2D Dirac Materials: From Graphene to Topological Insulators
Teweldebrhan, Desalegne Bekuretsion
2011-01-01T23:59:59.000Z
2D Topological Insulators. . . . . . . . . . . . . . . . .structure for a topological insulator. The Dirac cone fallsband structure for topological insulators. With the Fermi
Characterization of 3d topological insulators by 2d invariants
Rahul Roy
2010-04-20T23:59:59.000Z
The prediction of non-trivial topological phases in Bloch insulators in three dimensions has recently been experimentally verified. Here, I provide a picture for obtaining the $Z_{2}$ invariants for a three dimensional topological insulator by deforming suitable 2d planes in momentum space and by using a formula for the 2d $Z_{2}$ invariant based on the Chern number. The physical interpretation of this formula is also clarified through the connection between this formulation of the $Z_{2}$ invariant and the quantization of spin Hall conductance in two dimensions.
Electrical spin injection in 2D semiconductors and topological insulators
Golub, L. E.; Ivchenko, E. L. [Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St. Petersburg (Russian Federation)
2013-12-04T23:59:59.000Z
We have developed a theory of spin orientation by electric current in 2D semiconductors. It is shown that the spin depends on the relation between the energy and spin relaxation times and can vary by a factor of two for the limiting cases of fast and slow energy relaxation. For symmetrically-doped (110)-grown semiconductor quantum wells the effect of current-induced spin orientation is shown to exist due to random spatial variation of the Rashba spin-orbit splitting. We demonstrate that the spin depends strongly on the correlation length of this random spin-orbit field. We calculate the spin orientation degree in two-dimensional topological insulators. In high electric fields when the “streaming” regime is realized, the spin orientation degree weakly depends on the electric field and can reach values about 5%.
2D Dirac Materials: From Graphene to Topological Insulators
Teweldebrhan, Desalegne Bekuretsion
2011-01-01T23:59:59.000Z
x Graphene Preparation and2008). Chapter 3 Graphene Preparation and CharacterizationPreparation Methods of Atomically-Thin 2D Graphene . . . . . . . . . . . . . . .
Hasegawa, Shuji
Interfacing 2D and 3D Topological Insulators: Bi(111) Bilayer on Bi2Te3 Toru Hirahara,1,* Gustav Topological insulators, realized in materials with strong spin-orbit interaction, are gaining increasing-dimensional (1D) edge states compared to the 2D surface states of 3D topological insulators, only a few works
Tselev, Alexander; Strelcov, Evgheni; Luk’ yanchuk, Igor A.; Budai, John D.; Tischler, Jonathan Z.; Ivanov, Ilia N.; Jones, Keith; Proksch, Roger; Kalinin, Sergei V.; Kolmakov, Andrei (Asylum); (ORNL); (SIUC); (UPJV)
2011-08-09T23:59:59.000Z
Formation of ferroelastic twin domains in vanadium dioxide (VO{sub 2}) nanosystems can strongly affect local strain distributions, and hence couple to the strain-controlled metal-insulator transition. Here we report polarized-light optical and scanning microwave microscopy studies of interrelated ferroelastic and metal-insulator transitions in single-crystalline VO{sub 2} quasi-two-dimensional (quasi-2D) nanoplatelets (NPls). In contrast to quasi-1D single-crystalline nanobeams, the 2D geometric frustration results in emergence of several possible families of ferroelastic domains in NPls, thus allowing systematic studies of strain-controlled transitions in the presence of geometrical frustration. We demonstrate the possibility of controlling the ferroelastic domain population by the strength of the NPl-substrate interaction, mechanical stress, and by the NPl lateral size. Ferroelastic domain species and domain walls are identified based on standard group-theoretical considerations. Using variable temperature microscopy, we imaged the development of domains of metallic and semiconducting phases during the metal-insulator phase transition and nontrivial strain-driven reentrant domain formation. A long-range reconstruction of ferroelastic structures accommodating metal-insulator domain formation has been observed. These studies illustrate that a complete picture of the phase transitions in single-crystalline and disordered VO{sub 2} structures can be drawn only if both ferroelastic and metal-insulator strain effects are taken into consideration and understood.
M. Calixto; E. Romera
2015-02-11T23:59:59.000Z
We propose a new method to identify transitions from a topological insulator to a band insulator in silicene (the silicon equivalent of graphene) in the presence of perpendicular magnetic and electric fields, by using the R\\'enyi-Wehrl entropy of the quantum state in phase space. Electron-hole entropies display an inversion/crossing behavior at the charge neutrality point for any Landau level, and the combined entropy of particles plus holes turns out to be maximum at this critical point. The result is interpreted in terms of delocalization of the quantum state in phase space. The entropic description presented in this work will be valid in general 2D gapped Dirac materials, with a strong intrinsic spin-orbit interaction, isoestructural with silicene.
T-Duality of Topological Insulators
Varghese Mathai; Guo Chuan Thiang
2015-04-08T23:59:59.000Z
Topological insulators and D-brane charges in string theory can both be classified by the same family of groups. In this letter, we extend this connection via a geometric transform, giving a novel duality of topological insulators which can be viewed as a condensed matter analog of T-duality in string theory. For 2D Chern insulators, this duality exchanges the rank and Chern number of the valence bands.
1 Introduction 3 2 Topological insulators -Overview 5
Johannesson, Henrik
Contents 1 Introduction 3 2 Topological insulators - Overview 5 2.1 Introduction quantum spin Hall insulator . . . . . . . . . . . . . 7 2.4 Three dimensional topological insulator . . . . . . . . . . . . . . . . 9 3 Bulk band structure in a 2D spin orbit induced topological insulator 11 3.1 Introduction
Raghu, S.
2010-03-02T23:59:59.000Z
We consider extended Hubbard models with repulsive interactions on a honeycomb lattice, and the transitions from the semimetal to Mott insulating phases at half-filling. Because of the frustrated nature of the second-neighbor interactions, topological Mott phases displaying the quantum Hall and the quantum spin Hall effects are found for spinless and spin fermion models, respectively. The mean-field phase diagram is presented and the fluctuations are treated within the random phase approximation. Renormalization group analysis shows that these states can be favored over the topologically trivial Mott insulating states.
Weston, Ken
in monolayer graphene and topological insulators. Our results imply that a wide range of bulk crystals with Bi found so far in 2D materials such as graphene and topological insulators. Relativistic Fermions
PHYSICAL REVIEW B 85, 115415 (2012) Smooth gauge for topological insulators
Vanderbilt, David
2012-01-01T23:59:59.000Z
PHYSICAL REVIEW B 85, 115415 (2012) Smooth gauge for topological insulators Alexey A. Soluyanov polarization3,4 and the anomalous Hall conductance.5,6 The recent discovery of topological insulators7,8 has-like functions for 2D Z2 insulators (i.e., quantum spin- Hall insulators) that are smooth functions of k
2D microwave imaging reflectometer electronics
Spear, A. G.; Domier, C. W., E-mail: cwdomier@ucdavis.edu; Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C. [Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2014-11-15T23:59:59.000Z
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
Superconducting Topological Insulators
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Superconducting Topological Insulators Superconducting Topological Insulators Print Wednesday, 26 January 2011 00:00 Three-dimensional topological insulators (TIs), discovered...
Radiative heat transfer in 2D Dirac materials
Pablo Rodriguez-Lopez; Wang-Kong Tse; Diego A. R. Dalvit
2015-02-02T23:59:59.000Z
We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.
Electrically Controllable Surface Magnetism on the Surface of Topological Insulators Jia-Ji Zhu,1
Electrically Controllable Surface Magnetism on the Surface of Topological Insulators Jia-Ji Zhu,1 impurities on the surface of three- dimensional topological insulators, mediated by the helical Dirac named topolo- gical insulator (TI) in a number of materials, such as a two-dimensional (2D) HgTe quantum
Topological Insulators in Three Dimensions Liang Fu, C. L. Kane, and E. J. Mele
Kane, Charles
Topological Insulators in Three Dimensions Liang Fu, C. L. Kane, and E. J. Mele Department (STI) topological insulators. The WTI are like layered 2D QSH states, but are destroyed by disorder insulator by a Z2 topological invariant [6], analogous to the TKNN invariant of the integer quantum Hall
Torsional Response and Dissipationless Viscosity in Topological Insulators
Taylor L. Hughes; Robert G. Leigh; Eduardo Fradkin
2011-01-18T23:59:59.000Z
We consider the visco-elastic response of the electronic degrees of freedom in 2D and 3D topological insulators (TI). Our primary focus is on the 2D Chern insulator which exhibits a bulk dissipationless viscosity analogous to the quantum Hall viscosity predicted in integer and fractional quantum Hall states. We show that the dissipationless viscosity is the response of a TI to torsional deformations of the underlying lattice geometry. The visco-elastic response also indicates that crystal dislocations in Chern insulators will carry momentum density. We briefly discuss generalizations to 3D which imply that time-reversal invariant TI's will exhibit a quantum Hall viscosity on their surfaces.
% function dirfield2d % This program plots a direction field for an ODE x'=Ax, where A is % a 2x2 matrix, with the option of also plotting solution curves to % initial ...
Topological insulators/Isolants topologiques An introduction to topological insulators
Paris-Sud XI, Université de
Topological insulators/Isolants topologiques An introduction to topological insulators Introduction topology, the insulator is called a topological insulator. We introduce this notion of topological order sont finalement discutées. Keywords: topological insulator, topological band theory, quantum anomalous
Enhancement of Topological Insulators Surface Conduction
Yu, Xinxin
2012-01-01T23:59:59.000Z
Enhancement of Topological Insulators Surface Conduction AEnhancement of Topological Insulators Surface Conduction byTopological Insulator
Insulation assembly for electric machine
Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.
2013-10-15T23:59:59.000Z
An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.
Multiple density layered insulator
Alger, Terry W. (Tracy, CA)
1994-01-01T23:59:59.000Z
A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.
Multiple density layered insulator
Alger, T.W.
1994-09-06T23:59:59.000Z
A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.
Calcium silicate insulation structure
Kollie, Thomas G. (Oak Ridge, TN); Lauf, Robert J. (Oak Ridge, TN)
1995-01-01T23:59:59.000Z
An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.
T-Duality and Topological Insulators
Mathai, Varghese
2015-01-01T23:59:59.000Z
It is well known that topological insulators are classified by a family of groups, which coincidentally also classifies D-brane charges on orientifolds in string theory. In this letter, we extend this correlation via a geometric analog of the real Fourier transform to obtain a novel duality of topological insulators that can be viewed as a condensed matter analog of T-duality in string theory.
Topological insulators with SU(2) Landau levels
Yi Li; Shou-Cheng Zhang; Congjun Wu
2013-10-23T23:59:59.000Z
We construct continuum models of 3D and 4D topological insulators by coupling spin-1/2 fermions to an SU(2) background gauge field, which is equivalent to a spatially dependent spin-orbit coupling. Higher dimensional generalizations of flat Landau levels are obtained in the Landau-like gauge. The 2D helical Dirac modes with opposite helicities and 3D Weyl modes with opposite chiralities are spatially separated along the third and fourth dimensions, respectively. Stable 2D helical Fermi surfaces and 3D chiral Fermi surfaces appear on open boundaries, respectively. The charge pumping in 4D Landau level systems shows quantized 4D quantum Hall effect.
Constraints on topological order in Mott Insulators
Michael P. Zaletel; Ashvin Vishwanath
2015-04-18T23:59:59.000Z
We point out certain symmetry induced constraints on topological order in Mott Insulators (quantum magnets with an odd number of spin $\\tfrac{1}{2}$ per unit cell). We show, for example, that the double semion topological order is incompatible with time reversal and translation symmetry in Mott insulators. This sharpens the Hastings-Oshikawa-Lieb-Schultz-Mattis theorem for 2D quantum magnets, which guarantees that a fully symmetric gapped Mott insulator must be topologically ordered, but is silent on which topological order is permitted. An application of our result is the Kagome lattice quantum antiferromagnet where recent numerical calculations of entanglement entropy indicate a ground state compatible with either toric code or double semion topological order. Our result rules out the latter possibility.
Loss, Daniel
-gap topological-insulator class with a single Dirac cone on the surface Y. Xia1,2 , D. Qian1,3 , D. Hsieh1,2 , L insulators can give rise to a new phase of quantum matter, the so- called topological insulator, which can that a topological insulator2 with a single Dirac cone interfaced with a superconductor can form the most elementary
Membranes Improve Insulation Efficiency
Bullock, C. A.
1986-01-01T23:59:59.000Z
No Clear White Alum Temp Mem Mem Mem Foil FIGURE 7 Temperature Inside Room and Temperature Next to Top of Sheetrock Under Various insulation Configurations. It should be noted that after this test was completed, the fiber insulation was inspected...
Slab edge insulating form system and methods
Lee, Brain E. (Corral de Tierra, CA); Barsun, Stephan K. (Davis, CA); Bourne, Richard C. (Davis, CA); Hoeschele, Marc A. (Davis, CA); Springer, David A. (Winters, CA)
2009-10-06T23:59:59.000Z
A method of forming an insulated concrete foundation is provided comprising constructing a foundation frame, the frame comprising an insulating form having an opening, inserting a pocket former into the opening; placing concrete inside the foundation frame; and removing the pocket former after the placed concrete has set, wherein the concrete forms a pocket in the placed concrete that is accessible through the opening. The method may further comprise sealing the opening by placing a sealing plug or sealing material in the opening. A system for forming an insulated concrete foundation is provided comprising a plurality of interconnected insulating forms, the insulating forms having a rigid outer member protecting and encasing an insulating material, and at least one gripping lip extending outwardly from the outer member to provide a pest barrier. At least one insulating form has an opening into which a removable pocket former is inserted. The system may also provide a tension anchor positioned in the pocket former and a tendon connected to the tension anchor.
Schorr, H. Peter (Douglaston, NY); Fontana, Jack J. (Shirley, NY); Steinberg, Meyer (Melville, NY)
1987-01-01T23:59:59.000Z
A lightweight insulating polymer concrete formed from a lightweight closed cell aggregate and a water resistance polymeric binder.
Topological Insulators & Superconductors
Topological Insulators & Superconductors New Frontiers in Low-Dimensional Systems Program 3-5 November 2010 Jadwin Hall, Fourth Floor, Room 407 Topological Insulators and Superconductors have quickly Insulators and Superconductors will gather the world- leading researchers in this field to present recent
Particle trap with dielectric barrier for use in gas insulated transmission lines
Dale, Steinar J. (Monroeville, PA)
1982-01-01T23:59:59.000Z
A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode.
Particle trap with dielectric barrier for use in gas insulated transmission lines
Dale, S.J.
1982-06-15T23:59:59.000Z
A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode. 7 figs.
Charge and spin topological insulators
Kopaev, Yu. V., E-mail: kopaev@sci.lebedev.ru; Gorbatsevich, A. A.; Belyavskii, V. I. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2011-09-15T23:59:59.000Z
The topologically nontrivial states of matter-charge and spin topological insulators, which exhibit, respectively, properties of the integer quantum Hall effect and the quantum spin Hall effect-are discussed. The topological characteristics (invariant with respect to weak adiabatic changes in the Hamiltonian parameters) which lead to such states are considered. The model of a 2D hexagonal lattice having symmetries broken with respect to time reversal and spatial inversion which was proposed by Haldane and marked the beginning of unprecedented activity in the study of topologically nontrivial states is discussed. This model relates the microscopic nature of the symmetry breaking with respect to the time reversal to the occurrence of spontaneous orbital currents which circulate within a unit cell. Such currents become zero upon summation over the unit cell, but they may form spreading current states at the surface which are similar to the edge current states under the quantum Hall effect. The first model of spontaneous currents (exciton insulator model) is considered, and the possibility of implementing new topologically nontrivial states in this model is discussed.
A Simple Holographic Insulator
Eric Mefford; Gary T. Horowitz
2014-07-11T23:59:59.000Z
We present a simple holographic model of an insulator. Unlike most previous holographic insulators, the zero temperature infrared geometry is completely nonsingular. Both the low temperature DC conductivity and the optical conductivity at zero temperature satisfy power laws with the same exponent, given by the scaling dimension of an operator in the IR. Changing a parameter in the model converts it from an insulator to a conductor with a standard Drude peak.
Schilling, R. E.
PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram written in IBM basic to simplify the economic insulation thickness for an insulated pipe. Many... ECONOMIES" 30 LOCATE 10,29:PRINT"ROBERT E. SCHILLING,P.E." 40 LOCATE l2,3l:PRINT"EATON CORPORATION" 50 LOCATE l3,26:PRINT"119 Q SOUTH CHILLICOTHE ROAD" 598 ESL-IE-86-06-97 Proceedings from the Eighth Annual Industrial Energy Technology Conference...
CALIFORNIA ENERGY Ceiling Insulation Report
CALIFORNIA ENERGY COMMISSION Ceiling Insulation Report: Effectiveness of Lay-In Ceiling Insulation Effectiveness of Lay-In Insulation (product 5.2.6) TECHNICALREPORT October 2003 500-03-082-A-14 Gray Davis
Annotated Bibliography of EDGE2D Use
J.D. Strachan and G. Corrigan
2005-06-24T23:59:59.000Z
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
Staring 2-D hadamard transform spectral imager
Gentry, Stephen M. (Albuquerque, NM); Wehlburg, Christine M. (Albuquerque, NM); Wehlburg, Joseph C. (Albuquerque, NM); Smith, Mark W. (Albuquerque, NM); Smith, Jody L. (Albuquerque, NM)
2006-02-07T23:59:59.000Z
A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.
Method of preventing leakage of a fluid along and through an insulating jacket of a thermocouple
Thermos, Anthony Constantine (Greer, SC); Rahal, Fadi Elias (Easley, SC)
2002-01-01T23:59:59.000Z
A thermocouple assembly includes a thermocouple; a plurality of lead wires extending from the thermocouple; an insulating jacket extending along and enclosing the plurality of leads; and at least one internally sealed area within the insulating jacket to prevent fluid leakage along and within the insulating jacket. The invention also provides a method of preventing leakage of a fluid along and through an insulating jacket of a thermocouple including the steps of a) attaching a plurality of lead wires to a thermocouple; b) adding a heat sensitive pseudo-wire to extend along the plurality of lead wires; c) enclosing the lead wires and pseudo-wire inside an insulating jacket; d) locally heating axially spaced portions of the insulating jacket to a temperature which melts the pseudo-wire and fuses it with an interior surface of the jacket.
Cooper-Pair Injection into Topological Insulators and Helical Wires
Sato, Koji
2013-01-01T23:59:59.000Z
Topological Insulator . . . . . . . . . . . . . . . . . . . . . . . .phenomena : Topological Insulators and Superconductors. ”Colloquium : Topological insulators. ” Rev. Mod. Phys. , 82:
Stanley, T. F.
1982-01-01T23:59:59.000Z
Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy...
James Valles
2010-01-08T23:59:59.000Z
Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.
Finite Heat conduction in 2D Lattices
Lei Yang; Yang Kongqing
2001-07-30T23:59:59.000Z
This paper gives a 2D hamonic lattices model with missing bond defects, when the capacity ratio of defects is enough large, the temperature gradient can be formed and the finite heat conduction is found in the model. The defects in the 2D harmonic lattices impede the energy carriers free propagation, by another words, the mean free paths of the energy carrier are relatively short. The microscopic dynamics leads to the finite conduction in the model.
Duncan, David B. (Auburn, CA)
1992-01-01T23:59:59.000Z
The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member.
Electoral Competition, Political Uncertainty and Policy Insulation
de Figueiredo, Rui J. P. Jr.
2001-01-01T23:59:59.000Z
Uncertainty and Policy Insulation Horn, Murray. 1995. TheUncertainty and Policy Insulation United States Congress.UNCERTAINTY AND POLICY INSULATION Rui J. P. de Figueiredo,
Vertically aligned gas-insulated transmission line having particle traps at the inner conductor
Dale, Steinar J. (Monroeville, PA)
1984-01-01T23:59:59.000Z
Gas insulated electrical apparatus having first and second conductors separated by an insulating support within an insulating gas environment, and particle traps disposed along the surface of the high potential conductor for trapping and inactivating foreign particles which may be present within the insulating gas medium. Several embodiments of the invention were developed which are particularly suited for vertically aligned gas insulated transmission lines. The particle traps are grooves or cavities formed into the walls of the tubular inner conductor, without extending into the hollow portion of the conductor. In other embodiments, the traps are appendages or insert flanges extending from the inner conductor, with the insulator supports contacting the appendages instead of the inner conductor.
Thin films versus 2D sheets in layered structures: graphene and 2D metallic sheets
Bo E. Sernelius
2012-09-19T23:59:59.000Z
We study an interface between two media separated by a strictly 2D sheet. We show how the amplitude reflection coefficient can be modeled by that for an interface where the 2D sheet has been replaced by a film of small but finite thickness. We give the relationship between the 3D dielectric function of the thin film and the 2D dielectric function of the sheet. We choose graphene and a 2D metallic sheet as illustrative examples. This approach turns out to be very useful when treating graphene or graphene like sheets in non-planar structures
D-Algebra Structure of Topological Insulators
B. Estienne; N. Regnault; B. A. Bernevig
2013-02-01T23:59:59.000Z
In the quantum Hall effect, the density operators at different wave-vectors generally do not commute and give rise to the Girvin MacDonald Plazmann (GMP) algebra with important consequences such as ground-state center of mass degeneracy at fractional filling fraction, and W_{1 + \\infty} symmetry of the filled Landau levels. We show that the natural generalization of the GMP algebra to higher dimensional topological insulators involves the concept of a D-algebra formed by using the fully anti-symmetric tensor in D-dimensions. For insulators in even dimensional space, the D-algebra is isotropic and closes for the case of constant non-Abelian F(k) ^ F(k) ... ^ F(k) connection (D-Berry curvature), and its structure factors are proportional to the D/2-Chern number. In odd dimensions, the algebra is not isotropic, contains the weak topological insulator index (layers of the topological insulator in one less dimension) and does not contain the Chern-Simons \\theta form (F ^ A - 2/3 A ^ A ^ A in 3 dimensions). The Chern-Simons form appears in a certain combination of the parallel transport and simple translation operator which is not an algebra. The possible relation to D-dimensional volume preserving diffeomorphisms and parallel transport of extended objects is also discussed.
Thermal insulated glazing unit
Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.
1988-04-05T23:59:59.000Z
An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.
Thermal insulated glazing unit
Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)
1991-01-01T23:59:59.000Z
An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.
Notes on topological insulators
Dan Li; Ralph M. Kaufmann; Birgit Wehefritz-Kaufmann
2015-01-13T23:59:59.000Z
This paper is a survey of the $\\mathbb{Z}/\\mathbb{Z}_2$-valued invariants of topological insulators in condensed matter physics. The $\\mathbb{Z}$-valued topological invariant was originally called the TKNN invariant in physics, which has been fully understood as the first Chern number. The $\\mathbb{Z}_2$ invariant is more mysterious, we will devote our efforts to reviewing its equivalent descriptions from different point of views. We emphasize that both invariants are realizations of the Atiyah--Singer index theorem in condensed matter physics. The topological K-theory also plays an important role in the classification of topological insulators with different symmetries.
Insulation | Department of Energy
Office of Environmental Management (EM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturing | Department ofInsulation Insulation
Contaminant trap for gas-insulated apparatus
Adcock, J.L.; Pace, M.O.; Christophorou, L.G.
1984-01-01T23:59:59.000Z
A resinous body is placed in gas-insulated electrical apparatus to remove particulate material from the insulating gas.
Animation : 2D versus 3D and their combined effect
Au, Kristin C
2014-01-01T23:59:59.000Z
This thesis studies the differences in the perception of space and character movement between 2D and 3D animation. 2D animation is defined by elements constructed in a 2D environment while 3D animation by elements constructed ...
Identification of building applications for a variable-conductance insulation
Potter, T.F. [National Renewable Energy Lab., Golden, CO (United States); Tuluca, A. [Winter (Steven) Associates, Inc., New York, NY (United States)
1992-07-01T23:59:59.000Z
Recent experiments have confirmed the feasibility of controllable, reversible disabling of a vacuum insulation panel, which may result in the development of energy-efficient building envelope components. These components could extend the managed energy exchange through the building envelope from about 30% (typical with fenestration systems in commercial buildings), to as much as 90% of the gross wall and roof areas. Further investigation will be required to optimized the thermal response and the magnitude of the R-value swing (from a difference between insulating and conducting insulating values of 4 to as high as a factor of 100). The potential for energy reduction by using the variable-conductance insulation in the building envelope is discussed, and other potential building applications are mentioned.
Homotopy Theory of Strong and Weak Topological Insulators
Ricardo Kennedy; Charles Guggenheim
2014-09-08T23:59:59.000Z
We use homotopy theory to extend the notion of strong and weak topological insulators to the non-stable regime (low numbers of occupied/empty energy bands). We show that for strong topological insulators in d spatial dimensions to be "truly d-dimensional", i.e. not realizable by stacking lower-dimensional insulators, a more restrictive definition of "strong" is required. However, this does not exclude weak topological insulators from being "truly d-dimensional", which we demonstrate by an example. Additionally, we prove some useful technical results, including the homotopy theoretic derivation of the factorization of invariants over the torus into invariants over spheres in the stable regime, as well as the rigorous justification of replacing $T^d$ by $S^d$ and $T^{d_k}\\times S^{d_x}$ by $S^{d_k+d_x}$ as is common in the current literature.
Peg supported thermal insulation panel
Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)
1985-01-01T23:59:59.000Z
A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.
Peg supported thermal insulation panel
Nowobilski, J.J.; Owens, W.J.
1985-04-30T23:59:59.000Z
A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.
Physics World Archive Topological insulators
Johannesson, Henrik
Physics World Archive Topological insulators Charles Kane, Joel Moore From Physics World February, how- ever, now uncovered a new electronic phase called a topological insulator. Putting the name; this "spin current" is a milestone in the realization of practical "spintronics". Topological insulators have
Topological Insulator Nanowires and Nanoribbons
Cui, Yi
Topological Insulator Nanowires and Nanoribbons Desheng Kong, Jason C. Randel,,| Hailin Peng,, Judy material show that it is a three-dimensional topological insulator possessing conductive surface states topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface
Wake effects characterization using wake oscillator model Comparison on 2D response with experiments
Paris-Sud XI, Université de
forces -- Fext contain the hydrodynamic forces (drag, lift and forces issued from the potential theory oscillators is developed to predict the 2D motion in a transverse plan of two rigid cylinders in tandem. Extended studies have been conduced to describe and explain them for spring mounted uniform cylinders
Simulation of surface waves with porous boundaries in a 2-D numerical wave tank
Koo, Weoncheol
1999-01-01T23:59:59.000Z
are obtained for an arbitrary 2-D body. The boundary element method is then extended to the problem with porous boundaries. The flow inside porous medium is based on Darcy's rule. Analytic solutions are obtained for the flat porous bottom case and compared...
Holographic fractional topological insulators
Hoyos, Carlos; Jensen, Kristan; Karch, Andreas [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)
2010-10-15T23:59:59.000Z
We give a holographic realization of the recently proposed low-energy effective action describing a fractional topological insulator. In particular we verify that the surface of this hypothetical material supports a fractional quantum Hall current corresponding to half that of a Laughlin state.
