Sample records for 3-d density model

  1. 3D Model Retrieval Using Probability Density-Based Shape Descriptors

    E-Print Network [OSTI]

    -based descriptor can be efficiently computed via kernel density estimation (KDE) coupled with fast Gauss transform into a canonical coordin

  2. The scaling functions of the free energy density and its derivatives for the 3d O(4) model

    E-Print Network [OSTI]

    Engels, Juergen

    2011-01-01T23:59:59.000Z

    We derive direct representations of the scaling functions of the 3d O(4) model which are relevant for comparisons to other models, in particular QCD. This is done in terms of expansions in the scaling variable z= t/h^{1/Delta}. The expansions around z=0 and the corresponding asymptotic ones for z --> +- infinity overlap such that no interpolation is needed. The expansion coefficients are determined numerically from the data of a previous high statistics simulation of the O(4) model on a three-dimensional lattice of linear extension L=120. From the scaling function of the magnetization we calculate the leading asymptotic coefficients of the scaling function of the free energy density. As a result we obtain the universal amplitude ratio A^+/A^-=1.84(4) for the specific heat. Comparing the scaling function of the energy density to the data we find the non-singular part of the energy density epsilon_{ns}(T) with high precision and at the same time excellent scaling properties.

  3. 3-D capacitance density imaging system

    DOE Patents [OSTI]

    Fasching, G.E.

    1988-03-18T23:59:59.000Z

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

  4. BEAMS3D Neutral Beam Injection Model

    SciTech Connect (OSTI)

    Lazerson, Samuel

    2014-04-14T23:59:59.000Z

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  5. Computer Modelling of 3D Geological Surface

    E-Print Network [OSTI]

    Kodge, B G

    2011-01-01T23:59:59.000Z

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  6. 3-D Model for Deactivation & Decommissioning

    Broader source: Energy.gov [DOE]

    The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work...

  7. Printing 3D Models to the Genisys Xs 3D Printer By Sotiri Koyonos

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    Printing 3D Models to the Genisys Xs 3D Printer By Sotiri Koyonos VMIL Consultant 28 February 2003's Genisys Xs 3D printer. This document assumes that you have created a stereo lithography file (*.stl Abstract This document outlines the process for manufacturing three dimensional (3D) models on the ITG

  8. 3D Modeling Engine Representation Summary Report

    SciTech Connect (OSTI)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01T23:59:59.000Z

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  9. 3-D hydro + cascade model at RHIC

    E-Print Network [OSTI]

    Chiho Nonaka; Steffen A. Bass

    2005-11-07T23:59:59.000Z

    We present a 3-D hydro + cascade model in which viscosity and a realistic freezeout process for the hadronic phase are taken into account. We compare our results to experimental data and discuss the finite state interaction effects on physical observables.

  10. Automatic 3D modeling of palatal plaster casts Marco Andreetto

    E-Print Network [OSTI]

    Abu-Mostafa, Yaser S.

    duplicated by 3D printers. A second application where 3D models of palatal casts could also be usefulAutomatic 3D modeling of palatal plaster casts Marco Andreetto Dept. of Information Engineer corte@dei.unipd.it Abstract This work introduces a procedure for automatic 3D model- ing and discusses

  11. Engineering Workshop 3D Modeling Using TinkerCAD

    E-Print Network [OSTI]

    Ohta, Shigemi

    using TinkerCAD · TinkerCad is used for online 3D modeling · Learn how to print the clip on a 3D printer the hole and the clip #12;Congratulations! You made a 3D model! #12;Now To Print It... Our Printers · MakerEngineering Workshop 3D Modeling Using TinkerCAD Sci-Ed Day 2014 Brookhaven National Laboratory

  12. Making a 3D Model of the Moon's Surface

    E-Print Network [OSTI]

    Christian, Eric

    information are we lack- ing? What additional information could we learn from a 3D model of the space shuttle? Show the students a 3D model of the space shuttle. What can we learn about the space shuttle from1 Making a 3D Model of the Moon's Surface Learning Objectives: · Students will make estimates about

  13. Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint

    SciTech Connect (OSTI)

    McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

    2012-06-01T23:59:59.000Z

    To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

  14. 3D Object Modelling via Registration

    E-Print Network [OSTI]

    matching on the GPU. So with the increasing demand for cheap 3D scanners and the advances of computer power, Iterative Closest Point, real time preview. #12;#12;Resumé Stereo vision har mange fordele frem for andre 3D

  15. 3-D Earth model more accurately pinpoints explosions

    E-Print Network [OSTI]

    - 1 - 3-D Earth model more accurately pinpoints explosions October 25, 2013 During the Cold War, U) have partnered to develop a 3-D model of the Earth's mantle and crust called SALSA3D (Sandia-Los Alamos of explosions. Significance of the research After an explosion, the energy travels through the Earth as waves

  16. The Effect of Matrix Density on the Regulation of 3-D Capillary Morphogenesis

    E-Print Network [OSTI]

    George, Steven C.

    The Effect of Matrix Density on the Regulation of 3-D Capillary Morphogenesis Cyrus M. Ghajar completely eliminated this inhibitory effect, resulting in robustly vascularized matrices suitable- blast monolayer exceeds a critical threshold,

  17. A new 3-D EDDY current model

    SciTech Connect (OSTI)

    Polak, S.J.; van Welij, J.S.; Wachters, A.J.H.

    1983-11-01T23:59:59.000Z

    This paper presents a new EDDY current model. This model minimizes the number of unknown per point. The authors also discuss the uniqueness aspects involved.

  18. Fitting of Constrained Models to Poor 3D Data 

    E-Print Network [OSTI]

    Robertson, Craig; Fisher, Robert B.; Werghi, Naoufel; Ashbrook, Anthony

    2000-01-01T23:59:59.000Z

    In this work we have addressed the question of whether it is possible to extract parametric models of features from poor quality 3D data. In doing this we have examined the applicability of an evolutionary strategy to the ...

  19. Curating Architectural 3D CAD Models

    E-Print Network [OSTI]

    Smith, MacKenzie

    Increasing demand to manage and preserve 3-dimensional models for a variety of physical phenomena (e.g., building and engineering designs, computer games, or scientific visualizations) is creating new challenges for digital ...

  20. STELLOPT Modeling of the 3D Diagnostic Response in ITER

    SciTech Connect (OSTI)

    Lazerson, Samuel A

    2013-05-07T23:59:59.000Z

    The ITER three dimensional diagnostic response to an n=3 resonant magnetic perturbation is modeled using the STELLOPT code. The in-vessel coils apply a resonant magnetic perturbation (RMP) fi eld which generates a 4 cm edge displacement from axisymmetry as modeled by the VMEC 3D equilibrium code. Forward modeling of flux loop and magnetic probe response with the DIAGNO code indicates up to 20 % changes in measured plasma signals. Simulated LIDAR measurements of electron temperature indicate 2 cm shifts on the low field side of the plasma. This suggests that the ITER diagnostic will be able to diagnose the 3D structure of the equilibria.

  1. Detection of screw threads in computed tomography 3D density fields

    E-Print Network [OSTI]

    Kosarevsky, Sergey

    2013-01-01T23:59:59.000Z

    In this paper, a new method is proposed to automatically detect screw threads in 3D density fields obtained from computed tomography measurement devices. The described method can be used to automate many operations during screw thread inspection process and drastically reduce operator's influence on the measurement process resulting in lower measurement times and increased repeatability.

  2. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

    SciTech Connect (OSTI)

    Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

    2006-08-24T23:59:59.000Z

    3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

  3. ModelCraft: Capturing Freehand Annotations and Edits on Physical 3D Models

    E-Print Network [OSTI]

    Keinan, Alon

    of affordable new desktop fabrication techniques such as 3D printing and laser cutting, physical models are used cur- rent 3D printing technology. ACM CLASSIFICATION: H5.2 [Information interfaces and presentation

  4. Modeling the GFR with RELAP5-3D

    SciTech Connect (OSTI)

    Cliff B. Davis; Theron D. Marshall; K. D. Weaver

    2005-09-01T23:59:59.000Z

    Significant improvements have been made to the RELAP5-3D computer code for analysis of the Gas Fast Reactor (GFR). These improvements consisted of adding carbon dioxide as a working fluid, improving the turbine component, developing a compressor model, and adding the Gnielinski heat transfer correlation. The code improvements were validated, generally through comparisons with independent design calculations. A model of the power conversion unit of the GFR was developed. The model of the power conversion unit was coupled to a reactor model to develop a complete model of the GFR system. The RELAP5 model of the GFR was used to simulate two transients, one initiated by a reactor trip and the other initiated by a loss of load.

  5. Unstructured grid modelling to create 3-D Earth models that unify geological and geophysical

    E-Print Network [OSTI]

    Farquharson, Colin G.

    Unstructured grid modelling to create 3-D Earth models that unify geological and geophysical Conclusion The common Earth model Geophysical inversion Geological and geophysical models Instructured meshes Geophysical inversion Geological and geophysical models Instructured meshes Motivation: The common Earth model

  6. 3D Model of the Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  7. 3D Model of the San Emidio Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    James E. Faulds

    The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

  8. 3D Model of the Neal Hot Springs Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31T23:59:59.000Z

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  9. 3D Model of the San Emidio Geothermal Area

    SciTech Connect (OSTI)

    James E. Faulds

    2013-12-31T23:59:59.000Z

    The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

  10. 3D Model of the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.

  11. 3D Model of the Tuscarora Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31T23:59:59.000Z

    The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.

  12. Density functional theory investigation of 3d, 4d, and 5d 13-atom metal clusters

    SciTech Connect (OSTI)

    Piotrowski, Mauricio J.; Piquini, Paulo; Da Silva, Juarez L. F. [Departamento de Fisica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS (Brazil); Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Cx. Postal 369, Sao Carlos 13560-970, SP (Brazil)

    2010-04-15T23:59:59.000Z

    The knowledge of the atomic structure of clusters composed by few atoms is a basic prerequisite to obtain insights into the mechanisms that determine their chemical and physical properties as a function of diameter, shape, surface termination, as well as to understand the mechanism of bulk formation. Due to the wide use of metal systems in our modern life, the accurate determination of the properties of 3d, 4d, and 5d metal clusters poses a huge problem for nanoscience. In this work, we report a density functional theory study of the atomic structure, binding energies, effective coordination numbers, average bond lengths, and magnetic properties of the 3d, 4d, and 5d metal (30 elements) clusters containing 13 atoms, M{sub 13}. First, a set of lowest-energy local minimum structures (as supported by vibrational analysis) were obtained by combining high-temperature first-principles molecular-dynamics simulation, structure crossover, and the selection of five well-known M{sub 13} structures. Several new lower energy configurations were identified, e.g., Pd{sub 13}, W{sub 13}, Pt{sub 13}, etc., and previous known structures were confirmed by our calculations. Furthermore, the following trends were identified: (i) compact icosahedral-like forms at the beginning of each metal series, more opened structures such as hexagonal bilayerlike and double simple-cubic layers at the middle of each metal series, and structures with an increasing effective coordination number occur for large d states occupation. (ii) For Au{sub 13}, we found that spin-orbit coupling favors the three-dimensional (3D) structures, i.e., a 3D structure is about 0.10 eV lower in energy than the lowest energy known two-dimensional configuration. (iii) The magnetic exchange interactions play an important role for particular systems such as Fe, Cr, and Mn. (iv) The analysis of the binding energy and average bond lengths show a paraboliclike shape as a function of the occupation of the d states and hence, most of the properties can be explained by the chemistry picture of occupation of the bonding and antibonding states.

  13. Chopper: Partitioning models into 3D-printable parts

    E-Print Network [OSTI]

    Luo, Linjie

    3D printing technology is rapidly maturing and becoming ubiquitous. One of the remaining obstacles to wide-scale adoption is that the object to be printed must fit into the working volume of the 3D printer. We propose a ...

  14. Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities

    E-Print Network [OSTI]

    Barrash, Warren

    Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping August 2013; accepted 7 September 2013; published 13 November 2013. [1] 3-D Hydraulic tomography (3-D HT (primarily hydraulic conductivity, K) is estimated by joint inversion of head change data from multiple

  15. 3D microstructure modeling of compressed fiber-based Gerd Gaiselmanna,

    E-Print Network [OSTI]

    Schmidt, Volker

    consideration of compression conditions as found in fuel cells. Given the input of a 3D microstructure of some compression states, an optimal vector field is estimated by simulated annealing. The model is applied to 3D im

  16. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect (OSTI)

    Howard Barker; Jason Cole

    2012-05-17T23:59:59.000Z

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  17. 3?D Surface Topography Boundary Conditions in Seismic Wave Modelling

    E-Print Network [OSTI]

    Hestholm, Stig

    2001-01-01T23:59:59.000Z

    New alternative formulations of exact boundary conditions for arbitrary three{dimensional (3?D) free surface topographies on seismic media have been derived. They are shown to be equivalent with previously published ...

  18. A System for 3D Error Visualization and Assessment of Digital Elevation Models

    E-Print Network [OSTI]

    Gousie, Michael B.

    A System for 3D Error Visualization and Assessment of Digital Elevation Models Michael B. Gousie that displays a DEM and possible errors in 3D, along with its associated contour or sparse data and detail. The cutting tool is semi-transparent so that the profile is seen in the context of the 3D surface

  19. 3D Measurements in Images using CAD Models George Vosselman

    E-Print Network [OSTI]

    Vosselman, George

    is therefore subject of research at many institutes. Whereas efforts to fully automate the process of building the alignment. 1 Introduction Future geographical information systems will contain 3D and highly structured extraction show good progress [2, 5], it is clear that under many circumstances automation is extremely

  20. Ranking on Cross Domain Manifold forRanking on Cross-Domain Manifold for Sketch-based 3D model Retrieval

    E-Print Network [OSTI]

    Ohbuchi, Ryutarou

    printers,... ­ User generated. T i bl 3D h· Trimble 3D warehouse... 3D model retrieval is essential scanners, 3D printers,... ­ User generated. T i bl 3D h· Trimble 3D warehouse... 3D model retrievalRanking on Cross Domain Manifold forRanking on Cross-Domain Manifold for Sketch-based 3D model

  1. Bootstrapping Mixed Correlators in the 3D Ising Model

    E-Print Network [OSTI]

    Filip Kos; David Poland; David Simmons-Duffin

    2014-06-18T23:59:59.000Z

    We study the conformal bootstrap for systems of correlators involving non-identical operators. The constraints of crossing symmetry and unitarity for such mixed correlators can be phrased in the language of semidefinite programming. We apply this formalism to the simplest system of mixed correlators in 3D CFTs with a $\\mathbb{Z}_2$ global symmetry. For the leading $\\mathbb{Z}_2$-odd operator $\\sigma$ and $\\mathbb{Z}_2$-even operator $\\epsilon$, we obtain numerical constraints on the allowed dimensions $(\\Delta_\\sigma, \\Delta_\\epsilon)$ assuming that $\\sigma$ and $\\epsilon$ are the only relevant scalars in the theory. These constraints yield a small closed region in $(\\Delta_\\sigma, \\Delta_\\epsilon)$ space compatible with the known values in the 3D Ising CFT.

  2. P and SV waves 3-D Numerical Modeling of AVOA from Heterogeneous Fractured Reservoirs

    E-Print Network [OSTI]

    Zhu, Xiang

    1997-01-01T23:59:59.000Z

    We study the effects of fracture-induced anisotropy and lateral fracture density heterogeneity on the reflected P and SV wave amplitude variation with offset and azimuth (AVOA), using 3-D finite-difference simulations. The ...

  3. Model for the prediction of 3D surface topography in 5-axis milling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Model for the prediction of 3D surface topography in 5-axis milling Sylvain Lavernhe LURPA - ENS surface topography obtained in 5-axis milling in function of the machining conditions. For this purpose to a feed rate prediction model. Thanks to the simulation model of 3D surface topography, the influence

  4. Modeling 3D animals from a side-view sketch Even Entema,b

    E-Print Network [OSTI]

    Barthe, Loïc

    Modeling 3D animals from a side-view sketch Even Entema,b , Loic Barthea , Marie-Paule Canib. This paper tackles the problem of creating 3D models of animals from a single, side-view sketch. We use be an important step for generat- ing more lively virtual worlds. Animals are also among the models

  5. A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and

    E-Print Network [OSTI]

    Popov, Peter

    A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning&M University, TX 77843-3404, USA Abstract A 3-D constitutive model for polycrystalline Shape Memory Alloys demonstrate the capabilities of the model. Key words: Shape Memory Alloy, reorientation, detwinning 1

  6. IAPRS, Vol. XXXIII, Amsterdam, 2000 MODELLING HISTORIC SITES AND MONUMENTS IN 3D HERITAGE INFORMATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    IAPRS, Vol. XXXIII, Amsterdam, 2000 MODELLING HISTORIC SITES AND MONUMENTS IN 3D HERITAGE.u-strasbg.fr TC V-8 Site recording and modelling TC V-10 World Cultural heritage and information ABSTRACT The modelling of 3D objects in surveying and particularly of historic monuments is generally

  7. The Modellers' Apprentice -Gesture-Based 3D Design in Immersive Environments

    E-Print Network [OSTI]

    Cooperstock, Jeremy R.

    The Modellers' Apprentice - Gesture-Based 3D Design in Immersive Environments Franc¸ois Rioux techniques) INTRODUCTION The Modellers' Apprentice is a fully immersive 3D computer- augmented environment in Figure 1. Figure 1. The Modellers Apprentice running in The Shared Reality En- vironment. RELATED WORK

  8. Methods Mol Biol . Author manuscript 3D structural models of transmembrane proteins

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    proteins is a major research area. Due to the lack of available 3D structures, automatic homology modelingMethods Mol Biol . Author manuscript Page /1 9 3D structural models of transmembrane proteins: Alexandre De Brevern Abstract Summary Transmembrane proteins

  9. Ontologies for the Integration of Air Quality Models and 3D City Models

    E-Print Network [OSTI]

    Genève, Université de

    -city densification may limit air pollution, carbon emissions, and energy use through reduced transportation of the most important environmental problems is air pollution, mostly induced by vehicle traffic1 Ontologies for the Integration of Air Quality Models and 3D City Models Claudine Metral Institut

  10. MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)

    SciTech Connect (OSTI)

    Nutter, C.; Wannamaker, P.E.

    1980-11-01T23:59:59.000Z

    MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.

  11. Spatial relations and properties for semantically enhanced 3D city models

    E-Print Network [OSTI]

    Genève, Université de

    Spatial relations and properties for semantically enhanced 3D city models and their relations (mostly aggregation and topology). Smart et al. (2011) extract is that, in the context of city models, explicit semantics in terms of spatial

  12. PHOTOREALISTIC BUILDING MODELING AND VISUALIZATION IN 3-D GEOSPATIAL INFORMATION SYSTEM

    E-Print Network [OSTI]

    Shan, Jie

    PHOTOREALISTIC BUILDING MODELING AND VISUALIZATION IN 3-D GEOSPATIAL INFORMATION SYSTEM Yonghak: Despite geospatial information systems are widely used in many different fields as a powerful tool in geospatial information system (GIS). Such 3-D photorealistic visualization is able to provide geospatial

  13. Accepted in Methods Mol Biol. 2010 3D-structural models of transmembrane proteins.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of transmembrane proteins is a major research area. Due to the lack of available 3D structures, automatic homology1 Accepted in Methods Mol Biol. 2010 3D-structural models of transmembrane proteins. Alexandre G proteins are macromolecules implicated in major biological process and diseases. Due to their specific

  14. 3D Micromechanical modeling of packed beds Zi Lu, Mohamed Abdou *, Alice Ying

    E-Print Network [OSTI]

    Abdou, Mohamed

    3D Micromechanical modeling of packed beds Zi Lu, Mohamed Abdou *, Alice Ying Mechanical: abdou@fusion.ucla.edu (M. Abdou). 0022-3115/01/$ - see front matter Ã? 2001 Elsevier Science B.

  15. NUMERICAL MODELING FOR THE FORMATION MECHANISM OF 3D TOPOGRAPHY ON MICROBIAL MAT SURFACES

    E-Print Network [OSTI]

    Patel, Harsh Jay

    2013-09-27T23:59:59.000Z

    , an innovative modeling approach was employed that focuses on the interface growth of the microbial mat surfaces using a combined stochastic and deterministic approach. A range of different initial conditions were simulated to evaluate the 3D topography evolution...

  16. Domain Fishing and 3D-JIGSAW: tools for protein comparative modelling

    E-Print Network [OSTI]

    Moreira, Bruno Contreras

    Fishing up to 7 alternative alignments #12;3D-JIGSAW Example #12;EVA: continuous evaluation of servers · improved alignments · multidomain modelling We want to do next: · better template selection (energies

  17. 3D Geological Modelling In Bavaria - State-Of-The-Art At A State...

    Open Energy Info (EERE)

    At A State Geological Survey Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 3D Geological Modelling In Bavaria - State-Of-The-Art At A State...

  18. Integrated canopy, building energy and radiosity model for 3D urban design

    E-Print Network [OSTI]

    Burdet, Etienne; Morand, Denis; Diab, Youssef

    2014-01-01T23:59:59.000Z

    We present an integrated, three dimensional, model of urban canopy, building energy and radiosity, for early stage urban designs and test it on four urban morphologies. All sub-models share a common descriptions of the urban morphology, similar to 3D urban design master plans and have simple parameters. The canopy model is a multilayer model, with a new discrete layer approach that does not rely on simplified geometry such as canyon or regular arrays. The building energy model is a simplified RC equivalent model, with no hypotheses on internal zoning or wall composition. We use the CitySim software for the radiosity model. We study the effects of convexity, the number of buildings and building height, at constant density and thermal characteristics. Our results suggest that careful three dimensional morphology design can reduce heat demand by a factor of 2, especially by improving insolation of lower levels. The most energy efficient morphology in our simulations has both the highest surface/volume ratio and ...

  19. Automated mask creation from a 3D model using Faethm.

    SciTech Connect (OSTI)

    Schiek, Richard Louis; Schmidt, Rodney Cannon

    2007-11-01T23:59:59.000Z

    We have developed and implemented a method which given a three-dimensional object can infer from topology the two-dimensional masks needed to produce that object with surface micro-machining. The masks produced by this design tool can be generic, process independent masks, or if given process constraints, specific for a target process. This design tool calculates the two-dimensional mask set required to produce a given three-dimensional model by investigating the vertical topology of the model.

  20. 3D Rigid Body Impact Burial Prediction Model

    E-Print Network [OSTI]

    Chu, Peter C.

    -fixed coordinate (E-coordinate) · cylinder's main-axis following coordinate (M-coordinate) · hydrodynamic force-Coordiante Hydrodynamic forces (drag and lift) are easily calculated. #12;Moment of Momentum Equations #12;Interfacial;Experiment · Hydrodynamic Model Development · Behavior of Falling Cylinder in Water Column (Chaotic

  1. Model--Based 3D Scene Analysis from Stereoscopic Image Sequences An approach for the modelling of complex 3D scenes like outdoor street views from a sequence of

    E-Print Network [OSTI]

    the problems stated above for building a true 3D model of a complex scene from a sequence of stereoscopic image for the modelling of complex 3D scenes like outdoor street views from a sequence of stereoscopic image pairs geometry is generated. Not only the scene geometry but also surface texture is stored within the model. 3D

  2. Integrated 3D Acid Fracturing Model for Carbonate Reservoir Stimulation

    E-Print Network [OSTI]

    Wu, Xi

    2014-06-23T23:59:59.000Z

    workflow is illustrated in Figure 3.3. The approach starts with a fracture simulator, which uses a geomechanical model, to calculate fracture width during the pad injection. A hydraulic fracture is created at the defined injection condition. Next, we... be directly found from the output of Fracpro. Table 3.1 shows an output file example from Fracpro for a fracture geometry at the end of a pad injection. The geometry data is restored in an “.fpx” file, named “PROJECT_NAME.fpx” and can be read using any text...

  3. Evaluation of field development plans using 3-D reservoir modelling

    SciTech Connect (OSTI)

    Seifert, D.; Lewis, J.J.M. [Heriot-Watt Univ., Edinburgh (United Kingdom); Newbery, J.D.H. [Conoco, UK Ltd., Aberdeen (United Kingdom)] [and others

    1997-08-01T23:59:59.000Z

    Three-dimensional reservoir modelling has become an accepted tool in reservoir description and is used for various purposes, such as reservoir performance prediction or integration and visualisation of data. In this case study, a small Northern North Sea turbiditic reservoir was to be developed with a line drive strategy utilising a series of horizontal producer and injector pairs, oriented north-south. This development plan was to be evaluated and the expected outcome of the wells was to be assessed and risked. Detailed analyses of core, well log and analogue data has led to the development of two geological {open_quotes}end member{close_quotes} scenarios. Both scenarios have been stochastically modelled using the Sequential Indicator Simulation method. The resulting equiprobable realisations have been subjected to detailed statistical well placement optimisation techniques. Based upon bivariate statistical evaluation of more than 1000 numerical well trajectories for each of the two scenarios, it was found that the wells inclinations and lengths had a great impact on the wells success, whereas the azimuth was found to have only a minor impact. After integration of the above results, the actual well paths were redesigned to meet external drilling constraints, resulting in substantial reductions in drilling time and costs.

  4. Constructing a GIS-based 3D urban model using LiDAR and aerial photographs

    E-Print Network [OSTI]

    Lin, Wei-Ming

    2005-02-17T23:59:59.000Z

    ; Rau and Chen 2001; Shiode 2001; Zhou et al. 2004). The 3D urban modeling technique enables urban residents to visualize future urban construction and development. It also supports standard activities of urban design and city planning and allows... of geometric information about urban objects, and it is an efficient tool for designing and creating urban objects (Sinning-Meister et al 1996). The contemporary CAD systems also offer full 3D rendering capability to visualize urban objects and the urban...

  5. Fast, Automated, Scalable Generation of Textured 3D Models of Indoor Environments

    E-Print Network [OSTI]

    Zakhor, Avideh

    , Student Member, IEEE, Peter Cheng, and Avideh Zakhor, Fellow, IEEE Abstract--3D modeling of building- realistic models. We apply these techniques to several data sets of building interiors, including multi or missing, especially after several remodelings. Such scans can be used to generate building models

  6. Mockup Builder: Direct 3D Modeling On and Above the Surface in a Continuous Interaction Space

    E-Print Network [OSTI]

    Casiez, Géry

    and manipulate three-dimensional shapes. Another important ob- stacle, lies in that powerful modeling systems popularity of Virtual Environments, they have yet to replace desktop CAD systems when it comes to modeling 3D with models through widgets to control their parameters. However, new and affordable technologies

  7. A Morphable Model For The Synthesis Of 3D Faces Volker Blanz Thomas Vetter

    E-Print Network [OSTI]

    Chuang, Yung-Yu

    by computing dense one-to-one correspondence to an internal face model. Second, the approach regulates Introduction Computer aided modeling of human faces still requires a great deal of expertise and manual control of prototypical 3D scans of faces, the morphable face model contributes to two main steps in face manipulation: (1

  8. Author's personal copy A new 3D numerical model of cosmogenic nuclide 10

    E-Print Network [OSTI]

    Usoskin, Ilya G.

    Author's personal copy A new 3D numerical model of cosmogenic nuclide 10 Be production's atmosphere cosmogenic isotopes A new quantitative model of production of the cosmogenic isotope 10 solar energetic particle events. The model was tested against the results of direct measurements

  9. Construction of a 3D model of cytochrome P450 2B4

    E-Print Network [OSTI]

    Chang, Yan-Tyng; Stiffelman, Oscar B.; Vakser, Ilya A.; Loew, Gilda H.; Bridges, Angela; Waskell, Lucy

    1997-02-01T23:59:59.000Z

    A three-dimensional structural model of rabbit phenobarbital-inducible cytochrome P450 2B4 (LM2) was constructed by homology modeling techniques previously developed for building and evaluating a 3D model of the cytochrome P450choP isozyme. Four...

  10. Integration of geostatistical techniques and intuitive geology in the 3-D modeling process

    SciTech Connect (OSTI)

    Heine, C.J.; Cooper, D.H. (Saudi ARAMCO, Dhahran (Saudi Arabia))

    1996-01-01T23:59:59.000Z

    The development of 3-D geologic models for reservoir description and simulation has traditionally relied on the computer derived interpolation of well data in a geocelluar stratigraphic framework. The quality of the interpolation has been directly dependent on the nature of the interpolation method, and ability of the Interpolation scheme to accurately predict the value of geologic attributes away from the well. Typically, interpolation methods employ deterministic or geostatistical algorithms which offer limited capacity for Integrating data derived from secondary analyses. These secondary analyses, which might include the results from 3-D seismic inversion, borehole imagery studies, or deductive reasoning, introduce a subjective component into what would otherwise be restricted to a purely mathematical treatment of geologic data. At Saudi ARAMCO an increased emphases is being placed on the role of the reservoir geologist in the development of 3-D geologic models. Quantitative results, based on numerical computations, are being enhanced with intuitive geology, derived from years of cumulative professional experience and expertise. Techniques such as template modeling and modified conditional simulation, are yielding 3-D geologic models, which not only more accurately reflect the geology of the reservoir, but also preserve geologic detail throughout the simulation process. This incorporation of secondary data sources and qualitative analysis has been successfully demonstrated in a clastic reservoir environment in Central Saudi Arabia, and serves as a prototype for future 3-D geologic model development.

  11. Integration of geostatistical techniques and intuitive geology in the 3-D modeling process

    SciTech Connect (OSTI)

    Heine, C.J.; Cooper, D.H. [Saudi ARAMCO, Dhahran (Saudi Arabia)

    1995-08-01T23:59:59.000Z

    The development of 3-D geologic models for reservoir description and simulation has traditionally relied on the computer derived interpolation of well data in a geocelluar stratigraphic framework. The quality of the interpolation has been directly dependent on the nature of the interpolation method, and ability of the interpolation scheme to accurately predict the value of geologic attributes away from the well. Typically, interpolation methods employ deterministic or geostatistical algorithms which offer limited capacity for integrating data derived from secondary analyses. These secondary analyses, which might include the results from 3-D seismic inversion, borehole imagery studies, or deductive reasoning, introduce a subjective component into what would otherwise be restricted to a purely mathematical treatment of geologic data. At Saudi ARAMCO an increased emphasis is being placed on the role of the reservoir geologist in the development of 3-D geologic models. Quantitative results, based on numerical computations, are being enhanced with intuitive geology, derived from years of cumulative professional experience and expertise. Techniques such as template modeling and modified conditional simulation, are yielding 3-D geologic models, which not only more accurately reflect the geology of the reservoir, but also preserve geologic detail throughout the simulation process. This incorporation of secondary data sources and qualitative analysis has been successfully demonstrated in a clastic reservoir environment in Central Saudi Arabia, and serves as a prototype for future 3-D geologic model development.

  12. Integration of geostatistical techniques and intuitive geology in the 3-D modeling process

    SciTech Connect (OSTI)

    Heine, C.J.; Cooper, D.H. [Saudi ARAMCO, Dhahran (Saudi Arabia)

    1996-12-31T23:59:59.000Z

    The development of 3-D geologic models for reservoir description and simulation has traditionally relied on the computer derived interpolation of well data in a geocelluar stratigraphic framework. The quality of the interpolation has been directly dependent on the nature of the interpolation method, and ability of the Interpolation scheme to accurately predict the value of geologic attributes away from the well. Typically, interpolation methods employ deterministic or geostatistical algorithms which offer limited capacity for Integrating data derived from secondary analyses. These secondary analyses, which might include the results from 3-D seismic inversion, borehole imagery studies, or deductive reasoning, introduce a subjective component into what would otherwise be restricted to a purely mathematical treatment of geologic data. At Saudi ARAMCO an increased emphases is being placed on the role of the reservoir geologist in the development of 3-D geologic models. Quantitative results, based on numerical computations, are being enhanced with intuitive geology, derived from years of cumulative professional experience and expertise. Techniques such as template modeling and modified conditional simulation, are yielding 3-D geologic models, which not only more accurately reflect the geology of the reservoir, but also preserve geologic detail throughout the simulation process. This incorporation of secondary data sources and qualitative analysis has been successfully demonstrated in a clastic reservoir environment in Central Saudi Arabia, and serves as a prototype for future 3-D geologic model development.

  13. Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers

    E-Print Network [OSTI]

    Peirce, Anthony

    Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth in revised form 13 February 2010 Accepted 10 March 2010 Keywords: Hydraulic fracture P3D Symmetric stress-called ``pseudo three-dimensional'' (P3D) model for a hydraulic fracture with equilibrium height growth across two

  14. Car Make and Model Recognition using 3D Curve Alignment Krishnan Ramnath, Sudipta N. Sinha, Richard Szeliski

    E-Print Network [OSTI]

    Gupta, Abhinav

    . Steps in constructing our 3D car model for a 2011 Honda Civic Sedan: (top) three of the images used to generate the visual hull; (middle) the visual hull; (bottom) 3D space curves projected onto the visual hull

  15. Detailed Spectral Modeling of a 3-D Pulsating Reverse Detonation Model: Too Much Nickel

    E-Print Network [OSTI]

    E. Baron; David J. Jeffery; David Branch; Eduardo Bravo; Domingo Garcia-Senz; Peter H. Hauschildt

    2007-09-26T23:59:59.000Z

    We calculate detailed NLTE synthetic spectra of a Pulsating Reverse Detonation (PRD) model, a novel explosion mechanism for Type Ia supernovae. While the hydro models are calculated in 3-D, the spectra use an angle averaged hydro model and thus some of the 3-D details are lost, but the overall average should be a good representation of the average observed spectra. We study the model at 3 epochs: maximum light, seven days prior to maximum light, and 5 days after maximum light. At maximum the defining Si II feature is prominent, but there is also a prominent C II feature, not usually observed in normal SNe Ia near maximum. We compare to the early spectrum of SN 2006D which did show a prominent C II feature, but the fit to the observations is not compelling. Finally we compare to the post-maximum UV+optical spectrum of SN 1992A. With the broad spectral coverage it is clear that the iron-peak elements on the outside of the model push too much flux to the red and thus the particular PRD realizations studied would be intrinsically far redder than observed SNe Ia. We briefly discuss variations that could improve future PRD models.

  16. RELAP5-3D Code Includes Athena Features and Models

    SciTech Connect (OSTI)

    Richard A. Riemke; Cliff B. Davis; Richard R. Schultz

    2006-07-01T23:59:59.000Z

    Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, sf6, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5- 3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper.

  17. A validation test for Adagio through replication of Big Hill and Bayou Choctaw JAS3D models.

    SciTech Connect (OSTI)

    Park, Byoung Yoon

    2013-06-01T23:59:59.000Z

    JAS3D, a three dimensional iterative solid mechanics code, has been used for structural analyses for the Strategic Petroleum Reserve system since the 1990s. JAS3D is no longer supported by Sandia National Laboratories, and has been replaced by Adagio. To validate the transition from JAS3D to Adagio, the existing JAS3D input decks and user subroutines for Bayou Choctaw and Big Hill models were converted for use with Adagio. The calculation results from the Adagio runs are compared to the JAS3D. Since the Adagio results are very similar to the JAS3D results, Adagio is judged to be performing satisfactorily.

