  

E-Print Network [OSTI]

??Three-dimensional printing (3DP) uses inkjet printheads to selectively deposit liquid binder to adjoin powder particles in a layer-by-layer fashion to create a computer-modeled 3D object.… (more)

Chia, Helena

2014-01-01T23:59:59.000Z

388

3-D Wave Propagation Simulation in Complex Indoor Structures Farshid Aryanfar' and Kamal Sarabandi  

E-Print Network [OSTI]

3-D Wave Propagation Simulation in Complex Indoor Structures Farshid Aryanfar' and Kamal Sarabandi in different environments is important for specifying system parameters. Recently, wave propagation prediction electromagnetic wave propagation models have been developed. Examination of reported wave propagation algorithms

Sarabandi, Kamal

389

Signal Integrity Analysis of a 2-D and 3-D Integrated Potentiostat for Neurotransmitter Sensing  

E-Print Network [OSTI]

for the substrate, power network, and through silicon vias (TSVs). These models are combined integrated implantable systems. I. INTRODUCTION A multichannel potentiostat, integrated with micro and power dissipation. Signal integrity characteristics of a 2- D and 3-D integrated potentiostat

Stanacevic, Milutin

390

3D reconstruction of tensors and vectors  

SciTech Connect (OSTI)

Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

Defrise, Michel; Gullberg, Grant T.

2005-02-17T23:59:59.000Z

391

3D tomodosimetry using long scintillating fibers: A feasibility study  

SciTech Connect (OSTI)

Purpose: 3D dosimetry is recognized as an ideal for patient-specific quality assurance (QA) of highly conformal radiotherapy treatments. However, existing 3D dosimeters are not straightforward to implement in the clinic, as their read-out procedure is often tedious and their accuracy, precision, and/or sample size exhibit limitations. The purpose of this work is to develop a 3D dosimeter based on the concept of tomodosimetry inside concentric cylindrical planes using long scintillating fibers for the QA of modern radiotherapy techniques such as intensity-modulated radiation therapy (IMRT) or intensity-modulated arc therapy (IMAT).Methods: Using a model-based simulation, scintillating fibers were modeled on three concentric cylindrical planes of radii 2.5, 5.0, and 7.5 cm, inside a 10 cm radius water-equivalent cylinder phantom. The phantom was set to rotate around its central axis, made parallel to the linac gantry axis of rotation. Light acquisitions were simulated using the calculated dose from the treatment planning software and reconstructed in each cylindrical plane at a resolution of 1 mm{sup 2} using a total-variation minimization iterative reconstruction algorithm. The 3D dose was then interpolated from the reconstructed cylindrical plane doses at a resolution of 1 mm{sup 3}. Different scintillating fiber patterns were compared by varying the angle of each fiber in its cylindrical plane and introducing a light-tight cut in each fiber. The precision of the reconstructed cylindrical dose distribution was evaluated using a Poisson modeling of the acquired light signals and the accuracy of the interpolated 3D dose was evaluated using an IMRT clinical plan for a prostate case.Results: Straight scintillating fiber patterns with light-tight cuts were the most accurate in cylindrical dose reconstruction, showing less than 0.5 mm distance-to-agreement in dose gradients and a mean local dose difference of less than 0.2% in the high dose region for a 10 × 10 cm{sup 2} field. The precision attained with this fiber configuration was less than 0.9% in the high dose, low gradient region of an IMRT segment for light acquisitions of 0.1 MU over a 360 degree rotation of the cylinder phantom. 3D dose interpolation for the IMRT clinical plan yielded an overall dose difference with the reference input of less than 1%, except in high dose gradients.Conclusions: Using long scintillating fibers inside rotating, concentric cylindrical planes, the authors demonstrate that their tomodosimetry method has the potential for high resolution, precise, and accurate 3D dosimetry. Moreover, because of its water-equivalence and rotational symmetry, this design should find interesting application for both treatment QA and machine commissioning.

Goulet, Mathieu; Archambault, Louis; Beaulieu, Luc; Gingras, Luc [Département de Physique, de Génie Physique et d’Optique et Centre de Recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada, and Département de Radio-Oncologie and CRCHU de Quebec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada)] [Département de Physique, de Génie Physique et d’Optique et Centre de Recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada, and Département de Radio-Oncologie and CRCHU de Quebec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada)

2013-10-15T23:59:59.000Z

392

Interchanging Interactive 3-d Graphics for Astronomy  

E-Print Network [OSTI]

We demonstrate how interactive, three-dimensional (3-d) scientific visualizations can be efficiently interchanged between a variety of mediums. Through the use of an appropriate interchange format, and a unified interaction interface, we minimize the effort to produce visualizations appropriate for undertaking knowledge discovery at the astronomer's desktop, as part of conference presentations, in digital publications or as Web content. We use examples from cosmological visualization to address some of the issues of interchange, and to describe our approach to adapting S2PLOT desktop visualizations to the Web. Supporting demonstrations are available at http://astronomy.swin.edu.au/s2plot/interchange/

C. J. Fluke; D. G. Barnes; N. T. Jones

2008-12-09T23:59:59.000Z

393

A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling  

E-Print Network [OSTI]

A model of fracture nucleation, growth and arrest, and consequences for fracture density; accepted 1 February 2013; published 25 April 2013. [1] In order to improve discrete fracture network (DFN a new DFN modeling based on the evolution of fracture network formation--nucleation, growth, and arrest

Boyer, Edmond

394

A mineralogical model for density and elasticity of the Earth's A. S. Piazzoni  

E-Print Network [OSTI]

A mineralogical model for density and elasticity of the Earth's mantle A. S. Piazzoni Department fu, Germany [1] We present a thermodynamic model of high-pressure mineralogy that allows the evaluation: mantle mineralogy; Gibbs free energy minimization. Index Terms: 3612 Mineralogy and Petrology: Reactions

Steinle-Neumann, Gerd

395

Extreme density-driven delocalization error for a model solvated-electron system  

SciTech Connect (OSTI)

Delocalization (or charge-transfer) error is one of the scarce but spectacular failures of density-functional theory. It is particularly apparent in extensively delocalized molecules, and manifests in the calculation of bandgaps, reaction barriers, and dissociation limits. Even though delocalization error is always present in the self-consistent electron density, the differences from reference densities are often quite subtle and the error tends to be driven by the exchange-correlation energy expression. In this article, we propose a model system (the Kevan model) where approximate density functionals predict dramatically different charge distributions because of delocalization error. The model system consists of an electron trapped in a water hexamer and is a finite representation of an experimentally observed class of solids: electrides. The Kevan model is of fundamental interest because it allows the estimation of charge transfer error without recourse to fractional charge calculations, but our results are also relevant in the context of the modeling of confined electrons in density-functional theory.

Johnson, Erin R., E-mail: ejohnson29@ucmerced.edu; Otero-de-la-Roza, A., E-mail: aoterodelaroza@ucmerced.edu; Dale, Stephen G., E-mail: sdale@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States)

2013-11-14T23:59:59.000Z

396

DSI3D - RCS user manual  

SciTech Connect (OSTI)

The DSI3D-RCS code is designed to numerically evaluate radar cross sections on complex objects by solving Maxwell`s curl equations in the time-domain and in three space dimensions. The code has been designed to run on the new parallel processing computers as well as on conventional serial computers. The DSI3D-RCS code is unique for the following reasons: Allows the use of unstructured non-orthogonal grids, allows a variety of cell or element types, reduces to be the Finite Difference Time Domain (FDTD) method when orthogonal grids are used, preserves charge or divergence locally (and globally), is conditionally stable, is selectively non-dissipative, and is accurate for non-orthogonal grids. This method is derived using a Discrete Surface Integration (DSI) technique. As formulated, the DSI technique can be used with essentially arbitrary unstructured grids composed of convex polyhedral cells. This implementation of the DSI algorithm allows the use of unstructured grids that are composed of combinations of non-orthogonal the use of unstructured grids that are composed of combinations of non-orthogonal hexahedrons, tetrahedrons, triangular prisms and pyramids. This algorithm reduces to the conventional FDTD method when applied on a structured orthogonal hexahedral grid.