2D kinematic signatures of boxy/peanut bulges
Iannuzzi, Francesca
2015-01-01T23:59:59.000Z
We study the imprints of boxy/peanut structures on the 2D line-of-sight kinematics of simulated disk galaxies. The models under study belong to a family with varying initial gas fraction and halo triaxiality, plus few other control runs with different structural parameters; the kinematic information was extracted using the Voronoi-binning technique and parametrised up to the fourth order of a Gauss-Hermite series. Building on a previous work for the long-slit case, we investigate the 2D kinematic behaviour in the edge-on projection as a function of the boxy/peanut strength and position angle; we find that for the strongest structures the highest moments show characteristic features away from the midplane in a range of position angles. We also discuss the masking effect of a classical bulge and the ambiguity in discriminating kinematically this spherically-symmetric component from a boxy/peanut bulge seen end-on. Regarding the face-on case, we extend existing results to encompass the effect of a second bucklin...
2-D color code quantum computation
Austin G. Fowler
2011-01-10T23:59:59.000Z
We describe in detail how to perform universal fault-tolerant quantum computation on a 2-D color code, making use of only nearest neighbor interactions. Three defects (holes) in the code are used to represent logical qubits. Triple defect logical qubits are deformed into isolated triangular sections of color code to enable transversal implementation of all single logical qubit Clifford group gates. CNOT is implemented between pairs of triple defect logical qubits via braiding.
GBL-2D Version 1.0: a 2D geometry boolean library.
McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J. (Elemental Technologies, American Fort, UT)
2006-11-01T23:59:59.000Z
This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.
Compact vacuum insulation embodiments
Benson, D.K.; Potter, T.F.
1992-04-28T23:59:59.000Z
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.
Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)
1993-01-01T23:59:59.000Z
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.
Benson, D.K.; Potter, T.F.
1993-01-05T23:59:59.000Z
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.
Compact vacuum insulation embodiments
Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)
1992-01-01T23:59:59.000Z
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.
Topological BF field theory description of topological insulators
Cho, Gil Young [Department of Physics, University of California, Berkeley, CA 94720 (United States); Moore, Joel E., E-mail: jemoore@berkeley.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2011-06-15T23:59:59.000Z
Research Highlights: > We show that a BF theory is the effective theory of 2D and 3D topological insulators. > The non-gauge-invariance of the bulk theory yields surface terms for a bosonized Dirac fermion. > The 'axion' term in electromagnetism is correctly obtained from gapped surfaces. > Generalizations to possible fractional phases are discussed in closing. - Abstract: Topological phases of matter are described universally by topological field theories in the same way that symmetry-breaking phases of matter are described by Landau-Ginzburg field theories. We propose that topological insulators in two and three dimensions are described by a version of abelian BF theory. For the two-dimensional topological insulator or quantum spin Hall state, this description is essentially equivalent to a pair of Chern-Simons theories, consistent with the realization of this phase as paired integer quantum Hall effect states. The BF description can be motivated from the local excitations produced when a {pi} flux is threaded through this state. For the three-dimensional topological insulator, the BF description is less obvious but quite versatile: it contains a gapless surface Dirac fermion when time-reversal-symmetry is preserved and yields 'axion electrodynamics', i.e., an electromagnetic E . B term, when time-reversal symmetry is broken and the surfaces are gapped. Just as changing the coefficients and charges of 2D Chern-Simons theory allows one to obtain fractional quantum Hall states starting from integer states, BF theory could also describe (at a macroscopic level) fractional 3D topological insulators with fractional statistics of point-like and line-like objects.
Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.
1993-12-14T23:59:59.000Z
A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.
ENERGY LANDSCAPE OF 2D FLUID FORMS
Y. JIANG; ET AL
2000-04-01T23:59:59.000Z
The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.
Thermal insulations using vacuum panels
Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)
1991-07-16T23:59:59.000Z
Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.
Hydrogen in semiconductors and insulators
Van de Walle, Chris G.
2007-01-01T23:59:59.000Z
level in two different semiconductors, illustrating the06-01999R1 Hydrogen in semiconductors and insulators SpecialA. oxide materials; A. semiconductors; C. electronic
Insulation | Department of Energy
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf NSECAtomInsulation
Insulation | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy1EnergyEnergy InsulateandInsulation
Electrical wire insulation and electromagnetic coil
Bich, George J. (Penn Hills, PA); Gupta, Tapan K. (Monroeville, PA)
1984-01-01T23:59:59.000Z
An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.
Superconducting ``metals'' and ``insulators'' Smitha Vishveshwara
Superconducting ``metals'' and ``insulators'' Smitha Vishveshwara Department of Physics, University to the distinction between normal metals and insulators: the superconducting ``metal'' with delocalized qua- siparticle excitations and the superconducting ``insulator'' with localized quasiparticles. We describe
Topological BF field theory description of topological insulators
Gil Young Cho; Joel E. Moore
2010-12-03T23:59:59.000Z
Topological phases of matter are described universally by topological field theories in the same way that symmetry-breaking phases of matter are described by Landau-Ginzburg field theories. We propose that topological insulators in two and three dimensions are described by a version of abelian $BF$ theory. For the two-dimensional topological insulator or quantum spin Hall state, this description is essentially equivalent to a pair of Chern-Simons theories, consistent with the realization of this phase as paired integer quantum Hall effect states. The $BF$ description can be motivated from the local excitations produced when a $\\pi$ flux is threaded through this state. For the three-dimensional topological insulator, the $BF$ description is less obvious but quite versatile: it contains a gapless surface Dirac fermion when time-reversal-symmetry is preserved and yields "axion electrodynamics", i.e., an electromagnetic $E \\cdot B$ term, when time-reversal symmetry is broken and the surfaces are gapped. Just as changing the coefficients and charges of 2D Chern-Simons theory allows one to obtain fractional quantum Hall states starting from integer states, $BF$ theory could also describe (at a macroscopic level) fractional 3D topological insulators with fractional statistics of point-like and line-like objects.
Pauli matrices and 2D electron gas
J. F. Geurdes
2013-02-07T23:59:59.000Z
In the present paper it will be argued that transport in a 2D electron gas can be implemented as 'local hidden instrument based' variables. With this concept of instrumentalism it is possible to explain the quantum correlation, the particle-wave duality and Wheeler's 'backward causation of a particle'. In the case of quantum correlation the spin measuring variant of the Einstein Podolsky and Rosen paradox is studied. In the case of particle-wave duality the system studied is single photon Mach-Zehnder (MZ) interferometry with a phase shift size $\\delta$. The idea that the instruments more or less neutrally may show us the way to the particle will be replaced by the concept of laboratory equipment contributing in an unexpected way to the measurement.
Benson, D.K.; Potter, T.F.
1992-10-27T23:59:59.000Z
Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.
Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)
1992-01-01T23:59:59.000Z
Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.
Aerogel Impregnated Polyurethane Piping and Duct Insulation ...
Aerogel Impregnated Polyurethane Piping and Duct Insulation Aerogel Impregnated Polyurethane Piping and Duct Insulation Emerging Technologies Project for the 2013 Building...
Flipping Photoelectron Spins in Topological Insulators
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Flipping Photoelectron Spins in Topological Insulators Flipping Photoelectron Spins in Topological Insulators Print Tuesday, 23 April 2013 10:00 Inherently strange crystalline...
Flipping Photoelectron Spins in Topological Insulators
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science....
Synthesis, structure, and magnetic properties of extended 2-D triangular lattices
Bartlett, Bart M
2005-01-01T23:59:59.000Z
A series of pure iron jarosites (formula AFe?(OH)?(TO?)?) possessing the paradigmatic kagomé lattice has been prepared stoichiometrically pure through the use of a redox-based hydlrothermal synthetic strategy. This synthetic ...
Multiple layer insulation cover
Farrell, James J. (Livingston Manor, NY); Donohoe, Anthony J. (Ovid, NY)
1981-11-03T23:59:59.000Z
A multiple layer insulation cover for preventing heat loss in, for example, a greenhouse, is disclosed. The cover is comprised of spaced layers of thin foil covered fabric separated from each other by air spaces. The spacing is accomplished by the inflation of spaced air bladders which are integrally formed in the cover and to which the layers of the cover are secured. The bladders are inflated after the cover has been deployed in its intended use to separate the layers of the foil material. The sizes of the material layers are selected to compensate for sagging across the width of the cover so that the desired spacing is uniformly maintained when the cover has been deployed. The bladders are deflated as the cover is stored thereby expediting the storage process and reducing the amount of storage space required.
Density Matrix Topological Insulators
A. Rivas; O. Viyuela; M. A. Martin-Delgado
2013-10-31T23:59:59.000Z
Thermal noise can destroy topological insulators (TI). However we demonstrate how TIs can be made stable in dissipative systems. To that aim, we introduce the notion of band Liouvillian as the dissipative counterpart of band Hamiltonian, and show a method to evaluate the topological order of its steady state. This is based on a generalization of the Chern number valid for general mixed states (referred to as density matrix Chern value), which witnesses topological order in a system coupled to external noise. Additionally, we study its relation with the electrical conductivity at finite temperature, which is not a topological property. Nonetheless, the density matrix Chern value represents the part of the conductivity which is topological due to the presence of quantum mixed edge states at finite temperature. To make our formalism concrete, we apply these concepts to the two-dimensional Haldane model in the presence of thermal dissipation, but our results hold for arbitrary dimensions and density matrices.
A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures
Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.
1998-12-14T23:59:59.000Z
We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.
STATE OF CALIFORNIA INSULATION STAGE CHECKLIST
STATE OF CALIFORNIA INSULATION STAGE CHECKLIST CEC-CF-6R-ENV-22 (Revised 05/12) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-ENV-22 Quality Insulation Installation (QII) - Insulation Stage be insulated in a manner that resists thermal bridging of the assembly separating conditioned from
Chromatin insulators: lessons from the fly
Corces, Victor G.
Chromatin insulators: lessons from the fly B.V.Gurudatta and Victor G.Corces Abstract Chromatin insulators are DNA^protein complexes with broad functions in nuclear biology. Drosophila has at least five different types of insulators; recent results suggest that these different insulators share some components
Solar Decathlon Technology Spotlight: Structural Insulated Panels
Broader source: Energy.gov [DOE]
Structural insulated panels (SIPs) are prefabricated structural elements used to build walls, ceilings, floors, and roofs.
Tunable Dirac Fermion Dynamics in Topological Insulators
Wang, Wei Hua
Tunable Dirac Fermion Dynamics in Topological Insulators Chaoyu Chen1 , Zhuojin Xie1 , Ya Feng1, Beijing 100190, China. Three-dimensional topological insulators are characterized by insulating bulk state topological insulators. We have directly revealed signatures of the electron-phonon coupling and found
$K$-theory on arbitrary manifolds and topological insulators
Koushik Ray; Siddhartha Sen
2014-12-23T23:59:59.000Z
We discuss means to study topological properties of wavefunctions in a time reversal invariant crystalline system through $K$-groups. The well-known methods for calculating $K$-groups of $G$-bundles over spheres are extended using earlier results in order to deal with wavefunctions defined over toroidal Brillouin zones, following a method due to Nash. The recently discovered topological insulator is considered as an illustrative example.
$K$-theory on tori and topological insulators
Ray, Koushik
2014-01-01T23:59:59.000Z
We discuss means to study topological properties of wavefunctions in a time reversal invariant crystalline system through $K$-groups. The well-known methods for calculating $K$-groups of $G$-bundles over spheres are extended using earlier results in order to deal with wavefunctions defined over toroidal Brillouin zones, following a method due to Nash. The recently discovered topological insulator is considered as an illustrative example.
Correlation effects on topological insulator
Xiong-Jun Liu; Yang Liu; Xin Liu
2010-11-24T23:59:59.000Z
The strong correlation effects on topological insulator are studied in a two-sublattice system with an onsite single-particle energy difference $\\Delta$ between two sublattices. At $\\Delta=0$, increasing the onsite interaction strength $U$ drives the transition from the quantum spin Hall insulating state to the non-topological antiferromagnetic Mott-insulating (AFMI) state. When $\\Delta$ is larger than a certain value, a topologically trivial band insulator or AFMI at small values of $U$ may change into a quantum anomalous Hall state with antiferromagnetic ordering at intermediate values of $U$. Further increasing $U$ drives the system back into the topologically trivial state of AFMI. The corresponding phenomena is observable in the solid state and cold atom systems. We also propose a scheme to realize and detect these effects in cold atom systems.
Measure Guideline: Basement Insulation Basics
Aldrich, R.; Mantha, P.; Puttagunta, S.
2012-10-01T23:59:59.000Z
This guideline is intended to describe good practices for insulating basements in new and existing homes, and is intended to be a practical resources for building contractors, designers, and also to homeowners.
Fully synthetic taped insulation cables
Forsyth, Eric B. (Brookhaven, NY); Muller, Albert C. (Center Moriches, NY)
1984-01-01T23:59:59.000Z
A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.
Variable pressure thermal insulating jacket
Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.
1994-09-20T23:59:59.000Z
A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.
Exploring the structure and chemical activity of 2-D gold islands on graphene moire/Ru(0001)
Goodman, Wayne
Exploring the structure and chemical activity of 2-D gold islands on graphene moire/Ru(0001) Ye Xu May 2011 DOI: 10.1039/c1fd00030f Au deposited on Ru(0001)-supported extended, continuous graphene. These Au islands conform to the corrugation of the underlying graphene and display commensurate moire
GROUND PLANE INSULATION FAILURE IN THE FIRST TPC SUPERCONDUCTING COIL
Green, M.A.
2010-01-01T23:59:59.000Z
is WIUUTEO GROUND PLANE INSULATION FAILURE IN THE FIRST TPCOn August 27, 1980, an insulation failure occurred dt-ringby a failure uf ground plane insulation. ACKNOWLEDGMENTS The
Typical Clothing Ensemble Insulation Levels for Sixteen Body Parts
Lee, Juyoun; Zhang, Hui; Arens, Edward
2013-01-01T23:59:59.000Z
Thermal Comfort.1994 CLO Insulation Levels For Sixteen Bodya mesh arm chair whose insulation level was measured. FigureExperimental Conditions. CLO Insulation Levels For Sixteen
Edge Transport in 2D Cold Atom Optical Lattices
V. W. Scarola; S. Das Sarma
2007-05-24T23:59:59.000Z
We theoretically study the observable response of edge currents in two dimensional cold atom optical lattices. As an example we use Gutzwiller mean-field theory to relate persistent edge currents surrounding a Mott insulator in a slowly rotating trapped Bose-Hubbard system to time of flight measurements. We briefly discuss an application, the detection of Chern number using edge currents of a topologically ordered optical lattice insulator.
Phase structure of topological insulators by lattice strong-coupling expansion
Araki, Yasufumi; Sekine, Akihiko; Nomura, Kentaro; Nakano, Takashi Z
2013-01-01T23:59:59.000Z
The effect of the strong electron correlation on the topological phase structure of 2-dimensional (2D) and 3D topological insulators is investigated, in terms of lattice gauge theory. The effective model for noninteracting system is constructed similarly to the lattice fermions with the Wilson term, corresponding to the spin-orbit coupling. Introducing the electron-electron interaction as the coupling to the gauge field, we analyze the behavior of emergent orders by the strong coupling expansion methods. We show that there appears a new phase with the in-plane antiferromagnetic order in the 2D topological insulator, which is similar to the so-called "Aoki phase" in lattice QCD with Wilson fermions. In the 3D case, on the other hand, there does not appear such a new phase, and the electron correlation results in the shift of the phase boundary between the topological phase and the normal phase.
Lossless Wavelet Based Image Compression with Adaptive 2D Decomposition
Lossless Wavelet Based Image Compression with Adaptive 2D Decomposition Manfred Kopp Technical.kopp@ieee.org WWW: http://www.cg.tuwien.ac.at/~kopp/ Abstract 2D wavelets are usually generated from 1D wavelets wavelet functions based on the compression of the coefficients, but needs only the same number of 1D
Process for making ceramic insulation
Akash, Akash (Salt Lake City, UT); Balakrishnan, G. Nair (Sandy, UT)
2009-12-08T23:59:59.000Z
A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.
Approximating Metal-Insulator Transitions
C. Danieli; K. Rayanov; B. Pavlov; G. Martin; S. Flach
2014-05-06T23:59:59.000Z
We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate metal-insulator transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges which are at variance to the celebrated Aubry-Andre model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase similar to the divergence of the localization length in the insulating phase.
Insulation board and process of making
Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)
1985-01-01T23:59:59.000Z
Insulation board capable of bearing a load without significant loss of insulating capacity due to compression, produced by a method wherein the board is made in compliance with specified conditions of time, temperature and pressure.
Insulator damage endangers public, power reliability; ratepayers...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
for tips about multiple incidents of insulators damaged by firearms on its high-voltage power line near Joint Base Lewis-McChord in Tacoma, Wash. Damaged insulators can put...
Degradation of Structural Alloys Under Thermal Insulation
McIntyre, D. R.
1984-01-01T23:59:59.000Z
Wet thermal insulation may actively degrade steel and stainless steel structures by general corrosion or stress-corrosion cracking. Two different mechanisms of water ingress into insulation are discussed; flooding from external sources...
STATE OF CALIFORNIA ENVELOPE INSULATION; ROOFING; FENESTRATION
STATE OF CALIFORNIA ENVELOPE INSULATION; ROOFING; FENESTRATION CEC-CF-6R-ENV-01 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-ENV-01 Envelope Insulation; Roofing:__________________________________ Brand Name:_______________________________ Thickness (inches):_________________________ Thermal
Degradation of Structural Alloys Under Thermal Insulation
McIntyre, D. R.
1984-01-01T23:59:59.000Z
Wet thermal insulation may actively degrade steel and stainless steel structures by general corrosion or stress-corrosion cracking. Two different mechanisms of water ingress into insulation are discussed; flooding from external sources...
Hybrid particle traps and conditioning procedure for gas insulated transmission lines
Dale, Steinar J. (Monroeville, PA); Cookson, Alan H. (Churchill, PA)
1982-01-01T23:59:59.000Z
A gas insulated transmission line includes an outer sheath, an inner condor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping ring is disposed within the outer sheath, and the trapping ring has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the trapping ring along an arc. A support sheet having an adhesive coating thereon is secured to the trapping ring and disposed on the outer sheath within the low field region formed between the trapping ring and the outer sheath. A conditioning method used to condition the transmission line prior to activation in service comprises applying an AC voltage to the inner conductor in a plurality of voltage-time steps, with the voltage-time steps increasing in voltage magnitude while decreasing in time duration.
Dynamics of Dirac Fermions in Topological Insulators
Arnold, Anton
Dynamics of Dirac Fermions in Topological Insulators R. Hammer1 , C. Ertler1 , W. PÂ¨otz1 , and A.hammer@uni-graz.at Abstract We study the coherent dynamics of Dirac fermions on the surface of topological insulators in one topological insulators (TI) we investigate theoretically the dynamics of Dirac fermion wave packets on their 2
Numerical studies of the melting transition in 2D Yukawa systems
Hartmann, P.; Donko, Z. [Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49 (Hungary); Kalman, G. J. [Department of Physics, Boston College, Chestnut Hill, MA 02467 (United States)
2008-09-07T23:59:59.000Z
We present the latest results of our systematic studies of the solid--liquid phase transition in 2D classical many-particle systems interacting with the Yukawa potential. Our previous work is extended by applying the molecular dynamic simulations to systems with up to 1.6 million particles in the computational box (for {kappa} = 2 case). Equilibrium simulations are performed for different coupling parameters in the vicinity of the expected melting transition ({gamma}{sub m}{sup {kappa}}{sup ={sup 2}}{approx_equal}415) and a wide range of observables are averaged over uncorrelated samples of the micro-canonical ensemble generated by the simulations.
Vacuum-insulated catalytic converter
Benson, David K. (Golden, CO)
2001-01-01T23:59:59.000Z
A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.
Impact of Thermally Insulated Floors
Alghimlas, F.; Omar, E. A.
2004-01-01T23:59:59.000Z
of insulated floors. It was found that using an R- 10 floors in multi-story apartment buildings greatly reduce both the peak cooling demand as well as the energy consumption by about 15%, whereas only minimal savings (about 4%) were detected in the case...
A Holographic Fractional Topological Insulator
Carlos Hoyos-Badajoz; Kristan Jensen; Andreas Karch
2010-07-19T23:59:59.000Z
We give a holographic realization of the recently proposed low energy effective action describing a fractional topological insulator. In particular we verify that the surface of this hypothetical material supports a fractional quantum Hall current corresponding to half that of a Laughlin state.
Application of the 3D Edge Code EMC3-EIRENE to JET Single Null Configurations by Validating Against 2D Simulations with EDGE2D-EIRENE
Generation of high quality 2D meshes for given bathymetry
Colmenero, Jorge, S.B. Massachusetts Institute of Technology
2014-01-01T23:59:59.000Z
This thesis develops and applies a procedure to generate high quality 2D meshes for any given ocean region with complex coastlines. The different criteria used in determining mesh element sizes for a given domain are ...
3D-2D ASYMPTOTIC ANALYSIS FOR INHOMOGENEOUS THIN FILMS
3D-2D ASYMPTOTIC ANALYSIS FOR INHOMOGENEOUS THIN FILMS plate models, periodic pr* *o- files, and within the context of optimal design for thin films 5. Third application - Optimal design of a thin film 19 6. Final Remarks
Scheduling and 2D placement heuristics for partially reconfigurable systems
Santambrogio, Marco Domenico
This paper proposes new scheduling and 2D placement heuristics for partially dynamically reconfigurable systems. One specific focus of this work is to deal with applications containing hundreds of tasks grouped in a few ...
Solving the Capacitive Paradox of 2D MXene using Electrochemical...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
* DOI: 10.1002aenm.201400815 energy storage applications, such as bat- tery and supercapacitor electrodes. 4,5 These 2D materials are so labeled because, they are produced...
Magnetically insulated transmission line oscillator
Bacon, Larry D. (Albuquerque, NM); Ballard, William P. (Albuquerque, NM); Clark, M. Collins (Albuquerque, NM); Marder, Barry M. (Albuquerque, NM)
1988-01-01T23:59:59.000Z
A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.
High temperature structural insulating material
Chen, W.Y.
1984-07-27T23:59:59.000Z
A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.
High temperature structural insulating material
Chen, Wayne Y. (Munster, IN)
1987-01-01T23:59:59.000Z
A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.
Topological Insulators at Room Temperature
Zhang, Haijun; /Beijing, Inst. Phys.; Liu, Chao-Xing; /Tsinghua U., Beijing; Qi, Xiao-Liang; /Stanford U., Phys. Dept.; Dai, Xi; Fang, Zhong; /Beijing, Inst. Phys.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-25T23:59:59.000Z
Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for Sb{sub 2}Te{sub 3}, Sb{sub 2}Se{sub 3}, Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystals. Our calculations predict that Sb{sub 2}Te{sub 3}, Bi{sub 2}T e{sub 3} and Bi{sub 2}Se{sub 3} are topological insulators, while Sb{sub 2}Se{sub 3} is not. In particular, Bi{sub 2}Se{sub 3} has a topologically non-trivial energy gap of 0.3eV , suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the {Lambda} point.
Quantum Process Tomography by 2D Fluorescence Spectroscopy
Leonardo A. Pachon; Andrew H. Marcus; Alan Aspuru-Guzik
2015-02-09T23:59:59.000Z
Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement and signal-to-noise ratio ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter $\\Gamma$ of the doubly-excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.
Quantum Process Tomography by 2D Fluorescence Spectroscopy
Pachon, Leonardo A; Aspuru-Guzik, Alan
2015-01-01T23:59:59.000Z
Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement and signal-to-noise ratio ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter $\\Gamma$ of the doubly-excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.
Finite temperature analysis of a quasi2D dipolar gas
Ticknor, Christopher
2012-01-01T23:59:59.000Z
We present finite temperature analysis of a quasi2D dipolar gas. To do this, we use the Hartree Fock Bogoliubov method within the Popov approximation. This formalism is a set of non-local equations containing the dipole-dipole interaction and the condensate and thermal correlation functions, which are solved self-consistently. We detail the numerical method used to implement the scheme. We present density profiles for a finite temperature dipolar gas in quasi2D, and compare these results to a gas with zero-range interactions. Additionally, we analyze the excitation spectrum and study the impact of the thermal exchange.
Floating insulated conductors for heating subsurface formations
Burns, David; Goodwin, Charles R.
2014-07-29T23:59:59.000Z
A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.
Axionic Antiferromagnetic Insulator Phase in a Correlated and Spin-Orbit Coupled System
Akihiko Sekine; Kentaro Nomura
2014-09-24T23:59:59.000Z
We study theoretically a three-dimensional correlated and spin-orbit coupled system, the half-filled extended Fu-Kane-Mele-Hubbard model on a diamond lattice, focusing on the topological magnetoelectric response of the antiferromagnetic insulator phase. In the antiferromagnetic insulator phase, the Dirac-like low-energy effective Hamiltonian is obtained. Then the theta term, which results in the magnetoelectric response, is derived as a consequence of the chiral anomaly. The realization of the dynamical axion field in our model is discussed. The relation with a symmetry broken phase induced by interactions in lattice quantum chromodynamics is also discussed.
Building America Expert Meeting: Interior Insulation Retrofit...
Broader source: Energy.gov (indexed) [DOE]
Building Science Corporation team held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011, at the Westford Regency Hotel in...
Farmers RECC- Residential Insulation Rebate Program
Broader source: Energy.gov [DOE]
The Farmers Rural Electric Cooperative (RECC) Button-Up Program provides free energy audits and rebates for insulation upgrades to its residential customers. Farmers RECC's energy advisor will...
How Much Insulation is Too Much?
Broader source: Energy.gov [DOE]
This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "How much insulation is too much?"
Studies Bolster Promise of Topological Insulators
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First...
Issue 5: Optimizing High Levels of Insulation
Broader source: Energy.gov [DOE]
This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "How much insulation is too much?"
2D Static Light Scattering for Dairy Based Applications
2D Static Light Scattering for Dairy Based Applications Jacob Lercke Skytte Kongens Lyngby 2014 Ph information on the microstructure. The second paper makes a direction comparison between the light scattering a recently introduced light scattering tech- nique. The system setup of the technique is highly flexible
Universal topological phase of 2D stabilizer codes
H. Bombin; Guillaume Duclos-Cianci; David Poulin
2011-03-23T23:59:59.000Z
Two topological phases are equivalent if they are connected by a local unitary transformation. In this sense, classifying topological phases amounts to classifying long-range entanglement patterns. We show that all 2D topological stabilizer codes are equivalent to several copies of one universal phase: Kitaev's topological code. Error correction benefits from the corresponding local mappings.
EU Guide v 2d January 20141 Finance Division
de Gispert, Adrià
EU Guide v 2d January 20141 Finance Division Procurement Services The EU Directives on Public purchasing practice and especially where funders require it as part of their grant conditions. In exceptional Andrew Reid (goods and services) or the Director of Estate Management and Building Services (property
3D-2D ASYMPTOTIC ANALYSIS FOR MICROMAGNETIC THIN FILMS
3D-2D ASYMPTOTIC ANALYSIS FOR MICROMAGNETIC THIN FILMS Classification: 35E99, 35M10, 49J45, 74K35. Keywords: -limit, thin films, micromagnetics, relaxation; 1 1. Introduction In recent years the understanding of thin film behavior has been helped
H_2D^+: a light on baryonic dark matter?
Cecilia Ceccarelli; Carsten Dominik
2006-02-27T23:59:59.000Z
It has been suggested that the dark halos of galaxies are constituted by cloudlets of cold ( 10^7$ cm^{-3}) molecular gas. Such gas is extremely difficult to detect, because the classical tracers of molecular gas, CO and/or dust grains, have very low abundances and their emission is exceedingly weak. For this reason, the cloudlet hypothesis remains so far substantially unproven. In this Letter we propose a new method to probe the presence of cold H_2 clouds in galactic halos: the ground transition of ortho-H_2D^+ at 372 GHz. We discuss why the H_2D^+ is abundant under the physical conditions appropriate for the cloudlets, and present a chemical model that predicts the H_2D^+ abundance as function of four key parameters: gas density and metallicity, cosmic ray ionization rate and dust grain size. We conclude that current ground-based instruments might detect the ortho-H_2D^+ line emitted by the cloudlets halo, and prove, therefore, the existence of large quantities of dark baryonic matter around galaxies.
