2D Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data...
situated in a graben. The joint inverted models show a better definition of shallow and deep structures. The results show that the extension of the benefits using joint inversion...
Meju, Max
Joint two-dimensional DC resistivity and seismic travel time inversion with cross to evaluate the structural features common to both methods. The cross-gradients function is incorporated method. The resultant iterative two-dimensional (2-D) joint inversion scheme is successfully applied
Joint inversion of electrical and seismic data for Fracture char...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char. and...
Time-lapse Joint Inversion of Geophysical Data and its Applications...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal...
van Vliet, Lucas J.
with oblique internal layering, best imaged on seismic reflection profiles, where three geometric elementsHigh-resolution clinoform characterization by 2-D model-driven seismic Bayesian inversion Daria of seismic data always presents an inversion problem. Instead of analyzing the data trace by trace, we
Joint inversion of receiver function and ambient noise based on Bayesian theory
van der Hilst, Robert D.
In this study, we present a method for the joint inversion of receiver function and ambient noise based on Bayesian inverse theory (Tarantola, 1987, 2005). The nonlinear inversion method of the complex spectrum ratio of ...
Direct Reservoir Parameter Estimation Using Joint Inversion of Marine Seismic AVA & CSEM Data
2005-01-01T23:59:59.000Z
estimation of reservoir parameters from geophysical data isthe seismic data fit at times below the reservoir. InversionReservoir Parameter Estimation Using Joint Inversion of Marine Seismic AVA & CSEM Data
Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to
Farquharson, Colin G.
Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration Peter G. Leli`evre, Colin G. Farquharson and Charles A. Hurich plelievre Seismic data (2 / 32) Leli`evre, Farquharson, Hurich, plelievre@mun.ca Joint inversion of seismic
A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide
Fletcher, Sara E. Mikaloff
A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 2. Regional results Andrew atmospheric CO2 gradients and transport simulations are combined with observations of ocean interior carbon (2007), A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 2. Regional results
Slimane Zaim; Abdelkader Bahache
2014-10-06T23:59:59.000Z
We obtain exact solutions of the 2D Schr\\"odinger equation with the Singular Even-Power and Inverse-Power Potentials in non-commutative complex space, using the Power-series expansion method. Hence we can say that the Schr\\"odinger equation in non-commutative complex space describes to the particles with spin (1/2)in an external uniform magnitic field. Where the noncommutativity play the role of magnetic field with created the total magnetic moment of particle with spin 1/2, who in turn shifted the spectrum of energy. Such effects are similar to the Zeeman splitting in a commutative space.
A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide
Fletcher, Sara E. Mikaloff
interprets in situ observations of carbon dioxide concentration in the ocean and atmosphere with transportA joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global March 2007. [1] We have constructed an inverse estimate of surface fluxes of carbon dioxide using both
2D Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Žcommunication facilities | Open EnergyEnergy2-M Probe20 CCR2327 CCR
Chen, Jinsong
among seismic and electric attributes and reservoir parameters from distant borehole logs. In this studyJoint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields Jinsong Chen1 and G. Michael Hoversten2 ABSTRACT Joint inversion of seismic AVA
Chen, Jinsong
Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models, Chevron ETC Summary Joint inversion of seismic AVA and CSEM data needs rock- physics models to link seismic attributes to electrical properties. Ideally, we can develop physical-based models (e.g., Gassmann
van Vliet, Lucas J.
High-resolution reservoir characterization by 2-D model-driven seismic Bayesian inversion. The method was tested on an example of the Upper Cenozoic fluvio-deltaic system in a 3D seismic dataset-resolution reservoir model from seismic and well data, an approach was developed based on an a priori layered model
Linde, Niklas; Tryggvason, Ari; Peterson, John; Hubbard, Susan
2008-04-15T23:59:59.000Z
The structural approach to joint inversion, entailing common boundaries or gradients, offers a flexible way to invert diverse types of surface-based and/or crosshole geophysical data. The cross-gradients function has been introduced as a means to construct models in which spatial changes in two models are parallel or anti-parallel. Inversion methods that use such structural constraints also provide estimates of non-linear and non-unique field-scale relationships between model parameters. Here, we invert jointly crosshole radar and seismic traveltimes for structurally similar models using an iterative non-linear traveltime tomography algorithm. Application of the inversion scheme to synthetic data demonstrates that it better resolves lithological boundaries than the individual inversions. Tests of the scheme on observed radar and seismic data acquired within a shallow aquifer illustrate that the resultant models have improved correlations with flowmeter data than with models based on individual inversions. The highest correlation with the flowmeter data is obtained when the joint inversion is combined with a stochastic regularization operator, where the vertical integral scale is estimated from the flowmeter data. Point-spread functions shows that the most significant resolution improvements of the joint inversion is in the horizontal direction.
Lin, Lin; Yang, Chao; Lu, Jiangfeng; Ying, Lexing; E, Weinan
2009-09-25T23:59:59.000Z
We present an efficient parallel algorithm and its implementation for computing the diagonal of $H^-1$ where $H$ is a 2D Kohn-Sham Hamiltonian discretized on a rectangular domain using a standard second order finite difference scheme. This type of calculation can be used to obtain an accurate approximation to the diagonal of a Fermi-Dirac function of $H$ through a recently developed pole-expansion technique \\cite{LinLuYingE2009}. The diagonal elements are needed in electronic structure calculations for quantum mechanical systems \\citeHohenbergKohn1964, KohnSham 1965,DreizlerGross1990. We show how elimination tree is used to organize the parallel computation and how synchronization overhead is reduced by passing data level by level along this tree using the technique of local buffers and relative indices. We analyze the performance of our implementation by examining its load balance and communication overhead. We show that our implementation exhibits an excellent weak scaling on a large-scale high performance distributed parallel machine. When compared with standard approach for evaluating the diagonal a Fermi-Dirac function of a Kohn-Sham Hamiltonian associated a 2D electron quantum dot, the new pole-expansion technique that uses our algorithm to compute the diagonal of $(H-z_i I)^-1$ for a small number of poles $z_i$ is much faster, especially when the quantum dot contains many electrons.
Torres-Verdín, Carlos
's dry bulk and shear moduli, porosity, and water saturation from the joint inversion of borehole array, with the formation model described by a radial variation of water and hydrocarbon saturations representative of mud in the frequency domain. Synthetic cases consider water-base mud filtrate invading a hydrocarbon-bearing sand
Chen, Jinsong
Joint inversion of seismic AVO and EM data for gas saturation estimation using a sampling- based hypothesis using a sampling-based stochastic model, based on a typical situation of gas exploration and EM data are obtained from one-dimensional (or layered) models, (2) the thickness and electrical
Meju, Max
multidimensional non- invasive dc resistivity and seismic refraction investigations of the near-surface have and seismic data Luis A. Gallardo1 and Max A. Meju Department of Environmental Science, Lancaster University-gradients of electrical resistivity and seismic velocity as constraints so as to investigate more precisely
Chen, J.; Hoversten, G.M.
2011-09-15T23:59:59.000Z
Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmann’s equations and Archie’s law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy to derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water saturation at three different locations by conditioning to seismic AVA and CSEM data. Comparison of the inversion results with their corresponding true values shows that the correlation-based statistical rock-physics models provide significant information for improving the joint inversion results.
Torres-Verdín, Carlos
Joint stochastic inversion of 3D pre-stack seismic data and well logs for high-resolution reservoir of migrated 3D pre-stack seismic data. The inversion algorithm is based on a Bayesian statistical search of elastic and petrophysical properties we resorted to amplitude information of 3D pre-stack seismic data
wavelet domain inversion and joint deconvolution/interpolation of geophysical data
Kane, Jonathan A. (Jonathan Andrew), 1973-
2003-01-01T23:59:59.000Z
This thesis presents two innovations to geophysical inversion. The first provides a framework and an algorithm for combining linear deconvolution methods with geostatistical interpolation techniques. This allows for sparsely ...
Zhang, Zhishuai
2012-10-19T23:59:59.000Z
the importance of temperature data by integrating production and temperature data jointly and individually and conclude that including the temperature data in history matching of deep GoM reservoirs can increase the resolution of reservoir permeability...
Chen, Jinsong
Nordquist, Chevron Geothermal Services Company Summary We develop a Bayesian model to invert 2D magnetotelluric (MT) data using a pixel-based parameterization, and apply it to an active geothermal field of the resistivity and use gradient-based algorithms to draw MCMC samples. To shorten the burn-in time, we run
Kowalsky, Michael B.; Finsterle, Stefan; Peterson, John; Hubbard,Susan; Rubin, Yoram; Majer, Ernest; Ward, Andy; Gee, Glendon
2005-05-05T23:59:59.000Z
A method is described for jointly using time-lapse multiple-offset cross-borehole ground-penetrating radar (GPR) travel time measurements and hydrological measurements to estimate field-scale soil hydraulic parameters and parameters of the petrophysical function, which relates soil porosity and water saturation to the effective dielectric constant. We build upon previous work to take advantage of a wide range of GPR data acquisition configurations and to accommodate uncertainty in the petrophysical function. Within the context of water injection experiments in the vadose zone, we test our inversion methodology with synthetic examples and apply it to field data. The synthetic examples show that while realistic errors in the petrophysical function cause substantial errors in the soil hydraulic parameter estimates,simultaneously estimating petrophysical parameters allows for these errors to be minimized. Additionally, we observe in some cases that inaccuracy in the GPR simulator causes systematic error in simulated travel times, making necessary the simultaneous estimation of a correction parameter. We also apply the method to a three-dimensional field setting using time-lapse GPR and neutron probe (NP) data sets collected during an infiltration experiment at the U.S. Department of Energy (DOE) Hanford site in Washington. We find that inclusion of GPR data in the inversion procedure allows for improved predictions of water content, compared to predictions made using NP data alone.
for Gravity, Electrical, and Magnetics, Colorado School of Mines, Golden, Colorado SUMMARY Recently3D joint inversion of gradient and total-field magnetic data Kristofer Davis and Yaoguo Li, Center and demonstrate it with a synthetic and field example. INTRODUCTION Airborne magnetic gradiometry data
Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E
2010-02-18T23:59:59.000Z
The Cameroon Volcanic Line (CVL) is a major geologic feature that cuts across Cameroon from the south west to the north east. It is a unique volcanic lineament which has both an oceanic and a continental sector and consists of a chain of Tertiary to Recent, generally alkaline volcanoes stretching from the Atlantic island of Pagalu to the interior of the African continent. The oceanic sector includes the islands of Bioko (formerly Fernando Po) and Sao Tome and Principe while the continental sector includes the Etinde, Cameroon, Manengouba, Bamboutos, Oku and Mandara mountains, as well as the Adamawa and Biu Plateaus. In addition to the CVL, three other major tectonic features characterize the region: the Benue Trough located northwest of the CVL, the Central African Shear Zone (CASZ), trending N70 degrees E, roughly parallel to the CVL, and the Congo Craton in southern Cameroon. The origin of the CVL is still the subject of considerable debate, with both plume and non-plume models invoked by many authors (e.g., Deruelle et al., 2007; Ngako et al, 2006; Ritsema and Allen, 2003; Burke, 2001; Ebinger and Sleep, 1998; Lee et al, 1994; Dorbath et al., 1986; Fairhead and Binks, 1991; King and Ritsema, 2000; Reusch et al., 2010). Crustal structure beneath Cameroon has been investigated previously using active (Stuart et al, 1985) and passive (Dorbath et al., 1986; Tabod, 1991; Tabod et al, 1992; Plomerova et al, 1993) source seismic data, revealing a crust about 33 km thick at the south-western end of the continental portion of the CVL (Tabod, 1991) and the Adamawa Plateau, and thinner crust (23 km thick) beneath the Garoua Rift in the north (Stuart et al, 1985) (Figure 1). Estimates of crustal thickness obtained using gravity data show similar variations between the Garoua rift, Adamawa Plateau, and southern part of the CVL (Poudjom et al., 1995; Nnange et al., 2000). In this study, we investigate further crustal structure beneath the CVL and the adjacent regions in Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broadband seismic stations. From the 1-D shear wave velocity models, we obtain new insights into the composition and structure of the crust and upper mantle across Cameroon. After briefly reviewing the geological framework of Cameroon, we describe the data and the joint inversion method, and then interpret variations in crustal structure found beneath Cameroon in terms of the tectonic history of the region.
Torres-Verdín, Carlos
in this paper is also suitable for the quantitative interpretation of 4D seismic data. Simulation and InversionJoint Inversion of Reservoir Production Measurements and 3D Pre-Stack Seismic Data: Proof-stack seismic data and fluid production history. The production measurements and the seismic data
Brambilla, Sara [Los Alamos National Laboratory; Brown, Michael J. [Los Alamos National Laboratory
2012-06-18T23:59:59.000Z
A terrorist attack in a U.S. city utilizing biological weapons could have severe consequences. A biological agent could be aerosolized and emitted into the air in the middle of a city, invisibly traveling with the winds, and dosing an unknowing populace. The magnitude of the problem would only be revealed as sick people started arriving several days later at hospitals with symptoms, many already too ill to be saved. A national program has deployed a network of biological agent collectors in U.S. cities to provide early detection of a bio-weapon attack, thereby hastening medical intervention and potentially saving many thousands of lives. In fact, the most effective treatment takes place prior to infection or in its early stages and early warning might reduce the disease progression and, consequently, the possibility of an outbreak. If a biological attack were to occur in a city, one or more collectors may register hits with specific dosages and the city would be alerted that an attack had taken place. This piece of information alone, however, would not be enough to determine how serious the attack was, i.e., how much biological agent was released into the air and where the bio-plume traveled. The first responders and public health communities will want to know what regions were impacted, how many persons might get sick, which people most need medical supplies, and where to clean up. The law enforcement community will want to look for forensic evidence at the release location. The Bio-Agent Event Reconstruction Tool (BERT) has been developed in order to recreate what might have happened during an airborne biological agent attack based on biological agent collector measurements and wind collectors mounted around a city. The tool can be used to estimate possible release areas while eliminating other areas, and can estimate bounds on the amount of material released. The tool can then be used to project forward from the possible source areas to estimate potential hazard zones. Due to a unique source inversion technique - called the upwind collector footprint approach - the tool runs fast and the source regions can be determined in a few minutes. In this report, we provide an overview of the BERT framework, followed by a description of the source inversion technique. The Joint URBAN 2003 field experiment held in Oklahoma City that was used to validate BERT is then described. Subsequent sections describe the metrics used for evaluation, the comparison of the experimental data and BERT output, and under what conditions the BERT tool succeeds and performs poorly. Results are aggregated in different ways (e.g., daytime vs. nighttime releases, 1 vs. 2 vs. 3 hit collectors) to determine if BERT shows any systematic errors. Finally, recommendations are given for how to improve the code and procedures for optimizing performance in operational mode.
Chen, Jinsong
studies, reservoir parameters as well as geophysical attributes at unsampled locations were considered relationships between the reservoir parameters and the geophysical attributes were enforced. Those methods and the geophysical attributes. Unlike conventional inversion, our stochastic inversion of seismic P-wave velocity
Torres-Verdín, Carlos
-filtrate invasion and formation test. A fully implicit finite- difference black-oil reservoir simulator with brine phenomena in porous media can be coupled through fluid saturation equations. Thus, a multi-physics inversion
Annual Logging Symposium, June 26-29, 2005 JOINT STOCHASTIC INVERSION OF PETROPHYSICAL LOGS AND 3D
Torres-Verdín, Carlos
LOGS AND 3D PRE-STACK SEISMIC DATA TO ASSESS THE SPATIAL CONTINUITY OF FLUID UNITS AWAY FROM WELLS describes a novel methodology to integrate well logs and 3D pre-stack seismic data. The objective inversion method that concomitantly honors the well logs and multiple angle stacks of seismic amplitude data
seismic sur- veys. Results hint that the true value of time-lapse gravity as an additional tool and ongoing sensor technologies, combined with advances in computing power and robust inversion, can extract successful measure of fluid movement with time-lapse gravity experiments, although poorly documented
Kowalsky, M.B.; Birkholzer, J.; Peterson, J.; Finsterle, S.; Mukhopadhya y, S.; Tsang, Y.T.
2008-01-01T23:59:59.000Z
first step toward comprehensive inversion of the heater testfirst step toward a full inversion of the heater test data,
A Target-Oriented Magnetotelluric Inversion Approach For Characterizin...
to establish an in situ laboratory to investigate the potential for geothermal energy production. Classical 2-D smooth inversion of the MT data, recorded along two profiles,...
% function dirfield2d % This program plots a direction field for an ODE x'=Ax, where A is % a 2x2 matrix, with the option of also plotting solution curves to % initial ...
Radiative heat transfer in 2D Dirac materials
Pablo Rodriguez-Lopez; Wang-Kong Tse; Diego A. R. Dalvit
2015-02-02T23:59:59.000Z
We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.
GRAPHICS PROGRAMMING Section B Java 2D
Hill, Gary
GRAPHICS PROGRAMMING Section B Java 2D 20 - Graphics2D: Introduction 21 - Graphics2D: Shapes 22 2D: General Path Curves 29 - Graphics 2D: Constructive Area Geometry Gary Hill December 2003 Java 2 Java initially through the Abstract Window Toolkit, which was extended to include swing, shortly
Fluid Imaging of Enhanced Geothermal Systems through Joint 3D...
search Last modified on July 22, 2011. Project Title Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Project Type Topic 1...
Comprehensive inverse modeling for the study of carrier transport models in sub-50nm MOSFETs
Djomehri, Ihsan Jahed, 1976-
2002-01-01T23:59:59.000Z
Direct quantitative 2-D characterization of sub-50 nm MOSFETs continues to be elusive. This research develops a comprehensive indirect inverse modeling technique for extracting 2-D device topology using combined log(I)-V ...
Stochastic Joint Inversion for Integrated Data Interpretation...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
hydrothermal | geothermal 2015 peer review Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Use of Geophysical Techniques to...
Staring 2-D hadamard transform spectral imager
Gentry, Stephen M. (Albuquerque, NM); Wehlburg, Christine M. (Albuquerque, NM); Wehlburg, Joseph C. (Albuquerque, NM); Smith, Mark W. (Albuquerque, NM); Smith, Jody L. (Albuquerque, NM)
2006-02-07T23:59:59.000Z
A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.
Annotated Bibliography of EDGE2D Use
J.D. Strachan and G. Corrigan
2005-06-24T23:59:59.000Z
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
Finite Heat conduction in 2D Lattices
Lei Yang; Yang Kongqing
2001-07-30T23:59:59.000Z
This paper gives a 2D hamonic lattices model with missing bond defects, when the capacity ratio of defects is enough large, the temperature gradient can be formed and the finite heat conduction is found in the model. The defects in the 2D harmonic lattices impede the energy carriers free propagation, by another words, the mean free paths of the energy carrier are relatively short. The microscopic dynamics leads to the finite conduction in the model.
Thin films versus 2D sheets in layered structures: graphene and 2D metallic sheets
Bo E. Sernelius
2012-09-19T23:59:59.000Z
We study an interface between two media separated by a strictly 2D sheet. We show how the amplitude reflection coefficient can be modeled by that for an interface where the 2D sheet has been replaced by a film of small but finite thickness. We give the relationship between the 3D dielectric function of the thin film and the 2D dielectric function of the sheet. We choose graphene and a 2D metallic sheet as illustrative examples. This approach turns out to be very useful when treating graphene or graphene like sheets in non-planar structures
2D microwave imaging reflectometer electronics
Spear, A. G.; Domier, C. W., E-mail: cwdomier@ucdavis.edu; Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C. [Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2014-11-15T23:59:59.000Z
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
Animation : 2D versus 3D and their combined effect
Au, Kristin C
2014-01-01T23:59:59.000Z
This thesis studies the differences in the perception of space and character movement between 2D and 3D animation. 2D animation is defined by elements constructed in a 2D environment while 3D animation by elements constructed ...
Capacity and Coding for 2D Channels
Khare, Aparna
2011-02-22T23:59:59.000Z
: : : : : : : : : : : : : : : : : : : : : : 3 2 Signal ow : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 3 Bayer pattern : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 4 Example of a Tanner graph : : : : : : : : : : : : : : : : : : : : : : : 13 5 LDPC code... much data we can pack onto a given area of paper. 3 (a) Aztec code (b) Maxicode (c) QR code (d) Data matrix Fig. 1. 2D barcodes used in practice 4 D. Outline of the dissertation In Chapter II, we discuss the channel model. First, we consider the model...
GBL-2D Version 1.0: a 2D geometry boolean library.
McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J. (Elemental Technologies, American Fort, UT)
2006-11-01T23:59:59.000Z
This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.
Locative Inversion In Cantonese
Mok, Sui-Sang
1992-01-01T23:59:59.000Z
This paper proposes that locative inversion is a widespread syntactic process in Cantonese. The sentence-initial locative phrases in the Locative Inversion sentences are argued to be subjects which come from the postverbal complement position...
Duality between Spin networks and the 2D Ising model
Valentin Bonzom; Francesco Costantino; Etera R. Livine
2015-04-11T23:59:59.000Z
The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories which couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D Gridded4
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D Gridded42
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D Gridded42
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D8 3.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D8 3.0 3.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D8 3.0 3.2
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D8 3.0 3.23
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D8 3.0 3.234
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D8 3.0
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D8 3.06 3.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D8 3.06 3.8
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D8 3.06
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D8 3.0617 2.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D8 3.0617
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D8 3.06172
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D8 3.061724
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D8 3.0617245
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D8
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D87 3.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D87 3.8 3.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D87 3.8 3.29
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D87 3.8
Wavelet Domain Geophysical Inversion
Kane, Jonathan
2002-01-01T23:59:59.000Z
We present a non-linear method for solving linear inverse problems by thresholding coefficients in the
Oldenburg, Douglas W.
UBC Geophysical InversionFacility Modelling and Inversion of EMI data collected over magnetic soils of EMI data acquired at sites with magnetic soils Â· Geophysical Proveouts Â· Geonics EM63 Data Â· First model parameters: Â· Location Â· Orientation Â· Polarizabilities 4 #12;UBC Geophysical Inversion Facility
Pauli matrices and 2D electron gas
J. F. Geurdes
2013-02-07T23:59:59.000Z
In the present paper it will be argued that transport in a 2D electron gas can be implemented as 'local hidden instrument based' variables. With this concept of instrumentalism it is possible to explain the quantum correlation, the particle-wave duality and Wheeler's 'backward causation of a particle'. In the case of quantum correlation the spin measuring variant of the Einstein Podolsky and Rosen paradox is studied. In the case of particle-wave duality the system studied is single photon Mach-Zehnder (MZ) interferometry with a phase shift size $\\delta$. The idea that the instruments more or less neutrally may show us the way to the particle will be replaced by the concept of laboratory equipment contributing in an unexpected way to the measurement.
Jointness of Growth Determinants
Doppelhofer, Gernot; Weeks, Melvyn
2006-03-14T23:59:59.000Z
.1 Negative Jointness and Substitutes Negative jointness indicates that after averaging over alternative models, two de- terminants of growth have lower probability of joint inclusion in those models than entering individually. These variables therefore act...
Universal 2D Soft Nano-Scale Mosaic Structure Theory for Polymers and Colloids
Jia-lin Wu
2011-05-25T23:59:59.000Z
A basic concept in chain-particle cluster-motion, from frozen glassy state to melt state, is the 2D soft nano-scale mosaic structure formed by 8 orders of 2D interface excitation (IE) loop-flows, from small to large in inverse cascade and re-arrangement structure in cascade along local one direction. IE has additional repulsive energy and extra vacancy volume. IE results from that the instantaneous synchronal polarized electron charge coupling pair is able to parallel transport on the interface between two neighboring chain-particles with antiparallel delocalization. This structure accords with de Gennes' mosaic structure picture, from which we can directly deduce glass transition temperature, melt temperature, free volume fraction, critical entangled chain length, and activation energy to break solid lattice. This is also the in-herency maximum order-potential structure in random systems.
Inverse Stochastic Linear Programming
2007-01-05T23:59:59.000Z
Pittsburgh, PA USA 15261. Lewis Ntaimo ... College Station, TX USA 77843. Abstract. Inverse ..... investments in the electricity generation industry. The instances ...
A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures
Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.
1998-12-14T23:59:59.000Z
We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.
Joint inversion in coupled quasi-static poroelasticity (Journal Article) |
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,SeparationConnect Journal Article:Using Tworesonance (Journal Article) |Journal Article: J/psiArticle) |SciTech
Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasma |Efficiency Â» Search resultsTechnology Â»EnergyAgencyDepartment ofStatusJ.R.Stephen8,
2D Dirac Materials: From Graphene to Topological Insulators
Teweldebrhan, Desalegne Bekuretsion
2011-01-01T23:59:59.000Z
x Graphene Preparation and2008). Chapter 3 Graphene Preparation and CharacterizationPreparation Methods of Atomically-Thin 2D Graphene . . . . . . . . . . . . . . .
2-D Coda and Direct Wave Attenuation Tomography in Northern Italy
Morasca, P; Mayeda, K; Gok, R; Phillips, W S; Malagnini, L
2007-10-17T23:59:59.000Z
A 1-D coda method was proposed by Mayeda et al. (2003) in order to obtain stable seismic source moment-rate spectra using narrowband coda envelope measurements. That study took advantage of the averaging nature of coda waves to derive stable amplitude measurements taking into account all propagation, site, and Sto-coda transfer function effects. Recently this methodology was applied to micro earthquake data sets from three sub-regions of northern Italy (i.e., western Alps, northern Apennines and eastern Alps). Since the study regions were small, ranging between local-to-near-regional distances, the simple 1-D path assumptions used in the coda method worked very well. The lateral complexity of this region would suggest, however, that a 2-D path correction might provide even better results if the datasets were combined, especially when paths traverse larger distances and complicated regions. The structural heterogeneity of northern Italy makes the region ideal to test the extent to which coda variance can be reduced further by using a 2-D Q tomography technique. The approach we use has been developed by Phillips et al. (2005) and is an extension of previous amplitude ratio techniques to remove source effects from the inversion. The method requires some assumptions such as isotropic source radiation which is generally true for coda waves. Our results are compared against direct Swave inversions for 1/Q and results from both share very similar attenuation features that coincide with known geologic structures. We compare our results with those derived from direct waves as well as some recent results from northern California obtained by Mayeda et al. (2005) which tested the same tomographic methodology applied in this study to invert for 1/Q. We find that 2-D coda path corrections for this region significantly improve upon the 1-D corrections, in contrast to California where only a marginal improvement was observed. We attribute this difference to stronger lateral variations in Q for northern Italy relative to California.
Risk Management Institute Joint Seminar Joint Seminar -
Chaudhuri, Sanjay
Risk Management Institute Joint Seminar Joint Seminar - Risk Management Institute And Department A (S14, #03-10) Speaker Prof. Wang Hefei University of Illinois, Chicago Title Leverage Management Abstract Leverage has often aggravated losses to managed investments. The recent collapses of hedge funds
Large displacement spherical joint
Bieg, Lothar F. (Albuquerque, NM); Benavides, Gilbert L. (Albuquerque, NM)
2002-01-01T23:59:59.000Z
A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.
Office of Energy Efficiency and Renewable Energy (EERE)
The Joint Action Workshop is an annual event for joint action agencies and their members to meet informally and discuss emerging policy, regulatory, and power supply issues, and other topics...
A shading pipeline for 2D animation techniques HEDLENA BEZERRA
de Figueiredo, Luiz Henrique
A shading pipeline for 2D animation techniques HEDLENA BEZERRA 1 , LUIZ VELHO 2 , BRUNO FEIJÓ 1 1 Pura e Aplicada Figure 1: Pipeline - [D] Digitization; [T] Skeletonization; [C] Curve Extraction; [N is unknown, and the position information lacks depth. This work describes a pipeline to process 2D images
Lossless Wavelet Based Image Compression with Adaptive 2D Decomposition
Lossless Wavelet Based Image Compression with Adaptive 2D Decomposition Manfred Kopp Technical.kopp@ieee.org WWW: http://www.cg.tuwien.ac.at/~kopp/ Abstract 2D wavelets are usually generated from 1D wavelets wavelet functions based on the compression of the coefficients, but needs only the same number of 1D
Comparison of 2D and 3D gamma analyses
Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F., E-mail: sfkry@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); Bosca, Ryan [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States)] [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); O’Daniel, Jennifer [Department of Radiation Oncology, Duke University, Durham, North Carolina 27705 (United States)] [Department of Radiation Oncology, Duke University, Durham, North Carolina 27705 (United States)
2014-02-15T23:59:59.000Z
Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must be noted that clinical 2D versus 3D datasets may have additional differences—for example, if 2D measurements are made with a different dosimeter than 3D measurements. Factors such as inherent dosimeter differences may be an important additional consideration to the extra dimension of available data that was evaluated in this study.
Carlos Torres-Verdin; G. Michael Hoversten; Ki Ha Lee; Gregory Newman; Kurt Nihei
2008-12-31T23:59:59.000Z
This report summarizes the work performed between January 2005 and December 2007, under DOE research contract DE-FC26-04NT15507. The project is was performed by the Center for Petroleum and Geosystems Engineering of The University of Texas at Austin and Lawrence Berkeley National Laboratory under the auspices of the National Energy Technology Office (NETL) and the Strategic Center for Natural Gas and Oil (SCNGO). During the three-year project, we developed new methods to combine borehole sonic and electromagnetic (EM) measurements for the improved assessment of elastic and petrophysical properties of rock formations penetrated by a well. Sonic measurements consisted of full waveform acoustic amplitudes acquired with monopole and dipole sources, whereas EM measurements consisted of frequency-domain voltages acquired with multi-coil induction systems. The combination of sonic and EM measurements permitted the joint estimation of elastic and petrophysical properties in the presence of mud-filtrate invasion. It was conclusively shown that the combined interpretation of sonic and EM measurements reduced non-uniqueness in the estimation of elastic and petrophysical properties and improved the spatial resolution of the estimations compared to estimations yielded separately from the two types of measurements. Moreover, this approach enabled the assessment of dynamic petrophysical properties such as permeability, as it incorporated the physics of mud-filtrate invasion in the interpretation of the measurements. The first part of the project considered the development of fast and reliable numerical algorithms to simulate borehole sonic waveforms in 2D, 3D, and radial 1D media. Such algorithms were subsequently used in the quantitative estimation of elastic properties jointly from borehole sonic and EM measurements. In the second part of the project we developed a new algorithm to estimate water saturation, porosity, and dry-rock elastic moduli jointly from borehole sonic and EM measurements. This algorithm assumed radial 1D variations of fluid saturation due to mud-filtrate invasion. Subsequently, we adapted the estimation method to interpret borehole field measurements acquired in both a shaly-sand sedimentary sequence and a tight-gas sandstone formation. In the two cases, we simulated the process of mud-filtrate invasion and concomitantly honored sonic and EM measurements. We produced reliable estimates of permeability and dry-rock moduli that were successfully validated with rock-core measurements. Finally, we introduced a new stochastic inversion procedure to estimate elastic, electrical, and petrophysical properties of layered media jointly from waveform sonic and frequency-domain EM measurements. The procedure was based on Bayesian statistical inversion and delivered estimates of uncertainty under various forms of a-priori information about the unknown properties. Tests on realistic synthetic models confirmed the reliability of this procedure to estimate elastic and petrophysical properties jointly from sonic and EM measurements. Several extended abstracts and conference presentations stemmed from this project, including 2 SEG extended abstracts, 1 SPE extended abstract, and 2 SPWLA extended abstracts. Some of these extended abstracts have been submitted for publication in peer-reviewed journals.