Madsen, N.; Steich, D.; Cook, G. [and others

1995-08-23T23:59:59.000Z

397

Rheology of nearly ideal 3d foams  

E-Print Network [OSTI]

We probe the complex rheology of nearly ideal 3d foam by flowing through a narrow column. The foams we investigate have large bubble size, to minimize the effects of coarsening, and are very dry. Foams of this type cannot be studied via conventional rheometry. The foam flows upward through a vertical rectangular column with a 4:1 cross-sectional aspect ratio, by bubbling gas through a soapy solution at the base of our apparatus. At the column's narrow surfaces are sticky boundaries, which create shear due to the zero velocity boundary condition. As expected, the flow profile between the adjacent slippery broad faces is flat, however the profile between the narrow, sticky faces exhibits a curved velocity profile that is dependent on gas flow rate. We are able to analyze a 2d velocity profile from a 3d bulk system. We employ particle image velocimetry to measure the strain rate, and compute the stress from the pressure drop along the channel, to investigate the local stress-strain relationships in a flowing foam. We find these dry foams to have a Hershel-Bulkley exponent of 0.21, which is significantly lower (more shear thinning) than other results shown in the literature for much wetter foams.

C. D. Jones; K. N. Nordstrom; D. J. Durian

2014-04-10T23:59:59.000Z

398

Superconductivity from D3/D7: Holographic Pion Superfluid  

E-Print Network [OSTI]

We show that a D3/D7 system (at zero quark mass limit) at finite isospin chemical potential goes through a superconductor (superfluid) like phase transition. This is similar to a flavored superfluid phase studied in QCD literature, where mesonic operators condensate. We have studied the frequency dependent conductivity of the condensate and found a delta function pole in the zero frequency limit. This is an example of superconductivity in a string theory context. Consequently we have found a superfluid/supercurrent type solution and studied the associated phase diagram. The superconducting transition changes from second order to first order at a critical superfluid velocity. We have studied various properties of the superconducting system like superfluid density, energy gap, second sound etc. We investigate the possibility of the isospin chemical potential modifying the embedding of the flavor branes by checking whether the transverse scalars also condense at low temperature. This however does not seem to be the case.

Pallab Basu; Jianyang He; Anindya Mukherjee; Hsien-Hang Shieh

2008-10-22T23:59:59.000Z

399

Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy  

SciTech Connect (OSTI)

Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions: The proposed needle segmentation algorithm is accurate, robust, and suitable for 3D TRUS guided prostate transperineal therapy.

Qiu Wu [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario N6A 5K8 (Canada); Yuchi Ming; Ding Mingyue [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Tessier, David; Fenster, Aaron [Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

2013-04-15T23:59:59.000Z

400

Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries  

E-Print Network [OSTI]

Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries Dmitry Ruzmetov, all-solid-state Li ion batteries (LIBs) with high specific capacity and small footprint are highly to their high-energy density, Li ion batteries (LIBs) are attractive for these applications, and all-solid-state

Rubloff, Gary W.

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Uncertainty Analysis of RELAP5-3D  

SciTech Connect (OSTI)

As world-wide energy consumption continues to increase, so does the demand for the use of alternative energy sources, such as Nuclear Energy. Nuclear Power Plants currently supply over 370 gigawatts of electricity, and more than 60 new nuclear reactors have been commissioned by 15 different countries. The primary concern for Nuclear Power Plant operation and lisencing has been safety. The safety of the operation of Nuclear Power Plants is no simple matter- it involves the training of operators, design of the reactor, as well as equipment and design upgrades throughout the lifetime of the reactor, etc. To safely design, operate, and understand nuclear power plants, industry and government alike have relied upon the use of best-estimate simulation codes, which allow for an accurate model of any given plant to be created with well-defined margins of safety. The most widely used of these best-estimate simulation codes in the Nuclear Power industry is RELAP5-3D. Our project focused on improving the modeling capabilities of RELAP5-3D by developing uncertainty estimates for its calculations. This work involved analyzing high, medium, and low ranked phenomena from an INL PIRT on a small break Loss-Of-Coolant Accident as wall as an analysis of a large break Loss-Of- Coolant Accident. Statistical analyses were performed using correlation coefficients. To perform the studies, computer programs were written that modify a template RELAP5 input deck to produce one deck for each combination of key input parameters. Python scripting enabled the running of the generated input files with RELAP5-3D on INL’s massively parallel cluster system. Data from the studies was collected and analyzed with SAS. A summary of the results of our studies are presented.

Alexandra E Gertman; Dr. George L Mesina

2012-07-01T23:59:59.000Z

402

Tunneling density of states of high Tc superconductors d-wave BCS model vs. SU(2) slave boson model  

E-Print Network [OSTI]

Tunneling density of states of high Tc superconductors d-wave BCS model vs. SU(2) slave boson model conductance curves in the superconducting state at zero temperature. Comparing the two results obtained via Tunneling spectroscopy has been one of the funda- mental tools in studying the superconducting state

Wen, Xiao-Gang

403

New results on the resistivity structure of Merapi Volcano(Indonesia), derived from 3D restricted inversion of long-offsettransient electromagnetic data  

SciTech Connect (OSTI)

Three long-offset transient electromagnetic (LOTEM) surveyswerecarried out at the active volcano Merapi in Central Java (Indonesia)during the years 1998, 2000, and 2001. The measurements focused on thegeneral resistivity structure of the volcanic edifice at depths of 0.5-2km and the further investigation of a southside anomaly. The measurementswere insufficient for a full 3D inversion scheme, which could enable theimaging of finely discretized resistivity distributions. Therefore, astable, damped least-squares joint-inversion approach is used to optimize3D models with a limited number of parameters. The mode ls feature therealistic simulation of topography, a layered background structure, andadditional coarse 3D blocks representing conductivity anomalies.Twenty-eight LOTEM transients, comprising both horizontal and verticalcomponents of the magnetic induction time derivative, were analyzed. Inview of the few unknowns, we were able to achieve reasonable data fits.The inversion results indicate an upwelling conductor below the summit,suggesting hydrothermal activity in the central volcanic complex. Ashallow conductor due to a magma-filled chamber, at depths down to 1 kmbelow the summit, suggested by earlier seismic studies, is not indicatedby the inversion results. In conjunction with an anomalous-density model,derived from arecent gravity study, our inversion results provideinformation about the southern geological structure resulting from amajor sector collapse during the Middle Merapi period. The density modelallows to assess a porosity range andthus an estimated vertical salinityprofile to explain the high conductivities on a larger scale, extendingbeyond the foothills of Merapi.

Commer, Michael; Helwig, Stefan, L.; Hordt, Andreas; Scholl,Carsten; Tezkan, Bulent

2006-06-14T23:59:59.000Z

404

Computational 3D and reflectivity imaging with high photon efficiency  

E-Print Network [OSTI]

Imaging the 3D structure and reflectivity of a scene can be done using photon-counting detectors. Traditional imagers of this type typically require hundreds of detected photons per pixel for accurate 3D and reflectivity ...

Shin, Dongeek

2014-01-01T23:59:59.000Z

405

Characterizing tensile loading responses of 3D printed samples  

E-Print Network [OSTI]

An experimental study was performed to characterize the loading response of samples manufactured through 3D printing. Tensile testing was performed on a number of 3D printed samples created through Fused Filament Fabrication ...

Haid, Christopher M

2014-01-01T23:59:59.000Z

406

Fab trees for designing complex 3D printable materials  

E-Print Network [OSTI]

With more 3D printable materials being invented, 3D printers nowadays could replicate not only geometries, but also appearance and physical properties. On the software side, the tight coupling between geometry and material ...

Wang, Ye, M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

407

3D Visualization of Water Transport in Ferns  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3D Visualization of Water Transport in Ferns 3D Visualization of Water Transport in Ferns Print Monday, 08 April 2013 00:00 Plants transport water through elongated cells called...

408

Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic Activity Thanks to a groundbreaking new method, scientists have created the first 3D super-resolution maps of...

409

Ames Lab 101: Real-Time 3D Imaging  

ScienceCinema (OSTI)

Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

Zhang, Song

2012-08-29T23:59:59.000Z

410

abnormal 3-d mri: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D...

411

auslese von 3d: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D...

412

autostereoscopic 3d display: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or restrict themselves to light dif- fusion in volumes. We use multi-material 3D printing to fabricate objects Additional Key Words and Phrases: 3D printing, optical fibers...

413

Process for 3D chip stacking  

DOE Patents [OSTI]

A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: 1) holding individual chips for batch processing, 2) depositing a dielectric passivation layer on the top and sidewalls of the chips, 3) opening vias in the dielectric, 4) forming the interconnects by laser pantography, and 5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume.

Malba, Vincent (Livermore, CA)

1998-01-01T23:59:59.000Z

414

Process for 3D chip stacking  

DOE Patents [OSTI]

A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: (1) holding individual chips for batch processing, (2) depositing a dielectric passivation layer on the top and sidewalls of the chips, (3) opening vias in the dielectric, (4) forming the interconnects by laser pantography, and (5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume. 3 figs.