  18. Real-time Rendering of Complex Vector Data on 3d Terrain Models

    E-Print Network [OSTI]

    Behnke, Sven

    Real-time Rendering of Complex Vector Data on 3d Terrain Models M. Schneider, M. Guthe, and R of buildings, streets and runway (from left to right). Abstract. In this paper we present a hybrid technique model. The first part of this hybrid technique is a texture-based approach that is especially suited

  19. iSphere:A free-hand 3D modeling interface

    E-Print Network [OSTI]

    to perform mappings and powerful commands intuitively. We argue that a high-level modeling system can reduceSphere is a dodecahedron embedded with 12 capacitive sensors for pulling-out and pressing-in manipulation on 12 control-level commands. Using analog inputs of 3D manipulation, designers are able to have high-level modeling concepts

  20. Parallel Implementation of a Large-Scale 3-D Air Pollution Model

    E-Print Network [OSTI]

    Ostromsky, Tzvetan

    Parallel Implementation of a Large-Scale 3-D Air Pollution Model Tzvetan Ostromsky1 and Zahari-4000 Roskilde, Denmark, zz@dmu.dk; http://www.dmu.dk/AtmosphericEnvironment Abstract. Air pollution and analyzed. Keywords: air pollution model, system of PDE's, parallel algorithm, shared memory computer

  1. A Dynamic Model for Phase Transformations in 3D Samples of Shape Memory Alloys

    E-Print Network [OSTI]

    Melnik, Roderick

    A Dynamic Model for Phase Transformations in 3D Samples of Shape Memory Alloys D.R. Mahapatra and R Introduction Modelling of dynamics of phase transformations (PT) in Shape Memory Al- loys (SMAs) under which assist the researchers in designing new materials and devices by harnessing the shape memory

  2. High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model

    E-Print Network [OSTI]

    Adler, Joan

    High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model Zaher Abstract We have analysed low and high temperature series expansions for the three­dimensional Ising model on the simple cubic lattice. Our analysis of Butera and Comi's new 32 term high temperature series yields K c

  3. Oil and Gas CDT Development of a SUNTANS Baroclinic Model for 3D Oil

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Development of a SUNTANS Baroclinic Model for 3D Oil Pollution Tracking Heriot) Key Words Oil Spill, HF Radar, Trajectory Forecasting, Hydrodynamic Modelling, Oil Chemistry Overview In an oil spill emergency, an operational system must forecast ocean and weather conditions in addition

  4. A 3D dynamical biomechanical tongue model to study speech motor control

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - 1 - A 3D dynamical biomechanical tongue model to study speech motor control Jean-Michel Gérard1 about speech motor control. Tissue elastic properties are accounted for in Finite Element Modeling (FEM shape are presented and analyzed. #12;- 3 - I.Introduction The study of human motor control implies

  5. Modeling benzene plume elongation mechanisms exerted by ethanol using RT3D with a general

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Modeling benzene plume elongation mechanisms exerted by ethanol using RT3D with a general substrate ethanol on benzene fate and transport in fuel-contaminated groundwater and to discern the most influential benzene plume elongation mechanisms. The model, developed as a module for the Reactive Transport in 3

  6. A 3D STOCHASTIC CLOUD MODEL FOR INVESTIGATING THE RADIATIVE PROPERTIES OF INHOMOGENEOUS CIRRUS CLOUDS

    E-Print Network [OSTI]

    Hogan, Robin

    A 3D STOCHASTIC CLOUD MODEL FOR INVESTIGATING THE RADIATIVE PROPERTIES OF INHOMOGENEOUS CIRRUS, Berkshire, United Kingdom 1 INTRODUCTION The importance of ice clouds on the earth's radiation budget for quantifying this effect, and several such models exist for boundary layer clouds, such as those of Cahalan et

  7. Ranking on Cross Domain Manifold forRanking on Cross-Domain Manifold for Sketch-based 3D model Retrieval

    E-Print Network [OSTI]

    Ohbuchi, Ryutarou

    printers,... ­ User generated. T i bl 3D h· Trimble 3D warehouse... 3D model retrieval is essentialRanking on Cross Domain Manifold forRanking on Cross-Domain Manifold for Sketch-based 3D model Retrieval Takahiko FuruyaRyutarou Ohbuchi University of Yamanashi #12;IntroductionIntroduction 3D models

  8. ALE3D Model Predictions and Materials Characterization for the Cookoff Response of PBXN-109

    SciTech Connect (OSTI)

    McClelland, M A; Maienschein, J L; Nichols, A L; Wardell, J F; Atwood, A I; Curran, P O

    2002-03-19T23:59:59.000Z

    ALE3D simulations are presented for the thermal explosion of PBXN-109 (RDX, AI, HTPB, DOA) in support of an effort by the U. S. Navy and Department of Energy (DOE) to validate computational models. The U.S. Navy is performing benchmark tests for the slow cookoff of PBXN-109 in a sealed tube. Candidate models are being tested using the ALE3D code, which can simulate the coupled thermal, mechanical, and chemical behavior during heating, ignition, and explosion. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. A void model is employed to represent the air in gaps. ALE3D model 'parameters are specified using measurements of thermal and mechanical properties including thermal expansion, heat capacity, shear modulus, and bulk modulus. A standard three-step chemical kinetics model is used during the thermal ramp, and a pressure-dependent burn front model is employed during the rapid expansion. Parameters for the three-step kinetics model are specified using measurements of the One-Dimensional-Time-to-Explosion (ODTX), while measurements for burn rate of pristine and thermally damaged material are employed to determine parameters in the burn front model. Results are given for calculations in which heating, ignition, and explosion are modeled in a single simulation. We compare model results to measurements for the cookoff temperature and tube wall strain.

  9. Thoracic CT-PET Registration Using a 3D Breathing Model

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Thoracic CT-PET Registration Using a 3D Breathing Model Antonio Moreno1 , Sylvie Chambon1 , Anand P Orlando, USA Abstract. In the context of thoracic CT-PET volume registration, we present a novel method applications. We consider Computed Tomography (CT) and Positron Emission Tomography (PET) in thoracic regions

  10. Relap5-3d model validation and benchmark exercises for advanced gas cooled reactor application 

    E-Print Network [OSTI]

    Moore, Eugene James Thomas

    2006-08-16T23:59:59.000Z

    abilities of system analysis codes, used to develop an understanding of light water reactor phenomenology, need to be proven for HTGRs. RELAP5-3D v2.3.6 is used to generate two reactor plant models for a code-to-code and a code-to-experiment benchmark...

  11. Stochastic Simulation Model for the 3D Morphology of Composite Materials in Li-Ion Batteries

    E-Print Network [OSTI]

    Schmidt, Volker

    Stochastic Simulation Model for the 3D Morphology of Composite Materials in Li-Ion Batteries Ralf August 30, 2010 Abstract Battery technology plays an important role in energy storage. In particular, lithium­ ion (Li-ion) batteries are of great interest, because of their high capacity, long cycle life

  12. Segmentation of building models from dense 3D point-clouds Joachim Bauer

    E-Print Network [OSTI]

    Schindler, Konrad

    , Institute for Computer Graphics and Vision, Graz University of Technology {bauer,karner,klausSegmentation of building models from dense 3D point-clouds Joachim Bauer , Konrad Karner , Konrad Schindler , Andreas Klaus , Christopher Zach VRVis Research Center for Virtual Reality and Visualization

  13. Modeling and Dynamic Management of 3D Multicore Systems with Liquid Cooling

    E-Print Network [OSTI]

    Simunic, Tajana

    Modeling and Dynamic Management of 3D Multicore Systems with Liquid Cooling Ayse K. Coskun , Jos liquid cooling. Furthermore, for systems capable of varying the coolant flow rate at runtime, our University of Madrid, Spain. Embedded Systems Laboratory (ESL), Ecole Polytechnique F´ed´erale de Lausanne

  14. Simulation Environment of X-Ray Rotational Angiography Using 3D+t Coronary Tree Model

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Today, over 1 million Percutaneous transluminal coronary angioplasty (PTCA) interventions are performed to improve both the safety and the efficacy of coronary angiography or interventions. Recently, a new im- ageSimulation Environment of X-Ray Rotational Angiography Using 3D+t Coronary Tree Model Guanyu YANG1

  15. A 3D Statistical Shape Model Of The Pelvic Bone For Segmentation

    E-Print Network [OSTI]

    Andrzejak, Artur

    patient models from 3D image data. Within the setting of a hybrid system (applicator plus MR tomograph. Left: hybrid system (MRT plus applicator), Right: MRT slice image from the abdomen with pelvic bone. 1 on heating up affected tissue compartments to temperatures above 42 degree Celsius without damaging

  16. Unified geophysical and geological 3-D Earth models Colin Farquharson, Peter Leli`evre, and Charles Hurich

    E-Print Network [OSTI]

    Farquharson, Colin G.

    Unified geophysical and geological 3-D Earth models Colin Farquharson, Peter Leli`evre, and Charles and geophysics. Outline Geological models Geophysical models and numerical modelling Rectilinear grids vs triangles. Can capture arbitrarily complicated subsurface contacts. #12;Geophysical models: rectilinear

  17. Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays

    SciTech Connect (OSTI)

    Aleksandrov, V. V., E-mail: alexvv@triniti.ru [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Gasilov, V. A. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Grabovski, E. V.; Gritsuk, A. N., E-mail: griar@triniti.ru; Laukhin, Ya. N.; Mitrofanov, K. N.; Oleinik, G. M. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Ol’khovskaya, O. G. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Sasorov, P. V.; Smirnov, V. P.; Frolov, I. N. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Shevel’ko, A. P. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2014-12-15T23:59:59.000Z

    Results are presented from experimental studies of the characteristics of the soft X-ray (SXR) source formed in the implosion of quasi-spherical arrays made of tungsten wires and metalized kapron fibers. The experiments were carried out at the Angara-5-1 facility at currents of up to 3 MA. Analysis of the spatial distribution of hard X-ray emission with photon energies above 20 keV in the pinch images taken during the implosion of quasi-spherical tungsten wire arrays (QTWAs) showed that a compact quasi-spherical plasma object symmetric with respect to the array axis formed in the central region of the array. Using a diffraction grazing incidence spectrograph, spectra of SXR emission with wavelengths of 20–400 Å from the central, axial, and peripheral regions of the emission source were measured with spatial resolutions along the array radius and height in the implosion of QTWAs. It is shown that the emission spectra of the SXR sources formed under the implosion of quasi-spherical and cylindrical tungsten wire arrays at currents of up to 3 MA have a maximum in the wavelength range of 50–150 Å. It is found that, during the implosion of a QTWA with a profiled linear mass, a redistribution of energy in the emission spectrum takes place, which indicates that, during 3D implosion, the energy of longitudinal motion of the array material additionally contributes to the radiation energy. It is also found that, at close masses of the arrays and close values of the current in the range of 2.4{sup ?3} MA, the average energy density in the emission source formed during the implosion of a quasi-spherical wire array is larger by a factor of 7 than in the source formed during the implosion of a cylindrical wire array. The experimental data were compared with results of 3D simulations of plasma dynamics and radiation generation during the implosion of quasi-spherical wire arrays with a profiled mass by using the MARPLE-3D radiative magnetohydrodynamic code, developed at the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.

  18. Coastal Dynamics 2013 A 3-D PHASE-AVERAGED MODEL FOR SHALLOW WATER FLOW WITH WAVES IN

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Coastal Dynamics 2013 1915 A 3-D PHASE-AVERAGED MODEL FOR SHALLOW WATER FLOW WITH WAVES in coastal vegetated waters with short waves. The model adopts the 3-D phase-averaged shallow water flow mesh in the vertical direction. The flow model is coupled with a spectral wave deformation model called

  19. Stack and cell modelling with SOFC3D: a computer program for the 3D simulations of

    E-Print Network [OSTI]

    Herbin, Raphaèle

    (geometry of the cell, electrolyte materials, temperature in the channels) are varied. Numerical simulation is also used to obtain an optimum for some geometry parameters such as cathode thickness or rib width channels. The unknowns of the mathematical model are the temperature T at any point of the solid

  20. The solar photospheric abundance of europium. Results from CO5BOLD 3-D hydrodynamical model atmospheres

    E-Print Network [OSTI]

    A. Mucciarelli; E. Caffau; B. Freytag; H. -G. Ludwig; P. Bonifacio

    2008-03-06T23:59:59.000Z

    Context. Europium is an almost pure r-process element, which may be useful as a reference in nucleocosmochronology. Aims. To determine the photospheric solar abundance using CO5BOLD 3-D hydrodynamical model atmospheres. Methods. Disc-centre and integrated-flux observed solar spectra are used. The europium abundance is derived from the equivalent width measurements. As a reference 1D model atmospheres have been used, in addition. Results. The europium photospheric solar abundance is 0.52 +- 0.02 in agreement with previous determinations. We also determine the photospheric isotopic fraction of Eu(151) to be 49 % +- 2.3 % from the intensity spectra and 50% +-2.3 from the flux spectra. This compares well to the the meteoritic isotopic fraction 47.8%. We explore the 3D corrections also for dwarfs and sub-giants in the temperature range ~5000 K to ~6500 K and solar and 1/10--solar metallicities and find them to be negligible for all the models investigated. Conclusions. Our photospheric Eu abundance is in good agreement with previous determinations based on 1D models. This is in line with our conclusion that 3D effects for this element are negligible in the case of the Sun.

  1. Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.

    SciTech Connect (OSTI)

    Mock, Raymond Cecil

    2007-06-01T23:59:59.000Z

    The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.

  2. 3D climate modeling of Earth-like extrasolar planets orbiting different types of host stars

    E-Print Network [OSTI]

    Godolt, M; Hamann-Reinus, A; Kitzmann, D; Kunze, M; Langematz, U; von Paris, P; Patzer, A B C; Rauer, H; Stracke, B

    2015-01-01T23:59:59.000Z

    The potential habitability of a terrestrial planet is usually defined by the possible existence of liquid water on its surface. The potential presence of liquid water depends on many factors such as, most importantly, surface temperatures. The properties of the planetary atmosphere and its interaction with the radiative energy provided by the planet's host star are thereby of decisive importance. In this study we investigate the influence of different main-sequence stars upon the climate of Earth-like extrasolar planets and their potential habitability by applying a 3D Earth climate model accounting for local and dynamical processes. The calculations have been performed for planets with Earth-like atmospheres at orbital distances where the total amount of energy received from the various host stars equals the solar constant. In contrast to previous 3D modeling studies, we include the effect of ozone radiative heating upon the vertical temperature structure of the atmospheres. The global orbital mean results o...

  3. The SMC (Short Model Coil) Nb3Sn Program: FE Analysis with 3D Modeling

    E-Print Network [OSTI]

    Kokkinos, C; Guinchard, M; Karppinen, M; Manil, P; Perez, J C; Regis, F

    2012-01-01T23:59:59.000Z

    The SMC (Short Model Coil) project aims at testing superconducting coils in racetrack configuration, wound with Nb3Sn cable. The degradation of the magnetic properties of the cable is studied by applying different levels of pre-stress. It is an essential step in the validation of procedures for the construction of superconducting magnets with high performance conductor. Two SMC assemblies have been completed and cold tested in the frame of a European collaboration between CEA (FR), CERN and STFC (UK), with the technical support from LBNL (US). The second assembly showed remarkable good quench results, reaching a peak field of 12.5T. This paper details the new 3D modeling method of the SMC, implemented using the ANSYS® Workbench environment. Advanced computer-aided-design (CAD) tools are combined with multi-physics Finite Element Analyses (FEA), in the same integrated graphic interface, forming a fully parametric model that enables simulation driven development of the SMC project. The magnetic and structural ...

  4. Long-Range Atmospheric Transport of Polycyclic Aromatic Hydrocarbons: A Global 3-D Model Analysis Including Evaluation of Arctic Sources

    E-Print Network [OSTI]

    Friedman, Carey

    We use the global 3-D chemical transport model GEOS-Chem to simulate long-range atmospheric transport of polycyclic aromatic hydrocarbons (PAHs). To evaluate the model’s ability to simulate PAHs with different volatilities, ...

  5. Modeling of AAR affected structures using the GROW3D FEA program

    SciTech Connect (OSTI)

    Curtis, D.D. [Acres International Limited, Niagara Falls, Ontario (Canada)

    1995-12-31T23:59:59.000Z

    The objective of this paper is to present a rational and practical methodology for finite element stress analysis of AAR affected structures. The methodology is presented using case history studies which illustrate the practical application of the GROW3D program. GROW3D uses an anisotropic expansion strain function and concrete properties which simulates the following key characteristics of AAR affected concrete (1) concrete growth expansion rates dependent on the stress vectors at each point; (2) concrete growth rate variation due to changes in moisture content and temperature; and (3) time-dependent, enhanced creep behavior. GROW3D has been applied to several hydropower structures and case histories from the Mactaquac Generating Station are presented herein. Mactaquac is selected because extensive instrumentation data before and after remedial measures have been used to calibrate and test the model. The results of analyses of three different structures are given, i.e., the intake, diversion sluiceway and powerhouse. The analysis results are used to identify potential structural problems and the need and timing of remedial measures. The output from GROW3D includes displacement rates, total displacements, global stresses and local factors of safety. The local factors of safety (or strength to stress ratios) are computed for several modes of failure including crushing, cracking, shear and sliding on horizontal construction joints. The analysis results are compared with field measurements which are taken before and after slot cutting. The effects of including the above-mentioned characteristics and other modeling assumptions on the computed results is discussed herein. Finally, a brief discussion on the recent enhancements to the model is given. These enhancements include the implementation of a more rigorous treatment of concrete creep effects.

  6. Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers

    E-Print Network [OSTI]

    Peirce, Anthony

    Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth t This paper deals with the so-called ``pseudo three-dimensional'' (P3D) model for a hydraulic fracture of the length, height, and aperture of the hydraulic fracture, in contrast to the numerical formulations adopted

  7. Mapping thin resistors and hydrocarbons with marine EM methods, Part II --Modeling and analysis in 3D

    E-Print Network [OSTI]

    Constable, Steve

    , subseabed re- sistive disk in response to a deep-towed, time-harmonic electric dipole antenna are investigated using a newly developed 3D Car- tesian, staggered-grid modeling algorithm. We demonstrate kernels those regions of the 3D model which have the greatest effect on seafloor electric fields

  8. The Asymptotic Behaviour of a Stochastic 3D LANS-{alpha} Model

    SciTech Connect (OSTI)

    Caraballo, Tomas, E-mail: caraball@us.es; Marquez-Duran, Antonio M., E-mail: ammarquez@us.es; Real, Jose [Dpto. Ecuaciones Diferenciales y Analisis Numerico, Universidad de Sevilla, Apdo. Correos 1160, 41080-Sevilla (Spain)], E-mail: jreal@us.es

    2006-03-15T23:59:59.000Z

    The long-time behaviour of a stochastic 3D LANS-{alpha} model on a bounded domain is analysed. First, we reformulate the model as an abstract problem. Next, we establish sufficient conditions ensuring the existence of stationary (steady state) solutions of this abstract nonlinear stochastic evolution equation, and study the stability properties of the model. Finally, we analyse the effects produced by stochastic perturbations in the deterministic version of the system (persistence of exponential stability as well as possible stabilisation effects produced by the noise). The general results are applied to our stochastic LANS-{alpha} system throughout the paper.

  9. ALE3D Simulations of Gap Closure and Surface Ignition for Cookoff Modeling

    SciTech Connect (OSTI)

    Howard, W M; McClelland, M A; Nichols, A L

    2006-06-22T23:59:59.000Z

    We are developing ALE3D models to describe the thermal, chemical and mechanical behavior during the heating, ignition and explosive phases of various cookoff phenomena. The candidate models and numerical strategies are being evaluated using benchmark cookoff experiments. ALE3D is a three-dimensional computer code capable of solving the model equations in a coupled fashion through all the phases of the cookoff in a single calculation. For the cookoff experiments, we are interested in representing behavior on widely varying timescales. We have used an implicit hydrodynamics option during the heating phase and an explicit solution method during the explosive phase. To complicate the modeling problem, high heat fluxes cause rapid temperature increases in boundary layers and lead to the formation of gaps between energetic and structural materials and ignition on surfaces. The initially solid energetic and structural materials react to produce gases, which fill the gaps. These materials can also melt and flow. Since an implicit solution method is used, simple no-strength materials models can no longer be used for liquids and gases. In this paper, we discuss and demonstrate choices of materials models for solid/liquid/gas mixtures to be used in conjunction with the implicit solution method. In addition, results are given for mesh movement strategies applied to the opening, closing, and surface ignition within gaps.

  10. Disks controlling chaos in a 3D dynamical model for elliptical galaxies

    E-Print Network [OSTI]

    Euaggelos E. Zotos

    2011-12-05T23:59:59.000Z

    A 3D dynamical model with a quasi-homogeneous core and a disk component is used for the chaos control in the central parts of elliptical galaxy. Numerical experiments in the 2D system show a very complicated phase plane with a large chaotic sea, considerable sticky layers and a large number of islands, produced by secondary resonances. When the mass of the disk increases, the chaotic regions decrease gradually, and, finally, a new phase plane with only regular orbits appears. This evolution indicates that disks in elliptical galaxies can act as the chaos controllers. Starting from the results obtained in the 2D system, we locate the regions in the phase space of the 3D system, producing regular and chaotic orbits. For this we introduce and use a new dynamical parameter, the S(w) spectrum, which proves to be useful as a fast indicator and allows us to distinguish the regular motion from chaos in the 3D potentials. Other methods for detecting chaos are also discussed.

  11. Comparison of "warm and wet" and "cold and icy" scenarios for early Mars in a 3D climate model

    E-Print Network [OSTI]

    Wordsworth, Robin D; Pierrehumbert, Raymond T; Forget, Francois; Head, James W

    2015-01-01T23:59:59.000Z

    We use a 3D general circulation model to compare the primitive Martian hydrological cycle in "warm and wet" and "cold and icy" scenarios. In the warm and wet scenario, an anomalously high solar flux or intense greenhouse warming artificially added to the climate model are required to maintain warm conditions and an ice-free northern ocean. Precipitation shows strong surface variations, with high rates around Hellas basin and west of Tharsis but low rates around Margaritifer Sinus (where the observed valley network drainage density is nonetheless high). In the cold and icy scenario, snow migration is a function of both obliquity and surface pressure, and limited episodic melting is possible through combinations of seasonal, volcanic and impact forcing. At surface pressures above those required to avoid atmospheric collapse (~0.5 bar) and moderate to high obliquity, snow is transported to the equatorial highland regions where the concentration of valley networks is highest. Snow accumulation in the Aeolis quadr...

  12. Hybrid Protein Model (HPM) : a method to compact protein 3D-structure information and physicochemical properties

    E-Print Network [OSTI]

    Boyer, Edmond

    Hybrid Protein Model (HPM) : a method to compact protein 3D-structure information of the Seventh International Symposium on String Processing Information R #12;Hybrid Protein Model (HPM

  13. KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES R OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES INTRODUCTION Engines running on HCCI combustion mode (Homogeneous Charge Compression Ignition) have the potential to provide both diesel

  14. 3D segmentation of mouse organs from MR images using deformable simplex mesh models G. Hamarneh1

    E-Print Network [OSTI]

    Hamarneh, Ghassan

    3D segmentation of mouse organs from MR images using deformable simplex mesh models G. Hamarneh1 , H. Delingette2 , M. Henkelman1 1 Hospital for Sick Children, Toronto, ON, Canada, 2 INRIA brains and kidneys from MR images. Algorithmic details and 3D segmentation results are presented

  15. Genome-Wide Identification and 3D Modeling of Proteins involved in DNA Damage Recognition and Repair (Final Report)

    SciTech Connect (OSTI)

    Ruben A. Abagyan, PhD

    2004-04-15T23:59:59.000Z

    OAK-B135 DNA Damage Recognition and Repair (DDR and R) proteins play a critical role in cellular responses to low-dose radiation and are associated with cancer. the authors have performed a systematic, genome-wide computational analysis of genomic data for human genes involved in the DDR and R process. The significant achievements of this project include: (1) Construction of the computational pipeline for searching DDR and R genes, building and validation of 3D models of proteins involved in DDR and R; (2) Functional and structural annotation of the 3D models and generation of comprehensive lists of suggested knock-out mutations; (3) Important improvement of macromolecular docking technology and its application to predict the DNA-Protein complex conformation; (4) Development of a new algorithm for improved analysis of high-density oligonucleotide arrays for gene expression profiling; (5) Construction and maintenance of the DNA Damage Recognition and Repair Database; and (6) Producing 14 research papers (10 published and 4 in preparation).

  16. T. FURUYA, R. OHBUCHI: FUSING FEATURES FOR 3D MODEL RETRIEVAL 1 2014. The copyright of this document resides with its authors.

    E-Print Network [OSTI]

    Ohbuchi, Ryutarou

    to popularization of 3D printers and 3D scanners. Increase in popularity has also been observed in such areasT. FURUYA, R. OHBUCHI: FUSING FEATURES FOR 3D MODEL RETRIEVAL 1 © 2014. The copyright. Abstract Fusing multiple features is a promising approach for accurate shape-based 3D Model Retrieval (3DMR

  17. Critical exponents of the 3d Ising and related models from Conformal Bootstrap

    E-Print Network [OSTI]

    Ferdinando Gliozzi; Antonio Rago

    2015-03-16T23:59:59.000Z

    The constraints of conformal bootstrap are applied to investigate a set of conformal field theories in various dimensions. The prescriptions can be applied to both unitary and non unitary theories allowing for the study of the spectrum of low-lying primary operators of the theory. We evaluate the lowest scaling dimensions of the local operators associated with the Yang-Lee edge singularity for $2 \\le D \\le 6$. Likewise we obtain the scaling dimensions of six scalars and four spinning operators for the 3d critical Ising model. Our findings are in agreement with existing results to a per mill precision and estimate several new exponents.

  18. Energetic particle acceleration in a 3D magnetic field reconnection model: a role of MHD turbulence

    E-Print Network [OSTI]

    Tomasz Kobak; Michal Ostrowski

    2000-06-07T23:59:59.000Z

    The role of MHD turbulence in the cosmic ray acceleration process in a volume with a reconnecting magnetic field is studied by means of Monte Carlo simulations. We performed modelling of proton acceleration with the 3D analytic model of stationary reconnection of Craig et al. (1995) providing the unperturbed background conditions. Perturbations of particle trajectories due to a turbulent magnetic field component were simulated using small-amplitude pitch-angle momentum scattering, enabling modelling of both small and large amplitude turbulence in a wide wave vector range. Within the approach, no second-order Fermi acceleration process is allowed. Comparison of the acceleration process in models involving particle trajectory perturbations to the unperturbed one reveals that the turbulence can substantially increase the acceleration efficiency, enabling much higher final particle energies and flat particle spectra.

  19. The solar photospheric abundance of europium. Results from CO5BOLD 3-D hydrodynamical model atmospheres

    E-Print Network [OSTI]

    Mucciarelli, A; Freytag, B; Ludwig, H -G; Bonifacio, P

    2008-01-01T23:59:59.000Z

    Context. Europium is an almost pure r-process element, which may be useful as a reference in nucleocosmochronology. Aims. To determine the photospheric solar abundance using CO5BOLD 3-D hydrodynamical model atmospheres. Methods. Disc-centre and integrated-flux observed solar spectra are used. The europium abundance is derived from the equivalent width measurements. As a reference 1D model atmospheres have been used, in addition. Results. The europium photospheric solar abundance is 0.52 +- 0.02 in agreement with previous determinations. We also determine the photospheric isotopic fraction of Eu(151) to be 49 % +- 2.3 % from the intensity spectra and 50% +-2.3 from the flux spectra. This compares well to the the meteoritic isotopic fraction 47.8%. We explore the 3D corrections also for dwarfs and sub-giants in the temperature range ~5000 K to ~6500 K and solar and 1/10--solar metallicities and find them to be negligible for all the models investigated. Conclusions. Our photospheric Eu abundance is in good agre...

  20. FRACTURED RESERVOIR E&P IN ROCKY MOUNTAIN BASINS: A 3-D RTM MODELING APPROACH

    SciTech Connect (OSTI)

    P. Ortoleva; J. Comer; A. Park; D. Payne; W. Sibo; K. Tuncay

    2001-11-26T23:59:59.000Z

    Key natural gas reserves in Rocky Mountain and other U.S. basins are in reservoirs with economic producibility due to natural fractures. In this project, we evaluate a unique technology for predicting fractured reservoir location and characteristics ahead of drilling based on a 3-D basin/field simulator, Basin RTM. Recommendations are made for making Basin RTM a key element of a practical E&P strategy. A myriad of reaction, transport, and mechanical (RTM) processes underlie the creation, cementation and preservation of fractured reservoirs. These processes are often so strongly coupled that they cannot be understood individually. Furthermore, sedimentary nonuniformity, overall tectonics and basement heat flux histories make a basin a fundamentally 3-D object. Basin RTM is the only 3-D, comprehensive, fully coupled RTM basin simulator available for the exploration of fractured reservoirs. Results of Basin RTM simulations are presented, that demonstrate its capabilities and limitations. Furthermore, it is shown how Basin RTM is a basis for a revolutionary automated methodology for simultaneously using a range of remote and other basin datasets to locate reservoirs and to assess risk. Characteristics predicted by our model include reserves and composition, matrix and fracture permeability, reservoir rock strength, porosity, in situ stress and the statistics of fracture aperture, length and orientation. Our model integrates its input data (overall sedimentation, tectonic and basement heat flux histories) via the laws of physics and chemistry that describe the RTM processes to predict reservoir location and characteristics. Basin RTM uses 3-D, finite element solutions of the equations of rock mechanics, organic and inorganic diagenesis and multi-phase hydrology to make its predictions. As our model predicts reservoir characteristics, it can be used to optimize production approaches (e.g., assess the stability of horizontal wells or vulnerability of fractures to production-induced formation pressure drawdown). The Piceance Basin (Colorado) was chosen for this study because of the extensive set of data provided to us by federal agencies and industry partners, its remaining reserves, and its similarities with other Rocky Mountain basins. We focused on the Rulison Field to test our ability to capture details in a well-characterized area. In this study, we developed a number of general principles including (1) the importance of even subtle flexure in creating fractures; (2) the tendency to preserve fractures due to the compressibility of gases; (3) the importance of oscillatory fracture/flow cycles in the expulsion of natural gas from source rock; and (4) that predicting fractures requires a basin model that is comprehensive, all processes are coupled, and is fully 3-D. A major difficulty in using Basin RTM or other basin simulator has been overcome in this project; we have set forth an information theory technology for automatically integrating basin modeling with classical database analysis; this technology also provides an assessment of risk. We have created a relational database for the Piceance Basin. We have developed a formulation of devolatilization shrinkage that integrates organic geochemical kinetics into incremental stress theory, allowing for the prediction of coal cleating and associated enhancement of natural gas expulsion from coal. An estimation of the potential economic benefits of the technologies developed or recommended here is set forth. All of the above findings are documented in this report.

  1. 3D-Printing of Non-Assembly, Articulated Models Jacques Cal Dan A. Calian Cristina Amati Rebecca Kleinberger Anthony Steed Jan Kautz Tim Weyrich

    E-Print Network [OSTI]

    Weyrich, Tim

    3D-Printing of Non-Assembly, Articulated Models Jacques Calì Dan A. Calian Cristina Amati Rebecca (left), our system allows to intuitively add 3D-printable joints (center) that, when 3D-printed, create to use; no manual assembly is required. Abstract Additive manufacturing (3D printing) is commonly used

  2. Chopper: Partitioning Models into 3D-Printable Parts Linjie Luo1,2 Ilya Baran3 Szymon Rusinkiewicz1 Wojciech Matusik4

    E-Print Network [OSTI]

    Popovic, Jovan

    : Chopper partitions a given 3D model into parts that are small enough to be 3D-printed and assembled as a reference), printed parts, and assembled chair. Abstract 3D printing technology is rapidly maturing printing, mesh segmentation and decomposition Links: DL PDF 1 Introduction As 3D printing technology

  3. Deformation Analysis of Sand Specimens using 3D Digital Image Correlation for the Calibration of an Elasto-Plastic Model

    E-Print Network [OSTI]

    Song, Ahran

    2012-10-19T23:59:59.000Z

    and softening laws. In addition, a two-dimensional axisymmetric finite element model was built to simulate the actual experimental conditions, including both the global and local kinematics effects captured by 3D digital image correlation analysis...

  4. Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling

    SciTech Connect (OSTI)

    Rainey, E. S. G.; Kavner, A. [Department of Earth and Space Sciences, University of California, Los Angeles, California 90095 (United States); Hernlund, J. W. [Department of Earth and Planetary Science, University of California, Berkeley, California 94720 (United States); Earth-Life Science Institute, Megoro, Tokyo 152-8551 (Japan)

    2013-11-28T23:59:59.000Z

    We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam.

  5. Kinetic modelling of a surrogate diesel fuel applied to 3D auto-ignition in HCCI engines

    E-Print Network [OSTI]

    Bounaceur, Roda; Fournet, René; Battin-Leclerc, Frédérique; Jay, S; Da Cruz, A Pires

    2007-01-01T23:59:59.000Z

    The prediction of auto-ignition delay times in HCCI engines has risen interest on detailed chemical models. This paper described a validated kinetic mechanism for the oxidation of a model Diesel fuel (n-decane and ?-methylnaphthalene). The 3D model for the description of low and high temperature auto-ignition in engines is presented. The behavior of the model fuel is compared with that of n-heptane. Simulations show that the 3D model coupled with the kinetic mechanism can reproduce experimental HCCI and Diesel engine results and that the correct modeling of auto-ignition in the cool flame region is essential in HCCI conditions.

  6. Parallel 3D Finite Element Numerical Modelling of DC Electron Guns

    SciTech Connect (OSTI)

    Prudencio, E.; Candel, A.; Ge, L.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; /SLAC

    2008-02-04T23:59:59.000Z

    In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation time from days to some hours.

  7. From coronal observations to MHD simulations, the building blocks for 3D models of solar flares

    E-Print Network [OSTI]

    Janvier, Miho; Demoulin, Pascal

    2015-01-01T23:59:59.000Z

    Solar flares are energetic events taking place in the Sun's atmosphere, and their effects can greatly impact the environment of the surrounding planets. In particular, eruptive flares, as opposed to confined flares, launch coronal mass ejections into the interplanetary medium, and as such, are one of the main drivers of space weather. After briefly reviewing the main characteristics of solar flares, we summarize the processes that can account for the build up and release of energy during their evolution. In particular, we focus on the development of recent 3D numerical simulations that explain many of the observed flare features. These simulations can also provide predictions of the dynamical evolution of coronal and photospheric magnetic field. Here we present a few observational examples that, together with numerical modelling, point to the underlying physical mechanisms of the eruptions.

  8. Comparison of the PHISICS/RELAP5-3D Ring and Block Model Results for Phase I of the OECD MHTGR-350 Benchmark

    SciTech Connect (OSTI)

    Gerhard Strydom

    2014-04-01T23:59:59.000Z

    The INL PHISICS code system consists of three modules providing improved core simulation capability: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. Coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been finalized, and as part of the code verification and validation program the exercises defined for Phase I of the OECD/NEA MHTGR 350 MW Benchmark were completed. This paper provides an overview of the MHTGR Benchmark, and presents selected results of the three steady state exercises 1-3 defined for Phase I. For Exercise 1, a stand-alone steady-state neutronics solution for an End of Equilibrium Cycle Modular High Temperature Reactor (MHTGR) was calculated with INSTANT, using the provided geometry, material descriptions, and detailed cross-section libraries. Exercise 2 required the modeling of a stand-alone thermal fluids solution. The RELAP5-3D results of four sub-cases are discussed, consisting of various combinations of coolant bypass flows and material thermophysical properties. Exercise 3 combined the first two exercises in a coupled neutronics and thermal fluids solution, and the coupled code suite PHISICS/RELAP5-3D was used to calculate the results of two sub-cases. The main focus of the paper is a comparison of the traditional RELAP5-3D “ring” model approach vs. a much more detailed model that include kinetics feedback on individual block level and thermal feedbacks on a triangular sub-mesh. The higher fidelity of the block model is illustrated with comparison results on the temperature, power density and flux distributions, and the typical under-predictions produced by the ring model approach are highlighted.

  9. Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents

    E-Print Network [OSTI]

    Sheer El-Showk; Miguel F. Paulos; David Poland; Slava Rychkov; David Simmons-Duffin; Alessandro Vichi

    2014-06-04T23:59:59.000Z

    We use the conformal bootstrap to perform a precision study of the operator spectrum of the critical 3d Ising model. We conjecture that the 3d Ising spectrum minimizes the central charge c in the space of unitary solutions to crossing symmetry. Because extremal solutions to crossing symmetry are uniquely determined, we are able to precisely reconstruct the first several Z2-even operator dimensions and their OPE coefficients. We observe that a sharp transition in the operator spectrum occurs at the 3d Ising dimension Delta_sigma=0.518154(15), and find strong numerical evidence that operators decouple from the spectrum as one approaches the 3d Ising point. We compare this behavior to the analogous situation in 2d, where the disappearance of operators can be understood in terms of degenerate Virasoro representations.