Generation of high quality 2D meshes for given bathymetry
Colmenero, Jorge, S.B. Massachusetts Institute of Technology
2014-01-01T23:59:59.000Z
This thesis develops and applies a procedure to generate high quality 2D meshes for any given ocean region with complex coastlines. The different criteria used in determining mesh element sizes for a given domain are ...
Scheduling and 2D placement heuristics for partially reconfigurable systems
Santambrogio, Marco Domenico
This paper proposes new scheduling and 2D placement heuristics for partially dynamically reconfigurable systems. One specific focus of this work is to deal with applications containing hundreds of tasks grouped in a few ...
3D-2D ASYMPTOTIC ANALYSIS FOR INHOMOGENEOUS THIN FILMS
3D-2D ASYMPTOTIC ANALYSIS FOR INHOMOGENEOUS THIN FILMS plate models, periodic pr* *o- files, and within the context of optimal design for thin films 5. Third application - Optimal design of a thin film 19 6. Final Remarks
Disentangling redshift-space distortions and nonlinear bias using the 2D power spectrum
Jennings, Elise
2015-01-01T23:59:59.000Z
We present the nonlinear 2D galaxy power spectrum, $P(k,\\mu)$, in redshift space, measured from the Dark Sky simulations, using galaxy catalogs constructed with both halo occupation distribution and subhalo abundance matching methods, chosen to represent an intermediate redshift sample of luminous red galaxies. We find that the information content in individual $\\mu$ (cosine of the angle to the line of sight) bins is substantially richer then multipole moments, and show that this can be used to isolate the impact of nonlinear growth and redshift space distortion (RSD) effects. Using the $\\muextract the nonlinear bias successfully removes a large parameter degeneracy when constraining the linear growth rate of structure. We carry out a joint parameter estimation, using the low $\\mu$ simulation data to ...
Pointwise Fourier Inversion: a Wave Equation Approach
Pointwise Fourier Inversion: a Wave Equation Approach Mark A. Pinsky1 Michael E. Taylor2. A general criterion for pointwise Fourier inversion 2. Pointwise Fourier inversion on Rn (n = 3) 3. Fourier inversion on R2 4. Fourier inversion on Rn (general n) 5. Fourier inversion on spheres 6. Fourier inversion
Structure of Laminar Sooting Inverse Diffusion Flames
Mikofski, Mark A
2007-01-01T23:59:59.000Z
Combust. Structure of Laminar Sooting Inverse Diffusion2002, p. 252. Structure of Laminar Sooting Inverse Diffusion219-226. Structure of Laminar Sooting Inverse Diffusion
Using inverse scattering methods to study inter-nucleus potentials
R S Mackintosh; S G Cooper
1998-03-05T23:59:59.000Z
It is now straightforward to carry out S-matrix to potential inversion over a very wide range of energies and for a wide range of projectile-target combinations. Inversion is possible in many cases involving spin. IP inversion also permits direct scattering data-to-potential inversion and furnishes powerful tools for the phenomenological analysis of nuclear scattering. The resulting single particle potentials exhibit various generic properties which challenge fundamental reaction theories as well as yield information on densities, provide input for reaction calculations. S-matrix to potential inversion is also a powerful tool for directly investigating theoretical processes which contribute to inter-nuclear potentials. Various studies have given insight into contributions to the dynamic polarisation potential (DPP) due to breakup processes and due to collective and reaction channel coupling and have also illuminated the role played by exchange processes in leading to non-locality and parity dependence of the potentials. A case study involving d + He-4 is a model for ways in which inversion applied jointly to theory and experiment might illuminate the scattering of exotic nuclei.
The Hanle Effect in 1D, 2D and 3D
R. Manso Sainz; J. Trujillo Bueno
2007-10-29T23:59:59.000Z
This paper addresses the problem of scattering line polarization and the Hanle effect in one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) media for the case of a two-level model atom without lower-level polarization and assuming complete frequency redistribution. The theoretical framework chosen for its formulation is the QED theory of Landi Degl'Innocenti (1983), which specifies the excitation state of the atoms in terms of the irreducible tensor components of the atomic density matrix. The self-consistent values of these density-matrix elements is to be determined by solving jointly the kinetic and radiative transfer equations for the Stokes parameters. We show how to achieve this by generalizing to Non-LTE polarization transfer the Jacobi-based ALI method of Olson et al. (1986) and the iterative schemes based on Gauss-Seidel iteration of Trujillo Bueno and Fabiani Bendicho (1995). These methods essentially maintain the simplicity of the Lambda-iteration method, but their convergence rate is extremely high. Finally, some 1D and 2D model calculations are presented that illustrate the effect of horizontal atmospheric inhomogeneities on magnetic and non-magnetic resonance line polarization signals.
Structural and elastic properties of a confined 2D colloidal solid: a molecular dynamics study
M. Ebrahim Foulaadvand; Neda Ojaghlou
2014-09-27T23:59:59.000Z
We implement molecular dynamics simulations in canonical ensemble to study the effect of confinement on a $2d$ crystal of point particles interacting with an inverse power law potential proportional to $r^{-12}$ in a narrow channel. This system can describe colloidal particles at the air-water interface. It is shown that the system characteristics depend sensitively on the boundary conditions at the two {\\it walls} providing the confinement. The walls exert perpendicular forces on their adjacent particles. The potential between walls and particles varies as the inverse power of ten. Structural quantities such as density profile, structure factor and orientational order parameter are computed. It is shown that orientational order persists near the walls even at temperatures where the system in the bulk is in fluid state. The dependence of elastic constants, stress tensor elements, shear and bulk modulii on density as well as the channel width is discussed. Moreover, the effect of channel incommensurability with the triangular lattice structure is discussed. It is shown that incommensurability notably affects the system properties. We compare our findings to those obtained by Monte Carlo simulations and also to the case with the periodic boundary condition along the channel width. .
Performance of Replica-Exchange Wang-Landau Sampling for the 2D Ising Model: A Brief Survey
Zhao, Yiwei [Chinese University of Hong Kong (CUHK); Cheung, Siu Wun [Chinese University of Hong Kong (CUHK); Li, Ying Wai [ORNL; Eisenbach, Markus [ORNL
2014-01-01T23:59:59.000Z
We report a brief performance study of the replica-exchange Wang-Landau algorithm, a recently proposed parallel realization of Wang-Landau sampling, using the 2D Ising model as a test case. The simulation time is found to scale inversely with the square root of the number of subwindows (and thus number of processors) used to span the global parameter space. We also investigate the time profiles for random walkers in dierent subwindows to complete iterations, which will aid the development of and adaptive load-balancing scheme.
INVERSE PROTEIN FOLDING, HIERARCHICAL OPTIMISATION
Halligan, Daniel
INVERSE PROTEIN FOLDING, HIERARCHICAL OPTIMISATION AND TIE KNOTS Thomas M. A. Fink st. john Introduction 3 1.1 Inverse Protein Folding 3 1.2 Hierarchical Optimisation 5 1.3 Tie Knots 6 1.4 Schematic Organisation 6 1.5 Publications 9 2 Protein Folding, Inverse Protein Folding and Energy Landscapes 10 2
7, 1043910465, 2007 Mesoscale inversion
Boyer, Edmond
ACPD 7, 1043910465, 2007 Mesoscale inversion T. Lauvaux et al. Title Page Abstract Introduction Discussions Mesoscale inversion: first results from the CERES campaign with synthetic data T. Lauvaux 1,2 , M.lauvaux@lsce.ipsl.fr) 10439 #12;ACPD 7, 1043910465, 2007 Mesoscale inversion T. Lauvaux et al. Title Page Abstract
Center for Wind Energy Research 2d-Laser Cantilever Anemometer
Peinke, Joachim
of anemometer is presented. The so-called 2d-Laser Cantilever Anemometer (2d-LCA) has been developed from atomic force microscopy. The main motivation for the development of the 2d-LCA was a lack the recorded positions for each velocity and angle of attack. 2d-LCA Turning table Wind tunnel Outlet 2d-LCA
Pointwise Fourier Inversion: a Wave Equation Approach
Pointwise Fourier Inversion: a Wave Equation Approach Mark A. Pinsky 1 Michael E. Taylor 2. A general criterion for pointwise Fourier inversion 2. Pointwise Fourier inversion on R n (n = 3) 3. Fourier inversion on R 2 4. Fourier inversion on R n (general n) 5. Fourier inversion on spheres 6. Fourier
Patterned Arrays of Lateral Heterojunctions within Monolayer 2D Semiconductors
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai; Lupini, Andrew R; Lee, Jaekwang; Basile Carrasco, Leonardo A; Rouleau, Christopher M; Boulesbaa, Abdelaziz; Puretzky, Alexander A; Ivanov, Ilia N; et al
2015-01-01T23:59:59.000Z
The formation of semiconductor heterojunctions and their high density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional (2D) crystalline semiconductors as building blocks in next generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate a process strategy for the formation of lithographically-patterned lateral semiconducting heterojunctions within a single 2D crystal. E-beam lithography is used to pattern MoSe2 monolayer crystals with SiO2, and the exposed locations are selectively and totally converted to MoS2 using pulsed laser deposition (PLD) of sulfur in order to form MoSe2/MoS2 heterojunctions in predefined patterns. The junctions and conversionmore »process are characterized by atomically resolved scanning transmission electron microscopy, photoluminescence, and Raman spectroscopy. This demonstration of lateral semiconductor heterojunction arrays within a single 2D crystal is an essential step for the lateral integration of 2D semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin circuitry.« less
Patterned Arrays of Lateral Heterojunctions within Monolayer 2D Semiconductors
Mahjouri-Samani, Masoud [ORNL; Lin, Ming-Wei [ORNL; Wang, Kai [ORNL; Lupini, Andrew R [ORNL; Lee, Jaekwang [ORNL; Basile Carrasco, Leonardo A [ORNL; Boulesbaa, Abdelaziz [ORNL; Rouleau, Christopher [Oak Ridge National Laboratory (ORNL); Puretzky, Alexander A [ORNL; Ivanov, Ilia N [ORNL; Xiao, Kai [ORNL; Yoon, Mina [ORNL; Geohegan, David B [ORNL
2015-01-01T23:59:59.000Z
The formation of semiconductor heterojunctions and their high density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional (2D) crystalline semiconductors as building blocks in next generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate a process strategy for the formation of lithographically-patterned lateral semiconducting heterojunctions within a single 2D crystal. E-beam lithography is used to pattern MoSe2 monolayer crystals with SiO2, and the exposed locations are selectively and totally converted to MoS2 using pulsed laser deposition (PLD) of sulfur in order to form MoSe2/MoS2 heterojunctions in predefined patterns. The junctions and conversion process are characterized by atomically resolved scanning transmission electron microscopy, photoluminescence, and Raman spectroscopy. This demonstration of lateral semiconductor heterojunction arrays within a single 2D crystal is an essential step for the lateral integration of 2D semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin circuitry.
EU Guide v 2d January 20141 Finance Division
de Gispert, Adriŕ
EU Guide v 2d January 20141 Finance Division Procurement Services The EU Directives on Public purchasing practice and especially where funders require it as part of their grant conditions. In exceptional Andrew Reid (goods and services) or the Director of Estate Management and Building Services (property
3D-2D ASYMPTOTIC ANALYSIS FOR MICROMAGNETIC THIN FILMS
3D-2D ASYMPTOTIC ANALYSIS FOR MICROMAGNETIC THIN FILMS Classification: 35E99, 35M10, 49J45, 74K35. Keywords: -limit, thin films, micromagnetics, relaxation; 1 1. Introduction In recent years the understanding of thin film behavior has been helped
H_2D^+: a light on baryonic dark matter?
Cecilia Ceccarelli; Carsten Dominik
2006-02-27T23:59:59.000Z
It has been suggested that the dark halos of galaxies are constituted by cloudlets of cold ( 10^7$ cm^{-3}) molecular gas. Such gas is extremely difficult to detect, because the classical tracers of molecular gas, CO and/or dust grains, have very low abundances and their emission is exceedingly weak. For this reason, the cloudlet hypothesis remains so far substantially unproven. In this Letter we propose a new method to probe the presence of cold H_2 clouds in galactic halos: the ground transition of ortho-H_2D^+ at 372 GHz. We discuss why the H_2D^+ is abundant under the physical conditions appropriate for the cloudlets, and present a chemical model that predicts the H_2D^+ abundance as function of four key parameters: gas density and metallicity, cosmic ray ionization rate and dust grain size. We conclude that current ground-based instruments might detect the ortho-H_2D^+ line emitted by the cloudlets halo, and prove, therefore, the existence of large quantities of dark baryonic matter around galaxies.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) | SciTech Connect Journal Article: X-ray lineARMParticipants1.1 Buildings SectorCMIfor|Careers atAnPeople ClickInverse
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41clothThe Bonneville PowerTariff Pages default Sign In AboutIs gravity a7 12 BONNEVILLEMinoritiesTwo SignInventors inInverse
Ward, Michael E. (Poway, CA); Harkins, Bruce D. (San Diego, CA)
1993-01-01T23:59:59.000Z
Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.
Ward, M.E.; Harkins, B.D.
1993-11-30T23:59:59.000Z
Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.
Torres-Verdín, Carlos
decomposition. Examples of application with synthetic data sets show that the new method is computer efficient are invariably affected by borehole, mud-filtrate invasion, bed thickness, and other environ- mental effects even
A study of generalized inverses
McKinney, Nancy Lee
1973-01-01T23:59:59.000Z
A STUDY OF GENERALIZED INVERSES A Thesis by NANCY LEE MCKINNEY Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1973 Major Subject: Mathematics A... STUDY OF GENERALIZED INVERSES A Thesis by NANCY LEE MCKINNEY Approved as to style and content by: airman o ittee Hea o epartment e er Me er August 1973 ABSTRACT A Study of Generalized Inverses. (August 1973) Nancy Lee NcKinney, B. A...
Inverse problem for Bremsstrahlung radiation
Voss, K.E.; Fisch, N.J.
1991-10-01T23:59:59.000Z
For certain predominantly one-dimensional distribution functions, an analytic inversion has been found which yields the velocity distribution of superthermal electrons given their Bremsstrahlung radiation. 5 refs.
Simultaneous Inversion of Production Data and Seismic Attributes: Application to a Synthetic
Boyer, Edmond
Simultaneous Inversion of Production Data and Seismic Attributes: Application to a Synthetic SAGD and Seismic Attributes: Application to a Synthetic SAGD Produced Field Case -- The joint use of production such as facies, porosity and permeability into reservoirs from production data and seismic attributes
Structural fabric of the Palisades Monocline: a study of positive inversion, Grand Canyon, Arizona
Orofino, James Cory
2005-08-29T23:59:59.000Z
contraction. The magnitude of inversion is estimated to be 25% based on vertical offset across the fault, although this does not account for flexure or horizontal shortening. The preferred N50W 90 joint and vein orientation and N50W 68 NE and SW conjugate...
Automated registration of 3D-range with 2D-color images: an overview
Stamos, Ioannis
extraction 3D feature extraction Partial Model 2D feature extraction Complete Model Range-Range Registration adjust parameters on sitep Cannot handle historical photographs #12;Automated methods One 2D imageStamos)) Input: Range ImagesInput: Range Images 3D Line Extraction3D Line Extraction Input: 2D ImagesInput: 2D
Predictability of the energy cascade in 2D turbulence
G. Boffetta; S. Musacchio
2000-06-09T23:59:59.000Z
The predictability problem in the inverse energy cascade of two-dimensional turbulence is addressed by means of direct numerical simulations. The growth rate as a function of the error level is determined by means of a finite size extension of the Lyapunov exponent. For error within the inertial range, the linear growth of the error energy, predicted by dimensional argument, is verified with great accuracy. Our numerical findings are in close agreement with the result of TFM closure approximation.
: Joint Optimization of Charger Placement and Power Allocation for Wireless Power Transfer
Wu, Jie
P3 : Joint Optimization of Charger Placement and Power Allocation for Wireless Power Transfer Sheng, the energy-hungry battery-powered devices. It enables energy to be wirelessly transmitted from power chargers is to optimize charging quality in a 2-D target area. Specifically, we consider the following charger Placement
2D Seismic Reflection Data across Central Illinois
Smith, Valerie; Leetaru, Hannes
2014-09-30T23:59:59.000Z
In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made interpretation of the Mt. Simon and Knox sections difficult. The data quality also gradually decreased moving westward across the state. To meet evolving project objectives, in 2012 the seismic data was re-processed using different techniques to enhance the signal quality thereby rendering a more coherent seismic profile for interpreters. It is believed that the seismic degradation could be caused by shallow natural gas deposits and Quaternary sediments (which include abandoned river and stream channels, former ponds, and swamps with peat deposits) that may have complicated or changed the seismic wavelet. Where previously limited by seismic coverage, the seismic profiles have provided valuable subsurface information across central Illinois. Some of the interpretations based on this survey included, but are not limited to: - Stratigraphy generally gently dips to the east from Morgan to Douglas County. - The Knox Supergroup roughly maintains its thickness. There is little evidence for faulting in the Knox. However, at least one resolvable fault penetrates the entire Knox section. - The Eau Claire Formation, the primary seal for the Mt. Simon Sandstone, appears to be continuous across the entire seismic profile. - The Mt. Simon Sandstone thins towards the western edge of the basin. As a result, the highly porous lowermost Mt. Simon section is absent in the western part of the state. - Overall basement dip is from west to east. - Basement topography shows evidence of basement highs with on-lapping patterns by Mt. Simon sediments. - There is evidence of faults within the lower Mt. Simon Sandstone and basement rock that are contemporaneous with Mt. Simon Sandstone deposition. These faults are not active and do not penetrate the Eau Claire Shale. It is believed that these faults are associated with a possible failed rifting event 750 to 560 million years ago during the breakup of the supercontinent Rodinia.
Joint Master Applied Geophysics
Langendoen, Koen
Convergence courses, seismic and electromagnetic theory, exploration geophysics Year 1, February to June: ETH Zürich Seismic data processing, numerical modelling and inversion, geophysics field programme`s principal strength is in hydrocarbon exploration and management Delft offers a wonderful blend of ancient
2D Gridded Surface Data Value-Added Product
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue, 08/27/2013 -11 AdvancedNeed more information?2 2D Gridded
Beam-Plasma Instabilities in a 2D Yukawa Lattice
Kyrkos, S. [Department of Chemistry and Physics, Le Moyne College, Syracuse, New York 13214 (United States); Kalman, G. J. [Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 (United States); Rosenberg, M. [Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093 (United States)
2009-06-05T23:59:59.000Z
We consider a 2D Yukawa lattice of grains, with a beam of other charged grains moving in the lattice plane. In contrast to Vlasov plasmas, where the electrostatic instability excited by the beam is only longitudinal, here both longitudinal and transverse instabilities of the lattice phonons can develop. We determine and compare the transverse and longitudinal growth rates. The growth rate spectrum in wave number space exhibits remarkable gaps where no instability can develop. Depending on the system parameters, the transverse instability can be selectively excited.
2D spectroscopy of double-barred galaxies
A. V. Moiseev; J. R. Valdes; V. H. Chavushyan
2002-02-13T23:59:59.000Z
The first results of the observational program of the study of 2D-kinematics in double-barred galaxies are presented. We show that, for the main part of the sample, the inner bars do not affect the circumnuclear stellar kinematics. Therefore, they are not dynamically decoupled structures. Various types of non-circular gas motion were found in many galaxies. The analysis of the ground-based and HST optical and NIR images reveals mini-spirals in about half of the investigated objects. We suggest that so called ``double-barred galaxies'' are, in fact, galaxies with very different circumnuclear structure.
Transport Experiments on 2D Correlated Electron Physics in Semiconductors
Tsui, Daniel
2014-03-24T23:59:59.000Z
This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.
Black liquor gasification phase 2D final report
Kohl, A.L.; Stewart, A.E.
1988-06-01T23:59:59.000Z
This report covers work conducted by Rockwell International under Amendment 5 to Subcontract STR/DOE-12 of Cooperative Agreement DE-AC-05-80CS40341 between St. Regis Corporation (now Champion International) and the Department of Energy (DOE). The work has been designated Phase 2D of the overall program to differentiate it from prior work under the same subcontract. The overall program is aimed at demonstrating the feasibility of and providing design data for the Rockwell process for gasifying Kraft black liquor. In this process, concentrated black liquor is converted into low-Btu fuel gas and reduced melt by reaction with air in a specially designed gasification reactor.
Decoupled Control of Flexure Jointed Hexapods Using Estimated Joint Space
Chen, Yixin
1 Decoupled Control of Flexure Jointed Hexapods Using Estimated Joint Space Mass-Inertia Matrix of flexure jointed hexapods (or Stewart platforms), a new decoupling method is proposed. The new decoupling. Keywords Vibration isolation, decoupling control, Stewart platform, precision robots, hexapod, symmetric
Permeability #12;An Example #12;So · Water has to be prevented from saturating the concrete · Prevent water from ponding in the joint · Prevent water from penetrating from the base · Permeability of the concrete should be as low as practically feasible · The air void system in the in-place concrete must be adequate
Longevity of Duct Tape in Residential Air Distribution Systems: 1-D, 2-D, and 3-D Joints
Abushakra, B.
2003-01-01T23:59:59.000Z
before being leakage tested. 0.230 0.240 0.250 0.260 0.270 0.280 0.290 0.300 0.310 11:10 11:25 11:40 11:55 12:10 12:25 Time (hr:min) L eakg e F l o w Rate (cfm@ 25Pa) Sample S1105 cooling down from 200F (93?C) to room temprature 77F (25?C). Room... of the resolution of the leakage tests and other issues, such as the changes due to temperature of the test sample during leakage testing (discussed earlier). For example, for the most recent tests, we waited until the samples were cool before testing, which...
Rolling contact orthopaedic joint design
Slocum, Alexander Henry, Jr
2013-01-01T23:59:59.000Z
Arthroplasty, the practice of rebuilding diseased biological joints using engineering materials, is often used to treat severe arthritis of the knee and hip. Prosthetic joints have been created in a "biomimetic" manner to ...
2D kinematic signatures of boxy/peanut bulges
Iannuzzi, Francesca
2015-01-01T23:59:59.000Z
We study the imprints of boxy/peanut structures on the 2D line-of-sight kinematics of simulated disk galaxies. The models under study belong to a family with varying initial gas fraction and halo triaxiality, plus few other control runs with different structural parameters; the kinematic information was extracted using the Voronoi-binning technique and parametrised up to the fourth order of a Gauss-Hermite series. Building on a previous work for the long-slit case, we investigate the 2D kinematic behaviour in the edge-on projection as a function of the boxy/peanut strength and position angle; we find that for the strongest structures the highest moments show characteristic features away from the midplane in a range of position angles. We also discuss the masking effect of a classical bulge and the ambiguity in discriminating kinematically this spherically-symmetric component from a boxy/peanut bulge seen end-on. Regarding the face-on case, we extend existing results to encompass the effect of a second bucklin...
MESH2D GRID GENERATOR DESIGN AND USE
Flach, G.; Smith, F.
2012-01-20T23:59:59.000Z
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.
Double slotted socket spherical joint
Bieg, Lothar F. (Albuquerque, NM); Benavides, Gilbert L. (Albuquerque, NM)
2001-05-22T23:59:59.000Z
A new class of spherical joints is disclosed. These spherical joints are capable of extremely large angular displacements (full cone angles in excess of 270.degree.), while exhibiting no singularities or dead spots in their range of motion. These joints can improve or simplify a wide range of mechanical devices.
Annual Logging Symposium, June 22-26, 2013 JOINT STOCHASTIC INTERPRETATION OF CONVENTIONAL WELL
Torres-Verdín, Carlos
-bearing shale has become a major source of energy in recent years. Assessment of rock properties is extremely of interpretation products. Many factors impact the petrophysical model, including complex solid composition, pore structure, and porous kerogen. This paper introduces a stochastic joint inversion method specifically
Achieving joint benefits from joint implementation
Moomaw, W.R. [Tufts Univ., Medford, MA (United States)
1995-11-01T23:59:59.000Z
Joint Implementation (JI) appears to have been born with Applied Energy Services Guatemala project in 1988. That project, to plant 52 million trees, protect existing forests from cutting and fire, and enhance rural development, is being implemented by CARE Guatemala to offset 120 per cent of the emissions of a small coal burning power plant that has been built in Connecticut. Since that time, several utilities and governments have initiated additional projects. Not all of these necessarily consist of tree planting in other countries, but may consist of energy efficiency or energy conservation programs designed to reduce carbon emissions by at least as much as the additional releases from a new facility. All JI projects share the characteristic of linking the release of greenhouse gases in an industrial country with an offset that reduces or absorbs a comparable amount in another country. The emitter in the industrial country is willing to pay for the reduction elsewhere because costs are less than they would be at home.
Novel antenna coupled 2D plasmonic terahertz detection.
Allen, Jim (UC Santa Barbara); Dyer, Greg (UC Santa Barbara); Reno, John Louis; Shaner, Eric Arthur
2010-03-01T23:59:59.000Z
Resonant plasmonic detectors are potentially important for terahertz (THz) spectroscopic imaging. We have fabricated and characterized antenna coupled detectors that integrate a broad-band antenna, which improves coupling of THz radiation. The vertex of the antenna contains the tuning gates and the bolometric barrier gate. Incident THz radiation may excite 2D plasmons with wave-vectors defined by either a periodic grating gate or a plasmonic cavity determined by ohmic contacts and gate terminals. The latter approach of exciting plasmons in a cavity defined by a short micron-scale channel appears most promising. With this short-channel geometry, we have observed multiple harmonics of THz plasmons. At 20 K with detector bias optimized we report responsivity on resonance of 2.5 kV/W and an NEP of 5 x 10{sup -10} W/Hz{sup 1/2}.
Performance of the new 2D ACAR spectrometer in Munich
Ceeh, Hubert; Leitner, Michael; Böni, Peter; Hugenschmidt, Christoph
2012-01-01T23:59:59.000Z
Angular Correlation of Annihilation Radiation (ACAR) is a well established technique for the investigation of the electric structure. A major limitation of ACAR studies is the available positron flux at a small spot on the sample. Fore this reason, the focus of this work is put on the discussion of a newly developed source-sample stage which uses an optimized static magnetic field configuration to guide the positrons onto the sample. The achieved spot size is $d_{\\mathrm{FWHM}}=5.4\\,$mm, with a high efficiency over the whole energy spectrum of the $^{22}$Na positron source. The implications of the performance of the source-sample stage are discussed with regard to 2D-ACAR measurements of single crystalline $\\alpha$-quartz, which serves as a model system for the determination of the total resolution.
Performance of the new 2D ACAR spectrometer in Munich
Hubert Ceeh; Josef-Andreas Weber; Michael Leitner; Peter Böni; Christoph Hugenschmidt
2012-10-12T23:59:59.000Z
Angular Correlation of Annihilation Radiation (ACAR) is a well established technique for the investigation of the electric structure. A major limitation of ACAR studies is the available positron flux at a small spot on the sample. Fore this reason, the focus of this work is put on the discussion of a newly developed source-sample stage which uses an optimized static magnetic field configuration to guide the positrons onto the sample. The achieved spot size is $d_{\\mathrm{FWHM}}=5.4\\,$mm, with a high efficiency over the whole energy spectrum of the $^{22}$Na positron source. The implications of the performance of the source-sample stage are discussed with regard to 2D-ACAR measurements of single crystalline $\\alpha$-quartz, which serves as a model system for the determination of the total resolution.
areaDetector: Software for 2-D Detectors in EPICS
Rivers, M. (UC)
2011-09-23T23:59:59.000Z
areaDetector is a new EPICS module designed to support 2-D detectors. It is modular C++ code that greatly simplifies the task of writing support for a new detector. It also supports plugins, which receive detector data from the driver and process it in some way. Existing plugins perform Region-Of-Interest extraction and analysis, file saving (in netCDF, HDF, TIFF and JPEG formats), color conversion, and export to EPICS records for image display in clients like ImageJ and IDL. Drivers have now been written for many of the detectors commonly used at synchrotron beamlines, including CCDs, pixel array and amorphous silicon detectors, and online image plates.
Premixed Flame Dynamics in Narrow 2D Channels
Ayoobi, Mohsen
2015-01-01T23:59:59.000Z
Premixed flames propagating within small channels show complex combustion phenomena that differ from flame propagation at conventional scales. Available experimental and numerical studies have documented stationary/non-stationary and/or asymmetric modes that depend on properties of the incoming reactant flow as well as channel geometry and wall temperatures. The present work seeks to illuminate mechanisms leading to symmetry-breaking and limit cycle behavior that are fundamental to these combustion modes. Specifically, four cases of lean premixed methane/air combustion -- two equivalence ratios (0.53 and 0.7) and two channel widths (2 and 5mm) -- are investigated in a 2D configuration with constant channel length and bulk inlet velocity, where numerical simulations are performed using detailed chemistry. External wall heating is simulated by imposing a linear temperature gradient as a boundary condition on both walls. In the 2mm-channel, both equivalence ratios produce flames that stabilize with symmetric fla...
HEXAGONAL ARRAY STRUCTURE FOR 2D NDE APPLICATIONS
Dziewierz, J.; Ramadas, S. N.; Gachagan, A.; O'Leary, R. L. [Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom)
2010-02-22T23:59:59.000Z
This paper describes a combination of simulation and experimentation to evaluate the advantages offered by utilizing a hexagonal shaped array element in a 2D NDE array structure. The active material is a 1-3 connectivity piezoelectric composite structure incorporating triangular shaped pillars--each hexagonal array element comprising six triangular pillars. A combination of PZFlex, COMSOL and Matlab has been used to simulate the behavior of this device microstructure, for operation around 2.25 MHz, with unimodal behavior and low levels of mechanical cross-coupling predicted. Furthermore, the application of hexagonal array elements enables the array aperture to increase by approximately 30%, compared to a conventional orthogonal array matrix and hence will provide enhanced volumetric coverage and SNR. Prototype array configurations demonstrate good corroboration of the theoretically predicted mechanical cross-coupling between adjacent array elements (approx23 dB).
Glassy Dislocation Dynamics in 2-D Colloidal Dimer Crystals
Sharon J. Gerbode; Umang Agarwal; Desmond C. Ong; Chekesha M. Liddell; Fernando Escobedo; Itai Cohen
2010-08-11T23:59:59.000Z
Although glassy relaxation is typically associated with disorder, here we report on a new type of glassy dynamics relating to dislocations within 2-D crystals of colloidal dimers. Previous studies have demonstrated that dislocation motion in dimer crystals is restricted by certain particle orientations. Here, we drag an optically trapped particle through such dimer crystals, creating dislocations. We find a two-stage relaxation response where initially dislocations glide until encountering particles that cage their motion. Subsequent relaxation occurs logarithmically slowly through a second process where dislocations hop between caged configurations. Finally, in simulations of sheared dimer crystals, the dislocation mean squared displacement displays a caging plateau typical of glassy dynamics. Together, these results reveal a novel glassy system within a colloidal crystal.
Inverse differential kinematics Statics and force transformations
De Luca, Alessandro
;Damped Least Squares method ! inversion of differential kinematics as an optimization problem ! function
The 2d International Symposium on Computational Geomechanics (ComGeo II) 1 INTRODUCTION
Boyer, Edmond
The 2d International Symposium on Computational Geomechanics (ComGeo II) 1 1 INTRODUCTION Last at the contacts is studied. #12;The 2d International Symposium on Computational Geomechanics (ComGeo II) 2 complex
An Ant Colony Optimization Algorithm for the 2D HP Protein Folding Problem
Hoos, Holger H.