On Holographic Insulators and Supersolids
Kiritsis, Elias
2015-01-01T23:59:59.000Z
We obtain holographic realisations for systems that have strong similarities to Mott insulators and supersolids, after examining the ground states of Einstein-Maxwell-scalar systems. The real part of the AC conductivity has a hard gap and a discrete spectrum only. We add momentum dissipation to resolve the delta function in the conductivity due to translational invariance. We develop tools to directly calculate the Drude weight for a large class of solutions and to support our claims. Numerical RG flows are also constructed to verify that such saddle points are IR fixed points of asymptotically AdS_4 geometries.
Fully synthetic taped insulation cables
Forsyth, E.B.; Muller, A.C.
1983-07-15T23:59:59.000Z
The present invention is a cable which, although constructed from inexpensive polyolefin tapes and using typical impregnating oils, furnishes high voltage capability up to 765 kV, and has such excellent dielectric characteristics and heat transfer properties that it is capable of operation at capacities equal to or higher than presently available cables at a given voltage. This is accomplished by using polyethylene, polybutene or polypropylene insulating tape which has been specially processed to attain properties which are not generally found in these materials, but are required for their use in impregnated electrical cables. Chief among these properties is compatibility with impregnating oil.
Insulation Materials | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy1EnergyEnergy Insulate
Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1,
Sontag, Eduardo
Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1, *, Alexander J Ninfa2 a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation: computational methods; metabolic and regulatory networks Keywords: feedback; insulation; modularity; singular
Low-cost exterior insulation process and structure
Vohra, Arun (Bethesda, MD)
1999-01-01T23:59:59.000Z
A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.
Topological insulators of bosons/spins T. Senthil (MIT)
Topological insulators of bosons/spins T. Senthil (MIT) Thanks: X.-G.Wen, M.P.A. Fisher Trivial phases Eg: Band insulators, superfluids, antiferromagnets, ......... Gapped `topologically ordered phases Eg: Band insulators, superfluids, antiferromagnets, ......... Gapped `topologically ordered
Classification and characterization of topological insulators and superconductors
Mong, Roger
2012-01-01T23:59:59.000Z
Antiferromagnetic topological insulators 5.1 Z 2 topological1.3 Topological insulators in 3D . . . . . . . . . . . . .1.3.1 Strong topological insulators (STI) . . . . . 1.3.2
Widespread spin polarizationeffects in photoemission from topological insulators
Jozwiak, C.
2012-01-01T23:59:59.000Z
photoemission from topological insulators C. Jozwiak, 1, ?approach in the 3D topological insulators. [1] D. Hsieh, D.three-dimensional topological insulator Bi 2 Se 3 using a
Low-cost exterior insulation process and structure
Vohra, A.
1999-03-02T23:59:59.000Z
A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.
Schreiber, R.B.; Fero, A.H.; Sejvar, J.
1997-12-16T23:59:59.000Z
The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor. 8 figs.
Schreiber, Roger B. (Penn Twp., PA); Fero, Arnold H. (New Kensington, PA); Sejvar, James (Murrysville, PA)
1997-01-01T23:59:59.000Z
The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.
Uniform insulation applied-B ion diode
Seidel, David B. (Albuquerque, NM); Slutz, Stephen A. (Albuquerque, NM)
1988-01-01T23:59:59.000Z
An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.
Kingspan Insulated Panels: Order (2013-CE-5353)
Broader source: Energy.gov [DOE]
DOE ordered Kingspan Insulated Panels, Inc. to pay a $8,000 civil penalty after finding Kingspan Insulated Panels had failed to certify that any basic models of walk-in cooler and freezer components comply with the applicable energy conservation standards.
Surprising Control over Photoelectrons from a Topological Insulator
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Surprising Control over Photoelectrons from a Topological Insulator Surprising Control over Photoelectrons from a Topological Insulator Print Tuesday, 12 March 2013 00:00...
Graphene physics and insulator-metal transition in compressed...
Office of Scientific and Technical Information (OSTI)
Graphene physics and insulator-metal transition in compressed hydrogen Citation Details Title: Graphene physics and insulator-metal transition in compressed hydrogen Authors:...
Materials - Next-generation insulation ... | ornl.gov
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Materials - Next-generation insulation ... A composite foam insulation panel being developed by Oak Ridge National Laboratory and partners could reduce wall-generated heating and...
Exterior Rigid Insulation Best Practices - Building America Top...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Exterior Rigid Insulation Best Practices - Building America Top Innovation Exterior Rigid Insulation Best Practices - Building America Top Innovation Effec guid-exterior rigid...
Building America Expert Meeting Report: Interior Insulation Retrofit...
Broader source: Energy.gov (indexed) [DOE]
Interior Insulation Retrofit of Mass Masonry Wall Assembliesessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce...
Walker, Iain
2001-01-01T23:59:59.000Z
Location, Air Leakage and Insulation Iain S. Walker Energy4 Duct Insulation, Location and Leakageinsulation
2-D linear motion system. Innovative technology summary report
NONE
1998-11-01T23:59:59.000Z
The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However, for areas over approximately 600 m{sup 2}, the Wall Walker would cost less than the baseline. Using the Wall Walker 2-D LMS, ALARA exposure and worker safety is improved, and there is potential for increased productivity. This innovative technology performed better than the baseline by providing real-time monitoring of the tool or instrument position. Also, the Wall Walker 2-D LMS can traverse any two-dimensional path at constant speeds of up to 18.3 linear meters per minute (60 linear feet per minute). The survey production rate for the innovative technology was about 0.6 m{sup 2}/min (6 ft{sup 2}/min); the baseline production rate was approximately 0.3 m{sup 2}/min (3 ft{sup 2}/min), using the same surveying instrument and maximum scanning rate.
ITER Central Solenoid Coil Insulation Qualification
Martovetsky, Nicolai N [ORNL] [ORNL; Mann Jr, Thomas Latta [ORNL] [ORNL; Miller, John L [ORNL] [ORNL; Freudenberg, Kevin D [ORNL] [ORNL; Reed, Richard P [Cryogenic Materials, Inc.] [Cryogenic Materials, Inc.; Walsh, Robert P [Florida State University] [Florida State University; McColskey, J D [National Institute of Standards and Technology (NIST), Boulder] [National Institute of Standards and Technology (NIST), Boulder; Evans, D [Advanced Cryogenic Materials] [Advanced Cryogenic Materials
2010-01-01T23:59:59.000Z
An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4x4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.
ITER CENTRAL SOLENOID COIL INSULATION QUALIFICATION
Martovetsky, N N; Mann, T L; Miller, J R; Freudenberg, K D; Reed, R P; Walsh, R P; McColskey, J D; Evans, D
2009-06-11T23:59:59.000Z
An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4 x 4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.
A 2-D Implicit, Energy and Charge Conserving Particle In Cell Method
McPherson, Allen L. [Los Alamos National Laboratory; Knoll, Dana A. [Los Alamos National Laboratory; Cieren, Emmanuel B. [Los Alamos National Laboratory; Feltman, Nicolas [Los Alamos National Laboratory; Leibs, Christopher A. [Los Alamos National Laboratory; McCarthy, Colleen [Los Alamos National Laboratory; Murthy, Karthik S. [Los Alamos National Laboratory; Wang, Yijie [Los Alamos National Laboratory
2012-09-10T23:59:59.000Z
Recently, a fully implicit electrostatic 1D charge- and energy-conserving particle-in-cell algorithm was proposed and implemented by Chen et al ([2],[3]). Central to the algorithm is an advanced particle pusher. Particles are moved using an energy conserving scheme and are forced to stop at cell faces to conserve charge. Moreover, a time estimator is used to control errors in momentum. Here we implement and extend this advanced particle pusher to include 2D and electromagnetic fields. Derivations of all modifications made are presented in full. Special consideration is taken to ensure easy coupling into the implicit moment based method proposed by Taitano et al [19]. Focus is then given to optimizing the presented particle pusher on emerging architectures. Two multicore implementations, and one GPU (Graphics Processing Unit) implementation are discussed and analyzed.
Wiesel, W.E. (Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433 (United States))
1992-12-15T23:59:59.000Z
The definition of a Lyapunov exponent can be extended to include an imaginary part. This extension requires the definition of a coordinate frame on the tangent space of the differential equation and an extension of the concept of a limit. The definition of extended Lyapunov exponents is based on the eigenvalues of the fundamental matrix. It is shown that the extended exponent agrees completely with the constant-coefficient case. It is shown that the eigenvectors and eigenvalues obey differential equations and can be propagated numerically without constructing the fundamental matrix itself. Bifurcation of eigenvalues and eigenvectors can also be followed numerically without recourse to the fundamental matrix. Two example applications of the method to the calculation of extended Lyapunov exponents are given. In the Lorenz problem, the real parts of the extended Lyapunov exponents agree quite well with previous results. Fourier-transform methods are used to show that the power spectrum of relative motion is discrete, with fundamental frequency quite close to the calculated imaginary part of the extended Lyapunov exponent. In the simple pendulum, the extended Lyapunov exponents are usually purely imaginary and are the relative oscillation frequencies of adjacent trajectories.
ESSDERC, Bucharest, Sep. 19, 2013.Kaustav Banerjee, UCSB 2D Electronics: Graphene and Beyond
Liebling, Michael
ESSDERC, Bucharest, Sep. 19, 2013.Kaustav Banerjee, UCSB 2D Electronics: Graphene and Beyond Electronics? I will use 2D electronic materials: Graphene and Beyond #12;ESSDERC, Bucharest, Sep. 19, 2013.Kaustav Banerjee, UCSB 2D Electronic Materials 2D family tree TMD family Graphene family Other families
Automatic insulation resistance testing apparatus
Wyant, Francis J.; Nowlen, Steven P.; Luker, Spencer M.
2005-06-14T23:59:59.000Z
An apparatus and method for automatic measurement of insulation resistances of a multi-conductor cable. In one embodiment of the invention, the apparatus comprises a power supply source, an input measuring means, an output measuring means, a plurality of input relay controlled contacts, a plurality of output relay controlled contacts, a relay controller and a computer. In another embodiment of the invention the apparatus comprises a power supply source, an input measuring means, an output measuring means, an input switching unit, an output switching unit and a control unit/data logger. Embodiments of the apparatus of the invention may also incorporate cable fire testing means. The apparatus and methods of the present invention use either voltage or current for input and output measured variables.
Two-dimensional single-stream electron motion in a coaxial diode with magnetic insulation
Fuks, Mikhail I.; Schamiloglu, Edl [Department of Electrical and Computer Engineering, MSC01 1100, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States)] [Department of Electrical and Computer Engineering, MSC01 1100, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States)
2014-05-15T23:59:59.000Z
One of the most widespread models of electrons drifting around the cathode in magnetrons is the single-stream state, which is the Brillouin stream with purely azimuthal motion. We describe a single-stream state in which electrons not only move in the azimuthal direction, but also along the axial direction, which is useful for consideration, for example, of relativistic magnetrons, MILOs, and coaxial transmission lines. Relations are given for the conditions of magnetic insulation for 2D electron motion, for 1D azimuthal and axial motion, and for synchronism of these streams with the operating waves of M-type microwave sources. Relations are also provided for the threshold of generation in magnetrons with 2D electron motion.
The surface-state of the topological insulator Bi2Se3 revealed by cyclotron resonance
Mcdonald, Ross D [Los Alamos National Laboratory; Ayala - Valenzuela, Oscar E [Los Alamos National Laboratory; Altarawneh, Moaz M [Los Alamos National Laboratory; Analytis, James G [STANFORD UNIV/SLAC; Chu, J. H. [STANFORD UNIV/SLAC; Fisher, R. [STANFORD UNIV/SLAC
2011-01-14T23:59:59.000Z
Transport measurements of topological insulators are dominated by the conductivity of the bulk, leading to substantial difficulties in resolving the properties of the surface. To this end, we use high magnetic field, rf- and microwave-spectroscopy to selectively couple to the surface conductivity of Bi2Se3 at high frequency. In the frequency range of a few GHz we observe a crossover from quantum oscillations indicative of a small 3D Fermi surface, to cyclotron resonance indicative of a 2D surface state. By probing the conductivity at reduced skin depths, we have observed a 2D cyclotron resonance from a material whose bulk Fermi-surface is 3D. The frequency-magnetic field scaling of this resonance is inconsistent with the bulk effective mass, but more consistent with the dispersion and band filling of a Dirac-like surface state as observed by ARPES, with substantial manybody renormalization.
Excavationless Exterior Foundation Insulation Field Study
Schirber, T.; Mosiman, G.; Ojczyk, C.
2014-10-01T23:59:59.000Z
Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.
Measure Guideline: Hybrid Foundation Insulation Retrofits
Ueno, K.; Lstiburek, J.
2012-05-01T23:59:59.000Z
This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).
Evaluation of Magnetic Insulation in SF6 Filled Regions
Houck, T; Ferriera, T; Goerz, D; Javedani, J; Speer, R; Tully, L; Vogtlin, G
2009-06-08T23:59:59.000Z
The use of magnetic fields perpendicular to quasistatic electric fields to deter electrical breakdown in vacuum, referred to as magnetic insulation, is well understood and used in numerous applications. Here we define quasi-static as applied high-voltage pulse widths much longer than the transit time of light across the electrode gap. For this report we extend the concept of magnetic insulation to include the inhibition of electrical breakdown in gases. Ionization and electrical breakdown of gases in crossed electric and magnetic fields is only a moderately explored research area. For sufficiently large magnetic fields an electron does not gain sufficient energy over a single cycloidal path to ionize the gas molecules. However, it may be possible for the electron to gain sufficient energy for ionization over a number of collisions. To study breakdown in a gas, the collective behavior of an avalanche of electrons in the formation of a streamer in the gas is required. Effective reduced electric field (EREF) theory, which considers the bulk properties of an electron avalanche, has been successful at describing the influence of a crossed magnetic field on the electric field required for breakdown in gases; however, available data to verify the theory has been limited to low gas pressures and weak electronegative gases. High power devices, for example explosively driven magnetic flux compressors, operate at electrical field stresses, magnetic fields, and insulating gas pressures nearly two orders of magnitude greater than published research for crossed fields in gases. The primary limitation of conducting experiments at higher pressures, e.g. atmospheric, is generating the large magnetic fields, 10's Tesla, and electric fields, >100 kV/cm, required to see a significant effect. In this paper we describe measurements made with a coaxial geometry diode, form factor of 1.2, operating at peak electrical field stress of 220 kV/cm, maximum magnetic field of 20 Tesla, and SF{sub 6} pressure of 760 torr.
Beam-Plasma Instabilities in a 2D Yukawa Lattice
Kyrkos, S. [Department of Chemistry and Physics, Le Moyne College, Syracuse, New York 13214 (United States); Kalman, G. J. [Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 (United States); Rosenberg, M. [Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093 (United States)
2009-06-05T23:59:59.000Z
We consider a 2D Yukawa lattice of grains, with a beam of other charged grains moving in the lattice plane. In contrast to Vlasov plasmas, where the electrostatic instability excited by the beam is only longitudinal, here both longitudinal and transverse instabilities of the lattice phonons can develop. We determine and compare the transverse and longitudinal growth rates. The growth rate spectrum in wave number space exhibits remarkable gaps where no instability can develop. Depending on the system parameters, the transverse instability can be selectively excited.
Exact solutions for the 2d one component plasma
Timothy D. Andersen
2013-02-13T23:59:59.000Z
The 2d one component gas of pointlike charges in a uniform neutralizing background interacting with a logarithmic potential is a common model for plasmas. In its classical equilibrium statistics at fixed temperature (canonical ensemble) it is formally related to certain types of random matrices with Gaussian distribution and complex eigenvalues. In this paper, I present an exact integration of this ensemble for $N$ such particles (or alternatively $N\\times N$ matrices) for all even non-negative temperatures, a significant open problem in statistical physics for several decades. I achieve this exact integration via an exact integration of a related ensemble, the two-dimensional Selberg integral.
Black liquor gasification phase 2D final report
Kohl, A.L.; Stewart, A.E.
1988-06-01T23:59:59.000Z
This report covers work conducted by Rockwell International under Amendment 5 to Subcontract STR/DOE-12 of Cooperative Agreement DE-AC-05-80CS40341 between St. Regis Corporation (now Champion International) and the Department of Energy (DOE). The work has been designated Phase 2D of the overall program to differentiate it from prior work under the same subcontract. The overall program is aimed at demonstrating the feasibility of and providing design data for the Rockwell process for gasifying Kraft black liquor. In this process, concentrated black liquor is converted into low-Btu fuel gas and reduced melt by reaction with air in a specially designed gasification reactor.
Transport Experiments on 2D Correlated Electron Physics in Semiconductors
Tsui, Daniel
2014-03-24T23:59:59.000Z
This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.
3D rotational diffusion microrheology using 2D video microscopy
Rémy Colin; Minhao Yan; Loudjy Chevry; Jean-François Berret; Bérengère Abou
2012-01-05T23:59:59.000Z
We propose a simple way to perform three-dimensional (3D) rotational microrheology using two-dimensional (2D) video microscopy. The 3D rotational brownian motion of micrometric wires in a viscous fluid is deduced from their projection on the focal plane of an optical microscope objective. The rotational diffusion coefficient of the wires of length between 1-100 \\mu m is extracted, as well as their diameter distribution in good agreement with electron microscopy measurements. This is a promising way to characterize soft visco-elastic materials, and probe the dimensions of anisotropic objects.
2D spectroscopy of double-barred galaxies
A. V. Moiseev; J. R. Valdes; V. H. Chavushyan
2002-02-13T23:59:59.000Z
The first results of the observational program of the study of 2D-kinematics in double-barred galaxies are presented. We show that, for the main part of the sample, the inner bars do not affect the circumnuclear stellar kinematics. Therefore, they are not dynamically decoupled structures. Various types of non-circular gas motion were found in many galaxies. The analysis of the ground-based and HST optical and NIR images reveals mini-spirals in about half of the investigated objects. We suggest that so called ``double-barred galaxies'' are, in fact, galaxies with very different circumnuclear structure.
Strained-Si-on-Insulator (SSOI) and SiGe-on-Insulator (SGOI): Fabrication Obstacles and Solutions
Strained-Si-on-Insulator (SSOI) and SiGe-on-Insulator (SGOI): Fabrication Obstacles and Solutions-Si and SiGe-on-insulator were fabricated, combining both the benefits of high-mobility strained-Si and SOI) to oxidized handle wafers. Layer transfer onto insulating handle wafers can be accomplished using grind
Wang, Wei Hua
2011-01-01T23:59:59.000Z
topological insulators in the two-dimensional limit Minhao Liu,1 Cui-Zu Chang,1,2 Zuocheng Zhang,1 Yi Zhang,2 of ultrathin Bi2Se3 topological insulators with thickness from one quintuple layer to six quintuple layers that this unusual insulating ground state in the two-dimensional limit of topological insulators is induced
Ultrathin Strained Si-on-Insulator and SiGe-on-Insulator Created using Low Temperature Wafer Bonding
Ultrathin Strained Si-on-Insulator and SiGe-on-Insulator Created using Low Temperature Wafer, uniform thickness, low defect density, monocrystalline SiGe alloys and strained Si on any desired substrate was developed, allowing for the creation of SiGe-on-insulator and strained Si-on-insulator. After
Nonlinear boundary value problem of magnetic insulation
A. V. Sinitsyn
2000-09-09T23:59:59.000Z
On the basis of generalization of upper and lower solution method to the singular two point boundary value problems, the existence theorem of solutions for the system, which models a process of magnetic insulation in plasma is proved.
Metal-insulator transition in holography
Aristomenis Donos; Sean A. Hartnoll
2013-01-19T23:59:59.000Z
We exhibit an interaction-driven metal-insulator quantum phase transition in a holographic model. Use of a helical lattice enables us to break translation invariance while preserving homogeneity. The metallic phase is characterized by a sharp Drude peak and a d.c. resistivity that increases with temperature. In the insulating phase the Drude spectral weight is transferred into a `mid-infrared' peak and to energy scales of order the chemical potential. The d.c. resistivity now decreases with temperature. In the metallic phase, operators breaking translation invariance are irrelevant at low energy scales. In the insulating phase, translation symmetry breaking effects are present at low energies. We find the near horizon extremal geometry that captures the insulating physics.
Phosphorylation based insulation devices design and implementation
Rivera Ortiz, Phillip M. (Phillip Michael)
2013-01-01T23:59:59.000Z
This thesis presents the analysis of a phosphorylation based insulation device implemented in Saccharomyces cerevisae and the minimization of the retroactivity to the input and retroactivity to the output of a single cycle ...
Install Removable Insulation on Valves and Fittings
Not Available
2006-01-01T23:59:59.000Z
This revised ITP tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving the system using low-cost, proven practices and technologies.
Saving Energy and Money with Aerogel Insulation
Broader source: Energy.gov [DOE]
The Energy Department is investing in an innovative insulation material that saves energy and money for industrial facilities while also helping to support 50 full-time clean energy jobs for Americans.
KSI's Cross Insulated Core Transformer Technology
Uhmeyer, Uwe [Kaiser Systems, Inc, 126 Sohier Road, Beverly, MA 01915 (United States)
2009-08-04T23:59:59.000Z
Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the flux compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.
Thermal conductivity of thermal-battery insulations
Guidotti, R.A.; Moss, M.
1995-08-01T23:59:59.000Z
The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.
Probing the topology in band insulators
Chen, Kuang-Ting, Ph. D. Massachusetts Institute of Technology
2012-01-01T23:59:59.000Z
Topological Insulator is a newly found state of matter. Unlike phases described by the traditional Landau theory of symmetry breaking, the topological phases do not break symmetry, and it is not obvious in which measurable ...
Air leakage of Insulated Concrete Form houses
Durschlag, Hannah (Hanna Rebekah)
2012-01-01T23:59:59.000Z
Air leakage has been shown to increase building energy use due to additional heating and cooling loads. Although many construction types have been examined for leakage, an exploration of a large number of Insulated Concrete ...
A Guide to Insulation Selection for Industrial Applications
Harrison, M. R.
1979-01-01T23:59:59.000Z
of new insulations on th mar ket, it is important that the insulation selection process be upgraded. Insulation peci fications need to be reviewed in terms of new products and installation techniques. Also, the specific application or end use should... be critically analyzed to determine whic~ pro f ducts are best suited for that application. INSULATION MATERIAL SELECTION The selection and specification of insulation materials can be broken down int two I separate but interrelated activities. The first...
Anderson metal-insulator transitions with classical magnetic impurities
Jung, Daniel [School of Engineering and Science, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang 790-784 (Korea, Republic of); Kettemann, Stefan [School of Engineering and Science, Jacobs University Bremen gGmbH,Campus Ring 1, 28759 Bremen, Germany and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang 790-784 (Korea, Republic of)
2014-08-20T23:59:59.000Z
We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local density of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].
Panelized wall system with foam core insulation
Kosny, Jan (Oak Ridge, TN); Gaskin, Sally (Houston, TX)
2009-10-20T23:59:59.000Z
A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.
Status of surface conduction in topological insulators
Barua, Sourabh, E-mail: sbarua@iitk.ac.in; Rajeev, K. P. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)] [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)
2014-01-15T23:59:59.000Z
In this report, we scrutinize the thickness dependent resistivity data from the recent literature on electrical transport measurements in topological insulators. A linear increase in resistivity with increase in thickness is expected in the case of these materials since they have an insulating bulk and a conducting surface. However, such a trend is not seen in the resistivity versus thickness data for all the cases examined, except for some samples, where it holds for a range of thickness.
Measure Guideline: Internal Insulation of Masonry Walls
Straube, J. F.; Ueno, K.; Schumacher, C. J.
2012-07-01T23:59:59.000Z
This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.
MESH2D GRID GENERATOR DESIGN AND USE
Flach, G.; Smith, F.
2012-01-20T23:59:59.000Z
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.
Hayashi, A.; Hashimoto, T.; Horibe, M. [Department of Applied Physics, Fukui University, Fukui 910-8507 (Japan)
2005-01-01T23:59:59.000Z
The quantum color coding scheme proposed by Korff and Kempe [e-print quant-ph/0405086] is easily extended so that the color coding quantum system is allowed to be entangled with an extra auxiliary quantum system. It is shown that in the extended scheme we need only {approx}2{radical}(N) quantum colors to order N objects in large N limit, whereas {approx}N/e quantum colors are required in the original nonextended version. The maximum success probability has asymptotics expressed by the Tracy-Widom distribution of the largest eigenvalue of a random Gaussian unitary ensemble (GUE) matrix.
Load responsive multilayer insulation performance testing
Dye, S.; Kopelove, A. [Quest Thermal Group, 6452 Fig Street Suite A, Arvada, CO 80004 (United States); Mills, G. L. [Ball Aerospace and Technologies Corp, 1600 Commerce Street, Boulder, CO 80301 (United States)
2014-01-29T23:59:59.000Z
Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.
Topological insulators and superconductors from string theory
Ryu, Shinsei; Takayanagi, Tadashi [Department of Physics, University of California, Berkeley, California 94720 (United States); Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, Kashiwa, Chiba 277-8582 (Japan)
2010-10-15T23:59:59.000Z
Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the {theta} term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).
Topological Insulators and Superconductors from String Theory
Shinsei Ryu; Tadashi Takayanagi
2010-08-01T23:59:59.000Z
Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and supercondutors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K-theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K-theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the $\\theta$-term in various dimensions. This sheds light on topological insulators and superconductors beyond non-interacting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).
Design Tool for Cryogenic Thermal Insulation Systems
Demko, Jonathan A [ORNL] [ORNL; Fesmire, J. E. [NASA Kennedy Space Center, Kennedy Space Center, Florida] [NASA Kennedy Space Center, Kennedy Space Center, Florida; Augustynowicz, S. D. [Sierra Lobo Inc., Kennedy Space Center, Florida] [Sierra Lobo Inc., Kennedy Space Center, Florida
2008-01-01T23:59:59.000Z
Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.
Topological classification of crystalline insulators with space group symmetry
Jadaun, Priyamvada [University of Texas at Austin; Xiao, Di [Carnegie Mellon University (CMU); Niu, Q. [University of Texas at Austin; Banerjee, Sanjay K. [University of Texas at Austin
2013-01-01T23:59:59.000Z
We show that in crystalline insulators, space group symmetry alone gives rise to a topological classification based on the discretization of electric polarization. Using C3 rotational symmetry as an example, we first prove that the polarization is discretized into three distinct classes, i.e., it can only take three inequivalent values. We then prove that these classes are topologically distinct. Therefore, a Z3 topological classification exists, with polarization as a topological class index. A concrete tight-binding model is derived to demonstrate the Z3 topological phase transition. Using first-principles calculations, we identify graphene on a BN substrate as a possible candidate to realize these Z3 topological states. To complete our analysis, we extend the classification of band structures to all 17 two-dimensional space groups. This work will contribute to a complete theory of symmetry-conserved topological phases and also elucidate topological properties of graphenelike systems.