  10. The application of high-resolution 3D seismic data to model the distribution of mechanical and hydrogeological properties of a potential host rock for the deep storage of radioactive waste in France

    E-Print Network [OSTI]

    Mari, Jean-Luc

    2014-01-01T23:59:59.000Z

    In the context of a deep geological repository of high-level radioactive wastes, the French National Radioactive Waste Management Agency (Andra) has conducted an extensive characterization of the Callovo-Oxfordian argillaceous rock and surrounding formations in the Eastern Paris Basin. As part of this project, an accurate 3D seismic derived geological model is needed. The paper shows the procedure used for building the 3D seismic constrained geological model in depth by combining time-to-depth conversion of seismic horizons, consistent seismic velocity model and elastic impedance in time. It also shows how the 3D model is used for mechanical and hydrogeological studies. The 3D seismic field data example illustrates the potential of the proposed depth conversion procedure for estimating density and velocity distributions, which are consistent with the depth conversion of seismic horizons using the Bayesian Kriging method. The geological model shows good agreement with well log data obtained from a reference we...

  11. An implicit finite-element model for 3D non-hydrostatic mesoscale ocean M.A. Maidana1

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    An implicit finite-element model for 3D non-hydrostatic mesoscale ocean flows M.A. Maidana1 , J-dimensional, non-hydrostatic mesoscale ocean flows. The model considered here incorporates surface wind stress and the idea of using unstructured grids for modelling mesoscale ocean dynamics sounds very attractive given

  12. Efficient Model Creation of Large Structures based on Range Segmentation 2nd International Symposium on 3D Data Processing, Visualization & Transmission, September 2004, Thessaloniki, Greece.

    E-Print Network [OSTI]

    Stamos, Ioannis

    areas of research as well: visualization of very large data sets, creation of model data-bases for GIS Symposium on 3D Data Processing, Visualization & Transmission, September 2004, Thessaloniki, Greece. Ioannis@andrews.cmu.edu Abstract This paper describes an efficient 3D modeling method from 3D range data-sets that is utilizing

  13. Zero gravity two-phase flow regime transition modeling compared with data and relap5-3d predictions 

    E-Print Network [OSTI]

    Ghrist, Melissa Renee

    2009-05-15T23:59:59.000Z

    This thesis compares air/water two-phase flow regime transition models in zero gravity with data and makes recommendations for zero gravity models to incorporate into the RELAP5-3D thermal hydraulic computer code. Data from numerous researchers...

  14. 3-D Mobile-to-Mobile channel tracking with first-order autoregressive model-based Kalman filter

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 3-D Mobile-to-Mobile channel tracking with first-order autoregressive model-based Kalman filter. It approximates the channel by a first-order au- toregressive (AR(1)) model and tracks it by a Kalman filter of the Kalman filter, and we justify why it is more appropriate for slow fading variations. This paper provides

  15. Towards a 3D time dependent Fokker-Planck solver for modelling RF heating in realistic tokamak geometry

    E-Print Network [OSTI]

    . Hedin, Ion Cyclotron Heating in Toroidal Plasmas, Ph.D. thesis, Royal Institute of Technology StockholmTowards a 3D time dependent Fokker-Planck solver for modelling RF heating in realistic tokamak supercomputers and the need for predictive tools to guide the experiments, modelling radio frequency heating

  16. Spec2Fab : a reducer-tuner model for translating specifications to 3D prints

    E-Print Network [OSTI]

    Chen, Desai

    2013-01-01T23:59:59.000Z

    Multi-material 3D printing allows objects to be composed of complex, heterogeneous arrangements of materials. It is often more natural to define a functional goal than to define the material composition of an object. ...

  17. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints

    E-Print Network [OSTI]

    Chen, Desai

    Multi-material 3D printing allows objects to be composed of complex, heterogenous arrangements of materials. It is often more natural to define a functional goal than to define the material composition of an object. ...

  18. 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect (OSTI)

    Grant L. Hawkes; James E. O'Brien; Greg Tao

    2011-11-01T23:59:59.000Z

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

  19. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect

    SciTech Connect (OSTI)

    Shi, Ya-Zhou; Wang, Feng-Hua; Wu, Yuan-Yan; Tan, Zhi-Jie, E-mail: zjtan@whu.edu.cn [Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2014-09-14T23:59:59.000Z

    To bridge the gap between the sequences and 3-dimensional (3D) structures of RNAs, some computational models have been proposed for predicting RNA 3D structures. However, the existed models seldom consider the conditions departing from the room/body temperature and high salt (1M NaCl), and thus generally hardly predict the thermodynamics and salt effect. In this study, we propose a coarse-grained model with implicit salt for RNAs to predict 3D structures, stability, and salt effect. Combined with Monte Carlo simulated annealing algorithm and a coarse-grained force field, the model folds 46 tested RNAs (?45 nt) including pseudoknots into their native-like structures from their sequences, with an overall mean RMSD of 3.5 Å and an overall minimum RMSD of 1.9 Å from the experimental structures. For 30 RNA hairpins, the present model also gives the reliable predictions for the stability and salt effect with the mean deviation ? 1.0 °C of melting temperatures, as compared with the extensive experimental data. In addition, the model could provide the ensemble of possible 3D structures for a short RNA at a given temperature/salt condition.

  20. 3D Model of the McGinness Hills Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  1. 3D Model of the McGinness Hills Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31T23:59:59.000Z

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  2. The dusty MOCASSIN: fully self-consistent 3D photoionisation and dust radiative transfer models

    E-Print Network [OSTI]

    B. Ercolano; M. J. Barlow; P. J. Storey

    2005-07-02T23:59:59.000Z

    We present the first 3D Monte Carlo (MC) photoionisation code to include a fully self-consistent treatment of dust radiative transfer (RT) within a photoionised region. This is the latest development (Version 2.0) of the gas-only photoionisation code MOCASSIN (Ercolano et al., 2003a), and employs a stochastic approach to the transport of radiation, allowing both the primary and secondary components of the radiation field to be treated self-consistently, whilst accounting for the scattering of radiation by dust grains mixed with the gas, as well as the absorption and emission of radiation by both the gas and the dust components. A set of rigorous benchmark tests have been carried out for dust-only spherically symmetric geometries and 2D disk configurations. MOCASSIN's results are found to be in agreement with those obtained by well established dust-only RT codes that employ various approaches to the solution of the RT problem. A model of the dust and of the photoionised gas components of the planetary nebula (PN) NGC 3918 is also presented as a means of testing the correct functioning of the RT procedures in a case where both gas and dust opacities are present. The two components are coupled via the heating of dust grains by the absorption of both UV continuum photons and resonance line photons emitted by the gas. The MOCASSIN results show agreement with those of a 1D dust and gas model of this nebula published previously, showing the reliability of the new code, which can be applied to a variety of astrophysical environments.

  3. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2014-01-01T23:59:59.000Z

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D ? PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more »We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  4. Modeling and Analysis of a Lunar Space Reactor with the Computer Code RELAP5-3D/ATHENA

    SciTech Connect (OSTI)

    Carbajo, Juan J [ORNL; Qualls, A L [ORNL

    2008-01-01T23:59:59.000Z

    The transient analysis 3-dimensional (3-D) computer code RELAP5-3D/ATHENA has been employed to model and analyze a space reactor of 180 kW(thermal), 40 kW (net, electrical) with eight Stirling engines (SEs). Each SE will generate over 6 kWe; the excess power will be needed for the pumps and other power management devices. The reactor will be cooled by NaK (a eutectic mixture of sodium and potassium which is liquid at ambient temperature). This space reactor is intended to be deployed over the surface of the Moon or Mars. The reactor operating life will be 8 to 10 years. The RELAP5-3D/ATHENA code is being developed and maintained by Idaho National Laboratory. The code can employ a variety of coolants in addition to water, the original coolant employed with early versions of the code. The code can also use 3-D volumes and 3-D junctions, thus allowing for more realistic representation of complex geometries. A combination of 3-D and 1-D volumes is employed in this study. The space reactor model consists of a primary loop and two secondary loops connected by two heat exchangers (HXs). Each secondary loop provides heat to four SEs. The primary loop includes the nuclear reactor with the lower and upper plena, the core with 85 fuel pins, and two vertical heat exchangers (HX). The maximum coolant temperature of the primary loop is 900 K. The secondary loops also employ NaK as a coolant at a maximum temperature of 877 K. The SEs heads are at a temperature of 800 K and the cold sinks are at a temperature of ~400 K. Two radiators will be employed to remove heat from the SEs. The SE HXs surrounding the SE heads are of annular design and have been modeled using 3-D volumes. These 3-D models have been used to improve the HX design by optimizing the flows of coolant and maximizing the heat transferred to the SE heads. The transients analyzed include failure of one or more Stirling engines, trip of the reactor pump, and trips of the secondary loop pumps feeding the HXs of the Stirling engines. Loss of one radiator sink has also been simulated. The effects of reduced gravity on the transients have also been investigated. The transients studied have been used to demonstrate the safety and the operability of the system. The results of the transients will be used to evaluate which transients the system can survive without damage and can continue operating at nominal or reduced power levels for the intended life time of the reactor.

  5. 3D CFD Model of High Temperature H2O/CO2 Co-electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring; Joe Hartvigsen

    2007-06-01T23:59:59.000Z

    3D CFD Model of High Temperature H2O/CO2 Co-Electrolysis Grant Hawkes1, James O’Brien1, Carl Stoots1, Stephen Herring1 Joe Hartvigsen2 1 Idaho National Laboratory, Idaho Falls, Idaho, grant.hawkes@inl.gov 2 Ceramatec Inc, Salt Lake City, Utah INTRODUCTION A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature co-electrolysis of steam and carbon dioxide in a planar solid oxide electrolyzer (SOE) using solid oxide fuel cell technology. A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of planar solid-oxide electrolysis cell technology for syn-gas production from CO2 and steam. Various runs have been performed under different run conditions to help assess the performance of the SOE. This paper presents CFD results of this model compared with experimental results. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to produce syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. A strong interest exists in the large-scale production of syn-gas from CO2 and steam to be reformed into a usable transportation fuel. If biomass is used as the carbon source, the overall process is climate neutral. Consequently, there is a high level of interest in production of syn-gas from CO2 and steam electrolysis. With the price of oil currently around $60 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of syn-gas production from CO2 and water, with no consumption of fossil fuels, and no production of greenhouse gases. Thermal CO2-splitting and water splitting for syn-gas production can be accomplished via high-temperature electrolysis, using high-temperature nuclear process heat and electricity. A high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-syn-gas conversion efficiency of 45 to 55%.

  6. A Grid of 3D Stellar Atmosphere Models of Solar Metallicity: I. General Properties, Granulation and Atmospheric Expansion

    E-Print Network [OSTI]

    Trampedach, Regner; Collet, Remo; Nordlund, Åke; Stein, Robert F

    2013-01-01T23:59:59.000Z

    Present grids of stellar atmosphere models are the workhorses in interpreting stellar observations, and determining their fundamental parameters. These models rely on greatly simplified models of convection, however, lending less predictive power to such models of late type stars. We present a grid of improved and more reliable stellar atmosphere models of late type stars, based on deep, 3D, convective, stellar atmosphere simulations. This grid is to be used in general for interpreting observations, and improve stellar and asteroseismic modeling. We solve the Navier Stokes equations in 3D and concurrent with the radiative transfer equation, for a range of atmospheric parameters, covering most of stellar evolution with convection at the surface. We emphasize use of the best available atomic physics for quantitative predictions and comparisons with observations. We present granulation size, convective expansion of the acoustic cavity, asymptotic adiabat, as function of atmospheric parameters. These and other re...

  7. Fast 3D Modeling of Borehole Induction Measurements in Dipping and Anisotropic Formations using a Novel Approximation Technique

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    complex linear system of equations whose solution yields the spatial distribution of the internal electricFast 3D Modeling of Borehole Induction Measurements in Dipping and Anisotropic Formations using two sequential steps. First, the spatial distribution of the electric field within scatterers

  8. Evaluation of DART 3D model in the thermal domain using satellite/airborne imagery and ground-based measurements

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Evaluation of DART 3D model in the thermal domain using satellite/airborne imagery and ground ISSN0143-1161print/ISSN1366-5901, DOI:10.1080/01431161.2010.524672 jean to energy fluxes at the earth's surface. Its physical magnitude is defined as the effective kinetic

  9. Towards evaluating the map literacy of planners in 2D maps and 3D models in South Africa

    E-Print Network [OSTI]

    �öltekin, Arzu

    1 Towards evaluating the map literacy of planners in 2D maps and 3D models in South Africa, Department of Geography, Geoinformatics and Metereology, University of Pretoria, Pretoria, South Africa 2 GIScience Center, University of Zurich, Zurich, Switzerland. Abstract South Africa is faced

  10. Vortex Proliferation and the Dual Superconductor Scenario for Confinement: The 3D Compact U(1) Lattice Higgs Model

    E-Print Network [OSTI]

    Sandro Wenzel; Elmar Bittner; Wolfhard Janke; Adriaan M. J. Schakel; Arwed Schiller

    2005-10-24T23:59:59.000Z

    It is argued that the phase diagram of the 3D Compact U(1) Lattice Higgs Model is more refined than generally thought. The confined and Higgs phases are separated by a well-defined phase boundary, marked by proliferating vortices. It is shown that the confinement mechanism at work is precisely the dual superconductor scenario.

  11. Error bounds for space-time discretizations of a 3D model for shape-memory materials

    E-Print Network [OSTI]

    Stefanelli, Ulisse

    Error bounds for space-time discretizations of a 3D model for shape-memory materials Alexander in shape- memory materials. After recalling existence and uniqueness results, a fully evolution of shape-memory alloys (SMAs). The latter are metallic alloys showing some surprising thermo

  12. METHODOLOGICAL DEVELOPMENTS IN 3D SCANNING AND MODELLING OF ARCHAEOLOGICAL FRENCH HERITAGE SITE : THE BRONZE AGE PAINTED

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    METHODOLOGICAL DEVELOPMENTS IN 3D SCANNING AND MODELLING OF ARCHAEOLOGICAL FRENCH HERITAGE SITE: Documentation of World Heritage Sites KEY WORDS: Cultural Heritage, painted cave, TLS, Photogrammetry, Close Age painted cave, registrered in the French Historical Monuments. The archaeological cave of Les Fraux

  13. A Fuzzy-Convolution Model for Physical Action and Behaviour Pattern Recognition of 3D Time Series

    E-Print Network [OSTI]

    Hu, Huosheng

    A Fuzzy-Convolution Model for Physical Action and Behaviour Pattern Recognition of 3D Time Series-- Pattern Classification, Action Recognition, Fuzzy Classifiers, Signal Convolution. I. INTRODUCTION researchers in pattern recognition on the field of intelligent surveillance. Fuzzy logic has been extensively

  14. Acquisition of a Dense 3D Model Database for Robotic Vision Muhammad Zeeshan Zia, Ulrich Klank, and Michael Beetz

    E-Print Network [OSTI]

    Cremers, Daniel

    , and Michael Beetz Abstract-- Service Robots in real world environments need to have computer vision capability of excellence Cognitive Technical Systems (CoTeSys). M. Z. Zia, U. Klank and M. Beetz are with the Intelligent bei M¨unchen {zia, klank, beetz} @in.tum.de Fig. 1. Multiple views of a 3D mug model matched against

  15. A 3D biomechanical vocal tract model to study speech production control: How to take into account the gravity?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A 3D biomechanical vocal tract model to study speech production control: How to take into account is determined by an optimal planning that selects the target motor control variables ensuring that the desired motor control can deal with gravity to achieve steady-state tongue positions. It is based on simulations

  16. MODELLING OF P450 ACTIVE SITE BASED ON CONSENSUS 3D Jean-Christophe Nebel

    E-Print Network [OSTI]

    Nebel, Jean-Christophe

    .nebel@kingston.ac.uk ABSTRACT P450 enzymes constitute a large superfamily of haem- thiolate proteins involved in the metabolism known structures of P450 proteins. The generation of biologically meaningful 3D patterns or motifs from the simultaneous alignment of several P450 structures is a way of overcoming that lack of data. In order to address

  17. Elliptic Flow from a Hybrid CGC, Full 3D Hydro and Hadronic Cascade Model

    E-Print Network [OSTI]

    Tetsufumi Hirano; Ulrich W. Heinz; Dmitri Kharzeev; Roy Lacey; Yasushi Nara

    2007-03-27T23:59:59.000Z

    We investigate the robustness of the discovery of the perfect fluid through comparison of hydrodynamic calculations with the elliptic flow coefficient v_2 at midrapidity in Au+Au collisions at sqrt{s_{NN}}=200 GeV. Employing the Glauber model for initial entropy density distributions, the centrality dependence of v_2 is reasonably reproduced by using an ideal fluid description of the early QGP stage followed by a hadronic cascade in the late hadronic stage. On the other hand, initial conditions based on the Colour Glass Condensate model are found to generate larger elliptic flow due to larger initial eccentricity epsilon. We further predict v_2/epsilon at a fixed impact parameter as a function of collision energy sqrt{s_{NN}} up to the LHC energy.

  18. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-01-01T23:59:59.000Z

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore »the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  19. Integration of 3-D seismic data with reservoir modeling of a stratigraphically complex reservoir, central Saudi Arabia

    SciTech Connect (OSTI)

    Simms, S.C. (Saudi Aramco, Dhahran (Saudi Arabia))

    1993-09-01T23:59:59.000Z

    A 425-km[sup 2], three-dimensional (3-D) seismic survey was shot in 1992 over one of the recently discovered oil fields in central Saudi Arabia. The primary objective of this survey was to provide stratigraphic control within a complex fluvial reservoir. The Permian age reservoir is a multistory, multilateral sequence of sandstones interbedded with nonproductive mudstones and siltstones. The seismic data were integrated with well control from over 50 wells to produce a 3-D geologic model of the reservoir. Numerous examples of the seismic and well data are presented in this case history. Stratigraphic cross sections through the wells illustrate that the complex nature of the reservoir and seismic sections through these wells show good correlation between seismic character and stratigraphy. Meandering channels and massive siltstone/mudstone bodies are clearly visible on seismic horizon slices and time slices. Faulting is evident on both seismic section at times slices. Acoustic impedance sections produced from both forward and inverse modeling of the seismic data are compared with geologic models of porosity and lithology based on well control alone. Good correlation between acoustic impedance and porosity/lithology allow the use of the seismic data to guide the model between well locations. A geostatistical approach was used to interpolate between well control using the inverted seismic as [open quotes]soft data.[close quotes] 3-D visualization of the geological model illustrates increasing complexity from well control only to an integrated model.

  20. Interactive 3D Animation System for Web3D Masayuki Furukawa, Shinya Fukumoto, Hiroshi Kawasaki

    E-Print Network [OSTI]

    Tokyo, University of

    of state model using a printer as a 3D object. In the example, three states of 3D object are defined can try 3D manual of printer by using tablet PC to learn the effectiveness of our 3D animation systemInteractive 3D Animation System for Web3D Masayuki Furukawa, Shinya Fukumoto, Hiroshi Kawasaki

  1. 3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration

    SciTech Connect (OSTI)

    Lee, Shiu-Hang; Kamae, Tuneyoshi; Ellison, Donald C.

    2008-07-02T23:59:59.000Z

    We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion-decay from protons.

  2. Reconstruction quasi-dense et mod`eles 3D `a partir d'une sequence d'images Quasi-Dense Reconstruction and 3D Models from Image Sequence

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , Kowloon, Hong Kong SAR. lhuillie@lasmea.univ-bpclermont.fr quan@cs.ust.hk Papiers et d´emos: wwwlasmea calibr´ees ainsi qu'un syst`eme associ´e de reconstruction de mod`eles 3D. La principale in- novation est). Abstract This paper proposes a quasi-dense reconstruction from un- calibrated sequence and a companion

  3. P-wave re ections in 3-D model of coal basin with boulders (has been accepted for poster presentation at EAGE conference, Leipzig 1998)

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    P-wave re ections in 3-D model of coal basin with boulders (has been accepted for poster to the computation of re ections in 3-D model of coal basin with four boulders located in the upper bed of the coal. Tselentis, pers. comm.). The model is composed of a low velocity layer, upper bed, four boulders, coal seam

  4. Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities

    SciTech Connect (OSTI)

    Lan, Shih-Feng [University of Oklahoma Bioengineering Center, University of Oklahoma, Norman, OK 73019 (United States); Starly, Binil, E-mail: starlyb@ou.edu [University of Oklahoma Bioengineering Center, University of Oklahoma, Norman, OK 73019 (United States); School of Industrial Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2011-10-01T23:59:59.000Z

    Prediction of human response to potential therapeutic drugs is through conventional methods of in vitro cell culture assays and expensive in vivo animal testing. Alternatives to animal testing require sophisticated in vitro model systems that must replicate in vivo like function for reliable testing applications. Advancements in biomaterials have enabled the development of three-dimensional (3D) cell encapsulated hydrogels as in vitro drug screening tissue model systems. In this study, we have developed an in vitro platform to enable high density 3D culture of liver cells combined with a monolayer growth of target breast cancer cell line (MCF-7) in a static environment as a representative example of screening drug compounds for hepatotoxicity and drug efficacy. Alginate hydrogels encapsulated with serial cell densities of HepG2 cells (10{sup 5}-10{sup 8} cells/ml) are supported by a porous poly-carbonate disc platform and co-cultured with MCF-7 cells within standard cell culture plates during a 3 day study period. The clearance rates of drug transformation by HepG2 cells are measured using a coumarin based pro-drug. The platform was used to test for HepG2 cytotoxicity 50% (CT{sub 50}) using commercially available drugs which further correlated well with published in vivo LD{sub 50} values. The developed test platform allowed us to evaluate drug dose concentrations to predict hepatotoxicity and its effect on the target cells. The in vitro 3D co-culture platform provides a scalable and flexible approach to test multiple-cell types in a hybrid setting within standard cell culture plates which may open up novel 3D in vitro culture techniques to screen new chemical entity compounds. - Graphical abstract: Display Omitted Highlights: > A porous support disc design to support the culture of desired cells in 3D hydrogels. > Demonstrated the co-culture of two cell types within standard cell-culture plates. > A scalable, low cost approach to toxicity screening involving multiple cell types.

  5. The solar photospheric abundance of hafnium and thorium. Results from CO5BOLD 3D hydrodynamic model atmospheres

    E-Print Network [OSTI]

    Elisabetta Caffau; L. Sbordone; H. -G. Ludwig; P. Bonifacio; M. Steffen; N. T. Behara

    2008-03-25T23:59:59.000Z

    Context: The stable element hafnium (Hf) and the radioactive element thorium (Th) were recently suggested as a suitable pair for radioactive dating of stars. The applicability of this elemental pair needs to be established for stellar spectroscopy. Aims: We aim at a spectroscopic determination of the abundance of Hf and Th in the solar photosphere based on a \\cobold 3D hydrodynamical model atmosphere. We put this into a wider context by investigating 3D abundance corrections for a set of G- and F-type dwarfs. Method: High-resolution, high signal-to-noise solar spectra were compared to line synthesis calculations performed on a solar CO5BOLD model. For the other atmospheres, we compared synthetic spectra of CO5BOLD 3D and associated 1D models. Results: For Hf we find a photospheric abundance A(Hf)=0.87+-0.04, in good agreement with a previous analysis, based on 1D model atmospheres. The weak Th ii 401.9 nm line constitutes the only Th abundance indicator available in the solar spectrum. It lies in the red wing of an Ni-Fe blend exhibiting a non-negligible convective asymmetry. Accounting for the asymmetry-related additional absorption, we obtain A(Th)=0.09+-0.03, consistent with the meteoritic abundance, and about 0.1 dex lower than obtained in previous photospheric abundance determinations. Conclusions: Only for the second time, to our knowledge, has am non-negligible effect of convective line asymmetries on an abundance derivation been highlighted. Three-dimensional hydrodynamical simulations should be employed to measure Th abundances in dwarfs if similar blending is present, as in the solar case. In contrast, 3D effects on Hf abundances are small in G- to mid F-type dwarfs and sub-giants, and 1D model atmospheres can be conveniently used.

  6. Quark-Antiquark and Diquark Condensates in Vacuum in a 3D Two-Flavor Gross-Neveu Model

    E-Print Network [OSTI]

    Bang-Rong Zhou

    2007-06-23T23:59:59.000Z

    The effective potential analysis indicates that, in a 3D two-flavor Gross-Neveu model in vacuum, depending on less or bigger than the critical value 2/3 of $G_S/H_P$, where $G_S$ and $H_P$ are respectively the coupling constants of scalar quark-antiquark channel and pseudoscalar diquark channel, the system will have the ground state with pure diquark condensates or with pure quark-antiquark condensates, but no the one with coexistence of the two forms of condensates. The similarities and differences in the interplay between the quark-antiquark and the diquark condensates in vacuum in the 2D, 3D and 4D two-flavor four-fermion interaction models are summarized.

  7. 3D Bone Microarchitecture Modeling and Fracture Risk Department of Computer

    E-Print Network [OSTI]

    Buffalo, State University of New York

    technique for the diagnosis of osteoporosis is Bone Mineral Density (BMD) measurement based on dual energy X

  8. A new graphical user interface for a 3D topological mesh modeler

    E-Print Network [OSTI]

    Morris, David Victor

    2008-10-10T23:59:59.000Z

    background color, or vice versa, while others may prefer an orange to blue contrast between the object color and the viewport background based on the sensitivity of their eyes [2]. There exist a myriad file formats for storing 3-dimensional mesh data..., and it is often desirable to work with the same mesh in multiple software packages. This requires each application to have the ability to import and export data in at least one of many 3D file formats. One of the most commonly used and widely support mesh formats...

  9. Dual FIB-SEM 3D imaging and lattice boltzmann modeling of porosimetry and multiphase flow in chalk.

    SciTech Connect (OSTI)

    Rinehart, Alex; Petrusak, Robin (Advanced Resources International, Inc., Arlington, VA); Heath, Jason E.; Dewers, Thomas A.; Yoon, Hongkyu

    2010-12-01T23:59:59.000Z

    Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage.

  10. Image-based stochastic modeling of the 3D morphology of energy materials on various length scales

    E-Print Network [OSTI]

    Schmidt, Volker

    , to appear 3D image of uncompressed graphite electrode used in Li-ion batteries tomography: Helmholtz Center, 2013 | Volker Schmidt Contents Introduction 3D microstructure of uncompressed graphite electrodes 3D microstructure of compressed graphite electrodes 3D morphology of hybrid organic solar cells Charge transport

  11. Millimeter radiation from a 3D model of the solar atmosphere I. Diagnosing chromospheric thermal structure

    E-Print Network [OSTI]

    Loukitcheva, Maria; Carlsson, Mats; White, Stephen

    2015-01-01T23:59:59.000Z

    Aims. We use advanced 3D NLTE radiative magnetohydrodynamic simulations of the solar atmosphere to carry out detailed tests of chromospheric diagnostics at millimeter and submillimeter wavelengths. Methods. We focused on the diagnostics of the thermal structure of the chromosphere in the wavelength bands from 0.4 mm up to 9.6 mm that can be accessed with the Atacama Large Millimeter/Submillimeter Array (ALMA) and investigated how these diagnostics are affected by the instrumental resolution. Results. We find that the formation height range of the millimeter radiation depends on the location in the simulation domain and is related to the underlying magnetic structure. Nonetheless, the brightness temperature is a reasonable measure of the gas temperature at the effective formation height at a given location on the solar surface. There is considerable scatter in this relationship, but this is significantly reduced when very weak magnetic fields are avoided. Our results indicate that although instrumental smearin...

  12. 3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report

    SciTech Connect (OSTI)

    Wagoner, J

    2009-04-24T23:59:59.000Z

    The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

  13. 3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report

    SciTech Connect (OSTI)

    Wagoner, J

    2009-02-23T23:59:59.000Z

    The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

  14. Modeling, measurement, and 3-D equilibrium reconstruction of the bootstrap current in the Helically Symmetric Experiment

    SciTech Connect (OSTI)

    Schmitt, J. C.; Talmadge, J. N.; Anderson, D. T. [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Hanson, J. D. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

    2014-09-15T23:59:59.000Z

    The bootstrap current for three electron cyclotron resonance heated plasma scenarios in a quasihelically symmetric stellarator (the Helically Symmetric Experiment) are analyzed and compared to a neoclassical transport code PENTA. The three conditions correspond to 50?kW input power with a resonance that is off-axis, 50?kW on-axis heating and 100?kW on-axis heating. When the heating location was moved from off-axis to on-axis with 50?kW heating power, the stored energy and the extrapolated steady-state current were both observed to increase. When the on-axis heating power was increased from 50?kW to 100?kW, the stored energy continued to increase while the bootstrap current slightly decreased. This trend is qualitatively in agreement with the calculations which indicate that a large positive electric field for the 100?kW case was driving the current negative in a small region close to the magnetic axis and accounting for the decrease in the total integrated current. This trend in the calculations is only observed to occur when momentum conservation between particle species is included. Without momentum conservation, the calculated bootstrap current increases monotonically. We show that the magnitude of the bootstrap current as calculated by PENTA agrees better with the experiment when momentum conservation between plasma species is included in the calculation. The total current was observed in all cases to flow in a direction to unwind the transform, unlike in a tokamak in which the bootstrap current adds to the transform. The 3-D inductive response of the plasma is simulated to predict the evolution of the current profile during the discharge. The 3-D equilibrium reconstruction code V3FIT is used to reconstruct profiles of the plasma pressure and current constrained by measurements with a set of magnetic diagnostics. The reconstructed profiles are consistent with the measured plasma pressure profile and the simulated current profile when the reconstruction is constrained by the measured data from a diagnostic array that is internal to the vacuum chamber.

  15. 3D World Building System

    SciTech Connect (OSTI)

    None

    2013-10-30T23:59:59.000Z

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  16. 3D World Building System

    ScienceCinema (OSTI)

    None

    2014-02-26T23:59:59.000Z

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  17. Non-linear approximations for solving 3D-packing MIP models: a ...

    E-Print Network [OSTI]

    Manlio.Parisch

    2011-02-21T23:59:59.000Z

    MIP models: a heuristic approach ... three-dimensional packing, MIP/MINLP models, linear/non-linear ..... Springer Science + Business Media, New York.

  18. NUMERICAL MODELING FOR THE FORMATION MECHANISM OF 3D TOPOGRAPHY ON MICROBIAL MAT SURFACES 

    E-Print Network [OSTI]

    Patel, Harsh Jay

    2013-09-27T23:59:59.000Z

    determined. A deterministic model includes both a dynamic model, and a static model. Compared to a deterministic solute diffusion model, a stochastic diffusion model has one or more stochastic elements. Concentration diffusion system formulated... solute diffusion equation, which merely appears in the form of a number line, the quasi-2D solute diffusion equation forms a Cartesian grid system. Also, for the explicit quasi-2D solute diffusion equation (Eq. 4), concentration variation is measured...

  19. Spatial modeling of the 3D morphology of hybrid polymer-ZnO solar cells, based on electron tomography data

    E-Print Network [OSTI]

    O. Stenzel; V. Schmidt; H. Hassfeld; R. Thiedmann; L. J. A. Koster; S. D. Oosterhout; S. S. van Bavel; M. M. Wienk; J. Loos; R. A. J. Janssen

    2011-11-22T23:59:59.000Z

    A spatial stochastic model is developed which describes the 3D nanomorphology of composite materials, being blends of two different (organic and inorganic) solid phases. Such materials are used, for example, in photoactive layers of hybrid polymer zinc oxide solar cells. The model is based on ideas from stochastic geometry and spatial statistics. Its parameters are fitted to image data gained by electron tomography (ET), where adaptive thresholding and stochastic segmentation have been used to represent morphological features of the considered ET data by unions of overlapping spheres. Their midpoints are modeled by a stack of 2D point processes with a suitably chosen correlation structure, whereas a moving-average procedure is used to add the radii of spheres. The model is validated by comparing physically relevant characteristics of real and simulated data, like the efficiency of exciton quenching, which is important for the generation of charges and their transport toward the electrodes.

  20. Rigging the world : 3D modeling and the seduction of the real

    E-Print Network [OSTI]

    Perry, Rebecca Ann

    2014-01-01T23:59:59.000Z

    Evidence from history, archaeology, and the social sciences suggests that making models of the world has anchored our understanding of it since the earliest days. From models of deities, dwellings and weapons to molecules ...

  1. 3-D Density Model Of Mt Etna Volcano (Southern Italy) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformationColorado3 Phases

  2. Use of a 3D liver microreactor as an in vitro model for the study of bile acid synthesis and hepatobiliary circulation

    E-Print Network [OSTI]

    Llamas Vidales, Jose Ricardo

    2009-01-01T23:59:59.000Z

    The liver regulates a myriad of vital functions including bile acid synthesis, hepatobiliary circulation, cholesterol homeostasis, drug metabolism, etc. This thesis focuses on the use of a 3D in vitro model of liver to ...

  3. Measuring the Kernel of Time-Dependent Density Functional Theory with X-Ray Absorption Spectroscopy of 3d Transition Metals

    E-Print Network [OSTI]

    Gross, E.K.U.

    of 3d Transition Metals A. Scherz,* E. K. U. Gross, H. Appel, C. Sorg, K. Baberschke, and H. Wende, and a new approximation suggested. But the true value of DFT is in constructing one XC approxi- mation

  4. 3D Modeling of Coupled Rock Deformation and Thermo-Poro-Mechanical Processes in Fractures

    E-Print Network [OSTI]

    Rawal, Chakra

    2012-07-16T23:59:59.000Z

    and failure of weak planes of the formation with creation of new fractures, which impacts reservoir response. Incorporation of geomechanical factor into engineering analyses using fully coupled geomechanics-reservoir flow modeling exhibits computational...

  5. Application of the 3-D Hydro-Mechanical Model GEOFRAC in enhanced geothermal systems

    E-Print Network [OSTI]

    Vecchiarelli, Alessandra

    2013-01-01T23:59:59.000Z

    GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristic of GEOFRAC is that it is based on statistical input representing ...

  6. Headcut retreat resulting from plunge pool erosion in a 3D landscape evolution model

    E-Print Network [OSTI]

    Flores Cervantes, Javier Homero, 1977-

    2004-01-01T23:59:59.000Z

    Headcut retreat produced by plunge pools is represented using existing concepts about this type of erosion. The model estimates retreat rates, given flow, height of the headcut, upstream slope and Manning's roughness, and ...

  7. Relap5-3d model validation and benchmark exercises for advanced gas cooled reactor application

    E-Print Network [OSTI]

    Moore, Eugene James Thomas

    2006-08-16T23:59:59.000Z

    to material selection and reactor safety. Understanding heat transfer and fluid flow phenomena during normal and transient operation of HTGRs is essential to ensure the adequacy of safety features, such as the reactor cavity cooling system (RCCS). Modeling...

  8. A 3-D mathematical model to identify organ-specific risks in rats during thermal stress

    E-Print Network [OSTI]

    - vention and management. computational modeling; core temperature; finite element method; multiorgan obtained from medical imaging and incorporates the key mechanisms of heat transfer during thermoregulation outcomes associated with heat stress is critical for effective management and mitigation of injury, which

  9. A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model.

    SciTech Connect (OSTI)

    English, Shawn Allen

    2014-09-01T23:59:59.000Z

    A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.

  10. N_T=4 equivariant extension of the 3D topological model of Blau and Thompson

    E-Print Network [OSTI]

    Bodo Geyer; Dietmar Mülsch

    2001-09-18T23:59:59.000Z

    The Blau-Thompson N_T=2, D=3 nonequivariant topological model is extended to a N_T=4, D=3 topological theory. The latter, formally, may be regarded as a topological deformation of the N_T=2, D=4 Yamrom-Vafa-Witten theory after dimensional reduction to D=3. For completeness, also the dimensional reduction of the half-twisted N_T=2, D=4 Yamron model is explicitly constructed.

  11. Benchmark of Atucha-2 PHWR RELAP5-3D control rod model by Monte Carlo MCNP5 core calculation

    SciTech Connect (OSTI)

    Pecchia, M.; D'Auria, F. [San Piero A Grado Nuclear Research Group GRNSPG, Univ. of Pisa, via Diotisalvi, 2, 56122 - Pisa (Italy); Mazzantini, O. [Nucleo-electrica Argentina Societad Anonima NA-SA, Buenos Aires (Argentina)

    2012-07-01T23:59:59.000Z

    Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and peculiarities require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Therefore core models of Atucha-2 PHWR were developed using MCNP5. In this work a methodology was set up to collect the flux in the hexagonal mesh by which the Atucha-2 core is represented. The scope of this activity is to evaluate the effect of obliquely inserted control rod on neutron flux in order to validate the RELAP5-3D{sup C}/NESTLE three dimensional neutron kinetic coupled thermal-hydraulic model, applied by GRNSPG/UNIPI for performing selected transients of Chapter 15 FSAR of Atucha-2. (authors)

  12. Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

    2011-01-01T23:59:59.000Z

    Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

  13. Stellar models with mixing length and T(tau) relations calibrated on 3D convection simulations

    E-Print Network [OSTI]

    Salaris, Maurizio

    2015-01-01T23:59:59.000Z

    (abridged) The calculation of the thermal stratification in the superadiabatic layers of stellar models with convective envelopes is a long standing problem of stellar astrophysics, and has a major impact on predicted observational properties like radius and effective temperature. The Mixing Length Theory, almost universally used to model the superadiabatic convective layers, contains effectively one free parameter to be calibrated --alpha(ml)-- whose value controls the resulting effective temperature. Here we present the first self-consistent stellar evolution models calculated by employing the atmospheric temperature stratification, Rosseland opacities, and calibrated variable alpha(ml) (dependent on effective temperature and surface gravity) from a large suite of three-dimensional radiation hydrodynamics simulations of stellar convective envelopes and atmospheres for solar stellar composition (Trampedach et al. 2013). From our calculations (with the same composition of the radiation hydrodynamics simulatio...