An Ant Colony Optimization Algorithm for the 2D HP Protein Folding Problem Alena Shmygelska, Rosal, the two dimensional hydrophobic-polar (2D HP) protein folding problem. We introduce an ant colony algorithm closely approaches that of specialised, state-of-the methods for 2D HP protein folding. 1
An Improved Ant Colony Optimisation Algorithm for the 2D HP Protein Folding Problem
Hoos, Holger H.
An Improved Ant Colony Optimisation Algorithm for the 2D HP Protein Folding Problem Alena hydrophobic-polar (2D HP) protein folding problem. We present an improved version of our recently proposed Ant search. Overall, the results presented here establish our new ACO algorithm for 2D HP protein folding
Fast 2-D Camera Control, Data Acquisition, and Database Techniques for Edge Studies on NSTX
Princeton Plasma Physics Laboratory
Fast 2-D Camera Control, Data Acquisition, and Database Techniques for Edge Studies on NSTX NSTX;NSTX-U 9th IAEA TM Fast 2-D Camera Plasma Edge Studies (W. Davis) May 6-10, 2013 Abstract 2 Fast 2-D. This paper describes image analysis, database techniques, and visualization methods used to organize the fast
Cylindrical 2D ALE simulations of laser interactions with flyer targets
Kurien, Susan
, mass density, v speed, p pressure, e specific internal energy, T temperature, heat conductivity acceleration simulated in 2D. 2 Numerical ALE method with extensions Our 2D ALE code [6] employs conservative 1 April 2006 We have developed 2D Arbitrary Lagrangian Eulerian (ALE) code in the cylindrical r - z
2D-GE IMAGE SEGMENTATION BASED ON LEVEL-SETS E.A. Mylona a
Athens, University of
2D-GE IMAGE SEGMENTATION BASED ON LEVEL-SETS E.A. Mylona a , M.A. Savelonas a , D. Maroulis a , M of protein spots in 2D-GE images. The proposed scheme incorporates a protein spot detection stage based both software packages in terms of segmentation performance. Index Terms--2D-GE Images, Protein Spot
Mandelshtam, Vladimir A.
The Multidimensional Filter Diagonalization Method II. Application to 2D Projections of 2D, 3D signals with up to four independent time variables. Direct projections of the multidimensional time- quency dimension (1). The increase in experiment time is a fair price to pay for the ability to tease out
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41clothThe Bonneville PowerTariff Pages default Sign In AboutIs gravityJeffersonFridayOctober 22, 2014 Joint DOE-MSA User
Fractional Inversion in Krylov Space
B. Bunk
1998-05-28T23:59:59.000Z
The fractional inverse $M^{-\\gamma}$ (real $\\gamma >0$) of a matrix $M$ is expanded in a series of Gegenbauer polynomials. If the spectrum of $M$ is confined to an ellipse not including the origin, convergence is exponential, with the same rate as for Chebyshev inversion. The approximants can be improved recursively and lead to an iterative solver for $M^\\gamma x = b$ in Krylov space. In case of $\\gamma = 1/2$, the expansion is in terms of Legendre polynomials, and rigorous bounds for the truncation error are derived.
Lasecki, John V. (Livonia, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)
1991-01-01T23:59:59.000Z
A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.
Lasecki, J.V.; Novak, R.F.; McBride, J.R.
1991-08-27T23:59:59.000Z
A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.
2D modeling of electromagnetic waves in cold plasmas
Crombé, K. [Laboratory for Plasma Physics, Association EURATOM - Belgian State Trilateral Euregio Cluster, Renaissancelaan 30 Avenue de la Renaissance, B-1000 Brussels, Belgium and Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, B (Belgium); Van Eester, D.; Koch, R.; Kyrytsya, V. [Laboratory for Plasma Physics, Association EURATOM - Belgian State Trilateral Euregio Cluster, Renaissancelaan 30 Avenue de la Renaissance, B-1000 Brussels (Belgium)
2014-02-12T23:59:59.000Z
The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.
VAM2D: Variably saturated analysis model in two dimensions
Huyakorn, P.S.; Kool, J.B.; Wu, Y.S. (HydroGeoLogic, Inc., Herndon, VA (United States))
1991-10-01T23:59:59.000Z
This report documents a two-dimensional finite element model, VAM2D, developed to simulate water flow and solute transport in variably saturated porous media. Both flow and transport simulation can be handled concurrently or sequentially. The formulation of the governing equations and the numerical procedures used in the code are presented. The flow equation is approximated using the Galerkin finite element method. Nonlinear soil moisture characteristics and atmospheric boundary conditions (e.g., infiltration, evaporation and seepage face), are treated using Picard and Newton-Raphson iterations. Hysteresis effects and anisotropy in the unsaturated hydraulic conductivity can be taken into account if needed. The contaminant transport simulation can account for advection, hydrodynamic dispersion, linear equilibrium sorption, and first-order degradation. Transport of a single component or a multi-component decay chain can be handled. The transport equation is approximated using an upstream weighted residual method. Several test problems are presented to verify the code and demonstrate its utility. These problems range from simple one-dimensional to complex two-dimensional and axisymmetric problems. This document has been produced as a user's manual. It contains detailed information on the code structure along with instructions for input data preparation and sample input and printed output for selected test problems. Also included are instructions for job set up and restarting procedures. 44 refs., 54 figs., 24 tabs.
2D Fokker-Planck models of rotating clusters
J. Fiestas; R. Spurzem; E. Kim
2006-09-04T23:59:59.000Z
Globular clusters rotate significantly, and with the increasing amount of detailed morphologicaland kinematical data obtained in recent years on galactic globular clusters many interesting features show up. We show how our theoretical evolutionary models of rotating clusters can be used to obtain fits, which at least properly model the overall rotation and its implied kinematics in full 2D detail (dispersions, rotation velocities). Our simplified equal mass axisymmetric rotatingmodel provides detailed two-dimensional kinematical and morphological data for star clusters. The degree of rotation is not dominant in energy, but also non-negligible for the phase space distribution function, shape and kinematics of clusters. Therefore the models are well applicable for galactic globular clusters. Since previously published papers on that matter by us made it difficult to do detailed comparisons with observations we provide a much more comprehensive and easy-to-use set of data here, which uses as entries dynamical age and flattening of observed cluster andthen offers a limited range of applicable models in full detail. The method, data structure and some exemplary comparison with observations are presented. Future work will improve modelling anddata base to take a central black hole, a mass spectrum and stellar evolution into account.
Three-dimensional induced polarization data inversion for complex resistivity
Commer, M.; Newman, G.A.; Williams, K.H.; Hubbard, S.S.
2011-03-15T23:59:59.000Z
The conductive and capacitive material properties of the subsurface can be quantified through the frequency-dependent complex resistivity. However, the routine three-dimensional (3D) interpretation of voluminous induced polarization (IP) data sets still poses a challenge due to large computational demands and solution nonuniqueness. We have developed a flexible methodology for 3D (spectral) IP data inversion. Our inversion algorithm is adapted from a frequency-domain electromagnetic (EM) inversion method primarily developed for large-scale hydrocarbon and geothermal energy exploration purposes. The method has proven to be efficient by implementing the nonlinear conjugate gradient method with hierarchical parallelism and by using an optimal finite-difference forward modeling mesh design scheme. The method allows for a large range of survey scales, providing a tool for both exploration and environmental applications. We experimented with an image focusing technique to improve the poor depth resolution of surface data sets with small survey spreads. The algorithm's underlying forward modeling operator properly accounts for EM coupling effects; thus, traditionally used EM coupling correction procedures are not needed. The methodology was applied to both synthetic and field data. We tested the benefit of directly inverting EM coupling contaminated data using a synthetic large-scale exploration data set. Afterward, we further tested the monitoring capability of our method by inverting time-lapse data from an environmental remediation experiment near Rifle, Colorado. Similar trends observed in both our solution and another 2D inversion were in accordance with previous findings about the IP effects due to subsurface microbial activity.
JOINT ELECTRICAL & COMPUTER ENGINEERING AND
JOINT ELECTRICAL & COMPUTER ENGINEERING AND APPLIED MATH SEMINAR "Imaging Science Meets Compressed, and electrical engineering. It surprisingly predicts that high-dimensional signals, which allow a sparse
Jointly Sponsored Research Program
Everett A. Sondreal; John G. Hendrikson; Thomas A. Erickson
2009-03-31T23:59:59.000Z
U.S. Department of Energy (DOE) Cooperative Agreement DE-FC26-98FT40321 funded through the Office of Fossil Energy and administered at the National Energy Technology Laboratory (NETL) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy & Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying highly efficient, nonpolluting energy systems that meet the nation's requirements for clean fuels, chemicals, and electricity in the 21st century. The EERC in partnership with its nonfederal partners jointly performed 131 JSRP projects for which the total DOE cost share was $22,716,634 (38%) and the nonfederal share was $36,776,573 (62%). Summaries of these projects are presented in this report for six program areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, and (6) advanced materials. The work performed under this agreement addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration; near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources.
2D Coulomb Gases and the Renormalized Energy
Sandier, Etienne
2012-01-01T23:59:59.000Z
We study the statistical mechanics of classical two-dimensional "Coulomb gases" with general potential and arbitrary \\beta, the inverse of the temperature. Such ensembles also correspond to random matrix models in some particular cases. The formal limit case \\beta=\\infty corresponds to "weighted Fekete sets" and also falls within our analysis. It is known that in such a system points should be asymptotically distributed according to a macroscopic "equilibrium measure," and that a large deviations principle holds for this, as proven by Ben Arous and Zeitouni. By a suitable splitting of the Hamiltonian, we connect the problem to the "renormalized energy" W, a Coulombian interaction for points in the plane introduced in our prior work, which is expected to be a good way of measuring the disorder of an infinite configuration of points in the plane. By so doing, we are able to examine the situation at the microscopic scale, and obtain several new results: a next order asymptotic expansion of the partition function...
Linde, Niklas; Chen, Jinsong; Kowalsky, Michael; Finsterle,Stefan; Rubin, Yoram; Hubbard, Susan
2004-07-01T23:59:59.000Z
With the increasing application of geophysical methods to hydrogeological problems, approaches for obtaining quantitative estimates of hydrogeological parameters using geophysical data are in great demand. A common approach to hydrogeological parameter estimation using geophysical and hydrogeological data is to first invert the geophysical data using a geophysical inversion procedure, and subsequently use the resulting estimates together with available hydrogeological information to estimate a hydrogeological parameter field. This approach does not allow us to constrain the geophysical inversion by hydrogeological data and prior information, and thus decreases our ability to make valid estimates of the hydrogeological parameter field. Furthermore, it is difficult to quantify the uncertainty in the corresponding estimates and to validate the assumptions made. They are developing alternative approaches that allow for the joint inversion of all available hydrological and geophysical data. In this presentation, they consider three studies and draw various conclusions, such as on the potential benefits of estimating the petrophysical relationships within the inversion framework and of constraining the geophysical estimates on geophysical, as well as hydrogeological data.
Menke, William
of the Fourier basis along the linear rays. The inversion (rayinvert.m) uses damped least squares (epsilon=10
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Syracuse, E. M.; Maceira, M.; Zhang, H.; Thurber, C. H.
2015-02-18T23:59:59.000Z
Joint inversions of seismic data recover models that simultaneously fit multiple constraints while playing upon the strengths of each data type. Here, we jointly invert 14 years of local earthquake body wave arrival times from the Alaska Volcano Observatory catalog and Rayleigh wave dispersion curves based upon ambient noise measurements for local Vp, Vs, and hypocentral locations at Akutan and Makushin Volcanoes using a new joint inversion algorithm.The velocity structure and relocated seismicity of both volcanoes are significantly more complex than many other volcanoes studied using similar techniques. Seismicity is distributed among several areas beneath or beyond the flanks ofmore »both volcanoes, illuminating a variety of volcanic and tectonic features. The velocity structures of the two volcanoes are exemplified by the presence of narrow high-Vp features in the near surface, indicating likely current or remnant pathways of magma to the surface. A single broad low-Vp region beneath each volcano is slightly offset from each summit and centered at approximately 7 km depth, indicating a potential magma chamber, where magma is stored over longer time periods. Differing recovery capabilities of the Vp and Vs datasets indicate that the results of these types of joint inversions must be interpreted carefully.« less
Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis
2006-08-22T23:59:59.000Z
A method of joining at least two sintered bodies to form a composite structure, including providing a first multicomponent metallic oxide having a perovskitic or fluorite crystal structure; providing a second sintered body including a second multicomponent metallic oxide having a crystal structure of the same type as the first; and providing at an interface a joint material containing at least one metal oxide containing at least one metal identically contained in at least one of the first and second multicomponent metallic oxides. The joint material is free of cations of Si, Ge, Sn, Pb, P and Te and has a melting point below the sintering temperatures of both sintered bodies. The joint material is heated to a temperature above the melting point of the metal oxide(s) and below the sintering temperatures of the sintered bodies to form the joint. Structures containing such joints are also disclosed.
Transmission Eigenvalues in Inverse Scattering Theory
2012-04-22T23:59:59.000Z
TE and Scattering Theory. Spherically Stratified Media. Transmission Eigenvalues. Open Problem. Transmission Eigenvalues in Inverse. Scattering Theory.
A Turbulent Constitutive Law for the Two-Dimensional Inverse Energy Cascade
Gregory L. Eyink
2005-12-10T23:59:59.000Z
We develop a fundamental approach to a turbulent constitutive law for the 2D inverse cascade, based upon a convergent multi-scale gradient (MSG) expansion. To first order in gradients we find that the turbulent stress generated by small-scale eddies is proportional not to strain but instead to `skew-strain,' i.e. the strain tensor rotated by $45^\\circ.$ The skew-strain from a given scale of motion makes no contribution to energy flux across eddies at that scale, so that the inverse cascade cannot be strongly scale-local. We show that this conclusion extends a result of Kraichnan for spectral transfer and is due to absence of vortex-stretching in 2D. This `weakly local' mechanism of inverse cascade requires a relative rotation between the principal directions of strain at different scales and we argue for this using both the dynamical equations of motion and also a heuristic model of `thinning' of small-scale vortices by an imposed large-scale strain. Carrying out our expansion to second-order in gradients, we find two additional terms in the stress that can contribute to energy cascade. The first is a Newtonian stress with an `eddy-viscosity' due to differential strain-rotation, and the second is a tensile stress exerted along vorticity contour-lines. The latter was anticipated by Kraichnan for a very special model situation of small-scale vortex wave-packets in a uniform strain field. We prove a proportionality in 2D between the mean rates of differential strain-rotation and of vorticity-gradient stretching, analogous to a similar relation of Betchov for 3D. According to this result the second-order stresses will also contribute to inverse cascade when, as is plausible, vorticity contour-lines lengthen on average by turbulent advection.
Radon Transform Inversion using the Shearlet Representation
Labate, Demetrio
Radon Transform Inversion using the Shearlet Representation Flavia Colonna Department The inversion of the Radon transform is a classical ill-posed inverse problem where some method-optimal rate of convergence in estimating a large class of images from noisy Radon data. This is achieved
Expression of Ligands for the NKG2D Activating Receptor are Linked to Proliferative Signals
Jung, Heiyoun
2011-01-01T23:59:59.000Z
Upon NKG2D engagement, the ITAM in DAP12 recruits ZAP70 orcontrast, DAP10 lacks an ITAM, and instead contains a YINM
Leblond, Juliette
1999-01-01T23:59:59.000Z
of inverse problems for the 2D Laplacian related to nondestructive testing. 1. Introduction Our aim their location. Existing procedures for solving nondestructive control problems from either thermal, electric on the side of # from which they are to be considered as nontangential limits (see figure 1). We consider
Carlos Torres-Verdin; Mrinal K. Sen
2004-03-01T23:59:59.000Z
The present report summarizes the work carried out between September 30, 2002 and August 30, 2003 under DOE research contract No. DE-FC26-00BC15305. During the third year of work for this project we focused primarily on improving the efficiency of inversion algorithms and on developing algorithms for direct estimation of petrophysical parameters. The full waveform inversion algorithm for elastic property estimation was tested rigorously on a personal computer cluster. For sixteen nodes on the cluster the parallel algorithm was found to be scalable with a near linear speedup. This enabled us to invert a 2D seismic line in less than five hours of CPU time. We were invited to write a paper on our results that was subsequently accepted for publication. We also carried out a rigorous study to examine the sensitivity and resolution of seismic data to petrophysical parameters. In other words, we developed a full waveform inversion algorithm that estimates petrophysical parameters such as porosity and saturation from pre-stack seismic waveform data. First we used a modified Biot-Gassmann equation to relate petrophysical parameters to elastic parameters. The transformation was validated with a suite of well logs acquired in the deepwater Gulf of Mexico. As a part of this study, we carried out a sensitivity analysis and found that the porosity is very well resolved while the fluid saturation remains insensitive to seismic wave amplitudes. Finally we conducted a joint inversion of pre-stack seismic waveform and production history data. To overcome the computational difficulties we used a simpler waveform modeling algorithm together with an efficient subspace approach. The algorithm was tested on a realistic synthetic data set. We observed that the use of pre-stack seismic data helps tremendously to improve horizontal resolution of porosity maps. Finally, we submitted four publications to refereed technical journals, two refereed extended abstracts to technical conferences, and delivered two oral presentation at a technical forum. All of these publications and presentations stemmed from work directly related to the goals of our DOE project.
Inverse Temperature-Dependent Pathway of Cellulose Decrystallization...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Inverse Temperature-Dependent Pathway of Cellulose Decrystallization in Trifluoroacetic Acid. Inverse Temperature-Dependent Pathway of Cellulose Decrystallization in...
Center for Inverse Design: About the Center for Inverse Design
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) | SciTech Connect Journal Article: X-ray lineARMParticipants1.1 Buildings SectorCMIfor|Careers atAnPeople ClickInverse
Broader source: Energy.gov (indexed) [DOE]
Joint Statement on the U.S. - Russian Excess Weapon-grade Plutonium Disposition Program The U.S. Department of Energy (DOE) and the Federal Atomic Energy Agency, Russian Federation...
Francos, Joseph M.
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 7, JULY 1999 1795 Parameter Estimation of 2-D Abstract--Phase information has fundamental importance in many two-dimensional (2-D) signal processing one- and two-dimensional (1-D and 2-D) signal process- ing problems. When dealing with 2-D signals
Tolerance Analysis of 2-D and 3-D Mechanical Assemblies with Small Kinematic Adjustments
Tolerance Analysis of 2-D and 3-D Mechanical Assemblies with Small Kinematic Adjustments Kenneth W. Chase Spencer P. Magleby Department of Mechanical Engineering Brigham Young University Provo, Utah the Direct Linearization Method (DLM), is presented for tolerance analysis of 2-D and 3-D mechanical
General 2-D Tolerance Analysis of Mechanical Assemblies with Small Kinematic Adjustments
General 2-D Tolerance Analysis of Mechanical Assemblies with Small Kinematic Adjustments Kenneth W. Chase Jinsong Gao Spencer P. Magleby Department of Mechanical Engineering Brigham Young University), is presented for tolerance analysis of 2-D mechanical assemblies which generalizes vector loop-based models
STUDY OF THE MTC ESTIMATION BY NOISE ANALYSIS IN 2-D HETEROGENEOUS SYSTEMS
Demazičre, Christophe
STUDY OF THE MTC ESTIMATION BY NOISE ANALYSIS IN 2-D HETEROGENEOUS SYSTEMS C. DEMAZIČRE, I. PÁZSIT and Pázsit, 2002a). Nevertheless, this previous study only investigated 1-D one-group homogeneous systems. We propose here to perform a substantially more advanced study of the same problem in 2-D two-group diffusion
2D-Zernike polynomials and coherent state quantization of the unit disc
K. Thirulogasanthar; Nasser Saad; G. Honnouvo
2015-01-07T23:59:59.000Z
Using the orthonormality of the 2D-Zernike polynomials, reproducing kernels, reproducing kernel Hilbert spaces, and ensuring coherent states attained. With the aid of the so-obtained coherent states, the complex unit disc is quantized. Associated upper symbols, lower symbols and related generalized Berezin transforms also obtained. A number of necessary summation formulas for the 2D-Zernike polynomials proved.
Fast 2-D camera control, data acquisition, and database techniques for edge studies on NSTX
Princeton Plasma Physics Laboratory
Fast 2-D camera control, data acquisition, and database techniques for edge studies on NSTX W Nova Photonics, Princeton, NJ, 08543, USA Abstract Fast 2-D cameras examine a variety of important methods used to organize the fast camera data and to facilitate physics insights from it. An example
Novel Logic Devices based on 2D Crystal Semiconductors: Opportunities and Challenges
Novel Logic Devices based on 2D Crystal Semiconductors: Opportunities and Challenges (Invited Paper that the advent of 2D crystal semiconductors has caused excitement in the field [2]. These materials can: djena@nd.edu Abstract Two-dimensional crystal semiconductors such as graphene, BN, and the transition
Coulomb Oscillations and Hall Effect in Quasi-2D Graphite Quantum Dots
McEuen, Paul L.
Coulomb Oscillations and Hall Effect in Quasi-2D Graphite Quantum Dots J. Scott Bunch, Yuval Yaish-temperature electrical transport measurements on gated, quasi-2D graphite quantum dots. In devices with low contact of graphene, a zero band gap semiconductor with two linearly dispersing bands that touch at the corners
Wind Tunnel and Field Test of Three 2D Sonic Anemometers
Wauben, Wiel
Wind Tunnel and Field Test of Three 2D Sonic Anemometers Wiel Wauben R&D Information and Observation Technology, KNMI September 17, 2007 #12;#12;Wind Tunnel and Field Test of Three 2D Sonic.....................................................................................................1 2. Wind sensors
An image-based shading pipeline for 2D animation Hedlena Bezerra1
de Figueiredo, Luiz Henrique
An image-based shading pipeline for 2D animation Hedlena Bezerra1 Bruno Feij´o1 Luiz Velho2 1 PUC-based shading pipeline to give a 3D ap- pearance to a 2D character by inspecting the hand-drawn image directly interven- tion. The resulting shading pipeline can be easily applied to photorealistic and non
Liu, Yijun
A fast multipole boundary element method for modeling 2-D multiple crack problems with constant 3 April 2014 Accepted 20 May 2014 Keywords: Fast multipole BEM 2-D multi-crack problems Constant elements Crack opening displacements Stress intensity factors a b s t r a c t A fast multipole boundary
Shih, Chih-Jen, Ph. D. Massachusetts Institute of Technology
2014-01-01T23:59:59.000Z
2D materials are defined as solids with strong in-plane chemical bonds but weak out-of-plane, van der Waals (vdW) interactions. In order to realize potential applications of 2D materials in the areas of optoelectronics, ...
A 2D Graphics Interface Based on CGI Version 1.0
Clausen, Michael
) standards for device independent driving of graphics hardware, both issued from standardization institutes#12; CGI ++ A 2D Graphics Interface Based on CGI Version 1.0 Dieter W. Fellner Martin Fischer Currently, designers of 2D graphics applications have to deal with several (and unforÂ tunately incompatible
Wavelet filtering to study mixing in 2D isotropic turbulence Carsten Beta a
École Normale Supérieure
Wavelet filtering to study mixing in 2D isotropic turbulence Carsten Beta a , Kai Schneider b simulation (CVS) filtering, based on an ortho- gonal wavelet decomposition of vorticity, to study mixing in 2; Diffusion; Wavelets 1. Introduction Decaying 2D turbulence is characterized by the emergence of long
SPR Imaging Measurements of 1-D and 2-D DNA Microarrays Created from Microfluidic Channels on
SPR Imaging Measurements of 1-D and 2-D DNA Microarrays Created from Microfluidic Channels on Gold of WisconsinsMadison, 1101 University Avenue, Madison, Wisconsin 53706 Microfluidic channels fabricated from of these microfluidic arrays, a 2-D DNA array is used to detect a 20-fmol sample of in vitro transcribed RNA from
Gaussian packet prestack depth migration. Part 3: Simple 2-D models
Cerveny, Vlastislav
Gaussian packet prestack depth migration. Part 3: Simple 2-D models V#19;aclav Bucha Department Republic, E-mail: bucha@seis.karlov.m#11;.cuni.cz Summary Gaussian packet prestack depth migration is used. Keywords Gaussian packets, Gaussian beams, prestack depth migration, Gabor transform, 2-D velocity model
Joint probabilities and quantum cognition
Acacio de Barros, J. [Liberal Studies, 1600 Holloway Ave., San Francisco State University, San Francisco, CA 94132 (United States)
2012-12-18T23:59:59.000Z
In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.
Bayes Nets Representation: joint distribution and conditional
Mitchell, Tom
Bayes Nets Representation: joint distribution and conditional independence Yi Zhang 10-701, Machine joint distribution of BNs Infer C. I. from factored joint distributions D-separation (motivation) 2 structure All about the joint distribution of variables ! Conditional independence assumptions are useful
High dimensional linear inverse modelling
Cooper, Fenwick C
2015-01-01T23:59:59.000Z
We introduce and demonstrate two linear inverse modelling methods for systems of stochastic ODE's with accuracy that is independent of the dimensionality (number of elements) of the state vector representing the system in question. Truncation of the state space is not required. Instead we rely on the principle that perturbations decay with distance or the fact that for many systems, the state of each data point is only determined at an instant by itself and its neighbours. We further show that all necessary calculations, as well as numerical integration of the resulting linear stochastic system, require computational time and memory proportional to the dimensionality of the state vector.
L'vov, Victor S; Rudenko, Oleksii
2009-01-01T23:59:59.000Z
In light of some recent experiments on quasi two-dimensional (2D) turbulent channel flow we provide here a model of the ideal case, for the sake of comparison. The ideal 2D channel flow differs from its 3D counterpart by having a second quadratic conserved variable in addition to the energy, and the latter has an inverse rather than a direct cascade. The resulting qualitative differences in profiles of velocity, V, and energy, K, as a function of the distance from the wall are highlighted and explained. The most glaring difference is that the 2D channel is much more energetic, with K in wall units increasing logarithmically with the Reynolds number $\\Ret$ instead of being $\\Ret$-independent in 3D channels.
Victor S. L'vov; Itamar Procaccia; Oleksii Rudenko
2009-02-16T23:59:59.000Z
In light of some recent experiments on quasi two-dimensional (2D) turbulent channel flow we provide here a model of the ideal case, for the sake of comparison. The ideal 2D channel flow differs from its 3D counterpart by having a second quadratic conserved variable in addition to the energy, and the latter has an inverse rather than a direct cascade. The resulting qualitative differences in profiles of velocity, V, and energy, K, as a function of the distance from the wall are highlighted and explained. The most glaring difference is that the 2D channel is much more energetic, with K in wall units increasing logarithmically with the Reynolds number $\\Ret$ instead of being $\\Ret$-independent in 3D channels.
A feasibility study for experimentally determining dynamic force distribution in a lap joint.
Mayes, Randall Lee
2013-11-01T23:59:59.000Z
Developing constitutive models of the physics in mechanical joints is currently stymied by inability to measure forces and displacements within the joint. The current state of the art estimates whole joint stiffness and energy loss per cycle from external measured force input and one or two acceleration responses. To validate constitutive models beyond this state requires a measurement of the distributed forces and displacements at the joint interface. Unfortunately, introducing measurement devices at the interface completely disrupts the desired physics. A feasibility study is presented for a non-intrusive method of solving for the interface dynamic forces from an inverse problem using full field measured responses. The responses come from the viewable surface of a beam. The noise levels associated with digital image correlation and continuous scanning laser Doppler velocimetry are evaluated from typical beam experiments. Two inverse problems are simulated. One utilizes the extended Sum of Weighted Accelerations Technique (SWAT). The second is a new approach dubbed the method of truncated orthogonal forces. These methods are much more robust if the contact patch geometry is well identified. Various approaches to identifying the contact patch are investigated, including ion marker tracking, Prussian blue and ultrasonic measurements. A typical experiment is conceived for a beam which has a lap joint at one end with a single bolt connecting it to another identical beam. In a virtual test using the beam finite element analysis, it appears that the SWAT inverse method requires evaluation of too many coefficients to adequately identify the force distribution to be viable. However, the method of truncated orthogonal forces appears viable with current digital image correlation (and probably other) imaging techniques.
Lee, Chien-Wei; Hwu, Jenn-Gwo [Graduate Institute of Electronics Engineering/ Department of Electrical Engineering, National Taiwan University, Taipei, 10617, Taiwan (China)] [Graduate Institute of Electronics Engineering/ Department of Electrical Engineering, National Taiwan University, Taipei, 10617, Taiwan (China)
2013-10-15T23:59:59.000Z
We derive a statistical physics model of two-dimensional electron gas (2DEG) and propose an accurate approximation method for calculating the quantum-mechanical effects of metal-oxide-semiconductor (MOS) structure in accumulation and strong inversion regions. We use an exponential surface potential approximation in solving the quantization energy levels and derive the function of density of states in 2D to 3D transition region by applying uncertainty principle and Schrödinger equation in k-space. The simulation results show that our approximation method and theory of density of states solve the two major problems of previous researches: the non-negligible error caused by the linear potential approximation and the inconsistency of density of states and carrier distribution in 2D to 3D transition region.
Inversion Methods for Determining Tsunami Source Amplitudes
Percival, Don
Inversion Methods for Determining Tsunami Source Amplitudes from DART Buoy Data Don Percival: given data from DART buoys and models for unit magnitude earthquakes from various tsunami source
Transmission Eigenvalues in Inverse Scattering Theory
Title: Transmission Eigenvalues in Inverse Scattering Theory Abstract: The transmission eigenvalue problem is a new class of eigenvalue problems that has
The Generalized Stieltjes Transform and Its Inverse
John H. Schwarz
2004-05-18T23:59:59.000Z
The generalized Stieltjes transform (GST) is an integral transform that depends on a parameter $\\rho > 0$. In previous work a convenient form of the inverse transformation was derived for the case $\\rho = 3/2$. This paper generalizes that result to all $\\rho > 0$. It is a well-known fact that the GST can be formulated as an iterated Laplace transform, and that therefore its inverse can be expressed as an iterated inverse Laplace transform. The form of the inverse transform derived here is a one-dimensional integral that is considerably simpler.
Linear conic optimization for inverse optimal control
Edouard Pauwels
2014-11-05T23:59:59.000Z
Nov 5, 2014 ... Abstract: We address the inverse problem of Lagrangian identification based on trajectories in the context of nonlinear optimal control.
A typology of Bantu subject inversion
Marten, Lutz; van der Wal, Jenneke
2015-01-01T23:59:59.000Z
generalisations are drawn. For example, languages with instrument inversion or with patient inversion always have locative inversion (but not vice versa), or if a language has at least one inversion construction, it always has at least either default agreement... ): (36) Se-tulo seo ba-sadi ba-se-rek-ile-ng kajeno … [Sesotho] 7-chair REL7 2-woman SM2-OM7-buy-PRF-REL today ‘The chair which the women bought today …’ (37) Mbatya dza-va-ka-son-er-a va-kadzi [Shona] 10.clothes REL10-SM2...
INVERSE OBSTACLE SCATTERING FOR ELASTIC WAVES 1 ...
2015-03-04T23:59:59.000Z
scientific areas such as seismic tomography, non-destructive testing, and medical imaging. The underlying mathematical problems are known as the inverse ...