Magnetic insulation at finite temperatures
Goedecke, G. H.; Davis, Brian T.; Chen, Chiping [Physics Department, New Mexico State University, Las Cruces, New Mexico 88003 and Raytheon Missile Systems, 1151 E. Hermans Road, Tucson, Arizona 85706 (United States); Intense Beam Theoretical Research Group, Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and Raytheon Missile Systems, 1151 E. Hermans Road, Tucson, Arizona 85706 (United States)
2006-08-15T23:59:59.000Z
A finite-temperature non-neutral plasma (FTNNP) theory of magnetically insulated (MI) electron flows in crossed-field vacuum devices is developed and applied in planar geometry. It is shown that, in contrast to the single type of MI flow predicted by traditional cold-plasma treatments, the nonlinear FTNNP equations admit five types of steady flow, of which three types are MI flows, including flows in which the electric field and/or the tangential velocity at the cathode may be zero or nonzero. It is also shown that finite-temperature Vlasov-Poisson treatments yield solutions for electron number densities and electrostatic potentials that are a subset of the FTNNP solutions. The algorithms that are used to solve the FTNNP equations numerically are discussed, and the numerical results are presented for several examples of the three types of MI flow. Results include prediction of the existence, boundaries, number density profiles, and other properties of sheaths of electrons in the anode-cathode gap.
Interactive initialization of 2D/3D rigid registration
Gong, Ren Hui; Güler, Özgür [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC 20010 (United States)] [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC 20010 (United States); Kürklüoglu, Mustafa [Department of Cardiac Surgery, Children's National Medical Center, Washington, DC 20010 (United States)] [Department of Cardiac Surgery, Children's National Medical Center, Washington, DC 20010 (United States); Lovejoy, John [Department of Orthopaedic Surgery and Sports Medicine, Children's National Medical Center, Washington, DC 20010 (United States)] [Department of Orthopaedic Surgery and Sports Medicine, Children's National Medical Center, Washington, DC 20010 (United States); Yaniv, Ziv, E-mail: ZYaniv@childrensnational.org [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC 20010 and Departments of Pediatrics and Radiology, George Washington University, Washington, DC 20037 (United States)] [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC 20010 and Departments of Pediatrics and Radiology, George Washington University, Washington, DC 20037 (United States)
2013-12-15T23:59:59.000Z
Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on the authors' evaluation, the authors conclude that the registration approaches are sufficiently accurate for initializing 2D/3D registration in the OR setting, both when a tracking system is not in use (gesture based approach), and when a tracking system is already in use (AR based approach)
Method for minimizing contaminant particle effects in gas-insulated electrical apparatus
Pace, Marshall O. (Knoxville, TN); Adcock, James L. (Knoxville, TN); Christophorou, Loucas G. (Oak Ridge, TN)
1984-01-01T23:59:59.000Z
Electrical breakdown of a gas insulator in high voltage apparatus is preved by placing an electrical insulative coating on contaminant particles in the gas insulator.
Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures
Schiavon, Stefano; Lee, Kwang Ho
2012-01-01T23:59:59.000Z
predictive clothing insulation models based on outdoor airrange of the clothing insulation calculated for eachbuilding). Figure 8 Clothing insulation versus dress code [
Influence of two dynamic predictive clothing insulation models on building energy performance
Lee, Kwang Ho; Schiavon, Stefano
2013-01-01T23:59:59.000Z
Predictive Clothing Insulation Models on Building Energyunnecessarily higher clothing insulation and lower heatingthat the constant clothing insulation assumption lead to the
Predictive clothing insulation model based on outdoor air and indoor operative temperatures
Schiavon, Stefano; Lee, Kwang Ho
2012-01-01T23:59:59.000Z
2012) Predictive clothing insulation model based on outdoorPredictive clothing insulation model based on outdoor airpredictive models of clothing insulation have been developed
Versatile Indian sari: Clothing insulation with different drapes of typical sari ensembles
Indraganti, Madhavi; Lee, Juyoun; Zhang, Hui; Arens, Edward
2014-01-01T23:59:59.000Z
Extension of the Clothing Insulation Database for Standardand air movement on that insulation. , s.l. : s.n. Havenith,Estimation of the thermal insulation and evaporative
areaDetector: Software for 2-D Detectors in EPICS
Rivers, M. (UC)
2011-09-23T23:59:59.000Z
areaDetector is a new EPICS module designed to support 2-D detectors. It is modular C++ code that greatly simplifies the task of writing support for a new detector. It also supports plugins, which receive detector data from the driver and process it in some way. Existing plugins perform Region-Of-Interest extraction and analysis, file saving (in netCDF, HDF, TIFF and JPEG formats), color conversion, and export to EPICS records for image display in clients like ImageJ and IDL. Drivers have now been written for many of the detectors commonly used at synchrotron beamlines, including CCDs, pixel array and amorphous silicon detectors, and online image plates.
HEXAGONAL ARRAY STRUCTURE FOR 2D NDE APPLICATIONS
Dziewierz, J.; Ramadas, S. N.; Gachagan, A.; O'Leary, R. L. [Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom)
2010-02-22T23:59:59.000Z
This paper describes a combination of simulation and experimentation to evaluate the advantages offered by utilizing a hexagonal shaped array element in a 2D NDE array structure. The active material is a 1-3 connectivity piezoelectric composite structure incorporating triangular shaped pillars--each hexagonal array element comprising six triangular pillars. A combination of PZFlex, COMSOL and Matlab has been used to simulate the behavior of this device microstructure, for operation around 2.25 MHz, with unimodal behavior and low levels of mechanical cross-coupling predicted. Furthermore, the application of hexagonal array elements enables the array aperture to increase by approximately 30%, compared to a conventional orthogonal array matrix and hence will provide enhanced volumetric coverage and SNR. Prototype array configurations demonstrate good corroboration of the theoretically predicted mechanical cross-coupling between adjacent array elements (approx23 dB).
The 2d International Symposium on Computational Geomechanics (ComGeo II) 1 INTRODUCTION
Boyer, Edmond
The 2d International Symposium on Computational Geomechanics (ComGeo II) 1 1 INTRODUCTION Last at the contacts is studied. #12;The 2d International Symposium on Computational Geomechanics (ComGeo II) 2 complex
Optical 2-D Scanning System for Laser - Generated Shockwave Treatment of Wound Infections
Patel, Shahzad Neville
2013-01-01T23:59:59.000Z
biofilm structure from confocal scanning laser microscopyAngeles Optical 2-D Scanning System for Laser - GeneratedTHE THESIS Optical 2-D Scanning System for Laser-Generated
An Insulating Glass Knowledge Base
Michael L. Doll; Gerald Hendrickson; Gerard Lagos; Russell Pylkki; Chris Christensen; Charlie Cureija
2005-08-01T23:59:59.000Z
This report will discuss issues relevant to Insulating Glass (IG) durability performance by presenting the observations and developed conclusions in a logical sequential format. This concluding effort discusses Phase II activities and focuses on beginning to quantifying IG durability issues while continuing the approach presented in the Phase I activities (Appendix 1) which discuss a qualitative assessment of durability issues. Phase II developed a focus around two specific IG design classes previously presented in Phase I of this project. The typical box spacer and thermoplastic spacer design including their Failure Modes and Effect Analysis (FMEA) and Fault Tree diagrams were chosen to address two currently used IG design options with varying components and failure modes. The system failures occur due to failures of components or their interfaces. Efforts to begin quantifying the durability issues focused on the development and delivery of an included computer based IG durability simulation program. The focus/effort to deliver the foundation for a comprehensive IG durability simulation tool is necessary to address advancements needed to meet current and future building envelope energy performance goals. This need is based upon the current lack of IG field failure data and the lengthy field observation time necessary for this data collection. Ultimately, the simulation program is intended to be used by designers throughout the current and future industry supply chain. Its use is intended to advance IG durability as expectations grow around energy conservation and with the growth of embedded technologies as required to meet energy needs. In addition the tool has the immediate benefit of providing insight for research and improvement prioritization. Included in the simulation model presentation are elements and/or methods to address IG materials, design, process, quality, induced stress (environmental and other factors), validation, etc. In addition, acquired data is presented in support of project and model assumptions. Finally, current and suggested testing protocol and procedure for future model validation and IG physical testing are discussed.
2D-GE IMAGE SEGMENTATION BASED ON LEVEL-SETS E.A. Mylona a
Athens, University of
2D-GE IMAGE SEGMENTATION BASED ON LEVEL-SETS E.A. Mylona a , M.A. Savelonas a , D. Maroulis a , M of protein spots in 2D-GE images. The proposed scheme incorporates a protein spot detection stage based both software packages in terms of segmentation performance. Index Terms--2D-GE Images, Protein Spot
An Improved Ant Colony Optimisation Algorithm for the 2D HP Protein Folding Problem
Hoos, Holger H.
An Improved Ant Colony Optimisation Algorithm for the 2D HP Protein Folding Problem Alena hydrophobic-polar (2D HP) protein folding problem. We present an improved version of our recently proposed Ant search. Overall, the results presented here establish our new ACO algorithm for 2D HP protein folding
An Ant Colony Optimization Algorithm for the 2D HP Protein Folding Problem
Hoos, Holger H.
An Ant Colony Optimization Algorithm for the 2D HP Protein Folding Problem Alena Shmygelska, Rosal, the two dimensional hydrophobic-polar (2D HP) protein folding problem. We introduce an ant colony algorithm closely approaches that of specialised, state-of-the methods for 2D HP protein folding. 1
Cylindrical 2D ALE simulations of laser interactions with flyer targets
Kurien, Susan
, mass density, v speed, p pressure, e specific internal energy, T temperature, heat conductivity acceleration simulated in 2D. 2 Numerical ALE method with extensions Our 2D ALE code [6] employs conservative 1 April 2006 We have developed 2D Arbitrary Lagrangian Eulerian (ALE) code in the cylindrical r - z
Topological insulators and topological nonlinear {sigma} models
Yao Hong; Lee, Dung-Hai [Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States) and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2010-12-15T23:59:59.000Z
In this paper we link the physics of topological nonlinear {sigma} models with that of Chern-Simons insulators. We show that corresponding to every 2n-dimensional Chern-Simons insulator there is a (n-1)-dimensional topological nonlinear {sigma} model with the Wess-Zumino-Witten term. Breaking internal symmetry in these nonlinear {sigma} models leads to nonlinear {sigma} models with the {theta} term. [This is analogous to the dimension reduction leading from 2n-dimensional Chern-Simons insulators to (2n-1) and (2n-2)-dimensional topological insulators protected by discrete symmetries.] The correspondence described in this paper allows one to derive the topological term in a theory involving fermions and order parameters (we shall referred to them as ''fermion-{sigma} models'') when the conventional gradient-expansion method fails. We also discuss the quantum number of solitons in topological nonlinear {sigma} model and the electromagnetic action of the (2n-1)-dimensional topological insulators. Throughout the paper we use a simple model to illustrate how things work.
Mandelshtam, Vladimir A.
The Multidimensional Filter Diagonalization Method II. Application to 2D Projections of 2D, 3D signals with up to four independent time variables. Direct projections of the multidimensional time- quency dimension (1). The increase in experiment time is a fair price to pay for the ability to tease out
Multilayer insulation blanket, fabricating apparatus and method
Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)
1992-01-01T23:59:59.000Z
An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.
Method of fabricating a multilayer insulation blanket
Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)
1993-01-01T23:59:59.000Z
An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.
Electrically insulated MLI and thermal anchor
Kamiya, Koji; Furukawa, Masato; Murakami, Haruyuki; Kizu, Kaname; Tsuchiya, Katsuhiko; Koidea, Yoshihiko; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Hatakenaka, Ryuta; Miyakita, Takeshi [Japan Aerospace Exploration and Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)
2014-01-29T23:59:59.000Z
The thermal shield of JT-60SA is kept at 80 K and will use the multilayer insulation (MLI) to reduce radiation heat load to the superconducting coils at 4.4 K from the cryostat at 300 K. Due to plasma pulse operation, the MLI is affected by eddy current in toroidal direction. The MLI is designed to suppress the current by electrically insulating every 20 degree in the toroidal direction by covering the MLI with polyimide films. In this paper, two kinds of designs for the MLI system are proposed, focusing on a way to overlap the layers. A boil-off calorimeter method and temperature measurement has been performed to determine the thermal performance of the MLI system. The design of the electrical insulated thermal anchor between the toroidal field (TF) coil and the thermal shield is also explained.
Gaseous insulators for high voltage electrical equipment
Christophorou, Loucas G. (Oak Ridge, TN); James, David R. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Pai, Robert Y. (Concord, TN)
1981-01-01T23:59:59.000Z
Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.
Electrical insulator assembly with oxygen permeation barrier
Van Der Beck, Roland R. (Lansdale, PA); Bond, James A. (Exton, PA)
1994-01-01T23:59:59.000Z
A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.
Is graphene in vacuum an insulator?
Joaquín E. Drut; Timo A. Lähde
2009-01-15T23:59:59.000Z
We present evidence, from Lattice Monte Carlo simulations of the phase diagram of graphene as a function of the Coulomb coupling between quasiparticles, that graphene in vacuum is likely to be an insulator. We find a semimetal-insulator transition at $\\alpha_g^\\text{crit} = 1.11 \\pm 0.06$, where $\\alpha_g^{} \\simeq 2.16$ in vacuum, and $\\alpha_g^{} \\simeq 0.79$ on a SiO$_2^{}$ substrate. Our analysis uses the logarithmic derivative of the order parameter, supplemented by an equation of state. The insulating phase disappears above a critical number of four-component fermion flavors $4 < N_f^{\\text{crit}} < 6$. Our data are consistent with a second-order transition.
Nuclear reactor vessel fuel thermal insulating barrier
Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.
2013-03-19T23:59:59.000Z
The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.
Electrical insulator assembly with oxygen permeation barrier
Van Der Beck, R.R.; Bond, J.A.
1994-03-29T23:59:59.000Z
A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.
Insulation spacer eliminates electric shorts between lines
Colaizzi, J.F.; Rockafellow, G.B.
1983-03-01T23:59:59.000Z
The design criteria incorporated into the pipeline insulating spacer were: spacer material selected must have a very large compressive and tensile strength in order to withstand the weight and stress resulting on the pipelines; provide the necessary abrasive resistance, dielectric strength, and will not decay underground; must not soften with heat when used around or near stream lines or will not cold flow under pressure; minimum length and circumference to reduce ''Shielding Effects'' from any cathodic protection system; and provide a material that incorporates a maximum strength at a minimum thickness. Explains that electric shorts are caused by 2 or more metallic structures in contact with each other. Notes that the insulating spacer's use has been expanded to provide electrical and physical insulation between carrier pipe and casing, supports for piping in compressing stations, and for pipelines that are suspended on bridges.
LaBarge, R.L.
1980-12-15T23:59:59.000Z
Progress in evaluating the technical feasibility of SF/sub 6/-insulated cables and circuit breakers for HVDC systems is reported. During this reporting period a new test setup was completed. An assembly jig was designed and fabricated. Model cable up to 20-ft length can be assembled complete outside the test tank. Components to extend the test tank to accommodate a 20-ft model cable have been obtained. A report was drafted on the effect of material selection as well as processing into insulators on the long-term dielectric performance of the insulator. The vertical leaf expansion joint design was improved by replacing the Alcuplate copper-to-aluminum transition piece with nickel plating on the aluminum parts. The joint was fatigue tested with condition which simulate almost 2 1/2 cycles of temperature excursions each day for the 40 year design life of the line. Electrical tests of the joint are in progress.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51InstrumentsCentral Facility SGP RelatedExtended
Silicon on insulator with active buried regions
McCarthy, Anthony M. (Menlo Park, CA)
1998-06-02T23:59:59.000Z
A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.
Silicon on insulator with active buried regions
McCarthy, A.M.
1996-01-30T23:59:59.000Z
A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.
Silicon on insulator with active buried regions
McCarthy, Anthony M. (Menlo Park, CA)
1996-01-01T23:59:59.000Z
A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.
Silicon on insulator with active buried regions
McCarthy, A.M.
1998-06-02T23:59:59.000Z
A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.
Thermal performance measurements of insulated roof systems
Courville, G.E.; Childs, K.W.; Walukas, D.J.; Childs, P.W.; Griggs, E.I.
1985-01-01T23:59:59.000Z
Oak Ridge National Laboratory has established a Roof Thermal Researcch Apparatus for carrying out thermal and hygric experiments on sections of low-sloped roofs. Test panels are exposed to a controlled temperature interior space and to the prevailing East Tennessee exterior environment. They are well instrumented and all data are stored and aided in the analysis by computer systems. Current experiments include studies of the effect of wet insulation on membrane temperature, thermal storage phenomena in built-up roof insulation, and the effects of varying surface reflectance on roof thermal performance.
Investigations on field optimization of insulator geometries
Daumling, H.H.; Singer, H.
1989-01-01T23:59:59.000Z
Today computer methods become more and more a useful help for the constructor of any high voltage components, because stresses on dielectric materials have become increasingly high. The paper describes new algorithms based on the CAD concept for optimizing insulator contours according to a given field distribution along their surfaces. These algorithms were applied to some examples of insulators. By means of experimental investigations it was found that it is not sufficient to achieve a low tangential field strength component but that it is necessary to reduce the maximum values of the total field strength as far as possible, especially in the case of high air humidities.
Experience with 113 Retrofit Insulation Surveys
Webber, W. O.
EXPERIENCE WITH 113 RETROFIT INSULATION SURVEYS W. O. Webber Energy Conservation Consultants Baytown, Texas ABSTRACT We have surveyed 113 plants for thirteen clie~ts. The results of 21 recent surveys, at today s avera&e fuel price, show...,000 for $3.00 fuel up to $80,000 for $6.00 fuel. When this happens, the project return will increase from 100% up to 165% per year. The main problem that we have found with retrofit insulation surveys is the processing of detail in existing plants...
Edge modes in band topological insulators
Lukasz Fidkowski; T. S. Jackson; Israel Klich
2011-05-09T23:59:59.000Z
We characterize gapless edge modes in translation invariant topological insulators. We show that the edge mode spectrum is a continuous deformation of the spectrum of a certain gluing function defining the occupied state bundle over the Brillouin zone (BZ). Topologically non-trivial gluing functions, corresponding to non-trivial bundles, then yield edge modes exhibiting spectral flow. We illustrate our results for the case of chiral edge states in two dimensional Chern insulators, as well as helical edges in quantum spin Hall states.
Cavallo, F.; Songmuang, R.; Ulrich, C.; Schmidt, O. G. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany)
2007-05-07T23:59:59.000Z
SiGe on insulator films of 10-50 nm thickness are fabricated by Ge condensation applying different oxidation times. The layers are released from the substrate by selectively etching the insulator film. Due to the varying Ge composition, the layers bend downward toward the substrate surface and roll up into microtubes. Depending on the Ge condensation, the strain distribution in the SiGe layers varies and allows a scaling of the tube diameters between 1 and 4 {mu}m. Assuming pseudomorphic SiGe layers, the tube diameters are smaller than expected from continuum mechanical theory. This suggests the occurrence of additional strain in the oxidized films.
An analytical and experimental investigation for an interstitial insulation technology
Kim, Dong Keun
2009-05-15T23:59:59.000Z
An insulation technique has been developed which contains a single or combination of materials to help minimize heat loss in actual industrial applications. For the petroleum industry, insulation for deep sea piping is one of the greatest challenges...
Insulated laser tube structure and method of making same
Dittbenner, Gerald R. (4353 Findlay Way, Livermore, CA 94550)
1999-01-01T23:59:59.000Z
An insulated high temperature ceramic laser tube having substantially uniform insulation along the length of the tube is disclosed having particulate ceramic insulation positioned between the outer wall of the ceramic laser tube and the inner surface of tubular ceramic fiber insulation which surrounds the ceramic laser tube. The particulate ceramic insulation is preferably a ceramic capable of sintering to the outer surface of the ceramic laser tube and to the inner surface of the tubular ceramic fiber insulation. The addition of the particulate ceramic insulation to fill all the voids between the ceramic laser tube and the fibrous ceramic insulation permits the laser tube to be operated at a substantially uniform temperature throughout the length of the laser tube.
Tuning of the Metal-Insulator Transition via Alkali Adsorption
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or...
Tuning of the Metal-Insulator Transition via Alkali Adsorption
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Tuning of the Metal-Insulator Transition via Alkali Adsorption Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Wednesday, 29 March 2006 00:00 Turning a...
Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)
Not Available
2013-10-01T23:59:59.000Z
In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.
An analytical and experimental investigation for an interstitial insulation technology
Kim, Dong Keun
2009-05-15T23:59:59.000Z
An insulation technique has been developed which contains a single or combination of materials to help minimize heat loss in actual industrial applications. For the petroleum industry, insulation for deep sea piping is one of the greatest challenges...
Observation of a Macroscopically Quantum-Entangled Insulator
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Insulator Print Wednesday, 27 May 2009 00:00 It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of...
Observation of a Macroscopically Quantum-Entangled Insulator
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of...
Gapped symmetry preserving surface state for the electron topological insulator
Wang, Chong
It is well known that the three-dimensional (3D) electronic topological insulator (TI) with charge-conservation and time-reversal symmetry cannot have a trivial insulating surface that preserves symmetry. It is often ...
antisolar insulated roof: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...
airborne sound insulation: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...
affordable window insulation: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...
antiferromagnetic mott insulator: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...
atomic mott insulator: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...
alumina fibrous insulation: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...
Classification and characterization of topological insulators and superconductors
Mong, Roger
2012-01-01T23:59:59.000Z
Weak topological insulators (WTI) . . . . . 1.4 Topologicalweak topological insulators (WTI). The surfaces of STIs haveSTI STM TI TRIM/TRIMs TRS TKNN VPT WTI one-dimension, two-
VAM2D: Variably saturated analysis model in two dimensions
Huyakorn, P.S.; Kool, J.B.; Wu, Y.S. (HydroGeoLogic, Inc., Herndon, VA (United States))
1991-10-01T23:59:59.000Z
This report documents a two-dimensional finite element model, VAM2D, developed to simulate water flow and solute transport in variably saturated porous media. Both flow and transport simulation can be handled concurrently or sequentially. The formulation of the governing equations and the numerical procedures used in the code are presented. The flow equation is approximated using the Galerkin finite element method. Nonlinear soil moisture characteristics and atmospheric boundary conditions (e.g., infiltration, evaporation and seepage face), are treated using Picard and Newton-Raphson iterations. Hysteresis effects and anisotropy in the unsaturated hydraulic conductivity can be taken into account if needed. The contaminant transport simulation can account for advection, hydrodynamic dispersion, linear equilibrium sorption, and first-order degradation. Transport of a single component or a multi-component decay chain can be handled. The transport equation is approximated using an upstream weighted residual method. Several test problems are presented to verify the code and demonstrate its utility. These problems range from simple one-dimensional to complex two-dimensional and axisymmetric problems. This document has been produced as a user's manual. It contains detailed information on the code structure along with instructions for input data preparation and sample input and printed output for selected test problems. Also included are instructions for job set up and restarting procedures. 44 refs., 54 figs., 24 tabs.
Image Appraisal for 2D and 3D Electromagnetic Inversion
Alumbaugh, D.L.; Newman, G.A.
1999-01-28T23:59:59.000Z
Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.
2D modeling of electromagnetic waves in cold plasmas
Crombé, K. [Laboratory for Plasma Physics, Association EURATOM - Belgian State Trilateral Euregio Cluster, Renaissancelaan 30 Avenue de la Renaissance, B-1000 Brussels, Belgium and Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, B (Belgium); Van Eester, D.; Koch, R.; Kyrytsya, V. [Laboratory for Plasma Physics, Association EURATOM - Belgian State Trilateral Euregio Cluster, Renaissancelaan 30 Avenue de la Renaissance, B-1000 Brussels (Belgium)
2014-02-12T23:59:59.000Z
The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.
Duality between Spin networks and the 2D Ising model
Valentin Bonzom; Francesco Costantino; Etera R. Livine
2015-04-11T23:59:59.000Z
The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories which couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.
Exact Solutions of 2d Supersymmetric Gauge Theories
Abhijit Gadde; Sergei Gukov; Pavel Putrov
2014-04-21T23:59:59.000Z
We study dynamics of two-dimensional non-abelian gauge theories with N=(0,2) supersymmetry that include N=(0,2) supersymmetric QCD and its generalizations. In particular, we present the phase diagram of N=(0,2) SQCD and determine its massive and low-energy spectrum. We find that the theory has no mass gap, a nearly constant distribution of massive states, and lots of massless states that in general flow to an interacting CFT. For a range of parameters where supersymmetry is not dynamically broken at low energies, we give a complete description of the low-energy physics in terms of 2d N=(0,2) SCFTs using anomaly matching and modular invariance. Our construction provides a vast landscape of new N=(0,2) SCFTs which, for small values of the central charge, could be used for building novel heterotic models with no moduli and, for large values of the central charge, could be dual to AdS_3 string vacua.
Mechanics of Insulator Behavior in Concrete Crosstie Fastening Systems
Barkan, Christopher P.L.
of Insulator Behavior Analysis of failure modes and causes Â· Failure Mode and Effect Analysis (FMEA) used
Molecular Cell Mode of Regulation and the Insulation
Molecular Cell Article Mode of Regulation and the Insulation of Bacterial Gene Expression Vered.molcel.2012.04.032 SUMMARY A gene can be said to be insulated from environ- mental variations if its the insulation of the lac promoter of E. coli and of synthetic constructs in which the transcription factor CRP
MOTT INSULATORS, SPIN LIQUIDS AND QUANTUM DISORDERED SUPERCONDUCTIVITY
COURSE 7 MOTT INSULATORS, SPIN LIQUIDS AND QUANTUM DISORDERED SUPERCONDUCTIVITY MATTHEW P.A. FISHER insulators and quantum magnetism 583 3.1 Spin models and quantum magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 #12;MOTT INSULATORS, SPIN LIQUIDS AND QUANTUM DISORDERED SUPERCONDUCTIVITY Matthew P.A. Fisher
Vacuum insulation tandem accelerator for B. Bayanov1
Taskaev, Sergey Yur'evich
273 Vacuum insulation tandem accelerator for NCT B. Bayanov1 , Yu. Belchenko1 , V. Belov1 , G of high current hydrogen negative ions by special geometry of potential electrodes with vacuum insulation. Fig. 1 shows the construction of vacuum insulation tandem accelerator developed at BINP, as a base
Method and apparatus for filling thermal insulating systems
Arasteh, D.K.
1992-01-14T23:59:59.000Z
A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.
Topological insulators and superconductors Xiao-Liang Qi
Wu, Zhigang
Topological insulators and superconductors Xiao-Liang Qi Microsoft Research, Station Q, Elings Hall, California 94305, USA (Received 2 August 2010; published 14 October 2011) Topological insulators are new-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory
Highly Insulating Glazing Systems using Non-Structural Center Glazing Layers
Kohler, Christian; Arasteh, Dariush; Goudey, Howdy; Kohler, Christian
2008-04-09T23:59:59.000Z
Three layer insulating glass units with two low-e coatings and an effective gas fill are known to be highly insulating, with center-of-glass U-factors as low as 0.57 W/m{sup 2}-K (0.10 Btu/h-ft{sup 2}- F). Such units have historically been built with center layers of glass or plastic which extend all the way through the spacer system. This paper shows that triple glazing systems with non-structural center layers which do not create a hermetic seal at the edge have the potential to be as thermally efficient as standard designs, while potentially removing some of the production and product integration issues that have discouraged the use of triples.
Phase structure of 2-dimensional topological insulators by lattice strong coupling expansion
Yasufumi Araki; Taro Kimura
2013-03-06T23:59:59.000Z
The phase structure of 2-dimensional topological insulators under a sufficiently strong electron-electron interaction is investigated. The effective theory is constructed by extending the idea of the Kane-Mele model on the graphenelike honeycomb lattice, in terms of U(1) lattice gauge theory (quantum electrodynamics, QED). We analyze the phase structure by the techniques of strong coupling expansion of lattice gauge theory. As a result, we find that the topological phase structure of the system is modified by the electron-electron interaction. There evolves a new phase with the antiferromagnetism not parallel to the direction pointed by the spin-orbit coupling, in between the conventional and the topological insulator phases. We also discuss the physical implication of the new phase structure found here, in analogy to the parity-broken phase in lattice quantum chromodynamics (QCD), known as "Aoki phase".