Malba, V.

1998-11-10T23:59:59.000Z

415

Revisiting density functionals for the primitive model of electric double layers  

SciTech Connect (OSTI)

Density functional theory (DFT) calculations are typically based on approximate functionals that link the free energy of a multi-body system of interest with the underlying one-body density distributions. Whereas good performance is often proclaimed for new developments, it is difficult to vindicate the theoretical merits relative to alternative versions without extensive comparison with the numerical results from molecular simulations. Besides, approximate functionals may defy statistical-mechanical sum rules and result in thermodynamic inconsistency. Here we compare systematically several versions of density functionals for ionic distributions near a charged surface using the primitive model of electric double layers. We find that the theoretical performance is sensitive not only to the specific forms of the density functional but also to the range of parameter space and the precise properties under consideration. In general, incorporation of the thermodynamic sum rule into the DFT calculations shows significant improvements for both electrochemical properties and ionic distributions.

Jiang, Jian [Department of Chemical and Environmental Engineering and Department of Mathematics, University of California, Riverside, California 92521 (United States) [Department of Chemical and Environmental Engineering and Department of Mathematics, University of California, Riverside, California 92521 (United States); Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Cao, Dapeng, E-mail: jwu@engr.ucr.edu, E-mail: doug@chem.byu.edu, E-mail: caodp@mail.buct.edu.cn [Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)] [Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Henderson, Douglas, E-mail: jwu@engr.ucr.edu, E-mail: doug@chem.byu.edu, E-mail: caodp@mail.buct.edu.cn [Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602 (United States)] [Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602 (United States); Wu, Jianzhong, E-mail: jwu@engr.ucr.edu, E-mail: doug@chem.byu.edu, E-mail: caodp@mail.buct.edu.cn [Department of Chemical and Environmental Engineering and Department of Mathematics, University of California, Riverside, California 92521 (United States)] [Department of Chemical and Environmental Engineering and Department of Mathematics, University of California, Riverside, California 92521 (United States)

2014-01-28T23:59:59.000Z

416

C § ? Was ist X3D/VRML?  

E-Print Network [OSTI]

C § ? Die Spezifikation von VRML ist an einigen Stellen nicht eindeutig § ? In X3D präzisiert § ? X3D hat 100+ Knoten (aufgeteilt in Components / Profiles) § ? VRML hat nur 54 Knoten § ? X3D hat 3 verschiedene sog. "File Encodings": § ? Classic: sieht aus wie VRML; Suffix =.wrl oder.x3dv- Jede Software, die X3D lesen kann, kann (im Prinzip) auch VRML lesen

Virtuelle Realität; Xd Vrml; G. Zachmann; Verhalten Und Animationen; Achtung Vrml Vr; G. Zachmann; Virtuelle Realität; Simulation Ws; Xd Vrml; Vorteile Von Xd

417

3D Rendering and Ray Casting Michael Kazhdan  

E-Print Network [OSTI]

3D Rendering and Ray Casting Michael Kazhdan (600.357 / 600.457) HB Ch. 13.7, 14.6 FvDFH 15.5, 15.10 #12;Rendering · Generate an image from geometric primitives Rendering Geometric Primitives (3D) Raster Image (2D) #12;3D Rendering Example What issues must be addressed by a 3D rendering system? #12;Overview

Kazhdan, Michael

418

3D Printing Prof. Hank Dietz & Paul Eberhart  

E-Print Network [OSTI]

3D Printing Prof. Hank Dietz & Paul Eberhart September 28, 2013 University of Kentucky Electrical/Craft: paper moves in Y, knife in X EDM/Laser: X/Y bed, vaporizes material #12;Subtractive 3D CNC: Computer "The whole is greater than the sum of its parts." ­ Aristotle #12;Additive 3D Building Material

Dietz, Henry G. "Hank"

419

Tips and Tricks for Using the 3D Interpolation Tool  

E-Print Network [OSTI]

Tips and Tricks for Using the 3D Interpolation Tool This document describes how to download the 3D interpolation tool and use it for the purpose of performing multidimensional analysis on Marine, Atmospheric, Petroleum, Geological, and Groundwater point data. The 3D interpolation tool leverages new methods to solve

Wright, Dawn Jeannine

420

3D RECONSTRUCTION FROM A SINGLE IMAGE Diego Rother  

E-Print Network [OSTI]

3D RECONSTRUCTION FROM A SINGLE IMAGE By Diego Rother and Guillermo Sapiro IMA Preprint Series. 1 3D Reconstruction from a Single Image Diego Rother and Guillermo Sapiro Abstract-- A probabilistic framework for 3D object reconstruction from a single image is introduced in this work. First

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Fast 3D Scanning for Biometric Identification and Verification  

E-Print Network [OSTI]

Fast 3D Scanning for Biometric Identification and Verification June 2011 Authors Anselmo., & Chen, A. (2011). Fast 3D Scanning for Biometric Identification and Verification. (Prepared by RTI..................................................10 Summary and Findings for Integration of Imperceptible Structured Lighting and SIS's 3D Snapshot

McShea, Daniel W.

422

3D imaging and ranging by time-correlated single  

E-Print Network [OSTI]

3D imaging and ranging by time-correlated single photon counting by A. M. Wallace, 6. S. Buller and A. C. Walker 3D imaging is an important tool for metrology and reverse engineering of components and architecturalsurveying. In this article, we review briefly the principal methods in current use for 3D imaging

Buller, Gerald S.

423

3D Scanning for Biometric Identification and Verification  

E-Print Network [OSTI]

June 2010 3D Scanning for Biometric Identification and Verification Project Leads Anselmo Lastra visibility, cannot be controlled. A relatively new biometric, 3D facial recognition, holds great promise performance using 3D shape and texture matched that of the much more mature technologies of high

McShea, Daniel W.

424

3D discrete rotations using hinge angles Yohan Thibaulta,  

E-Print Network [OSTI]

3D discrete rotations using hinge angles Yohan Thibaulta, , Akihiro Sugimotob , Yukiko Kenmochia a of Informatics, Japan Abstract In this paper, we study 3D rotations on grid points computed by using only integers. For that purpose, we investigate the intersection between the 3D half- grid and the rotation

Paris-Sud XI, Université de

425

3D Laser Imaging at Highway Speed Kelvin CP Wang  

E-Print Network [OSTI]

3D Laser Imaging at Highway Speed Kelvin CP Wang And the Team Formerly at the University Concrete Consortium Meeting Oklahoma City Sheraton Hotel #12;3D Laser Imaging for Pavements Mature Potential to Cover Most if Not All Data Collection on Pavement Surface How to Obtain True 1mm 3D Visual

426

The 3D jigsaw puzzle: mapping large indoor spaces  

E-Print Network [OSTI]

The 3D jigsaw puzzle: mapping large indoor spaces Ricardo Martin-Brualla1 , Yanling He1 , Bryan C of famous tourist sites. While current 3D reconstruction algorithms often produce a set of disconnected components (3D pieces) for indoor scenes due to scene coverage or matching failures, we make use

Anderson, Richard

427

Analyzing 3D Images of the Brain NICHOLAS AYACHE  

E-Print Network [OSTI]

Analyzing 3D Images of the Brain NICHOLAS AYACHE OVERVIEW During the past 5 years, there has been research. Along these lines, and focusing on 3D images of the brain obtained with CT, MRI, SPECT, and PET for an objective analysis of 3D images of the brain. Such methods include segmentation, shape analysis, rigid

Paris-Sud XI, Université de

428

Dynamic 3D Graphics Workload Characterization and the Architectural Implications  

E-Print Network [OSTI]

for this de#12;ciency is the absence of a detailed workload characterization of 3D applications. This paper previous similar studies because it focuses on dynamic behaviors of 3D applications, speci#12;cally, corre- lations of workload statistics among neighboring frames in interactive 3D applications. Such inter

Mitra, Tulika

429

3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1  

E-Print Network [OSTI]

3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1 , D. De Baere2 , M. Rombouts3 , SSHM system is produced by 3D printing or additive manufacturing. Additive Manufacturing (AM) is a "process to enable its implementation. This work demonstrates the feasibility study of eSHM systems produced by 3D

Boyer, Edmond

430

3-D Graphics in R Ohio State University  

E-Print Network [OSTI]

3-D Graphics in R Luke Keele Ohio State University December 6, 2005 Three dimensional graphics may. And it is a good choice, but to get publication quality 3-D graphics requires more work than typically re- quired to produce quality graphics with the wireframe command. The standard 3-D plot command in R is persp. While

Gotelli, Nicholas J.