  14. Performance Modeling for 3D Visualization in a Heterogeneous Computing Environment

    SciTech Connect (OSTI)

    Bowman, Ian; Shalf, John; Ma, Kwan-Liu; Bethel, Wes

    2004-06-30T23:59:59.000Z

    The visualization of large, remotely located data sets necessitates the development of a distributed computing pipeline in order to reduce the data, in stages, to a manageable size. The required baseline infrastructure for launching such a distributed pipeline is becoming available, but few services support even marginally optimal resource selection and partitioning of the data analysis workflow. We explore a methodology for building a model of overall application performance using a composition of the analytic models of individual components that comprise the pipeline. The analytic models are shown to be accurate on a testbed of distributed heterogeneous systems. The prediction methodology will form the foundation of a more robust resource management service for future Grid-based visualization applications.

  15. "NN Modelling of the Geometric and Elastic Properties of 3D Objects from

    E-Print Network [OSTI]

    Petriu, Emil M.

    , Québec, Canada #12;Video Camera Robot Arm Tactile Sensors Manipulated Object Head Mounted Display Haptic Feedback Virtual model of the object manipulated in the physical world Video Camera Robot Arm Tactile Sensors Manipulated Object Video Camera Robot Arm Tactile Sensors Tactile Sensors Manipulated Object Head

  16. A Demonstration of MobiTree: Progressive 3D Tree Models Streaming on Mobile Clients

    E-Print Network [OSTI]

    Boyer, Edmond

    representation of plants [2]. We discuss how foliage is rendered in Section 4 and the technical challenges in rendering plant on mobile devices in Section 5. The demonstration and further applications are described Systems Applications]: Miscellaneous General Terms Design, Human Factors Keywords Streaming, Plant Models

  17. Towards 3D modeling of interacting TM helix pairs based on

    E-Print Network [OSTI]

    Nebel, Jean-Christophe

    % of currently known protein structures are from TM proteins [2]. Thus, the lack of experimental structures. Spatial structures of transmembrane proteins are difficult to obtain either experimentally of many transmembrane proteins, is essential in the modeling. Majority of helix-helix interactions

  18. Deformable model for 3D intramodal nonrigid breast image registration with fiducial skin markers

    E-Print Network [OSTI]

    of FSM, finite element method (FEM) is used to distribute the markers' displacements linearly over with rigid registration technique. Keywords: Intramodal image registration, finite element method, deformable, we developed a finite element method (FEM) deformable breast model to correct motion artifacts

  19. QUANTITATIVE ASSESSMENT OF THE IMPACT OF 3D MODELLING OF BUILDING STRUCTURES ON

    E-Print Network [OSTI]

    Sacks, Rafael

    to the firm's overall activity, because the greatest increase in productivity is achieved in this area; that construction companies can leverage the benefits in error reduction and logistics improvements that result PRODUCTIVITY Rafael Sacks1 and Ronen Barak2 ABSTRACT Parametric three-dimensional modelling of buildings

  20. Solar dynamo models with alpha-effect and turbulent pumping from local 3D convection calculations

    E-Print Network [OSTI]

    P. J. Käpylä; M. J. Korpi; I. Tuominen

    2006-06-05T23:59:59.000Z

    (abridged) Results from kinematic solar dynamo models employing alpha-effect and turbulent pumping from local convection calculations are presented. We estimate the magnitude of these effects to be around 2-3 m/s. The rotation profile of the Sun as obtained from helioseismology is applied. We obtain an estimate of the ratio of the two induction effects, C_alpha/C_Omega \\approx 10^-3, which we keep fixed in all models. We also include a one-cell meridional circulation pattern having a magnitude of 10-20 m/s near the surface and 1-2 m/s at the bottom of the convection zone. The model essentially represents a distributed turbulent dynamo, as the alpha-effect is nonzero throughout the convection zone, although it concentrates near the bottom of the convection zone obtaining a maximum around 30 degrees of latitude. Turbulent pumping of the mean fields is predominantly down- and equatorward. We find that, when all these effects are included in the model, it is possible to correctly reproduce many features of the solar activity cycle, namely the correct equatorward migration at low latitudes and the polar branch at high latitudes, and the observed negative sign of B_r B_phi. Although the activity clearly shifts towards the equator in comparison to previous models due to the combined action of the alpha-effect peaking at midlatitudes, meridional circulation and latitudinal pumping, most of the activity still occurs at too high latitudes (between 5-60 degrees). Other problems include the relatively narrow parameter space within which the preferred solution is dipolar (A0), and the somewhat too short cycle lengths of the solar-type solutions. The role of the surface shear layer is found to be important only in the case where the alpha-effect has an appreciable magnitude near the surface.

  1. Simulated 3D Ultrasound LV Cardiac Images for Active Shape Model Training

    E-Print Network [OSTI]

    Frangi, Alejandro

    information: (Send correspondence to A.F.F.) C.B.: E-mail: constantine.butakoff@upf.edu, Telephone: +34 935 42 1364 S.B.: E-mail: simone.balocco@upf.edu S.O.: E-mail: sebastian.ordas@upf.edu A.F.F.: E-mail: alejandro.frangi@upf.edu, Telephone: +34 935 42 1451 #12;authors opted for a statistical shape model based

  2. Interface tension of the 3d 4-state Potts model using the Wang-Landau algorithm

    E-Print Network [OSTI]

    A. Hietanen; B. Lucini

    2011-11-21T23:59:59.000Z

    We study the interface tension of the 4-state Potts model in three dimensions using the Wang- Landau algorithm. The interface tension is given by the ratio of the partition function with a twisted boundary condition in one direction and periodic boundary conditions in all other directions over the partition function with periodic boundary conditions in all directions. With the Wang-Landau algorithm we can explicitly calculate both partition functions and obtain the result for all temperatures. We find solid numerical evidence for perfect wetting. Our algorithm is tested by calculating thermodynamic quantities at the phase transition point.

  3. Energy geothermal; San Emidio Geothermal Area; 3D Model geothermal; San

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andD Model of the San Emidio

  4. 1-D closure models for slender 3-D viscoelastic free jets: von Karman flow geometry and elliptical cross section

    SciTech Connect (OSTI)

    Bechtel, S.E.; Forest, M.G.; Holm, D.D.; Lin, K.J.

    1988-01-01T23:59:59.000Z

    In this paper we derive one space dimensional, reduced systems of equations (1-D closure models) for viscoelastic free jets. We begin with the three-dimensional system of conservation laws and a Maxwell-Jeffreys constitutive law for an incompressible viscoelastic fluid. First, we exhibit exact truncations to a finite, closed system of 1-D equations based on classical velocity assumptions of von Karman. Next, we demonstrate that the 3-D free surface boundary conditions overconstrain these truncated systems, so that only a very limited class of solutions exist. We then proceed to derive approximate 1-D closure theories through a slender jet asymptotic scaling, combined with appropriate definitions of velocity, pressure and stress unknowns. Our nonaxisymmetric 1-D slender jet models incorporate the physical effects of inertia, viscoelasticity (viscosity, relaxation and retardation), gravity, surface tension, and properties of the ambient fluid, and include shear stresses and time dependence. Previous special 1-D slender jet models correspond to the lowest order equations in the present asymptotic theory by an a posteriori suppression to leading order of some of these effects, and a reduction to axisymmetry. Solutions of the lowest order system of equations in this asymptotic analysis are presented: For the special cases of elliptical inviscid and Newtonian free jets, subject to the effects of surface tension and gravity, our model predicts oscillation of the major axis of the free surface elliptical cross section between perpendicular directions with distance down the jet, and drawdown of the cross section, in agreement with observed behavior. 15 refs.

  5. In vivo 3D modeling of the femoropopliteal artery in human subjects based on x-ray angiography: Methodology and validation

    SciTech Connect (OSTI)

    Klein, Andrew J.; Casserly, Ivan P.; Messenger, John C.; Carroll, John D.; Chen, S.-Y. James [University of Colorado Denver, Aurora, Colorado 80045 (United States); University of Colorado Denver, Aurora, Colorado 80045 and Denver VA Medical Center, Denver, Colorado 80220 (United States); University of Colorado Denver, Aurora, Colorado 80045 (United States)

    2009-02-15T23:59:59.000Z

    Endovascular revascularization of the femoropopliteal (FP) artery has been limited by high rates of restenosis and stent fracture. The unique physical forces that are applied to the FP artery during leg movement have been implicated in these phenomena. The foundation for measuring the effects of physical forces on the FP artery in a clinically relevant environment is based on the ability to develop 3D models of this vessel in different leg positions in vivo in patients with peripheral arterial disease (PAD). By acquiring paired angiographic images of the FP artery, and using angiography-based 3D modeling algorithms previously validated in the coronary arteries, the authors generated 3D models of ten FP arteries in nine patients with PAD with the lower extremity in straight leg (SL) and crossed leg (CL) positions. Due to the length of the FP artery, overlapping paired angiographic images of the entire FP artery were required to image the entire vessel, which necessitated the development of a novel fusion process in order to generate a 3D model of the entire FP artery. The methodology of angiographic acquisition and 3D model generation of the FP artery is described. In a subset of patients, a third angiographic view (i.e., validation view) was acquired in addition to the standard paired views for the purpose of validating the 3D modeling process. The mean root-mean-square (rms) error of the point-to-point distances between the centerline of the main FP artery from the 2D validation view and the centerline from the 3D model placed in the validation view for the SL and CL positions were 0.93{+-}0.19 mm and 1.12{+-}0.25 mm, respectively. Similarly, the mean rms error of the same comparison for the main FP artery and sidebranches for the SL and CL positions were 1.09{+-}0.38 mm and 1.21{+-}0.25 mm, respectively. A separate validation of the novel fusion process was performed by comparing the 3D model of the FP artery derived from fusion of 3D models of adjacent FP segments with the 2D validation view incorporating the region of fusion. The mean rms error of vessel centerline points of the main FP artery, the main FP artery plus directly connected sidebranches, and the mean rms error of upstream, downstream, and sidebranch directional vectors at bifurcation points in the overlap region were 1.41{+-}0.79 mm, 2.13{+-}1.12 mm, 3.16{+-}3.72 deg., 3.60{+-}5.39 deg., and 8.68{+-}8.42 deg. in the SL position, respectively, and 1.29{+-}0.35 mm, 1.61{+-}0.78 mm, 4.68{+-}4.08 deg., 3.41{+-}2.23 deg., and 5.52{+-}4.41 deg. in the CL position, respectively. Inter- and intraobserver variability in the generation of 3D models of individual FP segments and the fusion of overlapping FP segments were assessed. The mean rms errors between the centerlines of nine 3D models of individual FP segments generated by two independent observers, and repeated measurement by the same observer were 2.78{+-}1.26 mm and 3.50{+-}1.15 mm, respectively. The mean rms errors between the centerline of four 3D models of fused overlapping FP segments generated by two independent observers, and repeated measurement by the same observer were 4.99{+-}0.99 mm and 5.98{+-}1.22 mm, respectively. This study documents the ability to generate 3D models of the entire FP artery in vivo in patients with PAD in both SL and CL positions using routine angiography, and validates the methodologies used.

  6. 3D Printing Electronics

    E-Print Network [OSTI]

    Stryk, Oskar von

    Login Register Home Videos Jobs Games 3D Printing Electronics Design Software Designer Edge for 3D Printing · -- B6 Sigma Labs (ticker SGLB) is not the same company as Sigma Technologies

  7. Incorporation of time-dependent thermodynamic models and radiation propagation models into JR 3-D synthetic image generation models

    E-Print Network [OSTI]

    Salvaggio, Carl

    images representing what an airborne or satellite thermal infrared imaging sensor would record. The scene sensors to a point where the model can be usedas a research tool to evaluate the limitations in our infrared (TIR) imagery generated by midwave (3-5 Rm) and longwave (8-14 pm) sensors is being increasingly

  8. 3D CFD Electrochemical and Heat Transfer Model of an Integrated-Planar Solid Oxide Electrolysis Cells

    SciTech Connect (OSTI)

    Grant Hawkes; James E. O'Brien

    2008-10-01T23:59:59.000Z

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in a new novel integrated planar porous-tube supported solid oxide electrolysis cell (SOEC). The model is of several integrated planar cells attached to a ceramic support tube. This design is being evaluated with modeling at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean per-cell area-specific-resistance (ASR) values decrease with increasing current density. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, cathode and anode exchange current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicated the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

  9. Modeling Warm Dense Matter Experiments using the 3D ALE-AMR Code and the Move Toward Exascale Computing

    SciTech Connect (OSTI)

    Koniges, A; Eder, E; Liu, W; Barnard, J; Friedman, A; Logan, G; Fisher, A; Masers, N; Bertozzi, A

    2011-11-04T23:59:59.000Z

    The Neutralized Drift Compression Experiment II (NDCX II) is an induction accelerator planned for initial commissioning in 2012. The final design calls for a 3 MeV, Li+ ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The NDCX II will be used in studies of material in the warm dense matter (WDM) regime, and ion beam/hydrodynamic coupling experiments relevant to heavy ion based inertial fusion energy. We discuss recent efforts to adapt the 3D ALE-AMR code to model WDM experiments on NDCX II. The code, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR), has physics models that include ion deposition, radiation hydrodynamics, thermal diffusion, anisotropic material strength with material time history, and advanced models for fragmentation. Experiments at NDCX-II will explore the process of bubble and droplet formation (two-phase expansion) of superheated metal solids using ion beams. Experiments at higher temperatures will explore equation of state and heavy ion fusion beam-to-target energy coupling efficiency. Ion beams allow precise control of local beam energy deposition providing uniform volumetric heating on a timescale shorter than that of hydrodynamic expansion. The ALE-AMR code does not have any export control restrictions and is currently running at the National Energy Research Scientific Computing Center (NERSC) at LBNL and has been shown to scale well to thousands of CPUs. New surface tension models that are being implemented and applied to WDM experiments. Some of the approaches use a diffuse interface surface tension model that is based on the advective Cahn-Hilliard equations, which allows for droplet breakup in divergent velocity fields without the need for imposed perturbations. Other methods require seeding or other methods for droplet breakup. We also briefly discuss the effects of the move to exascale computing and related computational changes on general modeling codes in fusion energy.

  10. 3D NUCLEAR SEGMENTAT

    Energy Science and Technology Software Center (OSTI)

    003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems  https://vision.lbl.gov/Software/3DMorphometry/ 

  11. Modeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    The main purpose of this report is to design a printed circuit heat exchanger (PCHE) for the Next Generation Nuclear Plant and carry out Loss of Coolant Accident (LOCA) simulation using RELAP5-3D. Helium was chosen as the coolant in the primary and secondary sides of the heat exchanger. The design of PCHE is critical for the LOCA simulations. For purposes of simplicity, a straight channel configuration was assumed. A parallel intermediate heat exchanger configuration was assumed for the RELAP5 model design. The RELAP5 modeling also required the semicircular channels in the heat exchanger to be mapped to rectangular channels. The initial RELAP5 run outputs steady state conditions which were then compared to the heat exchanger performance theory to ensure accurate design is being simulated. An exponential loss of pressure transient was simulated. This LOCA describes a loss of coolant pressure in the primary side over a 20 second time period. The results for the simulation indicate that heat is initially transferred from the primary loop to the secondary loop, but after the loss of pressure occurs, heat transfers from the secondary loop to the primary loop.

  12. 3D modelling of the early Martian Climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds

    E-Print Network [OSTI]

    Forget, Francois; Millour, Ehouarn; Madeleine, Jean-Baptiste; Kerber, Laura; Leconte, Jeremy; Marcq, Emmanuel; Haberle, Robert M

    2012-01-01T23:59:59.000Z

    On the basis of geological evidence, it is often stated that the early martian climate was warm enough for liquid water to flow on the surface thanks to the greenhouse effect of a thick atmosphere. We present 3D global climate simulations of the early martian climate performed assuming a faint young sun and a CO2 atmosphere with pressure between 0.1 and 7 bars. The model includes a detailed radiative transfer model using revised CO2 gas collision induced absorption properties, and a parameterisation of the CO2 ice cloud microphysical and radiative properties. A wide range of possible climates is explored by using various values of obliquities, orbital parameters, cloud microphysic parameters, atmospheric dust loading, and surface properties. Unlike on present day Mars, for pressures higher than a fraction of a bar, surface temperatures vary with altitude because of the adiabatic cooling and warming of the atmosphere when it moves vertically. In most simulations, CO2 ice clouds cover a major part of the planet...

  13. Quantifying Fluid Distribution and Phase Connectivity with a Simple 3D Cubic Pore Network Model Constrained by NMR and MICP Data

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    1 Quantifying Fluid Distribution and Phase Connectivity with a Simple 3D Cubic Pore Network Model; Nuclear Magnetic Resonance; Pore Network; Invasion Percolation; Fluid Distribution; Relative Permeability Constrained by NMR and MICP Data Chicheng Xu1 and Carlos Torres-Verdín2 Running Head: Pore Network Modeling

  14. Object-Oriented Modelling and Simulation of Air Flow in Data Centres Based on a Quasi-3D Approach for Energy Optimisation

    E-Print Network [OSTI]

    Como, Giacomo

    ­5]. On the other hand, power delivery, electricity consumption, and heat management studies for data centre) simulation is extensively used for simulate airflow and heating components in data centres. CFD modellingObject-Oriented Modelling and Simulation of Air Flow in Data Centres Based on a Quasi-3D Approach

  15. 3D Printing Prof. Hank Dietz

    E-Print Network [OSTI]

    Dietz, Henry G. "Hank"

    3D Printing Prof. Hank Dietz TCMS, March 14, 2014 University of Kentucky Electrical & Computer #12;3D With Glue Layers of paper: printed with glue & cut Layers of powder: printed with glue Can also be printed in full color #12;3D Extrusion (RepRaps) FDM: Fused Deposition Modeling FFF: Fused

  16. Constructing a large-scale 3D Geologic Model for Analysis of the Non-Proliferation Experiment

    SciTech Connect (OSTI)

    Wagoner, J; Myers, S

    2008-04-09T23:59:59.000Z

    We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5{sup o} to -112.6{sup o} and latitude 34.5{sup o} to 39.8{sup o}; the depth ranges from the topographic surface to 150 km below sea level. The model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by both geologic and geophysical studies, while the lower crust and upper mantle are constrained by geophysical studies. The mapped upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks of all ages, and calderas. The lower crust and upper mantle are parameterized with 5 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas geologic maps for California and Utah were scanned and hand-digitized. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and thus estimate the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m lateral resolution DEM elsewhere. Variations in crustal thickness are based on receiver function analysis and a framework compilation of reflection/refraction studies. We used Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. For seismic studies, the geologic units are mapped to specific seismic velocities. The gross geophysical structure of the crust and upper mantle is taken from regional surface-wave studies. For regional seismic simulations we convert this realistic geologic model into elastic parameters. Upper crustal units are treated as seismically homogeneous while the lower crust and upper mantle are parameterized by a smoothly varying velocity profile. In order to mitigate spurious reflections, the lower crust and upper mantle are treated as velocity gradients as a function of depth.

  17. F3D

    Energy Science and Technology Software Center (OSTI)

    003188MLTPL00 F3D Image Processing and Analysis for Many - and Multi-core Platforms  http://camera.lbl.gov/software 

  18. 3D-Model-based Face Replacement in Video Virginia Tzeng*, Yi-Ting Cheng*, Yu Liang*, Chuan-Chang Wang

    E-Print Network [OSTI]

    Ouhyoung, Ming

    3D-Model-based Face Replacement in Video Virginia Tzeng*, Yi-Ting Cheng*, Yu Liang*, Chuan and important topic. In this paper, we present a system for face replacement in video. Most digital processing software can perform face replacement only when the poses for the source and target faces are similar

  19. Evaluation of electric and magnetic fields distribution and SAR induced in 3D models of water containers by radiofrequency radiation using FDTD and FEM simulation techniques

    E-Print Network [OSTI]

    Abdelsamie, Maher A A; Mustafa, Shuhaimi; Hashim, Dzulkifly

    2014-01-01T23:59:59.000Z

    In this study, two software packages using different numerical techniques FEKO 6.3 with Finite-Element Method (FEM) and XFDTD 7 with Finite Difference Time Domain Method (FDTD) were used to assess exposure of 3D models of square, rectangular, and pyramidal shaped water containers to electromagnetic waves at 300, 900, and 2400 MHz frequencies. Using the FEM simulation technique, the peak electric field of 25, 4.5, and 2 V/m at 300 MHz and 15.75, 1.5, and 1.75 V/m at 900 MHz were observed in pyramidal, rectangular, and square shaped 3D container models, respectively. The FDTD simulation method confirmed a peak electric field of 12.782, 10.907, and 10.625 V/m at 2400 MHz in the pyramidal, square, and rectangular shaped 3D models, respectively. The study demonstrated an exceptionally high level of electric field in the water in the two identical pyramid shaped 3D models analyzed using the two different simulation techniques. Both FEM and FDTD simulation techniques indicated variations in the distribution of elect...

  20. July 2004, Vol.19, No.4, pp.501-509 J. Comput. Sci. & Technol. New Algorithm for 3D Facial Model Reconstruction

    E-Print Network [OSTI]

    Frey, Pascal

    is essential to the generation of facial animations that is widely used in the field of virtual reality (VR. Since animated human face can be acquired by the deforming of freedom degree of general pa- rameterized of deformation parameters before animating the model. To reconstruct 3D human face from images based

  1. 3D Modeling of One and Two Component Gas Flow in Fibrous Microstructures in Fuel Cells by Using the Lattice-Boltzmann Method

    E-Print Network [OSTI]

    Schmidt, Volker

    In fuel cells, a homogeneous distribution of gas flow is desirable for optimal performance. The gas3D Modeling of One and Two Component Gas Flow in Fibrous Microstructures in Fuel Cells by Using: Fuel Cells, 52425 Jülich, Germany b Institute of Stochastics, Ulm University, 89069 Ulm, Germany

  2. Optimized 3D simulation method for modeling of out-of-plane radiation in silicon photonic integrated circuits

    E-Print Network [OSTI]

    Westerveld, W J; Yousefi, M

    2015-01-01T23:59:59.000Z

    We present an accurate and fast 3D simulation scheme for out-of-plane grating couplers, based on two dimensional rigorous (finite difference time domain) grating simulations, the effective index method (EIM), and the Rayleigh-Sommerfeld diffraction formula. In comparison with full 3D FDTD simulations, the rms difference in electric field is below 5% and the difference in power flux is below 3%. A grating coupler for coupling from a silicon-on-insulator photonic integrated circuit to an optical fiber positioned 0.1 mm above the circuit is designed as example.

  3. 3D Model Selection from an Internet Database for Robotic Vision Ulrich Klank, Muhammad Zeeshan Zia and Michael Beetz

    E-Print Network [OSTI]

    Cremers, Daniel

    and Michael Beetz Abstract-- We propose a new method for automatically ac- cessing an internet database of 3D of excellence Cognitive Technical Systems (CoTeSys). U. Klank, M. Z. Zia and M. Beetz are with the Intelligent bei M¨unchen {klank, zia, beetz} @in.tum.de 2) For each object type it looks up a library of geometric

  4. Elongated fascicle-inspired 3D tissues consisting of high-density, aligned, optogenetically excitable muscle tissue using sacrificial outer molding

    E-Print Network [OSTI]

    Neal, Devin Michael

    2014-01-01T23:59:59.000Z

    The majority of muscles, nerves, and tendons are composed of fiber-like fascicle morphology. Each fascicle has a) elongated cells highly aligned with the length of the construct, b) a high volumetric cell density, and c) ...

  5. TOPAZ3D. 3-D Finite Element Heat Transfer

    SciTech Connect (OSTI)

    Shapiro, A.B. [Lawrence Livermore National Lab., CA (United States)

    1992-02-24T23:59:59.000Z

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  6. Characterization of 3D Photovoltaics

    E-Print Network [OSTI]

    Characterization of 3D Photovoltaics SEMICONDUCTORS Our goal is to provide industry with test structures and models of next-generation photovoltaics, with an initial focus on cadmium telluride (Cd (nanostructured) photovoltaic devices. Objective Impact and Customers · The U.S. Photovoltaic Industry Roadmap

  7. Implementation and validation of a Reynolds stress model in the COMMIX-1C/RSM and CAPS-3D/RSM codes

    SciTech Connect (OSTI)

    Chang, F.C.; Bottoni, M. [Argonne National Lab., IL (United States). Energy Technology Div.

    1995-08-01T23:59:59.000Z

    A Reynolds stress model (RSM) of turbulence, based on seven transport equations, has been linked to the COMMIX-1C/RSM and CAPS-3D/RSM computer codes. Six of the equations model the transport of the components of the Reynolds stress tensor and the seventh models the dissipation of turbulent kinetic energy. When a fluid is heated, four additional transport equations are used: three for the turbulent heat fluxes and one for the variance of temperature fluctuations. All of the analytical and numerical details of the implementation of the new turbulence model are documented. The model was verified by simulation of homogeneous turbulence.

  8. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08:59 ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which...

  9. Integrating chemistry into 3D climate models: Detailed kinetics in the troposphere and stratosphere of a global climate model

    SciTech Connect (OSTI)

    Kao, C.Y.J.; Elliott, S. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.; Turco, R.P.; Zhao, X. [Univ. of California, Los Angeles, CA (United States)

    1997-11-01T23:59:59.000Z

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The motivation for the project is to create the first complete, three-dimensional climate model that enfolds atmospheric photochemistry. The LANL chemical global climate model (GCM) not only distributes the trace greenhouse gases and modifies their concentrations within the detailed photochemical web, but also permits them to influence the radiation field and so force their own transport. Both atmospheric chemistry and fluid dynamics are nonlinear and zonally asymmetric phenomena. They can only be adequately modeled in three dimensions on the global grid. The kinetics-augmented GCM is the only program within the atmospheric community capable of investigating interaction involving chemistry and transport. The authors have conducted case studies of timely three-dimensional chemistry issues. Examples include ozone production from biomass burning plumes, kinetic feedbacks in zonally asymmetric transport phenomena with month- to year-long time scales, and volcano sulfate aerosols with respect to their potential effects on tropospheric ozone depletion.

  10. Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling

    SciTech Connect (OSTI)

    Pannala, S; D'Azevedo, E; Zacharia, T

    2002-02-26T23:59:59.000Z

    The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of work in section F.

  11. Scanning and Printing Persons in 3D Jurgen Sturm1

    E-Print Network [OSTI]

    Cremers, Daniel

    miniatures of persons using a Kinect sensor and a 3D color printer. To achieve this, we acquire color- through in rapid prototyping in recent years. Modern 3D printers are able to print colored 3D models at resolutions comparable to 2D paper printers. On the one hand, the creation of a detailed, printable 3D model

  12. Phase diagram of chiral and diquark condensates at finite temperature and density in the 2-dimensional Gross Neveu model

    E-Print Network [OSTI]

    Hiroaki Kohyama

    2008-04-30T23:59:59.000Z

    We construct the phase diagram of the chiral and diquark condensates at finite temperature and density in the 1+1 dimensional (2D) two flavor massless Gross Neveu model. The resultant phase diagram shows (I) the chiral condensed phase at low temperature and density, (II) the diquark condensed phase at low temperature and high density, and (III) the chiral and diquark coexisting phase at low temperature and intermediate density. This phase structure is also seen in the 3D Gross Neveu model and the 4D Nambu Jona-Lasinio (NJL) model. Thus the phase diagrams of the chiral and diquark condensates in the NJL-type models do not change qualitatively in 2D, 3D and 4D.

  13. 3, 35433588, 2003 3-D air pollution

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 3, 3543­3588, 2003 3-D air pollution modelling L. M. Frohn et al. Title Page Abstract hemispheric nested air pollution model L. M. Frohn, J. H. Christensen, J. Brandt, C. Geels, and K. M. Hansen 2003 Correspondence to: L. M. Frohn (lmf@dmu.dk) 3543 #12;ACPD 3, 3543­3588, 2003 3-D air pollution

  14. SummitView 1.0: a code to automatically generate 3D solid models of surface micro-machining based MEMS designs.

    SciTech Connect (OSTI)

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Yarberry, Victor R.; Schmidt, Rodney Cannon; Meyers, Ray J. (Elemental Technologies, American Fort, UT)

    2006-11-01T23:59:59.000Z

    This report describes the SummitView 1.0 computer code developed at Sandia National Laboratories. SummitView is designed to generate a 3D solid model, amenable to visualization and meshing, that represents the end state of a microsystem fabrication process such as the SUMMiT (Sandia Ultra-Planar Multilevel MEMS Technology) V process. Functionally, SummitView performs essentially the same computational task as an earlier code called the 3D Geometry modeler [1]. However, because SummitView is based on 2D instead of 3D data structures and operations, it has significant speed and robustness advantages. As input it requires a definition of both the process itself and the collection of individual 2D masks created by the designer and associated with each of the process steps. The definition of the process is contained in a special process definition file [2] and the 2D masks are contained in MEM format files [3]. The code is written in C++ and consists of a set of classes and routines. The classes represent the geometric data and the SUMMiT V process steps. Classes are provided for the following process steps: Planar Deposition, Planar Etch, Conformal Deposition, Dry Etch, Wet Etch and Release Etch. SummitView is built upon the 2D Boolean library GBL-2D [4], and thus contains all of that library's functionality.

  15. The application of seismic stratigraphic methods on exploration 3D seismic data to define a reservoir model in OPL 210, Deepwater Nigeria

    SciTech Connect (OSTI)

    Ragnhild, L.; Ventris, P. [Statoil and BP Alliance, Stavanger (Norway); Osahon, G. [Allied Energy Resources (Nig) Ltd., Lagos (Nigeria)

    1995-08-01T23:59:59.000Z

    OPL 210 lies in deepwater on the northwestern flank of the Niger Delta. The partners in this block are Allied Energy and The Statoil and BP Alliance. The license has a 5 year initial exploration phase and carries a 2 well commitment. At present the database comprises a 1 x 1 km grid of 2D seismic across the block, and 450 sq. km of 3D in an area of special interest. A larger 3D survey is planned for 1995. Little is known about the reservoir in the deep water, but we expect our main target to be ponded slope and basin turbidites. As such the bulk of the shelf well data available has little or no relevance to the play type likely to be encountered. Prior to drilling, seismic stratigraphy has been one of several methods used to generate a consistent predictive reservoir model. The excellent quality and high resolution of the 3D data have allowed identification and detailed description of several distinctive seismic facies. These facies are described in terms of their internal geometries and stacking patterns. The geometries are then interpreted based on a knowledge of depositional processes from analog slope settings. This enables a predictive model to be constructed for the distribution of reservoir within the observed facies. These predictions will be tested by one of the first wells drilled in the Nigerian deepwater in mid 1995.

  16. Density waves in the Calogero model - revisited

    SciTech Connect (OSTI)

    Bardek, V. [Rudjer Boskovic Institute, Bijenicka c.54, HR-10002 Zagreb (Croatia)], E-mail: bardek@irb.hr; Feinberg, J. [Department of Physics, University of Haifa at Oranim, Tivon 36006 (Israel); Department of Physics, Technion-Israel Inst. of Technology, Haifa 32000 (Israel); KITP, University of California, Santa Barbara, CA 93106-4030 (United States)], E-mail: joshua@physics.technion.ac.il; Meljanac, S. [Rudjer Boskovic Institute, Bijenicka c.54, HR-10002 Zagreb (Croatia)], E-mail: meljanac@irb.hr

    2010-03-15T23:59:59.000Z

    The Calogero model bears, in the continuum limit, collective excitations in the form of density waves and solitary modulations of the density of particles. This sector of the spectrum of the model was investigated, mostly within the framework of collective-field theory, by several authors, over the past 15 years or so. In this work we shall concentrate on periodic solutions of the collective BPS-equation (also known as 'finite amplitude density waves'), as well as on periodic solutions of the full static variational equations which vanish periodically (also known as 'large amplitude density waves'). While these solutions are not new, we feel that our analysis and presentation add to the existing literature, as we explain in the text. In addition, we show that these solutions also occur in a certain two-family generalization of the Calogero model, at special points in parameter space. A compendium of useful identities associated with Hilbert transforms, including our own proofs of these identities, appears in Appendix A. In Appendix B we also elucidate in the present paper some fine points having to do with manipulating Hilbert-transforms, which appear ubiquitously in the collective field formalism. Finally, in order to make this paper self-contained, we briefly summarize in Appendix C basic facts about the collective field formulation of the Calogero model.

  17. Density Functional Theory Models for Radiation Damage

    E-Print Network [OSTI]

    Density Functional Theory Models for Radiation Damage S.L. Dudarev EURATOM/CCFE Fusion Association and informative as the most advanced experimental techniques developed for the observation of radiation damage investigation and assessment of radiation damage effects, offering new insight into the origin of temperature

  18. PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: NUMERICAL STUDIES OF 3D NONLINEAR ELM DYNAMICS

    SciTech Connect (OSTI)

    SNYDER,P.B; WILSON,H.R; XU,X.Q

    2004-11-01T23:59:59.000Z

    Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the nonlinear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outboard wall. Similarities to non-linear ballooning theory, as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed.

  19. Fracture Density Estimation Using Spectral Analysis of Reservoir Reflections: A Numerical Modeling Approach

    E-Print Network [OSTI]

    Pearce, Fred

    2003-01-01T23:59:59.000Z

    We use a 3-D finite difference numerical model to generate synthetic seismograms from a simple fractured reservoir

  20. Novel 3-D Printed Inverters for Electric Vehicles Can Improve...

    Energy Savers [EERE]

    density of the prototype. In addition to the improvements to the inverter itself, 3-D printing uses less energy compared to conventional manufacturing, making the manufacturing...

  1. A workflow for handling heterogeneous 3D models with the TOUGH2 family of codes: Applications to numerical modeling of CO2 geological storage

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ) is straightforward. Three examples are shown for validation: i) leakage of CO2 up through an abandoned well, ii) 3D of pilot sites for CCS. Extrapolation of laboratory results from core to reservoir scale can be done

  2. RELAP5-3D Modeling of Heat Transfer Components (Intermediate Heat Exchanger and Helical-Coil Steam Generator) for NGNP Application

    SciTech Connect (OSTI)

    N. A. Anderson; P. Sabharwall

    2014-01-01T23:59:59.000Z

    The Next Generation Nuclear Plant project is aimed at the research and development of a helium-cooled high-temperature gas reactor that could generate both electricity and process heat for the production of hydrogen. The heat from the high-temperature primary loop must be transferred via an intermediate heat exchanger to a secondary loop. Using RELAP5-3D, a model was developed for two of the heat exchanger options a printed-circuit heat exchanger and a helical-coil steam generator. The RELAP5-3D models were used to simulate an exponential decrease in pressure over a 20 second period. The results of this loss of coolant analysis indicate that heat is initially transferred from the primary loop to the secondary loop, but after the decrease in pressure in the primary loop the heat is transferred from the secondary loop to the primary loop. A high-temperature gas reactor model should be developed and connected to the heat transfer component to simulate other transients.