Coupled Physics Inverse Problems: EIT meets MRI
2013-11-14T23:59:59.000Z
Nov 14, 2014 ... Coupled Physics Inverse Problems: EIT meets MRI. Carlos Montalto. Department of Mathematics cmontalto@math.purdue.edu. November 14 ...
Fast methods for inverse wave scattering problems
Lee, Jung Hoon, Ph. D. Massachusetts Institute of Technology
2008-01-01T23:59:59.000Z
Inverse wave scattering problems arise in many applications including computerized/diffraction tomography, seismology, diffraction/holographic grating design, object identification from radar singals, and semiconductor ...
R2D - The Case for a Comprehensive New RHIC-II Detector
R. Bellwied
2005-10-05T23:59:59.000Z
A new detector concept (R2D) is needed to harvest the unique physics opportunities at RHIC-II during the LHC era. This concept is based on a high granularity hermetic array of detectors featuring high momentum particle identification and superior resolution for photon and onium measurements. Most components of R2D can also be applied to future electron-ion interactions. Thus, R2D allows us to perform precision QCD-type measurements at RHIC-II and eRHIC.
R2D - The Case for a Comprehensive New RHIC-II Detector
Bellwied, R
2006-01-01T23:59:59.000Z
A new detector concept (R2D) is needed to harvest the unique physics opportunities at RHIC-II during the LHC era. This concept is based on a high granularity hermetic array of detectors featuring high momentum particle identification and superior resolution for photon and onium measurements. Most components of R2D can also be applied to future electron-ion interactions. Thus, R2D allows us to perform precision QCD-type measurements at RHIC-II and eRHIC.
2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe
Chen, Y. H.; Yang, X. Y.; Lin, C., E-mail: linchen0812@pku.edu.cn, E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J., E-mail: linchen0812@pku.edu.cn, E-mail: cjxiao@pku.edu.cn [State Key Lab of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wang, L. [Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190 (China); Xu, M. [Center for Fusion Science of Southwestern Institute of Physics, P. O. Box 432, Chengdu 610041 (China)
2014-11-15T23:59:59.000Z
A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.
A JOINT PROGRAM OF Interactive
Dawson, Jeff W.
a multidisciplinary education in diverse, yet connected, subject areas such as web design, 2D and 3D computer--from initial concept through to final realization. It is best suited to students with the potential to be both as a strong theoretical education upon which you can build a lifetime career in this area. The IMD program
CONTENT-BASED 3D OBJECT RETRIEVAL USING 2D VIEWS Thibault Napoleon
Sahbi, Hichem
CONTENT-BASED 3D OBJECT RETRIEVAL USING 2D VIEWS Thibault Napol´eon TELECOM ParisTech, CNRS UMR 5141 46 rue Barrault 75013 Paris, France napoleon@telecom-paristech.fr Hichem Sahbi CNRS UMR 5141
Storage and analysis techniques for fast 2-D camera data on W. M. Davisa
Princeton Plasma Physics Laboratory
Storage and analysis techniques for fast 2-D camera data on NSTX W. M. Davisa *, D.M. Mastrovitoa, and this year, one new camera alone can acquire 2GB per pulse. The paper will describe the storage strategies
2D evaluation A single NACA hydrofoil is modelled in deep water
Sóbester, András
2D evaluation · A single NACA hydrofoil is modelled in deep water · Hydrofoils are suitable since.furth@soton.ac.uk - School of Engineering Sciences Supervisors Dr. Mingyi Tan and Dr. Zhimin Chen Aim · To develop
2D-Modelling of pellet injection in the poloidal plane: results of numerical tests
Paris-Sud XI, Université de
2D-Modelling of pellet injection in the poloidal plane: results of numerical tests P. Lalousis developed for computing the expansion of pellet-produced clouds in the poloidal plane. The expansion
Critiquing the Masters: Applying 3D Production Lighting Principles to Famous 2D Works of Art
Ford, Angelique
2012-10-19T23:59:59.000Z
This thesis demonstrates the effects of applying lighting principles developed for 3D computer graphics production to well-known historical 2D paintings. The visual analysis and cinematographic direction is derived from the iterative review...
A distributional approach to the geometry of 2D dislocations at the mesoscale
Lisbon, University of
A distributional approach to the geometry of 2D dislocations at the mesoscale Part A: General introduce the meso-scale as defined by some average distance between the dislocations. The laws governing
Parallel Object Oriented Implementation of a 2D Bounded Electrostatic Plasma PIC Simulation \\Lambda
Bystroff, Chris
Parallel Object Oriented Implementation of a 2D Bounded Electrostatic Plasma PIC Simulation \\Lambda numbers of charged particles in their selfconsistent electromagnetic fields. The PIC method assumes
Hydrogen Bond Rearrangements in Water Probed with Temperature-Dependent 2D IR
Nicodemus, Rebecca A.
We use temperature-dependent two-dimensional infrared spectroscopy (2D IR) of dilute HOD in H2O to investigate hydrogen bond rearrangements in water. The OD stretching frequency is sensitive to its environment, and loss ...
Implementation, study and calibration of a modified ASM2d for the simulation of SBR processes
Sludge Model n. 2d, its new features are the splitting of the nitrification stage in a two-step process for the "train" of the controller. Materials and method In Table 1, the characteristics of the synthetic f
Experimental investigation of 2D and 3D internal wave fields
Saidi, Sasan John
2011-01-01T23:59:59.000Z
The generation of 2D and 3D internal wave fields is extensively studied via planarand stereo- Particle Image Velocimetry (PIV) flow field measurement techniques. A benchmark was provided by an experiment involving tidal ...
3D reconstruction from 2D images and applications to cell cytoskeleton
Cheng, Yuan, 1971-
2001-01-01T23:59:59.000Z
Approaches to achieve three dimensional (3D) reconstruction from 2D images can be grouped into two categories: computer-vision-based reconstruction and tomographic reconstruction. By exploring both the differences and ...
105TH CONGRESS REPORT " !HOUSE OF REPRESENTATIVES2d Session 105796
Hollaar, Lee A.
69006 105TH CONGRESS REPORT " !HOUSE OF REPRESENTATIVES2d Session 105796 DIGITAL MILLENNIUM the following CONFERENCE REPORT [To accompany H.R. 2281] The committee of conference on the disagreeing votes
105TH CONGRESS REPORT " !HOUSE OF REPRESENTATIVES2d Session 105452
Hollaar, Lee A.
59006 105TH CONGRESS REPORT " !HOUSE OF REPRESENTATIVES2d Session 105452 COPYRIGHT TERM EXTENSION, having considered the same, report favorably thereon with an amendment and recommend that the bill do
Proteomic analysis of E. coli using 2D HPLC and MALDI-TOF mass spectrometry
Campbell, Christopher S
2013-02-22T23:59:59.000Z
In partial fulfillment of the requirements of the UNIVERSITY UNDERGRADUATE RESEARCH FELLOWS April 2002 Group: Life Sciences I PROTEOMIC ANALYSIS OF E. COLI USING 2D HPLC AND MALDI-TOF MASS SPECTROMETRY A Senior Thesis By CHRISTOPHER S. CAMPBELL... April 2002 Group: Life Sciences I ABSTRACT Proteomic Analysis of E. coli Using 2D HPLC and MALDI-TOF Mass Spectrometry. Christopher S. Campbell Department of Biochemisty/Biophysics Texac AkM University Fellows Advisor; Dr. James C. Hu Department...
1D AND 2D PIC-MCC SIMULATIONS OF DC DISCHARGES BETWEEN PLANAR ELECTRODES
Wurtele, Jonathan
1D AND 2D PIC-MCC SIMULATIONS OF DC DISCHARGES BETWEEN PLANAR ELECTRODES Verboncoeur, JV, Hammel in argon and helium (p = 0.1 - 1 Torr; I = 10-6 - 10-2 A) have been simulated using the PIC-MCC methedology using 1d-3v and 2d-3v models. The theory for glow discharges is presented. PIC results are analyzed
Positive and inverse isotope effect on superconductivity
Tian De Cao
2009-09-04T23:59:59.000Z
This article improves the BCS theory to include the inverse isotope effect on superconductivity. An affective model can be deduced from the model including electron-phonon interactions, and the phonon-induced attraction is simply and clearly explained on the electron Green function. The focus of this work is on how the positive or inverse isotope effect occurs in superconductors.
A General Framework for Nonlinear Multigrid Inversion
cost. . . . . . . . . 9 2 Pseudocode specification of a twogrid inversion algorithm. The notation c) and r (q+1) explicit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Pseudocode 4 Pseudocode specification of fixed grid and multigrid inversion methods for ODT problem showing (a
Inversion of the attenuated Radon transform
MĂĽnster, WestfĂ¤lische Wilhelms-UniversitĂ¤t
Inversion of the attenuated Radon transform F. Natterer Institut fur Numerische und instrumentelle@math.uni-muenster.de Abstract We derive an exact inversion formula for the attenuated Radon transform. The formula is closely for x 2 IR2, #12; 2 S1 Dax; #12; = 1Z 0 ax + t#12;dt : 1.1 The attenuated Radon transform Ra is de ned
Solving Stochastic Inverse Problems: A Sparse Grid
Zabaras, Nicholas J.
Solving Stochastic Inverse Problems: A Sparse Grid Collocation Approach N. Zabaras Cornell to large scale problems. To solve large-scale problems involving high-dimensional stochastic spaces (in Methods for Large-Scale Inverse Problems and Quantification of Uncertainity. Edited by People on Earth c
Solving Generalized Small Inverse Problems Noboru Kunihiro
International Association for Cryptologic Research (IACR)
Solving Generalized Small Inverse Problems Noboru Kunihiro The University of Tokyo, Japan kunihiro@k.u-tokyo.ac.jp Abstract. We introduce a "generalized small inverse problem (GSIP)" and present an algorithm for solving such that the target problem can be solved in polynomial time in log M in an explicit form. Since GSIPs in- clude some
Joint inversion of electrical and seismic data for Fracture char. and
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasma | Department of EnergyBrakingDepartment of Energyal. on the Proposed Open Accesson notice
Linde, Niklas
2008-01-01T23:59:59.000Z
37 (10), 2431-2456. Linde, N. , A. Binley, A. Tryggvason, L.doi:10.1029/2006WR005131. Linde, N. , S. Finsterle, and S.Tryggvason, A. , and N. Linde, 2006, Local earthquake (LE)
Kang, Peter K.
2013-01-01T23:59:59.000Z
Traditionally, seismic interpretation is performed without any account of the flow behavior. Here, we present a methodology to characterize fractured geologic media by integrating flow and seismic data. The key element of ...
Zhang, Zhishuai
2012-10-19T23:59:59.000Z
formations, temperature gradient can be quite significant and temperature data can provide valuable information about field connectivity, vertical fluid displacement, and permeability distribution in the vertical direction. In this paper, we examine...
Time-lapse Joint Inversion of Geophysical Data and its Applications to
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasma |Efficiency Â» Searchto Increase Bioenergyits missionEnergy 1Three YearGeothermal Prospecting |
Bottazzi, F.
Characterization of reservoir properties like porosity and permeability in reservoir models typically relies on history matching of production data, well pressure data, and possibly other fluid-dynamical data. Calibrated ...
Tenth Edition SDSU/UCSB GEOGRAPHY JOINT DOCTORAL PROGRAM
California at Santa Barbara, University of
1 Tenth Edition SDSU/UCSB GEOGRAPHY JOINT DOCTORAL PROGRAM STUDENT'S HANDBOOK Table of Contents .............................................................................................. 12 MAJOR MILEPOSTS IN THE JOINT DOCTORAL PROGRAM....................................................................................................... 26 JOINT DOCTORAL PROGRAM FACULTY
Joint Technical Operations Team | National Nuclear Security Administra...
National Nuclear Security Administration (NNSA)
Render Safe Joint Technical Operations Team Joint Technical Operations Team JTOT Logo NNSA's Joint Technical Operations Team (JTOT) provides specialized technical...
Offered jointly with International Business
Offered jointly with Master in International Business #12;.02 Welcome to Barcelona Welcome to UPF Pompeu Fabra (UPF), in the very heart of Barcelona. UPF is a public institution established in 1990, and is integrated into the urban fabric of the city, contributing to and participating in its dynamism. The UPF has
FireStem2D A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires
FireStem2D A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires, et al. (2013) FireStem2D A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury
JOINT CONFERENCE SOUTHERN ASSOCIATION FOR CANADIAN STUDIES
Duchowski, Andrew T.
JOINT CONFERENCE SOUTHERN ASSOCIATION FOR CANADIAN STUDIES ASSOCIATION OF QUEBEC STUDIES KENNESAW and the Association of Quebec Studies will be holding a joint conference at Kennesaw State University on April 13
Joint Structures Determined by Clustering Microearthquakes
Sciences and Geomechanics Abstracts Roff et al., Joint Structures (Running header) #12;2 Abstract A new
Joint Genome Institute's Automation Approach and History
Roberts, Simon
2006-01-01T23:59:59.000Z
Joint Genome Institute’s Automation Approach and Historythroughput environment; – automation does not necessarilyissues “Islands of Automation” – modular instruments with
Surface Science Letters The 2-D growth of gold on single-layer graphene/Ru(0001): Enhancement of
Goodman, Wayne
Surface Science Letters The 2-D growth of gold on single-layer graphene/Ru(0001): Enhancement of CO online 7 May 2011 Keywords: Graphene Ru(0001) STM 2-D Au CO adsorption IRAS The growth and morphology of two-dimensional (2-D) gold islands on a single-layer graphene supported on Ru(0001) have been studied
2015-01-01T23:59:59.000Z
images: application in multiple sclerosis. NeuroImage 2010;spinal cord relapse in multiple sclerosis is predicted byof the spinal cord in multiple sclerosis patients with and
2015-01-01T23:59:59.000Z
TCA) and gray matter (GM) areas based on phase-sensitiveassessment of spinal cord GM and white matter (WM) couldbecause of insufficient GM/WM contrast provided by
COLLOQUIUM: Seismic Imaging and Inversion Based on Spectral-Element...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
anisotropy, shear attenuation and impedance contrasts. We apply this method to study seismic inverse problems at various scales, from exploration-scale full-waveform inversion...
Flame Height Measurement of Laminar Inverse Diffusion Flames
Mikofski, Mark A.; Williams, Timothy C.; Shaddix, Christopher R.; Blevins, Linda G.
2006-01-01T23:59:59.000Z
Flame Height Measurement of Laminar Inverse Diffusion Flamesinverse diffusion flame, laminar, flame height, OH, laserair and methane-air laminar inverse diffusion flames were
Water Budget Analysis and Groundwater Inverse Modeling
Farid Marandi, Sayena
2012-07-16T23:59:59.000Z
hydrological processes at the Norman Landfill site including evapotranspiration, recharge, and regional groundwater flow and groundwater-surface water interaction. The MCMC scheme also proved to be a robust tool for the inverse groundwater modeling but its...
A General Framework for Nonlinear Multigrid Inversion
cost. . . . . . . . . 9 2 Pseudo-code specification of a two-grid inversion algorithm. The notation c) explicit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Pseudo-code specification of (a grid update. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 Pseudo-code
FAST SPARSE SELECTED INVERSION 1. Introduction. Extracting ...
2015-07-06T23:59:59.000Z
nal blocks of the inverse of a sparse symmetric matrix A, using the multifrontal method and rank structures. ..... To construct an HSS form, the HSS blocks are compressed hierarchically in a bottom-up ...... seismic modeling of the earth media.
Plot/SurfW: Plotting Utility for EDGE2D Output
W.M. Davis and J.D. Strachan
2012-06-22T23:59:59.000Z
This report describes a utility that was developed to display EDGE2D results. The utility is focused on results that relate to impurity density, velocity, and particle fluxes in the SOL and divertor. Due to the complicated nature of 2D impurity sources, the concentration of the thermal force near the separatrix and near the divertor entrance, the impurity flow pattern and impurity densities are not necessarily easy to visualize. Thus, we wanted a utility that allowed simple and quick visualization of the impurity behavior. In order to achieve this we overlaid the divertor hardware for plots inside the divertor and we expanded the appearance of the main chamber SOL by plotting distance along the field lines vs. SOL depth with the density (or velocity or flux or other quantity) the false colour. Also, we allowed for the plotted variable to be a function of the other EDGE2D result variables. __________________________________________________
Transparent Conducting Electrodes based on 1D and 2D Ag Nanogratings for Organic Photovoltaics
Zeng, Beibei; Bartoli, Filbert J
2014-01-01T23:59:59.000Z
The optical and electrical properties of optically-thin one-dimensional (1D) Ag nanogratings and two-dimensional (2D) Ag nanogrids are studied, and their use as transparent electrodes in organic photovoltaics are explored. A large broadband and polarization-insensitive optical absorption enhancement in the organic light-harvesting layers is theoretically and numerically demonstrated using either single-layer 2D Ag nanogrids or two perpendicular 1D Ag nanogratings, and is attributed to the excitation of surface plasmon resonances and plasmonic cavity modes. Total photon absorption enhancements of 150% and 200% are achieved for the optimized single-layer 2D Ag nanogrids and double (top and bottom) perpendicular 1D Ag nanogratings, respectively.
Optical Tweezers as a Micromechanical Tool for Studying Defects in 2D Colloidal Crystals
Sungcheol Kim; Lichao Yu; Stephanie Huang; Alexandros Pertsinidis; Xinsheng Sean Ling
2011-08-09T23:59:59.000Z
This paper reports on some new results from the analyses of the video microscopy data obtained in a prior experiment on two-dimensional (2D) colloidal crystals. It was reported previously that optical tweezers can be used to create mono- and di-vacancies in a 2D colloidal crystal. Here we report the results on the creation of a vacancy-interstitial pair, as well as tri-vacancies. It is found that the vacancy-interstitial pair can be long-lived, but they do annihilate each other. The behavior of tri-vacancies is most intriguing, as it fluctuates between a configuration of bound pairs of dislocations and that of a locally amorphous state. The relevance of this observation to the issue of the nature of 2D melting is discussed.
Li, Jian (New Milford, CT)
2002-01-01T23:59:59.000Z
A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.
Inverse problem for incremental synchrotron radiation
Fisch, N.J.
1987-06-01T23:59:59.000Z
Significantly more information is available from synchrotron emission from a plasma when the plasma is purposefully disturbed. An inverse problem, to deduce properties of the disturbance given time-dependent radiation data, is proposed. The fast time response of radiation detectors is fully exploited by this approach. A special case of interest, perpendicular observation of a steady-state plasma, lends itself to an analytic inversion.
Learning to segment texture in 2D vs. 3D : A comparative study
Oh, Se Jong
2004-11-15T23:59:59.000Z
in Ri. Finally, we get the Gabor energy matrix E(x,y), Orientation response matrix O(x,y), and Frequency response matrix F(x,y). . . . . . . . . . . . 28 11 Generating the 2D input set (2D preprocessing). The procedure used to generate the training data... differences (such as difference in orientation) exist. According to Chubb et al. [10], any first-order (quasi- linear) mechanism cannot detect the boundary that emerges between two textures of equal mean luminance but composed of differently oriented...
Study of the 2-d CP(N-1) models at ?=0 and ?
B. B. Beard; M. Pepe; S. Riederer; U. J. Wiese
2004-09-14T23:59:59.000Z
We present numerical results for 2-d CP(N-1) models at \\theta=0 and \\pi obtained in the D-theory formulation. In this formulation we construct an efficient cluster algorithm and we show numerical evidence for a first order transition for CP(N-1\\geq 2) models at \\theta = \\pi. By a finite size scaling analysis, we also discuss the equivalence in the continuum limit of the D-theory formulation of the 2-d CP(N-1) models and the usual lattice definition.
Statistics of jamming in the discharge of a 2-D Silo
Gabriel Perez
2007-05-12T23:59:59.000Z
Jamming and avalanche statistics are studied in a simulation of the discharge of a polydisperse ensemble of disks from a 2-D silo. Exponential distributions are found for the avalanche sizes for all sizes of the exit opening, in agreement with reported experiments. The average avalanche size grows quite fast with the size of the exit opening. Data for this growth agree better with a critical divergence with a large critical exponent, as reported for 3-D experiments, than with the exponential growth reported for 2-D experiments.
Avoidable Sets in The Bicyclic Inverse Semigroup Nandor Sieben
Sieben, Nándor
Avoidable Sets in The Bicyclic Inverse Semigroup N´andor Sieben 9/2/2003 Abstract A subset U elements of B. The avoidable sets of the bicyclic inverse semigroup are classified. 1. Introduction If (S avoidable sets in the bicyclic inverse semigroup, which is perhaps the most important inverse semigroup. Its
INVERSE-SQUARE LAW TESTS 1 TESTS OF THE GRAVITATIONAL
Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group
INVERSE-SQUARE LAW TESTS 1 TESTS OF THE GRAVITATIONAL INVERSE-SQUARE LAW E.G.Adelberger, B-1560 KEYWORDS: gravitation, experimental tests of inverse-square law, quantum gravity, extra dimensions ABSTRACT: We review recent experimental tests of the gravitational inverse-square law, and the wide variety
Genetic Algorithm for Predicting Protein Folding in the 2D HP Model
Emmerich, Michael
Genetic Algorithm for Predicting Protein Folding in the 2D HP Model A Parameter Tuning Case Study of a protein, predicting its tertiary structure is known as the protein folding problem. This problem has been. The protein folding problem in the HP model is to find a conformation (a folded sequence) with the lowest
A SOFTWARE SYSTEM FOR ANALYSING CERAMIC ARTEFACTS REPRESENTED BY 2D DRAWINGS
Borissova, Daniela
A SOFTWARE SYSTEM FOR ANALYSING CERAMIC ARTEFACTS REPRESENTED BY 2D DRAWINGS Gennady Agre1.hristov@gmail.com Abstract: The paper describes a part of an extensible system for analysing ceramic artefacts represented this function and using it for comparing artefacts are described. Key words: ceramics classification, curvature
Probing the kinesin reaction cycle with a 2D optical force clamp
Asbury, Chip
Probing the kinesin reaction cycle with a 2D optical force clamp Steven M. Block* , Charles L) With every step it takes, the kinesin motor undergoes a mechano- chemical reaction cycle that includes velocity depends on both the magnitude and the direction of the applied load. Using specialized apparatus
Dynamics and control of the system of a 2-D rigid circular cylinder and point vortices
Shashikanth, Banavara N.
Dynamics and control of the system of a 2-D rigid circular cylinder and point vortices Zhanhua Ma dynamically interacting with N point vortices in its vicinity [16] is an idealized example of coupled solid from a fluid mechanics viewpoint as well as a dynamics and control viewpoint. The problem has many
A Two-component Transport Model for Solar Wind Fluctuations: Waves plus Quasi-2D Turbulence
Oughton, Sean
component. Thus, it would seem appropriate, and advantageous, to develop an energy-containing style modelA Two-component Transport Model for Solar Wind Fluctuations: Waves plus Quasi-2D Turbulence Sean for the transport of solar wind fluctuations, based on the assumption that they can be well-represented using two
Continuous catchment-scale monitoring of geomorphic processes with a 2-D seismological array
Wu, Yih-Min
Continuous catchment-scale monitoring of geomorphic processes with a 2-D seismological array Arnaud-dimensional array with small interstation distances (11 km) to continuously monitor geomorphic processes 2013; published 19 September 2013. [1] Distributed activity of geomorphic processes with different
Factorization of Darboux transformations of arbitrary order for 2D Schroedinger operators
Ekaterina Shemyakova
2015-05-04T23:59:59.000Z
We give a proof of Darboux's conjecture that every Darboux transformation of arbitrary order of a 2D Schroedinger type operator can be factorized into Darboux transformations of order one. The proof is constructive. The result is obtained in the framework of an algebraic approach to Darboux transformations which is suggested in this paper and is a further improvement of S. Tsarev's earlier idea.
Emergent Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Experiment
Chandra, Premi
Emergent Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Experiment Heisenberg model can develop algebraic spin correlations. We demonstrate the emergence of a multi-spin U(1; here fluctuations induce an emergent XY order parameter that decouples from the rotational degrees
VISION-BASED CONTROL OF 2D PLANE POISEUILLE FLOW Romeo Tatsambon Fomena and Christophe Collewet
Paris-Sud XI, Université de
Cemagref, INRIA Rennes-Bretagne Atlantique and Universit´e Europ´eenne de Bretagne 17 avenue de Cucill in optimizing shapes or in choosing suitable surfacing. Conversely, in active con- trol an external energy the vision-based control approach to regulate the 2D plane Poiseuille flow around its steady state
2D control of field-driven magnetic bubble movement using Dzyaloshinskii-Moriya interactions
Petit, Dorothée; Seem, Peter R.; Tillette, Marine; Mansell, Rhodri; Cowburn, Russell P.
2015-01-12T23:59:59.000Z
. Fukushima and S. Yuasa, Nature Phys. 7, 626 (2011) 2D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit and R. P. Cowburn, Science 309, 1688 (2005) 3D. A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner,D. Atkin- son, N. Vernier and R. P. Cowburn...
Robust and Efficient Adaptive Moving Mesh Solution of the 2-D Euler equations
Zegeling, Paul
to track individual features of the physi- cal solutions, such as shocks and emerging instabilities [2] in which the difficult choice of a user-defined adaptivity constant in the monitor function lists our conclusions. 2 The 2D Euler equations The two-dimensional Euler equations of gas dynamics
AN EFFICIENT METHOD FOR BAND STRUCTURE CALCULATIONS IN 2D PHOTONIC CRYSTALS
Dobson, David C.
methods have been developed for the computation of band structures in photonic crystals, both 2D and 3D crystals are periodic structures composed of dielectric materials and designed to exhibit interesting composed of "low-contrast" mixtures of materials. In the optical frequency range, the contrast between
Symmetry reduction and control of the dynamics of a 2-D rigid circular cylinder and a
Shashikanth, Banavara N.
Symmetry reduction and control of the dynamics of a 2-D rigid circular cylinder and a point vortex. This dynamic model is an idealized example in an inviscid framework of fully- coupled solid-fluid systems vortex, cylinder, optimal control, reduction, scat- tering #12;Contents 1 INTRODUCTION 4 2 The SMBK model
2D and 3D high-resolution imaging to reconstruct the microstructure of clay media
Paris-Sud XI, Université de
2D and 3D high-resolution imaging to reconstruct the microstructure of clay media J.C. Robinet1 & S compacted clay (illite) system, considered to be an analogy for the clay matrix constituting clay-rocks, and three different clayrocks (Callovo-Oxfordian argilites (FR), Opalinus Clay (CH), Boom Clay (BE)). Part
Wake effects characterization using wake oscillator model Comparison on 2D response with experiments
Paris-Sud XI, Université de
forces -- Fext contain the hydrodynamic forces (drag, lift and forces issued from the potential theory oscillators is developed to predict the 2D motion in a transverse plan of two rigid cylinders in tandem. Extended studies have been conduced to describe and explain them for spring mounted uniform cylinders
Zhang, Jun
Convergence Proof of Jacobi Iterative Method for A Discretized 2D ConvectionÂDiffusion Equation \\Lambda Deyu Sang, y Jun Zhang, z and Shiqing Zhang y July 16, 1998 Abstract We prove that the Jacobi been verified numerically but evaded rigorous justification for almost two decades. Key words: Jacobi
An Efficient Genetic Algorithm for Predicting Protein Tertiary Structures in the 2D HP Model
Istrail, Sorin
, predicting its tertiary structure is known as the protein folding problem. This problem has been widely genetic algo- rithm for the protein folding problem under the HP model in the two-dimensional square Genetic Algorithm, Protein Folding Problem, 2D HP Model 1. INTRODUCTION Amino acids are the building
Neuroglobin dynamics observed with ultrafast 2D-IR vibrational echo spectroscopy
Fayer, Michael D.
Neuroglobin dynamics observed with ultrafast 2D-IR vibrational echo spectroscopy Haruto Ishikawa Contributed by Michael D. Fayer, August 15, 2007 (sent for review July 25, 2007) Neuroglobin (Ngb), a protein energy minimum. myoglobin mutants protein dynamics energy landscape Neuroglobin (Ngb) is a recently
GREIT: a unified approach to 2D linear EIT reconstruction of lung images
Adler, Andy
GREIT: a unified approach to 2D linear EIT reconstruction of lung images Andy Adler1 , John H the distribution of ventilation. However, most clinical and physiological research in lung EIT is done using older algorithm for lung EIT, called GREIT (Graz consensus Reconstruction algorithm for EIT). This paper describes
2D Piecewise Algebraic Splines for Implicit Modeling University of Hull
Tian, Jie
-dimensional spline techniques based on nonregular 2D polygons, such as box spline and simplex spline, are generally. In this article, a new type of bivariate spline function is introduced. This newly proposed type of bivariate. Graph. 28, 2, Article 13 (April 2009), 19 pages. DOI = 10.1145/1516522.1516524 http://doi.acm.org/10
Fayer, Michael D.
Hydrogen Bond Migration between Molecular Sites Observed with Ultrafast 2D IR Chemical ExchangeVed: January 12, 2010 Hydrogen-bonded complexes between phenol and phenylacetylene are studied using ultrafast hydrogen bonding acceptor sites (phenyl or acetylene) that compete for hydrogen bond donors in solution
Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk
Wu, Shin-Tson
OCIS codes: (110.1080) Active or adaptive optics; (110.0110) Imaging systems; (100.6890) Three and mobile displays. A critical element in the 2D/3D switchable display is the adaptive liquid crystal (LC optimization by modifying the layout of light blocking components [21], and us- ing triplet structures
Quantum Monte Carlo study of a disordered 2D Josephson junction array
Stroud, David
Quantum Monte Carlo study of a disordered 2D Josephson junction array W.A. Al-Saidi *, D. Stroud not be established even * Corresponding author. E-mail addresses: al-saidi.1@osu.edu (W.A. Al-Saidi), stroud
Assisted Teleoperation Strategies for Aggressively Controlling a Robot Arm with 2D Input
Indiana University
Assisted Teleoperation Strategies for Aggressively Controlling a Robot Arm with 2D Input Erkang You,hauserk}@indiana.edu Abstract--This paper studies assisted teleoperation techniques for controlling a 6DOF robot arm using click enable novice users to control robot arms successfully in applications such as material handling
Creative Character Design Based on Combination of 2D and 3 D Characteristics
Salimi Beni, Anahita
2014-12-09T23:59:59.000Z
This research combines the need for innovation in character design with the idea of combining 2D and 3 D characteristics to create an original and appealing character style. The goal has been to benefit from the capabilities of 3 D animation while...
Realtime Streaming with Guaranteed QOS over Wireless D2D Networks
Paul, Suman
2014-05-22T23:59:59.000Z
-located wireless peer devices that desire to synchronously receive a live content stream. Devices desire to minimize the usage of their B2D interfaces (3G/4G) to reduce cost, while maintaining synchronous reception and playout of content. While it might be possible...
Development of a Hybrid Powered 2D Biped Walking Machine Designed for Rough Terrain Locomotion
Baker, Bryce C.
2010-07-28T23:59:59.000Z
/ASME International Conference on Advanced Intelligent Mechatronics, AIM, pp. 561-568. 5 1. DESIGN OF A 2D BIPED WALKING MACHINE TEST PLATFORM FOR UNDERSTANDING ROUGH TERRAIN LOCOMOTION 1.1 Introduction Only about half of Earth’s land mass is accessible...