431

Site-Specific Velocity and Density Model for the Waste Treatment Plant, Hanford, Washington.  

SciTech Connect (OSTI)

This report documents the work conducted under the SBP to develop a shear wave and compressional wave velocity and density model specific to the WTP site. Section 2 provides detailed background information on the WTP site and its underlying geology as well as on the Seismic Boreholes Project activities leading up to the Vs and Vp measurements. In Section 3, methods employed and results obtained are documented for measurements of Vs and Vp velocities in basalts and interbeds. Section 4 provides details on velocity measurements in the sediments underlying the WTP. Borehole gravity measurements of density of the subsurface basalt and sediments are described in Section 5. Section 6 describes the analysis of data presented in section 3-5, and presents the overall velocity and density model for the WTP site.

Rohay, Alan C.; Brouns, Thomas M.

2007-06-27T23:59:59.000Z

432

3D J-Integral Capability in Grizzly  

SciTech Connect (OSTI)

This report summarizes work done to develop a capability to evaluate fracture contour J-Integrals in 3D in the Grizzly code. In the current fiscal year, a previously-developed 2D implementation of a J-Integral evaluation capability has been extended to work in 3D, and to include terms due both to mechanically-induced strains and due to gradients in thermal strains. This capability has been verified against a benchmark solution on a model of a curved crack front in 3D. The thermal term in this integral has been verified against a benchmark problem with a thermal gradient. These developments are part of a larger effort to develop Grizzly as a tool that can be used to predict the evolution of aging processes in nuclear power plant systems, structures, and components, and assess their capacity after being subjected to those aging processes. The capabilities described here have been developed to enable evaluations of Mode- stress intensity factors on axis-aligned flaws in reactor pressure vessels. These can be compared with the fracture toughness of the material to determine whether a pre-existing flaw would begin to propagate during a pos- tulated pressurized thermal shock accident. This report includes a demonstration calculation to show how Grizzly is used to perform a deterministic assessment of such a flaw propagation in a degraded reactor pressure vessel under pressurized thermal shock conditions. The stress intensity is calculated from J, and the toughness is computed using the fracture master curve and the degraded ductile to brittle transition temperature.

Benjamin Spencer; Marie Backman; Pritam Chakraborty; William Hoffman

2014-09-01T23:59:59.000Z

433

Mathematical Model of Charge and Density Distributions in Interfacial Polymerization of Thin Films  

E-Print Network [OSTI]

Mathematical Model of Charge and Density Distributions in Interfacial Polymerization of Thin Films INTRODUCTION Interfacial polymerization (IP) as a method of prepa- ration of thin film composite (TFC, and waste treatment. IP is also highly suitable for manufacturing polymeric films, such as polyamides

Freger, Viatcheslav "Slava"

434

Relativistic density functional theory modeling of plutonium and americium higher oxide molecules  

E-Print Network [OSTI]

Relativistic density functional theory modeling of plutonium and americium higher oxide molecules of plutonium and americium higher oxide molecules Andréi Zaitsevskii,1,2,a) Nikolai S. Mosyagin,2,3 Anatoly V of plutonium and americium higher oxide molecules (actinide oxidation states VI through VIII) by two

Titov, Anatoly

435

Effective shell model Hamiltonians from density functional theory: quadrupolar and pairing correlations  

E-Print Network [OSTI]

We describe a procedure for mapping a self-consistent mean-field theory (also known as density functional theory) into a shell model Hamiltonian that includes quadrupole-quadrupole and monopole pairing interactions in a truncated space. We test our method in the deformed N=Z sd-shell nuclei Ne-20, Mg-24 and Ar-36, starting from the Hartree-Fock plus BCS approximation of the USD shell model interaction. A similar procedure is then followed using the SLy4 Skyrme energy density functional in the particle-hole channel plus a zero-range density-dependent force in the pairing channel. Using the ground-state solution of this density functional theory at the Hartree-Fock plus BCS level, an effective shell model Hamiltonian is constructed. We use this mapped Hamiltonian to extract quadrupolar and pairing correlation energies beyond the mean field approximation. The rescaling of the mass quadrupole operator in the truncated shell model space is found to be almost independent of the coupling strength used in the pairing channel of the underlying mean-field theory.

R. Rodriguez-Guzman; Y. Alhassid; G. F. Bertsch

2007-09-04T23:59:59.000Z

436

Extension of a Current Continuum-Level Material Model for Soil into the Low-Density Discrete-Particle Regime  

E-Print Network [OSTI]

energies of the soil as well as into surface energy of the fractured soil particles. In this caseExtension of a Current Continuum-Level Material Model for Soil into the Low-Density Discrete a soil-material model which can be used over a wide range of soil densities. To construct such a model

Grujicic, Mica

437

AUTOMATED, HIGHLY ACCURATE VERIFICATION OF RELAP5-3D  

SciTech Connect (OSTI)

Computer programs that analyze light water reactor safety solve complex systems of governing, closure and special process equations to model the underlying physics. In addition, these programs incorporate many other features and are quite large. RELAP5-3D[1] has over 300,000 lines of coding for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. Verification ensures that a program is built right by checking that it meets its design specifications. Recently, there has been an increased importance on the development of automated verification processes that compare coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions[2]. For the first time, the ability exists to ensure that the data transfer operations associated with timestep advancement/repeating and writing/reading a solution to a file have no unintended consequences. To ensure that the code performs as intended over its extensive list of applications, an automated and highly accurate verification method has been modified and applied to RELAP5-3D. Furthermore, mathematical analysis of the adequacy of the checks used in the comparisons is provided.

George L Mesina; David Aumiller; Francis Buschman

2014-07-01T23:59:59.000Z

438

Distributed delay model for density wave dynamics in gas lifted wells Laure Sin`egre, Nicolas Petit  

E-Print Network [OSTI]

Distributed delay model for density wave dynamics in gas lifted wells Laure Sin`egre, Nicolas Petit in the tubing D. dynamical choking is used to stabilise the density wave instability. In this paper, we propose instabilities cause production losses. One of these instabilities, referred to as the "density-wave

439

Optonets -3D engineered neuronal networks Although neurons were one of the first cell types to be cultured (more than 100 years ago), creating  

E-Print Network [OSTI]

Optonets - 3D engineered neuronal networks Although neurons were one of the first cell types to be cultured (more than 100 years ago), creating engineered neuronal cultures in 3D scaffolds is a relatively new research field. 3D cultures are considered a good model of the central nervous system, and yet

Rimon, Elon

440

Single Image 3D Object Detection and Pose Estimation for Grasping Menglong Zhu1, Konstantinos G. Derpanis2, Yinfei Yang1, Samarth Brahmbhatt1  

E-Print Network [OSTI]

Single Image 3D Object Detection and Pose Estimation for Grasping Menglong Zhu1, Konstantinos G Daniilidis1 Abstract-- We present a novel approach for detecting objects and estimating their 3D pose in single images of cluttered scenes. Objects are given in terms of 3D models without accompanying texture

Plotkin, Joshua B.

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Model for Density Waves in Gravity-Driven Granular Flow in Narrow Pipes  

E-Print Network [OSTI]

A gravity-driven flow of grains through a narrow pipe in vacuum is studied by means of a one-dimensional model with two coefficients of restitution. Numerical simulations show clearly how density waves form when a strikingly simple criterion is fulfilled: that dissipation due to collisions between the grains and the walls of the pipe is greater per collision than that which stems from collisions between particles. Counterintuitively, the highest flow rate is observed when the number of grains per density wave grows large. We find strong indication that the number of grains per density wave always approaches a constant as the particle number tends to infinity, and that collapse to a single wave, which was often observed also in previous simulations, occurs because the number of grains is insufficient for multiple wave formation.

Ellingsen, Simen Å; Grøva, Morten; Hansen, Alex

2010-01-01T23:59:59.000Z

442

Model for Density Waves in Gravity-Driven Granular Flow in Narrow Pipes  

E-Print Network [OSTI]

A gravity-driven flow of grains through a narrow pipe in vacuum is studied by means of a one-dimensional model with two coefficients of restitution. Numerical simulations show clearly how density waves form when a strikingly simple criterion is fulfilled: that dissipation due to collisions between the grains and the walls of the pipe is greater per collision than that which stems from collisions between particles. Counterintuitively, the highest flow rate is observed when the number of grains per density wave grows large. We find strong indication that the number of grains per density wave always approaches a constant as the particle number tends to infinity, and that collapse to a single wave, which was often observed also in previous simulations, occurs because the number of grains is insufficient for multiple wave formation.