The Insulation Energy Appraisal Assessing the True Value of Insulated System
Schell, S.
Insulation remains a seriously under-utilized technology in the manufacturing and industrial sectors of the economy even though its role in energy efficiency and environmental preservation is clear. The objective of the presentation is to educate...
ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM
Unknown
2000-09-15T23:59:59.000Z
This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized.
Cladding Attachment Over Thick Exterior Insulating Sheathing
Baker, P.; Eng, P.; Lepage, R.
2014-01-01T23:59:59.000Z
The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?
Tunable Chern insulator with shaken optical lattices
Albert Verdeny; Florian Mintert
2015-04-16T23:59:59.000Z
Driven optical lattices permit the engineering of effective dynamics with well-controllable tunneling properties. We describe the realization of a tunable a Chern insulator by driving particles on a shaken hexagonal lattice with optimally designed polychromatic driving forces. Its implementation does not require shallow lattices, which favors the study of strongly-correlated phases with non-trivial topology.
TRANSITION DE MOTT METAL-INSULATOR TRANSITIONS
Paris-Sud XI, UniversitÃ© de
TRANSITION DE MOTT METAL-INSULATOR TRANSITIONS IN TRANSITION METAL OXIDES by D. B. McWHAN, A. MENTH oxydes de metaux de transition on observe une transition d'isolant a metal puis de metal a isolant de type Mott lorsque l'on augmentelenombre d'electrons d. Danslesysthe(V1-~Cr~)203une transition de Mott
Interfacial Coatings for Inorganic Composite Insulation Systems
Hooker, M. W.; Fabian, P. E.; Stewart, M. W.; Grandlienard, S. D.; Kano, K. S. [Composite Technology Development, Inc., Lafayette, CO, 80026 (United States)
2006-03-31T23:59:59.000Z
Inorganic (ceramic) insulation materials are known to have good radiation resistance and desirable electrical and mechanical properties at cryogenic and elevated temperatures. In addition, ceramic materials can withstand the high-temperature reaction cycle used with Nb3Sn superconductor materials, allowing the insulation to be co-processed with the superconductor in a wind-and-react fabrication process. A critical aspect in the manufacture of ceramic-based insulation systems is the deposition of suitable fiber-coating materials that prevent chemical reaction of the fiber and matrix materials, and thus provide a compliant interface between the fiber and matrix, which minimizes the impact of brittle failure of the ceramic matrix. Ceramic insulation produced with CTD-FI-202 fiber interfaces have been found to exhibit very high shear and compressive strengths. However, this material is costly to produce. Thus, the goal of the present work is to evaluate alternative, lower-cost materials and processes. A variety of oxide and polyimide coatings were evaluated, and one commercially available polyimide coating has been shown to provide some improvement as compared to uncoated and de-sized S2 glass.
Laminated insulators having heat dissipation means
Niemann, R.C.; Mataya, K.F.; Gonczy, J.D.
1980-04-24T23:59:59.000Z
A laminated body is provided with heat dissipation capabilities. The insulator body is formed by dielectric layers interleaved with heat conductive layers, and bonded by an adhesive to form a composite structure. The heat conductive layers include provision for connection to an external thermal circuit.
Tubing carried perforating gun with insulation jacket
Donovan, J.F.; Yates, D.N.
1991-05-21T23:59:59.000Z
This patent describes a method of insulating a tubing carried perforating gun which is run through a subterranean wellbore. It includes making up at the well surface a tubing string for introduction within the well, the tubing string carrying a perforating gun assembly.
Understanding and Evaluating Extended Surfaces
Ganapathy, V.
Extended surfaces are widely used in heat transfer equipment in power and process plants. While various types of extended surfaces are used in the industry, this paper will limit the discussions to the widely used configurations in heat recovery...
Caporaso, G.J.; Sampayan, S.E.; Kirbie, H.C.
1998-10-13T23:59:59.000Z
A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 12 figs.
Vacuum Insulator Development for the Dielectric Wall Accelerator
Harris, J R; Blackfield, D; Caporaso, G J; Chen, Y; Hawkins, S; Kendig, M; Poole, B; Sanders, D M; Krogh, M; Managan, J E
2008-03-17T23:59:59.000Z
At Lawrence Livermore National Laboratory, we are developing a new type of accelerator, known as a Dielectric Wall Accelerator, in which compact pulse forming lines directly apply an accelerating field to the beam through an insulating vacuum boundary. The electrical strength of this insulator may define the maximum gradient achievable in these machines. To increase the system gradient, we are using 'High Gradient Insulators' composed of alternating layers of dielectric and metal for the vacuum insulator. In this paper, we present our recent results from experiment and simulation, including the first test of a High Gradient Insulator in a functioning Dielectric Wall Accelerator cell.
Not Available
1994-05-01T23:59:59.000Z
The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 250 citations and includes a subject term index and title list.)
Expression of Ligands for the NKG2D Activating Receptor are Linked to Proliferative Signals
Jung, Heiyoun
2011-01-01T23:59:59.000Z
Upon NKG2D engagement, the ITAM in DAP12 recruits ZAP70 orcontrast, DAP10 lacks an ITAM, and instead contains a YINM
Determining Transition State Geometries in Liquids Using 2D-IR
Cahoon, James
2008-01-01T23:59:59.000Z
Material Determining transition state geometries in liquidsDetermining transition state geometries in liquids using 2D-are determined by the transition state connecting reactant
On 3D instabilities of 2D time-periodic flows - Department of ...
The Karman vortex street, the 2D periodically shedding wake of a circular cylinder, is the prototypical example. We shall consider this as well as a periodically ...
362 Riverside Drive, Apt# 2D2, New York, NY 10025 917-868-6099 ys2729@columbia.edu
Modeling PROJECT EXPERIENCE University of Nottingham Vacuum Insulation Panels in Building Application: A Review, Testing and Modeling Nottingham, UK May 2013 Analyzed the effects of using of Vacuum Insulation Panels on building energy consumption Compared different modern insulation materials in building
Apparatus for insulating windows and the like
Mitchell, R.A.
1984-06-19T23:59:59.000Z
Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.
Contaminant trap for gas-insulated apparatus
Adcock, James L. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Christophorou, Loucas G. (Oak Ridge, TN)
1984-01-01T23:59:59.000Z
A contaminant trap for a gas-insulated electrical conductor is provided. A resinous dielectric body such as Kel-F wax, grease or other sticky polymeric or oligomeric compound is disposed on the inside wall of the outer housing for the conductor. The resinous body is sufficiently sticky at ambient temperatures to immobilize contaminant particles in the insulating gas on the exposed surfaces thereof. An electric resistance heating element is disposed in the resinous body to selectively raise the temperature of the resinous body to a molten state so that the contaminant particles collected on the surface of the body sink into the body so that the surface of the resinous body is renewed to a particle-less condition and, when cooled, returns to a sticky collecting surface.
Multiterminal Conductance of a Floquet Topological Insulator
L. E. F. Foa Torres; P. M. Perez-Piskunow; C. A. Balseiro; G. Usaj
2014-09-08T23:59:59.000Z
We report on simulations of the dc conductance and quantum Hall response of a Floquet topological insulator using Floquet scattering theory. Our results reveal that laser-induced edge states in graphene lead to quantum Hall plateaus once imperfect matching with the non-illuminated leads is lessened. But the magnitude of the Hall plateaus is not directly related to the number and chirality of all the edge states at a given energy as usual. Instead, the plateaus are dominated only by those edge states adding to the dc density of states. Therefore, the dc quantum Hall conductance of a Floquet topological insulator is not directly linked to topological invariants of the full the Floquet bands.
Electric-Magnetic Duality and Topological Insulators
Andreas Karch
2009-10-03T23:59:59.000Z
We work out the action of the SL(2,Z) electric-magnetic duality group for an insulator with a non-trivial permittivity, permeability and theta-angle. This theory has recently been proposed to be the correct low-energy effective action for topological insulators. As applications, we give manifestly SL(2,Z) covariant expressions for the Faraday rotation at orthogonal incidence at the interface of two such materials, as well as for the induced magnetic and electric charges, slightly clarifying the meaning of expressions previously derived in the literature. We also use electric-magnetic duality to find a gravitational dual for a strongly coupled version of this theory using the AdS/CFT correspondence.
Fractional topological insulators in three dimensions
Joseph Maciejko; Xiao-Liang Qi; Andreas Karch; Shou-Cheng Zhang
2010-11-14T23:59:59.000Z
Topological insulators can be generally defined by a topological field theory with an axion angle theta of 0 or pi. In this work, we introduce the concept of fractional topological insulator defined by a fractional axion angle and show that it can be consistent with time reversal (T) invariance if ground state degeneracies are present. The fractional axion angle can be measured experimentally by the quantized fractional bulk magnetoelectric polarization P_3, and a `halved' fractional quantum Hall effect on the surface with Hall conductance of the form (p/q)(e^2/2h) with p,q odd. In the simplest of these states the electron behaves as a bound state of three fractionally charged `quarks' coupled to a deconfined non-Abelian SU(3) `color' gauge field, where the fractional charge of the quarks changes the quantization condition of P_3 and allows fractional values consistent with T-invariance.
Electric-Magnetic Duality and Topological Insulators
Karch, A. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)
2009-10-23T23:59:59.000Z
We work out the action of the SL(2,Z) electric-magnetic duality group for an insulator with a nontrivial permittivity, permeability, and theta angle. This theory has recently been proposed to be the correct low-energy effective action for topological insulators. As applications, we give manifestly SL(2,Z) covariant expressions for the Faraday rotation at orthogonal incidence at the interface of two such materials, as well as for the induced magnetic and electric charges, slightly clarifying the meaning of expressions previously derived in the literature. We also use electric-magnetic duality to find a gravitational dual for a strongly coupled version of this theory using the gauge/gravity correspondence.
Fractional Topological Insulators in Three Dimensions
Maciejko, Joseph; Zhang Shoucheng [Department of Physics, Stanford University, Stanford, California 94305 (United States); Qi Xiaoliang [Microsoft Research, Station Q, Elings Hall, University of California, Santa Barbara, California 93106 (United States); Department of Physics, Stanford University, Stanford, California 94305 (United States); Karch, Andreas [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)
2010-12-10T23:59:59.000Z
Topological insulators can be generally defined by a topological field theory with an axion angle {theta} of 0 or {pi}. In this work, we introduce the concept of fractional topological insulator defined by a fractional axion angle and show that it can be consistent with time reversal T invariance if ground state degeneracies are present. The fractional axion angle can be measured experimentally by the quantized fractional bulk magnetoelectric polarization P{sub 3}, and a 'halved' fractional quantum Hall effect on the surface with Hall conductance of the form {sigma}{sub H}=(p/q)(e{sup 2}/2h) with p, q odd. In the simplest of these states the electron behaves as a bound state of three fractionally charged 'quarks' coupled to a deconfined non-Abelian SU(3) 'color' gauge field, where the fractional charge of the quarks changes the quantization condition of P{sub 3} and allows fractional values consistent with T invariance.
Transgression field theory for interacting topological insulators
Aç?k, Özgür
2013-01-01T23:59:59.000Z
We consider effective topological field theories of quantum Hall systems and time-reversal invariant topological insulators that are Chern-Simons and BF field theories. The edge states of these systems are related to the gauge invariance of the effective actions. For the edge states at the interface of two topological insulators, transgression field theory is proposed as a gauge invariant effective action. Transgression actions of Chern-Simons theories for (2+1)D and (4+1)D and BF theories for (3+1)D are constructed. By using transgression actions, the edge states are written in terms of the bulk connections of effective Chern-Simons and BF theories.
High temperature insulation for ceramic matrix composites
Merrill, Gary B. (Monroeville, PA); Morrison, Jay Alan (Orlando, FL)
2000-01-01T23:59:59.000Z
A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.
High temperature insulation for ceramic matrix composites
Merrill, Gary B.; Morrison, Jay Alan
2004-01-13T23:59:59.000Z
A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.
High temperature insulation for ceramic matrix composites
Merrill, Gary B. (Monroeville, PA); Morrison, Jay Alan (Orlando, FL)
2001-01-01T23:59:59.000Z
A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.
The topological insulator in a fractal space
Song, Zhi-Gang; Zhang, Yan-Yang; Li, Shu-Shen [SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China)
2014-06-09T23:59:59.000Z
We investigate the band structures and transport properties of a two-dimensional model of topological insulator, with a fractal edge or a fractal bulk. A fractal edge does not affect the robust transport even when the fractal pattern has reached the resolution of the atomic-scale, because the bulk is still well insulating against backscattering. On the other hand, a fractal bulk can support the robust transport only when the fractal resolution is much larger than a critical size. Smaller resolution of bulk fractal pattern will lead to remarkable backscattering and localization, due to strong couplings of opposite edge states on narrow sub-edges which appear almost everywhere in the fractal bulk.
Apparatus for insulating windows and the like
Mitchell, Robert A. (R.D. #1, Box 462-A, Voorheesville, NY 12186)
1984-01-01T23:59:59.000Z
Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.
Excavationless Exterior Foundation Insulation Exploratory Study
Mosiman, G.; Wagner, R.; Schirber, T.
2013-02-01T23:59:59.000Z
The key objective of this exploratory study was to investigate the feasibility of the development or adoption of technologies that would enable a large percentage of existing homes in cold climates to apply a combination 'excavationless' soil removal process with appropriate insulation and water management on the exterior of existing foundations at a low cost. Our approach was to explore existing excavation and material technologies and systems to discover whether potential successful combinations existed.
Correctly specify insulation for process equipment and piping
Allen, C. [Raytheon Engineers and Constructors, Birmingham, AL (United States)
1997-05-01T23:59:59.000Z
Insulation serves as a thermal barrier to resist the flow of heat. When insulation is installed over piping or equipment to minimize heat losses, the insulation is categorized as heat conservation. Software programs for determining heat losses are based on ASTM C 680. If heat conservation insulation is calculated to determine the most cost-effective thickness for piping or equipment, then the insulation is categorized as economic insulation. Methods for manually determining economic thicknesses using various graphs and precalculated charts are given in Turner and Malloy. However, modern software programs available from industrial associations calculate economic thicknesses based on after-tax annual costs. Costs associated with owning insulation are expressed on an equivalent uniform annual cost basis. The thickness with the lowest annual cost is reported as the economic thickness. Some of the economic data needed to calculate economic thicknesses are fuel cost, depreciation period, annual fuel inflation rate, annual hours of operation, return on investment, effective income tax rate, annual insulation maintenance costs, and installed costs. To obtain accurate economical thicknesses, it is best to solicit installed costs from a local contractor likely to bid on the work. This paper covers the most suitable insulation materials for certain applications, the most economic material and thickness to use, and how the total insulation system should be designed.
Humidity effects on wire insulation breakdown strength.
Appelhans, Leah
2013-08-01T23:59:59.000Z
Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.
Witten effect in a crystalline topological insulator
Rosenberg, G.; Franz, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 (Canada)
2010-07-15T23:59:59.000Z
It has been noted a long time ago that a term of the form theta(e{sup 2}/2pih)Bcentre dotE may be added to the standard Maxwell Lagrangian without modifying the familiar laws of electricity and magnetism. theta is known to particle physicists as the 'axion' field and whether or not it has a nonzero expectation value in vacuum remains a fundamental open question of the standard model. A key manifestation of the axion term is the Witten effect: a unit magnetic monopole placed inside a medium with thetanot =0 is predicted to bind a (generally fractional) electric charge -e(theta/2pi+n) with n integer. Here we conduct a test of the Witten effect based on the recently established fact that the axion term with theta=pi emerges naturally in the description of the electromagnetic response of a class of crystalline solids called topological insulators--materials distinguished by strong spin-orbit coupling and nontrivial band structures. Using a simple physical model for a topological insulator we demonstrate the existence of a fractional charge bound to a monopole by an explicit numerical calculation. We also propose a scheme for generating an 'artificial' magnetic monopole in a topological insulator film that may be used to facilitate an experimental test of Witten's prediction.
Topological insulators with arbitrarily tunable entanglement
J. C. Budich; J. Eisert; E. J. Bergholtz
2014-05-15T23:59:59.000Z
We elucidate how Chern and topological insulators fulfill an area law for the entanglement entropy. By explicit construction of a family of lattice Hamiltonians, we are able to demonstrate that the area law contribution can be tuned to an arbitrarily small value, but is topologically protected from vanishing exactly. We prove this by introducing novel methods to bound entanglement entropies from correlations using perturbation bounds, drawing intuition from ideas of quantum information theory. This rigorous approach is complemented by an intuitive understanding in terms of entanglement edge states. These insights have a number of important consequences: The area law has no universal component, no matter how small, and the entanglement scaling cannot be used as a faithful diagnostic of topological insulators. This holds for all Renyi entropies which uniquely determine the entanglement spectrum which is hence also non-universal. The existence of arbitrarily weakly entangled topological insulators furthermore opens up possibilities of devising correlated topological phases in which the entanglement entropy is small and which are thereby numerically tractable, specifically in tensor network approaches.
Smoldering combustion hazards of thermal insulation materials
Ohlemiller, T.J.; Rogers, F.E.
1980-07-01T23:59:59.000Z
Work on the smolder ignitability in cellulosic insulation and on thermal analytical characterization of the oxidation of this material is presented. Thermal analysis (TGA and DSC) shows that both retarded and unretarded cellulosic insulation oxidizes in two overall stages, both of which are exothermic. The second stage (oxidation of the char left as a residue of the first stage) is much more energetic on a unit mass basis than the first. However, kinetics and a sufficient exothermicity make the first stage responsible for ignition in most realistic circumstances. Existing smolder retardants such as boric acid have their major effect on the kinetics of the second oxidation stage and thus produce only a rather small (20/sup 0/C) increase in smolder ignition temperature. Several simplified analogs of attic insulations have been tested to determine the variability of minimum smolder ignition temperature. These employed planar or tubular constant temperature heat sources in a thermal environment quite similar to a realistic attic application. Go/no-go tests provided the borderline (minimum) ignition temperature for each configuration. The wide range (150/sup 0/C) of minimum ignition temperatures confirmed the predominant dependence of smolder ignition on heat flow geometry. Other factors (bulk density, retardants) produced much less effect on ignitability.
A 2D Pseudodynamic Rupture Model Generator for Earthquakes on Geometrically Complex Faults
Dunham, Eric M.
A 2D Pseudodynamic Rupture Model Generator for Earthquakes on Geometrically Complex Faults complexity in the rupture process and resulting ground motion. We present a 2D kinematic rupture generator that emulates the strong dependence of earthquake source parameters on local fault geometry observed in dynamic
A 2D Graphics Interface Based on CGI Version 1.0
Clausen, Michael
) standards for device independent driving of graphics hardware, both issued from standardization institutes#12; CGI ++ A 2D Graphics Interface Based on CGI Version 1.0 Dieter W. Fellner Martin Fischer Currently, designers of 2D graphics applications have to deal with several (and unforÂ tunately incompatible
Journal of Computer Graphics Techniques Higher Quality 2D Text Rendering
Paris-Sud XI, Université de
Journal of Computer Graphics Techniques Higher Quality 2D Text Rendering Vol. 2, No. 1, 2013 http://jcgt.org Higher Quality 2D Text Rendering Nicolas P. Rougier INRIA Figure 1. When displaying text on low technology / Microsoft / native hinting) for crisp rendering or, to privilege glyph shapes (Quartz technology
Wind Tunnel and Field Test of Three 2D Sonic Anemometers
Stoffelen, Ad
Wind Tunnel and Field Test of Three 2D Sonic Anemometers Wiel Wauben R&D Information and Observation Technology, KNMI September 17, 2007 #12;#12;Wind Tunnel and Field Test of Three 2D Sonic.....................................................................................................1 2. Wind sensors
Liu, Yijun
A fast multipole boundary element method for modeling 2-D multiple crack problems with constant 3 April 2014 Accepted 20 May 2014 Keywords: Fast multipole BEM 2-D multi-crack problems Constant elements Crack opening displacements Stress intensity factors a b s t r a c t A fast multipole boundary
The following VS tools were compared: 2D OPENBABEL, DAYLIGHT2
Ritchie, Dave
The following VS tools were compared: 2D Â OPENBABEL, DAYLIGHT2 , MACCS. BCI, MOLPRINT2D3 3D Â ROCS Software Inc., Cepos Insilico Ltd., Chemical Computing Group, DAYLIGHT, Chemical Information Systems and Digital Chemistry for providing Academic Licences for ROCS, ParaSurf, MOE, DAYLIGHT, and BCI, respectively
Wavelet filtering to study mixing in 2D isotropic turbulence Carsten Beta a
École Normale Supérieure
Wavelet filtering to study mixing in 2D isotropic turbulence Carsten Beta a , Kai Schneider b simulation (CVS) filtering, based on an ortho- gonal wavelet decomposition of vorticity, to study mixing in 2; Diffusion; Wavelets 1. Introduction Decaying 2D turbulence is characterized by the emergence of long
Angular momentum and energy structure of the coherent state of a 2D isotropic harmonic oscillator
LIU Yufeng; HUO Wujun; ZENG Jinyan
1999-12-03T23:59:59.000Z
The angular momentum structure and energy structure of the coherent state of a 2D isotropic harmonic oscillator were investigated. Calculations showed that the average values of angular momentum and energy (except the zero point energy) of this nonspreading 2D wave packet are identical to those of the corresponding classical oscillator moving along a circular or an elliptic orbit.
2D-Zernike polynomials and coherent state quantization of the unit disc
K. Thirulogasanthar; Nasser Saad; G. Honnouvo
2015-01-07T23:59:59.000Z
Using the orthonormality of the 2D-Zernike polynomials, reproducing kernels, reproducing kernel Hilbert spaces, and ensuring coherent states attained. With the aid of the so-obtained coherent states, the complex unit disc is quantized. Associated upper symbols, lower symbols and related generalized Berezin transforms also obtained. A number of necessary summation formulas for the 2D-Zernike polynomials proved.
Shih, Chih-Jen, Ph. D. Massachusetts Institute of Technology
2014-01-01T23:59:59.000Z
2D materials are defined as solids with strong in-plane chemical bonds but weak out-of-plane, van der Waals (vdW) interactions. In order to realize potential applications of 2D materials in the areas of optoelectronics, ...
Edge states for topological insulators in two dimensions and their Luttinger-like liquids
Denis Bernard; Eun-Ah Kim; André LeClair
2012-09-25T23:59:59.000Z
Topological insulators in three spatial dimensions are known to possess a precise bulk/boundary correspondence, in that there is a one-to-one correspondence between the 5 classes characterized by bulk topological invariants and Dirac hamiltonians on the boundary with symmetry protected zero modes. This holographic characterization of topological insulators is studied in two dimensions. Dirac hamiltonians on the one dimensional edge are classified according to the discrete symmetries of time-reversal, particle-hole, and chirality, extending a previous classification in two dimensions. We find 17 inequivalent classes, of which 11 have protected zero modes. Although bulk topological invariants are thus far known for only 5 of these classes, we conjecture that the additional 6 describe edge states of new classes of topological insulators. The effects of interactions in two dimensions are also studied. We show that all interactions that preserve the symmetries are exactly marginal, i.e. preserve the gaplessness. This leads to a description of the distinct variations of Luttinger liquids that can be realized on the edge.
EXTENDED FORMULATIONS FOR INDEPENDENCE POLYTOPES ...
2015-04-15T23:59:59.000Z
1. Introduction. The theory of extended formulations deals with the concept ... contains basic definitions and facts about linear and regular matroids including 1-
TOPAZ2D heat transfer code users manual and thermal property data base
Shapiro, A.B.; Edwards, A.L.
1990-05-01T23:59:59.000Z
TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.
Fermionic Casimir Effect on the Topological Insulator Boundary
C. R. Muniz
2014-12-08T23:59:59.000Z
In this paper we study the Casimir effect on the conducting surface of a topological insulator characterized by both $Z_2$ topological index and time reversal symmetry, subject to the action of a static and spatially homogeneous magnetic field perpendicular to that surface, at zero temperature. To do this, we consider modifications in the Gauss' law that arise due to the nonzero gradient of the axion-like pseudoscalar factor coupled to the constant magnetic field, which occur in a term that must be added to the electromagnetic Lagrangian in order to account for the topological properties of the system. Such term allows to find an effective point-like charge that changes the quantum vacuum of a spinor field in 1+2 dimensions confined on the edge under analysis. Since that the Casimir energy found depends on a length defined on the boundary, we show that there is a tangential density of force or a shear stress associated to the surface, tending to shrink or stretch it depending on the magnetic field direction. These results are extended for the case in which the surface forms a interface between two TI's.
Straining topological insulators as a way to detect Majorana fermions
Mesaros, Andrej [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, P.O. Box 9506, NL-2300 R A Leiden (Netherlands); LASSP, Physics Department, Clark Hall, Cornell University, Ithaca, New York 14853-2501 (United States); Papanikolaou, Stefanos [LASSP, Physics Department, Clark Hall, Cornell University, Ithaca, New York 14853-2501 (United States); Zaanen, Jan [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, P.O. Box 9506, NL-2300 R A Leiden (Netherlands)
2011-07-15T23:59:59.000Z
We propose the experimental setup of an interferometer for the observation of neutral Majorana fermions on topological insulator-superconductor-ferromagnet junctions. We show that the extended lattice defects naturally present in materials, dislocations, induce spin currents on the edges while keeping the bulk time-reversal symmetry intact. We propose a simple two-terminal conductance measurement in an interferometer formed by two edge point contacts, which reveals the nature of Majorana states through the effect of dislocations. The zero-temperature magneto-conductance changes from even oscillations with period {phi}{sub 0}/2 ({phi}{sub 0} is the flux quantum hc/e) to odd oscillations with period {phi}{sub 0}, when nontrivial dislocations are present and the Majorana states are sufficiently strongly coupled. Additionally, the conductance acquires a notable asymmetry as a function of the incident electron energy, due to the topological influence of the dislocations, while resonances appear at the coupling energy of Majorana states.
Superconducting Cosmic Strings and One Dimensional Extended Supersymmetric Algebras
V. K. Oikonomou
2014-04-30T23:59:59.000Z
In this article we study in detail the supersymmetric structures that underlie the system of fermionic zero modes around a superconducting cosmic string. Particularly, we extend the analysis existing in the literature on the one dimensional $N=2$ supersymmetry and we find multiple $N=2$, $d=1$ supersymmetries. In addition, compact perturbations of the Witten index of the system are performed and we find to which physical situations these perturbations correspond. More importantly, we demonstrate that there exists a much more rich supersymmetric structure underlying the system of fermions with $N_f$ flavors and these are $N$-extended supersymmetric structures with non-trivial topological charges, with "$N$" depending on the fermion flavors.
Schiavon, Stefano; Lee, Kwang Ho
2013-01-01T23:59:59.000Z
Predictive Clothing Insulation Models based on Outdoor AirPREDICTIVE CLOTHING INSULATION MODELS ON BUILDING ENERGYthat the clothing insulation is equal to a constant value of
Sheath insulator final test report, TFE Verification Program
Not Available
1994-07-01T23:59:59.000Z
The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications.