Ying, Lexing
vectors for dislocations, which play an important role in crystal plasticity. We refer the readers to [19CRYSTAL IMAGE ANALYSIS USING 2D SYNCHROSQUEEZED TRANSFORMS HAIZHAO YANG, JIANFENG LU, AND LEXING transforms to extract mesoscopic and microscopic information from atomic crystal images. The methods analyze
A comparative study of the LBE and GKS methods for 2D near incompressible laminar flows
Xu, Kun
A comparative study of the LBE and GKS methods for 2D near incompressible laminar flows Zhaoli Guo laminar flows. Although both methods are derived from the Boltzmann equation thus share a common kinetic for laminar flow simulations, and agree well with existing ones, provided that sufficient grid resolution
Perturbations to Stellar Structure in 2D: Stellar Rotation and Heating in X-ray Binaries
John J. Eldridge; Pascale Garaud; Christopher A. Tout
2002-09-16T23:59:59.000Z
We have developed a numerical code with which we study the effects of 2D perturbations on stellar structure. We present new numerical and analytical results on the heating of a main-sequence star in a binary system by its companion.
Water Dynamics in Salt Solutions Studied with Ultrafast Two-Dimensional Infrared (2D IR)
Fayer, Michael D.
Water Dynamics in Salt Solutions Studied with Ultrafast Two-Dimensional Infrared (2D IR RECEIVED ON FEBRUARY 3, 2009 C O N S P E C T U S Water is ubiquitous in nature, but it exists as pure water infrequently. From the ocean to biology, water molecules interact with a wide variety of dissolved species
Unravelling Coherent Dynamics and Energy Dissipation in Photosynthetic Complexes by 2D Spectroscopy
Mukamel, Shaul
mediates energy transfer pathways originating in the efficient natural solar energy antenna--the chlorosome, and ending at the energy conversion apparatus--the reaction center (5). Steady-state optical spectraUnravelling Coherent Dynamics and Energy Dissipation in Photosynthetic Complexes by 2D Spectroscopy
LNG FEM: GENERATING GRADED MESHES AND SOLVING ELLIPTIC EQUATIONS ON 2-D DOMAINS OF POLYGONAL, Minnesota 55455Â0436 Phone: 612-624-6066 Fax: 612-626-7370 URL: http://www.ima.umn.edu #12;LNG FEM AND VICTOR NISTOR Abstract. We develop LNG FEM, a software package for graded mesh gen- eration
Estudio de la estabilidad de una familia de toros 2D del Problema Cuasibicircular
Barcelona, Universitat de
estabilidad est'a asociado al nacimiento de las familias de toros Halo 2D. Para este trabajo se han utilizado QBCP depende de Ż, el par'ametro de masas del sistema TierraLuna, a s , la distancia media del Sol al s \\Gamma 1 ' 328900:54 ; ! s = 0:925195985520347 ; tomando las unidades de masa, distancia y tiempo de
Collective Classification for Labeling of Places and Objects in 2D and 3D Range Data
Teschner, Matthias
these representations of the environment to improve the human- robot comunication. In this work, we present an approach information to 2D maps. Koenig and Simmons (1998) apply a pre-programmed routine to detect doorways. Althaus and Christensen (2003) use sonar data to detect corridors and doorways. Moreover, Friedman et al. (2007) introduce
Analysis on the Inverse problem Statistical analysis of the inverse problem
regression This is a non-linear regression model. Assumption : we have equal variance measurement errors and trigonometric forms. #12;Analysis on the Inverse problem Introduction Non-linear regression This is a non-linear on the Inverse problem Introduction Linear and non-linear regression Examples : Linear model y = 0 + 1x + 2x2 y
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasma | Department of EnergyBrakingDepartment of Energy 0EnergyJamieJohnsonSolar|3, 2012Joint
Joint Announcement | Department of Energy
Office of Environmental Management (EM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23 362 334Department ofEnergy FYIntegrated SecurityWorld Design Jim WoodruffJ.ofJoint Announcement
Joint Center for Artificial Photosynthesis
Koval, Carl; Lee, Kenny; Houle, Frances; Lewis, Nate
2013-12-19T23:59:59.000Z
The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.
Joint Center for Artificial Photosynthesis
Koval, Carl; Lee, Kenny; Houle, Frances; Lewis, Nate
2013-12-10T23:59:59.000Z
The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.
Joint Outreach Task Group Calendar: September 2013
Broader source: Energy.gov [DOE]
Joint Outreach Task Group (JOTG)has created a monthly calendar of community events to facilitate interagency and community involvement in these events. September 2013
Joint Oceanography-IPRC-JIMAR Seminar
Joint Oceanography-IPRC- JIMAR Seminar Michael A. Spall Senior Scientist Department of Physical Oceanography Woods Hole Oceanographic Institution "Forced Transients in the Thermocline Circulation
Joint Inference for Competing Risks Data
Li, Gang; Yang, Qing
2015-01-01T23:59:59.000Z
N. (1978), “The analysis of failure times in the presence ofall failure types and groups. For regression analysis offailure types. Section 3 develops joint regression analysis
JIBS | Joint Institute for Biological Sciences | ORNL
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
joint institute is located close to ORNL's Laboratory for Comparative and Functional Genomics, other biomolecular sciences research laboratories, and the Environmental Sciences...
Algebraic theory of crystal vibrations: Singularities and zeros in vibrations of 1D and 2D lattices
F. Iachello; B. Dietz; M. Miski-Oglu; A. Richter
2015-06-02T23:59:59.000Z
A novel method for the calculation of the energy dispersion relation (EDR) and density of states (DOS) in one (1D) and two (2D) dimensions is introduced and applied to linear lattices (1D) and square and hexagonal lattices (2D). The (van Hove) singularities and (Dirac) zeros of the DOS are discussed. Results for the 2D hexagonal lattice (graphene-like materials) are compared with experimental data in microwave photonic crystals.
Inverse Folding of RNA Pseudoknot Structures
Gao, James Z M; Reidys, Christian M
2010-01-01T23:59:59.000Z
Background: RNA exhibits a variety of structural configurations. Here we consider a structure to be tantamount to the noncrossing Watson-Crick and \\pairGU-base pairings (secondary structure) and additional cross-serial base pairs. These interactions are called pseudoknots and are observed across the whole spectrum of RNA functionalities. In the context of studying natural RNA structures, searching for new ribozymes and designing artificial RNA, it is of interest to find RNA sequences folding into a specific structure and to analyze their induced neutral networks. Since the established inverse folding algorithms, {\\tt RNAinverse}, {\\tt RNA-SSD} as well as {\\tt INFO-RNA} are limited to RNA secondary structures, we present in this paper the inverse folding algorithm {\\tt Inv} which can deal with 3-noncrossing, canonical pseudoknot structures. Results: In this paper we present the inverse folding algorithm {\\tt Inv}. We give a detailed analysis of {\\tt Inv}, including pseudocodes. We show that {\\tt Inv} allows to...
Error handling strategies in multiphase inverse modeling
Finsterle, S.; Zhang, Y.
2010-12-01T23:59:59.000Z
Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.
Statistical 2D and 3D shape analysis using Non-Euclidean Metrics
Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, Denmark {rl, kbh, proj76}@imm.dtu.dk, http For the analysis and interpretation of multivariate observations a standard meth- ods has been the application appearance models [6]. Bookstein proposed using bending energy and inverse bending energy as metrics
Canonical vs Micro-Canonical Sampling Methods in a 2D Ising model1
Kepner, Jeremy
model. Expressions for the internal energy, U, inverse temperature, Z, and specific heat, C, are givenSj . (2) #12;2 A quantity of particular interest in our experiments is the internal energy, U. In terms and the energy, the canonical scheme for changing spins can best be explained by the following piece of pseudo-code
Active Ankle Response for a 2-D Biped Robot with Terrain Contact Sensing
Hitschmann, Francis Lee
2009-11-18T23:59:59.000Z
Walker? in the Intelligent Systems and Automation Laboratory (ISAL). Inversion/eversion adaptation of ground sensing ankles incorporates an advanced mechatronics problem rarely addressed in the study of biped walking. 2) To strive forward to a goal well beyond the scope...
The 2dF Galaxy Redshift Survey: Wiener Reconstruction of the Cosmic Web
Pirin Erdogdu; Ofer Lahav; Saleem Zaroubi; George Efstathiou; Steve Moody; John A. Peacock; Matthew Colless; Ivan K. Baldry; Carlton M. Baugh; Joss Bland-Hawthorn; Terry Bridges; Russell Cannon; Shaun Cole; Chris Collins; Warrick Couch; Gavin Dalton; Roberto De Propris; Simon P. Driver; Richard S. Ellis; Carlos S. Frenk; Karl Glazebrook; Carole Jackson; Ian Lewis; Stuart Lumsden; Steve Maddox; Darren Madgwick; Peder Norberg; Bruce A. Peterson; Will Sutherland; Keith Taylor
2003-12-19T23:59:59.000Z
We reconstruct the underlying density field of the 2 degree Field Galaxy Redshift Survey (2dFGRS) for the redshift range 0.035
Solving the additive eigenvalue problem associated to a dynamics of a 2D-traffic system
Nadir Farhi
2009-08-25T23:59:59.000Z
This is a technical note where we solve the additive eigenvalue problem associated to a dynamics of a 2D-traffic system. The traffic modeling is not explained here. It is available in \\cite{Far08}. It consists of a microscopic road traffic model of two circular roads crossing on one junction managed with the priority-to-the-right rule. It is based on Petri nets and minplus algebra. One of our objectives in \\cite{Far08} was to derive the fundamental diagram of 2D-traffic, which is the relation between the density and the flow of vehicles. The dynamics of this system, derived from a Petri net design, is non monotone and additively homogeneous of degree 1. In this note, we solve the additive eigenvalue problem associated to this dynamics.
Bill2d -- a software package for classical two-dimensional Hamiltonian systems
Solanpää, Janne; Räsänen, Esa
2015-01-01T23:59:59.000Z
We present Bill2d, a modern and efficient C++ package for classical simulations of two-dimensional Hamiltonian systems. Bill2d can be used for various billiard and diffusion problems with one or more charged particles with interactions, different external potentials, an external magnetic field, periodic and open boundaries, etc. The software package can also calculate many key quantities in complex systems such as Poincar\\'e sections, survival probabilities, and diffusion coefficients. While aiming at a large class of applicable systems, the code also strives for ease-of-use, efficiency, and modularity for the implementation of additional features. The package comes along with a user guide, a developer's manual, and a documentation of the application program interface (API).
Analysis results from the Los Alamos 2D/3D program
Boyack, B.E.; Cappiello, M.W.; Harmony, S.C.; Shire, P.R.; Siebe, D.A.
1987-01-01T23:59:59.000Z
Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test-facility operations based on analysis of pressurized water reactors; performance of pretest and posttest predictions and analyses; and use of experimental results to validate and assess the single- and multi-dimensional, nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During fiscal year 1987, Los Alamos conducted analytical assessment activities using data from the Slab Core Test Facility, The Cylindrical Core Test Facility, and the Upper Plenum Test Facility. Finally, Los Alamos continued work to provide TRAC improvements. In this paper, Los Alamos activities during fiscal year 1987 will be summarized; several significant accomplishments will be described in more detail to illustrate the work activities at Los Alamos.
Neutrino masses and the number of neutrino species from WMAP and 2dFGRS
Steen Hannestad
2003-03-04T23:59:59.000Z
We have performed a thorough analysis of the constraints which can be put on neutrino parameters from cosmological observations, most notably those from the WMAP satellite and the 2dF galaxy survey. For this data we find an upper limit on the sum of active neutrino mass eigenstates of \\sum m_nu < 1.0 eV (95% conf.), but this limit is dependent on priors. We find that the WMAP and 2dF data alone cannot rule out the evidence from neutrinoless double beta decay reported by the Heidelberg-Moscow experiment. In terms of the relativistic energy density in neutrinos or other weakly interacting species we find, in units of the equivalent number of neutrino species, N_nu, that N_nu = 4.0+3.0-2.1 (95% conf.). When BBN constraints are added, the bound on N_\
2-D studies of Relativistic electron beam plasma instabilities in an inhomogeneous plasma
Shukla, Chandrashekhar; Patel, Kartik
2015-01-01T23:59:59.000Z
Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [Phys. Rev Letts. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nano tube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and simulations with the help of 2-D Particle - In - Cell code. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/ks...
Mass Splitting of Staggered Fermion and $SO(2D)$ Clifford Algebra
M. Hatakeyama; H. Sawanaka; H. So
2006-09-28T23:59:59.000Z
We present a new method to introduce rotationally invariant terms in staggered fermions which is based on an $SO(2D)$ Clifford algebra formulation, where $D$ means the number of space-time dimensions. We have four candidates for improved mass terms that can split the degenerate mass of staggered fermions. Among them, we analyze three types of combinations and find only one case that can identify with the light single Dirac mode.
Advances in Fast 2-D Camera Data Handling and Analysis on NSTX
Princeton Plasma Physics Laboratory
4.8 800x600 150 32x32 12 Photron Fastcam 750 1500 2.0 1024x1024 120 128x16 10 Miro 2 50 2000 1.2 800 turbulence in gas puffs · The propagation of ELMs and MARFEs · Heat loading on plasma facing components Advances in Fast 2D Cameras on NSTX. Davis. 5June 15-19, 2009 ELM formation with and without background
2D radiative modelling of He I spectral lines formed in solar prominences
L. Leger; F. Paletou
2008-07-11T23:59:59.000Z
We present preliminary results of 2D radiative modelling of He I lines in solar prominences, using a new numerical code developed by us (Leger, Chevallier and Paletou 2007). It treats self-consistently the radiation transfer and the non-LTE statistical equilibrium of H and, in a second stage, the one of He using a detailed atomic model. Preliminary comparisons with new visible plus near-infrared observations made at high spectral resolution with THeMIS are very satisfactory.
A New Proof on Net Upscale Energy Cascade in 2D and QG Turbulence
Eleftherios Gkioulekas; Ka Kit Tung
2006-09-30T23:59:59.000Z
A general proof that more energy flows upscale than downscale in two-dimensional (2D) turbulence and barotropic quasi-geostrophic (QG) turbulence is given. A proof is also given that in Surface QG turbulence, the reverse is true. Though some of these results are known in restricted cases, the proofs given here are pedagogically simpler, require fewer assumptions and apply to both forced and unforced cases.
THE 2dF REDSHIFT SURVEY. I. PHYSICAL ASSOCIATION AND PERIODICITY IN QUASAR FAMILIES
Fulton, C. C. [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, 6009 WA (Australia); Arp, H. C., E-mail: chris.fulton@uwa.edu.au, E-mail: arp@mpa-garching.mpg.de [Max-Planck-Institut fuer Astrophysik, Karl Schwarzschild-Str. 1, Postfach 1317, D-85741 Garching (Germany)
2012-08-01T23:59:59.000Z
We have tested for physical association of candidate companion quasars with putative parent galaxies by virtue of Karlsson periodicity in quasar redshifts. We examined galaxies from the 2dF Galaxy Redshift Survey (2dFGRS) and quasars from the 2dF Quasar Redshift Survey (2QZ) in the two declination strips (at declinations 0 Degree-Sign and -30 Degree-Sign ) covered by the 2QZ, first filtering out galaxies and quasars using the respective survey masks and observation qualities as described, and using only quasars with z {>=} 0.5 to avoid the redshift region of mixed galaxies and quasars. Around each galaxy, quasars are detected as physically associated with a putative parent galaxy if their respective redshifts conform to empirically derived constraints based on an ejection hypothesis. We ran Monte Carlo control trials against the pure physical associations by replacing the actual redshifts of the candidate companion quasars with quasar redshifts drawn randomly from each respective right ascension hour. The constraints are grouping of quasar redshifts and Karlsson periodicity of quasar redshifts.
Clerc, Thomas; Leroyer, Hadrien; Argaud, Jean-Philippe; Bouriquet, Bertrand; Ponçot, Agélique
2014-01-01T23:59:59.000Z
This paper presents a computational scheme for the determination of equivalent 2D multi-group heterogeneous reflectors in a Pressurized Water Reactor (PWR). The proposed strategy is to define a full-core calculation consistent with a reference lattice code calculation such as the Method Of Characteristics (MOC) as implemented in APOLLO2 lattice code. The computational scheme presented here relies on the data assimilation module known as "Assimilation de donn\\'{e}es et Aide \\`{a} l'Optimisation (ADAO)" of the SALOME platform developed at \\'{E}lectricit\\'{e} De France (EDF), coupled with the full-core code COCAGNE and with the lattice code APOLLO2. A first validation of the computational scheme is made using the OPTEX reflector model developed at \\'{E}cole Polytechnique de Montr\\'{e}al (EPM). As a result, we obtain 2D multi-group, spatially heterogeneous 2D reflectors, using both diffusion or $\\text{SP}_{\\text{N}}$ operators. We observe important improvements of the power discrepancies distribution over the cor...
Thomas Clerc; Alain Hébert; Hadrien Leroyer; Jean-Philippe Argaud; Bertrand Bouriquet; Agélique Ponçot
2014-05-12T23:59:59.000Z
This paper presents a computational scheme for the determination of equivalent 2D multi-group heterogeneous reflectors in a Pressurized Water Reactor (PWR). The proposed strategy is to define a full-core calculation consistent with a reference lattice code calculation such as the Method Of Characteristics (MOC) as implemented in APOLLO2 lattice code. The computational scheme presented here relies on the data assimilation module known as "Assimilation de donn\\'{e}es et Aide \\`{a} l'Optimisation (ADAO)" of the SALOME platform developed at \\'{E}lectricit\\'{e} De France (EDF), coupled with the full-core code COCAGNE and with the lattice code APOLLO2. A first validation of the computational scheme is made using the OPTEX reflector model developed at \\'{E}cole Polytechnique de Montr\\'{e}al (EPM). As a result, we obtain 2D multi-group, spatially heterogeneous 2D reflectors, using both diffusion or $\\text{SP}_{\\text{N}}$ operators. We observe important improvements of the power discrepancies distribution over the core when using reflectors computed with the proposed computational scheme, and the $\\text{SP}_{\\text{N}}$ operator enables additional improvements.
Wang, Yan
PhD) (Cotutelle) · 2010(MQRES) 2.252009 10% · 2010 · 1.8 1.32012 www.international.mq.edu.au/researchCRICOS Code 00002J " 2014 200 (COREs) " Jim Piper 20091600 (MQRES) (Cotutelle) (Joint PhD) MICHELLEWILSON 20102651 104(Cotutelle) (Joint PhD) #12; (COREs) (Ancient Cultures) -- (Animal Behaviour
Approximating Human Reaching Volumes Using Inverse Kinematics
Rodríguez, Inmaculada
of reach: standing reach, which is useful in computer animation where virtual humans have to interact. Introduction Virtual Humans are a valuable medium for gaining knowledge and understanding about the human bodyApproximating Human Reaching Volumes Using Inverse Kinematics I. Rodrígueza , M. Peinadoa , R
Focusing Inversion of Electroencephalography and Magnetoencephalography Data
Utah, University of
or magnetic #12;eld recorded outside of the head. In this paper, we present a new minimization technique to the inverse bioelectric and biomagnetic #12;eld problems are functional brain studies and clinical diagnosis of neural disease, such as epilepsy. In functional brain studies, sensory signals stimulate the subject
Inverse Problems in Engineering (Publisher: Taylor & Francis)
Vajda, Sandor
detailed Tables of Laplace transform pairs and employing some basic properties. A more recent alternative1 Inverse Problems in Engineering (Publisher: Taylor & Francis) Volume 10, Number 5, Year 2002, pp. Valkó1 and Sandor Vajda2 1 Harold Vance Department of Petroleum Engineering, Texas A&M University mail
2, 413445, 2008 Surface inversion on
Boyer, Edmond
variations in surface flow velocity and topography along a flow line on ice streams and ice sheets of spatial variations in basal topography and basal slipperiness on surface data can be accurately separatedTCD 2, 413445, 2008 Surface inversion on ice streams G. H. Gudmundsson and M. Raymond Title Page
Transdimensional Approaches to Geophysical Inverse Problems
Bodin, Thomas
complicated and quantitative mechanisms with simple qualitative concepts. This research was supported underTransdimensional Approaches to Geophysical Inverse Problems Thomas Bodin October 2010 A thesis Except where otherwise indicated in the text, the research described in this thesis is my own original
Wavelet Decomposition Approaches to Statistical Inverse Problems
Abramovich, Felix
Wavelet Decomposition Approaches to Statistical Inverse Problems BY F. ABRAMOVICH Department alternative is the waveletÂvaguelette decomposition method, based on the expansion of the unknown in wavelet series. In the vagueletteÂwavelet decomposition method proposed here, the observed data are expanded
An inverse of the modular invariant
Semjon Adlaj
2011-10-14T23:59:59.000Z
During the last few years of his life, Ramanujan had adamantly tried to invert the modular invariant. Subsequent efforts failed until May 30, 2011 when an explicit closed formula for an inverse was presented at the CCRAS (Moscow, Russia). This very formula, along with some special values of the modular invariant, is given in this paper.
INVERSION FOR APPLIED GEOPHYSICS: A TUTORIAL
Oldenburg, Douglas W.
INVERSION FOR APPLIED GEOPHYSICS: A TUTORIAL Douglas W. Oldenburg* and Yaoguo Li** * UBC-Geophysical, V6T 1Z4 ** Department of Geophysics, Colorado School of Mines, Golden, Colorado, 80401 INTRODUCTION Throughout this book there are numerous cases where geophysics has been used to help solve practical
Inverse Problems for Fractional Diffusion Equations
Zuo, Lihua
2013-06-21T23:59:59.000Z
and preliminaries in Section 1 and 2, in the third section we consider our first inverse boundary problem. This is where an unknown boundary condition is to be determined from overposed data in a time- fractional diffusion equation. Based upon the fundamental...
Bruneau, Steve
in Pack Ice Roelof C. Dragt Offshore Engineering Faculty of Mechanical, Maritime and Material Engineering of experiments to validate a Graphics Processing Unit based numerical modelling of ship operations in 2D pack ice interaction, 2D Model Experiments, Image Processing. I. INTRODUCTION A ship travelling through pack ice
A Computational Study of Metal-Contacts to Beyond-Graphene 2D Semiconductor Materials Jiahao Kang+
A Computational Study of Metal-Contacts to Beyond-Graphene 2D Semiconductor Materials Jiahao Kang]-[5]. The mobility of carriers in TMD semiconductors is currently lower than in graphene although it can be boosted guidelines for novel 2D semiconductor device design and fabrication. I. Introduction As CMOS technology
Simulating the FTICR-MS Signal of a Decaying Beryllium-7 Ion Plasma in a 2D Electrostatic PIC Code
Hart, Gus
Simulating the FTICR-MS Signal of a Decaying Beryllium-7 Ion Plasma in a 2D Electrostatic PIC Code the FTICR-MS Signal of a Decaying Beryllium-7 Ion Plasma in a 2D Electrostatic PIC Code Michael Takeshi Nakata Department of Physics and Astronomy Doctor of Philosophy Beryllium-7 (Be-7) only decays
A fast multipole boundary element method for 2D viscoelastic problems X.Y. Zhu a,d
Liu, Yijun
A fast multipole boundary element method for 2D viscoelastic problems X.Y. Zhu a,d , W.Q. Chen b Available online 21 August 2010 Keywords: Boundary element method Fast multipole method Viscoelasticity Multi-inclusion composite a b s t r a c t A fast multipole formulation for 2D linear viscoelastic
Cerveny, Vlastislav
Lyapunov exponents for 2-D ray tracing without interfaces Ludek Klimes , Department of Geophysics, Charles University, Prague, Czech Republic Summary The Lyapunov exponents asymptotically quantify the ex- ponential divergence of rays. The \\Lyapunov exponent" for a nite 2-D ray and the average \\Lyapunov exponents
A novel 2D coordination polymer based on a copper(II) tetramer with p-sulfonated thiacalix[4]arene
Gao, Song
A novel 2D coordination polymer based on a copper(II) tetramer with p-sulfonated thiacalix[4]arene and sulfato-bridged Cu(II) tetramer coor- dinating to fully deprotonated p-sulfonated thiacalix[4]arene.V. All rights reserved. Keywords: Crystal structure; 2D Coordination polymer; Copper tetramer; p
Severinghaus, Jeffrey P.
In situ cosmogenic radiocarbon production and 2-D ice flow line modeling for an Antarctic blue ice; accepted 12 April 2012; published 24 May 2012. [1] Radiocarbon measurements at ice margin sites and blue and 2-D ice flow line modeling for an Antarctic blue ice area, J. Geophys. Res., 117, F02029, doi:10
Finger length ratio (2D:4D) and sex differences in aggression during a simulated war game
Cosmides, Leda
Finger length ratio (2D:4D) and sex differences in aggression during a simulated war game Matthew H), and unprovoked attack during a simulated war game (n = 176). We also investigated whether 2D:4D mediated; Narcissism, social dominance orientation; Stress; Self-esteem; Aggression; War 0191-8869/$ - see front matter
United States and France Sign Joint Statement on Civil Liability...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
and France Sign Joint Statement on Civil Liability for Nuclear Damage United States and France Sign Joint Statement on Civil Liability for Nuclear Damage Joint Statement Signed.pdf...
Riaud, Antoine; Charron, Eric; Bussonničre, Adrien; Matar, Olivier Bou
2015-01-01T23:59:59.000Z
From radio-electronics signal analysis to biological samples actuation, surface acoustic waves (SAW) are involved in a multitude of modern devices. Despite this versatility, SAW transducers developed up to date only authorize the synthesis of the most simple standing or progressive waves such as plane and focused waves. In particular, acoustical integrated sources able to generate acoustical vortices (the analogue of optical vortices) are missing. In this work, we propose a flexible tool based on inverse filter technique and arrays of SAW transducers enabling the synthesis of prescribed complex wave patterns at the surface of anisotropic media. The potential of this setup is illustrated by the synthesis of a 2D analog of 3D acoustical vortices, namely "swirling surface acoustic waves". Similarly to their 3D counterpart, they appear as concentric structures of bright rings with a phase singularity in their center resulting in a central dark spot. Swirling SAW can be useful in fragile sensors whose neighborhood...
Fast Inverse Nonlinear Fourier Transform For Generating Multi-Solitons In Optical Fiber
Wahls, Sander
2015-01-01T23:59:59.000Z
The achievable data rates of current fiber-optic wavelength-division-multiplexing (WDM) systems are limited by nonlinear interactions between different subchannels. Recently, it was thus proposed to replace the conventional Fourier transform in WDM systems with an appropriately defined nonlinear Fourier transform (NFT). The computational complexity of NFTs is a topic of current research. In this paper, a fast inverse NFT algorithm for the important special case of multi-solitonic signals is presented. The algorithm requires only $\\mathcal{O}(D\\log^{2}D)$ floating point operations to compute $D$ samples of a multi-soliton. To the best of our knowledge, this is the first algorithm for this problem with $\\log^{2}$-linear complexity. The paper also includes a many samples analysis of the generated nonlinear Fourier spectra.
Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...
Broader source: Energy.gov (indexed) [DOE]
the presentation slides from the "Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar" held November 20, 2012. Joint Fuel Cell Technologies Office and...
Phosphine oxide derivatives as hosts for blue phosphors: A joint...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
oxide derivatives as hosts for blue phosphors: A joint theoretical and experimental study of their electronic Phosphine oxide derivatives as hosts for blue phosphors: A joint...
Joint Maintenance Status Report of Potomac Electric Power Company...
Office of Environmental Management (EM)
Joint Maintenance Status Report of Potomac Electric Power Company amd PJM Interconnection, LLC Joint Maintenance Status Report of Potomac Electric Power Company amd PJM...
Senior International Energy Officials Issue Joint Statement in...
Senior International Energy Officials Issue Joint Statement in Support of the Global Nuclear Energy Partnership Senior International Energy Officials Issue Joint Statement in...
United States and Japan Sign Joint Nuclear Energy Action Plan...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy...
Solder Joint Materials By Design | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
merit08murali16305.pdf More Documents & Publications Solder Joints of Power Electronics Solder Joints of Power Electronics Vehicle Technologies Office: 2009 Propulsion...
New Report Describes Joint Opportunities for Natural Gas and...
Office of Environmental Management (EM)
New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel Cell Vehicle Markets New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel Cell...
Sandia National Laboratories: New Report Describes Joint Opportunities...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
bilitiesCapabilitiesNew Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets New Report Describes Joint Opportunities for Natural Gas and...
Nonlinear Integral Equations for the Inverse Problem in Corrosion ...
2012-06-15T23:59:59.000Z
Nonlinear Integral Equations for the Inverse. Problem in Corrosion Detection from Partial. Cauchy Data. Fioralba Cakoni. Department of Mathematical Sciences, ...
Subject Inversion in French. The Limits of Information Structure
Boyer, Edmond
Marie Lit. the book that has written Marie b. Presentative inversion [pres-inv]: Alors entra un soldat
Sealed joint structure for electrochemical device
Tucker, Michael C; Jacobson, Craig P; De Jonghe, Lutgard C; Visco, Steven J
2013-05-21T23:59:59.000Z
Several members make up a joint in a high-temperature electrochemical device, wherein the various members perform different functions. The joint is useful for joining multiple cells (generally tubular modules) of an electrochemical device to produce a multi-cell segment-in-series stack for a solid oxide fuel cell, for instance. The joint includes sections that bond the joining members to each other; one or more seal sections that provide gas-tightness, and sections providing electrical connection and/or electrical insulation between the various joining members. A suitable joint configuration for an electrochemical device has a metal joint housing, a first porous electrode, a second porous electrode, separated from the first porous electrode by a solid electrolyte, and an insulating member disposed between the metal joint housing and the electrolyte and second electrode. One or more brazes structurally and electrically connects the first electrode to the metal joint housing and forms a gas tight seal between the first electrode and the second electrode.
INSPECTION OF FUSION JOINTS IN PLASTIC PIPE
Alex Savitski; Connie Reichert; John Coffey
2005-07-13T23:59:59.000Z
The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.
INSPECTION OF FUSION JOINTS IN PLASTIC PIPE
Alex Savitski; Connie Reichert; John Coffey
2004-07-13T23:59:59.000Z
The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.
Parallel matrix inversion for the revised simplex method -A study
Hall, Julian
Parallel matrix inversion for the revised simplex method - A study Julian Hall School of Mathematics University of Edinburgh June 15th 2006 Parallel matrix inversion for the revised simplex method - a study #12;Overview · Nature of the challenge of matrix inversion for the revised simplex method #12
Parallel matrix inversion for the revised simplex method -A study
Hall, Julian
Parallel matrix inversion for the revised simplex method - A study Julian Hall School of Mathematics University of Edinburgh June 15th 2006 Parallel matrix inversion for the revised simplex method - a study #12;Overview · Nature of the challenge of matrix inversion for the revised simplex method
Experimental Observation of Femtosecond Electron Beam Microbunching by Inverse
Brookhaven National Laboratory
Experimental Observation of Femtosecond Electron Beam Microbunching by Inverse FreeElectronLaser scale of ß 2.5 Żm by an Inverse Free Electron Laser (IFEL) accelerator was observed. The optimum Cerenkov accelerator (ICA)[5], inverse free electron laser (IFEL) [6] and plasma laser accelerators [7, 8
Statistics of Voids in the 2dF Galaxy Redshift Survey
Santiago G. Patiri; Juan Betancort-Rijo; Francisco Prada; Anatoly Klypin; Stefan Gottlöber
2006-10-27T23:59:59.000Z
We present a statistical analysis of voids in the 2dF galaxy redshift survey (2dFGRS). In order to detect the voids, we have developed two robust algorithms. We define voids as non-overlapping maximal spheres empty of halos or galaxies with mass or luminosity above a given one. We search for voids in cosmological $N$-Body simulations to test the performance of our void finders. We obtain and analyze the void statistics for several volume-limited samples for the North Galactic Strip (NGP) and the South Galactic Strip (SGP) constructed from the 2dFGRS full data release. We find that the results obtained from the NGP and the SGP are statistically compatible. From the results of several statistical tests we conclude that voids are essentially uncorrelated, with at most a mild anticorrelation and that there is a dependence of the void number density on redshift at least at the 99.5% confidence level. We develop a technique to correct the distortion caused by the fact that we use the redshift as the radial coordinate. We calibrate this technique with mock catalogues and find that the correction might be of some relevance to carry out accurate inferences from void statistics. We study the statistics of the galaxies inside nine nearby voids. We find that galaxies in voids are not randomly distributed: they form structures like filaments. We also obtain the galaxy number density profile in voids. This profile follow a similar but steeper trend to that follow by halos in voids.