  3. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    SciTech Connect (OSTI)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18T23:59:59.000Z

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

  4. 3D-Face Model Tracking Based on a Multi-Resolution Active Search Chaumont M. and Puech W.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and the illustration, trough a complete implementation, that our face tracking solution is near real cylindrical model. Our model's deformations are proceeded directly during the tracking which gives additional

  5. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC) GettingGitGraduateGrantsGraphene's 3D

  6. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Annual Report, 1993SemiconductorGraphene's 3D

  7. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Annual Report,Graphene's 3D Counterpart Print

  8. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Annual Report,Graphene's 3D Counterpart

  9. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Annual Report,Graphene's 3D

  10. PWP3D: Real-time Segmentation and Tracking of 3D Objects Victor A. Prisacariu Ian D. Reid

    E-Print Network [OSTI]

    Oxford, University of

    the discrimination between statistical foreground and background appearance models, via direct optimisation of the 3D segmentation and 2D to 3D pose tracking, using a known 3D model. Given such a model, we aim to maximise embedding function, and we define an energy over this region and its immediate background surroundings based

  11. Proceedings of ICMS' 05, 22 24 November 2005, Marrakech, Morocco1 3D modeling and dielectric characterization of geological

    E-Print Network [OSTI]

    Boyer, Edmond

    characterization of geological profiles. Application to the improvement of the study of the moisture of grounds is to characterize these geological structures by calculating their equivalent permittivity in order to be able in this paper is to develop a numerical model to simulate complex geological structures. The goal of this model

  12. Sample measurement Choose 3D, for 3D scan

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Sample measurement M Choose 3D, for 3D scan -> load method ("3D_EEM.xml") -> Run Signal: save S1/R1 column names etc once saved, close all plots before taking next sample Processing via Matlab script "EEM

  13. adaptive 3-d segmentation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farag, Aly A. 343 946 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 10, OCTOBER 1999 Model-Based Quantitation of 3-D Magnetic Biology and Medicine Websites Summary: of 3-D...

  14. A New Stochastic Modeling of 3-D Mud Drapes Inside Point Bar Sands in Meandering River Deposits

    SciTech Connect (OSTI)

    Yin, Yanshu, E-mail: yys6587@126.com [Yangtze University, School of Geosciences (China)] [Yangtze University, School of Geosciences (China)

    2013-12-15T23:59:59.000Z

    The environment of major sediments of eastern China oilfields is a meandering river where mud drapes inside point bar sand occur and are recognized as important factors for underground fluid flow and distribution of the remaining oil. The present detailed architectural analysis, and the related mud drapes' modeling inside a point bar, is practical work to enhance oil recovery. This paper illustrates a new stochastic modeling of mud drapes inside point bars. The method is a hierarchical strategy and composed of three nested steps. Firstly, the model of meandering channel bodies is established using the Fluvsim method. Each channel centerline obtained from the Fluvsim is preserved for the next simulation. Secondly, the curvature ratios of each meandering river at various positions are calculated to determine the occurrence of each point bar. The abandoned channel is used to characterize the geometry of each defined point bar. Finally, mud drapes inside each point bar are predicted through random sampling of various parameters, such as number, horizontal intervals, dip angle, and extended distance of mud drapes. A dataset, collected from a reservoir in the Shengli oilfield of China, was used to illustrate the mud drapes' building procedure proposed in this paper. The results show that the inner architectural elements of the meandering river are depicted fairly well in the model. More importantly, the high prediction precision from the cross validation of five drilled wells shows the practical value and significance of the proposed method.

  15. Impact of utilizing 3D digital urban models on the design content of urban design plans in US cities

    E-Print Network [OSTI]

    Al-Douri, Firas A. Salman

    2006-10-30T23:59:59.000Z

    aspects. The research applies a novel perspective of examining both the methods of modeling-supported urban design and the design content of urban design to attempt to reveal a correlation or causal relation. Using the mixed method approach, this research...

  16. Idea Generation 3D printing

    E-Print Network [OSTI]

    Papadopouli, Maria

    2012 Idea Generation 3D printing at nanoscale Cruising on electrical roads Pushing back against Centre micro and nanoscale 15 Taking 3D printing to the nanoscale 18 Fighting cancer with a "lab

  17. Noisy Independent Factor Analysis Model for Density Estimation and Classification

    E-Print Network [OSTI]

    Amato, U.

    2009-06-09T23:59:59.000Z

    We consider the problem of multivariate density estimation when the unknown density is assumed to follow a particular form of dimensionality reduction, a noisy independent factor analysis (IFA) model. In this model the ...

  18. METRIC FOR AUTOMATED DETECTION AND IDENTIFICATION OF 3D CAD ELEMENTS IN 3D SCANNED

    E-Print Network [OSTI]

    Bosché, Frédéric

    of 3D Computer-Aided Design (CAD) engines and more generally of Building Information Models on one side states is critical for performing efficient building and infrastructure construction, maintenance, and management. Three- dimensional (3D) laser scanners have the potential to be successfully applied

  19. Growth of sheets in 3D confinements - a model for the C-S-H meso 2 structure

    E-Print Network [OSTI]

    Etzold, Merlin A.; McDonald, Peter J.; Routh, Alexander F.

    2014-06-21T23:59:59.000Z

    - and dicalcium silicate surfaces on particle aggre-41 gation [8]. Particle based models have also been used by the group of Ulm to successfully interpret nano42 indentation results [9]. Small-angle neutron scattering data of cement paste has been interpreted... -vectors, both curves show a q?4 dependence which corresponds to203 the experimental Porod regime. The simulated data is compared to experimental small-angle neutron204 scattering data for cement from Allen et al. (dashed) [30]. For large and intermediate...

  20. Overall Dynamic Properties of 3-D periodic elastic composites

    E-Print Network [OSTI]

    Ankit Srivastava; Sia Nemat-Nasser

    2011-05-27T23:59:59.000Z

    A method for the homogenization of 3-D periodic elastic composites is presented. It allows for the evaluation of the averaged overall frequency dependent dynamic material constitutive tensors relating the averaged dynamic ?eld variable tensors of velocity, strain, stress, and linear momentum. The formulation is based on micromechanical modeling of a representative unit cell of a composite proposed by Nemat-Nasser & Hori (1993), Nemat-Nasser et. al. (1982) and Mura (1987) and is the 3-D generalization of the 1-D elastodynamic homogenization scheme presented by Nemat-Nasser & Srivastava (2011). We show that for 3-D periodic composites the overall compliance (stiffness) tensor is hermitian, irrespective of whether the corresponding unit cell is geometrically or materially symmetric.Overall mass density is shown to be a tensor and, like the overall compliance tensor, always hermitian. The average strain and linear momentum tensors are, however, coupled and the coupling tensors are shown to be each others' hermitian transpose. Finally we present a numerical example of a 3-D periodic composite composed of elastic cubes periodically distributed in an elastic matrix. The presented results corroborate the predictions of the theoretical treatment.

  1. Convergence of Ginzburg-Landau functionals in 3-d superconductivity

    E-Print Network [OSTI]

    Sisto Baldo; Robert L. Jerrard; Giandomenico Orlandi; Mete Soner

    2011-02-23T23:59:59.000Z

    In this paper we consider the asymptotic behavior of the Ginzburg- Landau model for superconductivity in 3-d, in various energy regimes. We rigorously derive, through an analysis via {\\Gamma}-convergence, a reduced model for the vortex density, and we deduce a curvature equation for the vortex lines. In a companion paper, we describe further applications to superconductivity and superfluidity, such as general expressions for the first critical magnetic field H_{c1}, and the critical angular velocity of rotating Bose-Einstein condensates.

  2. Envelope density pattern around wide binary AGB stars: a dynamical model

    E-Print Network [OSTI]

    J. H. He

    2007-03-26T23:59:59.000Z

    The goal is to build up a simple dynamical model for the out-flowing circumstellar envelope around AGB stars in a wide binary system to explore the parameter dependence of the geometrical characteristics of column density patterns. An AGB star in a wide binary system is considered as a 3-D piston model that can induce a 3-D quasi-spherical density structure in the circumstellar envelope by orbital motion of the AGB star. The column density pattern only depends on two parameters: eccentricity of the orbit e and the terminal outflow velocity to mean orbital velocity ratio gamma. When viewed perpendicular to the orbital plane, spiral, broken spiral, and incomplete concentric shell patterns can be seen, while when viewed along the orbital plane, alternative concentric half-shell, egg-shell, and half-shell half-gap patterns will develop. Non-zero eccentricity causes asymmetry, while larger gamma makes a weaker pattern and helps bring out asymmetry. A spiral pattern may becomes broken when e > 0.4. The spiral center is always less than 12% of spiral pitch away from the orbit center. One should have more chances (~ 80%) seeing spiral-like patterns than seeing concentric shells (~ 20%) in the circumstellar envelope of wide binary AGB stars.

  3. Fuzzy Control for Enforcing Energy Efficiency in High-Performance 3D Systems

    E-Print Network [OSTI]

    Coskun, Ayse

    to remove the heat from 3D ICs. 3D systems are also prone to large thermal variations; e.g., cores located and DVFS-based thermal management in 3D multicore systems [28], [8], [27]. However, as power densities micro- channels (or pin-fin structures) between the tiers of a 3D stack using a pump to remove the heat

  4. Determining Greenland Ice Sheet sensitivity to regional climate change: one-way coupling of a 3-D thermo-mechanical ice sheet model with a mesoscale climate model

    E-Print Network [OSTI]

    Schlegel, Nicole-Jeanne

    2011-01-01T23:59:59.000Z

    ice sheet model with a mesoscale climate model By Nicole-ice sheet model with a mesoscale climate model Copyrightice sheet model with a mesoscale climate model by Nicole-

  5. Statistical inference for density dependent Markovian forestry models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Statistical inference for density dependent Markovian forestry models Abstract A stochastic forestry model with a density-dependence structure is studied. The population evolves in discrete roughly speaking, becomes large. From the perspective of the analysis of forestry data and predict

  6. Imaging atoms in 3-D

    ScienceCinema (OSTI)

    Ercius, Peter

    2014-06-27T23:59:59.000Z

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  7. Imaging atoms in 3-D

    SciTech Connect (OSTI)

    Ercius, Peter

    2013-10-31T23:59:59.000Z

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  8. Accepting the T3D

    SciTech Connect (OSTI)

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01T23:59:59.000Z

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  9. CHARACTERIZATION OF MICRO-MECHANICAL PROPERTIES OF GRANULAR MATERIALS BASED ON THE USE OF 3D-T IMAGERY AND DISCRETE ELEMENT MODELING 

    E-Print Network [OSTI]

    Duong, Tam

    2012-05-07T23:59:59.000Z

    conditions by the use of distinct elements using PFC-3D. This allows for a direct comparison to achieving a better understanding on the assessment of micro properties of granular materials. The outcomes of this study also permit to conduct uncertainty...

  10. Rubrique : Tectonique Modlisation gomtrique 3D des granites Stphaniens du massif du Pelvoux (Alpes, France).

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Rubrique : Tectonique Modélisation géométrique 3D des granites Stéphaniens du massif du Pelvoux (Alpes, France). 3D geometrical modelling of Stephanian granite from the Pelvoux massif (French Alps, granite, modélisation 3D, Carbonifère. Key words : Alps, Granite, 3D modelling, Carbonifere

  11. PREASYMPTOTIC CHARGE OSCILLATIONS AROUND 3d IMPURITIES IN ALUMINIUM

    E-Print Network [OSTI]

    Boyer, Edmond

    on aluminium based transi- tion metal alloys can be explained in the LSF approxi- mation of the Anderson modelL-87 PREASYMPTOTIC CHARGE OSCILLATIONS AROUND 3d IMPURITIES IN ALUMINIUM V. ZLATI0106 and G. GRÜNER modèle d'Anderson la perturbation de densité électronique autour de certaines impuretés 3d dans l'aluminium

  12. Model Predictive Control of Variable Density Multiphase Flows Governed by

    E-Print Network [OSTI]

    Hinze, Michael

    of model predictive control (MPC) consists in steering or keeping the state of a dynamical systemModel Predictive Control of Variable Density Multiphase Flows Governed by Diffuse Interface Models appearing in the model predictive control strategy. The resulting control concept is known as instantaneous

  13. 3-D Force-balanced Magnetospheric Configurations

    SciTech Connect (OSTI)

    Sorin Zaharia; C.Z. Cheng; K. Maezawa

    2003-02-10T23:59:59.000Z

    The knowledge of plasma pressure is essential for many physics applications in the magnetosphere, such as computing magnetospheric currents and deriving magnetosphere-ionosphere coupling. A thorough knowledge of the 3-D pressure distribution has however eluded the community, as most in-situ pressure observations are either in the ionosphere or the equatorial region of the magnetosphere. With the assumption of pressure isotropy there have been attempts to obtain the pressure at different locations by either (a) mapping observed data (e.g., in the ionosphere) along the field lines of an empirical magnetospheric field model or (b) computing a pressure profile in the equatorial plane (in 2-D) or along the Sun-Earth axis (in 1-D) that is in force balance with the magnetic stresses of an empirical model. However, the pressure distributions obtained through these methods are not in force balance with the empirical magnetic field at all locations. In order to find a global 3-D plasma pressure distribution in force balance with the magnetospheric magnetic field, we have developed the MAG-3D code, that solves the 3-D force balance equation J x B = (upside-down delta) P computationally. Our calculation is performed in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials as B = (upside-down delta) psi x (upside-down delta) alpha. The pressure distribution, P = P(psi,alpha), is prescribed in the equatorial plane and is based on satellite measurements. In addition, computational boundary conditions for y surfaces are imposed using empirical field models. Our results provide 3-D distributions of magnetic field and plasma pressure as well as parallel and transverse currents for both quiet-time and disturbed magnetospheric conditions.

  14. Conformal Higgs model: predicted dark energy density

    E-Print Network [OSTI]

    R. K. Nesbet

    2014-11-03T23:59:59.000Z

    Postulated universal Weyl conformal scaling symmetry provides an alternative to the $\\Lambda$CDM paradigm for cosmology. Recent applications to galactic rotation velocities, Hubble expansion, and a model of dark galactic halos explain qualitative phenomena and fit observed data without invoking dark matter. Significant revision of theory relevant to galactic collisions and clusters is implied, but not yet tested. Dark energy is found to be a consequence of conformal symmetry for the Higgs scalar field of electroweak physics. The present paper tests this implication. The conformal Higgs model acquires a gravitational effect described by a modified Friedmann cosmic evolution equation, shown to fit cosmological data going back to the cosmic microwave background epoch. The tachyonic mass parameter of the Higgs model becomes dark energy in the Friedmann equation. A dynamical model of this parameter, analogous to the Higgs mechanism for gauge boson mass, is derived and tested here. An approximate calculation yields a result consistent with the empirical magnitude inferred from Hubble expansion.

  15. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOE Patents [OSTI]

    He, Wei (New Milford, NJ); Anderson, Roger N. (New York, NY)

    1998-01-01T23:59:59.000Z

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.

  16. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOE Patents [OSTI]

    He, W.; Anderson, R.N.

    1998-08-25T23:59:59.000Z

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

  17. Turbulence in a 3D deflagration model for type Ia SNe: II. Intermittency and the deflagration-to-detonation transition probability

    E-Print Network [OSTI]

    Schmidt, W; Niemeyer, J C; Roepke, F K; Hillebrandt, W

    2009-01-01T23:59:59.000Z

    The delayed detonation model describes the observational properties of the majority of type Ia supernovae very well. Using numerical data from a three-dimensional deflagration model for type Ia supernovae, the intermittency of the turbulent velocity field and its implications on the probability of a deflagration-to-detonation (DDT) transition are investigated. From structure functions of the turbulent velocity fluctuations, we determine intermittency parameters based on the log-normal and the log-Poisson models. On the other hand, the analysis of the turbulent velocity fluctuations in the vicinity of the flame front by Roepke suggests a much higher probability of large velocity fluctuations on the grid scale in comparison to the log-normal intermittency model. Following Pan et al., we computed probability density functions for a DDT for the different distributions. Assuming that a DDT can occur in the stirred flame regime, as proposed by Woosley et al., the log-normal model would imply a delayed detonation be...

  18. INTEGRATING DATA FROM 3D CAD AND 3D CAMERAS

    E-Print Network [OSTI]

    Bosché, Frédéric

    camera, 3D CAD, data fusion, construction automation 1 PhD Candidate, Department of Civil Engineering in Civil and Building Engineering Page 37 #12;INTRODUCTION Over the last fifty years, the construction2 , Carl T. Haas3 and Carlos H. Caldas4 ABSTRACT In a reversal of historic trends, the capital

  19. Determining Greenland Ice Sheet sensitivity to regional climate change: one-way coupling of a 3-D thermo-mechanical ice sheet model with a mesoscale climate model

    E-Print Network [OSTI]

    Schlegel, Nicole-Jeanne

    2011-01-01T23:59:59.000Z

    in running RCM’s over Greenland to produce high-qualityoutlet glaciers. For Greenland, this detail is specificallyCurrently, no coupled Greenland Ice Sheet model experiment

  20. Metrology of 3D nanostructures.

    SciTech Connect (OSTI)

    Barsic, Anthony [University of Colorado at Boulder, Boulder, CO] [University of Colorado at Boulder, Boulder, CO; Piestun, Rafael [University of Colorado at Boulder, Boulder, CO] [University of Colorado at Boulder, Boulder, CO; Boye, Robert R.

    2012-10-01T23:59:59.000Z

    We propose a superresolution technique to resolve dense clusters of blinking emitters. The method relies on two basic assumptions: the emitters are statistically independent, and a model of the imaging system is known. We numerically analyze the performance limits of the method as a function of the emitter density and the noise level. Numerical simulations show that five closely packed emitters can be resolved and localized to a precision of 17nm. The experimental resolution of five quantum dots located within a diffraction limited spot confirms the applicability of this approach.

  1. Spheree: A 3D Perspective-Corrected Interactive Spherical Scalable Display Ferreira, F.q

    E-Print Network [OSTI]

    British Columbia, University of

    models can be exported or printed on a 3D printer. Other related 3D displays include: 1. pCubee [StavnessSpheree: A 3D Perspective-Corrected Interactive Spherical Scalable Display Ferreira, F.q , Cabral & U of British Columbia (a) (b) (c) (d) Figure 1: (a) A snowglobe; (b) a fish-tank animation; (c) a 3D

  2. 3D Graph Visualization with the Oculus Rift Virtual Graph Reality

    E-Print Network [OSTI]

    Wismath, Stephen

    reality environment such as a CAVE, or · printed as a physical model with a 3D printer. Early studies3D Graph Visualization with the Oculus Rift Virtual Graph Reality Farshad Barahimi, Stephen Wismath regarding three- dimensional (3D) representations of graphs. However, the actual usefulness of such 3D

  3. Stereo Matching and 3D Visualization for Gamma-Ray Cargo Inspection Zhigang Zhu*ab

    E-Print Network [OSTI]

    Zhu, Zhigang

    Stereo Matching and 3D Visualization for Gamma-Ray Cargo Inspection Zhigang Zhu*ab , Yu-Chi Hubc visualization issues are studied for a linear pushbroom stereo model built for 3D gamma-ray (or x-ray) cargo results are presented for real gamma-ray images of a 3D cargo container and the objects inside. The 3D

  4. 3 July 2003 HIRES3D -ITC Research Seminar -Robert Hack 1 HIGH RESOLUTION REMOTE SENSING

    E-Print Network [OSTI]

    Hack, Robert

    3 July 2003 HIRES3D - ITC Research Seminar - Robert Hack 1 HIRES3D HIGH RESOLUTION REMOTE SENSING FOR 3D GROUND MODELING AND CLASSIFICATION ITC Research Seminar, 3 July 2003 Robert Hack International Institute for Geoinformation Sciences and Earth Observation (ITC) #12;3 July 2003 HIRES3D - ITC Research

  5. ILLUSTRATING MATHEMATICS USING 3D PRINTERS OLIVER KNILL AND ELIZABETH SLAVKOVSKY

    E-Print Network [OSTI]

    Knill, Oliver

    3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology that with relatively little effort. 2. 3D printing The industry of rapid prototyping and 3D printing in particular em

  6. ILLUSTRATING MATHEMATICS USING 3D PRINTERS OLIVER KNILL AND ELIZABETH SLAVKOVSKY

    E-Print Network [OSTI]

    Knill, Oliver

    printing technology can help to visualize proofs in mathematics. This talk aims to illustrate how 3D Greece, models allows to make mathematics more accessible. The new 3D printing technology makes unmatched. 3D printers allow us to do that with relative little effort. 2. 3D printing The industry of rapid

  7. Collaborative 3D Visualization on Large Screen Displays

    E-Print Network [OSTI]

    Barbosa, Alberto

    reality (VR) system designed to support collaborative visualization of 3D environments, applied in collaborative work. This paper presents a system that uses remotely located wall sized displays, to offer immersive, interactive collaborative visualization and review of 3D CAD models for engineering applications

  8. Seismic scattering attributes to estimate reservoir fracture density : a numerical modeling study

    E-Print Network [OSTI]

    Pearce, Frederick D. (Frederick Douglas), 1978-

    2003-01-01T23:59:59.000Z

    We use a 3-D finite difference numerical model to generate synthetic seismograms from a simple fractured reservoir containing evenly-spaced, discrete, vertical fracture zones. The fracture zones are represented using a ...

  9. Seismic Scattering Attributes to Estimate Reservoir Fracture Density: A Numerical Modeling Study

    E-Print Network [OSTI]

    Pearce, Frederick Douglas

    We use a 3-D finite difference numerical model to generate synthetic seismograms from a simple fractured reservoir containing evenly-spaced, discrete, vertical fracture zones. The fracture zones are represented using a ...

  10. FRAMES-2.0 Software System: Linking to the Groundwater Modeling System (GMS) RT3D and MT3DMS Models

    SciTech Connect (OSTI)

    Whelan, Gene; Castleton, Karl J.; Pelton, Mitch A.

    2007-08-08T23:59:59.000Z

    Linkages to the Groundwater Modeling System have been developed at Pacific Northwest National Laboratory to enable the Nuclear Regulatory Commission (NRC) to more realistically assess the risk to the public of radioactive contaminants at NRC-licensed sites. Common software tools presently in use are limited in that they cannot assess contaminant migration through complex natural environments. The purpose of this initiative is to provide NRC with a licensing safety-analysis tool with sufficient power, flexibility, and utility that it can serve as the primary software platform for analyzing the hazards associated with licensing actions at those “complex” sites at which the traditional tools are inappropriate. As a tool designed to realistically approximate prospective doses to the public, this initiative addresses NRC’s safety-performance goal by confirming that licensing actions do not result in undue risk to the public.

  11. Universal iso-density polarizable continuum model for molecular solvents

    E-Print Network [OSTI]

    Gunceler, Deniz

    2014-01-01T23:59:59.000Z

    Implicit electron-density solvation models based on joint density-functional theory offer a computationally efficient solution to the problem of calculating thermodynamic quantities of solvated systems from first-principles quantum mechanics. However, despite much recent interest in such models, to date the applicability of such models to non-aqueous solvents has been limited because the determination of the model parameters requires fitting to a large database of experimental solvation energies for each new solvent considered. This work presents an alternate approach which allows development of new solvation models for a large class of protic and aprotic solvents from only simple, single-molecule ab initio calculations and readily available bulk thermodynamic data. We find that this model is accurate to nearly 1.7 kcal/mol even for solvents outside our development set.

  12. Experimental observation of 3-D, impulsive reconnection events in a laboratory plasma

    SciTech Connect (OSTI)

    Dorfman, S.; Ji, H.; Yamada, M.; Yoo, J.; Lawrence, E.; Myers, C.; Tharp, T. D. [Center for Magnetic Self-Organization, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Center for Magnetic Self-Organization, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-01-15T23:59:59.000Z

    Fast, impulsive reconnection is commonly observed in laboratory, space, and astrophysical plasmas. In this work, impulsive, local, 3-D reconnection is identified for the first time in a laboratory current sheet. The two-fluid, impulsive reconnection events observed on the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys Plasmas 4, 1936 (1997)] cannot be explained by 2-D models and are therefore fundamentally three-dimensional. Several signatures of flux ropes are identified with these events; 3-D high current density regions with O-point structure form during a slow buildup period that precedes a fast disruption of the reconnecting current layer. The observed drop in the reconnection current and spike in the reconnection rate during the disruption are due to ejection of these flux ropes from the layer. Underscoring the 3-D nature of the events, strong out-of-plane gradients in both the density and reconnecting magnetic field are found to play a key role in this process. Electromagnetic fluctuations in the lower hybrid frequency range are observed to peak at the disruption time; however, they are not the key physics responsible for the impulsive phenomena observed. Important features of the disruption dynamics cannot be explained by an anomalous resistivity model. An important discrepancy in the layer width and force balance between the collisionless regime of MRX and kinetic simulations is also revisited. The wider layers observed in MRX may be due to the formation of flux ropes with a wide range of sizes; consistent with this hypothesis, flux rope signatures are observed down to the smallest scales resolved by the diagnostics. Finally, a 3-D two-fluid model is proposed to explain how the observed out-of-plane variation may lead to a localized region of enhanced reconnection that spreads in the direction of the out-of-plane electron flow, ejecting flux ropes from the layer in a 3-D manner.

  13. Rapid model building of ?-sheets in electron-density maps

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-03-01T23:59:59.000Z

    A method for rapid model building of ?-sheets at moderate resolution is presented. A method for rapidly building ?-sheets into electron-density maps is presented. ?-Strands are identified as tubes of high density adjacent to and nearly parallel to other tubes of density. The alignment and direction of each strand are identified from the pattern of high density corresponding to carbonyl and C{sup ?} atoms along the strand averaged over all repeats present in the strand. The ?-strands obtained are then assembled into a single atomic model of the ?-sheet regions. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 Å. The ?-sheet regions were nearly completely built in all but two cases, the exceptions being one structure at 2.5 Å resolution in which a third of the residues in ?-sheets were built and a structure at 3.8 Å in which under 10% were built. The overall average r.m.s.d. of main-chain atoms in the residues built using this method compared with refined models of the structures was 1.5 Å.

  14. Topobo : a 3-D constructive assembly system with kinetic memory

    E-Print Network [OSTI]

    Raffle, Hayes Solos, 1974-

    2004-01-01T23:59:59.000Z

    We introduce Topobo, a 3-D constructive assembly system em- bedded with kinetic memory, the ability to record and playback physical motion. Unique among modeling systems is Topobo's coincident physical input and output ...

  15. 3D-2D ASYMPTOTIC ANALYSIS FOR INHOMOGENEOUS THIN FILMS

    E-Print Network [OSTI]

    3D-2D ASYMPTOTIC ANALYSIS FOR INHOMOGENEOUS THIN FILMS plate models, periodic pr* *o- files, and within the context of optimal design for thin films 5. Third application - Optimal design of a thin film 19 6. Final Remarks

  16. PRISACARIU, REID: PWP3D 1 PWP3D: Real-time segmentation and

    E-Print Network [OSTI]

    Oxford, University of

    method allows for fast 2D­3D pose tracking and 2D segmentation using a single, unified, energy function in print or electronic forms. #12;2 PRISACARIU, REID: PWP3D The most closely related work to our ownPRISACARIU, REID: PWP3D 1 PWP3D: Real-time segmentation and tracking of 3D objects Victor A

  17. Topological Reconstruction of Complex 3D Buildings and Automatic Extraction of Levels of Detail

    E-Print Network [OSTI]

    Boyer, Edmond

    and outdoor topology of a detailed 3D building model from its geometry and to extract different levelsTopological Reconstruction of Complex 3D Buildings and Automatic Extraction of Levels of Detail A is needed for most of the applications using 3D building models after the architects design it. While

  18. Reconstructing Plants in 3D from a Single Image using Analysis-by-Synthesis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Reconstructing Plants in 3D from a Single Image using Analysis-by-Synthesis J´er^ome Gu´enard1 G from images. However, due to high complexity of plant topology, dedicated methods for generating 3D plant models must be devised. We propose to generate a 3D model of a plant, using an analysis

  19. NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration

    E-Print Network [OSTI]

    Bentz, Dale P.

    NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration and Microstructure Development Modeling Package. Version 3.0 Dale P. Bentz #12;NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration

  20. Modelling charge transfer reactions with the frozen density embedding formalism

    SciTech Connect (OSTI)

    Pavanello, Michele [Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Neugebauer, Johannes [Institute for Physical and Theoretical Chemistry, Technische Universitaet Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig (Germany)

    2011-12-21T23:59:59.000Z

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  1. High throughput 3-D tissue cytometry

    E-Print Network [OSTI]

    Kwon, Hyuk-Sang, 1971-

    2007-01-01T23:59:59.000Z

    This thesis presents the ongoing technological development of high throughput 3-D tissue cytometry.and its applications in biomedicine. 3-D tissue cytometry has been developed in our laboratory based on two-photon microscopy ...

  2. Part removal of 3D printed parts

    E-Print Network [OSTI]

    Peña Doll, Mateo

    2014-01-01T23:59:59.000Z

    An experimental study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D printing using a patent ...

  3. A view-sequential 3D display

    E-Print Network [OSTI]

    Cossairt, Oliver S. (Oliver Strider), 1978-

    2003-01-01T23:59:59.000Z

    This thesis outlines the various techniques for creating electronic 3D displays and analyzes their commercial potential. The thesis argues for the use of view-sequential techniques in the design of 3D displays based on ...

  4. The Makerbot: Desktop 3D printing

    E-Print Network [OSTI]

    Roughan, Matthew

    The Makerbot: Desktop 3D printing Matthew Roughan School of Mathematical Sciences matthew is Lots of maths hidden in something like 3D printing Geometry and Linear algebra ++ Same math used

  5. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    SciTech Connect (OSTI)

    Filice, Luigino; Gagliardi, Francesco; Umbrello, Domenico [Department of Mechanical Engineering, University of Calabria, P. Bucci, 87036 Rende (Serbia and Montenegro) (Italy); Shivpuri, Rajiv [Department of Industrial, Welding and System Engineering, Ohio State University, 1971 Neil Avenue, 210 Baker Systems, Columbus, OH 43210-1217 (United States)

    2007-05-17T23:59:59.000Z

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  6. Rapid model building of ?-helices in electron-density maps

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-03-01T23:59:59.000Z

    A method for rapid model building of ?-helices at moderate resolution is presented. A method for the identification of ?-helices in electron-density maps at low resolution followed by interpretation at moderate to high resolution is presented. Rapid identification is achieved at low resolution, where ?-helices appear as tubes of density. The positioning and direction of the ?-helices is obtained at moderate to high resolution, where the positions of side chains can be seen. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 Å. An average of 63% of the ?-helical residues in these proteins were built and an average of 76% of the residues built matched helical residues in the refined models of the proteins. The overall average r.m.s.d. between main-chain atoms in the modeled ?-helices and the nearest atom with the same name in the refined models of the proteins was 1.3 Å.

  7. The 3D Geometry of Dark Matter Halos

    E-Print Network [OSTI]

    J. -F. Becquaert; F. Combes

    1997-04-10T23:59:59.000Z

    The thickness of the neutral hydrogen layer, coupled with the rotation curve, traces the outer dark matter potential. We estimate the amplitude of the flaring in spiral galaxies from a 3D model of the HI gas. Warps in particular are explicitly parametrized in the form of an harmonical density wave. Applying our method to the galaxy NGC 891, the only model that could fit the observations, and in particular the HI at large height above the plane, includes a strong warp with a line of node almost coinciding with the line of sight. This high-Z HI is not observed at the most extreme velocity channels, those corresponding to high rotational velocities. This is accounted for by the model, since orbits in the tilted planes are not circular, but elongated, with their minor axis in the galaxy plane. Their velocity on the major axis (i.e. at their maximal height above the plane) is then 30% less than in the plane. We finally connect the modelled vertical outer gaseous distribution to the dark matter through hydrodynamical and gravitational equations. Under the assumption of isotropy of the gaseous velocity dispersion, we conclude on a very flattened halo geometry for the galaxy NGC 891 ($q \\approx 0.2$), while a vertical velocity dispersion smaller that the radial one would lead to a less flattened Dark Matter Halo ($q \\approx 0.4-0.5$). Both results however suggests that dark matter is dissipative or has been strongly influenced by the gas dynamics.

  8. A MOUNTAIN-SCALE 3-D NUMERICAL MODEL FOR CHARACTERIZING UNSATURATED FLOW AND TRANSPORT IN FRACTURED VOLCANIC ROCK AT YUCCA MOUNTAIN

    SciTech Connect (OSTI)

    Yu-Shu Wu

    2006-02-28T23:59:59.000Z

    A three-dimensional site-scale numerical model has been developed to simulate water and gas flow, heat transfer, and radionuclide transport in the unsaturated zone of Yucca Mountain, Nevada, the American underground repository site for high level radioactive waste. The modeling approach is based on a mathematical formulation of coupled multiphase fluid and heat flow and tracer transport through porous and fractured rock. This model is intended for use in predicting current and future conditions in the unsaturated zone, so as to aid in assessing the system performance of the repository. In particular, an integrated modeling methodology is discussed for integrating a wide variety of moisture, pneumatic, thermal, and isotopic geochemical data into comprehensive modeling analyses. The reliability and accuracy of the model predictions were the subject of a comprehensive model calibration study, in which the model was calibrated against measured data, including liquid saturation, water potential, and temperature. This study indicates that the model is able to reproduce the overall system behavior at Yucca Mountain with respect to moisture profiles, pneumatic pressure and chloride concentration variations in different geological units, and ambient geothermal conditions.

  9. Testprint gemaakt met een zelfgemaakte 3D printer (Reprap) in het "advanced prototyping for design" project

    E-Print Network [OSTI]

    " project Lamp ontworpen en gemaakt tijdens het "lightstyle" project 3D print van een sieraad, gebaseerd op! #12;3D prints gemaakt in gips bij Bouwkunde CT scan van middeleeuws glas om een digitale reproductie, modeling, data massaging, 3D printing. · Objet trouvé Prototyping in verschillende domeinen en hoe domein

  10. Make It Stand: Balancing Shapes for 3D Fabrication Romain Prvost1

    E-Print Network [OSTI]

    Lévy, Bruno

    modeling Keywords: Static equilibrium, structural stability, 3D printing, optimization, interactive shape intended, stable pose. With the advent of 3D printing technologies, it becomes very simple to produce in a computer this is of no consequence: the laws of physics do not apply. However, fabrication through 3D

  11. A finite element approach to the 3D CSEM modeling problem and applications to the study of the effect of target interaction andtopography

    E-Print Network [OSTI]

    Stalnaker, Jack Lee

    2005-11-01T23:59:59.000Z

    ;nite elementmethod is attractive, because it allows the model to be discretized into an unstructured mesh, permitting the speci?cation of realistic irregular conductor geometries, and permitting the mesh to be re?ned locally, where fi...

  12. 3D Velocity from 3D Doppler Radial Velocity J. L. Barron,1

    E-Print Network [OSTI]

    Barron, John

    to compute local 3D velocity (local 3D optical flow). Radial velocity (measured by the Doppler effect3D Velocity from 3D Doppler Radial Velocity J. L. Barron,1 R. E. Mercer,1 X. Chen,1 P. Joe2 1 velocity data and qualitatively on real radial velocity data, obtained from the Doppler radar at Kurnell

  13. Chinese Journal of Polar Science, Vol. 19, No.2, 218 -229, December 2008 A coupled ice-ocean ecosystem model for I-D and 3-D applica-

    E-Print Network [OSTI]

    Chinese Journal of Polar Science, Vol. 19, No.2, 218 - 229, December 2008 A coupled ice and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton

  14. 1114 IEEE TRANSACTIONS ON ROBOTICS, VOL. 29, NO. 5, OCTOBER 2013 The 3-D SpringMass Model Reveals a Time-Based

    E-Print Network [OSTI]

    Geyer, Hartmut

    a Time-Based Deadbeat Control for Highly Robust Running and Steering in Uncertain Environments Albert Wu to produce highly robust running and steering in uncertain environ- ments. The control naturally extends the time-based control de- rived for the planar version of this model and allows it to navigate rough

  15. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect (OSTI)

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09T23:59:59.000Z

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  16. Furniture Models Learned from the WWW Using Web Catalogs to Locate and Categorize Unknown Furniture Pieces in 3D Laser Scans

    E-Print Network [OSTI]

    Cremers, Daniel

    , and Michael Beetz, Member, IEEE, Abstract--In this article, we address the problem of exploiting the structure@irvs.is.kyushu-u.ac.jp Zoltan Csaba Marton and Michael Beetz are with the Intelligent Au- tonomous Systems, Technische Universit¨at M¨unchen, 85748 Munich, Ger- many {marton,beetz}@cs.tum.edu Fig. 1. Using furniture models from

  17. Modeling the steady-state ISV (in situ vitrification) process: A 3-D finite element analysis of coupled thermal-electric fields

    SciTech Connect (OSTI)

    Langerman, M.A.