Development of large-capacity gas-insulated transformer
Takahashi, E.; Tanaka, K. [Tokyo Electric Power Co., Ltd. (Japan)] [Tokyo Electric Power Co., Ltd. (Japan); Toda, K.; Ikeda, M.; Teranishi, T.; Inaba, M.; Yanari, T. [Toshiba Corp., Kawasaki (Japan)] [Toshiba Corp., Kawasaki (Japan)
1996-04-01T23:59:59.000Z
Concentrations of population and business activities result in high electricity demand in urban areas. This requires the construction of large-capacity underground substations. Oilless, non-flammable and non-explosive equipment is recommended for underground substations. Therefore, several types of large-capacity gas-insulated transformer have been developed. Because the gas forced cooling type was considered to be available up to approximately 60 MVA, all of these gas-insulated transformers are liquid cooled. But the liquid cooling type has the disadvantage of a complex structure for liquid cooling. For this reason, the authors have been studying the development of a simple design for a gas forced cooling, large-capacity gas-insulated transformer. This paper discusses research and development of cooling and insulation technology for a large-capacity gas-insulated transformer and the development of a 275 kV, 300 MVA gas-insulated transformer.
Compact gas-insulated transformer. Fourteenth quarterly report
Not Available
1983-08-01T23:59:59.000Z
Objective is to develop a compact, more efficient, quieter transformer which does not rely on mineral oil insulation. Compressed SF/sub 6/ is used as the external insulation and polymer film as the insulation between turns. A separate liquid cooling system is also provided. This document reports progress made in design, mechanical, dielectric, short circuit, thermal, materials, prototype, accessories, commercialization, and system studies. (DLC)
Thermal Insulation Performance in the Process Industries: Facts and Fallacies
Tye, R. P.
Guarded Hot Box Study on Thermal Performance of Fibrous Insulations Used in Lofts," private com munication. 295 ESL-IE-85-05-54 Proceedings from the Seventh National Industrial Energy Technology Conference, Houston, TX, May 12-15, 1985 ...THERMAL INSULATION PERFORMANCE IN 'mE PROCESS INDUSTRIES: FACTS AND FALLACIES R.P. Tye Dynatech RID Company, Cambridge, MA, U.S.A. ABSTRACT The efficient use of thermal insulation materials and systems for design of cryogenic and elevated...
Explosion resistant insulator and method of making same
Meyer, Jeffry R. (Penn Hills, PA); Billings, Jr., John S. (Trafford, PA); Spindle, Harvey E. (Wilkins Township, Allegheny County, PA); Hofmann, Charles F. (Export, PA)
1983-01-01T23:59:59.000Z
An electrical insulator assembly and method of manufacturing same, having a generally cylindrical or conical body portion formed of a breakable cast solid insulation system and a reinforcing member having a corrugated configuration and formed of a web or mesh type reinforcing fabric. When the breakable body member has been broken, the corrugated configured reinforcing web member provides a path of escape for pressurized insulating fluid while limiting the movement of body member fragments in the direction of escape of the pressurized fluid.
A Guide to Insulation Selection for Industrial Applications
Harrison, M. R.
1979-01-01T23:59:59.000Z
the system, degrade the insulation further and reduce the thermal effic iency. There is no question that rigid insulations such as calcium silicate are preferred in any application where abuse will occur. Some specifications call for all horizontal pip..., the owners are requiring more effic ient plant operations in both new and existing facilities. Thermal insulation will always playa major role in achieving those efficiencies, so its proper selection and application is of the utmost importance. 1012 ESL...
Metal-Insulator Photocathode Heterojunction for Directed Electron...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and low-intrinsic emittance electron pulses have been predicted for hybrid metal-insulator photocathode designs constructed from three to four monolayer MgO films on...
A New Generation of Building Insulation by Foaming Polymer Blend...
Broader source: Energy.gov (indexed) [DOE]
insulation technologies available on the market. Instead of hydroflurocarbon, it uses carbon dioxide as the blowing agent. This technology represents a highly valuable market...
Highly Insulating Windows Volume Purchase Program Final Report
Parker, Graham B.; Mapes, Terry S.; Zalis, WJ
2013-02-01T23:59:59.000Z
This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.
2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe
Chen, Y. H.; Yang, X. Y.; Lin, C., E-mail: linchen0812@pku.edu.cn, E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J., E-mail: linchen0812@pku.edu.cn, E-mail: cjxiao@pku.edu.cn [State Key Lab of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wang, L. [Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190 (China); Xu, M. [Center for Fusion Science of Southwestern Institute of Physics, P. O. Box 432, Chengdu 610041 (China)
2014-11-15T23:59:59.000Z
A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.
Vermont, University of
Objective: Determine the energy use of two greenhouse insulation technologies (a bubble insulation structures. 1. Unimproved standard double-layer poly inflated greenhouse (control) 2. Bubble insulation is around 1-2, compared to an estimated 30 for the bubble system. What did we learn? The bubble insulation
Hasegawa, Shuji
Insulating conduction in Sn/Si(111): Possibility of a Mott insulating ground state measurements. The temperature dependence of the surface-state conductivity showed an insulating behavior from is insulating with a very small energy gap, which is consistent with a recent theoretical study G. Profeta and E
Novel metals and insulators from holography
Aristomenis Donos; Jerome P. Gauntlett
2014-06-02T23:59:59.000Z
Using simple holographic models in $D=4$ spacetime dimensions we construct black hole solutions dual to $d=3$ CFTs at finite charge density with a Q-lattice deformation. At zero temperature we find new ground state solutions with broken translation invariance, either in one or both spatial directions, which exhibit insulating or metallic behaviour depending on the parameters of the holographic theory. For low temperatures and small frequencies, the real part of the optical conductivity has a power-law behaviour, with the exponent determined by the ground state. We also obtain an expression for the the DC conductivity at finite temperature in terms of horizon data of the black hole solutions.
Holographic Metals and Insulators with Helical Symmetry
Aristomenis Donos; Blaise Goutéraux; Elias Kiritsis
2014-09-17T23:59:59.000Z
Homogeneous, zero temperature scaling solutions with Bianchi VII spatial geometry are constructed in Einstein-Maxwell-Dilaton theory. They correspond to quantum critical saddle points with helical symmetry at finite density. Assuming $AdS_{5}$ UV asymptotics, the small frequency/(temperature) dependence of the AC/(DC) electric conductivity along the director of the helix are computed. A large class of insulating and conducting anisotropic phases is found, as well as isotropic, metallic phases. Conduction can be dominated by dissipation due to weak breaking of translation symmetry or by a quantum critical current.
Möbius Graphene Strip as Topological Insulator
Z. L. Guo; Z. R. Gong; H. Dong; C. P. Sun
2009-06-12T23:59:59.000Z
We study the electronic properties of M\\"{o}bius graphene strip with a zigzag edge. We show that such graphene strip behaves as a topological insulator with a gapped bulk and a robust metallic surface, which enjoys some features due to its nontrivial topology of the spatial configuration, such as the existence of edge states and the non-Abelian induced gauge field. We predict that the topological properties of the M\\"{o}bius graphene strip can be experimentally displayed by the destructive interference in the transmission spectrum, and the robustness of edge states under certain perturbations.
, Air Leakage and Insulation Iain S. Walker Energy Performance of Buildings Group Indoor Environment ................................................................................................................................................ 4 Duct Insulation, Location and Leakage Examples............................................................... 4 Figure 2. Sheet metal ducts in a basement insulated with asbestos
Electrical Transport of Topological Insulator-Bi2Se3 and Thermoelectric Properties of Graphene
WEI, PENG
2011-01-01T23:59:59.000Z
Hall effect and topological insulators. Phys Today Klitzing,L. & Mele, E. J. Topological insulators in three dimensions.Zhang, H. J. et al. Topological insulators in Bi 2 Se 3 , Bi
Scattering of Dirac Fermions in Barrier Geometries on the Surface of Topological Insulators
Torquato, Salvatore
Scattering of Dirac Fermions in Barrier Geometries on the Surface of Topological Insulators Lindsay Fleischer 1 Introduction Predicted theoretically and discovered experimentally, the topological insulators topological in- sulators and the trivial insulating vacuum have wavefunctions which are not smoothly
Polarization dependent photocurrents in thin films of the topological insulator Bi?Se?
Lau, Claudia (Claudia M.)
2012-01-01T23:59:59.000Z
Topological insulators are a new class of three-dimensional quantum materials whose interior or bulk is an insulator but whose surface is a conductor. Bi?Se? is a prototypical topological insulator that physicists at MIT ...
Storage and analysis techniques for fast 2-D camera data on W. M. Davisa
Princeton Plasma Physics Laboratory
Storage and analysis techniques for fast 2-D camera data on NSTX W. M. Davisa *, D.M. Mastrovitoa, and this year, one new camera alone can acquire 2GB per pulse. The paper will describe the storage strategies
Maduri, Rajesh Kumar
2008-02-01T23:59:59.000Z
The primary focus of this thesis is to present a framework to develop higher order global differentiability local approximations for 2-D and 3-D distorted element geometries. The necessity and superiority of higher order global differentiability...
Hydrogen Bond Rearrangements in Water Probed with Temperature-Dependent 2D IR
Nicodemus, Rebecca A.
We use temperature-dependent two-dimensional infrared spectroscopy (2D IR) of dilute HOD in H2O to investigate hydrogen bond rearrangements in water. The OD stretching frequency is sensitive to its environment, and loss ...
2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets...
The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 2-D...
adriano 2d-model tests: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
a 2nd order (toroidal) field may be uniform or has a prescribed gradient. In this test phase, the 2D code is ran Paris-Sud XI, Universit de 2 Accuracy in Scientific...
Prospects for high thermoelectric figures of merit in 2D systems
Dresselhaus, M.S.; Sun, X.; Cronin, S.B.; Koga, T.; Dresselhaus, G.; Wang, K.L.
1997-07-01T23:59:59.000Z
Enhanced ZT has been predicted theoretically and observed experimentally in 2D quantum wells, with good agreement between theory and experiment. Advantages of low dimensional systems for thermoelectric applications are described and prospects for further enhancement of ZT are discussed.
2D-Modelling of pellet injection in the poloidal plane: results of numerical tests
Paris-Sud XI, UniversitÃ© de
2D-Modelling of pellet injection in the poloidal plane: results of numerical tests P. Lalousis developed for computing the expansion of pellet-produced clouds in the poloidal plane. The expansion
Signal Integrity Analysis of a 2-D and 3-D Integrated Potentiostat for Neurotransmitter Sensing
Stanacevic, Milutin
for the substrate, power network, and through silicon vias (TSVs). These models are combined integrated implantable systems. I. INTRODUCTION A multichannel potentiostat, integrated with micro and power dissipation. Signal integrity characteristics of a 2- D and 3-D integrated potentiostat
A sequential partly iterative approach for multicomponent reactive transport with CORE2D
Samper, J.
2009-01-01T23:59:59.000Z
Juncosa R. , Delgado J. and Montenegro L. (2000) CORE 2D : App. Samper, J. , Yang, C. , Montenegro, L. , 2003. CORE 2DSamper, J. , Zhang, G. , Montenegro, L. , 2006a. Coupled
CONTENT-BASED 3D OBJECT RETRIEVAL USING 2D VIEWS Thibault Napoleon
Sahbi, Hichem
CONTENT-BASED 3D OBJECT RETRIEVAL USING 2D VIEWS Thibault Napol´eon TELECOM ParisTech, CNRS UMR 5141 46 rue Barrault 75013 Paris, France napoleon@telecom-paristech.fr Hichem Sahbi CNRS UMR 5141
Development of an Independent Hip Drive for a 2D Biped Walking Machine
Rooney, Craig
2012-08-31T23:59:59.000Z
and Automation Laboratory (ISAL) at the University of Kansas has developed a two dimensional (2D) biped walker, nicknamed the Jaywalker, in order to study the requirements necessary for a bipedal robot to traverse uneven terrain and successfully regain stability...
Compatible, energy and symmetry preserving 2D Lagrangian hydrodynamics in rz-cylindrical coordinates
Shashkov, Mikhail [Los Alamos National Laboratory; Wendroff, Burton [Los Alamos National Laboratory; Burton, Donald [Los Alamos National Laboratory; Barlow, A [AWE; Hongbin, Guo [ASU
2009-01-01T23:59:59.000Z
We present a new discretization for 2D Lagrangian hydrodynamics in rz geometry (cylindrical coordinates) that is compatible, energy conserving and symmetry preserving. We describe discretization of the basic Lagrangian hydrodynamics equations.
A distributional approach to the geometry of 2D dislocations at the mesoscale
Lisbon, University of
A distributional approach to the geometry of 2D dislocations at the mesoscale Part A: General introduce the meso-scale as defined by some average distance between the dislocations. The laws governing
2d-LC-MS/MS Method-ORNL Developed for Bacteriophage
Sullivan, Matthew B.
mass spectrometry (2d-LC-MS/MS) method was optimized for bacteriophage by Kristen Corrier undergraduate should be. 4. The mass spectrometer is run in data dependent mode, specific settings should be optimized
Implementation, study and calibration of a modified ASM2d for the simulation of SBR processes
Sludge Model n. 2d, its new features are the splitting of the nitrification stage in a two-step process for the "train" of the controller. Materials and method In Table 1, the characteristics of the synthetic f
Radiation-controlled dynamic vacuum insulation
Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)
1995-01-01T23:59:59.000Z
A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.
Variably insulating portable heater/cooler
Potter, Thomas F. (Denver, CO)
1998-01-01T23:59:59.000Z
A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.
Material-controlled dynamic vacuum insulation
Benson, David K. (14154 W. First Dr., Golden, CO 80401); Potter, Thomas F. (515 S. Magnolia La., Denver, CO 80224)
1996-10-08T23:59:59.000Z
A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.
Variably insulating portable heater/cooler
Potter, T.F.
1998-09-29T23:59:59.000Z
A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.
Material-controlled dynamic vacuum insulation
Benson, D.K.; Potter, T.F.
1996-10-08T23:59:59.000Z
A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.
Radiation-controlled dynamic vacuum insulation
Benson, D.K.; Potter, T.F.
1995-07-18T23:59:59.000Z
A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.
Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces
Haseltine, D. M.; Laffitte, R. D.
of the convective sections. Consultation with the furnace manufacturer then revealed that furnaces made in the 1960's tended to not insulate the pipe bends in the convective section. When insulation was added within the covers of the pipe bends on one furnace...
Topological Field Theory of Time-Reversal Invariant Insulators
Xiao-Liang Qi; Taylor Hughes; Shou-Cheng Zhang
2008-02-24T23:59:59.000Z
We show that the fundamental time reversal invariant (TRI) insulator exists in 4+1 dimensions, where the effective field theory is described by the 4+1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2+1 dimensions. The TRI quantum spin Hall insulator in 2+1 dimensions and the topological insulator in 3+1 dimension can be obtained as descendants from the fundamental TRI insulator in 4+1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the $Z_2$ topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant $\\alpha=e^2/\\hbar c$. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.
Bosonic Topological Insulators and Paramagnets: a view from cobordisms
Anton Kapustin
2014-11-14T23:59:59.000Z
We classify Bosonic Topological Insulators and Paramagnets in DTopological Insulator protected by time-reversal symmetry whose surface admits an all-fermion topologically ordered state. For D=4 there is a unique "beyond group cohomology" phase. It is protected by gravitational anomalies of the boundary theory and is stable without any additional symmetry.
Topological Field Theory of Time-Reversal Invariant Insulators
Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19T23:59:59.000Z
We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.
Proteomic analysis of E. coli using 2D HPLC and MALDI-TOF mass spectrometry
Campbell, Christopher S
2013-02-22T23:59:59.000Z
In partial fulfillment of the requirements of the UNIVERSITY UNDERGRADUATE RESEARCH FELLOWS April 2002 Group: Life Sciences I PROTEOMIC ANALYSIS OF E. COLI USING 2D HPLC AND MALDI-TOF MASS SPECTROMETRY A Senior Thesis By CHRISTOPHER S. CAMPBELL... April 2002 Group: Life Sciences I ABSTRACT Proteomic Analysis of E. coli Using 2D HPLC and MALDI-TOF Mass Spectrometry. Christopher S. Campbell Department of Biochemisty/Biophysics Texac AkM University Fellows Advisor; Dr. James C. Hu Department...
Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors
Steiner, Ullrich
Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors Wendy Niu,1,a) Anna-inorganic perovskite (C6H9C2H4NH3)2PbI4 are produced using micromechanical exfoliation. Mono- and few-layer areas microme- chanical exfoliation of 2D PbI perovskites and explore the few-layer behaviour of such systems
Note and calculations concerning elastic dilatancy in 2D glass-glass liquid foams
François Molino; Pierre Rognon; Cyprien Gay
2010-10-30T23:59:59.000Z
When deformed, liquid foams tend to raise their liquid contents like immersed granular materials, a phenomenon called dilatancy. We have aready described a geometrical interpretation of elastic dilatancy in 3D foams and in very dry foams squeezed between two solid plates (2D GG foams). Here, we complement this work in the regime of less dry 2D GG foams. In particular, we highlight the relatively strong dilatancy effects expected in the regime where we have predicted rapid Plateau border variations.
The use of coated micropowders to reduce radiation heat transfer in foam insulation
Marge, Arlene Lanciani
1991-01-01T23:59:59.000Z
Polyurethane foam is the most effective insulation currently available for buildings. Chlorofluorocarbon (CFC) blowing agents, which have low thermal conductivities, contribute highly to the effectiveness of this insulation. ...
Extender for securing a closure
Thomas, II, Patrick A.
2012-10-02T23:59:59.000Z
An apparatus for securing a closure such as door or a window that opens and closes by movement relative to a fixed structure such as a wall or a floor. Many embodiments provide a device for relocating a padlock from its normal location where it secures a fastener (such as a hasp) to a location for the padlock that is more accessible for locking and unlocking the padlock. Typically an extender is provided, where the extender has a hook at a first end that is disposed through the eye of the staple of the hasp, and at an opposing second end the extender has an annulus, such as a hole in the extender or a loop or ring affixed to the extender. The shackle of the padlock may be disposed through the annulus and may be disposed through the eye of a second staple to secure the door or window in a closed or open position. Some embodiments employ a rigid sheath to enclose at least a portion of the extender. Typically the rigid sheath has an open state where the hook is exposed outside the sheath and a closed state where the hook is disposed within the sheath.
Correlated topological insulators and the fractional magnetoelectric effect
Swingle, B.; Barkeshli, M.; McGreevy, J.; Senthil, T. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2011-05-15T23:59:59.000Z
Topological insulators are characterized by the presence of gapless surface modes protected by time-reversal symmetry. In three space dimensions the magnetoelectric response is described in terms of a bulk {theta} term for the electromagnetic field. Here we construct theoretical examples of such phases that cannot be smoothly connected to any band insulator. Such correlated topological insulators admit the possibility of fractional magnetoelectric response described by fractional {theta}/{pi}. We show that fractional {theta}/{pi} is only possible in a gapped time-reversal-invariant system of bosons or fermions if the system also has deconfined fractional excitations and associated degenerate ground states on topologically nontrivial spaces. We illustrate this result with a concrete example of a time-reversal-symmetric topological insulator of correlated bosons with {theta}=({pi}/4). Extensions to electronic fractional topological insulators are briefly described.
Correlated Topological Insulators and the Fractional Magnetoelectric Effect
Brian Swingle; Maissam Barkeshli; John McGreevy; T. Senthil
2010-05-06T23:59:59.000Z
Topological insulators are characterized by the presence of gapless surface modes protected by time-reversal symmetry. In three space dimensions the magnetoelectric response is described in terms of a bulk theta term for the electromagnetic field. Here we construct theoretical examples of such phases that cannot be smoothly connected to any band insulator. Such correlated topological insulators admit the possibility of fractional magnetoelectric response described by fractional theta/pi. We show that fractional theta/pi is only possible in a gapped time reversal invariant system of bosons or fermions if the system also has deconfined fractional excitations and associated degenerate ground states on topologically non-trivial spaces. We illustrate this result with a concrete example of a time reversal symmetric topological insulator of correlated bosons with theta = pi/4. Extensions to electronic fractional topological insulators are briefly described.
FireStem2D A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires
FireStem2D A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires, et al. (2013) FireStem2D A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury
Surface Science Letters The 2-D growth of gold on single-layer graphene/Ru(0001): Enhancement of
Goodman, Wayne
Surface Science Letters The 2-D growth of gold on single-layer graphene/Ru(0001): Enhancement of CO online 7 May 2011 Keywords: Graphene Ru(0001) STM 2-D Au CO adsorption IRAS The growth and morphology of two-dimensional (2-D) gold islands on a single-layer graphene supported on Ru(0001) have been studied
Scattering theory of topological insulators and superconductors
I. C. Fulga; F. Hassler; A. R. Akhmerov
2013-01-10T23:59:59.000Z
The topological invariant of a topological insulator (or superconductor) is given by the number of symmetry-protected edge states present at the Fermi level. Despite this fact, established expressions for the topological invariant require knowledge of all states below the Fermi energy. Here, we propose a way to calculate the topological invariant employing solely its scattering matrix at the Fermi level without knowledge of the full spectrum. Since the approach based on scattering matrices requires much less information than the Hamiltonian-based approaches (surface versus bulk), it is numerically more efficient. In particular, is better-suited for studying disordered systems. Moreover, it directly connects the topological invariant to transport properties potentially providing a new way to probe topological phases.
Electromagnetic Scattering by Spheres of Topological Insulators
Ge, Lixin; Zi, Jian
2015-01-01T23:59:59.000Z
The electromagnetic scattering properties of topological insulator (TI) spheres are systematically studied in this paper. Unconventional backward scattering caused by the topological magneto-electric (TME) effect of TIs are found in both Rayleigh and Mie scattering regimes. This enhanced backward scattering can be achieved by introducing an impedance-matched background which can suppress the bulk scattering. For the cross-polarized scattering coefficients, interesting antiresonances are found in the Mie scattering regime, wherein the cross-polarized electromagnetic fields induced by the TME effect are trapped inside TI spheres. In the Rayleigh limit, the quantized TME effect of TIs can be determined by measuring the electric-field components of scattered waves in the far field.
Photonic spin Hall effect in topological insulators
Zhou, Xinxing; Ling, Xiaohui; Chen, Shizhen; Luo, Hailu; Wen, Shuangchun
2013-01-01T23:59:59.000Z
In this paper we theoretically investigate the photonic spin Hall effect (SHE) of a Gaussian beam reflected from the interface between air and topological insulators (TIs). The photonic SHE is attributed to spin-orbit coupling and manifests itself as in-plane and transverse spin-dependent splitting. We reveal that the spin-orbit coupling effect in TIs can be routed by adjusting the axion angle variations. Unlike the transverse spin-dependent splitting, we find that the in-plane one is sensitive to the axion angle. It is shown that the polarization structure in magneto-optical Kerr effect is significantly altered due to the spin-dependent splitting in photonic SHE. We theoretically propose a weak measurement method to determine the strength of axion coupling by probing the in-plane splitting of photonic SHE.
From topological insulators to superconductors and Confinement
M. Cristina Diamantini; Pasquale Sodano; Carlo A. Trugenberger
2012-02-01T23:59:59.000Z
Topological matter in 3D is characterized by the presence of a topological BF term in its long-distance effective action. We show that, in 3D, there is another marginal term that must be added to the action in order to fully determine the physical content of the model. The quantum phase structure is governed by three parameters that drive the condensation of topological defects: the BF coupling, the electric permittivity and the magnetic permeability of the material. For intermediate levels of electric permittivity and magnetic permeability the material is a topological insulator. We predict, however, new states of matter when these parameters cross critical values: a topological superconductor when electric permittivity is increased and magnetic permeability is lowered and a charge confinement phase in the opposite case of low electric permittivity and high magnetic permeability. Synthetic topological matter may be fabricated as 3D arrays of Josephson junctions.
Topological Insulators Avoid the Parity Anomaly
Michael Mulligan; F. J. Burnell
2013-01-17T23:59:59.000Z
The surface of a 3+1d topological insulator hosts an odd number of gapless Dirac fermions when charge conjugation and time-reversal symmetries are preserved. Viewed as a purely 2+1d system, this surface theory would necessarily explicitly break parity and time-reversal when coupled to a fluctuating gauge field. Here we explain why such a state can exist on the boundary of a 3+1d system without breaking these symmetries, even if the number of boundary components is odd. This is accomplished from two complementary perspectives: topological quantization conditions and regularization. We first discuss the conditions under which (continuous) large gauge transformations may exist when the theory lives on a boundary of a higher-dimensional spacetime. Next, we show how the higher-dimensional bulk theory is essential in providing a parity-invariant regularization of the theory living on the lower-dimensional boundary or defect.
Analysis and testing of multilayer and aerogel insulation configurations
Johnson, W L [NASA Kennedy Space Center, Kennedy Space Center, Florida; Demko, Jonathan A [ORNL; Fesmire, J. E. [NASA Kennedy Space Center, Kennedy Space Center, Florida
2010-01-01T23:59:59.000Z
Multilayer insulation systems that have robust operational characteristics have long been a goal of many research projects. Such thermal insulation systems may need to offer some degree of structural support and/or mechanical integrity during loss of vacuum scenarios while continuing to provide insulative value to the vessel. Aerogel-based composite blankets can be the best insulation materials in ambient pressure environments; in high vacuum, the thermal performance of aerogel improves by about one order of magnitude. Standard multilayer insulation (MLI) is typically 50% worse at ambient pressure and at soft vacuum, but as much as two or three orders of magnitude better at high vacuum. Different combinations of aerogel blanket and multilayer insulation materials have been tested at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Analysis performed at Oak Ridge National Laboratory showed an importance to the relative location of the MLI and aerogel blankets. Apparent thermal conductivity testing under cryogenicvacuum conditions was performed to verify the analytical conclusion. Tests results are shown to be in agreement with the analysis which indicated that the best performance is obtained with aerogel layers located in the middle of the blanket insulation system.
Storage tank insulation panels that offer fire protection
Stancroff, M. [Pittsburgh Corning Corp., Houston, TX (United States)
1995-12-31T23:59:59.000Z
Many fluids require storage temperatures of over several hundred degrees above ambient. As a result of these elevated storage temperatures many storage tanks require insulation to help in both energy conservation and in maintaining a uniform fluid temperature distribution. Since these fluids are typically flammable these storage tanks also often require some sort of fire protection. One of the most commonly used methods of fire protection is a deluge system. Actively operated deluge systems, although effective when working properly, have several drawbacks. A cellular glass insulation panel system can provide not only excellent insulation value but also passive fire protection without the concern of an active system failure.
Life-cycle energy costs of thermal insulation
Chinneck, J.W.; Chandrashekar, M.; Hahn, C.K.G.
1980-01-01T23:59:59.000Z
A set of calculations is presented which compare the magnitude of the energy costs of insulation with the heating energy savings over the expected lifetime of a model dwelling. A representative city is examined in each of four different levels of Canadian climatic severity. The energy cost of insulation was found to be insignificant relative to the heating energy savings caused by its use. The proposed minimum insulation standards for Canada were found to be significantly better than the existing standards although not optimum from an energy viewpoint.
Holographic classification of Topological Insulators and its 8-fold periodicity
André LeClair; Denis Bernard
2012-05-16T23:59:59.000Z
Using generic properties of Clifford algebras in any spatial dimension, we explicitly classify Dirac hamiltonians with zero modes protected by the discrete symmetries of time-reversal, particle-hole symmetry, and chirality. Assuming the boundary states of topological insulators are Dirac fermions, we thereby holographically reproduce the Periodic Table of topological insulators found by Kitaev and Ryu. et. al, without using topological invariants nor K-theory. In addition we find candidate Z_2 topological insulators in classes AI, AII in dimensions 0,4 mod 8 and in classes C, D in dimensions 2,6 mod 8.