Numerical studies of the melting transition in 2D Yukawa systems
Hartmann, P.; Donko, Z. [Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49 (Hungary); Kalman, G. J. [Department of Physics, Boston College, Chestnut Hill, MA 02467 (United States)
2008-09-07T23:59:59.000Z
We present the latest results of our systematic studies of the solid--liquid phase transition in 2D classical many-particle systems interacting with the Yukawa potential. Our previous work is extended by applying the molecular dynamic simulations to systems with up to 1.6 million particles in the computational box (for {kappa} = 2 case). Equilibrium simulations are performed for different coupling parameters in the vicinity of the expected melting transition ({gamma}{sub m}{sup {kappa}}{sup ={sup 2}}{approx_equal}415) and a wide range of observables are averaged over uncorrelated samples of the micro-canonical ensemble generated by the simulations.
Permeability through a perforated domain for the incompressible 2D Euler equations
Virginie Bonnaillie-Noël; Christophe Lacave; Nader Masmoudi
2013-06-17T23:59:59.000Z
We investigate the influence of a perforated domain on the 2D Euler equations. Small inclusions of size $\\varepsilon$ are uniformly distributed on the unit segment or a rectangle, and the fluid fills the exterior. These inclusions are at least separated by a distance $\\varepsilon^\\alpha$ and we prove that for $\\alpha$ small enough (namely, less than 2 in the case of the segment, and less than 1 in the case of the square), the limit behavior of the ideal fluid does not feel the effect of the perforated domain at leading order when $\\varepsilon\\to 0$.
GPU computing for 2-d spin systems: CUDA vs OpenGL
Viola Anselmi; Giovanni Conti; Francesco Di Renzo
2008-11-13T23:59:59.000Z
In recent years the more and more powerful GPU's available on the PC market have attracted attention as a cost effective solution for parallel (SIMD) computing. CUDA is a solid evidence of the attention that the major companies are devoting to the field. CUDA is a hardware and software architecture developed by Nvidia for computing on the GPU. It qualifies as a friendly alternative to the approach to GPU computing that has been pioneered in the OpenGL environment. We discuss the application of both the CUDA and the OpenGL approach to the simulation of 2-d spin systems (XY model).
Learning to segment texture in 2D vs. 3D : A comparative study
Oh, Se Jong
2004-11-15T23:59:59.000Z
and content by: Yoonsuck Choe (Chair of Committee) Ricardo Gutierrez-Osuna (Member) Takashi Yamauchi (Member) Valerie Taylor (Head of Department) August 2004 Major Subject: Computer Science iii ABSTRACT Learning to Segment Texture in 2D vs. 3D : A Comparative... research from him through many interesting discussions. I really appreciate his efforts that have been mirrored in every page of this thesis. I would also like to express my gratitude to my committee members, Dr. Ri- cardo Gutierrez-Osuna and Dr. Takashi...
Entanglement entropy through conformal interfaces in the 2D Ising model
Enrico M. Brehm; Ilka Brunner
2015-05-22T23:59:59.000Z
We consider the entanglement entropy for the 2D Ising model at the conformal fixed point in the presence of interfaces. More precisely, we investigate the situation where the two subsystems are separated by a defect line that preserves conformal invariance. Using the replica trick, we compute the entanglement entropy between the two subsystems. We observe that the entropy, just like in the case without defects, shows a logarithmic scaling behavior with respect to the size of the system. Here, the prefactor of the logarithm depends on the strength of the defect encoded in the transmission coefficient. We also comment on the supersymmetric case.
2D Schrödinger Equation with Mixed Potential in Noncommutaive Complex space
Slimane Zaim; Hakim Guelmamene; Abdelkader Bahache
2014-10-01T23:59:59.000Z
We obtain exact solutions of the 2D Schr\\"odinger equation for Hydrogen atom with the lenear and Harmonic Potentials in noncommutative complex space, using the Power-series expansion method. Hence we can say that the Schr\\"odinger equation in noncommutative complex space describes to the particles with spin (1/2)in an external uniform magnitic field. Where the noncommutativity play the role of magnetic field with created the total magnetic moment of particle with spin 1/2, who in turn shifted the spectrum of energy. Such effects are similar to the Zeeman splitting in a commutative space.
The Benefits of 3D vs. 2D Analysis | GE Global Research
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey Inside theFacebookTechnicalBio-InspiredtechnologiesTechnology The1The Benefits of 3D vs. 2D
IEF and NEPHGE 2-D PAGE Basic tube gel recipe, 5 ml volume
Aris, John P.
40 IEF and NEPHGE 2-D PAGE Basic tube gel recipe, 5 ml volume: Urea 2.75 g (ultrapure only) ddH2O 1 overnight with 5% Chem-Solv prior to pouring gels. Lysis buffer recipe, 1 ml volume: Urea 0.55 g (ultrapure) ( - ) (+) Final, 20 mM NaOH and 10 mM H3PO4. Agarose sealer recipe, 10 ml volume: 5X upper (6.8) 2 ml ddH2O 6 ml ß
IR Renormalisation of General Effective Actions and Hawking Flux in 2D Gravity Theories
D. Hofmann; W. Kummer
2005-12-29T23:59:59.000Z
The infrared problem of the effective action in 2D is discussed in the framework of the Covariant Perturbation Theory. The divergences are regularised by a mass and the leading term is evaluated up to the third order of perturbation theory. A summation scheme is proposed which isolates the divergences from the finite part of the series and results in a single term. The latter turns out to be equivalent to the coupling to a certain classical external field. This suggests a renormalisation by factorisation.
Regularity of mappings inverse to Sobolev mappings
Vodop'yanov, Sergei K [S.L. Sobolev Institute for Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)
2012-10-31T23:59:59.000Z
For homeomorphisms {phi}:{Omega}{yields}{Omega}' on Euclidean domains in R{sup n}, n{>=}2, necessary and sufficient conditions ensuring that the inverse mapping belongs to a Sobolev class are investigated. The result obtained is used to describe a new two-index scale of homeomorphisms in some Sobolev class such that their inverses also form a two-index scale of mappings, in another Sobolev class. This scale involves quasiconformal mappings and also homeomorphisms in the Sobolev class W{sup 1}{sub n-1} such that rankD{phi}(x){<=}n-2 almost everywhere on the zero set of the Jacobian det D{phi}(x). Bibliography: 65 titles.
Inverse folding of RNA pseudoknot structures
Gao, James Z M; Reidys, Christian M
2009-01-01T23:59:59.000Z
Results: In this paper we present the inverse folding algorithm {\\tt inv} as well as two applications. We give a detailed analysis of {\\tt inv}, including pseudocodes. The algorithm is freely available at \\url{http://www.combinatorics.cn/cbpc/inv.html}. We show, using 3-noncrossing nonplanar RNA pseudoknot structures as an example, that {\\tt inv} allows to design specific 3-noncrossing RNA structures. Furthermore we use {\\tt inv} for estimating the distance of the neutral networks. Conclusions: The algorithm {\\tt inv} extends inverse folding capabilities to RNA pseudoknot structures. In comparison with {\\tt RNAinverse} it uses new ideas, for instance by taking sets of competing structures into consideration. As a result, {\\tt inv} is able to find novel sequences even for RNA secondary structures.
The Product Form of the Inverse
Ward, Everett Bascomb
1966-01-01T23:59:59.000Z
the equations as follows: 19 s(1) X2 = El A2, or 0 0 1 2 1 1 0 0 0 1 v = Lo, 3, 0], and E (&) 2 1 0 0 0 ? 0 1 3 I 0 0 1 the inverse A2 of the new matrix A2 is computed. as follows: A -1 Es(2)A -1 Es(2)Es(1) 2 2 1 2 1 or ? -1 A2 1 0 0 0 ? 0.... column vector v of the elementary matrix E 3 is given by the equation of (2, 16 i as v = [-l, p, 2j, 1 1 thus Es{3) 3 0 -1 1 1 0 1 2 Therefore, the inverse A of A is computed by the equation -1 of (2. 10) as follows: A-1 = A -1 ? Es( A -1 Es(3...
Lagrange Inversion via Transforms Heinrich Niederhausen
Niederhausen, Heinrich
is called the order of , n = ord( ), and the set of all Laurent series is denoted by K btc. As indicated in K btc is de...ned as multiplication of series. A multi- plicative inverse (reciprocal) exists in K btc 0 K btc, the set of all Laurent series where the ...rst non-zero term is a unit in K, i.e. has
The Joint Cascade of Energy and Helicity in Three-Dimensional Turbulence
Qiaoning Chen; Shiyi Chen; Gregory L. Eyink
2002-06-18T23:59:59.000Z
Three-dimensional (3D) turbulence has both energy and helicity as inviscid constants of motion. In contrast to two-dimensional (2D) turbulence, where a second inviscid invariant--the enstrophy--blocks the energy cascade to small scales, in 3D there is a joint cascade of both energy and helicity simultaneously to small scales. The basic cancellation mechanism which permits a joint cascade of energy and helicity is illuminated by means of the helical decomposition of the velocity into positively and negatively polarized waves. This decomposition is employed in the present study both theoretically and also in a numerical simulation of homogeneous and isotropic 3D turbulence. It is shown that the transfer of energy to small scales produces a tremendous growth of helicity separately in the + and - helical modes at high wavenumbers, diverging in the limit of infinite Reynolds number. However, because of a tendency to restore reflection invariance at small scales, the net helicity from both modes remains finite in that limit. The net helicity flux is shown to be constant all the way up to the Kolmogorov wavenumber: there is no shorter inertial-range for helicity cascade than for energy cascade. The transfer of energy and helicity between + and - modes, which permits the joint cascade, is shown to be due to two distinct physical processes, advection and vortex stretching.
IJCNLP 2008 Third International Joint Conference
IJCNLP 2008 Third International Joint Conference on Natural Language Processing Proceedings of the Conference Organizer Asian Federation of Natural Language Processing Local Host International Institute Organization Council for Scientific and Industrial Research #12;Preface: Conference Chair Dear colleagues
Mouse models of osteoarthritis and joint injury
Avedillo, Jose Enrique
2012-01-01T23:59:59.000Z
Nearly 21 million Americans are affected by osteoarthritis, a complex disease characterized by degenerative lesions to the articular cartilage and subchondral bone in the joints. The complexity of the disease makes the use ...
Joint Actinide Shock Physics Experimental Research - JASPER
None
2014-10-31T23:59:59.000Z
Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.
Joint Genome Institute's Automation Approach and History
Roberts, Simon
2006-07-05T23:59:59.000Z
Department of Energy/Joint Genome Institute (DOE/JGI) collaborates with DOE national laboratories and community users, to advance genome science in support of the DOE missions of clean bio-energy, carbon cycling, and bioremediation.
Joint Actinide Shock Physics Experimental Research - JASPER
None
2015-01-09T23:59:59.000Z
Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.
Safety Monitor Joint Working Group (JWG) Tour
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
4 th Meeting of the Joint Working Group of the U.S.-Japan Coordinating Committee of Fusion Energy on Safety in Inter-Institutional Collaborations (U.S.-Japan Safety Monitoring...
Joint microseismic event location with uncertain velocity
Poliannikov, Oleg V.
2013-01-01T23:59:59.000Z
We study the problem of the joint location of seismic events using an array of receivers. We show that locating multiple seismic events simultaneously is advantageous compared to the more traditional approaches of locating ...
2015 Joint Capability Technology Demonstration Industry Day
Broader source: Energy.gov [DOE]
The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capability Technology Demonstration (JCTD) Phase 3 Industry Day will be on August 27, 2015, from 8 a.m. to noon at the Hawaii Convention Center.
Chen, J.
2013-01-01T23:59:59.000Z
seismic AVA and CSEM data for reservoir parameter estimationseismic AVA and CSEM data for reservoir parameter estimationCSEM and seismic data for reservoir parameters based on
A Module for Radiation Hydrodynamic Calculations With ZEUS-2D Using Flux-Limited Diffusion
N. J. Turner; J. M. Stone
2001-02-08T23:59:59.000Z
A module for the ZEUS-2D code is described which may be used to solve the equations of radiation hydrodynamics to order unity in v/c, in the flux-limited diffusion (FLD) approximation. In this approximation, the tensor Eddington factor f which closes the radiation moment equations is chosen to be an empirical function of radiation energy density. This is easier to implement and faster than full-transport techniques, in which f is computed by solving the transfer equation. However, FLD is less accurate when the flux has a component perpendicular to the gradient in radiation energy density, and in optically thin regions when the radiation field depends strongly on angle. The material component of the fluid is here assumed to be in local thermodynamic equilibrium. The energy equations are operator-split, with transport terms, radiation diffusion term, and other source terms evolved separately. Transport terms are applied using the same consistent transport algorithm as in ZEUS-2D. The radiation diffusion term is updated using an alternating-direction implicit method with convergence checking. Remaining source terms are advanced together implicitly using numerical root-finding. However when absorption opacity is zero, accuracy is improved by treating compression and expansion source terms using time-centered differencing. Results are discussed for test problems including radiation-damped linear waves, radiation fronts propagating in optically-thin media, subcritical and supercritical radiating shocks, and an optically-thick shock in which radiation dominates downstream pressure.
Directional Statistics for WIMP direct detection II: 2-d read-out
Ben Morgan; Anne M. Green
2005-11-17T23:59:59.000Z
The direction dependence of the WIMP direct detection rate provides a powerful tool for distinguishing a WIMP signal from possible backgrounds. We study the the number of events required to discriminate a WIMP signal from an isotropic background for a detector with 2-d read-out using non-parametric circular statistics. We also examine the number of events needed to i) detect a deviation from rotational symmetry, due to flattening of the Milky Way halo and ii) detect a deviation in the mean direction due to a tidal stream. If the senses of the recoils are measured then of order 20-70 events (depending on the plane of the 2-d read out) will be sufficient to reject isotropy of the raw recoil angles at 90% confidence. If the senses can not be measured these number increase by roughly two orders of magnitude (compared with an increase of one order of magnitude for the case of full 3-d read-out). The distributions of the reduced angles, with the (time dependent) direction of solar motion subtracted, are far more anisotropic, however, and if the isotropy tests are applied to these angles then the numbers of events required are similar to the case of 3-d read-out. A deviation from rotational symmetry will only be detectable if the Milky Way halo is significantly flattened. The deviation in the mean direction due to a tidal stream is potentially detectable, however, depending on the density and direction of the stream.
A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation
Larsen, Edward
2013-06-17T23:59:59.000Z
The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.
The 2D surfaces that generate Newtonian and general relativistic orbits with small eccentricities
Chad A. Middleton
2015-06-09T23:59:59.000Z
Embedding diagrams prove to be quite useful when learning general relativity as they offer a way of visualizing spacetime curvature through warped two dimensional (2D) surfaces. In this manuscript we present a different 2D construct that also serves as a useful conceptual tool for gaining insight into gravitation, in particular, orbital dynamics - namely the cylindrically symmetric surfaces that generate Newtonian and general relativistic orbits with small eccentricities. Although we first show that no such surface exists that can exactly reproduce the arbitrary bound orbits of Newtonian gravitation or of general relativity (or, more generally, of any spherically symmetric potential), surfaces do exist that closely approximate the resulting orbital motion for small eccentricities; exactly the regime that describes the motion of the solar system planets. These surfaces help to illustrate the similarities, as well as the differences, between the two theories of gravitation (i.e. stationary elliptical orbits in Newtonian gravitation and precessing elliptical-like orbits in general relativity) and offer, in this age of 3D printing, an opportunity for students and instructors to experimentally explore the predictions made by each.
Analysis results from the Los Alamos 2D/3D program
Boyack, B.E.; Cappiello, M.W.; Stumpf, H.; Shire, P.; Gilbert, J.; Hedstrom, J.
1986-01-01T23:59:59.000Z
Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test facility operations based on analysis of pressurized water reactors; performance of pretest and posttest predictions and analyses; and use of experimental results to validate and assess the single- and multidimensional nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During Fiscal Year 1986, Los Alamos conducted analytical assessment activities using data from the Cylindrical Core Test Facility and the Slab Core Test Facility. Los Alamos also continued to provide support analysis for the planning of Upper Plenum Test Facility experiments. Finally, Los Alamos either completed or is currently working on three areas of TRAC modeling improvement. In this paper, Los Alamos activities during Fiscal Year 1986 are summarized; several significant accomplishments are described in more detail to illustrate the work activities at Los Alamos.
Use of 2D/3D data for peak cladding temperature uncertainty studies
Boyack, B.E.
1988-01-01T23:59:59.000Z
In August 1988, the Nuclear Regulatory Commission (NRC) approved the final version of a revised rule on the acceptance of emergency core cooling systems. The revised rule allows emergency core cooling system analysis based on best-estimate methods, provided uncertainties in the prediction of prescribed acceptance limits are quantified and reported. To support the revised rule, the NRC developed the Code Scaling, Applicability, and Uncertainty (CSAU) evaluation methodology. Data from the 2D/3D program have been used in a demonstration of the CSAU methodology in two ways. First, the data were used to identify and quantify biases that are related to the implementation of selected correlations and models in the thermal-hydraulic systems code TRAC-PF1/MOD1 as it is used to calculate the demonstration transient, a large-break loss-of-coolant accident. Second, the data were used in a supportive role to provide insight into the accuracy of code calculations and to confirm conclusions that are drawn regarding specific CSAU studies. Examples are provided illustrating each of these two uses of 2D/3D data. 9 refs., 7 figs.
Reactor safety issues resolved by the 2D/3D Program. International Agreement Report
Damerell, P.S.; Simons, J.W. [eds.] [MPR Associates, Inc., Washington, DC (United States)
1993-07-01T23:59:59.000Z
The 2D/3D Program studied multidimensional thermal-hydraulics in a PWR core and primary system during the end-of-blowdown and post-blowdown phases of a large-break LOCA (LBLOCA), and during selected small-break LOCA (SBLOCA) transients. The program included tests at the Cylindrical Core Test Facility (CCTF), the Slab Core Test Facility (SCTF), and the Upper Plenum Test Facility (UPTF), and computer analyses using TRAC. Tests at CCTF investigated core thermal-hydraulics and overall system behavior while tests at SCTF concentrated on multidimensional core thermal-hydraulics. The UPTF tests investigated two-phase flow behavior in the downcomer, upper plenum, tie plate region, and primary loops. TRAC analyses evaluated thermal-hydraulic behavior throughout the primary system in tests as well as in PWRs. This report summarizes the test and analysis results in each of the main areas where improved information was obtained in the 2D/3D Program. The discussion is organized in terms of the reactor safety issues investigated.
X-CSIT: a toolkit for simulating 2D pixel detectors
Joy, Ashley; Hauf, Steffen; Kuster, Markus; Rüter, Tonn
2015-01-01T23:59:59.000Z
A new, modular toolkit for creating simulations of 2D X-ray pixel detectors, X-CSIT (X-ray Camera SImulation Toolkit), is being developed. The toolkit uses three sequential simulations of detector processes which model photon interactions, electron charge cloud spreading with a high charge density plasma model and common electronic components used in detector readout. In addition, because of the wide variety in pixel detector design, X-CSIT has been designed as a modular platform so that existing functions can be modified or additional functionality added if the specific design of a detector demands it. X-CSIT will be used to create simulations of the detectors at the European XFEL, including three bespoke 2D detectors: the Adaptive Gain Integrating Pixel Detector (AGIPD), Large Pixel Detector (LPD) and DePFET Sensor with Signal Compression (DSSC). These simulations will be used by the detector group at the European XFEL for detector characterisation and calibration. For this purpose, X-CSIT has been integrat...
Prasad Perlekar; Nairita Pal; Rahul Pandit
2015-06-29T23:59:59.000Z
We study two-dimensional (2D) binary-fluid turbulence by carrying out an extensive direct numerical simulation (DNS) of the forced, statistically steady turbulence in the coupled Cahn-Hilliard and Navier-Stokes equations. In the absence of any coupling, we choose parameters that lead (a) to spinodal decomposition and domain growth, which is characterized by the spatiotemporal evolution of the Cahn-Hilliard order parameter $\\phi$, and (b) the formation of an inverse-energy-cascade regime in the energy spectrum $E(k)$, in which energy cascades towards wave numbers $k$ that are smaller than the energy-injection scale $k_{inj}$ in the turbulent fluid. We show that the Cahn-Hilliard-Navier-Stokes coupling leads to an arrest of phase separation at a length scale $L_c$, which we evaluate from $S(k)$, the spectrum of the fluctuations of $\\phi$. We demonstrate that (a) $L_c \\sim L_H$, the Hinze scale that follows from balancing inertial and interfacial-tension forces, and (b) $L_c$ is independent, within error bars, of the diffusivity $D$. We elucidate how this coupling modifies $E(k)$ by blocking the inverse energy cascade at a wavenumber $k_c$, which we show is $\\simeq 2\\pi/L_c$. We compare our work with earlier studies of this problem.
CHARACTERIZATION OF DAMPING IN BOLTED LAP JOINTS
C. MALONEY; D. PEAIRS; ET AL
2000-08-01T23:59:59.000Z
The dynamic response of a jointed beam was measured in laboratory experiments. The data were analyzed and the system was mathematically modeled to establish plausible representations of joint damping behavior. Damping is examined in an approximate, local linear framework using log decrement and half power bandwidth approaches. in addition, damping is modeled in a nonlinear framework using a hybrid surface irregularities model that employs a bristles-construct. Experimental and analytical results are presented.
Feature selection for automatic solder joint inspection
Lee, Cheng-Cheng
1987-01-01T23:59:59.000Z
- heating Wave Soldering Drag Soldering Post- soldering Cleaning Inspection and Testing Vapor So Ide ring Fig. 2. 3 Typical Soldering Process 12 (5) simplicity of repair, (6) visual inspectability. The first three properties depend upon both.../testing after the soldering. Good joints after inspection can be sent to the testing process directly, while bad joints should be returned to be touched up by the operator. The types of test depend upon the product. For a typical PC board, electrical test...
Frydman, Lucio
enhancements compared to conventional NMR. Ex situ DNP achieves hyperpo- larization by cryogenic cooling, including 2D sequences optimized using small-angle pulses, repeated meltings/freezings of the sample
Development of models for the two-dimensional, two-fluid code for sodium boiling NATOF-2D
Zielinski, R. G.
1981-01-01T23:59:59.000Z
Several features were incorporated into NATOF-2D, a twodimensional, two fluid code developed at M.I.T. for the purpose of analysis of sodium boiling transients under LMFBR conditions. They include improved interfacial mass, ...
2D protrusion but not motility predicts growth factor–induced cancer cell migration in 3D collagen
Meyer, Aaron Samuel
Growth factor–induced migration is a critical step in the dissemination and metastasis of solid tumors. Although differences in properties characterizing cell migration on two-dimensional (2D) substrata versus within ...
S. Dobrokhotov; D. Minenkov; M. Rouleux
2014-09-10T23:59:59.000Z
We make use of the Maupertuis -- Jacobi correspondence, well known in Classical Mechanics, to simplify 2-D asymptotic formulas based on Maslov's canonical operator, when constructing Lagrangian manifolds invariant with respect to phase flows for Hamiltonians of the form $F(x,|p|)$. As examples we consider Hamiltonians coming from the Schr\\"odinger equation, the 2-D Dirac equation for graphene and linear water wave theory.
4D tumor centroid tracking using orthogonal 2D dynamic MRI: Implications for radiotherapy planning
Tryggestad, Erik [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905 (United States)] [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Flammang, Aaron; Shea, Steven M. [Center for Applied Medical Imaging, Siemens Corporation, Corporate Technology, Baltimore, Maryland 21205 (United States)] [Center for Applied Medical Imaging, Siemens Corporation, Corporate Technology, Baltimore, Maryland 21205 (United States); Hales, Russell; Herman, Joseph; Lee, Junghoon; McNutt, Todd; Roland, Teboh; Wong, John [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States)] [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States)
2013-09-15T23:59:59.000Z
Purpose: Current pretreatment, 4D imaging techniques are suboptimal in that they sample breathing motion over a very limited “snapshot” in time. Heretofore, long-duration, 4D motion characterization for radiotherapy planning, margin optimization, and validation have been impractical for safety reasons, requiring invasive markers imaged under x-ray fluoroscopy. To characterize 3D tumor motion and associated variability over durations more consistent with treatments, the authors have developed a practical dynamic MRI (dMRI) technique employing two orthogonal planes acquired in a continuous, interleaved fashion.Methods: 2D balanced steady-state free precession MRI was acquired continuously over 9–14 min at approximately 4 Hz in three healthy volunteers using a commercial 1.5 T system; alternating orthogonal imaging planes (sagittal, coronal, sagittal, etc.) were employed. The 2D in-plane pixel resolution was 2 × 2 mm{sup 2} with a 5 mm slice profile. Simultaneous with image acquisition, the authors monitored a 1D surrogate respiratory signal using a device available with the MRI system. 2D template matching-based anatomic feature registration, or tracking, was performed independently in each orientation. 4D feature tracking at the raw frame rate was derived using spline interpolation.Results: Tracking vascular features in the lung for two volunteers and pancreatic features in one volunteer, the authors have successfully demonstrated this method. Registration error, defined here as the difference between the sagittal and coronal tracking result in the SI direction, ranged from 0.7 to 1.6 mm (1?) which was less than the acquired image resolution. Although the healthy volunteers were instructed to relax and breathe normally, significantly variable respiration was observed. To demonstrate potential applications of this technique, the authors subsequently explored the intrafraction stability of hypothetical tumoral internal target volumes and 3D spatial probability distribution functions. The surrogate respiratory information allowed the authors to show how this technique can be used to study correlations between internal and external (surrogate) information over these prolonged durations. However, compared against the gold standard of the time stamps in the dMRI frames, the temporal synchronization of the surrogate 1D respiratory information was shown to be likely unreliable.Conclusions: The authors have established viability of a novel and practical pretreatment, 4D tumor centroid tracking method employing a commercially available dynamic MRI sequence. Further developments from the vendor are likely needed to provide a reliably synchronized surrogate 1D respiratory signal, which will likely broaden the utility of this method in the pretreatment radiotherapy planning context.
Jet theoretical Yang-Mills energy in the geometric dynamics of 2D-monolayer
M. Neagu; N. G. Krylova; H. V. Grushevskaya
2012-08-05T23:59:59.000Z
Langmuir-Blodgett films (LB-films) consist from few LB-monolayers which are high structured nanomaterials that are very promising materials for applications. We use a geometrical approach to describe structurization into LB-monolayers. Consequently, we develop on the 1-jet space J^1([0,\\infty),R^2) the single-time Lagrange geometry (in the sense of distinguished (d-) connection, d-torsions and an abstract anisotropic electromagnetic-like d-field) for the Lagrangian governing the 2D-motion of a particle of monolayer. One assumed that an expansion near singular points for the constructed geometrical Lagrangian theory describe phase transitions to LB-monolayer. Trajectories of particles in a field of the electrocapillarity forces of monolayer have been calculated in a resonant approximation utilizing some Jacobi equations. A jet geometrical Yang-Mills energy is introduced and some physical interpretations are given.
A 2-D Implicit, Energy and Charge Conserving Particle In Cell Method
McPherson, Allen L. [Los Alamos National Laboratory; Knoll, Dana A. [Los Alamos National Laboratory; Cieren, Emmanuel B. [Los Alamos National Laboratory; Feltman, Nicolas [Los Alamos National Laboratory; Leibs, Christopher A. [Los Alamos National Laboratory; McCarthy, Colleen [Los Alamos National Laboratory; Murthy, Karthik S. [Los Alamos National Laboratory; Wang, Yijie [Los Alamos National Laboratory
2012-09-10T23:59:59.000Z
Recently, a fully implicit electrostatic 1D charge- and energy-conserving particle-in-cell algorithm was proposed and implemented by Chen et al ([2],[3]). Central to the algorithm is an advanced particle pusher. Particles are moved using an energy conserving scheme and are forced to stop at cell faces to conserve charge. Moreover, a time estimator is used to control errors in momentum. Here we implement and extend this advanced particle pusher to include 2D and electromagnetic fields. Derivations of all modifications made are presented in full. Special consideration is taken to ensure easy coupling into the implicit moment based method proposed by Taitano et al [19]. Focus is then given to optimizing the presented particle pusher on emerging architectures. Two multicore implementations, and one GPU (Graphics Processing Unit) implementation are discussed and analyzed.
2D full wave modeling for a synthetic Doppler backscattering diagnostic
Hillesheim, J. C.; Schmitz, L.; Kubota, S.; Rhodes, T. L.; Carter, T. A. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Holland, C. [University of California, San Diego, La Jolla, California 92093 (United States)
2012-10-15T23:59:59.000Z
Doppler backscattering (DBS) is a plasma diagnostic used in tokamaks and other magnetic confinement devices to measure the fluctuation level of intermediate wavenumber (k{sub {theta}}{rho}{sub s}{approx} 1) density fluctuations and the lab frame propagation velocity of turbulence. Here, a synthetic DBS diagnostic is described, which has been used for comparisons between measurements in the DIII-D tokamak and predictions from nonlinear gyrokinetic simulations. To estimate the wavenumber range to which a Gaussian beam would be sensitive, a ray tracing code and a 2D finite difference, time domain full wave code are used. Experimental density profiles and magnetic geometry are used along with the experimental antenna and beam characteristics. An example of the effect of the synthetic diagnostic on the output of a nonlinear gyrokinetic simulation is presented.
Holographic Entanglement Entropy in 2D Holographic Superconductor via $AdS_3/CFT_2$
Momeni, Davood; Raza, Muhammad; Myrzakulov, Ratbay
2015-01-01T23:59:59.000Z
The aim of the present letter is to find the holographic entanglement entropy (HEE) in 2D holographic superconductors (HSC). Indeed, it possible to compute the exact form of this entropy due to a advantage of approximate solutions inside normal and superconducting phases with backreactions. By making the UV and IR limits applied to the integrals, an approximate expression is obtained. In case the software cannot calculate minimal surface integrals analytically it offers the possibility to proceed with a numerical evaluation of the corresponding terms. We'll understand how the area formula incorporates the structure of the domain wall approximation. We conclude that the wider belt angle corresponds to a larger surface holographic surface. We see that HEE changes linearly with belt angle.