Simen Å. Ellingsen; Knut S. Gjerden; Morten Grøva; Alex Hansen

2010-06-08T23:59:59.000Z

443

Modelling of the internal dynamics and density in a tens of joules plasma focus device  

SciTech Connect (OSTI)

Using MHD theory, coupled differential equations were generated using a lumped parameter model to describe the internal behaviour of the pinch compression phase in plasma focus discharges. In order to provide these equations with appropriate initial conditions, the modelling of previous phases was included by describing the plasma sheath as planar shockwaves. The equations were solved numerically, and the results were contrasted against experimental measurements performed on the device PF-50J. The model is able to predict satisfactorily the timing and the radial electron density profile at the maximum compression.

Marquez, Ariel [CNEA and Instituto Balseiro, 8402 Bariloche (Argentina); Gonzalez, Jose [INVAP-CONICET and Instituto Balseiro, 8402 Bariloche, Argentina. (Argentina); Tarifeno-Saldivia, Ariel; Pavez, Cristian; Soto, Leopoldo [CCHEN, Comision Chilena de Energia Nuclear, Casilla 188-D, Santiago (Chile); Center for Research and Applications in Plasma Physics and Pulsed Power, P4 (Chile); Clausse, Alejandro [CNEA-CONICET and Universidad Nacional del Centro, 7000 Tandil (Argentina)

2012-01-15T23:59:59.000Z

444

Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting  

SciTech Connect (OSTI)

The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. Specifically, our focus is fundamental research on (1) innovative narrow-band seismic data decomposition and interpretation, and (2) numerical simulation of advanced seismic data (multi-component, high density, full azimuth data) ideal for mapping of cap rock integrity and potential leakage pathways.

Christopher Liner

2012-05-31T23:59:59.000Z

445

Preliminary Study for Dosimetric Characteristics of 3D-printed Materials with Megavoltage Photons  

E-Print Network [OSTI]

In these days, 3D-printer is on the rise in various fields including radiation therapy. This preliminary study aimed to estimate the dose characteristics of the 3D-printer materials which could be used as the compensator or immobilizer in radiation treatment. The cubes which have 5cm length and different densities as 50%, 75% and 100% were printed by 3D-printer. A planning CT scans for cubes were performed using a CT simulator (Brilliance CT, Philips Medical System, Netherlands). Dose distributions behind the cube were calculated when 6MV photon beam passed through cube. The dose response for 3D-printed cube, air and water were measured by using EBT3 film and 2D array detector. When results of air case were normalized to 100, dose calculated by TPS and measured dose of 50% and 75% cube were 96~99. Measured and calculated doses of water and 100% cube were 82~84. HU values of 50%, 75% and 100% were -910, -860 and -10, respectively. From these results, 3D-printer in radiotherapy could be used for medical purpose...

Jeong, Seonghoon; Chung, Weon Kuu; Kim, Dong Wook

2015-01-01T23:59:59.000Z

446

Effective growth of matter density fluctuations in the running LCDM and LXCDM models  

E-Print Network [OSTI]

We investigate the matter density fluctuations \\delta\\rho/\\rho for two dark energy (DE) models in the literature in which the cosmological term \\Lambda is a running parameter. In the first model, the running LCDM model, matter and DE exchange energy, whereas in the second model, the LXCDM model, the total DE and matter components are conserved separately. The LXCDM model was proposed as an interesting solution to the cosmic coincidence problem. It includes an extra dynamical component, the "cosmon" X, which interacts with the running \\Lambda, but not with matter. In our analysis we make use of the current value of the linear bias parameter, b^2(0)= P_{GG}/P_{MM}, where P_{MM} ~ (\\delta\\rho/\\rho)^2 is the present matter power spectrum and P_{GG} is the galaxy fluctuation power spectrum. The former can be computed within a given model, and the latter is found from the observed LSS data (at small z) obtained by the 2dF galaxy redshift survey. It is found that b^2(0)=1 within a 10% accuracy for the standard LCDM model. Adopting this limit for any DE model and using a method based on the effective equation of state for the DE, we can set a limit on the growth of matter density perturbations for the running LCDM model, the solution of which is known. This provides a good test of the procedure, which we then apply to the LXCDM model in order to determine the physical region of parameter space, compatible with the LSS data. In this region, the LXCDM model is consistent with known observations and provides at the same time a viable solution to the cosmic coincidence problem.

Javier Grande; Reuven Opher; Ana Pelinson; Joan Sola

2009-04-27T23:59:59.000Z

447

Volume 0 (1981), Number 0 pp. 110 COMPUTER GRAPHICS forum Resolution Independent NPR-Style 3D Line Textures  

E-Print Network [OSTI]

and faint, sketchy feature lines. sketchiness of the feature edges and material property lines is modifiedVolume 0 (1981), Number 0 pp. 1­10 COMPUTER GRAPHICS forum Resolution Independent NPR-Style 3D Line-photorealistically rendered (NPR) scenes using 3D line primitives to define architectural features of the model, as well

Gooch, Amy

1981-01-01T23:59:59.000Z

448

Prototype Development Capabilities of 3D Spatial Interactions and Failures During Scenario Simulation  

SciTech Connect (OSTI)

Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This report addressed the methods, techniques, and resources used to develop a prototype for using 3D modeling and simulation engine to improve risk analysis and evaluate reactor structures and components for a given scenario. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

Steven Prescott; Ramprasad Sampath; Curtis Smith; Tony Koonce

2014-09-01T23:59:59.000Z

449

THE INFLUENCE OF NUMERICAL RESOLUTION ON CORONAL DENSITY IN HYDRODYNAMIC MODELS OF IMPULSIVE HEATING  

SciTech Connect (OSTI)

The effect of the numerical spatial resolution in models of the solar corona and corona/chromosphere interface is examined for impulsive heating over a range of magnitudes using one-dimensional hydrodynamic simulations. It is demonstrated that the principal effect of inadequate resolution is on the coronal density. An underresolved loop typically has a peak density of at least a factor of two lower than a resolved loop subject to the same heating, with larger discrepancies in the decay phase. The temperature for underresolved loops is also lower indicating that lack of resolution does not 'bottle up' the heat flux in the corona. Energy is conserved in the models to under 1% in all cases, indicating that this is not responsible for the low density. Instead, we argue that in underresolved loops the heat flux 'jumps across' the transition region to the dense chromosphere from which it is radiated rather than heating and ablating transition region plasma. This emphasizes the point that the interaction between corona and chromosphere occurs only through the medium of the transition region. Implications for three-dimensional magnetohydrodynamic coronal models are discussed.

Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Cargill, P. J., E-mail: stephen.bradshaw@rice.edu, E-mail: p.cargill@imperial.ac.uk [Space and Atmospheric Physics, Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom)

2013-06-10T23:59:59.000Z

450

Coordination Polymers A Unique 3D Alternating Ferro-and  

E-Print Network [OSTI]

(3-ptz)] (3-ptz = 5-(3-pyridyl)tetrazolate),[7e] in which the metal centers are diamagnetic 3d10 cadmium

Gao, Song

451

From Digital to Physical: Computational Aspects of 3D Manufacturing.  

E-Print Network [OSTI]

??The desktop publishing revolution of the 1980s is currently repeating itself in 3D, referred to as desktop manufacturing. Online services such as Shapeways have become… (more)

Baecher, Moritz Niklaus

2013-01-01T23:59:59.000Z

452

3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal...  

Open Energy Info (EERE)

Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, Indonesia Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: 3-D...

453

The role of 3D printing in biological anthropology.  

E-Print Network [OSTI]

??The following work explores the role of 3D printing in biological anthropology. A case study approach is used to provide an understanding of two different… (more)

Allard, Travis T.

2006-01-01T23:59:59.000Z

454

RELAP5-3D V. 4.X.X  

Energy Science and Technology Software Center (OSTI)

000191MLTPL01 NON-NRC FUNDED RELAP5-3D VERSION 4.x.x SOFTWARE REACTOR EXCURSION AND LEAK ANALYSIS PACKAGE - THREE DIMENSIONAL   

455

Making 3D Printed Christmas Ornaments | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This Contributor Santa's sleigh becomes "Intelligent Machine" this Christmas Using 3D Printing to Redesign Santa's Sleigh A Sneak Peek Into Santa's Smarter Sleigh Subscribe to...

456

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Principal Investigator: Greg Newman, Michael Fehler Organizations: LBL & MIT Track Name April...

457

MPSalsa 3D Simulations of Chemically Reacting Flows  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).

This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.