Outdoor polymeric insulators long-term exposed to HVDC
Soerqvist, T.; Vlastos, A.E. [Chalmers Univ. of Technology, Gothenburg (Sweden)] [Chalmers Univ. of Technology, Gothenburg (Sweden)
1997-04-01T23:59:59.000Z
Field experience from outdoor polymeric insulators exposed to HVDC under natural contamination conditions is presented. This paper summarizes the peak leakage current statistics, the hydrophobicity and the surface material conditions studied by electron spectroscopy for chemical analysis (ESCA) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The results show a strong interrelation between the surface conditions and the performance with respect to leakage currents. Moreover, the results show that the surface conditions and the performance of the insulators exposed to HVDC are rather similar to those of the insulators exposed to HVAC.
Fabrication of strained silicon on insulator by strain transfer process
Jin Bo; Wang Xi; Chen Jing; Cheng Xinli; Chen Zhijun [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China)
2005-08-01T23:59:59.000Z
The fabrication of ultrathin strained silicon layer directly on insulator is demonstrated. 50 nm strained silicon on insulator layers were fabricated by a method which includes four steps: Epitaxial growth of strained SiGe on ultrathin silicon on insulator (SOI) substrates, ion implantation, postannealing process, and etch-back process. Strain of the layer was observed by Raman spectroscopy. 0.72% tensile strain was maintained in the strained silicon layer even after removing the SiGe film. The strained layer was the result of strain equalization and transfer process between the SiGe film and top silicon layer.
Sound-insulation layers low-frequency modeling, using the fuzzy structure theory
Boyer, Edmond
09NVC-0163 Sound-insulation layers low-frequency modeling, using the fuzzy structure theory Laurent [20,200] Hz, sound-insulation layer modeling remains a critical topic. Recent work allows- insulation layer. Nevertheless, such an approach requires a FE model of sound-insulation layer, which may
Key-Insulated Signcryption (Science and Technology on Communication Security Laboratory,
Zheng, Yuliang
Key-Insulated Signcryption Jia Fan 1 (Science and Technology on Communication Security Laboratory addresses the issue of key exposure by proposing a key-insulated signcryption technique. We define a security model for key-insulated signcryption and prove that the key- insulated signcryption technique
Irradiation requirements of Nb3Sn based SC magnets electrical insulation
McDonald, Kirk
Irradiation requirements of Nb3Sn based SC magnets electrical insulation developed within the Eu electrical insulation candidates · EuCARD insulators certification conditions · Post irradiation tests and neutrino factories will be subjected to very high radiation doses. · The electrical insulation employed
Science Highlight August 2010 New State of Topological Insulators Offers New Opportunities
Wechsler, Risa H.
Science Highlight August 2010 New State of Topological Insulators Offers New Opportunities Three dimensional topological insulators are a new state of quantum matter with a bulk gap and odd number insulator enters the insulating masive Dirac fermion state, a state that harbors striking topological
Topological Insulators with Ultracold Atoms Indubala I. Satija and Erhai Zhao
Satija, Indu
Chapter 12 Topological Insulators with Ultracold Atoms Indubala I. Satija and Erhai Zhao Abstract- tance is topological insulators, materials that are insulating in the interior but con- duct along of matter known as Topological Insulators. I.I. Satija (B) · E. Zhao School of Physics, Astronomy
Fermi-level tuning of topological insulator thin films Masaki Aitani,1
Hasegawa, Shuji
Fermi-level tuning of topological insulator thin films Masaki Aitani,1 Yusuke Sakamoto,1 Toru Topological insulators are insulating materials but have metallic edge states with peculiar prop- erties properties of topological insulator ultrathin Bi2Te3 films by angle-resolved photoemission spectroscopy
Topological Insulators with Ultracold Atoms Indubala I Satija and Erhai Zhao
Satija, Indu
Topological Insulators with Ultracold Atoms Indubala I Satija and Erhai Zhao School of Physics is topological insulators, materials that are insulating in the interior but conduct along the edges. Quantum to the family of exotic states of matter known as Topological Insulators. QH and QSH effect usually requires
Lightweight extendable and retractable pole
Warren, John L. (Santa Barbara, CA); Brandt, James E. (Santa Barbara, CA)
1994-01-01T23:59:59.000Z
A lightweight extendable and retractable telescopic pole is disclosed comprising a plurality of non-metallic telescoping cylinders with sliding and sealing surfaces between the cylinders, a first plug member on the upper end of the smallest cylinder, and a second plug member on the lower end of the largest cylinder, whereby fluid pressure admitted to the largest cylinder will cause the telescoping cylinders to slide relative to one another causing the pole to extend. An elastomeric member connects the first plug member with one of the intermediate cylinders to urge the cylinders back into a collapsed position when the fluid pressure in the cylinders is vented. Annular elastomer members are provided which seal one cylinder to another when the pole is fully extended and further serve to provide a cushion to prevent damage to the cylinders when the pole is urged back into its retractable position by the elastomeric members and the venting of the pressure. A value mechanism associated with the pole is provided to admit a fluid under pressure to the interior of the telescoping cylinders of the pole while pressurizing a pressure relief port having an opening larger than the inlet port in a closed position whereby removal of the pressure on the relief port will cause the relief port to open to quickly lower the pressure in the interior of the telescoping cylinders to thereby assist in the rapid retraction of the extended pole.
Lightweight extendable and retractable pole
Warren, J.L.; Brandt, J.E.
1994-08-02T23:59:59.000Z
A lightweight extendable and retractable telescopic pole is disclosed comprising a plurality of non-metallic telescoping cylinders with sliding and sealing surfaces between the cylinders, a first plug member on the upper end of the smallest cylinder, and a second plug member on the lower end of the largest cylinder, whereby fluid pressure admitted to the largest cylinder will cause the telescoping cylinders to slide relative to one another causing the pole to extend. An elastomeric member connects the first plug member with one of the intermediate cylinders to urge the cylinders back into a collapsed position when the fluid pressure in the cylinders is vented. Annular elastomer members are provided which seal one cylinder to another when the pole is fully extended and further serve to provide a cushion to prevent damage to the cylinders when the pole is urged back into its retractable position by the elastomeric members and the venting of the pressure. A value mechanism associated with the pole is provided to admit a fluid under pressure to the interior of the telescoping cylinders of the pole while pressurizing a pressure relief port having an opening larger than the inlet port in a closed position whereby removal of the pressure on the relief port will cause the relief port to open to quickly lower the pressure in the interior of the telescoping cylinders to thereby assist in the rapid retraction of the extended pole. 18 figs.
Extended range chemical sensing apparatus
Hughes, Robert C. (Albuquerque, NM); Schubert, W. Kent (Albuquerque, NM)
1994-01-01T23:59:59.000Z
An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.
Extended range chemical sensing apparatus
Hughes, R.C.; Schubert, W.K.
1994-01-18T23:59:59.000Z
An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.
Transparent Conducting Electrodes based on 1D and 2D Ag Nanogratings for Organic Photovoltaics
Zeng, Beibei; Bartoli, Filbert J
2014-01-01T23:59:59.000Z
The optical and electrical properties of optically-thin one-dimensional (1D) Ag nanogratings and two-dimensional (2D) Ag nanogrids are studied, and their use as transparent electrodes in organic photovoltaics are explored. A large broadband and polarization-insensitive optical absorption enhancement in the organic light-harvesting layers is theoretically and numerically demonstrated using either single-layer 2D Ag nanogrids or two perpendicular 1D Ag nanogratings, and is attributed to the excitation of surface plasmon resonances and plasmonic cavity modes. Total photon absorption enhancements of 150% and 200% are achieved for the optimized single-layer 2D Ag nanogrids and double (top and bottom) perpendicular 1D Ag nanogratings, respectively.
MODELING THE TRANSVERSE THERMAL CONDUCTIVITY OF 2D-SICF/SIC COMPOSITES
Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.
2002-09-01T23:59:59.000Z
A hierarchical model was developed to describe the effective transverse thermal conductivity, K effective, of a 2D-SiC/SiC composite made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The model includes the expected effects of fiber-matrix interfacial conductance as well as the effects of high fiber packing fractions within individual tows and the non-uniform nature of 2D-fabric layers that include a significant amount of interlayer porosity. Model predictions were obtained for two versions of DuPont 2D-Hi Nicalon(Trademark)/PyC/ICVI-SiC composite, one with a thin (0.110 micron) and the other with a thick (1.040 micron) PyC fiber coating. The model predicts that the matrix porosity content and porosity shape factor have a major influence on K effective(T) for such a composite.
Splitting of 3d quaternion dimensions into 2d-sells and a "world screen technology"
Alexander P. Yefremov
2012-02-14T23:59:59.000Z
A set of basic vectors locally describing metric properties of an arbitrary 2-dimensional (2D) surface is used for construction of fundamental algebraic objects having nilpotent and idempotent properties. It is shown that all possible linear combinations of the objects when multiplied behave as a set of hypercomples (in particular, quaternion) units; thus interior structure of the 3D space dimensions pointed by the vector units is exposed. Geometric representations of elementary surfaces (2D-sells) structuring the dimensions are studied in detail. Established mathematical link between a vector quaternion triad treated as a frame in 3D space and elementary 2D-sells prompts to raise an idea of "world screen" having 1/2 of a space dimension but adequately reflecting kinematical properties of an ensemble of 3D frames.
Study of the 2-d CP(N-1) models at ?=0 and ?
B. B. Beard; M. Pepe; S. Riederer; U. J. Wiese
2004-09-14T23:59:59.000Z
We present numerical results for 2-d CP(N-1) models at \\theta=0 and \\pi obtained in the D-theory formulation. In this formulation we construct an efficient cluster algorithm and we show numerical evidence for a first order transition for CP(N-1\\geq 2) models at \\theta = \\pi. By a finite size scaling analysis, we also discuss the equivalence in the continuum limit of the D-theory formulation of the 2-d CP(N-1) models and the usual lattice definition.
Learning to segment texture in 2D vs. 3D : A comparative study
Oh, Se Jong
2004-11-15T23:59:59.000Z
in Ri. Finally, we get the Gabor energy matrix E(x,y), Orientation response matrix O(x,y), and Frequency response matrix F(x,y). . . . . . . . . . . . 28 11 Generating the 2D input set (2D preprocessing). The procedure used to generate the training data... differences (such as difference in orientation) exist. According to Chubb et al. [10], any first-order (quasi- linear) mechanism cannot detect the boundary that emerges between two textures of equal mean luminance but composed of differently oriented...
Thermal Effects of Moisture in Rigid Insulation Board
Crow, G. W.
The impact of moisture in rigid roof insulation upon energy consumption is often assumed to be a simple function of the conductance. This paper will show that there are complex interactions between conductance, thermal mass, and climate. The energy...
Using fiberglass volumes for VPI of superconductive magnetic systems’ insulation
Andreev, I. S.; Bezrukov, A. A.; Pischugin, A. B. [Sredne-Nevskiy Shipyard (SNSZ), 10 Zavodskaya str., c. Pontonniy, Saint-Petersburg (Russian Federation); Bursikov, A. S.; Klimchenko, Y. A.; Marushin, E. L.; Mednikov, A. A.; Rodin, I. Y.; Stepanov, D. B. [The D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), 3 Doroga na Metallostroy, Metallostroy, Saint-Petersburg (Russian Federation)
2014-01-29T23:59:59.000Z
The paper describes the method of manufacturing fiberglass molds for vacuum pressure impregnation (VPI) of high-voltage insulation of superconductive magnetic systems (SMS) with epoxidian hot-setting compounds. The basic advantages of using such vacuum volumes are improved quality of insulation impregnation in complex-shaped areas, and considerable cost-saving of preparing VPI of large-sized components due to dispensing with the stage of fabricating a metal impregnating volume. Such fiberglass vacuum molds were used for VPI of high-voltage insulation samples of an ITER reactor’s PF1 poloidal coil. Electric insulation of these samples has successfully undergone a wide range of high-voltage and mechanical tests at room and cryogenic temperatures. Some results of the tests are also given in this paper.
Aerogel Insulation: The Materials Science of Empty Space
Broader source: Energy.gov [DOE]
Empty space can be good, like a blank canvas for an artist, or it can be bad, like an attic without insulation for a homeowner. But when a technological breakthrough provides just the right amount...
Aerogel-Based Insulation for Industrial Steam Distribution Systems
John Williams
2011-03-30T23:59:59.000Z
Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energy’s Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT®, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspen’s best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XT’s commercial success has been driven by it’s 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.
Static electric field in one-dimensional insulators without boundaries
Chen, Kuang-Ting
In this brief report, we show that in a one-dimensional insulating system with periodic boundary conditions, the coefficient of the ? term in the effective theory is not only determined by the topological index ?i?[superscript ...
(Insulating materials and large high voltage electric systems)
Dale, S.J.
1990-09-18T23:59:59.000Z
The traveler attended the 33rd Session of CIGRE (The International Conference on Large High Voltage Electric Systems in Paris, France) as a US technical expert advisor the Study Committee 15, Insulating Materials. Over 200 papers were discussed, contributed from over 45 countries at the conference on all aspects of electric power generation and transmission. Of special interest was a panel session on superconducting technology for electric power systems and the participation on a new task force on the electrical insulation at cryogenic temperatures. Significant insight was gained into the development of superconducting power technologies in Europe and Japan. CIGRE has set up a committee to follow the development in research on the biological effects of electric and magnetic fields. The traveler also visited the Centre for Electric Power Engineering at the University of Strathclyde, Glasgow, Scotland and discussed research on degradation of polymeric cable insulation and gas insulated equipment. 5 refs.
High constriction ratio continuous insulator based dielectrophoretic particle sorting
Wang, Qianru, S.M. Massachusetts Institute of Technology
2014-01-01T23:59:59.000Z
Low frequency insulator based dielectrophoresis (iDEP) is a promising technique to study cell surface dielectric properties. To date, iDEP has been exploited to distinguish, characterize, and manipulate particles and ...
A Comprehensive Map of Insulator Elements for the Drosophila Genome
White, Kevin P.
Insulators are DNA sequences that control the interactions among genomic regulatory elements and act as chromatin boundaries. A thorough understanding of their location and function is necessary to address the complexities ...
Design of a variable-conductance vacuum insulation
Benson, D K; Potter, T F; Tracy, C E
1994-01-01T23:59:59.000Z
This paper describes one approach to the design of a variable-conductance vacuum insulation. In this design, the vacuum insulation consists of a permanently sealed, thin sheet steel, evacuated envelope of whatever geometry is required for the application. The steel envelope is supported internally against the atmospheric pressure loads by an array of discrete, low-conductance, ceramic supports, and radiative heat transfer is blocked by layers of thin metal radiation shields. Thermal conductance through this insulation is controlled electronically by changing the temperature of a small metal hydride connected to the vacuum envelope. The hydride reversibly absorbs/desorbs hydrogen to produce a hydrogen pressure typically within the range from less than 10{sup {minus}6} to as much as 1 torr. Design calculations are compared with results from laboratory tests of bench scale samples, and some possible automotive applications for this variable-conductance vacuum insulation are suggested.
Radiative transfer and thermal performance levels in foam insulation boardstocks
Moreno, John David
1991-01-01T23:59:59.000Z
The validity of predictive models for the thermal conductivity of foam insulation is established based on the fundamental geometry of the closed-cell foam. The extinction coefficient is experimentally and theoretically ...
An Investigation of Insulator Proteins in Mosquito Genomes
Johanson, Michael
2013-08-02T23:59:59.000Z
of transgenes in mosquito species. The use of insulator sequences to flank transgenes may have the ability to overcome position effects caused by the genomic environment surrounding the insertion site. CTCF is a multifunctional protein, conserved from humans...
Kingspan Insulated Panels: Proposed Penalty (2013-CE-5353)
Broader source: Energy.gov [DOE]
DOE alleged in a Notice of Proposed Civil Penalty that Kingspan Insulated Panels, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.
Expansion Joint Concepts for High Temperature Insulation Systems
Harrison, M. R.
1980-01-01T23:59:59.000Z
As high temperature steam and process piping expands with heat, joints begin to open between the insulation sections, resulting in increased energy loss and possible unsafe surface temperatures. Many different expansion joint designs are presently...
Exchange-Coupling-Induced Symmetry Breaking in Topological Insulators
Wei, Peng
An exchange gap in the Dirac surface states of a topological insulator (TI) is necessary for observing the predicted unique features such as the topological magnetoelectric effect as well as to confine Majorana fermions. ...
Correlated topological insulators and the fractional magnetoelectric effect
Swingle, Brian Gordon
Topological insulators are characterized by the presence of gapless surface modes protected by time-reversal symmetry. In three space dimensions the magnetoelectric response is described in terms of a bulk ? [theta] term ...
Topological crystalline insulators and Dirac octets in antiperovskites
Liu, Junwei
We predict a class of topological crystalline insulators in the antiperovskite material family with the chemical formula A[subscript 3]BX. Here the nontrivial topology arises from band inversion between two J = 3/2 quartets, ...
Classification of Interacting Electronic Topological Insulators in Three Dimensions
Wang, Chong
A fundamental open problem in condensed-matter physics is how the dichotomy between conventional and topological band insulators is modified in the presence of strong electron interactions. We show that there are six ...
Driven electronic states at the surface of a topological insulator
Fregoso, Benjamin M.
Motivated by recent photoemission experiments on the surface of topological insulators we compute the spectrum of driven topological surface excitations in the presence of an external light source. We completely characterize ...
Interacting fermionic topological insulators/superconductors in three dimensions
Wang, Chong
Symmetry protected topological (SPT) phases are a minimal generalization of the concept of topological insulators to interacting systems. In this paper, we describe the classification and properties of such phases for ...
Topological Crystalline Insulators in the SnTe Material Class
Hsieh, Timothy Hwa-wei
Topological crystalline insulators are new states of matter in which the topological nature of electronic structures arises from crystal symmetries. Here we predict the first material realization of topological crystalline ...
Microscopic Realization of Two-Dimensional Bosonic Topological Insulators
Liu, Zheng-Xin
It is well known that a bosonic Mott insulator can be realized by condensing vortices of a boson condensate. Usually, a vortex becomes an antivortex (and vice versa) under time reversal symmetry, and the condensation of ...
Condition Monitoring of In-Service Nonceramic Insulators
about PSERC can be found at the Center's website: http://www.pserc.wisc.edu. For additional information nonceramic insulators that do not have any manufacturing or design defects. The next phase of the project
Thermal Effects of Moisture in Rigid Insulation Board
Crow, G. W.
1992-01-01T23:59:59.000Z
The impact of moisture in rigid roof insulation upon energy consumption is often assumed to be a simple function of the conductance. This paper will show that there are complex interactions between conductance, thermal mass, and climate. The energy...
Energy and Emissions Savings through Insulation Upgrade Projects
Lettich, M.
2008-01-01T23:59:59.000Z
The presentation demonstrates the value of including insulation system assessment, repairs and upgrades on a facility's physical function and its importance in the overall energy and environmental management program. Financial and environmental...
Linear particle accelerator with seal structure between electrodes and insulators
Broadhurst, John H. (Golden Valley, MN)
1989-01-01T23:59:59.000Z
An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.
Measure Guideline: Sealing and Insulating of Ducts in Existing Homes
Aldrich, R.; Puttagunta, S.
2011-12-01T23:59:59.000Z
This document begins with a discussion on potential cost and performance benefits of duct sealing and insulating. It continues with a review of typical duct materials and components and the overall procedures for assessing and improving the duct system.
Manipulation of bacteria using three dimensional insulator based dielectrophoresis
Braff, William Allan
2011-01-01T23:59:59.000Z
Insulator-based dielectrophoresis (iDEP) is a very promising technique for sorting microparticles based on their electrical properties. By using constrictions in a microchannel to generate large electric field gradients, ...
SiGe-On-Insulator (SGOI) Technology and MOSFET Fabrication
Cheng, Zhiyuan
In this work, we have developed two different fabrication processes for relaxed Si??xGex-on-insulator (SGOI) substrates: (1) SGOI fabrication by etch-back approach, and (2) by "smart-cut" approach utilizing ...
aluminum nitride insulator: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
K-r grown by a modified Bridgman tech- nique,r6 Rollins, Andrew M. 27 Low-voltage organic thin film transistors with hydrophobic aluminum nitride film as gate insulator Materials...
Investigation of the fire performance of building insulation in full-scale and laboratory fire tests
Kleinfelder, W.A.
1984-04-01T23:59:59.000Z
Twenty-two insulations are exposed to fire tests including the 25 ft Tunnel test, the Attic Floor Radiant Panel test and actual fire conditions of a simulated attic configuration. The insulations consisted of a number of cellulose fiber insulations, utilizing various chemical treatments, glass fiber and mineral fiber insulations. The fire performance characteristics of the insulations were measured in each of the three test scenarios and the report compares their results.
Performance of MHD insulating materials in a potassium environment
Natesan, K.; Park, J.H.; Rink, D.L. (Argonne National Lab., IL (United States)); Thomas, C.A. (USDOE Pittsburgh Energy Technology Center, PA (United States))
1991-12-01T23:59:59.000Z
The objectives of this study are to evaluate the compatibility of the MHD insulating materials boron nitride and silicon nitride in a potassium environment at temperatures of 1000 and 1400{degrees}F (538 and 760{degrees}C, respectively) and to measure the electrical conductivities of the specimens before and after exposure to potassium. Based on the test results, an assessment is to be made of the suitability of these materials for application as insulator materials in an MHD channel.
Extended foundations of stochastic prediction
Sergey Kamenshchikov
2014-06-28T23:59:59.000Z
The basic purpose of this work was to suggest universal quantitative description of ergodic system intermediate bifurcation and obligatory conditions of this transition. Conditions for existence of phase state and first order phase transition were introduced in terms of energy balance for system volume unit. Extended Fokker - Plank equation with time dependent diffusion factor was formulated. It turned out that for ergodic system with fixed boundary quantized energy spectrum of phase stable states exists. Obtained results may be applied for prediction of ergodic system behavior. If isolation condition is satisfied, phase spectrum quantization allows selecting proper control parameters for system stabilization. Information about current system coarsened energy allows predicting of future stochastic system behavior on the basis of extended Fokker - Plank model.
Ceramic electrical insulation for electrical coils, transformers, and magnets
Rice, John A. (Longmont, CO); Hazelton, Craig S. (Lafayette, CO); Fabian, Paul E. (Broomfield, CO)
2002-01-01T23:59:59.000Z
A high temperature electrical insulation is described, which is suitable for electrical windings for any number of applications. The inventive insulation comprises a cured preceramic polymer resin, which is preferably a polysiloxane resin. A method for insulating electrical windings, which are intended for use in high temperature environments, such as superconductors and the like, advantageously comprises the steps of, first, applying a preceramic polymer layer to a conductor core, to function as an insulation layer, and second, curing the preceramic polymer layer. The conductor core preferably comprises a metallic wire, which may be wound into a coil. In the preferred method, the applying step comprises a step of wrapping the conductor core with a sleeve or tape of glass or ceramic fabric which has been impregnated by a preceramic polymer resin. The inventive insulation system allows conducting coils and magnets to be fabricated using existing processing equipment, and maximizes the mechanical and thermal performance at both elevated and cryogenic temperatures. It also permits co-processing of the wire and the insulation to increase production efficiencies and reduce overall costs, while still remarkably enhancing performance.
Topological insulators/superconductors: Potential future electronic materials
Hor, Y. S. [Department of Physics, Missouri University of Science and Technology, Rolla, MO 65409 (United States)
2014-03-05T23:59:59.000Z
A new material called topological insulator has been discovered and becomes one of the fastest growing field in condensed matter physics. Topological insulator is a new quantum phase of matter which has Dirac-like conductivity on its surface, but bulk insulator through its interior. It is considered a challenging problem for the surface transport measurements because of dominant internal conductance due to imperfections of the existing crystals of topological insulators. By a proper method, the internal bulk conduction can be suppressed in a topological insulator, and permit the detection of the surface currents which is necessary for future fault-tolerant quantum computing applications. Doped topological insulators have depicted a large variety of bulk physical properties ranging from magnetic to superconducting behaviors. By chemical doping, a TI can change into a bulk superconductor. Nb{sub x}Bi{sub 2}Se{sub 3} is shown to be a superconductor with T{sub c} ? 3.2 K, which could be a potential candidate for a topological superconductor.
External Insulation of Masonry Walls and Wood Framed Walls
Baker, P.
2013-01-01T23:59:59.000Z
The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.
Entanglement distillation by extendible maps
Lukasz Pankowski; Fernando G. S. L. Brandao; Michal Horodecki; Graeme Smith
2013-08-25T23:59:59.000Z
It is known that from entangled states that have positive partial transpose it is not possible to distill maximally entangled states by local operations and classical communication (LOCC). A long-standing open question is whether maximally entangled states can be distilled from every state with a non-positive partial transpose. In this paper we study a possible approach to the question consisting of enlarging the class of operations allowed. Namely, instead of LOCC operations we consider k-extendible operations, defined as maps whose Choi-Jamiolkowski state is k-extendible. We find that this class is unexpectedly powerful - e.g. it is capable of distilling EPR pairs even from product states. We also perform numerical studies of distillation of Werner states by those maps, which show that if we raise the extension index k simultaneously with the number of copies of the state, then the class of k-extendible operations is not that powerful anymore and provide a better approximation to the set of LOCC operations.
Silicon-on-insulator field effect transistor with improved body ties for rad-hard applications
Schwank, James R. (Albuquerque, NM); Shaneyfelt, Marty R. (Albuquerque, NM); Draper, Bruce L. (Albuquerque, NM); Dodd, Paul E. (Tijeras, NM)
2001-01-01T23:59:59.000Z
A silicon-on-insulator (SOI) field-effect transistor (FET) and a method for making the same are disclosed. The SOI FET is characterized by a source which extends only partially (e.g. about half-way) through the active layer wherein the transistor is formed. Additionally, a minimal-area body tie contact is provided with a short-circuit electrical connection to the source for reducing floating body effects. The body tie contact improves the electrical characteristics of the transistor and also provides an improved single-event-upset (SEU) radiation hardness of the device for terrestrial and space applications. The SOI FET also provides an improvement in total-dose radiation hardness as compared to conventional SOI transistors fabricated without a specially prepared hardened buried oxide layer. Complementary n-channel and p-channel SOI FETs can be fabricated according to the present invention to form integrated circuits (ICs) for commercial and military applications.
The visibility complex made visibly simple an introduction to 2D structures of visibility
Durand, Frédo
. Then a sweeping algorithm that can build the complex in O(mlog(n)) where n is the size of the visibility graph when a line becomes tangent to three objects. This is shown in the video. The complex is build usingThe visibility complex made visibly simple an introduction to 2D structures of visibility Fr
Development of a Hybrid Powered 2D Biped Walking Machine Designed for Rough Terrain Locomotion
Baker, Bryce C.
2010-07-28T23:59:59.000Z
has built a three legged 2D biped walking machine to be used as a test stand for studying rough terrain walking. The specific aim of this research is to investigate how biped walkers can best maintain walking stability when acted upon by small...
2D and 3D high-resolution imaging to reconstruct the microstructure of clay media
Paris-Sud XI, Université de
2D and 3D high-resolution imaging to reconstruct the microstructure of clay media J.C. Robinet1 & S compacted clay (illite) system, considered to be an analogy for the clay matrix constituting clay-rocks, and three different clayrocks (Callovo-Oxfordian argilites (FR), Opalinus Clay (CH), Boom Clay (BE)). Part
Full paper / Mmoire Self-assembly of hybrid solids consisting of 2D supramolecular
Paik Suh, Myunghyun
Full paper / Mémoire Self-assembly of hybrid solids consisting of 2D supramolecular networks- selected molecular building blocks may yield designed supramolecular structure in one-pot process. We have been interested in construction of the materials, where two species with different properties coexist
Vuong, Au K
2014-05-05T23:59:59.000Z
the 2-D CWT to character- ize the surface of two samples of Fe_(2)O_(3) and three samples of calcite. For a fresh surface of the calcite mineral, a cleavage plane exposed by fracturing, the surface measurements show discrete jumps in height because...