    1990-09-01T23:59:59.000Z

    Steady-state modeling considerations for simulating the in situ vitrification (ISV) process are documented based upon the finite element numerical approach. Recommendations regarding boundary condition specifications and mesh discretization are presented. The effects of several parameters on the ISV process response are calculated and the results discussed. The parameters investigated include: (1) electrode depth, (2) ambient temperature, (3) supplied current, (4) electrical conductivity, (5) electrode separation, and (6) soil/waste characterization. 13 refs., 29 figs., 1 tab.

  18. Improved crystallographic models through iterated local density-guided model deformation and reciprocal-space refinement

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Read, Randy J. [University of Cambridge, Cambridge CB2 0XY (United Kingdom); Adams, Paul D. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Brunger, Axel T. [Stanford University, 318 Campus Drive West, Stanford, CA 94305-5432 (United States); Afonine, Pavel V.; Grosse-Kunstleve, Ralf W. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Hung, Li-Wei [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2012-07-01T23:59:59.000Z

    A density-based procedure is described for improving a homology model that is locally accurate but differs globally. The model is deformed to match the map and refined, yielding an improved starting point for density modification and further model-building. An approach is presented for addressing the challenge of model rebuilding after molecular replacement in cases where the placed template is very different from the structure to be determined. The approach takes advantage of the observation that a template and target structure may have local structures that can be superimposed much more closely than can their complete structures. A density-guided procedure for deformation of a properly placed template is introduced. A shift in the coordinates of each residue in the structure is calculated based on optimizing the match of model density within a 6 Å radius of the center of that residue with a prime-and-switch electron-density map. The shifts are smoothed and applied to the atoms in each residue, leading to local deformation of the template that improves the match of map and model. The model is then refined to improve the geometry and the fit of model to the structure-factor data. A new map is then calculated and the process is repeated until convergence. The procedure can extend the routine applicability of automated molecular replacement, model building and refinement to search models with over 2 Å r.m.s.d. representing 65–100% of the structure.

  19. Ice Formation in Arctic Mixed-Phase Clouds: Insights from a 3-D Cloud-Resolving Model with Size-Resolved Aerosol and Cloud Microphysics

    SciTech Connect (OSTI)

    Fan, Jiwen; Ovtchinnikov, Mikhail; Comstock, Jennifer M.; McFarlane, Sally A.; Khain, Alexander

    2009-02-27T23:59:59.000Z

    The single-layer mixed-phase clouds observed during the Atmospheric Radiation Measurement (ARM) program’s Mixed-Phase Arctic Cloud Experiment (MPACE) are simulated with a 3-dimensional cloud-resolving model the System for Atmospheric Modeling (SAM) coupled with an explicit bin microphysics scheme and a radar-lidar simulator. Two possible ice enhancement mechanisms – activation of droplet evaporation residues by condensation-followed-by-freezing and droplet freezing by contact freezing inside-out, are scrutinized by extensive comparisons with aircraft and radar and lidar measurements. The locations of ice initiation associated with each mechanism and the role of ice nuclei (IN) in the evolution of mixed-phase clouds are mainly addressed. Simulations with either mechanism agree well with the in-situ and remote sensing measurements on ice microphysical properties but liquid water content is slightly underpredicted. These two mechanisms give very similar cloud microphysical, macrophysical, dynamical, and radiative properties, although the ice nucleation properties (rate, frequency and location) are completely different. Ice nucleation from activation of evaporation nuclei is most efficient near cloud top areas concentrated on the edges of updrafts, while ice initiation from the drop freezing process has no significant location preference (occurs anywhere that droplet evaporation is significant). Both enhanced nucleation mechanisms contribute dramatically to ice formation with ice particle concentration of 10-15 times higher relative to the simulation without either of them. The contribution of ice nuclei (IN) recycling from ice particle evaporation to IN and ice particle concentration is found to be very significant in this case. Cloud can be very sensitive to IN initially and form a nonquilibrium transition condition, but become much less sensitive as cloud evolves to a steady mixed-phase condition. The parameterization of Meyers et al. [1992] with the observed MPACE IN concentration is able to predict the observed mixed-phase clouds reasonably well. This validation may facilitate the application of this parameterization in the cloud and climate models to simulate Arctic clouds.

  20. Advanced 3D Sensing and Visualization System for Unattended Monitoring

    SciTech Connect (OSTI)

    Carlson, J.J.; Little, C.Q.; Nelson, C.L.

    1999-01-01T23:59:59.000Z

    The purpose of this project was to create a reliable, 3D sensing and visualization system for unattended monitoring. The system provides benefits for several of Sandia's initiatives including nonproliferation, treaty verification, national security and critical infrastructure surety. The robust qualities of the system make it suitable for both interior and exterior monitoring applications. The 3D sensing system combines two existing sensor technologies in a new way to continuously maintain accurate 3D models of both static and dynamic components of monitored areas (e.g., portions of buildings, roads, and secured perimeters in addition to real-time estimates of the shape, location, and motion of humans and moving objects). A key strength of this system is the ability to monitor simultaneous activities on a continuous basis, such as several humans working independently within a controlled workspace, while also detecting unauthorized entry into the workspace. Data from the sensing system is used to identi~ activities or conditions that can signi~ potential surety (safety, security, and reliability) threats. The system could alert a security operator of potential threats or could be used to cue other detection, inspection or warning systems. An interactive, Web-based, 3D visualization capability was also developed using the Virtual Reality Modeling Language (VRML). The intex%ace allows remote, interactive inspection of a monitored area (via the Internet or Satellite Links) using a 3D computer model of the area that is rendered from actual sensor data.

  1. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D...

  2. Higher-order compositional modeling of three-phase flow in 3D fractured porous media based on cross-flow equilibrium

    SciTech Connect (OSTI)

    Moortgat, Joachim, E-mail: jmoortgat@rerinst.org; Firoozabadi, Abbas, E-mail: abbas.firoozabadi@yale.edu

    2013-10-01T23:59:59.000Z

    Numerical simulation of multiphase compositional flow in fractured porous media, when all the species can transfer between the phases, is a real challenge. Despite the broad applications in hydrocarbon reservoir engineering and hydrology, a compositional numerical simulator for three-phase flow in fractured media has not appeared in the literature, to the best of our knowledge. In this work, we present a three-phase fully compositional simulator for fractured media, based on higher-order finite element methods. To achieve computational efficiency, we invoke the cross-flow equilibrium (CFE) concept between discrete fractures and a small neighborhood in the matrix blocks. We adopt the mixed hybrid finite element (MHFE) method to approximate convective Darcy fluxes and the pressure equation. This approach is the most natural choice for flow in fractured media. The mass balance equations are discretized by the discontinuous Galerkin (DG) method, which is perhaps the most efficient approach to capture physical discontinuities in phase properties at the matrix-fracture interfaces and at phase boundaries. In this work, we account for gravity and Fickian diffusion. The modeling of capillary effects is discussed in a separate paper. We present the mathematical framework, using the implicit-pressure-explicit-composition (IMPEC) scheme, which facilitates rigorous thermodynamic stability analyses and the computation of phase behavior effects to account for transfer of species between the phases. A deceptively simple CFL condition is implemented to improve numerical stability and accuracy. We provide six numerical examples at both small and larger scales and in two and three dimensions, to demonstrate powerful features of the formulation.

  3. IN THIS ISSUE 2 3D Printing

    E-Print Network [OSTI]

    Hill, Wendell T.

    IN THIS ISSUE 2 3D Printing in McKeldin 3 Saving WMUC Radio 4 You Did What?!? 7 Dance at UMD, in this issue. Our Terrapin Learning Commons is embracing all things digital, and the acquisition of a 3D printer allows any student the op- portunity to make their visions a reality. This little addition

  4. 3-D seismology in the Arabian Gulf

    SciTech Connect (OSTI)

    Al-Husseini, M. [Gulf PetroLink, Manama (Bahrain); Chimblo, R. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-08-01T23:59:59.000Z

    Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.

  5. Fabrication of 3D Silicon Sensors

    SciTech Connect (OSTI)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06T23:59:59.000Z

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  6. Generalized 3-D Tolerance Analysis of Mechanical Assemblies with Small Kinematic Adjustments

    E-Print Network [OSTI]

    ) for tolerance analysis of 3-D mechanical assemblies is presented. Vector assembly models are used, based on 3-D. Tolerance analysis procedures are formulated for both open and closed loop assembly models. The method generalizes assembly variation models to include small kinematic adjustments between mating parts. Open vector

  7. 3D Hardware Canaries Sebastien Briais4

    E-Print Network [OSTI]

    surround the whole target and protect its content from physical attacks. 3D ICs are rel- atively hard reporting pre- liminary implementation results on silicon), we introduce a "hardware canary". The ca- nary

  8. 3D Spectroscopy and the Virtual Observatory

    E-Print Network [OSTI]

    Bryan W. Miller

    2007-08-15T23:59:59.000Z

    Integral field, or 3D, spectroscopy is the technique of obtaining spectral information over a two-dimensional, hopefully contiguous, field of view. While there is some form of astronomical 3D spectroscopy at all wavelengths, there has been a rapid increase in interest in optical and near-infrared 3D spectroscopy. This has resulted in the deployment of a large variety of integral-field spectrographs on most of the large optical/infrared telescopes. The amount of IFU data available in observatory archives is large and growing rapidly. The complications of treating IFU data as both imaging and spectroscopy make it a special challenge for the virtual observatory. This article describes the various techniques of optical and near-infrared spectroscopy and some of the general needs and issues related to the handling of 3D data by the virtual observatory.

  9. 3D TORUS V1.0

    Energy Science and Technology Software Center (OSTI)

    002440MLTPL00 3D Torus Routing Engine Module for OFA OpenSM v. 1.0  http://www.openfabrics.org/git?p=sashak/management.git;a=sum 

  10. Implicit Finite-Volume CMS2D/3D Models for Coastal Flow and Sediment Transport Weiming Wu1, Alejandro Sanchez2, Qianru Lin1, Lihwa Lin2, Julie D. Rosati2, Zeki Demirbilek2, Honghai Li2, Tanya M. Beck2, and Mitchell Brown2

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Implicit Finite-Volume CMS2D/3D Models for Coastal Flow and Sediment Transport Weiming Wu1 and sediment transport model has been well tested by using laboratory and field measurement data and applied, Cross-shore Solvers: GMRES, BiCGSTAB, Gauss-Seidel Drying and wetting ­ "Freezing" dry nodes Multiple

  11. Spin densities from subsystem density-functional theory: Assessment and application to a photosynthetic reaction center complex model

    SciTech Connect (OSTI)

    Solovyeva, Alisa [Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Technical University Braunschweig, Institute for Physical and Theoretical Chemistry, Hans-Sommer-Str. 10, 38106 Braunschweig (Germany); Pavanello, Michele [Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Neugebauer, Johannes [Technical University Braunschweig, Institute for Physical and Theoretical Chemistry, Hans-Sommer-Str. 10, 38106 Braunschweig (Germany)

    2012-05-21T23:59:59.000Z

    Subsystem density-functional theory (DFT) is a powerful and efficient alternative to Kohn-Sham DFT for large systems composed of several weakly interacting subunits. Here, we provide a systematic investigation of the spin-density distributions obtained in subsystem DFT calculations for radicals in explicit environments. This includes a small radical in a solvent shell, a {pi}-stacked guanine-thymine radical cation, and a benchmark application to a model for the special pair radical cation, which is a dimer of bacteriochlorophyll pigments, from the photosynthetic reaction center of purple bacteria. We investigate the differences in the spin densities resulting from subsystem DFT and Kohn-Sham DFT calculations. In these comparisons, we focus on the problem of overdelocalization of spin densities due to the self-interaction error in DFT. It is demonstrated that subsystem DFT can reduce this problem, while it still allows to describe spin-polarization effects crossing the boundaries of the subsystems. In practical calculations of spin densities for radicals in a given environment, it may thus be a pragmatic alternative to Kohn-Sham DFT calculations. In our calculation on the special pair radical cation, we show that the coordinating histidine residues reduce the spin-density asymmetry between the two halves of this system, while inclusion of a larger binding pocket model increases this asymmetry. The unidirectional energy transfer in photosynthetic reaction centers is related to the asymmetry introduced by the protein environment.

  12. Modeling of free electronic state density in hydrogenic plasmas based on nearest neighbor approximation

    SciTech Connect (OSTI)

    Nishikawa, Takeshi, E-mail: nishikawa.takeshi@okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan)

    2014-07-15T23:59:59.000Z

    Most conventional atomic models in a plasma do not treat the effect of the plasma on the free-electron state density. Using a nearest neighbor approximation, the state densities in hydrogenic plasmas for both bound and free electrons were evaluated and the effect of the plasma on the atomic model (especially for the state density of the free electron) was studied. The model evaluates the electron-state densities using the potential distribution formed by the superposition of the Coulomb potentials of two ions. The potential from one ion perturbs the electronic state density on the other. Using this new model, one can evaluate the free-state density without making any ad-hoc assumptions. The resulting contours of the average ionization degree, given as a function of the plasma temperature and density, are shifted slightly to lower temperatures because of the effect of the increasing free-state density.

  13. Inverse Modeling for Coastal Seawater Intrusion

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    , USA) #12;INTRODUCTION · Inverse modeling ­ standard tool for groundwater modeling ­ uncommonD3D.1 ­ 2D and 3D finite-element code for simulating variable-density groundwater problems · UCODE 3 and given time (i.e. at one observation location) on one of the parameters in the groundwater model

  14. Simulation of chemical vapor infiltration and deposition based on 3D images: a local scale approach

    E-Print Network [OSTI]

    Boyer, Edmond

    infiltration of ceramic matrix composites is presented. This computational model requires a 3D representation/reaction problems; Random walks; 3D image-based modeling 1. Introduction Ceramic Matrix Composites and Carbon with a matrix. One of the most efficient ones is Chemical Vapor Infiltration (CVI), by which gaseous precursors

  15. T-HEMP3D user manual

    SciTech Connect (OSTI)

    Turner, D.

    1983-08-01T23:59:59.000Z

    The T-HEMP3D (Transportable HEMP3D) computer program is a derivative of the STEALTH three-dimensional thermodynamics code developed by Science Applications, Inc., under the direction of Ron Hofmann. STEALTH, in turn, is based entirely on the original HEMP3D code written at Lawrence Livermore National Laboratory. The primary advantage STEALTH has over its predecessors is that it was designed using modern structured design techniques, with rigorous programming standards enforced. This yields two benefits. First, the code is easily changeable; this is a necessity for a physics code used for research. The second benefit is that the code is easily transportable between different types of computers. The STEALTH program was transferred to LLNL under a cooperative development agreement. Changes were made primarily in three areas: material specification, coordinate generation, and the addition of sliding surface boundary conditions. The code was renamed T-HEMP3D to avoid confusion with other versions of STEALTH. This document summarizes the input to T-HEMP3D, as used at LLNL. It does not describe the physics simulated by the program, nor the numerical techniques employed. Furthermore, it does not describe the separate job steps of coordinate generation and post-processing, including graphical display of results. (WHK)

  16. Computerized fluid movement mapping and 3-D visualization

    SciTech Connect (OSTI)

    Al-Awami, A.A.; Poore, J.W. [Saudi Aramco, Dhahran (Saudi Arabia); Sizer, J.P.

    1995-11-01T23:59:59.000Z

    Most of the fieldwide fluid movement monitoring techniques under utilize available computer resources. This paper discusses an approach reservoir management engineers use to monitor fluid movement in reservoirs with a multitude of wells. This approach allows the engineer to maintain up-to-date fluid movement studies and incorporate the latest information from data acquisition programs into the day to day decision-making process. The approach uses several in-house database applications and makes extensive use of commercially available software products to generate and visualize cross-sections, maps, and 3-d models. This paper reviews the computerized procedures to create cross-sections that display the current fluid contacts overlaying the lithology. It also reviews the mapping procedures nd presents examples of water encroachment maps by layer at specific time periods. 3-D geologic modeling software greatly enhances the visualization of the reservoir. This software can also be used to interpret and model fluid movement, given the appropriate engineering constraints.

  17. 3D Self-Portraits Etienne Vouga2

    E-Print Network [OSTI]

    O'Brien, James F.

    scanning pose change output reconstruction textured reconstruction large variety of examples3D print Figure for applications such as online avatars or 3D printing (the miniature shown here was printed using a ZPrinter 650 and accurate cap- ture system for 3D self-portraits using a single 3D sensor. Figure 2: 3D printed miniatures

  18. Simnple, portable, 3-D projection routine

    SciTech Connect (OSTI)

    Wagner, J.S.

    1987-04-01T23:59:59.000Z

    A 3-D projection routine is presented for use in computer graphics applications. The routine is simple enough to be considered portable, and easily modified for special problems. There is often the need to draw three-dimensional objects on a two-dimensional plotting surface. For the object to appear realistic, perspective effects must be included that allow near objects to appear larger than distant objects. Several 3-D projection routines are commercially available, but they are proprietary, not portable, and not easily changed by the user. Most are restricted to surfaces that are functions of two variables. This makes them unsuitable for viewing physical objects such as accelerator prototypes or propagating beams. This report develops a very simple algorithm for 3-D projections; the core routine is only 39 FORTRAN lines long. It can be easily modified for special problems. Software dependent calls are confined to simple drivers that can be exchanged when different plotting software packages are used.

  19. Ames Lab 101: 3D Metals Printer

    SciTech Connect (OSTI)

    Ott, Ryan

    2014-02-13T23:59:59.000Z

    To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

  20. S-duality in 3D gravity with torsion

    SciTech Connect (OSTI)

    Mielke, Eckehard W. [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico D.F. (Mexico)]. E-mail: ekke@xanum.uam.mx; Maggiolo, Ali A. Rincon [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico D.F. (Mexico)

    2007-02-15T23:59:59.000Z

    The deformation of the connection in three spacetime dimensions by the kinematically equivalent coframe is shown to induce a duality between the (Lorentz-) rotational and translational field momenta, for which the coupling to the deformation parameter is inverted. This new kind of strong/weak duality, pertinent to 3D, is instrumental for studying exact solutions of the 3D Poincare gauge field equations and the particle content of propagating modes on a background of constant curvature. For a topological Chern-Simons model of gravity, the propagating modes 'living' on an Anti-de Sitter (AdS) background correspond to real massive particles. Yang-Mills type generalizations and new cubic Lagrangians are found and completely classified in 3D. AdS or black hole type solutions with constant axial torsion emerge, also for these higher-order Lagrangians with new 'exotic' torsion-curvature couplings. Their pattern complies with our S-duality, with new repercussions for the field redefinition of the metric in 3D quantum gravity and the cosmological constant problem.

  1. Adaptive Density Estimation in the Pile-up Model Involving Measurement Errors

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Adaptive Density Estimation in the Pile-up Model Involving Measurement Errors Fabienne Comte, Tabea of nonparametric density estimation in the pile-up model. Adaptive nonparametric estimators are proposed for the pile-up model in its simple form as well as in the case of additional measurement errors. Furthermore

  2. Finite element analysis of a current density -electric eld formulation of Bean's model for superconductivity

    E-Print Network [OSTI]

    Styles, Vanessa

    Finite element analysis of a current density - electric #12;eld formulation of Bean's model a current density-electric #12;eld formulation of Bean's model for the experimental set-up of a in#12;nitely. As observed by Bossavit, [4], Bean's critical state model can be formulated as a degenerate Stefan problem

  3. Radial pulsations of neutron stars: computing alternative polytropic models regarding density and adiabatic index

    E-Print Network [OSTI]

    Vassilis Geroyannis; Georgios Kleftogiannis

    2014-06-14T23:59:59.000Z

    We revisit the problem of radial pulsations of neutron stars by computing four general-relativistic polytropic models, in which "density" and "adiabatic index" are involved with their discrete meanings: (i) "rest-mass density" or (ii) "mass-energy density" regarding the density, and (i) "constant" or (ii) "variable" regarding the adiabatic index. Considering the resulting four discrete combinations, we construct corresponding models and compute for each model the frequencies of the lowest three radial modes. Comparisons with previous results are made. The deviations of respective frequencies of the resolved models seem to exhibit a systematic behavior, an issue discussed here in detail.

  4. Supplementary data for "Relativistic density functional theory modeling of plutonium and

    E-Print Network [OSTI]

    Titov, Anatoly

    Supplementary data for "Relativistic density functional theory modeling of plutonium and americium equilibrium geometries of plutonium and americium oxide molecules (standard .xyz files separated by empty

  5. Fourier transform of the 3d NS equations The 3d NS equations are

    E-Print Network [OSTI]

    Salmon, Rick

    1 Fourier transform of the 3d NS equations The 3d NS equations are (1) vi t + vj vi xj = - p xi easily add it in at the end. Our interest is in the advection and pressure terms. Introducing the Fourier transforms (2) vi x( ) = ui k( )eikx k p x( ) = p k( )eikx k we obtain the Fourier transform of (1

  6. Energy Savings in 3-D | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy savings in 3-D ORNL researchers show production, energy advantages of additive manufacturing ORNL 3-D printer in use. ORNL 3-D printer in use. Researchers at the Department...

  7. Parallel 3-D S{sub N} performance for DANTSYS/MPI on the Cray T3D

    SciTech Connect (OSTI)

    Baker, R.S.; Alcouffe, R.E. [Los Alamos National Lab., NM (United States). Transport Methods Group

    1997-05-01T23:59:59.000Z

    A data parallel version of the 3-D transport solver in DANTSYS has been in use on the SIMD CM-200`s at LANL since 1994. This version typically obtains grind times of 150--200 nanoseconds on a 2,048 PE CM-200. The authors have now implemented a new message passing parallel version of DANTSYS, referred to as DANTSYS/MPI, on the 512 PE Cray T3D at Los Alamos. By taking advantage of the SPMD architecture of the Cray T3D, as well as its low latency communications network, they have managed to achieve grind times of less than 10 nanoseconds on real problems. DANTSYS/MPI is fully accelerated using DSA on both the inner and outer iterations. This paper describes the implementation of DANTSYS/MPI on the Cray T3D, and presents two simple performance models for the transport sweep which accurately predict the grind time as a function of the number of PE`s and problem size, or scalability.

  8. Sculplexity: Sculptures of Complexity using 3D printing

    E-Print Network [OSTI]

    Reiss, D S; Evans, T S

    2014-01-01T23:59:59.000Z

    We show how to convert models of complex systems such as 2D cellular automata into a 3D printed object. Our method takes into account the limitations inherent to 3D printing processes and materials. Our approach automates the greater part of this task, bypassing the use of CAD software and the need for manual design. As a proof of concept, a physical object representing a modified forest fire model was successfully printed. Automated conversion methods similar to the ones developed here can be used to create objects for research, for demonstration and teaching, for outreach, or simply for aesthetic pleasure. As our outputs can be touched, they may be particularly useful for those with visual disabilities.

  9. 3D engine for immersive virtual environments 

    E-Print Network [OSTI]

    Anderson, Christopher Dean

    2005-02-17T23:59:59.000Z

    The purpose of this project is to develop a software framework, a 3D engine, which will generate images to be projected onto facets of a spatially immersive display (SID). The goal is to develop a software library to support the creation of images...

  10. Speed-line for 3D animation 

    E-Print Network [OSTI]

    Song, Won Chan

    2007-04-25T23:59:59.000Z

    My thesis describes a tool which creates speed-lines automatically in 3D computer animations. Speed-lines are usually used in comic books to express fast motions in a still image. They are also used in 2D animations. ...

  11. Fast Freehand Acquisition of 3D Objects and their Visualization

    E-Print Network [OSTI]

    Peters, Gabriele

    -world objects in a large number of fields of applications, such as the entertainment industry, design], and the application of structured light [3]. Image-based methods are, e.g., stereo vi- sion or multi-camera techniques://www.inf.fh-dortmund.de/personen/professoren/peters/ Abstract. In many applications 3d models of real-world objects are re- quired. We introduce a tool which

  12. State-of-the-Art 3-D Assessment of Elements Degrading TBR of

    E-Print Network [OSTI]

    accurate modeling of complex devices by integrating CAD geometry directly with 3-D MCNP code. · To point presentation of blanket geometry with high fidelity in 3-D TBR results. #12;6 Stepwise Approach ­ Build CAD of Fusion Energy August 27- 31, 2012 Nashville, TN, USA #12;2 ARIES Designs (1988 ­ 2012) #12;3 ARIES

  13. Measurements from 3D-CT renderings are used in research and clinical management

    E-Print Network [OSTI]

    Vorperian, Houri K.

    Measurements from 3D-CT renderings are used in research and clinical management: · Characterization for the prism]) RENDERING TECHNIQUES USED in ANALYZE 10.0: - Volume Render - (2) Volumes of Interest 1) VOI-Auto & 2) VOI-Manual TOTAL 3D-CT MODELS: 3 mandibles X 18 CT series X 3 rendering techniques = 162 mandible

  14. IEEE TRANSACTIONS ON ROBOTICS 1 Needle Steering in 3D via Rapid Replanning

    E-Print Network [OSTI]

    Alterovitz, Ron

    Plan Execute Control PredictionActual Model Generate Multiple Plans Fig. 1. Closed-loop needle steeringIEEE TRANSACTIONS ON ROBOTICS 1 Needle Steering in 3D via Rapid Replanning Sachin Patil Member steering system capable of automatically reaching targets in 3D environments while avoiding obstacles

  15. Feedback Control for Steering Needles Through 3D Deformable Tissue Using Helical Paths

    E-Print Network [OSTI]

    O'Brien, James F.

    Feedback Control for Steering Needles Through 3D Deformable Tissue Using Helical Paths Kris Hauser controller that steers a needle along 3D helical paths, and varies the helix radius to correct a model predictive control framework that chooses a needle twist rate such that the predicted helical

  16. Surface Shape Description of 3D Data from Under Vehicle Inspection Robot

    E-Print Network [OSTI]

    Abidi, Mongi A.

    Surface Shape Description of 3D Data from Under Vehicle Inspection Robot Sreenivas R. Sukumar1 capabilities to a multi-modal under vehicle inspection robot. In this paper, we outline the various design challenges towards the automation of the 3D scene modeling task. We employ laser-based range imaging

  17. An estimation algorithm for 3-D pose measurement using redundant ultrasonic sensors

    E-Print Network [OSTI]

    Branum, Brian Howell

    1998-01-01T23:59:59.000Z

    precise precise but expensive sensing equipment to attain range measuring instruments to triangulate an accurate 3-D more sensors than are necessary for a single 3-D pose measurement. If the pose by including expected errors could be modeled with a...

  18. Projecting 2D Gene Expression Data Into 3D and 4D Space

    E-Print Network [OSTI]

    Vize, Peter D.

    imaging of wholemount stained sam- ples. The two-dimensional images thus generated are, in fact games typically generate virtual 3D objects by texture mapping an image onto a 3D polygonal frame mapping images of gene expression data onto b-spline based embryo models. This approach, known as UV

  19. Task-Sensitive Cinematography Interfaces for Interactive 3D Learning Environments

    E-Print Network [OSTI]

    Zettlemoyer, Luke

    Task-Sensitive Cinematography Interfaces for Interactive 3D Learning Environments William H. Bares, a cinematography interface to 3D learning environments can dynamicallyplan camera positions,viewdirections, and cam modeling framework on student-environmentinteractions, we have constructed a full- scale cinematography

  20. acquisition facilitates 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Websites Summary: measurements and finally its instantiation through 3D printing, are presented. Laser scanner acquisition, reconstruction and 3D printing lend well...

  1. automatic 3d fe: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Technologies and Information Sciences Websites Summary: by means of the "3D printing" devices used in mechanical rapid prototyping. Another one is that 3D...

  2. atomic resolution 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed 3D video database of spontaneous facial Cohn, Jeffrey F. 16 Improvement of 3D Printing Resolution by the Development of Shrinkable Materials University of California...

  3. angular resolution 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed 3D video database of spontaneous facial Cohn, Jeffrey F. 18 Improvement of 3D Printing Resolution by the Development of Shrinkable Materials University of California...

  4. 3D Printing in 30 Seconds | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Printing in 30 Seconds 3D Printing in 30 Seconds Addthis An error occurred. Unable to execute Javascript. Duration :38 Topic Science & Technology...

  5. Wavelet Based Density Estimators for Modeling Multidimensional Data Sets

    E-Print Network [OSTI]

    Shahabi, Cyrus

    the distribution of this random variable. We exhibit an estimator for the wavelet coeÃ?cients of this density and ionospheric data. After three levels of o#11;-line pre-processing, observations of temperature, water vapor agreement nr. F30602-99-1-0524, and unrestricted cash/equipment gifts from NCR, IBM, Intel and SUN. #12; 1

  6. Evaluation of Tweedie exponential dispersion model densities by Fourier inversion

    E-Print Network [OSTI]

    Smyth, Gordon K.

    and Computing University of Southern Queensland Toowoomba Queensland 4350 Australia Gordon K. Smyth Bioinformatics Division Walter and Eliza Hall Institute of Medical Research Melbourne, Vic 3050, Australia August with power variance functions V (µ) = µp for p (0, 1). These distri- butions do not generally have density

  7. Labeling 3D scenes for Personal Assistant Robots

    E-Print Network [OSTI]

    Koppula, Hema Swetha; Joachims, Thorsten; Saxena, Ashutosh

    2011-01-01T23:59:59.000Z

    Inexpensive RGB-D cameras that give an RGB image together with depth data have become widely available. We use this data to build 3D point clouds of a full scene. In this paper, we address the task of labeling objects in this 3D point cloud of a complete indoor scene such as an office. We propose a graphical model that captures various features and contextual relations, including the local visual appearance and shape cues, object co-occurrence relationships and geometric relationships. With a large number of object classes and relations, the model's parsimony becomes important and we address that by using multiple types of edge potentials. The model admits efficient approximate inference, and we train it using a maximum-margin learning approach. In our experiments over a total of 52 3D scenes of homes and offices (composed from about 550 views, having 2495 segments labeled with 27 object classes), we get a performance of 84.06% in labeling 17 object classes for offices, and 73.38% in labeling 17 object classe...

  8. Statistical Image Modeling with the Magnitude Probability Density Function of Complex Wavelet

    E-Print Network [OSTI]

    Oraintara, Soontorn

    Statistical Image Modeling with the Magnitude Probability Density Function of Complex Wavelet the probability density function (pdf) of the magnitude of complex wavelet coefficients with the assump- tion Statistical image modeling in the wavelet domain is of inter- est in recent years due to the ability

  9. A restoration model of distorted electron density in wave-cutoff probe measurement

    SciTech Connect (OSTI)

    Jun, Hyun-Su, E-mail: mtsconst@kaist.ac.kr; Lee, Yun-Seong [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)] [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2014-02-15T23:59:59.000Z

    This study investigates the problem of electron density distortion and how the density can be restored in a wave-cutoff probe. Despite recent plasma diagnostics research using a wave-cutoff probe, the problem of electron density distortion caused by plasma conditions has not been resolved. Experimental results indicate that electron density measured using the wave-cutoff method is highly susceptible to variations in the probe tip gap. This electron density distortion is caused by the bulk plasma disturbance between probe tips, and it must be removed for calculating the absolute electron density. To do this, a detailed analytic model was developed using the power balance equation near probe tips. This model demonstrates the characteristics of plasma distortion in wave-cutoff probe measurement and successfully restored the absolute value of electron density with varying probe tip gaps.

  10. Series evaluation of Tweedie exponential dispersion model densities

    E-Print Network [OSTI]

    Smyth, Gordon K.

    of Mathematics and Computing University of Southern Queensland Toowoomba, Qld 4350, Australia Gordon K. Smyth 3052, Australia smyth@wehi.edu.au 23 February 2005 Abstract Exponential dispersion models, which for generalized linear models. The Tweedie families are those exponential dispersion models with power mean

  11. Simulation of High Density Pedestrian Flow: Microscopic Model

    E-Print Network [OSTI]

    Dridi, Mohamed H

    2015-01-01T23:59:59.000Z

    In recent years modelling crowd and evacuation dynamics has become very important, with increasing huge numbers of people gathering around the world for many reasons and events. The fact that our global population grows dramatically every year and the current public transport systems are able to transport large amounts of people, heightens the risk of crowd panic or crush. Pedestrian models are based on macroscopic or microscopic behaviour. In this paper, we are interested in developing models that can be used for evacuation control strategies. This model will be based on microscopic pedestrian simulation models, and its evolution and design requires a lot of information and data. The people stream will be simulated, based on mathematical models derived from empirical data about pedestrian flows. This model is developed from image data bases, so called empirical data, taken from a video camera or data obtained using human detectors. We consider the individuals as autonomous particles interacting through socia...

  12. Techniques for interactive 3-D scientific visualization

    SciTech Connect (OSTI)

    Glinert, E.P. (Rensselaer Polytechnic Inst., Troy, NY (USA). Dept. of Computer Science); Blattner, M.M. (Anderson (M.D.) Hospital and Tumor Inst., Houston, TX (USA). Dept. of Biomathematics California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National Lab., CA (USA)); Becker, B.G. (California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National La

    1990-09-24T23:59:59.000Z

    Interest in interactive 3-D graphics has exploded of late, fueled by (a) the allure of using scientific visualization to go where no-one has gone before'' and (b) by the development of new input devices which overcome some of the limitations imposed in the past by technology, yet which may be ill-suited to the kinds of interaction required by researchers active in scientific visualization. To resolve this tension, we propose a flat 5-D'' environment in which 2-D graphics are augmented by exploiting multiple human sensory modalities using cheap, conventional hardware readily available with personal computers and workstations. We discuss how interactions basic to 3-D scientific visualization, like searching a solution space and comparing two such spaces, are effectively carried out in our environment. Finally, we describe 3DMOVE, an experimental microworld we have implemented to test out some of our ideas. 40 refs., 4 figs.

  13. 3D Printing of Scintillating Materials

    E-Print Network [OSTI]

    Y. Mishnayot; M. Layani; I. Cooperstein; S. Magdassi; G. Ron

    2014-06-15T23:59:59.000Z

    We demonstrate, for the first time, the applicability of 3D printing technique to the manufacture of scintillation detectors. We report of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30\\% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various application.

  14. 3D Printing of Scintillating Materials

    E-Print Network [OSTI]

    Mishnayot, Y; Cooperstein, I; Magdassi, S; Ron, G

    2014-01-01T23:59:59.000Z

    We demonstrate, for the first time, the applicability of 3D printing technique to the manufacture of scintillation detectors. We report of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30\\% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various application.

  15. CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY

    E-Print Network [OSTI]

    CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY ­ Master Thesis Proposal ­ BACKGROUND 3D printing (or additive manufacturing) is not an entirely new phenomenon. First introduced and president of Foxconn, calls it a nice "gimmick" and even Nick Allen, founder of 3D printing company 3D Print

  16. 3D Printing of Functional and Biological Materials

    E-Print Network [OSTI]

    ! 3D Printing of Functional and Biological Materials Jennifer A. Lewis Wyss Professor)! Multimaterial 3D printing ! #12;3D antennas! Li ion microbatteries! Lightweight microlattices!Flexible sensors! 3D Printing of Integrated Electronic Devices ! #12;20 nm average , 5 ­ 50 nm

  17. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28T23:59:59.000Z

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  18. Restructuring of RELAP5-3D

    SciTech Connect (OSTI)

    George Mesina; Joshua Hykes

    2005-09-01T23:59:59.000Z

    The RELAP5-3D source code is unstructured with many interwoven logic flow paths. By restructuring the code, it becomes easier to read and understand, which reduces the time and money required for code development, debugging, and maintenance. A structured program is comprised of blocks of code with one entry and exit point and downward logic flow. IF tests and DO loops inherently create structured code, while GOTO statements are the main cause of unstructured code. FOR_STRUCT is a commercial software package that converts unstructured FORTRAN into structured programming; it was used to restructure individual subroutines. Primarily it transforms GOTO statements, ARITHMETIC IF statements, and COMPUTED GOTO statements into IF-ELSEIF-ELSE tests and DO loops. The complexity of RELAP5-3D complicated the task. First, FOR_STRUCT cannot completely restructure all the complex coding contained in RELAP5-3D. An iterative approach of multiple FOR_STRUCT applications gave some additional improvements. Second, FOR_STRUCT cannot restructure FORTRAN 90 coding, and RELAP5-3D is partially written in FORTRAN 90. Unix scripts for pre-processing subroutines into coding that FOR_STRUCT could handle and post-processing it back into FORTRAN 90 were written. Finally, FOR_STRUCT does not have the ability to restructure the RELAP5-3D code which contains pre-compiler directives. Variations of a file were processed with different pre-compiler options switched on or off, ensuring that every block of code was restructured. Then the variations were recombined to create a completely restructured source file. Unix scripts were written to perform these tasks, as well as to make some minor formatting improvements. In total, 447 files comprising some 180,000 lines of FORTRAN code were restructured. These showed significant reduction in the number of logic jumps contained as measured by reduction in the number of GOTO statements and line labels. The average number of GOTO statements per subroutine dropped from 8.8 before restructuring to 5.3 afterwards, a reduction of 40%. The maximum number of GOTO statements in any subroutine dropped from 213 to 99, a factor of 2.1. Finally, the maximum number of statement labels dropped from 210 to 43, a factor of nearly 5. While many blocks of code remain unstructured, a much greater fraction of the code is now structured. These measurements indicate a serious reduction in degree of interweaving of logic paths.