458

3D Reconstruction of the Human Jaw from A Sequence of Images  

E-Print Network [OSTI]

repeated acquisition of radiographs may result in undesired side effects. Obtaining a plaster model the analysis of X-rays and plaster models. In [l], a computer-vision technique was de- veloped for the acquisition and processing of 3D pro- files of dental imprints which still requires a plaster mode1

Farag, Aly A.

459

An advanced 3D boundary element method for characterizations of composite materials  

E-Print Network [OSTI]

An advanced 3D boundary element method for characterizations of composite materials X.L. Chena , Y developments in the modeling of composite materials using the boundary element method (BEM) are presented in dealing with nearly-singular integrals, which arise in the BEM modeling of composite materials

Liu, Yijun

460

Building Part-based Object Detectors via 3D Geometry Abhinav Shrivastava Abhinav Gupta  

E-Print Network [OSTI]

Building Part-based Object Detectors via 3D Geometry Abhinav Shrivastava Abhinav Gupta The Robotics on heuristics such as high gradient energy. This part- based model is trained discriminatively; however, learning this model is a complex task as it involves optimization of a non-convex function over a set

Treuille, Adrien

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Structure formation: a spherical model for the evolution of the density distribution  

E-Print Network [OSTI]

Within the framework of hierarchical clustering we show that a simple Press-Schechter-like approximation, based on spherical dynamics, provides a good estimate of the evolution of the density field in the quasi-linear regime up to $\\Sigma \\sim 1$. Moreover, it allows one to recover the exact series of the cumulants of the probability distribution of the density contrast in the limit $\\Sigma \\to 0$ which sheds some light on the rigorous result and on ``filtering''. We also obtain similar results for the divergence of the velocity field. Next, we extend this prescription to the highly non-linear regime, using a stable-clustering approximation. Then we recover a specific scaling of the counts-in-cells which is indeed seen in numerical simulations, over a well-defined range. To this order we also introduce an explicit treatment of the behaviour of underdensities, which takes care of the normalization and is linked to the low-density bubbles and the walls one can see in numerical simulations. We compare this to a 1-dimensional adhesion model, and we present the consequences of our prescription for the power-law tail and the cutoff of the density distribution.

P. Valageas

1998-07-02T23:59:59.000Z

462

Non-Born-Oppenheimer electronic and nuclear densities for a Hooke-Calogero three-particle model: Non-uniqueness of density-derived molecular structure  

SciTech Connect (OSTI)

We consider the calculation of non-Born-Oppenheimer, nBO, one-particle densities for both electrons and nuclei. We show that the nBO one-particle densities evaluated in terms of translationally invariant coordinates are independent of the wavefunction describing the motion of center of mass of the whole system. We show that they depend, however, on an arbitrary reference point from which the positions of the vectors labeling the particles are determined. We examine the effect that this arbitrary choice has on the topology of the one-particle density by selecting the Hooke-Calogero model of a three-body system for which expressions for the one-particle densities can be readily obtained in analytic form. We extend this analysis to the one-particle densities obtained from full Coulomb interaction wavefunctions for three-body systems. We conclude, in view of the fact that there is a close link between the choice of the reference point and the topology of one-particle densities that the molecular structure inferred from the topology of these densities is not unique. We analyze the behavior of one-particle densities for the Hooke-Calogero Born-Oppenheimer, BO, wavefunction and show that topological transitions are also present in this case for a particular mass value of the light particles even though in the BO regime the nuclear masses are infinite. In this vein, we argue that the change in topology caused by variation of the mass ratio between light and heavy particles does not constitute a true indication in the nBO regime of the emergence of molecular structure.

Ludena, E. V. [Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Echevarria, L. [Departamento de Quimica, Universidad Simon Bolivar, USB, Sartenejas, Caracas (Venezuela, Bolivarian Republic of); Lopez, X.; Ugalde, J. M. [Kimika Fakultatea, Euskal Herriko Unibertsitatea, Posta Kutxa 1072, 20080 Donostia, Euskadi (Spain)

2012-02-28T23:59:59.000Z

463

Physical sectioning in 3D biological microscopy  

E-Print Network [OSTI]

...................................................................... 61 G Stepan’s models of regenerative chatter in metal cutting........................... 62 H Chatter model for KESM............................................................................ 64 ix CHAPTER Page I Summary... based on the source of vibration: frictional, regenerative, mode-coupling, and thermo-mechanical [7]. Frictional chatter gets its excitation energy from the friction force either between the workpiece and the tool 15 flank, or between the section...

Guntupalli, Jyothi Swaroop

2008-10-10T23:59:59.000Z

464

Physical sectioning in 3D biological microscopy  

E-Print Network [OSTI]

...................................................................... 61 G Stepan?s models of regenerative chatter in metal cutting........................... 62 H Chatter model for KESM............................................................................ 64 ix CHAPTER Page I Summary... based on the source of vibration: frictional, regenerative, mode-coupling, and thermo-mechanical [7]. Frictional chatter gets its excitation energy from the friction force either between the workpiece and the tool 15 flank, or between the section...

Guntupalli, Jyothi Swaroop

2009-05-15T23:59:59.000Z

465

Gamma-Ray Burst Prompt Emission Light Curves and Power Density Spectra in the ICMART Model  

E-Print Network [OSTI]

In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately-high magnetization parameter $\\sigma$ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately-high-$\\sigma$ flow. The run-away growth and subsequent depletion of these mini-emitters as a function time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

Zhang, Bo

2013-01-01T23:59:59.000Z

466

Proposal for the development of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)  

SciTech Connect (OSTI)

Future particle physics experiments looking for rare processes will have no choice but to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare process. The authors propose to develop a 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) chip for HEP applications, to advance the state-of-the-art for pattern recognition and track reconstruction for fast triggering.

Deptuch, Gregory; Hoff, Jim; Kwan, Simon; Lipton, Ron; Liu, Ted; Ramberg, Erik; Todri, Aida; Yarema, Ray; /Fermilab; Demarteua, Marcel,; Drake, Gary; Weerts, Harry; /Argonne /Chicago U. /Padua U. /INFN, Padua

2010-10-01T23:59:59.000Z

467

03/05/2010 09:26Photos: 3D replicas to help sell your home? That's computer vision | Software | silicon.com Page 1 of 11http://www.silicon.com/technology/software/2010/03/30/photos-3d-...cas-to-help-sell-your-home-thats-computer-vision-39745647/print/  

E-Print Network [OSTI]

model of Antony Gormley's head, printed via 3D printer Photo credits: Natasha Lomas03/05/2010 09:26Photos: 3D replicas to help sell your home? That's computer vision | Software | silicon.com Page 1 of 11http://www.silicon.com/technology/software/2010/03/30/photos-3d

Cipolla, Roberto

468

Thermodynamics and Structural Properties of the High Density Gaussian Core Model  

E-Print Network [OSTI]

We numerically study thermodynamic and structural properties of the one-component Gaussian core model (GCM) at very high densities. The solid-fluid phase boundary is carefully determined. We find that the density dependence of both the freezing and melting temperatures obey the asymptotic relation, $\\log T_f$, $\\log T_m \\propto -\\rho^{2/3}$, where $\\rho$ is the number density, which is consistent with Stillinger's conjecture. Thermodynamic quantities such as the energy and pressure and the structural functions such as the static structure factor are also investigated in the fluid phase for a wide range of temperature above the phase boundary. We compare the numerical results with the prediction of the liquid theory with the random phase approximation (RPA). At high temperatures, the results are in almost perfect agreement with RPA for a wide range of density, as it has been already shown in the previous studies. In the low temperature regime close to the phase boundary line, although RPA fails to describe the structure factors and the radial distribution functions at the length scales of the interparticle distance, it successfully predicts their behaviors at shorter length scales. RPA also predicts thermodynamic quantities such as the energy, pressure, and the temperature at which the thermal expansion coefficient becomes negative, almost perfectly. Striking ability of RPA to predict thermodynamic quantities even at high densities and low temperatures is understood in terms of the decoupling of the length scales which dictate thermodynamic quantities from the interparticle distance which dominates the peak structures of the static structure factor due to the softness of the Gaussian core potential.

Atsushi Ikeda; Kunimasa Miyazaki

2011-07-20T23:59:59.000Z

469

3-D seismic velocity and attenuation structures in the geothermal field  

SciTech Connect (OSTI)

We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

2013-09-09T23:59:59.000Z

470

Computer simulations of the restricted primitive model at very low temperature and density  

E-Print Network [OSTI]

The problem of successfully simulating ionic fluids at low temperature and low density states is well known in the simulation literature: using conventional methods, the system is not able to equilibrate rapidly due to the presence of strongly associated cation-anion pairs. In this manuscript we present a numerical method for speeding up computer simulations of the restricted primitive model (RPM) at low temperatures (around the critical temperature) and at very low densities (down to $10^{-10}\\sigma^{-3}$, where $\\sigma$ is the ion diameter). Experimentally, this regime corresponds to typical concentrations of electrolytes in nonaqueous solvents. As far as we are aware, this is the first time that the RPM has been equilibrated at such extremely low concentrations. More generally, this method could be used to equilibrate other systems that form aggregates at low concentrations.