The low frequency 2D vibration sensor based on flat coil element
Djamal, Mitra; Sanjaya, Edi; Islahudin; Ramli [Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia); Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia) and Department of Physics, UIN Syarif Hidayatullah, Jl. Ir.H. Djuanda 95 Ciputat 15412 (Indonesia); MTs NW Nurul Iman Kembang Kerang, Jl. Raya Mataram - Lb.Lombok, NTB (Indonesia); Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia) and Department of Physics,Universitas Negeri Padang, Jl. Prof. Hamka, Padang 25132 (Indonesia)
2012-06-20T23:59:59.000Z
Vibration like an earthquake is a phenomenon of physics. The characteristics of these vibrations can be used as an early warning system so as to reduce the loss or damage caused by earthquakes. In this paper, we introduced a new type of low frequency 2D vibration sensor based on flat coil element that we have developed. Its working principle is based on position change of a seismic mass that put in front of a flat coil element. The flat coil is a part of a LC oscillator; therefore, the change of seismic mass position will change its resonance frequency. The results of measurements of low frequency vibration sensor in the direction of the x axis and y axis gives the frequency range between 0.2 to 1.0 Hz.
Observation of Rashba zero-field spin splitting in a strained germanium 2D hole gas
Morrison, C., E-mail: c.morrison.2@warwick.ac.uk; Rhead, S. D.; Foronda, J.; Leadley, D. R.; Myronov, M. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Wi?niewski, P. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland)
2014-11-03T23:59:59.000Z
We report the observation, through Shubnikov-de Haas oscillations in the magnetoresistance, of spin splitting caused by the Rashba spin-orbit interaction in a strained Ge quantum well epitaxially grown on a standard Si(001) substrate. The Shubnikov-de Haas oscillations display a beating pattern due to the spin split Landau levels. The spin-orbit parameter and Rashba spin-splitting energy are found to be 1.0?×?10{sup ?28?}?eVm{sup 3} and 1.4?meV, respectively. This energy is comparable to 2D electron gases in III-V semiconductors, but substantially larger than in Si, and illustrates the suitability of Ge for modulated hole spin transport devices.
Holographic Entanglement Entropy in 2D Holographic Superconductor via $AdS_3/CFT_2$
Davood Momeni; Hossein Gholizade; Muhammad Raza; Ratbay Myrzakulov
2015-03-10T23:59:59.000Z
The aim of the present letter is to find the holographic entanglement entropy (HEE) in 2D holographic superconductors (HSC). Indeed, it possible to compute the exact form of this entropy due to a advantage of approximate solutions inside normal and superconducting phases with backreactions. By making the UV and IR limits applied to the integrals, an approximate expression is obtained. In case the software cannot calculate minimal surface integrals analytically it offers the possibility to proceed with a numerical evaluation of the corresponding terms. We'll understand how the area formula incorporates the structure of the domain wall approximation. We conclude that the wider belt angle corresponds to a larger surface holographic surface. We see that HEE changes linearly with belt angle.
Well-posedness and generalized plane waves simulations of a 2D mode conversion model
Lise-Marie Imbert-Gérard
2015-04-27T23:59:59.000Z
Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.
Well-posedness and generalized plane waves simulations of a 2D mode conversion model
Imbert-Gérard, Lise-Marie
2015-01-01T23:59:59.000Z
Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.
Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla
Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.
1998-11-08T23:59:59.000Z
We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn^{2+} spins.
Matter-wave 2D solitons in crossed linear and nonlinear optical lattices
H. L. F. da Luz; F. Kh. Abdullaev; A. Gammal; M. Salerno; Lauro Tomio
2010-11-08T23:59:59.000Z
It is demonstrated the existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with linear OL in the $x-$direction and nonlinear OL (NOL) in the $y-$direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance. In particular, we show that such crossed linear and nonlinear OL allows to stabilize two-dimensional (2D) solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach (VA), with the Vakhitov-Kolokolov (VK) necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation (GPE). Very good agreement of the results corresponding to both treatments is observed.
Parametric instabilities of large-amplitude parallel propagating Alfven waves: 2-D PIC simulation
Yasuhiro Nariyuki; Shuichi Matsukiyo; Tohru Hada
2008-04-25T23:59:59.000Z
We discuss the parametric instabilities of large-amplitude parallel propagating Alfven waves using the 2-D PIC simulation code. First, we confirmed the results in the past study [Sakai et al, 2005] that the electrons are heated due to the modified two stream instability and that the ions are heated by the parallel propagating ion acoustic waves. However, although the past study argued that such parallel propagating longitudinal waves are excited by transverse modulation of parent Alfven wave, we consider these waves are more likely to be generated by the usual, parallel decay instability. Further, we performed other simulation runs with different polarization of the parent Alfven waves or the different ion thermal velocity. Numerical results suggest that the electron heating by the modified two stream instability due to the large amplitude Alfven waves is unimportant with most parameter sets.
On a 2D hydro-mechanical lattice approach for modelling hydraulic fracture
Grassl, Peter; Gallipoli, Domenico; Wheeler, Simon J
2014-01-01T23:59:59.000Z
A 2D lattice approach to describe hydraulic fracturing is presented. The interaction of fluid pressure and mechanical response is described by Biot's theory. The lattice model is applied to the analysis of a thick-walled cylinder, for which an analytical solution for the elastic response is derived. The numerical results obtained with the lattice model agree well with the analytical solution. Furthermore, the coupled lattice approach is applied to the fracture analysis of the thick-walled cylinder. It is shown that the proposed lattice approach provides results that are independent of the mesh size. Moreover, a strong geometrical size effect on nominal strength is observed which lies between analytically derived lower and upper bounds. This size effect decreases with increasing Biot's coefficient.
2D massless QED Hall half-integer conductivity and graphene
A. Pérez Martínez; E. Rodriguez Querts; H. Pérez Rojas; R. Gaitan; S. Rodriguez Romo
2011-10-13T23:59:59.000Z
Starting from the photon self-energy tensor in a magnetized medium, the 3D complete antisymmetric form of the conductivity tensor is found in the static limit of a fermion system $C$ non-invariant under fermion-antifermion exchange. The massless relativistic 2D fermion limit in QED is derived by using the compactification along the dimension parallel to the magnetic field. In the static limit and at zero temperature the main features of quantum Hall effect (QHE) are obtained: the half-integer QHE and the minimum value proportional to $e^2/h$ for the Hall conductivity . For typical values of graphene the plateaus of the Hall conductivity are also reproduced.
Transition from static to kinetic friction: Insights from a 2D model
Trřmborg, Jřrgen; Amundsen, David Skĺlid; Thřgersen, Kjetil; Malthe-Sřrenssen, Anders
2013-01-01T23:59:59.000Z
We describe a 2D spring-block model for the transition from static to kinetic friction at an elastic slider/rigid substrate interface obeying a minimalistic friction law (Amontons-Coulomb). By using realistic boundary conditions, a number of previously unexplained experimental results on precursory micro-slip fronts are successfully reproduced. From the analysis of the interfacial stresses, we derive a prediction for the evolution of the precursor length as a function of the applied loads, as well as an approximate relationship between microscopic and macroscopic friction coefficients. We show that the stress build-up due to both elastic loading and micro-slip-related relaxations depend only weakly on the underlying shear crack propagation dynamics. Conversely, crack speed depends strongly on both the instantaneous stresses and the friction coefficients, through a non-trivial scaling parameter.
Qualification of the Joints for the ITER Central Solenoid
Martovetsky, N; Berryhill, A; Kenney, S
2011-09-01T23:59:59.000Z
The ITER Central Solenoid has 36 interpancake joints, 12 bus joints, and 12 feeder joints in the magnet. The joints are required to have resistance below 4 nOhm at 45 kA at 4.5 K. The US ITER Project Office developed two different types of interpancake joints with some variations in details in order to find a better design, qualify the joints, and establish a fabrication process. We built and tested four samples of the sintered joints and two samples with butt-bonded joints (a total of eight joints). Both designs met the specifications. Results of the joint development, test results, and selection of the baseline design are presented and discussed in the paper. The ITER Central Solenoid (CS) consists of six modules. Each module is composed of six wound hexapancakes and one quadrapancake. The multipancakes are connected electrically and hydraulically by in-line interpancake joints. The joints are located at the outside diameter (OD) of the module. Cable in conduit conductor (CICC) high-current joints are critical elements in the CICC magnets. In addition to low resistivity, the CS joints must fit a space envelope equivalent to the regular conductor cross section and must have low hydraulic impedance and enough structural strength to withstand the hoop and compressive forces during operation, including cycling. This paper is the continuation of the work reported on the intermodule joints.
Note: Low energy inverse photoemission spectroscopy apparatus
Yoshida, Hiroyuki, E-mail: yoshida@e.kuicr.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)] [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)
2014-01-15T23:59:59.000Z
An apparatus for the low-energy inverse photoemission spectroscopy is described. In this technique, low energy electron having kinetic energy below 4 eV is incident to the sample and detect the emitted photons in the near ultraviolet range (below 5 eV, longer than 250 nm) to investigate the unoccupied states of the solid materials. Compared with the prototype apparatus reported previously [H. Yoshida, Chem. Phys. Lett. 539–540, 180–185 (2012)], the collection efficiency of photons is improved by a factor of four and practically any conductive substrates can be used. The overall resolution is 0.27 eV.
The Lorentz Integral Transform and its Inversion
N. Barnea; V. D. Efros; W. Leidemann; G. Orlandini
2009-12-23T23:59:59.000Z
The Lorentz integral transform method is briefly reviewed. The issue of the inversion of the transform, and in particular its ill-posedness, is addressed. It is pointed out that the mathematical term ill-posed is misleading and merely due to a historical misconception. In this connection standard regularization procedures for the solution of the integral transform problem are presented. In particular a recent one is considered in detail and critical comments on it are provided. In addition a general remark concerning the concept of the Lorentz integral transform as a method with a controlled resolution is made.
Handbook on dynamics of jointed structures.
Ames, Nicoli M.; Lauffer, James P.; Jew, Michael D.; Segalman, Daniel Joseph; Gregory, Danny Lynn; Starr, Michael James; Resor, Brian Ray
2009-07-01T23:59:59.000Z
The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided.
Approaching the Island of Inversion: 34P
Bender, P.C.; Hoffman, C.R.; Wiedeking, M.; Allmond, J.M.; Bernstein, L.A.; Burke, J.T.; Bleuel, D.L.; Clark, R.M.; Fallon, P.; Goldblum, B.L.; Hinners, T.A.; Jeppesen, H.B.; Lee, Sangjin; Lee, I.Y.; Lesher, S.R.; Machiavelli, A.O.; McMahan, M.A.; Morris, D.; Perry, M.; Phair, L.; Scielzo, N.D.; Tabor, S.L.; Tripathi, Vandana; Volya, A.
2011-06-14T23:59:59.000Z
Yrast states in 34P were investigated using the 18O(18O,pn) reaction at energies of 20, 24, 25, 30, and 44 MeV at Florida State University and at Lawrence Berkeley National Laboratory. The level scheme was expanded, ray angular distributions were measured, and lifetimes were inferred with the Doppler-shift attenuation method by detecting decay protons in coincidence with one or more rays. The results provide a clearer picture of the evolution of structure approaching the 'Island of Inversion', particularly how the 1 and 2 particle-hole (ph) states fall in energy with increasing neutro number approaching inversion. However, the agreement of the lowest few states with pure sd shell model predictions shows that the level scheme of 34P is not itself inverted. Rather, the accumulated evidence indicates that the 1-ph states start at 2.3 MeV. A good candidate for the lowest 2-ph state lies at 6236 keV, just below the neutron separation energy of 6291 keV. Shell model calculations made using a small modification of the WBP interaction reproduce the negative-parity, 1-ph states rather well.
Speaker and Title Information -- Inverse Problems Conference in ...
Margaret Cheney, Radar Imaging, Friday, 11:00–11:45. David Colton, Transmission Eigenvalues and Inverse Scattering Theory, Thursday, 11:00–11:
Globally strictly convex cost functional for an inverse parabolic problem
Michael V. Klibanov; Vladimir G. Kamburg
2015-02-04T23:59:59.000Z
A coefficient inverse problem for a parabolic equation is considered. Using a Carleman Weight Function, a globally strictly convex cost functional is constructed for this problem.
STABILITY OF COUPLED-PHYSICS INVERSE PROBLEMS WITH ...
2014-03-27T23:59:59.000Z
we do not introduce additional solution to the inverse problem. For 0 system by taking ..... conductivity from power densities in dimension n 3, Communications in Partial.
The Inverse Problem for Derivative Securities of Interest Rate
2008-02-02T23:59:59.000Z
May 26, 2000 ... Market price for risk of interest rate reflects the close relation between risk and yield of securities dependent on interest rate. An inverse problem.
Stochastic spectral methods for Bayesian inference in inverse ...
... CA The Bayesian approach to inverse problems provides a foundation for inference from noisy and limited data, a natural mechanism for regularization in the ...
High Gradient Inverse Free Electron Laser (IFEL) Accelerator
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Gradient High energy gain Inverse Free Electron Laser P. Musumeci UCLA Department of Physics and Astronomy On Behalf of the RUBICON collaboration ATF user meeting, BNL, October 6...
Importance of Elevation and Temperature Inversions for the Interpretat...
Importance of Elevation and Temperature Inversions for the Interpretation of Thermal Infrared Satellite Images Used in Geothermal Exploration Jump to: navigation, search OpenEI...
Joint resummation for heavy quark production.
Banfi, Andrea; Laenen, Eric
ar X iv :h ep -p h/ 05 10 14 9v 1 1 2 O ct 2 00 5 February 2, 2008 4:14 WSPC/INSTRUCTION FILE jr International Journal of Modern Physics A c© World Scientific Publishing Company JOINT RESUMMATION FOR HEAVY QUARK PRODUCTION ANDREA BANFI Cavendish... hadroproduction, at next-to-leading logarithmic accuracy. We exhibit their dependence on the production channel and the color configurations, and compare these distributions to eachother and to NLO. Keywords: Resummation; heavy quark production. 1. Joint threshold...
OECD/MCCI 2-D Core Concrete Interaction (CCI) tests : final report February 28, 2006.
Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)
2011-05-23T23:59:59.000Z
Although extensive research has been conducted over the last several years in the areas of Core-Concrete Interaction (CCI) and debris coolability, two important issues warrant further investigation. The first issue concerns the effectiveness of water in terminating a CCI by flooding the interacting masses from above, thereby quenching the molten core debris and rendering it permanently coolable. This safety issue was investigated in the EPRI-sponsored Melt Attack and Coolability Experiments (MACE) program. The approach was to conduct large scale, integral-type reactor materials experiments with core melt masses ranging up to two metric tons. These experiments provided unique, and for the most part repeatable, indications of heat transfer mechanism(s) that could provide long term debris cooling. However, the results did not demonstrate definitively that a melt would always be completely quenched. This was due to the fact that the crust anchored to the test section sidewalls in every test, which led to melt/crust separation, even at the largest test section lateral span of 1.20 m. This decoupling is not expected for a typical reactor cavity, which has a span of 5-6 m. Even though the crust may mechanically bond to the reactor cavity walls, the weight of the coolant and the crust itself is expected to periodically fracture the crust and restore contact with the melt. Although crust fracturing does not ensure that coolability will be achieved, it nonetheless provides a pathway for water to recontact the underlying melt, thereby allowing other debris cooling mechanisms to proceed. A related task of the current program, which is not addressed in this particular report, is to measure crust strength to check the hypothesis that a corium crust would not be strong enough to sustain melt/crust separation in a plant accident. The second important issue concerns long-term, two-dimensional concrete ablation by a prototypic core oxide melt. As discussed by Foit the existing reactor material database for dry cavity conditions is solely one-dimensional. Although the MACE Scoping Test was carried out with a two-dimensional concrete cavity, the interaction was flooded soon after ablation was initiated to investigate debris coolability. Moreover, due to the scoping nature of this test, the apparatus was minimally instrumented and therefore the results are of limited value from the code validation viewpoint. Aside from the MACE program, the COTELS test series also investigated 2-D CCI under flooded cavity conditions. However, the input power density for these tests was quite high relative to the prototypic case. Finally, the BETA test series provided valuable data on 2-D core concrete interaction under dry cavity conditions, but these tests focused on investigating the interaction of the metallic (steel) phase with concrete. Due to these limitations, there is significant uncertainty in the partition of energy dissipated for the ablation of concrete in the lateral and axial directions under dry cavity conditions for the case of a core oxide melt. Accurate knowledge of this 'power split' is important in the evaluation of the consequences of an ex-vessel severe accident; e.g., lateral erosion can undermine containment structures, while axial erosion can penetrate the basemat, leading to ground contamination and/or possible containment bypass. As a result of this uncertainty, there are still substantial differences among computer codes in the prediction of 2-D cavity erosion behavior under both wet and dry cavity conditions. In light of the above issues, the OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) program was initiated at Argonne National Laboratory. The project conducted reactor materials experiments and associated analysis to achieve the following technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focused on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties relat
Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals
K.R. Maskaly
2005-06-01T23:59:59.000Z
Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic bandgaps. However, the unique optical behavior of photonic crystals is based on theoretical models of perfect analogues. Little is known about the practical effects of dielectric imperfections on their technologically useful optical properties. In order to address this issue, a finite-difference time-domain (FDTD) code is employed to study the effect of three specific dielectric imperfections in 1D and 2D photonic crystals. The first imperfection investigated is dielectric interfacial roughness in quarter-wave tuned 1D photonic crystals at normal incidence. This study reveals that the reflectivity of some roughened photonic crystal configurations can change up to 50% at the center of the bandgap for RMS roughness values around 20% of the characteristic periodicity of the crystal. However, this reflectivity change can be mitigated by increasing the index contrast and/or the number of bilayers in the crystal. In order to explain these results, the homogenization approximation, which is usually applied to single rough surfaces, is applied to the quarter-wave stacks. The results of the homogenization approximation match the FDTD results extremely well, suggesting that the main role of the roughness features is to grade the refractive index profile of the interfaces in the photonic crystal rather than diffusely scatter the incoming light. This result also implies that the amount of incoherent reflection from the roughened quarterwave stacks is extremely small. This is confirmed through direct extraction of the amount of incoherent power from the FDTD calculations. Further FDTD studies are done on the entire normal incidence bandgap of roughened 1D photonic crystals. These results reveal a narrowing and red-shifting of the normal incidence bandgap with increasing RMS roughness. Again, the homogenization approximation is able to predict these results. The problem of surface scratches on 1D photonic crystals is also addressed. Although the reflectivity decreases are lower in this study, up to a 15% change in reflectivity is observed in certain scratched photonic crystal structures. However, this reflectivity change can be significantly decreased by adding a low index protective coating to the surface of the photonic crystal. Again, application of homogenization theory to these structures confirms its predictive power for this type of imperfection as well. Additionally, the problem of a circular pores in 2D photonic crystals is investigated, showing that almost a 50% change in reflectivity can occur for some structures. Furthermore, this study reveals trends that are consistent with the 1D simulations: parameter changes that increase the absolute reflectivity of the photonic crystal will also increase its tolerance to structural imperfections. Finally, experimental reflectance spectra from roughened 1D photonic crystals are compared to the results predicted computationally in this thesis. Both the computed and experimental spectra correlate favorably, validating the findings presented herein.
The Dynamics of Neutrino-Driven Supernova Explosions after Shock Revival in 2D and 3D
Müller, Bernhard
2015-01-01T23:59:59.000Z
We study the growth of the explosion energy after shock revival in neutrino-driven explosions in two and three dimensions (2D/3D) using multi-group neutrino hydrodynamics simulations of an $11.2 M_\\odot$ star. The 3D model shows a faster and steadier growth of the explosion energy and already shows signs of subsiding accretion after one second. By contrast, the growth of the explosion energy in 2D is unsteady, and accretion lasts for several seconds as confirmed by additional long-time simulations of stars of similar masses. Appreciable explosion energies can still be reached, albeit at the expense of rather high neutron star masses. In 2D, the binding energy at the gain radius is larger because the strong excitation of downward-propagating $g$-modes removes energy from the freshly accreted material in the downflows. Consequently, the mass outflow rate is considerably lower in 2D than in 3D. This is only partially compensated by additional heating by outward-propagating acoustic waves in 2D. Moreover, the mas...
Quality assurance of asymmetric jaw alignment using 2D diode array
Kim, Sun Mo [Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9, Canada and Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada)] [Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9, Canada and Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada); Chmielewski, Renata; Abbas, Ahmar [Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9 (Canada)] [Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9 (Canada); Yeung, Ivan W. T.; Moseley, Douglas J. [Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9 (Canada) [Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9 (Canada); Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, University of Toronto, Ontario M5G 2M9 (Canada)
2013-12-15T23:59:59.000Z
Purpose: A method using a 2D diode array is proposed to measure the junction gap (or overlap) and dose with high precision for routine quality assurance of the asymmetric jaw alignment.Methods: The central axis (CAX) of the radiation field was determined with a 15 × 15 cm{sup 2} photon field at four cardinal collimator angles so that the junction gap (or overlap) can be measured with respect to the CAX. Two abutting fields having a field size of 15 cm (length along the axis parallel to the junction) × 7.5 cm (width along the axis perpendicular to the junction) were used to irradiate the 2D diode array (MapCHECK2) with 100 MU delivered at the photon energy of 6 MV. The collimator was slightly rotated at 15° with respect to the beam central axis to increase the number of diodes effective on the measurement of junction gap. The junction gap and dose measured in high spatial resolution were compared to the conventional methods using an electronic portal imaging device (EPID) and radiochromic film, respectively. In addition, the reproducibility and sensitivity of the proposed method to the measurements of junction gap and dose were investigated.Results: The junction gap (or overlap) and dose measured by MapCHECK2 agreed well to those measured by the conventional methods of EPID and film (the differences ranged from ?0.01 to 0 cm and from ?1.34% to 0.6% for the gap and dose, respectively). No variation in the repeat measurements of the junction gap was found whereas the measurements of junction dose were found to vary in quite a small range over the days of measurement (0.21%–0.35%). While the sensitivity of the measured junction gap to the actual junction gap applied was the ideal value of 1 cm/cm as expected, the sensitivity of the junction dose to the actual junction gap increased as the junction gap (or overlap) decreased (maximum sensitivity: 201.7%/cm).Conclusions: The initial results suggest that the method is applicable for a comprehensive quality assurance of the asymmetric jaw alignment.
Toward IMRT 2D dose modeling using artificial neural networks: A feasibility study
Kalantzis, Georgios; Vasquez-Quino, Luis A.; Zalman, Travis; Pratx, Guillem; Lei, Yu [Radiation Oncology Department, University of Texas, Health Science Center San Antonio, Texas 78229 and Radiation Oncology Department, Stanford University School of Medicine, Stanford, California 94305 (United States); Radiation Oncology Department, University of Texas, Health Science Center San Antonio, Texas 78229 (United States); Radiation Oncology Department, Stanford University School of Medicine, Stanford, California 94305 (United States); Radiation Oncology Department, University of Texas, Health Science Center San Antonio, Texas 78229 (United States)
2011-10-15T23:59:59.000Z
Purpose: To investigate the feasibility of artificial neural networks (ANN) to reconstruct dose maps for intensity modulated radiation treatment (IMRT) fields compared with those of the treatment planning system (TPS). Methods: An artificial feed forward neural network and the back-propagation learning algorithm have been used to replicate dose calculations of IMRT fields obtained from PINNACLE{sup 3} v9.0. The ANN was trained with fluence and dose maps of IMRT fields for 6 MV x-rays, which were obtained from the amorphous silicon (a-Si) electronic portal imaging device of Novalis TX. Those fluence distributions were imported to the TPS and the dose maps were calculated on the horizontal midpoint plane of a water equivalent homogeneous cylindrical virtual phantom. Each exported 2D dose distribution from the TPS was classified into two clusters of high and low dose regions, respectively, based on the K-means algorithm and the Euclidian metric in the fluence-dose domain. The data of each cluster were divided into two sets for the training and validation phase of the ANN, respectively. After the completion of the ANN training phase, 2D dose maps were reconstructed by the ANN and isodose distributions were created. The dose maps reconstructed by ANN were evaluated and compared with the TPS, where the mean absolute deviation of the dose and the {gamma}-index were used. Results: A good agreement between the doses calculated from the TPS and the trained ANN was achieved. In particular, an average relative dosimetric difference of 4.6% and an average {gamma}-index passing rate of 93% were obtained for low dose regions, and a dosimetric difference of 2.3% and an average {gamma}-index passing rate of 97% for high dose region. Conclusions: An artificial neural network has been developed to convert fluence maps to corresponding dose maps. The feasibility and potential of an artificial neural network to replicate complex convolution kernels in the TPS for IMRT dose calculations have been demonstrated.
Huang, Lianjie [Los Alamos National Laboratory; Fehler, Michael [MIT; Malcolm, Alison [MIT; Yang, Di [MIT
2011-01-01T23:59:59.000Z
Geological carbon sequestration involves large-scale injection of carbon dioxide into underground geologic formations and is considered as a potential approach for mitigating global warming. Changes in reservoir properties resulting from the CO{sub 2} injection and migration can be characterized using waveform inversions of time-lapse seismic data. The conventional approach for analysis using waveform tomography is to take the difference of the images obtained using baseline and subsequent time-lapse datasets that are inverted independently. By contrast, double-difference waveform inversion uses timelapse seismic datasets to jointly invert for reservoir changes. We apply this method to a field time-lapse walkaway VSP data set acquired in 2008 and 2009 for monitoring CO{sub 2} injection at an enhanced oil recovery field at SACROC, Texas. The double-difference waveform inversion gives a cleaner and more easily interpreted image of reservoir changes, as compared to that obtained with the conventional scheme. Our results from the applicatoin of acoustic double-difference waveform tomography shows some zones with decreased P-wave velocity within the reservoir due to CO{sub 2} injection and migration.
Contact stress in a whole joint bioreactor : intrinsic levels & augmentation by external loading
Deppe, Allison Margaret
2007-01-01T23:59:59.000Z
Stress in a Whole Joint Bioreactor: Intrinsic Levels &Stress in a Whole Joint Bioreactor: Intrinsic levels &Sah, Chair A whole joint bioreactor was recently described
An inverse problem for Schwinger pair production
Hebenstreit, Florian
2015-01-01T23:59:59.000Z
The production of electron-positron pairs in time-dependent electric fields (Schwinger mechanism) depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.
Supersymmetric inversion of effective-range expansions
Midya, Bikashkali; Abramowicz, Sylvain; Suárez, O L Ramírez; Sparenberg, Jean-Marc
2015-01-01T23:59:59.000Z
A complete and consistent inversion technique is proposed to derive an accurate interaction potential from an effective-range function for a given partial wave in the neutral case. First, the effective-range function is Taylor or Pad\\'e expanded, which allows high precision fitting of the experimental scattering phase shifts with a minimal number of parameters on a large energy range. Second, the corresponding poles of the scattering matrix are extracted in the complex wave-number plane. Third, the interaction potential is constructed with supersymmetric transformations of the radial Schr\\"odinger equation. As an illustration, the method is applied to the experimental phase shifts of the neutron-proton elastic scattering in the $^1S_0$ and $^1D_2$ channels on the $[0-350]$ MeV laboratory energy interval.
Supersymmetric inversion of effective-range expansions
Bikashkali Midya; Jérémie Evrard; Sylvain Abramowicz; O. L. Ramírez Suárez; Jean-Marc Sparenberg
2015-01-16T23:59:59.000Z
A complete and consistent inversion technique is proposed to derive an accurate interaction potential from an effective-range function for a given partial wave in the neutral case. First, the effective-range function is Taylor or Pad\\'e expanded, which allows high precision fitting of the experimental scattering phase shifts with a minimal number of parameters on a large energy range. Second, the corresponding poles of the scattering matrix are extracted in the complex wave-number plane. Third, the interaction potential is constructed with supersymmetric transformations of the radial Schr\\"odinger equation. As an illustration, the method is applied to the experimental phase shifts of the neutron-proton elastic scattering in the $^1S_0$ and $^1D_2$ channels on the $[0-350]$ MeV laboratory energy interval.
Supersymmetric inversion of effective-range expansions
Bikashkali Midya; Jérémie Evrard; Sylvain Abramowicz; O. L. Ramírez Suárez; Jean-Marc Sparenberg
2015-05-26T23:59:59.000Z
A complete and consistent inversion technique is proposed to derive an accurate interaction potential from an effective-range function for a given partial wave in the neutral case. First, the effective-range function is Taylor or Pad\\'e expanded, which allows high precision fitting of the experimental scattering phase shifts with a minimal number of parameters on a large energy range. Second, the corresponding poles of the scattering matrix are extracted in the complex wave-number plane. Third, the interaction potential is constructed with supersymmetric transformations of the radial Schr\\"odinger equation. As an illustration, the method is applied to the experimental phase shifts of the neutron-proton elastic scattering in the $^1S_0$ and $^1D_2$ channels on the $[0-350]$ MeV laboratory energy interval.
A Complete Onium Program with R2D at RHIC II
Richard Witt
2006-05-16T23:59:59.000Z
Following on the discovery of a strongly interacting quark-gluon plasma (QGP) at RHIC, a program of detailed quarkonia measurements is crucial to understanding the nature of deconfinement. Lattice QCD calculations suggest a sequential melting of the quarkonia states in the deconfined medium. Such a melting would lead to a suppression in the measured charmonium and bottomonium yields. However, distinguishing a true suppression from shadowing, absorption, and recombination effects requires detailed measurements of the charmonium states (J/psi, psi', and chi_c) and bottomonium states (Y(1S), Y(2S), and Y(3S)). Also, since measurements are needed not only in A+A, but also in p+p for determining primary yields and in p+A for evaluating absorption, the detector should perform well in all collision environments. To fully realize the program outlined above, a new detector will be required at RHIC-II. We present a proposal for a complete quarkonia program and the abilities of a new detector, R2D, to meet the stated requirements. Comparisons will be made with proposed upgrades to existing RHIC detectors and with the upcoming LHC program.
2D X-ray scanner and its uses in laboratory reservoir characterization measurements
Maloney, D.; Doggett, K.
1997-08-01T23:59:59.000Z
X-ray techniques are used in petroleum laboratories for a variety of reservoir characterization measurements. This paper describes the configuration of a 2D X-ray scanner and many of the ways in which it simplifies and improves accuracy`s of laboratory measurements. Linear X-ray scanners are most often used to provide descriptions of fluid saturations within core plugs during flow tests. We configured our linear scanner for both horizontal and vertical movement. Samples can be scanned horizontally, vertically, or according to horizontal and vertical grids. X-ray measurements are fast, allowing measurements of two- and three-phase fluid saturations during both steady- and unsteady-state flow processes. Rock samples can be scanned while they are subjected to stress, pore pressure, and temperature conditions simulating those of a petroleum reservoir. Many types of measurements are possible by selecting appropriate X-ray power settings, dopes, filters, and collimator configurations. The scanner has been used for a variety of applications besides fluid saturation measurements. It is useful for measuring porosity distributions in rocks, concentrations of X-ray dopes within flow streams during tracer tests, gap widths in fracture flow cells, fluid interface levels in PVT cells and fluid separators, and other features and phenomena.
2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement
Anber, Mohamed M.; Poppitz, Erich; /Toronto U.; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.
2012-08-16T23:59:59.000Z
We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.
Emergent IR dual 2d CFTs in charged AdS5 black holes
Jan de Boer; Maria Johnstone; M. M. Sheikh-Jabbari; Joan Simon
2011-12-20T23:59:59.000Z
We study the possible dynamical emergence of IR conformal invariance describing the low energy excitations of near-extremal R-charged global AdS5 black holes. We find interesting behavior especially when we tune parameters in such a way that the relevant extremal black holes have classically vanishing horizon area, i.e. no classical ground-state entropy, and when we combine the low energy limit with a large N limit of the dual gauge theory. We consider both near-BPS and non-BPS regimes and their near horizon limits, emphasize the differences between the local AdS3 throats emerging in either case, and discuss potential dual IR 2d CFTs for each case. We compare our results with the predictions obtained from the Kerr/CFT correspondence, and obtain a natural quantization for the central charge of the near-BPS emergent IR CFT which we interpret in terms of the open strings stretched between giant gravitons.