  19. Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture

    SciTech Connect (OSTI)

    Han, Ju; Chang, Hang; Giricz, Orsi; Lee, Genee; Baehner, Frederick; Gray, Joe; Bissell, Mina; Kenny, Paraic; Parvin, Bahram

    2010-02-01T23:59:59.000Z

    Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.

  20. Parameterization and Analysis of 3-D Solar Radiative Transfer in Clouds: Final Report

    SciTech Connect (OSTI)

    Jerry Y. Harrington

    2012-09-21T23:59:59.000Z

    This document reports on the research that we have done over the course of our two-year project. The report also covers the research done on this project during a 1 year no-cost extension of the grant. Our work has had two main, inter-related thrusts: The first thrust was to characterize the response of stratocumulus cloud structure and dynamics to systematic changes in cloud infrared radiative cooling and solar heating using one-dimensional radiative transfer models. The second was to couple a three-dimensional (3-D) solar radiative transfer model to the Large Eddy Simulation (LES) model that we use to simulate stratocumulus. The purpose of the studies with 3-D radiative transfer was to examine the possible influences of 3-D photon transport on the structure, evolution, and radiative properties of stratocumulus. While 3-D radiative transport has been examined in static cloud environments, few studies have attempted to examine whether the 3-D nature of radiative absorption and emission influence the structure and evolution of stratocumulus. We undertook this dual approach because only a small number of LES simulations with the 3-D radiative transfer model are possible due to the high computational costs. Consequently, LES simulations with a 1-D radiative transfer solver were used in order to examine the portions of stratocumulus parameter space that may be most sensitive to perturbations in the radiative fields. The goal was then to explore these sensitive regions with LES using full 3-D radiative transfer. Our overall goal was to discover whether 3-D radiative processes alter cloud structure and evolution, and whether this may have any indirect implications for cloud radiative properties. In addition, we collaborated with Dr. Tamas Varni, providing model output fields for his attempt at parameterizing 3-D radiative effects for cloud models.

  1. 3D reconstruction of tensors and vectors

    SciTech Connect (OSTI)

    Defrise, Michel; Gullberg, Grant T.

    2005-02-17T23:59:59.000Z

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  2. 3-D Wave Propagation Simulation in Complex Indoor Structures Farshid Aryanfar' and Kamal Sarabandi

    E-Print Network [OSTI]

    Sarabandi, Kamal

    3-D Wave Propagation Simulation in Complex Indoor Structures Farshid Aryanfar' and Kamal Sarabandi in different environments is important for specifying system parameters. Recently, wave propagation prediction electromagnetic wave propagation models have been developed. Examination of reported wave propagation algorithms

  3. Signal Integrity Analysis of a 2-D and 3-D Integrated Potentiostat for Neurotransmitter Sensing

    E-Print Network [OSTI]

    Stanacevic, Milutin

    for the substrate, power network, and through silicon vias (TSVs). These models are combined integrated implantable systems. I. INTRODUCTION A multichannel potentiostat, integrated with micro and power dissipation. Signal integrity characteristics of a 2- D and 3-D integrated potentiostat

  4. Parallel Computing for the Simulation of 3D Free Surface Flows in Environmental Applications

    E-Print Network [OSTI]

    Causin, Paola

    Causin and Edie Miglio MOX - Modeling and Scientific Computing, Dipartimento di Matematica "F.Miglio@mate.polimi.it, WWW home page: http://www.mox.polimi.it Abstract. The numerical simulation of 3D free surface flows

  5. Minimal Massive 3D Gravity Unitarity Redux

    E-Print Network [OSTI]

    Arvanitakis, Alex S.; Townsend, Paul K.

    2015-01-01T23:59:59.000Z

    be written as the integral of a Lagrangian 3-form constructed from three Lorentz-vector one-forms: the dreibein e, the (dual) Lorentz connection ? and a Lagrange multipler field h imposing a zero-torsion constraint [6, 7]. Using a 3D vector algebra notation... for Lorentz vectors we can write this Lagrangian 3-form as LTMG[e, ?, h] = ??e ·R + 1 6 ?0 e · e× e+ h · T + 1 µ LLCS(?) , (2.1) where T and R are the torsion and curvature 2-forms, respectively, and LLCS is the Lorentz-Chern-Simons (LCS) 3-form for ?...

  6. Interchanging Interactive 3-d Graphics for Astronomy

    E-Print Network [OSTI]

    C. J. Fluke; D. G. Barnes; N. T. Jones

    2008-12-09T23:59:59.000Z

    We demonstrate how interactive, three-dimensional (3-d) scientific visualizations can be efficiently interchanged between a variety of mediums. Through the use of an appropriate interchange format, and a unified interaction interface, we minimize the effort to produce visualizations appropriate for undertaking knowledge discovery at the astronomer's desktop, as part of conference presentations, in digital publications or as Web content. We use examples from cosmological visualization to address some of the issues of interchange, and to describe our approach to adapting S2PLOT desktop visualizations to the Web. Supporting demonstrations are available at http://astronomy.swin.edu.au/s2plot/interchange/

  7. 3D tomodosimetry using long scintillating fibers: A feasibility study

    SciTech Connect (OSTI)

    Goulet, Mathieu; Archambault, Louis; Beaulieu, Luc; Gingras, Luc [Département de Physique, de Génie Physique et d’Optique et Centre de Recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada, and Département de Radio-Oncologie and CRCHU de Quebec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada)] [Département de Physique, de Génie Physique et d’Optique et Centre de Recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada, and Département de Radio-Oncologie and CRCHU de Quebec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada)

    2013-10-15T23:59:59.000Z

    Purpose: 3D dosimetry is recognized as an ideal for patient-specific quality assurance (QA) of highly conformal radiotherapy treatments. However, existing 3D dosimeters are not straightforward to implement in the clinic, as their read-out procedure is often tedious and their accuracy, precision, and/or sample size exhibit limitations. The purpose of this work is to develop a 3D dosimeter based on the concept of tomodosimetry inside concentric cylindrical planes using long scintillating fibers for the QA of modern radiotherapy techniques such as intensity-modulated radiation therapy (IMRT) or intensity-modulated arc therapy (IMAT).Methods: Using a model-based simulation, scintillating fibers were modeled on three concentric cylindrical planes of radii 2.5, 5.0, and 7.5 cm, inside a 10 cm radius water-equivalent cylinder phantom. The phantom was set to rotate around its central axis, made parallel to the linac gantry axis of rotation. Light acquisitions were simulated using the calculated dose from the treatment planning software and reconstructed in each cylindrical plane at a resolution of 1 mm{sup 2} using a total-variation minimization iterative reconstruction algorithm. The 3D dose was then interpolated from the reconstructed cylindrical plane doses at a resolution of 1 mm{sup 3}. Different scintillating fiber patterns were compared by varying the angle of each fiber in its cylindrical plane and introducing a light-tight cut in each fiber. The precision of the reconstructed cylindrical dose distribution was evaluated using a Poisson modeling of the acquired light signals and the accuracy of the interpolated 3D dose was evaluated using an IMRT clinical plan for a prostate case.Results: Straight scintillating fiber patterns with light-tight cuts were the most accurate in cylindrical dose reconstruction, showing less than 0.5 mm distance-to-agreement in dose gradients and a mean local dose difference of less than 0.2% in the high dose region for a 10 × 10 cm{sup 2} field. The precision attained with this fiber configuration was less than 0.9% in the high dose, low gradient region of an IMRT segment for light acquisitions of 0.1 MU over a 360 degree rotation of the cylinder phantom. 3D dose interpolation for the IMRT clinical plan yielded an overall dose difference with the reference input of less than 1%, except in high dose gradients.Conclusions: Using long scintillating fibers inside rotating, concentric cylindrical planes, the authors demonstrate that their tomodosimetry method has the potential for high resolution, precise, and accurate 3D dosimetry. Moreover, because of its water-equivalence and rotational symmetry, this design should find interesting application for both treatment QA and machine commissioning.

  8. PIC MODELING: Measuring Ion Beam Current Density in the

    E-Print Network [OSTI]

    Kaganovich, Igor

    ;Collaborators: R. C. Davidson, P. C. Efthimion, E. P. Gilson (PPPL) S. S. Yu, P. K. Roy, F. M. Bieniosek, W. L) Converging ion beam Chamber Wall #12;3The Neutralized Transport Experiment was a success 400 kV Marx & Fire Injector #12;5Neutralized drift compression modeled with a particle-in-cell code (LSP) K+ ion beam

  9. Simulation of Seismic Real and Virtual Data Using the 3d Finite-difference Technique and Representation Theorem

    E-Print Network [OSTI]

    Yang, Xiujun

    2009-05-15T23:59:59.000Z

    -difference modeling is not sufficient to study subsalt imaging or the demultiple of subsalt models. That is why I have developed a 3D finite-difference modeling code. One of the key challenges that I have met in developing the 3D finite-difference code is to adapt...

  10. Low-Resolution Density Maps from Atomic Models: How Stepping ``Back'' Can Be a Step ``Forward''

    E-Print Network [OSTI]

    Baker, Timothy S.

    Low-Resolution Density Maps from Atomic Models: How Stepping ``Back'' Can Be a Step ``Forward a tremendous impact on our discovery and understand- ing of basic life processes. Such structural informa- tion

  11. DSI3D - RCS user manual

    SciTech Connect (OSTI)

    Madsen, N.; Steich, D.; Cook, G. [and others

    1995-08-23T23:59:59.000Z

    The DSI3D-RCS code is designed to numerically evaluate radar cross sections on complex objects by solving Maxwell`s curl equations in the time-domain and in three space dimensions. The code has been designed to run on the new parallel processing computers as well as on conventional serial computers. The DSI3D-RCS code is unique for the following reasons: Allows the use of unstructured non-orthogonal grids, allows a variety of cell or element types, reduces to be the Finite Difference Time Domain (FDTD) method when orthogonal grids are used, preserves charge or divergence locally (and globally), is conditionally stable, is selectively non-dissipative, and is accurate for non-orthogonal grids. This method is derived using a Discrete Surface Integration (DSI) technique. As formulated, the DSI technique can be used with essentially arbitrary unstructured grids composed of convex polyhedral cells. This implementation of the DSI algorithm allows the use of unstructured grids that are composed of combinations of non-orthogonal the use of unstructured grids that are composed of combinations of non-orthogonal hexahedrons, tetrahedrons, triangular prisms and pyramids. This algorithm reduces to the conventional FDTD method when applied on a structured orthogonal hexahedral grid.

  12. Collective enhancement of nuclear state densities by the shell model Monte Carlo approach

    E-Print Network [OSTI]

    C. Özen; Y. Alhassid; H. Nakada

    2015-01-22T23:59:59.000Z

    The shell model Monte Carlo (SMMC) approach allows for the microscopic calculation of statistical and collective properties of heavy nuclei using the framework of the configuration-interaction shell model in very large model spaces. We present recent applications of the SMMC method to the calculation of state densities and their collective enhancement factors in rare-earth nuclei.

  13. Streamlining of the RELAP5-3D Code

    SciTech Connect (OSTI)

    Mesina, George L; Hykes, Joshua; Guillen, Donna Post

    2007-11-01T23:59:59.000Z

    RELAP5-3D is widely used by the nuclear community to simulate general thermal hydraulic systems and has proven to be so versatile that the spectrum of transient two-phase problems that can be analyzed has increased substantially over time. To accommodate the many new types of problems that are analyzed by RELAP5-3D, both the physics and numerical methods of the code have been continuously improved. In the area of computational methods and mathematical techniques, many upgrades and improvements have been made decrease code run time and increase solution accuracy. These include vectorization, parallelization, use of improved equation solvers for thermal hydraulics and neutron kinetics, and incorporation of improved library utilities. In the area of applied nuclear engineering, expanded capabilities include boron and level tracking models, radiation/conduction enclosure model, feedwater heater and compressor components, fluids and corresponding correlations for modeling Generation IV reactor designs, and coupling to computational fluid dynamics solvers. Ongoing and proposed future developments include improvements to the two-phase pump model, conversion to FORTRAN 90, and coupling to more computer programs. This paper summarizes the general improvements made to RELAP5-3D, with an emphasis on streamlining the code infrastructure for improved maintenance and development. With all these past, present and planned developments, it is necessary to modify the code infrastructure to incorporate modifications in a consistent and maintainable manner. Modifying a complex code such as RELAP5-3D to incorporate new models, upgrade numerics, and optimize existing code becomes more difficult as the code grows larger. The difficulty of this as well as the chance of introducing errors is significantly reduced when the code is structured. To streamline the code into a structured program, a commercial restructuring tool, FOR_STRUCT, was applied to the RELAP5-3D source files. The methodology employed follows Dijkstra's structured programming paradigm, which is based on splitting programs into sub-sections, each with single points of entry and exit and in which control is passed downward through the structure with no unconditional branches to higher levels. GO TO commands are typically avoided, since they alter the flow and control of a program’s execution by allowing a jump from one place in the routine to another. The restructuring of RELAP5-3D subroutines is complicated by several issues. The first is use of code other than standard FORTRAN77. The second is restructuring limitations of FOR_STRUCT. The third is existence of pre-compiler directives and the complication of nested directives. Techniques were developed to overcome all these difficulties and more and these are reported. By implementing these developments, all subroutines of RELAP were restructured. Measures of code improvement relative to maintenance and development are presented.

  14. Modeling aluminum etch chemistry in high density plasmas

    SciTech Connect (OSTI)

    Meeks, E. [Sandia National Labs., Livermore, CA (United States); Ho, P.; Buss, R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-08-01T23:59:59.000Z

    The authors have assembled a chemical reaction mechanism that describes the BCl{sub 3}/Cl{sub 2}/Ar plasma etch of Al metallization layers. The reaction set for gas-phase and surface processes was derived either from literature data or estimated from data on related systems. A well-mixed reactor model was used to develop the mechanism and test it against experimental measurements of plasma species and etch-rates in processing reactors. Finally, use of reduced chemistry mechanisms are demonstrated in 2-D simulations for a complex reactor geometry.

  15. Superconductivity from D3/D7: Holographic Pion Superfluid

    E-Print Network [OSTI]

    Pallab Basu; Jianyang He; Anindya Mukherjee; Hsien-Hang Shieh

    2008-10-22T23:59:59.000Z

    We show that a D3/D7 system (at zero quark mass limit) at finite isospin chemical potential goes through a superconductor (superfluid) like phase transition. This is similar to a flavored superfluid phase studied in QCD literature, where mesonic operators condensate. We have studied the frequency dependent conductivity of the condensate and found a delta function pole in the zero frequency limit. This is an example of superconductivity in a string theory context. Consequently we have found a superfluid/supercurrent type solution and studied the associated phase diagram. The superconducting transition changes from second order to first order at a critical superfluid velocity. We have studied various properties of the superconducting system like superfluid density, energy gap, second sound etc. We investigate the possibility of the isospin chemical potential modifying the embedding of the flavor branes by checking whether the transverse scalars also condense at low temperature. This however does not seem to be the case.

  16. 3-Phase Recognition Approach to Pseudo 3D Building Generation from 2D Floor Plan

    E-Print Network [OSTI]

    Moloo, Raj Kishen; Auleear, Abu Salmaan

    2011-01-01T23:59:59.000Z

    Nowadays three dimension (3D) architectural visualisation has become a powerful tool in the conceptualisation, design and presentation of architectural products in the construction industry, providing realistic interaction and walkthrough on engineering products. Traditional ways of implementing 3D models involves the use of specialised 3D authoring tools along with skilled 3D designers with blueprints of the model and this is a slow and laborious process. The aim of this paper is to automate this process by simply analyzing the blueprint document and generating the 3D scene automatically. For this purpose we have devised a 3-Phase recognition approach to pseudo 3D building generation from 2D floor plan and developed a software accordingly. Our 3-phased 3D building system has been implemented using C, C++ and OpenCV library [24] for the Image Processing module; The Save Module generated an XML file for storing the processed floor plan objects attributes; while the Irrlitch [14] game engine was used to impleme...

  17. Uncertainty Analysis of RELAP5-3D

    SciTech Connect (OSTI)

    Alexandra E Gertman; Dr. George L Mesina

    2012-07-01T23:59:59.000Z

    As world-wide energy consumption continues to increase, so does the demand for the use of alternative energy sources, such as Nuclear Energy. Nuclear Power Plants currently supply over 370 gigawatts of electricity, and more than 60 new nuclear reactors have been commissioned by 15 different countries. The primary concern for Nuclear Power Plant operation and lisencing has been safety. The safety of the operation of Nuclear Power Plants is no simple matter- it involves the training of operators, design of the reactor, as well as equipment and design upgrades throughout the lifetime of the reactor, etc. To safely design, operate, and understand nuclear power plants, industry and government alike have relied upon the use of best-estimate simulation codes, which allow for an accurate model of any given plant to be created with well-defined margins of safety. The most widely used of these best-estimate simulation codes in the Nuclear Power industry is RELAP5-3D. Our project focused on improving the modeling capabilities of RELAP5-3D by developing uncertainty estimates for its calculations. This work involved analyzing high, medium, and low ranked phenomena from an INL PIRT on a small break Loss-Of-Coolant Accident as wall as an analysis of a large break Loss-Of- Coolant Accident. Statistical analyses were performed using correlation coefficients. To perform the studies, computer programs were written that modify a template RELAP5 input deck to produce one deck for each combination of key input parameters. Python scripting enabled the running of the generated input files with RELAP5-3D on INL’s massively parallel cluster system. Data from the studies was collected and analyzed with SAS. A summary of the results of our studies are presented.

  18. Process for 3D chip stacking

    DOE Patents [OSTI]

    Malba, Vincent (Livermore, CA)

    1998-01-01T23:59:59.000Z

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: 1) holding individual chips for batch processing, 2) depositing a dielectric passivation layer on the top and sidewalls of the chips, 3) opening vias in the dielectric, 4) forming the interconnects by laser pantography, and 5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume.

  19. Process for 3D chip stacking

    DOE Patents [OSTI]

    Malba, V.

    1998-11-10T23:59:59.000Z

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: (1) holding individual chips for batch processing, (2) depositing a dielectric passivation layer on the top and sidewalls of the chips, (3) opening vias in the dielectric, (4) forming the interconnects by laser pantography, and (5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume. 3 figs.

  20. The Hanle Effect in 1D, 2D and 3D

    E-Print Network [OSTI]

    R. Manso Sainz; J. Trujillo Bueno

    2007-10-29T23:59:59.000Z

    This paper addresses the problem of scattering line polarization and the Hanle effect in one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) media for the case of a two-level model atom without lower-level polarization and assuming complete frequency redistribution. The theoretical framework chosen for its formulation is the QED theory of Landi Degl'Innocenti (1983), which specifies the excitation state of the atoms in terms of the irreducible tensor components of the atomic density matrix. The self-consistent values of these density-matrix elements is to be determined by solving jointly the kinetic and radiative transfer equations for the Stokes parameters. We show how to achieve this by generalizing to Non-LTE polarization transfer the Jacobi-based ALI method of Olson et al. (1986) and the iterative schemes based on Gauss-Seidel iteration of Trujillo Bueno and Fabiani Bendicho (1995). These methods essentially maintain the simplicity of the Lambda-iteration method, but their convergence rate is extremely high. Finally, some 1D and 2D model calculations are presented that illustrate the effect of horizontal atmospheric inhomogeneities on magnetic and non-magnetic resonance line polarization signals.

  1. A Desktop 3D Printer in Safety-Critical Java

    E-Print Network [OSTI]

    A Desktop 3D Printer in Safety-Critical Java Tórur Biskopstø Strøm Kongens Lyngby 2012 IMM-MSc-2012-critical use cases implemented according to the specification. This thesis presents a RepRap 3D desktop printer

  2. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema (OSTI)

    Zhang, Song

    2012-08-29T23:59:59.000Z

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  3. 3D Visualization of Water Transport in Ferns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Visualization of Water Transport in Ferns 3D Visualization of Water Transport in Ferns Print Monday, 08 April 2013 00:00 Plants transport water through elongated cells called...

  4. al modelado 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael 72 ILLUSTRATING MATHEMATICS USING 3D PRINTERS CiteSeer Summary: Abstract. 3D printing technology can help to visualize proofs in mathematics. In this document we aim to...

  5. abnormal 3-d mri: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D...

  6. axial 3-d pet: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D...

  7. auslese von 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D...

  8. autostereoscopic 3d display: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or restrict themselves to light dif- fusion in volumes. We use multi-material 3D printing to fabricate objects Additional Key Words and Phrases: 3D printing, optical fibers...

  9. Characterizing tensile loading responses of 3D printed samples

    E-Print Network [OSTI]

    Haid, Christopher M

    2014-01-01T23:59:59.000Z

    An experimental study was performed to characterize the loading response of samples manufactured through 3D printing. Tensile testing was performed on a number of 3D printed samples created through Fused Filament Fabrication ...

  10. Fab trees for designing complex 3D printable materials

    E-Print Network [OSTI]

    Wang, Ye, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    With more 3D printable materials being invented, 3D printers nowadays could replicate not only geometries, but also appearance and physical properties. On the software side, the tight coupling between geometry and material ...

  11. 3D printing rises to the occasion | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D printing rises to the occasion ORNL group shows how it's done, one layer at a time A perforated metal box produced by an Arcam 3D printer. This detailed A perforated metal box...

  12. Animation : 2D versus 3D and their combined effect

    E-Print Network [OSTI]

    Au, Kristin C

    2014-01-01T23:59:59.000Z

    This thesis studies the differences in the perception of space and character movement between 2D and 3D animation. 2D animation is defined by elements constructed in a 2D environment while 3D animation by elements constructed ...

  13. Tracking Objects Using 3D Edge Detectors February 2013

    E-Print Network [OSTI]

    O'Leary, Dianne P.

    Tracking Objects Using 3D Edge Detectors February 2013 SIAM CSE 2013 Dianne P. O'Leary c 2013 1 #12;Tracking Objects Using 3D Edge Detectors Dianne P. O'Leary Computer Science Dept. and Institute

  14. GyPSuM: A Detailed Tomographic Model of Mantle Density and Seismic Wave Speeds

    SciTech Connect (OSTI)

    Simmons, N A; Forte, A M; Boschi, L; Grand, S P

    2010-03-30T23:59:59.000Z

    GyPSuM is a tomographic model fo mantle seismic shear wave (S) speeds, compressional wave (P) speeds and detailed density anomalies that drive mantle flow. the model is developed through simultaneous inversion of seismic body wave travel times (P and S) and geodynamic observations while considering realistic mineral physics parameters linking the relative behavior of mantle properties (wave speeds and density). Geodynamic observations include the (up to degree 16) global free-air gravity field, divergence of the tectonic plates, dynamic topography of the free surface, and the flow-induced excess ellipticity of the core-mantle boundary. GyPSuM is built with the philosophy that heterogeneity that most closely resembles thermal variations is the simplest possible solution. Models of the density field from Earth's free oscillations have provided great insight into the density configuration of the mantle; but are limited to very long-wavelength solutions. Alternatively, simply scaling higher resolution seismic images to density anomalies generates density fields that do not satisfy geodynamic observations. The current study provides detailed density structures in the mantle while directly satisfying geodynamic observations through a joint seismic-geodynamic inversion process. Notable density field observations include high-density piles at the base of the superplume structures, supporting the fundamental results of past normal mode studies. However, these features are more localized and lower amplitude than past studies would suggest. When we consider all seismic anomalies in GyPSuM, we find that P and S-wave speeds are strongly correlated throughout the mantle. However, correlations between the high-velocity S zones in the deep mantle ({approx} 2000 km depth) and corresponding P-wave anomalies are very low suggesting a systematic divergence from simplified thermal effects in ancient subducted slab anomalies. Nevertheless, they argue that temperature variations are the primary cause of P-wave, S-wave, and density anomalies in the mantle.

  15. Running Head: IMMERSIVE 3D ENVIRONMENTS AND MUTLINGUALITY 1 Immersive 3D Environments and Multilinguality

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and Multilinguality: Some Non-Intrusive and Dynamic e-learning-oriented Scenarios based on Textual Information Samuel (Metaverse Roadmap Report, 2007). We will present some non-intrusive and dynamic e-learning based scenarios to these scenarios as non-intrusive because they do not interrupt the user's activities within the immersive 3D en

  16. C § ? Was ist X3D/VRML?

    E-Print Network [OSTI]

    Virtuelle Realität; Xd Vrml; G. Zachmann; Verhalten Und Animationen; Achtung Vrml Vr; G. Zachmann; Virtuelle Realität; Simulation Ws; Xd Vrml; Vorteile Von Xd

    C § ? Die Spezifikation von VRML ist an einigen Stellen nicht eindeutig § ? In X3D präzisiert § ? X3D hat 100+ Knoten (aufgeteilt in Components / Profiles) § ? VRML hat nur 54 Knoten § ? X3D hat 3 verschiedene sog. "File Encodings": § ? Classic: sieht aus wie VRML; Suffix =.wrl oder.x3dv- Jede Software, die X3D lesen kann, kann (im Prinzip) auch VRML lesen

  17. Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon

    E-Print Network [OSTI]

    Zhou, Chongwu

    Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon, United States *S Supporting Information ABSTRACT: Recently, silicon-based lithium-ion battery anodes have for the next-generation lithium-ion batteries with enhanced capacity and energy density. KEYWORDS: Cost

  18. Science Highlight July 2011 Better Batteries through Nanoscale 3D Chemical Imaging

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Science Highlight ­ July 2011 Better Batteries through Nanoscale 3D Chemical Imaging Concerns battery technology. Although Li-ion batteries, crucial in the boom of portable electronics, stand energy density devices. Hence, monitoring changes in electrodes during battery operation (i.e., insertion

  19. Center-to-Limb Variation of Solar 3-D Hydrodynamical Simulations

    E-Print Network [OSTI]

    L. Koesterke; C. Allende Prieto; D. L. Lambert

    2008-02-15T23:59:59.000Z

    We examine closely the solar Center-to-Limb variation of continua and lines and compare observations with predictions from both a 3-D hydrodynamic simulation of the solar surface (provided by M. Asplund and collaborators) and 1-D model atmospheres. Intensities from the 3-D time series are derived by means of the new synthesis code ASSET, which overcomes limitations of previously available codes by including a consistent treatment of scattering and allowing for arbitrarily complex line and continuum opacities. In the continuum, we find very similar discrepancies between synthesis and observation for both types of model atmospheres. This is in contrast to previous studies that used a ``horizontally'' and time averaged representation of the 3-D model and found a significantly larger disagreement with observations. The presence of temperature and velocity fields in the 3-D simulation provides a significant advantage when it comes to reproduce solar spectral line shapes. Nonetheless, a comparison of observed and synthetic equivalent widths reveals that the 3-D model also predicts more uniform abundances as a function of position angle on the disk. We conclude that the 3-D simulation provides not only a more realistic description of the gas dynamics, but, despite its simplified treatment of the radiation transport, it also predicts reasonably well the observed Center-to-Limb variation, which is indicative of a thermal structure free from significant systematic errors.

  20. Reflected light from 3D exoplanetary atmospheres and simulation of HD 209458b

    E-Print Network [OSTI]

    Ben Hood; Kenneth Wood; Sara Seager; Andrew Collier Cameron

    2008-07-10T23:59:59.000Z

    We present radiation transfer models that demonstrate that reflected light levels from three dimensional (3D) exoplanetary atmospheres can be more than 50% lower than those predicted by models of homogeneous or smooth atmospheres. Compared to smooth models, 3D atmospheres enable starlight to penetrate to larger depths resulting in a decreased probability for the photons to scatter back out of the atmosphere before being absorbed. The increased depth of penetration of starlight in a 3D medium is a well known result from theoretical studies of molecular clouds and planetary atmospheres. For the first time we study the reflectivity of 3D atmospheres as a possible explanation for the apparent low geometric albedos inferred for extrasolar planetary atmospheres. Our models indicate that 3D atmospheric structure may be an important contributing factor to the non-detections of scattered light from exoplanetary atmospheres. We investigate the self-shadowing radiation transfer effects of patchy cloud cover in 3D scattered light simulations of the atmosphere of HD209458b. We find that, for a generic planet, geometric albedos can be as high as 0.45 in some limited situations, but that in general the geometric albedo is much lower. We conclude with some explanations on why extrasolar planets are likely dark at optical wavelengths.

  1. Power-Supply-Network Design in 3D Integrated Systems

    E-Print Network [OSTI]

    Lim, Sung Kyu

    Power-Supply-Network Design in 3D Integrated Systems Michael B. Healy and Sung Kyu Lim School power-supply noise in a layout- level 3D design prototype, and the impact of possible 3D-specific changes to the power-supply network design and topology. Our results show that distributing power-supply

  2. Deep Learning Representation using Autoencoder for 3D Shape Retrieval

    E-Print Network [OSTI]

    benchmarks. I. INTRODUCTION With the fast development of 3D printer, Microsoft Kinect sensor and laserDeep Learning Representation using Autoencoder for 3D Shape Retrieval Zhuotun Zhu, Xinggang Wang@hust.edu.cn Abstract--We study the problem of how to build a deep learning representation for 3D shape. Deep learning

  3. Dynamic 3D Graphics Workload Characterization and the Architectural Implications

    E-Print Network [OSTI]

    Mitra, Tulika

    for this de#12;ciency is the absence of a detailed workload characterization of 3D applications. This paper previous similar studies because it focuses on dynamic behaviors of 3D applications, speci#12;cally, corre- lations of workload statistics among neighboring frames in interactive 3D applications. Such inter

  4. Tips and Tricks for Using the 3D Interpolation Tool

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    Tips and Tricks for Using the 3D Interpolation Tool This document describes how to download the 3D interpolation tool and use it for the purpose of performing multidimensional analysis on Marine, Atmospheric, Petroleum, Geological, and Groundwater point data. The 3D interpolation tool leverages new methods to solve

  5. Hardware Assistance for Trustworthy Systems through 3-D Integration

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Hardware Assistance for Trustworthy Systems through 3-D Integration Jonathan Valamehr , Mohit a separate control plane, stacked using 3- D integration, that allows for the function and economics computation plane by at- taching an optional control plane using 3-D integration. In a developed example we

  6. 3-D Graphics in R Ohio State University

    E-Print Network [OSTI]

    Gotelli, Nicholas J.

    3-D Graphics in R Luke Keele Ohio State University December 6, 2005 Three dimensional graphics may. And it is a good choice, but to get publication quality 3-D graphics requires more work than typically re- quired to produce quality graphics with the wireframe command. The standard 3-D plot command in R is persp. While

  7. 3-D cinematography with approximate and no geometry

    E-Print Network [OSTI]

    Magnor, Marcus

    3-D cinematography with approximate and no geometry Martin Eisemann, Timo Stich and Marcus Magnor Abstract 3-D cinematography is a new step towards full immersive video, allow- ing complete control of the book Image and Geometry Processing for 3-D Cinematography published by Springer. 1 Introduction

  8. 3D Printing Prof. Hank Dietz & Paul Eberhart

    E-Print Network [OSTI]

    Dietz, Henry G. "Hank"

    3D Printing Prof. Hank Dietz & Paul Eberhart September 28, 2013 University of Kentucky Electrical/Craft: paper moves in Y, knife in X EDM/Laser: X/Y bed, vaporizes material #12;Subtractive 3D CNC: Computer "The whole is greater than the sum of its parts." ­ Aristotle #12;Additive 3D Building Material

  9. 3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1

    E-Print Network [OSTI]

    Boyer, Edmond

    3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1 , D. De Baere2 , M. Rombouts3 , SSHM system is produced by 3D printing or additive manufacturing. Additive Manufacturing (AM) is a "process to enable its implementation. This work demonstrates the feasibility study of eSHM systems produced by 3D

  10. The effectiveness of 3-D marine systems as an exploration tool in the offshore Niger Delta

    SciTech Connect (OSTI)

    Idowu, A.O. (Nigerian National Petroleum Corp., Lagos (Nigeria))

    1993-09-01T23:59:59.000Z

    From inception in 1984, three-dimensional (3-D) marine surveys have been used widely for field development where commercial hydrocarbons were known to exist in Nigeria. The high-trace density and full 3-D migration provide a data set that allows detailed interpretation of complex geologic structures and, in many cases, provides good stratigraphic information as well. The result has been better placement of development wells, making field development more efficient and cost effective. Previous application of the 3-d method (i.e., reconaissance 3-D) as an exploration tool in 1987 has demonstrated its effectiveness for predrilling detailing of prospects in offshore Niger Delta in a situation where a large volume of seismic data were acquired at relatively reduced unit costs. The technique involves acquiring data along a line every 200 m spacing, while interpretation in 3-D data processing is applied for subsequent 3-D migration. Based on pattern recognition of events on the input traces, the links are established to allow traces to be formed between input locations by comparing several attributes of events on neighboring traces. A case history example from the offshore Niger delta shows that the collection costs for the reconnaissance 3-D method are comparable to two-dimensional detailing based on similar line kilometer and time duration for the survey. A trade-off between cost and technical specifications can be programmed by focusing on the geologic objective. The technique brings the advantage of 3-D methods, but not their costs, to the exploration phase of the search for petroleum, and it is highly recommended for exploration in frontier areas, particularly the deep offshore of the Niger Delta.

  11. 3D J-Integral Capability in Grizzly

    SciTech Connect (OSTI)

    Benjamin Spencer; Marie Backman; Pritam Chakraborty; William Hoffman

    2014-09-01T23:59:59.000Z

    This report summarizes work done to develop a capability to evaluate fracture contour J-Integrals in 3D in the Grizzly code. In the current fiscal year, a previously-developed 2D implementation of a J-Integral evaluation capability has been extended to work in 3D, and to include terms due both to mechanically-induced strains and due to gradients in thermal strains. This capability has been verified against a benchmark solution on a model of a curved crack front in 3D. The thermal term in this integral has been verified against a benchmark problem with a thermal gradient. These developments are part of a larger effort to develop Grizzly as a tool that can be used to predict the evolution of aging processes in nuclear power plant systems, structures, and components, and assess their capacity after being subjected to those aging processes. The capabilities described here have been developed to enable evaluations of Mode- stress intensity factors on axis-aligned flaws in reactor pressure vessels. These can be compared with the fracture toughness of the material to determine whether a pre-existing flaw would begin to propagate during a pos- tulated pressurized thermal shock accident. This report includes a demonstration calculation to show how Grizzly is used to perform a deterministic assessment of such a flaw propagation in a degraded reactor pressure vessel under pressurized thermal shock conditions. The stress intensity is calculated from J, and the toughness is computed using the fracture master curve and the degraded ductile to brittle transition temperature.

  12. A mineralogical model for density and elasticity of the Earth's A. S. Piazzoni

    E-Print Network [OSTI]

    Steinle-Neumann, Gerd

    A mineralogical model for density and elasticity of the Earth's mantle A. S. Piazzoni Department fu, Germany [1] We present a thermodynamic model of high-pressure mineralogy that allows the evaluation: mantle mineralogy; Gibbs free energy minimization. Index Terms: 3612 Mineralogy and Petrology: Reactions

  13. Nuclear Level Densities for Modeling Nuclear Reactions: An Efficient Approach Using Statistical Spectroscopy

    SciTech Connect (OSTI)

    Calvin W. Johnson

    2005-08-10T23:59:59.000Z

    The general goal of the project is to develop and implement computer codes and input files to compute nuclear densities of state. Such densities are important input into calculations of statistical neutron capture, and are difficult to access experimentally. In particular, we will focus on calculating densities for nuclides in the mass range A {approx} 50-100. We use statistical spectroscopy, a moments method based upon a microscopic framework, the interacting shell model. Second year goals and milestones: Develop two or three competing interactions (based upon surface-delta, Gogny, and NN-scattering) suitable for application to nuclei up to A = 100. Begin calculations for nuclides with A = 50-70.