Chantal Valeriani; Philip J. Camp; Jos W. Zwanikken; René van Roij; Marjolein Dijkstra

2010-01-13T23:59:59.000Z

471

BIOLOGICALLY MOTIVATED 3D FACE RECOGNITION Albert Ali Salah  

E-Print Network [OSTI]

BIOLOGICALLY MOTIVATED 3D FACE RECOGNITION by Albert Ali Salah B.S, in Computer Engineering, Bogazi of Doctor of Philosophy Graduate Program in Bogazi¸ci University 2007 #12;ii BIOLOGICALLY MOTIVATED 3D FACE. Hayim Molinas. #12;iv ACKNOWLEDGEMENTS With gratitude to my PhD advisor Lale Akarun for her boundless

472

Dynamics of Anderson localization in open 3D media  

E-Print Network [OSTI]

We develop a self-consistent theoretical approach to the dynamics of Anderson localization in open three-dimensional (3D) disordered media. The approach allows us to study time-dependent transmission and reflection, and the distribution of decay rates of quasi-modes of 3D disordered slabs near the Anderson mobility edge.

S. E. Skipetrov; B. A. van Tiggelen

2005-11-22T23:59:59.000Z

473

Surface light fields for 3D photography Daniel N. Wood  

E-Print Network [OSTI]

Surface light fields for 3D photography Daniel N. Wood A dissertation submitted in partial This is to certify that I have examined this copy of a doctoral dissertation by Daniel N. Wood and have found for 3D photography by Daniel N. Wood Chair of Supervisory Committee: Associate Professor Brian L

Washington at Seattle, University of

474

3D Wavelet-Based Filter and Method  

DOE Patents [OSTI]

A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

Moss, William C. (San Mateo, CA); Haase, Sebastian (San Francisco, CA); Sedat, John W. (San Francisco, CA)

2008-08-12T23:59:59.000Z

475

Anatomic measurement accuracy: CT parameters and 3D rendering effects  

E-Print Network [OSTI]

Anatomic measurement accuracy: CT parameters and 3D rendering effects Brian J Whyms a, E Michael of Neuroscience #12;INTRODUCTION · Measurements from 3D-CT rendering are used in research and clinical management-CT rendering techniques on measurements #12;METHODS Scanned: · 3 human mandibles · a phantom object Phantom

Vorperian, Houri K.

476

An Improved Vertex Caching Scheme for 3D Mesh Rendering  

E-Print Network [OSTI]

An Improved Vertex Caching Scheme for 3D Mesh Rendering Gang Lin and Thomas P.-Y. Yu Abstract to the graphics pipeline during rendering. To make effective use of the cache and facilitate rendering, it is key effective algorithm for generating a sequence for efficient rendering of 3D polygonal meshes based on greedy

Lin, Gang

477

3D THERMOGRAPHY FOR QUANTIFICATION OF HEAT GENERATION RESULTING FROM  

E-Print Network [OSTI]

been used for decades by biologists and clinicians to isolate main sites of body heat loss by biologists and clinicians to isolate main sites of body heat loss and to assist with diagnosis3D THERMOGRAPHY FOR QUANTIFICATION OF HEAT GENERATION RESULTING FROM INFLAMMATION THERMOGRAPHIE 3D

Nebel, Jean-Christophe

478

FRONTIER ADVANCING DELAUNAY TRIANGULATION OF UNORGANIZED 3D POINTS  

E-Print Network [OSTI]

FRONTIER ADVANCING DELAUNAY TRIANGULATION OF UNORGANIZED 3D POINTS INDRIYATI ATMOSUKARTO NATIONAL Science Thesis Title: Frontier Advancing Delaunay Triangulation of Unorga- nized 3D Points. Abstract Mesh the surface shapes of the objects. This thesis describes a novel frontier advancing polygonization algorithm

Leow, Wee Kheng

479

Bulletin of the Seismological Society of America, Vol. 96, No. 4A, pp. 13521358, August 2006, doi: 10.1785/0120050173 Efficient Modeling of Q for 3D Numerical Simulation of Wave Propagation  

E-Print Network [OSTI]

and Minster, 1984; Emmerich and Korn, 1987; Blanch et al., 1995; Day and Bradley, 2001; Graves and Day, 2003 made for the modeling Q (e.g., Emmerich and Korn, 1987; Bl

Archuleta, Ralph

480

GalPak3D: A Bayesian parametric tool for extracting morpho-kinematics of galaxies from 3D data  

E-Print Network [OSTI]

We present a method to constrain galaxy parameters directly from 3-dimensional data-cubes. The algorithm compares directly the data-cube with a parametric model mapped in $x,y,\\lambda$ coordinates. It uses the spectral Line Spread Function (LSF) and the spatial Point Spread Function (PSF) to generate a 3-dimensional kernel whose characteristics are instrument-specific or user-generated. The algorithm returns the intrinsic modeled properties along with both an `intrinsic' model data-cube and the modeled galaxy convolved with the 3D-kernel. The algorithm uses a Markov Chain Monte Carlo (MCMC) approach with a non-traditional proposal distribution in order to efficiently probe the parameter space. We demonstrate the robustness of the algorithm using 1728 mock galaxies and galaxies generated from hydrodynamical simulations in various seeing conditions from 0.6" to 1.2". We find that the algorithm can recover the morphological parameters (inclination, position angle) to within 10% and the kinematic parameters (maxi...

Bouché, N; Schroetter, I; Michel-Dansac, L; Contini, T

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3-d density model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

FSU Office of Research Program in Interdisciplinary Computing (PIC) What is 3D printing?  

E-Print Network [OSTI]

(PIC) What is 3D printing? 3D printing is a process of making. 3D printing is distinct from traditional machining techniques, which mostly organs, meat, circuit boards and batteries. 3D printing impacts nearly every

Ronquist, Fredrik

482

Use of 2.5-D and 3-D technology to evaluate control room upgrades  

SciTech Connect (OSTI)

This paper describes an Electric Power Research Inst. (EPRI) study in which 2.5-D and 3-D visualization technology was applied to evaluate the design of a nuclear power plant control room upgrade. The study involved converting 3-D CAD flies of a planned upgrade into a photo-realistic appearing virtual model, and evaluating the value and usefulness of the model. Nuclear utility and EPRI evaluators viewed and interacted with the control room virtual model with both 2.5-D and 3-D representations. They identified how control room and similar virtual models may be used by utilities for design and evaluation purposes; assessed potential economic and other benefits; and identified limitations, potential problems, and other issues regarding use of visualization technology for this and similar applications. In addition, the Halden CREATE (Control Room Engineering Advanced Tool-kit Environment) Verification Tool was applied to evaluate features of the virtual model against US NRC NUREG 0700 Revision 2 human factors engineering guidelines (NUREG 0700) [1]. The study results are very favorable for applying 2.5-D visualization technology to support upgrading nuclear power plant control rooms and other plant facilities. Results, however, show that today's 3-D immersive viewing systems are difficult to justify based on cost, availability and value of information provided for this application. (authors)

Hanes, L. F.; Naser, J. [2023 Wickford Road, Columbus, OH 43221 Electric Power Research Inst., 3420 Hillview Ave., Palo Alto, CA 94303 (United States)

2006-07-01T23:59:59.000Z

483

Enhancement models of momentum densities of annihilating electron-positron pairs: the many-body picture of natural geminals  

E-Print Network [OSTI]

The correlated motion of a positron surrounded by electrons is a fundamental many-body problem. We approach this by modeling the momentum density of annihilating electron-positron pairs using the framework of reduced density matrices, natural orbitals and natural geminals (electron-positron pair wave functions) of the quantum theory of many-particle systems. We find that an expression based on the natural geminals provides an exact, unique and compact expression for the momentum density. The natural geminals can be used to define and determine enhancement factors for enhancement models going beyond the independent-particle model for a better understanding of results of positron annihilation experiments.