Ionic Liquid–Solute Interactions Studied by 2D-NOE NMR Spectroscopy
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Khatun, Sufia; Castner, Edward W.
2015-07-23T23:59:59.000Z
Intermolecular interactions between a Ru˛?(bpy)? solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {ąH-ą?F} HOESY and {ąH-ąH} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru˛?(bpy)? solute is rather different from the bulkmore »IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru˛?(bpy)? solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.« less
3-Phase Recognition Approach to Pseudo 3D Building Generation from 2D Floor Plan
Moloo, Raj Kishen; Auleear, Abu Salmaan
2011-01-01T23:59:59.000Z
Nowadays three dimension (3D) architectural visualisation has become a powerful tool in the conceptualisation, design and presentation of architectural products in the construction industry, providing realistic interaction and walkthrough on engineering products. Traditional ways of implementing 3D models involves the use of specialised 3D authoring tools along with skilled 3D designers with blueprints of the model and this is a slow and laborious process. The aim of this paper is to automate this process by simply analyzing the blueprint document and generating the 3D scene automatically. For this purpose we have devised a 3-Phase recognition approach to pseudo 3D building generation from 2D floor plan and developed a software accordingly. Our 3-phased 3D building system has been implemented using C, C++ and OpenCV library [24] for the Image Processing module; The Save Module generated an XML file for storing the processed floor plan objects attributes; while the Irrlitch [14] game engine was used to impleme...
Quasi-Optimal Elimination Trees for 2D Grids with Singularities
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Paszy?ska, A.; Paszy?ski, M.; Jopek, K.; Wo?niak, M.; Goik, D.; Gurgul, P.; AbouEisha, H.; Moshkov, M.; Calo, V. M.; Lenharth, A.; et al
2015-01-01T23:59:59.000Z
We construct quasi-optimal elimination trees for 2D finite element meshes with singularities. These trees minimize the complexity of the solution of the discrete system. The computational cost estimates of the elimination process model the execution of the multifrontal algorithms in serial and in parallel shared-memory executions. Since the meshes considered are a subspace of all possible mesh partitions, we call these minimizers quasi-optimal. We minimize the cost functionals using dynamic programming. Finding these minimizers is more computationally expensive than solving the original algebraic system. Nevertheless, from the insights provided by the analysis of the dynamic programming minima, we propose amore »heuristic construction of the elimination trees that has costONelog?Ne, whereNeis the number of elements in the mesh. We show that this heuristic ordering has similar computational cost to the quasi-optimal elimination trees found with dynamic programming and outperforms state-of-the-art alternatives in our numerical experiments.« less
2D surface temperature measurement of plasma facing components with modulated active pyrometry
Amiel, S.; Loarer, T.; Pocheau, C.; Roche, H.; Gauthier, E.; Aumeunier, M.-H.; Courtois, X.; Jouve, M.; Balorin, C.; Moncada, V. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Le Niliot, C.; Rigollet, F. [Aix-Marseille Univ, IUSTI, UMR CNRS 7343, F-13453 Marseille (France)
2014-10-01T23:59:59.000Z
In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (? ~ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (? ~ 0.1–0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.
Satellite number density profiles of primary galaxies in the 2dFGRS
Laura Sales; Diego G. Lambas
2004-10-21T23:59:59.000Z
We analyse the projected radial distribution of satellites around bright primary galaxies in the 2dFGRS. We have considered several primary-satellite subsamples to search for dependences of the satellite number density profile, \\rho(r_p), on properties of satellites and primaries. We find significant differences of the behaviour of \\rho(r_p) depending on primary characteristics. In star-forming primaries, the satellite number density profile is consistent with power laws within projected distance 20100 kpc), the density profiles of all primaries is well described by power laws, although we notice that for red, early spectral type primaries, the outer slope obtained is steeper than that corresponding to blue, late spectral type ones. We have tested our results by control samples of galaxies identical to the samples of satellites in apparent magnitude and projected distance to the primary, but with a large relative velocity. This sample of unphysical primary-galaxy pairs shows a flat radial density beyond r_p=20 kpc indicating that our results are not biased toward a decrease of the true number of objects due to catalogue selection effects. Our results can be understood in terms of dynamical friction and tidal stripping on satellites in the primary haloes. These processes can effectively transfer energy to the dark matter, flattening the central steep profiles of the satellite distribution in evolved systems.
A Specification for a Godunov-type Eulerian 2-D Hydrocode, Revision 0
Nystrom, William D [Los Alamos National Laboratory; Robey, Jonathan M [Los Alamos National Laboratory
2012-05-01T23:59:59.000Z
The purpose of this code specification is to describe an algorithm for solving the Euler equations of hydrodynamics in a 2D rectangular region in sufficient detail to allow a software developer to produce an implementation on their target platform using their programming language of choice without requiring detailed knowledge and experience in the field of computational fluid dynamics. It should be possible for a software developer who is proficient in the programming language of choice and is knowledgable of the target hardware to produce an efficient implementation of this specification if they also possess a thorough working knowledge of parallel programming and have some experience in scientific programming using fields and meshes. On modern architectures, it will be important to focus on issues related to the exploitation of the fine grain parallelism and data locality present in this algorithm. This specification aims to make that task easier by presenting the essential details of the algorithm in a systematic and language neutral manner while also avoiding the inclusion of implementation details that would likely be specific to a particular type of programming paradigm or platform architecture.
Machine Learning Energies of 2 M Elpasolite (ABC$_2$D$_6$) Crystals
Faber, Felix; von Lilienfeld, O Anatole; Armiento, Rickard
2015-01-01T23:59:59.000Z
Elpasolite is the predominant quaternary crystal structure (AlNaK$_2$F$_6$ prototype) reported in the Inorganic Crystal Structure Database. We have developed a machine learning model to calculate density functional theory quality formation energies of all the 2 M pristine ABC$_2$D$_6$ elpasolite crystals which can be made up from main-group elements (up to bismuth). Our model's accuracy can be improved systematically, reaching 0.1 eV/atom for a training set consisting of 10 k crystals. Important bonding trends are revealed, fluoride is best suited to fit the coordination of the D site which lowers the formation energy whereas the opposite is found for carbon. The bonding contribution of elements A and B is very small on average. Low formation energies result from A and B being late elements from group (II), C being a late (I) element, and D being fluoride. Out of 2 M crystals, the three degenerate pairs CaSrCs$_2$F$_6$/SrCaCs$_2$F$_6$, CaSrRb$_2$F$_6$/SrCaRb$_2$F$_6$ and CaBaCs$_2$F$_6$/BaCaCs$_2$F$_6$ yield ...
2D-Ising critical behavior in mixtures of water and 3-methylpyridine
Sadakane, Koichiro [ORNL; Iguchi, Kazuya [ORNL; Nagao, Michihiro [ORNL; Seto, Hideki [ORNL
2011-01-01T23:59:59.000Z
The effect of an antagonistic salt on the phase behavior and nanoscale structure of a mixture of D{sub 2}O and 3-methylpyridine was investigated by visual inspection and small-angle neutron scattering (SANS). The addition of the antagonistic salt, namely sodium tetraphenylborate (NaBPh{sub 4}), induces the shrinking of the two-phase region in contrast to the case in which a normal (hydrophilic) salt is added. Below the phase separation point, the SANS profiles cannot be described by the Ornstein-Zernike function owing to the existence of a long-range periodic structure. With increasing salt concentration, the critical exponents change from the values of 3D-Ising and approach those of 2D-Ising. These results suggest that the concentration fluctuation of the mixture of solvents is limited to a quasi two-dimensional space by the periodic structure induced by the adding the salt. The same behaviors were also observed in mixtures composed of water, 3-methylpyridine, and ionic surfactant.
"Inverse Sandwichâ?ť Complexes of Perhalogenated Cyclohexasilane
Dai, Xuliang; Shulz, Douglas; Braun, Christopher; Ugrinov, Angel; and Boudjouk, Philip
2010-04-20T23:59:59.000Z
Perhalogenated cyclohexasilanes, Si{sub 6}X{sub 12} (X = Cl, Br), were prepared by reaction of Si{sub 6}H{sub 12} with molecular chlorine or bromine in cold (-89 C) dichloromethane. Single-crystal structural determination by X-ray analysis shows that the six silicon atoms comprising Si{sub 6}Br{sub 12} adopt a chair conformation in the solid state. The addition of p-tolunitrile to Si{sub 6}X{sub 12} (X = Cl, Br) leads to the rapid formation of colorless precipitates. Si{sub 6}Br{sub 12} 3 2(p-CH{sub 3}C{sub 6}H{sub 4}CN) adopts an 'inverse sandwich' structure where the N atoms of the p-tolunitrile molecules are {micro}{sub 6} bonded and are located above and below the planar hexagonal Si{sub 6} ring. In conclusion, Si{sub 6}X{sub 12} (X = Cl, Br) was synthesized by molecular halogenation of Si{sub 6}H{sub 12} in high yield and good purity. Perhalogenated cyclohexasilanes react with p-tolunitrile to give 'inverse sandwich' adducts 3 and 4 with a planar Si{sub 6} ring upon coordination. Our future reports will detail dianionic adducts based on tetra-n-butylammonium halides as well as a monoanionic adamantyl azide adduct of Si{sub 6}Cl{sub 12}. It is straightforward to conceptualize the utility of Si{sub 6}X{sub 12} {center_dot} Ln chemistry in molecular assembly of silicon-based clusters/tubes/wires. Thereby, we proffer that this constitutes a new landscape in Si chemistry.
Nunn, Ceri; Roecker, Steven W.; Priestley, Keith F.; Liang, Xiaofeng; Gilligan, Amy
2014-09-01T23:59:59.000Z
recorded from 356 telesesmic events. The tomographic images show a ‘wedge’ of fast seismic velocities beneath central Tibet that starts underneath the Himalaya and reaches as far as the Bangong–Nujiang Suture (BNS). In our preferred interpretation...
Gilligan, Amy; Roecker, Steven W.; Priestley, Keith F.; Nunn, Ceri
2014-07-09T23:59:59.000Z
frame based on the principal component of motion of the incident phase, in order to maximize the energy of the converted mode. Using the nomenclature of Farra & Vinnik (2000) and Vinnik (1977), for P receiver functions this is the (L, H, Q) frame, where... ; the asymmetry in our estimates suggests that sources of noise, partic- ularly in the 5–20 s band, are predominantly from the south. Given that the Arctic Ocean is covered with ice for portions of the year, it is not surprising that noise from the Indian Ocean...
Eidsvik, Jo
,0 Sand,Shale,Sand,kc Sand,zc Sand] and the prior model of is p(). We assume that seismic AVO data. The ultimate goal of this study is to clas- sify lithology/fluid from sesimic AVO data using our stochastic Consider a geological model of a reservoir in one dimension, and the four classes oil-, gas- and brine
Ward, Karen
of Texas at El Paso, El Paso, Texas 79968-0514, USA 3Department of Geological Sciences, The University) algorithm to characterize 1D earth structure using geophysical datasets with two different optimization
Joint with application in electrochemical devices
Weil, K Scott [Richland, WA; Hardy, John S [Richland, WA
2010-09-14T23:59:59.000Z
A joint for use in electrochemical devices, such as solid oxide fuel cells (SOFCs), oxygen separators, and hydrogen separators, that will maintain a hermetic seal at operating temperatures of greater than 600.degree. C., despite repeated thermal cycling excess of 600.degree. C. in a hostile operating environment where one side of the joint is continuously exposed to an oxidizing atmosphere and the other side is continuously exposed to a wet reducing gas. The joint is formed of a metal part, a ceramic part, and a flexible gasket. The flexible gasket is metal, but is thinner and more flexible than the metal part. As the joint is heated and cooled, the flexible gasket is configured to flex in response to changes in the relative size of the metal part and the ceramic part brought about by differences in the coefficient of thermal expansion of the metal part and the ceramic part, such that substantially all of the tension created by the differences in the expansion and contraction of the ceramic and metal parts is absorbed and dissipated by flexing the flexible gasket.
Joint CQSE and CASTS Seminar Weekly Seminar
Wu, Yih-Min
:30 TITLE Joint Calibration to Cross-Market Data: A Monte Carlo Approach SPEAKER Prof. Chuan-Hsiang Han, default, and volatility in order to explain market information contained in the term structure of implied and comparisons with some existed calibration methods, for instance Fourier transform method or perturbation
MAA-SW / NMMATYC Joint Conference
Borchers, Brian
MAA-SW / NMMATYC Joint Conference Registration Form New Mexico Tech Socorro, NM April 13-14, 2013. Is this your first NMMATYC conference? Yes No VII. Is this your first MAA Southwestern Section conference? Yes all conference meals: Sun continental breakfast, Sat & Sun lunch, and Sat dinner banquet. VIII. MAA
Andres Loh joint work with Ralf Hinze
Löh, Andres
Trinity Andres L¨oh joint work with Ralf Hinze Utrecht University January 11, 2008 #12;About me Ph), polytypic / datatype-generic programming, type systems (dependent types) Andres L¨oh Trinity 2 #12;What is Trinity? Trinity is a programming language designed by Ralf Hinze and me. It is called Trinity because
Data Management Group Joint Program in Transportation
Toronto, University of
Data Management Group Joint Program in Transportation University of Toronto access@jpint.utoronto.ca iDRS Interactive Data Retrieval System Access Request Form Name: Surname Given NameDRS on the computer system at the Data Man- agement Group only for the purpose of data extraction and retrieval. I
Data Management Group Joint Program in Transportation
Toronto, University of
Data Management Group Joint Program in Transportation University of Toronto System Access Request: __________________________________________________________________________ In signing this agreement, I agree to use my account on the computer system at the Data Management Group only of another user. Although the Data Management Group will attempt to maintain service at all times and provide
Data Management Group Joint Program in Transportation
Toronto, University of
Data Management Group Joint Program in Transportation University of Toronto access@jpint.utoronto.ca CCDRS Cordon Count Data Retrieval System Access Request Form Name: Surname Given Name to CCDRS on the computer system at the Data Man- agement Group only for the purpose of data extraction
MAA-SW / NMMATYC Joint Conference
Borchers, Brian
MAA-SW / NMMATYC Joint Conference Presenter Application New Mexico Tech Socorro, NM April 13-Visual Equipment needed: Computer Projector Computer Overhead Projector/Document Camera Internet Access TV / DVD player Other (Please specify): Completed Forms / Questions: Send to: William Stone New Mexico
Joint News Release ELEVENTH ITER NEGOTIATIONS MEETING
of Science and Technology of China Department of International Co-operation Luo Delong luodl@mail.most.govJoint News Release ELEVENTH ITER NEGOTIATIONS MEETING CHENGDU , CHINA, 24OCTOBER 2005 Delegations from China, European Union, Japan, the Republic of Korea, the Russian Federation and the United States
Wide temperature range seal for demountable joints
Sixsmith, H.; Valenzuela, J.A.; Nutt, W.E.
1991-07-23T23:59:59.000Z
The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof. 6 figures.
Wide temperature range seal for demountable joints
Sixsmith, Herbert (Norwich, VT); Valenzuela, Javier A. (Grantham, NH); Nutt, William E. (Enfield, NH)
1991-07-23T23:59:59.000Z
The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof.
2nd Annual National Joint Tribal Emergency Management Conference...
nd Annual National Joint Tribal Emergency Management Conference 2nd Annual National Joint Tribal Emergency Management Conference August 12, 2015 8:00AM PDT to August 14, 2015...
Expansion Joint Concepts for High Temperature Insulation Systems
Harrison, M. R.
1980-01-01T23:59:59.000Z
As high temperature steam and process piping expands with heat, joints begin to open between the insulation sections, resulting in increased energy loss and possible unsafe surface temperatures. Many different expansion joint designs are presently...
Inversed Temperature Dependence Aware Clock Skew Scheduling for Sequential
Kuzmanovic, Aleksandar
Inversed Temperature Dependence Aware Clock Skew Scheduling for Sequential Circuits Jieyi Long}@eecs.northwestern.edu Abstract -- We present an Inversed Temperature Dependence (ITD) aware clock skew scheduling framework, we propose an algorithm for synergistic temperature aware clock skew scheduling and dual
THE FUKUSHIMA INVERSE PROBLEM Marta Martinez-Camara, Ivan Dokmanic,
Vetterli, Martin
THE FUKUSHIMA INVERSE PROBLEM Marta Martinez-Camara, Ivan Dokmani´c, Juri Ranieri, Robin Scheibler material was released from Fukushima in March 2011 is crucial to understand the scope of the consequences regular- ization that solves the Fukushima inverse problem blindly. Together with the atmospheric
Inverses of Multivariate Polynomial Matrices using Discrete Convolution
Young, R. Michael
Inverses of Multivariate Polynomial Matrices using Discrete Convolution R. Lobo Dept. of Elec Raleigh, NC 27695 Abstract-- A new method for inversion of rectangular matrices in a multivariate to multivariate polynomial system of equations is the subject of intensive research and has major applications
Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions
Paris-Sud XI, Université de
Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions-validation (GCV) and x2 test are compared for the first time under a realistic setting in a mesoscale CO2 estimation, uncertainty quantification, mesoscale carbon dioxide inversions 1. Introduction The atmosphere
Inverse Modelling in Geology by Interactive Evolutionary Computation
Boschetti, Fabio
Inverse Modelling in Geology by Interactive Evolutionary Computation Chris Wijns a,b,, Fabio of geological processes, in the absence of established numerical criteria to act as inversion targets, requires evolutionary computation provides for the inclusion of qualitative geological expertise within a rigorous
Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped
Chai, Jinxiang
Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares method, the pseudoinverse method, and the damped least squares methods for inverse kinematics (IK], pseudoinverse methods [45], Jacobian transpose methods [5, 46], the Levenberg-Marquardt damped least squares
Wavelet based inversion of gravity data Fabio Boschetti
Boschetti, Fabio
1 Wavelet based inversion of gravity data Fabio Boschetti CSIRO Exploration & Mining and Australian Running Heading: Wavelet based inversion of gravity data #12;2 ABSTRACT The Green's function of the Poisson equation, and its spatial derivatives, lead to a family of wavelets specifically tailored
DYNAMIC INVERSE PROBLEM IN A WEAKLY LATERALLY INHOMOGENEOUS MEDIUM.
problem is mainly solved by means of the map migration method. The map migration method assumes of an independent way to recover the velocity profile above the interface may hinder the map migration techniques on depth, z, inverse problems of geophysics are often reduced to one-dimensional inverse problems
Mazzucco, Daniel Clarke, 1976-
2003-01-01T23:59:59.000Z
Polyethylene wear is a significant clinical problem limiting the long-term survival of joint replacement prostheses, particularly in total hip arthroplasty (THA) and total knee arthroplasty (TKA). Although the tribology ...
Microbial Genomics Data from the DOE Joint Genome Institute (JGI)
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
As of March 2008, The Joint Genome Institute has released 296 Prokaryotic microbial sites, with 216 in finished status.
SPIDERS Joint Capability Technology Demonstration Industry Day Presentations
Broader source: Energy.gov [DOE]
Presentations from the SPIDERS Joint Capability Technology Demonstration Industry Day, which occurred on April 22, 2014, at Fort Carson, Colorado.
Diesel combustion and emissions formation using multiple 2-D imaging diagnostics
Dec, J.E. [Sandia National Labs., Livermore, CA (United States)
1997-12-31T23:59:59.000Z
Understanding how emissions are formed during diesel combustion is central to developing new engines that can comply with increasingly stringent emission standards while maintaining or improving performance levels. Laser-based planar imaging diagnostics are uniquely capable of providing the temporally and spatially resolved information required for this understanding. Using an optically accessible research engine, a variety of two-dimensional (2-D) imaging diagnostics have been applied to investigators of direct-injection (DI) diesel combustion and emissions formation. These optical measurements have included the following laser-sheet imaging data: Mie scattering to determine liquid-phase fuel distributions, Rayleigh scattering for quantitative vapor-phase-fuel/air mixture images, laser induced incandescence (LII) for relative soot concentrations, simultaneous LII and Rayleigh scattering for relative soot particle-size distributions, planar laser-induced fluorescence (PLIF) to obtain early PAH (polyaromatic hydrocarbon) distributions, PLIF images of the OH radical that show the diffusion flame structure, and PLIF images of the NO radical showing the onset of NO{sub x} production. In addition, natural-emission chemiluminescence images were obtained to investigate autoignition. The experimental setup is described, and the image data showing the most relevant results are presented. Then the conceptual model of diesel combustion is summarized in a series of idealized schematics depicting the temporal and spatial evolution of a reacting diesel fuel jet during the time period investigated. Finally, recent PLIF images of the NO distribution are presented and shown to support the timing and location of NO formation hypothesized from the conceptual model.
Skeleton as a probe of the cosmic web: the 2D case
Dimitri Novikov; Stephane Colombi; Olivier Doré
2003-06-30T23:59:59.000Z
We discuss the skeleton as a probe of the filamentary structures of a 2D random field. It can be defined for a smooth field as the ensemble of pairs of field lines departing from saddle points, initially aligned with the major axis of local curvature and connecting them to local maxima. This definition is thus non local and makes analytical predictions difficult, so we propose a local approximation: the local skeleton is given by the set of points where the gradient is aligned with the local curvature major axis and where the second component of the local curvature is negative. We perform a statistical analysis of the length of the total local skeleton, chosen for simplicity as the set of all points of space where the gradient is either parallel or orthogonal to the main curvature axis. In all our numerical experiments, which include Gaussian and various non Gaussian realizations such as \\chi^2 fields and Zel'dovich maps, the differential length is found within a normalization factor to be very close to the probability distribution function of the smoothed field. This is in fact explicitly demonstrated in the Gaussian case. This result might be discouraging for using the skeleton as a probe of non Gausiannity, but our analyses assume that the total length of the skeleton is a free, adjustable parameter. This total length could in fact be used to constrain cosmological models, in CMB maps but also in 3D galaxy catalogs, where it estimates the total length of filaments in the Universe. Making the link with other works, we also show how the skeleton can be used to study the dynamics of large scale structure.
Clustering of 2PIGG galaxy groups with 2dFGRS galaxies
Georgios Mountrichas; Tom Shanks
2007-12-19T23:59:59.000Z
Prompted by indications from QSO lensing that there may be more mass associated with galaxy groups than expected, we have made new dynamical infall estimates of the masses associated with 2PIGG groups and clusters. We have analysed the redshift distortions in the cluster-galaxy cross-correlation function as a function of cluster membership, cross-correlating z<0.12 2PIGG clusters and groups with the full 2dF galaxy catalogue. We have made estimates of the dynamical infall parameter beta and new estimates of the group velocity dispersions. We first find that the amplitude of the full 3-D redshift space cross-correlation function, xi_{cg}, rises monotonically with group membership. We use a simple linear-theory infall model to fit xi(sigma, pi) in the range 5
Bosons in Disc-Shaped Traps: From 3D to 2D
K. Schnee; J. Yngvason
2006-10-16T23:59:59.000Z
We present a mathematically rigorous analysis of the ground state of a dilute, interacting Bose gas in a three-dimensional trap that is strongly confining in one direction so that the system becomes effectively two-dimensional. The parameters involved are the particle number, $N\\gg 1$, the two-dimensional extension, $\\bar L$, of the gas cloud in the trap, the thickness, $h\\ll \\bar L$ of the trap, and the scattering length $a$ of the interaction potential. Our analysis starts from the full many-body Hamiltonian with an interaction potential that is assumed to be repulsive, radially symmetric and of short range, but otherwise arbitrary. In particular, hard cores are allowed. Under the premisses that the confining energy, $\\sim 1/h^2$, is much larger than the internal energy per particle, and $a/h\\to 0$, we prove that the system can be treated as a gas of two-dimensional bosons with scattering length $a_{\\rm 2D}= h\\exp(-(\\hbox{\\rm const.)}h/a)$. In the parameter region where $a/h\\ll |\\ln(\\bar\\rho h^2)|^{-1}$, with $\\bar\\rho\\sim N/\\bar L^2$ the mean density, the system is described by a two-dimensional Gross-Pitaevskii density functional with coupling parameter $\\sim Na/h$. If $|\\ln(\\bar\\rho h^2)|^{-1}\\lesssim a/h$ the coupling parameter is $\\sim N |\\ln(\\bar\\rho h^2)|^{-1}$ and thus independent of $a$. In both cases Bose-Einstein condensation in the ground state holds, provided the coupling parameter stays bounded.
Approaches to Modeling Coupled Flow and Reaction in a 2-D Cementation Experiment
Steefel, Carl; Cochepin, B.; Trotignon, L.; Bildstein, O.; Steefel, C.; Lagneau, V.; van der Lee, J.
2008-04-01T23:59:59.000Z
Porosity evolution at reactive interfaces is a key process that governs the evolution and performances of many engineered systems that have important applications in earth and environmental sciences. This is the case, for example, at the interface between cement structures and clays in deep geological nuclear waste disposals. Although in a different transport regime, similar questions arise for permeable reactive barriers used for biogeochemical remediation in surface environments. The COMEDIE project aims at investigating the coupling between transport, hydrodynamics and chemistry when significant variations of porosity occur. The present work focuses on a numerical benchmark used as a design exercise for the future COMEDIE-2D experiment. The use of reactive transport simulation tools like Hytec and Crunch provides predictions of the physico-chemical evolutions that are expected during the future experiments in laboratory. Focus is given in this paper on the evolution during the simulated experiment of precipitate, permeability and porosity fields. A first case is considered in which the porosity is constant. Results obtained with Crunch and Hytec are in relatively good agreement. Differences are attributable to the models of reactive surface area taken into account for dissolution/precipitation processes. Crunch and Hytec simulations taking into account porosity variations are then presented and compared. Results given by the two codes are in qualitative agreement, with differences attributable in part to the models of reactive surface area for dissolution/precipitation processes. As a consequence, the localization of secondary precipitates predicted by Crunch leads to lower local porosities than for predictions obtained by Hytec and thus to a stronger coupling between flow and chemistry. This benchmark highlights the importance of the surface area model employed to describe systems in which strong porosity variations occur as a result of dissolution/precipitation. The simulation of highly non-linear reactive transport systems is also shown to be partly dependent on specific numerical approaches.
The 2dF Galaxy Redshift Survey: luminosity functions by density environment and galaxy type
Darren J. Croton; Glennys R. Farrar; Peder Norberg; Matthew Colless; John A. Peacock; I. K. Baldry; C. M. Baugh; J. Bland-Hawthorn; T. Bridges; R. Cannon; S. Cole; C. Collins; W. Couch; G. Dalton; R. De Propris; S. P. Driver; G. Efstathiou; R. S. Ellis; C. S. Frenk; K. Glazebrook; C. Jackson; O. Lahav; I. Lewis; S. Lumsden; S. Maddox; D. Madgwick; B. A. Peterson; W. Sutherland; K. Taylor
2005-02-08T23:59:59.000Z
We use the 2dF Galaxy Redshift Survey to measure the dependence of the bJ-band galaxy luminosity function on large-scale environment, defined by density contrast in spheres of radius 8h-1Mpc, and on spectral type, determined from principal component analysis. We find that the galaxy populations at both extremes of density differ significantly from that at the mean density. The population in voids is dominated by late types and shows, relative to the mean, a deficit of galaxies that becomes increasingly pronounced at magnitudes brighter than M_bJ-5log10h <-18.5. In contrast, cluster regions have a relative excess of very bright early-type galaxies with M_bJ-5log10h < -21. Differences in the mid to faint-end population between environments are significant: at M_bJ-5log10h=-18 early and late-type cluster galaxies show comparable abundances, whereas in voids the late types dominate by almost an order of magnitude. We find that the luminosity functions measured in all density environments, from voids to clusters, can be approximated by Schechter functions with parameters that vary smoothly with local density, but in a fashion which differs strikingly for early and late-type galaxies. These observed variations, combined with our finding that the faint-end slope of the overall luminosity function depends at most weakly on density environment, may prove to be a significant challenge for models of galaxy formation.
Look at this: the neural correlates of initiating and responding to bids for joint attention
Redcay, Elizabeth
When engaging in joint attention, one person directs another person's attention to an object (Initiating Joint Attention, IJA), and the second person's attention follows (Responding to Joint Attention, RJA). As such, joint ...
NEUTRONS AND 2 D ADSORBED PHASES. NEUTRON SCATTERING FROM 36ArAND 4HeFILMS
Paris-Sud XI, Université de
NEUTRONS AND 2 D ADSORBED PHASES. NEUTRON SCATTERING FROM 36ArAND 4HeFILMS K. CARNEIRO Physics. - The technique of neutron scattering is well established as a unique tool to investigate the details technique to physisorbed phases is quite natural. But on the other hand since neutron scattering, compared
Ensemble Results of Solute Transport in 2D Operator-Stable Random Fields Nathan Monnig, David Benson
by a scalar Hurst coefficient). Motivated by field measurements, recent techniques were developed to handle explored. Due to the rapid advance of computational power, numerical models can now be created in multiple in the K structure. This continuity can be defined by a probability measure on the unit circle in 2D
Accelerated Short-TE 3D Proton Echo-Planar Spectroscopic Imaging Using 2D-SENSE with
imaging (PEPSI) with regularized 2D-SENSE reconstruction is developed. Regularization was performed SENSE. We show that the acquisition of short-TE (15 ms) 3D-PEPSI at 3 T with a 32 32 8 spatial matrix (PEPSI) (6,7) is an implementation of this technique with a trapezoidal readout gradient for simultaneous
Majda, Marcin
Viscosity of the Aqueous Liquid/Vapor Interfacial Region: 2D Electrochemical Measurements, and that it is coupled to the interfacial water via hydrogen bonding with H2O. In view of this postulate, the viscosity into the dynamic characteristics of aqueous interfaces. Thus, parameters such as the viscosity of water
The Landau-Zener transition and the surface hopping method for the 2D Dirac equation for graphene
Jin, Shi
The Landau-Zener transition and the surface hopping method for the 2D Dirac equation for graphene dimensional massless Dirac equation for Graphene with an electrostatic potential, in the semiclassical regime in a single graphene layer. This material is a two-dimensional flat monolayer of carbon atoms which displays
Generation of 2D and 3D (PtS, Adamantanoid) Nets with a Flexible Tetrahedral Building Block
Tian, Jian; Motkuri, Radha K.; Thallapally, Praveen K.
2010-09-01T23:59:59.000Z
The self-assembly of a flexible tetrahedral linker tetrakis[4-(carboxyphenyl)oxamethyl]methane acid with various transition metals (Cu, Co and Mg) results in a 2D layered structure and 3D frameworks with PtS and adamantanoid topology. The PtS net exhibits permanent porosity as confirmed by BET and gas adsorption experiments.
Nemazi, Leslie A.
2010-07-14T23:59:59.000Z
The sedimentary wedge of the northern Gulf of Mexico is extensively deformed and faulted by salt tectonics. Industry 2-D multichannel seismic data covering a large area (33,800 km2) of the lower Texas continental slope [96 degrees 40'- 93 degrees 40...
Börner, Katy
Roget2000: A 2D Hyperbolic Tree Visualization of Roget's Thesaurus Jason L. Baumgartner*, Timothy A Thesauri, such as Roget's Thesaurus, show the semantic relationships among terms and concepts conventional trees. It is believed that allowing the user to visually browse the thesaurus will be more