  14. 3D Least Squares Velocity from 3D Doppler Radial X. Chen, J.L. Barron, R.E. Mercer

    E-Print Network [OSTI]

    Barron, John

    neighbourhoods to compute local 3D velocity. Radial velocity (measured by the Doppler effect) is the component3D Least Squares Velocity from 3D Doppler Radial Velocity X. Chen, J.L. Barron, R.E. Mercer Dept. Radial velocity can be used to predict the motion of storms in sequences of Doppler radar datasets

  15. AUTOMATED, HIGHLY ACCURATE VERIFICATION OF RELAP5-3D

    SciTech Connect (OSTI)

    George L Mesina; David Aumiller; Francis Buschman

    2014-07-01T23:59:59.000Z

    Computer programs that analyze light water reactor safety solve complex systems of governing, closure and special process equations to model the underlying physics. In addition, these programs incorporate many other features and are quite large. RELAP5-3D[1] has over 300,000 lines of coding for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. Verification ensures that a program is built right by checking that it meets its design specifications. Recently, there has been an increased importance on the development of automated verification processes that compare coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions[2]. For the first time, the ability exists to ensure that the data transfer operations associated with timestep advancement/repeating and writing/reading a solution to a file have no unintended consequences. To ensure that the code performs as intended over its extensive list of applications, an automated and highly accurate verification method has been modified and applied to RELAP5-3D. Furthermore, mathematical analysis of the adequacy of the checks used in the comparisons is provided.

  16. Tunneling density of states of high Tc superconductors d-wave BCS model vs. SU(2) slave boson model

    E-Print Network [OSTI]

    Wen, Xiao-Gang

    Tunneling density of states of high Tc superconductors d-wave BCS model vs. SU(2) slave boson model conductance curves in the superconducting state at zero temperature. Comparing the two results obtained via Tunneling spectroscopy has been one of the funda- mental tools in studying the superconducting state

  17. 3-D visualisation and interpretation of seismic attributes extracted from large 3-D seismic datasets: Subregional and prospect evaluation, deepwater Nigeria

    SciTech Connect (OSTI)

    Sola, M.; Haakon Nordby, L.; Dailey, D.V.; Duncan, E.A. [BP and Statoil Alliance, Stavanger (Norway)

    1996-12-31T23:59:59.000Z

    High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team`s ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, pattern recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.

  18. 3-D visualisation and interpretation of seismic attributes extracted from large 3-D seismic datasets: Subregional and prospect evaluation, deepwater Nigeria

    SciTech Connect (OSTI)

    Sola, M.; Haakon Nordby, L.; Dailey, D.V.; Duncan, E.A. (BP and Statoil Alliance, Stavanger (Norway))

    1996-01-01T23:59:59.000Z

    High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team's ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, pattern recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.

  19. Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting

    SciTech Connect (OSTI)

    Christopher Liner

    2012-05-31T23:59:59.000Z

    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. Specifically, our focus is fundamental research on (1) innovative narrow-band seismic data decomposition and interpretation, and (2) numerical simulation of advanced seismic data (multi-component, high density, full azimuth data) ideal for mapping of cap rock integrity and potential leakage pathways.

  20. Iterative model-building, structure refinement, and density modification with the PHENIX AutoBuild Wizard

    SciTech Connect (OSTI)

    Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England; Terwilliger, Thomas; Terwilliger, T.C.; Grosse-Kunstleve, Ralf Wilhelm; Afonine, P.V.; Moriarty, N.W.; Zwart, P.H.; Hung, L.-W.; Read, R.J.; Adams, P.D.

    2007-04-29T23:59:59.000Z

    The PHENIX AutoBuild Wizard is a highly automated tool for iterative model-building, structure refinement and density modification using RESOLVE or TEXTAL model-building, RESOLVE statistical density modification, and phenix.refine structure refinement. Recent advances in the AutoBuild Wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model completion algorithms, and automated solvent molecule picking. Model completion algorithms in the AutoBuild Wizard include loop-building, crossovers between chains in different models of a structure, and side-chain optimization. The AutoBuild Wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 {angstrom} to 3.2 {angstrom}, resulting in a mean R-factor of 0.24 and a mean free R factor of 0.29. The R-factor of the final model is dependent on the quality of the starting electron density, and relatively independent of resolution.

  1. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States); Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Moriarty, Nigel W.; Zwart, Peter H. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Hung, Li-Wei [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States); Read, Randy J. [Department of Haematology, University of Cambridge, Cambridge CB2 0XY (United Kingdom); Adams, Paul D., E-mail: terwilliger@lanl.gov [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States)

    2008-01-01T23:59:59.000Z

    The highly automated PHENIX AutoBuild wizard is described. The procedure can be applied equally well to phases derived from isomorphous/anomalous and molecular-replacement methods. The PHENIX AutoBuild wizard is a highly automated tool for iterative model building, structure refinement and density modification using RESOLVE model building, RESOLVE statistical density modification and phenix.refine structure refinement. Recent advances in the AutoBuild wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model-completion algorithms and automated solvent-molecule picking. Model-completion algorithms in the AutoBuild wizard include loop building, crossovers between chains in different models of a structure and side-chain optimization. The AutoBuild wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 to 3.2 Å, resulting in a mean R factor of 0.24 and a mean free R factor of 0.29. The R factor of the final model is dependent on the quality of the starting electron density and is relatively independent of resolution.

  2. Volume 0 (1981), Number 0 pp. 110 COMPUTER GRAPHICS forum Resolution Independent NPR-Style 3D Line Textures

    E-Print Network [OSTI]

    Gooch, Amy

    1981-01-01T23:59:59.000Z

    and faint, sketchy feature lines. sketchiness of the feature edges and material property lines is modifiedVolume 0 (1981), Number 0 pp. 1­10 COMPUTER GRAPHICS forum Resolution Independent NPR-Style 3D Line-photorealistically rendered (NPR) scenes using 3D line primitives to define architectural features of the model, as well

  3. Prototype Development Capabilities of 3D Spatial Interactions and Failures During Scenario Simulation

    SciTech Connect (OSTI)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Tony Koonce

    2014-09-01T23:59:59.000Z

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This report addressed the methods, techniques, and resources used to develop a prototype for using 3D modeling and simulation engine to improve risk analysis and evaluate reactor structures and components for a given scenario. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  4. Preliminary Study for Dosimetric Characteristics of 3D-printed Materials with Megavoltage Photons

    E-Print Network [OSTI]

    Jeong, Seonghoon; Chung, Weon Kuu; Kim, Dong Wook

    2015-01-01T23:59:59.000Z

    In these days, 3D-printer is on the rise in various fields including radiation therapy. This preliminary study aimed to estimate the dose characteristics of the 3D-printer materials which could be used as the compensator or immobilizer in radiation treatment. The cubes which have 5cm length and different densities as 50%, 75% and 100% were printed by 3D-printer. A planning CT scans for cubes were performed using a CT simulator (Brilliance CT, Philips Medical System, Netherlands). Dose distributions behind the cube were calculated when 6MV photon beam passed through cube. The dose response for 3D-printed cube, air and water were measured by using EBT3 film and 2D array detector. When results of air case were normalized to 100, dose calculated by TPS and measured dose of 50% and 75% cube were 96~99. Measured and calculated doses of water and 100% cube were 82~84. HU values of 50%, 75% and 100% were -910, -860 and -10, respectively. From these results, 3D-printer in radiotherapy could be used for medical purpose...

  5. 3D-Simulation Studies of SNS Ring Doublet Magnets

    SciTech Connect (OSTI)

    Wang, J.G.; Tsoupas N.; Venturini, M.

    2005-05-05T23:59:59.000Z

    The accumulator ring of the Spallation Neutron Source (SNS) at ORNL employs in its straight sections closely packed quadrupole doublemagnets with large aperture of R=15.1 cm an relatively short iron-to-iron distance of 51.4 cm. These quads have much extended fringe field, and magnetic interferences among them in the doublet assemblies is not avoidable. Though each magnet in the assemblies has been individually mapped to high accuracy of lower than 0.01 percent level, the experimental data including the magnetic interference effect will not be available. We have performed 3D computing simulations on a quadrupole doublet model in order to assess the degree of the interference and to obtain relevant data for the SNS commissioning and operation.

  6. Effective shell model Hamiltonians from density functional theory: quadrupolar and pairing correlations

    E-Print Network [OSTI]

    R. Rodriguez-Guzman; Y. Alhassid; G. F. Bertsch

    2007-09-04T23:59:59.000Z

    We describe a procedure for mapping a self-consistent mean-field theory (also known as density functional theory) into a shell model Hamiltonian that includes quadrupole-quadrupole and monopole pairing interactions in a truncated space. We test our method in the deformed N=Z sd-shell nuclei Ne-20, Mg-24 and Ar-36, starting from the Hartree-Fock plus BCS approximation of the USD shell model interaction. A similar procedure is then followed using the SLy4 Skyrme energy density functional in the particle-hole channel plus a zero-range density-dependent force in the pairing channel. Using the ground-state solution of this density functional theory at the Hartree-Fock plus BCS level, an effective shell model Hamiltonian is constructed. We use this mapped Hamiltonian to extract quadrupolar and pairing correlation energies beyond the mean field approximation. The rescaling of the mass quadrupole operator in the truncated shell model space is found to be almost independent of the coupling strength used in the pairing channel of the underlying mean-field theory.

  7. Modelling Bulk Density According to Structure Development: Toward an Indicator of Microstructure Development in Ferralsols.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modelling Bulk Density According to Structure Development: Toward an Indicator of Microstructure the microaggregates with a small contribution of large pores resulting from root development and macrofaunal activity.25 g cm-3 among the 108 samples studied. Visual assessment of BESI showed that soil material

  8. Mathematical Model of Charge and Density Distributions in Interfacial Polymerization of Thin Films

    E-Print Network [OSTI]

    Freger, Viatcheslav "Slava"

    Mathematical Model of Charge and Density Distributions in Interfacial Polymerization of Thin Films INTRODUCTION Interfacial polymerization (IP) as a method of prepa- ration of thin film composite (TFC- tion. It has been shown that the formation of a thin film occurs very quickly and often results

  9. Temporal-spatial modeling of electron density enhancement due to successive lightning strokes

    E-Print Network [OSTI]

    Otago, University of

    (FDTD) model that describes the effect of lightning electromagnetic pulses (EMP) on the ionosphere. Each The electromagnetic pulse (EMP) from lightning has been shown to modify conductivity and electron density in the lower successive EMP pulse interacts with a modified background ionosphere due to the previous pulses, resulting

  10. Relativistic density functional theory modeling of plutonium and americium higher oxide molecules

    E-Print Network [OSTI]

    Titov, Anatoly

    Relativistic density functional theory modeling of plutonium and americium higher oxide molecules of plutonium and americium higher oxide molecules Andréi Zaitsevskii,1,2,a) Nikolai S. Mosyagin,2,3 Anatoly V of plutonium and americium higher oxide molecules (actinide oxidation states VI through VIII) by two

  11. 3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal...

    Open Energy Info (EERE)

    Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, Indonesia Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: 3-D...

  12. 3-D Combustion Simulation Strategy Status, Future Potential,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Simulation Strategy Status, Future Potential, and Application Issues 3-D Combustion Simulation Strategy Status, Future Potential, and Application Issues 2004 Diesel...

  13. automated 3-d voxel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: from a real-life application. 1 Introduction Recent advances in 3D printing technology have made of materials, higher printing speeds, and lower costs....

  14. automated 3d correlative: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bosch, Frdric 8 Bridging the Gap: Automated Steady Scaffoldings for 3D Printing Jrmie Dumas Computer Technologies and Information Sciences Websites Summary:...

  15. assess 3d bone: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: from a real-life application. 1 Introduction Recent advances in 3D printing technology have made of materials, higher printing speeds, and lower costs....

  16. Making 3D Printed Christmas Ornaments | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This Contributor Santa's sleigh becomes "Intelligent Machine" this Christmas Using 3D Printing to Redesign Santa's Sleigh A Sneak Peek Into Santa's Smarter Sleigh Subscribe to...

  17. RELAP5-3D V. 4.X.X

    Energy Science and Technology Software Center (OSTI)

    000191MLTPL01 NON-NRC FUNDED RELAP5-3D VERSION 4.x.x SOFTWARE REACTOR EXCURSION AND LEAK ANALYSIS PACKAGE - THREE DIMENSIONAL   

  18. Further Analysis of 3D Magnetotelluric Measurements Over the...

    Open Energy Info (EERE)

    Coso Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Further Analysis of 3D Magnetotelluric Measurements Over the Coso...

  19. MPSalsa 3D Simulations of Chemically Reacting Flows

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).

    This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.

  20. TOWARDS ROBUST 3D Z-PINCH SIMULATIONS: DISCRETIZATION AND FAST SOLVERS FOR MAGNETIC

    E-Print Network [OSTI]

    Tuminaro, Ray S.

    interest is in developing a technology for Z-pinch modeling which falls within the constraintsTOWARDS ROBUST 3D Z-PINCH SIMULATIONS: DISCRETIZATION AND FAST SOLVERS FOR MAGNETIC DIFFUSION. The mathematical model of the Z-pinch is comprised of many interacting components. One of these components

  1. TOWARDS ROBUST 3D Z-PINCH SIMULATIONS: DISCRETIZATION AND FAST SOLVERS FOR MAGNETIC

    E-Print Network [OSTI]

    is in developing a technology for Z-pinch modeling which falls within the constraints of an Arbitrary LagrangianTOWARDS ROBUST 3D Z-PINCH SIMULATIONS: DISCRETIZATION AND FAST SOLVERS FOR MAGNETIC DIFFUSION. The mathematical model of the Z-pinch is comprised of many interacting components. One of these components

  2. Building Part-based Object Detectors via 3D Geometry Abhinav Shrivastava Abhinav Gupta

    E-Print Network [OSTI]

    Treuille, Adrien

    Building Part-based Object Detectors via 3D Geometry Abhinav Shrivastava Abhinav Gupta The Robotics on heuristics such as high gradient energy. This part- based model is trained discriminatively; however, learning this model is a complex task as it involves optimization of a non-convex function over a set

  3. 3D steering of a flexible needle by visual servoing Alexandre Krupa

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ://www.irisa.fr/lagadic/welcome-eng.html Abstract. This paper presents a robotic control method for 3D steering of a beveled-tip flexible needle approach and its robustness to model errors. Keywords: Flexible needle steering, visual servoing 1], or the Stochastic roadmap [6]. In [7] a kinematic model was proposed for bevel-tip needle steering by constantly

  4. Physical sectioning in 3D biological microscopy

    E-Print Network [OSTI]

    Guntupalli, Jyothi Swaroop

    2008-10-10T23:59:59.000Z

    ...................................................................... 61 G Stepan’s models of regenerative chatter in metal cutting........................... 62 H Chatter model for KESM............................................................................ 64 ix CHAPTER Page I Summary... based on the source of vibration: frictional, regenerative, mode-coupling, and thermo-mechanical [7]. Frictional chatter gets its excitation energy from the friction force either between the workpiece and the tool 15 flank, or between the section...

  5. Physical sectioning in 3D biological microscopy

    E-Print Network [OSTI]

    Guntupalli, Jyothi Swaroop

    2009-05-15T23:59:59.000Z

    ...................................................................... 61 G Stepan?s models of regenerative chatter in metal cutting........................... 62 H Chatter model for KESM............................................................................ 64 ix CHAPTER Page I Summary... based on the source of vibration: frictional, regenerative, mode-coupling, and thermo-mechanical [7]. Frictional chatter gets its excitation energy from the friction force either between the workpiece and the tool 15 flank, or between the section...

  6. Scaling and Density of Lee-Yang Zeroes in the Four Dimensional Ising Model

    E-Print Network [OSTI]

    R. Kenna; C. B. Lang

    1993-11-20T23:59:59.000Z

    The scaling behaviour of the edge of the Lee--Yang zeroes in the four dimensional Ising model is analyzed. This model is believed to belong to the same universality class as the $\\phi^4_4$ model which plays a central role in relativistic quantum field theory. While in the thermodynamic limit the scaling of the Yang--Lee edge is not modified by multiplicative logarithmic corrections, such corrections are manifest in the corresponding finite--size formulae. The asymptotic form for the density of zeroes which recovers the scaling behaviour of the susceptibility and the specific heat in the thermodynamic limit is found to exhibit logarithmic corrections too. The density of zeroes for a finite--size system is examined both analytically and numerically.

  7. Galaxy density profiles and shapes -- I. simulation pipeline for lensing by realistic galaxy models

    E-Print Network [OSTI]

    Glenn van de Ven; Rachel Mandelbaum; Charles R. Keeton

    2009-06-18T23:59:59.000Z

    Studies of strong gravitational lensing in current and upcoming wide and deep photometric surveys, and of stellar kinematics from (integral-field) spectroscopy at increasing redshifts, promise to provide valuable constraints on galaxy density profiles and shapes. However, both methods are affected by various selection and modelling biases, whch we aim to investigate in a consistent way. In this first paper in a series we develop a flexible but efficient pipeline to simulate lensing by realistic galaxy models. These galaxy models have separate stellar and dark matter components, each with a range of density profiles and shapes representative of early-type, central galaxies without significant contributions from other nearby galaxies. We use Fourier methods to calculate the lensing properties of galaxies with arbitrary surface density distributions, and Monte Carlo methods to compute lensing statistics such as point-source lensing cross-sections. Incorporating a variety of magnification bias modes lets us examine different survey limitations in image resolution and flux. We rigorously test the numerical methods for systematic errors and sensitivity to basic assumptions. We also determine the minimum number of viewing angles that must be sampled in order to recover accurate orientation-averaged lensing quantities. We find that for a range of non-isothermal stellar and dark matter density profiles typical of elliptical galaxies, the combined density profile and corresponding lensing properties are surprisingly close to isothermal around the Einstein radius. The converse implication is that constraints from strong lensing and/or stellar kinematics, which are indeed consistent with isothermal models near the Einstein radius, cannot trivially be extrapolated to smaller and larger radii.

  8. Group field theory formulation of 3d quantum gravity coupled to matter fields

    E-Print Network [OSTI]

    Daniele Oriti; James Ryan

    2006-02-02T23:59:59.000Z

    We present a new group field theory describing 3d Riemannian quantum gravity coupled to matter fields for any choice of spin and mass. The perturbative expansion of the partition function produces fat graphs colored with SU(2) algebraic data, from which one can reconstruct at once a 3-dimensional simplicial complex representing spacetime and its geometry, like in the Ponzano-Regge formulation of pure 3d quantum gravity, and the Feynman graphs for the matter fields. The model then assigns quantum amplitudes to these fat graphs given by spin foam models for gravity coupled to interacting massive spinning point particles, whose properties we discuss.

  9. Distributed delay model for density wave dynamics in gas lifted wells Laure Sin`egre, Nicolas Petit

    E-Print Network [OSTI]

    Distributed delay model for density wave dynamics in gas lifted wells Laure Sin`egre, Nicolas Petit in the tubing D. dynamical choking is used to stabilise the density wave instability. In this paper, we propose instabilities cause production losses. One of these instabilities, referred to as the "density-wave

  10. Interactive 3D Gene Expression Viewer Victor E. Gerth*

    E-Print Network [OSTI]

    Vize, Peter D.

    Interactive 3D Gene Expression Viewer Victor E. Gerth* University of Calgary, Department. The Interactive Gene Expression viewer provides a way to view spatial relationships between different gene expression patterns and anatomic features. Web based 3D enabled technologies such as the Interactive Gene

  11. Anatomic measurement accuracy: CT parameters and 3D rendering effects

    E-Print Network [OSTI]

    Vorperian, Houri K.

    Anatomic measurement accuracy: CT parameters and 3D rendering effects Brian J Whyms a, E Michael of Neuroscience #12;INTRODUCTION · Measurements from 3D-CT rendering are used in research and clinical management-CT rendering techniques on measurements #12;METHODS Scanned: · 3 human mandibles · a phantom object Phantom

  12. An Improved Vertex Caching Scheme for 3D Mesh Rendering

    E-Print Network [OSTI]

    Lin, Gang

    An Improved Vertex Caching Scheme for 3D Mesh Rendering Gang Lin and Thomas P.-Y. Yu Abstract to the graphics pipeline during rendering. To make effective use of the cache and facilitate rendering, it is key effective algorithm for generating a sequence for efficient rendering of 3D polygonal meshes based on greedy

  13. 3D FFT for FPGAs Ben Humphries Martin C. Herbordt

    E-Print Network [OSTI]

    Herbordt, Martin

    computations such as those used in Molecular Dynamics simulations. On FPGAs, however, the 3D FFT was thought Dynamics simulations (MD). Somewhat sur- prisingly, although MD on FPGAs has been widely studied, we3D FFT for FPGAs Ben Humphries Martin C. Herbordt Department of Electrical and Computer

  14. BIOLOGICALLY MOTIVATED 3D FACE RECOGNITION Albert Ali Salah

    E-Print Network [OSTI]

    BIOLOGICALLY MOTIVATED 3D FACE RECOGNITION by Albert Ali Salah B.S, in Computer Engineering, Bogazi of Doctor of Philosophy Graduate Program in Bogazi¸ci University 2007 #12;ii BIOLOGICALLY MOTIVATED 3D FACE. Hayim Molinas. #12;iv ACKNOWLEDGEMENTS With gratitude to my PhD advisor Lale Akarun for her boundless

  15. 3D Wavelet-Based Filter and Method

    DOE Patents [OSTI]

    Moss, William C. (San Mateo, CA); Haase, Sebastian (San Francisco, CA); Sedat, John W. (San Francisco, CA)

    2008-08-12T23:59:59.000Z

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  16. CREATING 3D ANIMATED HUMAN BEHAVIORS FOR VIRTUAL WORLDS

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    i CREATING 3D ANIMATED HUMAN BEHAVIORS FOR VIRTUAL WORLDS Jan M. Allbeck A DISSERTATION in Computer, and a scholar. #12;iv ABSTRACT CREATING 3D ANIMATED HUMAN BEHAVIORS FOR VIRTUAL WORLDS Jan M. Allbeck Norman I. Badler Creating virtual scenarios that simulate a substantial human population with typical and varied

  17. 03/05/2010 09:26Photos: 3D replicas to help sell your home? That's computer vision | Software | silicon.com Page 1 of 11http://www.silicon.com/technology/software/2010/03/30/photos-3d-...cas-to-help-sell-your-home-thats-computer-vision-39745647/print/

    E-Print Network [OSTI]

    Cipolla, Roberto

    model of Antony Gormley's head, printed via 3D printer Photo credits: Natasha Lomas03/05/2010 09:26Photos: 3D replicas to help sell your home? That's computer vision | Software | silicon.com Page 1 of 11http://www.silicon.com/technology/software/2010/03/30/photos-3d

  18. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect (OSTI)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09T23:59:59.000Z

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  19. Proposal for the development of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    SciTech Connect (OSTI)

    Deptuch, Gregory; Hoff, Jim; Kwan, Simon; Lipton, Ron; Liu, Ted; Ramberg, Erik; Todri, Aida; Yarema, Ray; /Fermilab; Demarteua, Marcel,; Drake, Gary; Weerts, Harry; /Argonne /Chicago U. /Padua U. /INFN, Padua

    2010-10-01T23:59:59.000Z

    Future particle physics experiments looking for rare processes will have no choice but to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare process. The authors propose to develop a 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) chip for HEP applications, to advance the state-of-the-art for pattern recognition and track reconstruction for fast triggering.

  20. Development of a RELAP5-3D three-dimensional model of a VVER-1000 Nuclear Power Plant for analysis of a large-break loss-of-coolant accident 

    E-Print Network [OSTI]

    Clarno, Kevin Taylor

    2001-01-01T23:59:59.000Z

    of the three-dimensional sections of the reactor vessel consisted of ensuring geometrical fidelity with the design of the modeled plant, the Balacovo Unit 4, Nuclear Power Plant in Saratov, Russia. A stable operational steady-state was obtained...

  1. Bulletin of the Seismological Society of America, Vol. 96, No. 4A, pp. 13521358, August 2006, doi: 10.1785/0120050173 Efficient Modeling of Q for 3D Numerical Simulation of Wave Propagation

    E-Print Network [OSTI]

    Archuleta, Ralph

    and Minster, 1984; Emmerich and Korn, 1987; Blanch et al., 1995; Day and Bradley, 2001; Graves and Day, 2003 made for the modeling Q (e.g., Emmerich and Korn, 1987; Bl

  2. Airport Viz - a 3D Tool to Enhance Security Operations

    SciTech Connect (OSTI)

    Koch, Daniel B [ORNL

    2006-01-01T23:59:59.000Z

    In the summer of 2000, the National Safe Skies Alliance (NSSA) awarded a project to the Applied Visualization Center (AVC) at the University of Tennessee, Knoxville (UTK) to develop a 3D computer tool to assist the Federal Aviation Administration security group, now the Transportation Security Administration (TSA), in evaluating new equipment and procedures to improve airport checkpoint security. A preliminary tool was demonstrated at the 2001 International Aviation Security Technology Symposium. Since then, the AVC went on to construct numerous detection equipment models as well as models of several airports. Airport Viz has been distributed by the NSSA to a number of airports around the country which are able to incorporate their own CAD models into the software due to its unique open architecture. It provides a checkpoint design and passenger flow simulation function, a layout design and simulation tool for checked baggage and cargo screening, and a means to assist in the vulnerability assessment of airport access points for pedestrians and vehicles.

  3. Comparison of 3D, Assist-as-Needed Robotic Arm/Hand Movement Training Provided with Pneu-WREX to Conventional Table Top Therapy Following Chronic Stroke

    E-Print Network [OSTI]

    Reinkensmeyer, David J.; Wolbrecht, Eric T.; Chan, Vicky; Chou, Cathy; Cramer, Steven C.; Bobrow, James E.

    2012-01-01T23:59:59.000Z

    compliant, model-based robotic assistance to promoteof 3D, Assist-as-Needed Robotic Arm/Hand Movement Trainingrehabilitation: a review of robotic systems and clinical

  4. In vivo biomarker expression patterns are preserved in 3D cultures of Prostate Cancer

    SciTech Connect (OSTI)

    Windus, Louisa C.E.; Kiss, Debra L.; Glover, Tristan [Eskitis Institute for Cell and Molecular Therapies, Discovery Biology, Griffith University, Nathan 4111, Brisbane, Queensland (Australia)] [Eskitis Institute for Cell and Molecular Therapies, Discovery Biology, Griffith University, Nathan 4111, Brisbane, Queensland (Australia); Avery, Vicky M., E-mail: v.avery@griffith.edu.au [Eskitis Institute for Cell and Molecular Therapies, Discovery Biology, Griffith University, Nathan 4111, Brisbane, Queensland (Australia)

    2012-11-15T23:59:59.000Z

    Here we report that Prostate Cancer (PCa) cell-lines DU145, PC3, LNCaP and RWPE-1 grown in 3D matrices in contrast to conventional 2D monolayers, display distinct differences in cell morphology, proliferation and expression of important biomarker proteins associated with cancer progression. Consistent with in vivo growth rates, in 3D cultures, all PCa cell-lines were found to proliferate at significantly lower rates in comparison to their 2D counterparts. Moreover, when grown in a 3D matrix, metastatic PC3 cell-lines were found to mimic more precisely protein expression patterns of metastatic tumour formation as found in vivo. In comparison to the prostate epithelial cell-line RWPE-1, metastatic PC3 cell-lines exhibited a down-regulation of E-cadherin and {alpha}6 integrin expression and an up-regulation of N-cadherin, Vimentin and {beta}1 integrin expression and re-expressed non-transcriptionally active AR. In comparison to the non-invasive LNCaP cell-lines, PC3 cells were found to have an up-regulation of chemokine receptor CXCR4, consistent with a metastatic phenotype. In 2D cultures, there was little distinction in protein expression between metastatic, non-invasive and epithelial cells. These results suggest that 3D cultures are more representative of in vivo morphology and may serve as a more biologically relevant model in the drug discovery pipeline. -- Highlights: Black-Right-Pointing-Pointer We developed and optimised 3D culturing techniques for Prostate Cancer cell-lines. Black-Right-Pointing-Pointer We investigated biomarker expression in 2D versus 3D culture techniques. Black-Right-Pointing-Pointer Metastatic PC3 cells re-expressed non-transcriptionally active androgen receptor. Black-Right-Pointing-Pointer Metastatic PCa cell lines retain in vivo-like antigenic profiles in 3D cultures.

  5. Modeling nuclear weak-interaction processes with relativistic energy density functionals

    E-Print Network [OSTI]

    Paar, N; Vale, D; Vretenar, D

    2015-01-01T23:59:59.000Z

    Relativistic energy density functionals have become a standard framework for nuclear structure studies of ground-state properties and collective excitations over the entire nuclide chart. We review recent developments in modeling nuclear weak-interaction processes: charge-exchange excitations and the role of isoscalar proton-neutron pairing, charged-current neutrino-nucleus reactions relevant for supernova evolution and neutrino detectors, and calculation of beta-decay rates for r-process nucleosynthesis.

  6. FSU Office of Research Program in Interdisciplinary Computing (PIC) What is 3D printing?

    E-Print Network [OSTI]

    Ronquist, Fredrik

    (PIC) What is 3D printing? 3D printing is a process of making. 3D printing is distinct from traditional machining techniques, which mostly organs, meat, circuit boards and batteries. 3D printing impacts nearly every

  7. Lattice vibrations in the Frenkel-Kontorova model. I. phonon dispersion, number density, and energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meng, Qingping; Wu, Lijun; Welch, David O.; Zhu, Yimei

    2015-06-01T23:59:59.000Z

    We studied the lattice vibrations of two inter-penetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential, using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. As the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of the FK modelmore »are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a non-zero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a “devil's staircase” behavior at a finite temperature.« less

  8. Real time 3D and heterogeneous data fusion

    SciTech Connect (OSTI)

    Little, C.Q.; Small, D.E.

    1998-03-01T23:59:59.000Z

    This project visualizes characterization data in a 3D setting, in real time. Real time in this sense means collecting the data and presenting it before it delays the user, and processing faster than the acquisition systems so no bottlenecks occur. The goals have been to build a volumetric viewer to display 3D data, demonstrate projecting other data, such as images, onto the 3D data, and display both the 3D and projected images as fast as the data became available. The authors have examined several ways to display 3D surface data. The most effective was generating polygonal surface meshes. They have created surface maps form a continuous stream of 3D range data, fused image data onto the geometry, and displayed the data with a standard 3D rendering package. In parallel with this, they have developed a method to project real-time images onto the surface created. A key component is mapping the data on the correct surfaces, which requires a-priori positional information along with accurate calibration of the camera and lens system.

  9. Structure formation: a spherical model for the evolution of the density distribution

    E-Print Network [OSTI]

    P. Valageas

    1998-07-02T23:59:59.000Z

    Within the framework of hierarchical clustering we show that a simple Press-Schechter-like approximation, based on spherical dynamics, provides a good estimate of the evolution of the density field in the quasi-linear regime up to $\\Sigma \\sim 1$. Moreover, it allows one to recover the exact series of the cumulants of the probability distribution of the density contrast in the limit $\\Sigma \\to 0$ which sheds some light on the rigorous result and on ``filtering''. We also obtain similar results for the divergence of the velocity field. Next, we extend this prescription to the highly non-linear regime, using a stable-clustering approximation. Then we recover a specific scaling of the counts-in-cells which is indeed seen in numerical simulations, over a well-defined range. To this order we also introduce an explicit treatment of the behaviour of underdensities, which takes care of the normalization and is linked to the low-density bubbles and the walls one can see in numerical simulations. We compare this to a 1-dimensional adhesion model, and we present the consequences of our prescription for the power-law tail and the cutoff of the density distribution.

  10. Wilson loops, geometric operators and fermions in 3d group field theory

    E-Print Network [OSTI]

    R. J. Dowdall

    2009-11-12T23:59:59.000Z

    Group field theories whose Feynman diagrams describe 3d gravity with a varying configuration of Wilson loop observables and 3d gravity with volume observables at each vertex are defined. The volume observables are created by the usual spin network grasping operators which require the introduction of vector fields on the group. We then use this to define group field theories that give a previously defined spin foam model for fermion fields coupled to gravity, and the simpler quenched approximation, by using tensor fields on the group. The group field theory naturally includes the sum over fermionic loops at each order of the perturbation theory.

  11. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xi'an Jiaotong Univ., Xi'an, Shaanxi (China); Zhang, Lei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tong, Huimin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Peng, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rames, Matthew J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Shengli [Xi'an Jiaotong Univ., Xi'an, Shaanxi (China); Ren, Gang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-05T23:59:59.000Z

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.

  12. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05T23:59:59.000Z

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore »derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less

  13. Gamma-ray burst prompt emission light curves and power density spectra in the ICMART model

    SciTech Connect (OSTI)

    Zhang, Bo [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: bozhang@physics.unlv.edu, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States)

    2014-02-20T23:59:59.000Z

    In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter ? in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high ? flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

  14. Gamma-Ray Burst Prompt Emission Light Curves and Power Density Spectra in the ICMART Model

    E-Print Network [OSTI]

    Zhang, Bo

    2013-01-01T23:59:59.000Z

    In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately-high magnetization parameter $\\sigma$ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately-high-$\\sigma$ flow. The run-away growth and subsequent depletion of these mini-emitters as a function time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

  15. Suitability for 3D Printed Parts for Laboratory Use

    SciTech Connect (OSTI)

    Zwicker, Andrew P. [PPPL; Bloom, Josh [PPPL; Albertson, Robert [PPPL; Gershman, Sophia [PPPL

    2014-08-01T23:59:59.000Z

    3D printing has become popular for a variety of users, from industrial to the home hobbyist, to scientists and engineers interested in producing their own laboratory equipment. In order to determine the suitability of 3D printed parts for our plasma physics laboratory, we measured the accuracy, strength, vacuum compatibility, and electrical properties of pieces printed in plastic. The flexibility of rapidly creating custom parts has led to the 3D printer becoming an invaluable resource in our laboratory and is equally suitable for producing equipment for advanced undergraduate laboratories.

  16. Boolean Operations on 3D Selective Nef Complexes: Data Structure, Algorithms, Optimized

    E-Print Network [OSTI]

    Mehlhorn, Kurt

    polyhedra and complexes are quite general. They can model non­manifold solids, unbounded solids, openBoolean Operations on 3D Selective Nef Complexes: Data Structure, Algorithms, Optimized, open and closed sets, mixed­dimensional complexes, and they are closed under all boolean

  17. Building a 3D Simulator for Autonomous Navigation of Robotic Fishes

    E-Print Network [OSTI]

    Hu, Huosheng

    Building a 3D Simulator for Autonomous Navigation of Robotic Fishes Jindong Liu Department control and autonomous navigation of a robotic fish. The simplified kinematics and hydrodynamics models way to develop autonomous navigation algorithms for robotic fishes. I. INTRODUCTION In nature, fish

  18. A 3D reconstruction from real-time stereoscopic images using GPU

    E-Print Network [OSTI]

    Boyer, Edmond

    scene models in image- based rendering. Stereovision involves two processes: the binocular of features methods must be designed to establish the correct correspondence between images features in real-time 3D reconstruction feedback. Examples include machine vision in robotics task where feedback for autonomous control

  19. Multimedia Authoring: A 3D Interactive Visualization Interface based on a Structured

    E-Print Network [OSTI]

    Joseph Fourier Grenoble-I, Université

    Multimedia Authoring: A 3D Interactive Visualization Interface based on a Structured Document Model E!mail: {Nabil.Layaida, Jean!Yves.Vion!Dury}@imag.fr Multimedia authoring process is inherently a complex and tedious task, users have to specify all the details of a multimedia presentation (temporal

  20. 3D Reconstruction of the Femoral Bone using two X-ray Images from Orthogonal Views

    E-Print Network [OSTI]

    3D Reconstruction of the Femoral Bone using two X-ray Images from Orthogonal Views B. Nikkhahe of the femur and 97 % of the model femur shaft less than 2 mm from the CT scan. Also the femoral head visualization of the femur including the femoral collumn and condyles is important for the clinician in a number