Ilja Makkonen; Mikko M. Ervasti; Topi Siro; Ari Harju

2013-12-19T23:59:59.000Z

484

Interacting boson model from energy density functionals: {gamma}-softness and the related topics  

SciTech Connect (OSTI)

A comprehensive way of deriving the Hamiltonian of the interacting boson model (IBM) is described. Based on the fact that the multi-nucleon induced surface deformation in finite nucleus is simulated by effective boson degrees of freedom, the potential energy surface calculated with self-consistent mean-field method employing a given energy density functional (EDF) is mapped onto the IBM analog, and thereby the excitation spectra and transition rates with good symmetry quantum numbers are calculated. Recent applications of the proposed approach are reported: (i) an alternative robust interpretation of the {gamma}-soft nuclei and (ii) shape coexistence in lead isotopes.

Nomura, K. [Institut fuer Kernphysik, Universitaet zu Koeln, D-50937 Koeln (Germany)

2012-10-20T23:59:59.000Z

485

Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer  

SciTech Connect (OSTI)

Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

Chitcholtan, Kenny, E-mail: kenny.chitcholtan@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand)] [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Asselin, Eric, E-mail: Eric.Asselin@uqtr.ca [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada)] [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Parent, Sophie, E-mail: Sophie.Parent@uqtr.ca [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada)] [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Sykes, Peter H., E-mail: peter.sykes@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Evans, John J., E-mail: john.evans@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Centre of Neuroendocrinology and The MacDiarmid Institute of Advanced Materials and Nanotechnology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand)

2013-01-01T23:59:59.000Z

486

Modelling of a self-sustained density wave oscillation and its neutronic response in a three-dimensional heterogeneous system  

E-Print Network [OSTI]

can bring local oscillations of the reactor power. Density wave oscillations in heated channels haveModelling of a self-sustained density wave oscillation and its neutronic response in a three, Department of Applied Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden a r t i c l e

Demazière, Christophe

487

Modeling the propagation of whistler-mode waves in the presence of field-aligned density irregularities  

E-Print Network [OSTI]

Modeling the propagation of whistler-mode waves in the presence of field-aligned density of VLF whistler-mode waves in a laboratory plasma. Our goal is to understand whistler propagation) whistler in a density enhancement. Results from a numerical simulation of whistler wave propagation

California at Los Angles, University of

488

Real time 3D and heterogeneous data fusion  

SciTech Connect (OSTI)

This project visualizes characterization data in a 3D setting, in real time. Real time in this sense means collecting the data and presenting it before it delays the user, and processing faster than the acquisition systems so no bottlenecks occur. The goals have been to build a volumetric viewer to display 3D data, demonstrate projecting other data, such as images, onto the 3D data, and display both the 3D and projected images as fast as the data became available. The authors have examined several ways to display 3D surface data. The most effective was generating polygonal surface meshes. They have created surface maps form a continuous stream of 3D range data, fused image data onto the geometry, and displayed the data with a standard 3D rendering package. In parallel with this, they have developed a method to project real-time images onto the surface created. A key component is mapping the data on the correct surfaces, which requires a-priori positional information along with accurate calibration of the camera and lens system.

Little, C.Q.; Small, D.E.

1998-03-01T23:59:59.000Z

489

A 3D radiative transfer framework: I. non-local operator splitting and continuum scattering problems  

E-Print Network [OSTI]

We describe a highly flexible framework to solve 3D radiation transfer problems in scattering dominated environments based on a long characteristics piece-wise parabolic formal solution and an operator splitting method. We find that the linear systems are efficiently solved with iterative solvers such as Gauss-Seidel and Jordan techniques. We use a sphere-in-a-box test model to compare the 3D results to 1D solutions in order to assess the accuracy of the method. We have implemented the method for static media, however, it can be used to solve problems in the Eulerian-frame for media with low velocity fields.

Peter H. Hauschildt; E. Baron

2006-01-09T23:59:59.000Z

490

Small-stencil 3D schemes for diffusive flows in porous media Robert Eymard  

E-Print Network [OSTI]

involve computations of the flow on meshes that are adapted to the geological layers. This geology fitting underground engineering codes, in particular in oil reservoir simulations, are in most cases based on meshes which are produced from the modelling of the underground geology are quite often 3D extensions of 2D

Paris-Sud XI, Université de

491

Boolean Operations on 3D Selective Nef Complexes: Data Structure, Algorithms, Optimized  

E-Print Network [OSTI]

polyhedra and complexes are quite general. They can model non­manifold solids, unbounded solids, openBoolean Operations on 3D Selective Nef Complexes: Data Structure, Algorithms, Optimized, open and closed sets, mixed­dimensional complexes, and they are closed under all boolean

Mehlhorn, Kurt

492

Building a 3D Simulator for Autonomous Navigation of Robotic Fishes  

E-Print Network [OSTI]

Building a 3D Simulator for Autonomous Navigation of Robotic Fishes Jindong Liu Department control and autonomous navigation of a robotic fish. The simplified kinematics and hydrodynamics models way to develop autonomous navigation algorithms for robotic fishes. I. INTRODUCTION In nature, fish

Hu, Huosheng

493

Shape Retrieval using 3D Zernike Descriptors Marcin Novotni Reinhard Klein  

E-Print Network [OSTI]

commonly used e.g. in games or VR environments, etc. On the other hand, modeling of high fidelity 3D.g. cars, airplanes, humans, etc.) that can be used for instance in computer games or VR environments are conceivable, e.g. one classifying cars by brands, i.e. BMW, Mercedes, etc. and the other classifying by type

Behnke, Sven

494

A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation  

E-Print Network [OSTI]

A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation Y. Coudi`ere Universit for ECG simulation 1 Introduction Computer models of the electrical activity in the myocardium, the measurement of which on the body surface is the well-known electrocardiogram (ECG). It gives a non

Coudière, Yves

495

3D printing rises to the occasion | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value4 3.P D AT E3D3D3D

496

3-D SPH simulations of colliding winds in eta Carinae  

E-Print Network [OSTI]

We study colliding winds in the superluminous binary eta Carinae by performing three-dimensional, Smoothed Particle Hydrodynamics (SPH) simulations. For simplicity, we assume both winds to be isothermal. We also assume that wind particles coast without any net external forces. We find that the lower density, faster wind from the secondary carves out a spiral cavity in the higher density, slower wind from the primary. Because of the phase-dependent orbital motion, the cavity is very thin on the periastron side, whereas it occupies a large volume on the apastron side. The model X-ray light curve using the simulated density structure fits very well with the observed light curve for a viewing angle of i=54 degrees and phi=36 degrees, where i is the inclination angle and phi is the azimuth from apastron.

Atsuo T. Okazaki; Stanley P. Owocki; Christopher M. P. Russell; Michael F. Corcoran

2008-03-27T23:59:59.000Z

497

Elliptical Solutions to the Standard Cosmology Model with Realistic Values of Matter Density  

E-Print Network [OSTI]

We have examined a solution to the FRW model of the Einstein and de Sitter Universe, often termed the standard model of cosmology, using wide values for the normalized cosmological constant Omega_L and spacetime curvature Omega_k with proposed values of normalized matter density. These solutions were evaluated using a combination of the third type of elliptical equations and were found to display critical points for redshift z, between 1 and 3, when Omega_L is positive. These critical points occur at values for normalized cosmological constant higher than those currently thought important, though we find this solution interesting because the Omega_L term may increase in dominance as the Universe evolves bringing this discontinuity into importance. We also find positive Omega_L tends towards attractive at values of z which are commonly observed for distant galaxies.

Ahmet Mecit Oztas; Michael L. Smith

2015-02-21T23:59:59.000Z

498

Thermodynamics of baryonic matter with strangeness within non-relativistic energy density functional model  

E-Print Network [OSTI]

We study the thermodynamical properties of compressed baryonic matter with strangeness within non-relativistic energy density functional models with a particular emphasis on possible phase transitions found earlier for a simple $n,p,e,\\Lambda$-mixture. The aim of the paper is twofold: I) examining the phase structure of the complete system, including the full baryonic octet and II) testing the sensitivity of the results to the model parameters. We find that, associated to the onset of the different hyperonic families, up to three separate strangeness-driven phase transitions may occur. Consequently, a large fraction of the baryonic density domain is covered by phase coexistence with potential relevance for (proto)-neutron star evolution. It is shown that the presence of a phase transition is compatible both with the observational constraint on the maximal neutron star mass, and with the present experimental information on hypernuclei. In particular we show that two solar mass neutron stars are compatible with important hyperon content. Still, the parameter space is too large to give a definitive conclusion of the possible occurrence of a strangeness driven phase transition, and further constraints from multiple-hyperon nuclei and/or hyperon diffusion data are needed.

Ad. R. Raduta; F. Gulminelli; M. Oertel

2014-09-15T23:59:59.000Z