Inspection design using 2D phased array, TFM and cueMAP software
McGilp, Ailidh; Dziewierz, Jerzy; Lardner, Tim; Mackersie, John; Gachagan, Anthony [Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow (United Kingdom)
2014-02-18T23:59:59.000Z
A simulation suite, cueMAP, has been developed to facilitate the design of inspection processes and sparse 2D array configurations. At the core of cueMAP is a Total Focusing Method (TFM) imaging algorithm that enables computer assisted design of ultrasonic inspection scenarios, including the design of bespoke array configurations to match the inspection criteria. This in-house developed TFM code allows for interactive evaluation of image quality indicators of ultrasonic imaging performance when utilizing a 2D phased array working in FMC/TFM mode. The cueMAP software uses a series of TFM images to build a map of resolution, contrast and sensitivity of imaging performance of a simulated reflector, swept across the inspection volume. The software takes into account probe properties, wedge or water standoff, and effects of specimen curvature. In the validation process of this new software package, two 2D arrays have been evaluated on 304n stainless steel samples, typical of the primary circuit in nuclear plants. Thick section samples have been inspected using a 1MHz 2D matrix array. Due to the processing efficiency of the software, the data collected from these array configurations has been used to investigate the influence sub-aperture operation on inspection performance.
An Efficient Genetic Algorithm for Predicting Protein Tertiary Structures in the 2D HP Model
Istrail, Sorin
, predicting its tertiary structure is known as the protein folding problem. This problem has been widely genetic algo- rithm for the protein folding problem under the HP model in the two-dimensional square Genetic Algorithm, Protein Folding Problem, 2D HP Model 1. INTRODUCTION Amino acids are the building
2D Piecewise Algebraic Splines for Implicit Modeling University of Hull
Tian, Jie
-dimensional spline techniques based on nonregular 2D polygons, such as box spline and simplex spline, are generally. In this article, a new type of bivariate spline function is introduced. This newly proposed type of bivariate. Graph. 28, 2, Article 13 (April 2009), 19 pages. DOI = 10.1145/1516522.1516524 http://doi.acm.org/10
Feature Based Rendering for 2D/3D Partial Volume Segmentation Zigang Wang1
Feature Based Rendering for 2D/3D Partial Volume Segmentation Datasets Zigang Wang1 and Zhengrong 11794, USA ABSTRACT In this paper, a new feature based rendering algorithm for partial volume is presented. This algorithm utilizes both surface and volume information for the rendering of the partial
Nonlinear interaction of compressional waves in a 2D dusty plasma crystal
Goree, John
sound waves is dispersionless [4,9,10], with a speed CL = /k given in Ref. [9]. Here, 2 0 = Q2 /4 0ma3 monolayers [1], electrons on the surface of liquid helium [2], rare gas atoms ab- sorbed on graphite [3 a screened Coulomb repulsion or Yukawa potential. Sound waves, or phonons, in a 2D Yukawa lattice are well
Assisted Teleoperation Strategies for Aggressively Controlling a Robot Arm with 2D Input
Indiana University
Assisted Teleoperation Strategies for Aggressively Controlling a Robot Arm with 2D Input Erkang You,hauserk}@indiana.edu Abstract--This paper studies assisted teleoperation techniques for controlling a 6DOF robot arm using click, and overall satisfaction. I. INTRODUCTION Assisted teleoperation allows a user to operate a robot while
Dynamics and control of the system of a 2-D rigid circular cylinder and point vortices
Shashikanth, Banavara N.
Dynamics and control of the system of a 2-D rigid circular cylinder and point vortices Zhanhua Ma dynamically interacting with N point vortices in its vicinity [16] is an idealized example of coupled solid from a fluid mechanics viewpoint as well as a dynamics and control viewpoint. The problem has many
Thompson/Ocean 420/Winter 2004 2D waves 1 Two-dimensional wave propagation
Thompson, LuAnne
Thompson/Ocean 420/Winter 2004 2D waves 1 Two-dimensional wave propagation So far we have talked about wave propagation in one-dimension. For two or three spatial dimensions, we vectorize our ideas propagation. For surface waves, there is no vertical propagation, and we are only concerned with the two
Factorization of Darboux transformations of arbitrary order for 2D Schroedinger operators
Ekaterina Shemyakova
2015-05-04T23:59:59.000Z
We give a proof of Darboux's conjecture that every Darboux transformation of arbitrary order of a 2D Schroedinger type operator can be factorized into Darboux transformations of order one. The proof is constructive. The result is obtained in the framework of an algebraic approach to Darboux transformations which is suggested in this paper and is a further improvement of S. Tsarev's earlier idea.
Fayer, Michael D.
Hydrogen Bond Migration between Molecular Sites Observed with Ultrafast 2D IR Chemical ExchangeVed: January 12, 2010 Hydrogen-bonded complexes between phenol and phenylacetylene are studied using ultrafast hydrogen bonding acceptor sites (phenyl or acetylene) that compete for hydrogen bond donors in solution
Symmetry reduction and control of the dynamics of a 2-D rigid circular cylinder and a
Shashikanth, Banavara N.
Symmetry reduction and control of the dynamics of a 2-D rigid circular cylinder and a point vortex. This dynamic model is an idealized example in an inviscid framework of fully- coupled solid-fluid systems vortex, cylinder, optimal control, reduction, scat- tering #12;Contents 1 INTRODUCTION 4 2 The SMBK model
RENORMALIZED ENERGY EQUIDISTRIBUTION AND LOCAL CHARGE BALANCE IN 2D COULOMB SYSTEMS
RENORMALIZED ENERGY EQUIDISTRIBUTION AND LOCAL CHARGE BALANCE IN 2D COULOMB SYSTEMS SIMONA ROTA of the "Coulomb renormalized energy" of Sandier-Serfaty, which corresponds to the total Coulomb interaction point charges with Coulomb pair interaction, in a con- fining potential (minimizers of this energy also
Paris-Sud XI, Université de
Anaïs Wion 2d International Littmann Conference Jan. 2006, Aksum, Ethiopia PRE-PRINT The National Archives and Library of Ethiopia: six years of Ethio-French cooperation (2001-2006) Most scholars are aware traditions are a reality that should more often be discussed openly by the scholarly community. In Ethiopia
The svgl toolkit: enabling fast rendering of rich 2D graphics Stephane Conversy1,2
Paris-Sud XI, UniversitÃ© de
The svgl toolkit: enabling fast rendering of rich 2D graphics StÂ´ephane Conversy1,2 Jean powerful graphical processors be- come available on mainstream computers, it becomes possible , a graphical toolkit that enables programmers and design- ers of interactive applications to benefit from
2D Simultaneous Localization And Mapping for Micro Air Vehicles Adrien Angeli1
Paris-Sud XI, UniversitÃ© de
, heavy weight and high energy consumption. Instead, vision seems to be a good alternative: it is cheap2D Simultaneous Localization And Mapping for Micro Air Vehicles Adrien Angeli1 David Filliat2 St to shift from human-controlled aircrafts to partially-autonomous flying agents. Today, one of the main
Water Dynamics in Salt Solutions Studied with Ultrafast Two-Dimensional Infrared (2D IR)
Fayer, Michael D.
Water Dynamics in Salt Solutions Studied with Ultrafast Two-Dimensional Infrared (2D IR RECEIVED ON FEBRUARY 3, 2009 C O N S P E C T U S Water is ubiquitous in nature, but it exists as pure water infrequently. From the ocean to biology, water molecules interact with a wide variety of dissolved species
Definition RX Evaluate Kernels K-2d K-1d Change By definition undefined
Theiler, James
Definition RX Evaluate Kernels K-2d K-1d Change By def·i·ni·tion undefined Adventures in anomaly Alamos National Laboratory Research supported by the United States Department of Energy through the Los Alamos Laboratory Directed Research and Development (LDRD) Program. #12;Theiler LA-UR-14-24429 Definition
3D Shape from Silhouette Points in Registered 2D Images Using Conjugate Gradient Method
Hoff, William A.
3D Shape from Silhouette Points in Registered 2D Images Using Conjugate Gradient Method Andrzej version of the conjugate gradient method. We take advantage of the structure of the problem to make polynomial function. The approximate problem is solved using a nonlinear conjugate gradient solver that takes
LNG FEM: GENERATING GRADED MESHES AND SOLVING ELLIPTIC EQUATIONS ON 2-D DOMAINS OF POLYGONAL, Minnesota 55455Â0436 Phone: 612-624-6066 Fax: 612-626-7370 URL: http://www.ima.umn.edu #12;LNG FEM AND VICTOR NISTOR Abstract. We develop LNG FEM, a software package for graded mesh gen- eration
Estudio de la estabilidad de una familia de toros 2D del Problema Cuasibicircular
Barcelona, Universitat de
estabilidad est'a asociado al nacimiento de las familias de toros Halo 2D. Para este trabajo se han utilizado QBCP depende de ¯, el par'ametro de masas del sistema TierraLuna, a s , la distancia media del Sol al s \\Gamma 1 ' 328900:54 ; ! s = 0:925195985520347 ; tomando las unidades de masa, distancia y tiempo de
Collective Classification for Labeling of Places and Objects in 2D and 3D Range Data
Teschner, Matthias
these representations of the environment to improve the human- robot comunication. In this work, we present an approach information to 2D maps. Koenig and Simmons (1998) apply a pre-programmed routine to detect doorways. Althaus and Christensen (2003) use sonar data to detect corridors and doorways. Moreover, Friedman et al. (2007) introduce
VISION-BASED CONTROL OF 2D PLANE POISEUILLE FLOW Romeo Tatsambon Fomena and Christophe Collewet
Paris-Sud XI, Université de
Cemagref, INRIA Rennes-Bretagne Atlantique and Universit´e Europ´eenne de Bretagne 17 avenue de Cucill in optimizing shapes or in choosing suitable surfacing. Conversely, in active con- trol an external energy the vision-based control approach to regulate the 2D plane Poiseuille flow around its steady state
Finite-element discretization of a linearized 2 -D model for lubricated oil transportation
Frey, Pascal
Finite-element discretization of a linearized 2 - D model for lubricated oil transportation V acts as a lubricant by coating the wall of the pipeline, thus preventing the oil from adhering is devoted to the numerical simulation of a linearized model for the lubricated trans- portation of heavy
Genetic Algorithm for Predicting Protein Folding in the 2D HP Model
Emmerich, Michael
Genetic Algorithm for Predicting Protein Folding in the 2D HP Model A Parameter Tuning Case Study of a protein, predicting its tertiary structure is known as the protein folding problem. This problem has been. The protein folding problem in the HP model is to find a conformation (a folded sequence) with the lowest
Ionwater hydrogen-bond switching observed with 2D IR vibrational echo chemical
Fayer, Michael D.
IonÂwater hydrogen-bond switching observed with 2D IR vibrational echo chemical exchange for review November 8, 2008) The exchange of water hydroxyl hydrogen bonds between anions and water oxygens of anionÂ water hydroxyl hydrogen bond switching under thermal equilib- rium conditions as Taw 7 1 ps. Pump
Neuroglobin dynamics observed with ultrafast 2D-IR vibrational echo spectroscopy
Fayer, Michael D.
Neuroglobin dynamics observed with ultrafast 2D-IR vibrational echo spectroscopy Haruto Ishikawa Contributed by Michael D. Fayer, August 15, 2007 (sent for review July 25, 2007) Neuroglobin (Ngb), a protein energy minimum. myoglobin mutants protein dynamics energy landscape Neuroglobin (Ngb) is a recently
Fayer, Michael D.
Size-dependent ultrafast structural dynamics inside phospholipid vesicle bilayers measured with 2D 25, 2013) The ultrafast structural dynamics inside the bilayers of dilauroyl- phosphatidylcholine was used as a vibrational probe and provided information on spectral diffusion (structural dynam- ics
2D control of field-driven magnetic bubble movement using Dzyaloshinskii-Moriya interactions
Petit, Dorothée; Seem, Peter R.; Tillette, Marine; Mansell, Rhodri; Cowburn, Russell P.
2015-01-12T23:59:59.000Z
. Fukushima and S. Yuasa, Nature Phys. 7, 626 (2011) 2D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit and R. P. Cowburn, Science 309, 1688 (2005) 3D. A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner,D. Atkin- son, N. Vernier and R. P. Cowburn...
Creative Character Design Based on Combination of 2D and 3D Characteristics
Salimi Beni, Anahita
2014-12-09T23:59:59.000Z
This research combines the need for innovation in character design with the idea of combining 2D and 3D characteristics to create an original and appealing character style. The goal has been to benefit from the capabilities of 3D animation while...
Robust and Efficient Adaptive Moving Mesh Solution of the 2-D Euler equations
Zegeling, Paul
to track individual features of the physi- cal solutions, such as shocks and emerging instabilities [2] in which the difficult choice of a user-defined adaptivity constant in the monitor function lists our conclusions. 2 The 2D Euler equations The two-dimensional Euler equations of gas dynamics
GREIT: a unified approach to 2D linear EIT reconstruction of lung images
Adler, Andy
GREIT: a unified approach to 2D linear EIT reconstruction of lung images Andy Adler1 , John H the distribution of ventilation. However, most clinical and physiological research in lung EIT is done using older algorithm for lung EIT, called GREIT (Graz consensus Reconstruction algorithm for EIT). This paper describes
Paris-Sud XI, UniversitÃ© de
be observable. II. 2D GLASS-GLASS FOAM GEOMETRICAL VADEMECUM In the present section, we shall provide a geometri- cal description and some corresponding results for two- dimensional foams squeezed between two glass liquid foams Pierre Rognon, FranÂ¸cois Molino, and Cyprien Gay Centre de Recherche Paul Pascal, CNRS, UPR
Recanati, Catherine
be observable. II. 2D GLASS-GLASS FOAM GEOMETRICAL VADEMECUM In the present section, we shall provide a geometri- cal description and some corresponding results for two- dimensional foams squeezed between two glass liquid foams Pierre Rognon, Fran#24;cois Molino, and Cyprien Gay #3; Centre de Recherche Paul Pascal
Advanced insulated gate bipolar transistor gate drive
Short, James Evans (Monongahela, PA); West, Shawn Michael (West Mifflin, PA); Fabean, Robert J. (Donora, PA)
2009-08-04T23:59:59.000Z
A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.
Topology of crystalline insulators and superconductors
Ken Shiozaki; Masatoshi Sato
2014-10-14T23:59:59.000Z
We complete a classification of topological phases and their topological defects in crystalline insulators and superconductors. We consider topological phases and defects described by non-interacting Bloch and Bogoliubov de Gennes Hamiltonians that support additional order-two spatial symmetry, besides any of ten classes of symmetries defined by time-reversal symmetry and particle-hole symmetry. The additional order-two spatial symmetry we consider is general and it includes $Z_2$ global symmetry, mirror reflection, two-fold rotation, inversion, and their magnetic point group symmetries. We find that the topological periodic table shows a novel periodicity in the number of flipped coordinates under the order-two spatial symmetry, in addition to the Bott-periodicity in the space dimensions. Various symmetry protected topological phases and gapless modes will be identified and discussed in a unified framework. We also present topological classification of symmetry protected Fermi points. The bulk classification and the surface Fermi point classification provide a novel realization of the bulk-boundary correspondence in terms of the K-theory.
Silicon on insulator achieved using electrochemical etching
McCarthy, Anthony M. (Menlo Park, CA)
1997-01-01T23:59:59.000Z
Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.
CERTIFICATE OF FIELD VERIFICATION AND DIAGNOSTIC TESTING CF-4R-ENV-22 Quality Insulation Installation (QII) - Insulation Stage Checklist (Page 1 of 3) Site Address: Enforcement Agency: Permit Number: ____________ 2008 Residential Compliance Forms May 2012 All structural framing areas shall be insulated in a manner
Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures
Alegria, L. D.; Petta, J. R. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Ji, H.; Cava, R. J. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Yao, N. [Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544 (United States); Clarke, J. J. [Hitachi High Technologies America, Inc., Clarksburg, Maryland 20871 (United States)
2014-08-04T23:59:59.000Z
We demonstrate the van der Waals epitaxy of the topological insulator compound Bi{sub 2}Te{sub 3} on the ferromagnetic insulator Cr{sub 2}Ge{sub 2}Te{sub 6}. The layers are oriented with (001)Bi{sub 2}Te{sub 3}||(001)Cr{sub 2}Ge{sub 2}Te{sub 6} and (110)Bi{sub 2}Te{sub 3}||(100)Cr{sub 2}Ge{sub 2}Te{sub 6}. Cross-sectional transmission electron microscopy indicates the formation of a sharp interface. At low temperatures, bilayers consisting of Bi{sub 2}Te{sub 3} on Cr{sub 2}Ge{sub 2}Te{sub 6} exhibit a large anomalous Hall effect (AHE). Tilted field studies of the AHE indicate that the easy axis lies along the c-axis of the heterostructure, consistent with magnetization measurements in bulk Cr{sub 2}Ge{sub 2}Te{sub 6}. The 61?K Curie temperature of Cr{sub 2}Ge{sub 2}Te{sub 6} and the use of near-stoichiometric materials may lead to the development of spintronic devices based on the AHE.
Thermal Performance of Exterior Insulation and Finish Systems Containing Vacuum Insulation Panels
Childs, Kenneth W [ORNL; Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Carbary, Lawrence D [Dow Corning Corporation, Midland, MI
2013-01-01T23:59:59.000Z
A high-performance wall system is under development to improve wall thermal performance to a level of U-factor of 0.19 W/(m2 K) (R-30 [h ft2 F]/Btu) in a standard wall thickness by incorporating vacuum insulation panels (VIPs) into an exterior insulation finish system (EIFS). Such a system would be applicable to new construction and will offer a solution to more challenging retrofit situations as well. Multiple design options were considered to balance the need to protect theVIPs during construction and building operation, while minimizing heat transfer through the wall system. The results reported here encompass an indepth assessment of potential system performances including thermal modeling, detailed laboratory measurements under controlled conditions on the component, and system levels according to ASTM C518 (ASTM 2010). The results demonstrate the importance of maximizing the VIP coverage over the wall face. The results also reveal the impact of both the design and execution of system details, such as the joints between adjacent VIPs. The test results include an explicit modeled evaluation of the system performance in a clear wall.
Algebraic theory of crystal vibrations: Singularities and zeros in vibrations of 1D and 2D lattices
F. Iachello; B. Dietz; M. Miski-Oglu; A. Richter
2015-06-02T23:59:59.000Z
A novel method for the calculation of the energy dispersion relation (EDR) and density of states (DOS) in one (1D) and two (2D) dimensions is introduced and applied to linear lattices (1D) and square and hexagonal lattices (2D). The (van Hove) singularities and (Dirac) zeros of the DOS are discussed. Results for the 2D hexagonal lattice (graphene-like materials) are compared with experimental data in microwave photonic crystals.
Cellular glass insulation keeps liquefied gas from vaporizing
NONE
1995-11-01T23:59:59.000Z
The North West Shelf Project, located on the Burrup Peninsula in Western Australia, supplies much of that vast state with natural gas for domestic and industrial applications. Some of the gas is also exported to Japan as liquefied natural gas (LNG). While awaiting shipment to Japan, the LNG is stored at {minus}322 F in four storage tanks, each with a capacity of 2.5 million ft{sup 3}. When Woodside Offshore Petroleum Pty Ltd., operator of the LNG facility, selected insulation material for the storage tanks, it went in search of a material with more than just insulating value. Since the insulation is installed inside the tanks, it must be able to resist wicking or absorbing the LNG. Also, it had to have sufficient strength to withstand the weight of the 2.5 million ft{sup 3} of LNG without being crushed or losing its insulting properties. And, as a safety precaution, the selected materials should neither burn nor support combustion. Ultimately, Woodside selected a cellular glass insulation called Foamglas, from Pittsburgh Corning Corp., that met all the performance criteria and was cost competitive with the lesser-performing alternatives. Foamglas is produced from strong, inert borosilicate glass. Its insulating capability is provided by the tiny, closed cells of air encapsulated within the foam-like structure of the glass. Since the cells are closed,neither liquid nor vapor can enter the structure of the insulation. The inert glass itself will not absorb or react with LNG, nor will it burn or support a fire. The cellular structure provides effective insulation in both not and cold applications, and offers a fire barrier.
Insulating Structural Ceramics Program, Final Report
Andrews, Mark J.; Tandon, Raj; Ott, Eric; Hind, Abi Akar; Long, Mike; Jensen, Robert; Wheat, Leonard; Cusac, Dave; Lin, H. T.; Wereszczak, Andrew A.; Ferber, Mattison K.; Lee, Sun Kun; Yoon, Hyung K.; Moreti, James; Park, Paul; Rockwood, Jill; Boyer, Carrie; Ragle, Christie; Balmer-Millar, Marilou; Aardahl, Chris; Habeger, Craig; Rappe, Ken; Tran, Diana; Koshkarian, Kent; Readey, Michael; ,
2005-11-22T23:59:59.000Z
New materials and corresponding manufacturing processes are likely candidates for diesel engine components as society and customers demand lower emission engines without sacrificing power and fuel efficiency. Strategies for improving thermal efficiency directly compete with methodologies for reducing emissions, and so the technical challenge becomes an optimization of controlling parameters to achieve both goals. Approaches being considered to increase overall thermal efficiency are to insulate certain diesel engine components in the combustion chamber, thereby increasing the brake mean effective pressure ratings (BMEP). Achieving higher BMEP rating by insulating the combustion chamber, in turn, requires advances in material technologies for engine components such as pistons, port liners, valves, and cylinder heads. A series of characterization tests were performed to establish the material properties of ceramic powder. Mechanical chacterizations were also obtained from the selected materials as a function of temperature utilizing ASTM standards: fast fracture strength, fatique resistance, corrosion resistance, thermal shock, and fracture toughness. All ceramic materials examined showed excellent wear properties and resistance to the corrosive diesel engine environments. The study concluded that the ceramics examined did not meet all of the cylinder head insert structural design requirements. Therefore we do not recommend at this time their use for this application. The potential for increased stresses and temperatures in the hot section of the diesel engine combined with the highly corrosive combustion products and residues has driven the need for expanded materials capability for hot section engine components. Corrosion and strength requirements necessitate the examination of more advanced high temperture alloys. Alloy developments and the understanding of processing, structure, and properties of supperalloy materials have been driven, in large part, by the gas turbine community over the last fifty years. Characterization of these high temperature materials has, consequently, concentrated heavily upon application conditions similiar to to that encountered in the turbine engine environment. Significantly less work has been performed on hot corrosion degradation of these materials in a diesel engine environment. This report examines both the current high temperature alloy capability and examines the capability of advanced nickle-based alloys and methods to improve production costs. Microstructures, mechanical properties, and the oxidation/corrosion behavior of commercially available silicon nitride ceramics were investigated for diesel engine valve train applications. Contact, sliding, and scratch damage mechanisms of commercially available silicon nitride ceramics were investigated as a function of microstructure. The silicon nitrides with a course microstructure showed a higher material removal rate that agrees with a higher wear volume in the sliding contact tests. The overall objective of this program is to develop catalyst materials systems for an advanced Lean-NOx aftertreatment system that will provide high NOx reduction with minimum engine fuel efficiency penalty. With Government regulations on diesel engine NOx emissions increasingly becoming more restrictive, engine manufacturers are finding it difficult to meet the regulations solely with engine design strategies (i.e. improved combustion, retarded timing, exhaust gas recirculation, etc.). Aftertreatment is the logical technical approach that will be necessary to achieve the required emission levels while at the same time minimally impacting the engine design and its associated reliability and durability concerns.
Pipe crawler with extendable legs
Zollinger, W.T.
1992-06-16T23:59:59.000Z
A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.
Pipe crawler with extendable legs
Zollinger, William T. (3927 Almon Dr., Martinez, GA 30907)
1992-01-01T23:59:59.000Z
A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.
Extended inflation with induced gravity
Accetta, F. S.; Trester, J. J.
1989-05-15T23:59:59.000Z
We consider a recently proposed extended model of inflation which improves upon the original old inflation scenario by achieving a graceful exit from the false-vacuum phase. In this paper extended inflation is generalized to include a potential /ital V/(/phi/) for the Brans-Dicke-type field /phi/. We find that whereas a graceful exit can still be had, the inclusion of a potential places constraints on the percolation time scale for exiting the inflationary phase. Additional constraints on /ital V/(/phi/) and the false-vacuum energy density /rho//sub /ital F// from density and gravitational-wave perturbations are discussed. For initially small values of /phi/ the false vacuum undergoes power-law inflation, while for initially large values of /phi/ the expansion is exponential. Within true-vacuum regions slow-rolling inflation can occur. As a result, this model generically leads to multiple episodes of inflation. We discuss the significance these multiple episodes of inflation may have on the formation of large-scale structure and the production of voids.
Supporting documentation for the 1997 revision to the DOE Insulation Fact Sheet
Stovall, T.K.
1997-08-22T23:59:59.000Z
The Department of Energy (DOE) Insulation Fact Sheet has been revised to reflect developments in energy conservation technology and the insulation market. A nationwide insulation cost survey was made by polling insulation contractors and builders, and the results are reported here. These costs, along with regional weather data, regional fuel costs, and fuel-specific system efficiencies were used to produce recommended insulation levels for new and existing houses. This report contains all of the methodology, algorithms, assumptions, references, and data resources that were used to produce the 1997 DOE Insulation Fact Sheet.
Understanding and Improving High Voltage Vacuum Insulators for Microsecond Pulses
Javedani, J B; Goerz, D A; Houck, T L; Lauer, E J; Speer, R D; Tully, L K; Vogtlin, G E; White, A D
2007-03-05T23:59:59.000Z
High voltage insulation is one of the main areas of pulsed power research and development, and dielectric breakdown is usually the limiting factor in attaining the highest possible performance in pulsed power devices. For many applications the delivery of pulsed power into a vacuum region is the most critical aspect of operation. The surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This mode of breakdown, called surface flashover, imposes serious limitations on the power flow into a vacuum region. This is especially troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and for applications where relatively long pulses, on the order of several microseconds, are required. The goal of this project is to establish a sound fundamental understanding of the mechanisms that lead to surface flashover, and then evaluate the most promising techniques to improve vacuum insulators and enable high voltage operation at stress levels near the intrinsic bulk breakdown limits of the material. The approach we proposed and followed was to develop this understanding through a combination of theoretical and computation methods coupled with experiments to validate and quantify expected behaviors. In this report we summarize our modeling and simulation efforts, theoretical studies, and experimental investigations. The computational work began by exploring the limits of commercially available codes and demonstrating methods to examine field enhancements and defect mechanisms at microscopic levels. Plasma simulations with particle codes used in conjunction with circuit models of the experimental apparatus enabled comparisons with experimental measurements. The large scale plasma (LSP) particle-in-cell (PIC) code was run on multiprocessor platforms and used to simulate expanding plasma conditions in vacuum gap regions. Algorithms were incorporated into LSP to handle secondary electron emission from dielectric materials to enable detailed simulations of flashover phenomenon. Theoretical studies were focused on explaining a possible mechanism for anode initiated surface flashover that involves an electron avalanche process starting near the anode, not a mechanism involving bulk dielectric breakdown. Experiments were performed in Engineering's Pulsed Power Lab using an available 100-kV, 10-{micro}s pulse generator and vacuum chamber. The initial experiments were done with polyethylene insulator material in the shape of a truncated cone cut at +45{sup o} angle between flat electrodes with a gap of 1.0 cm. The insulator was sized so there were no flashovers or breakdowns under nominal operating conditions. Insulator flashover or gap closure was induced by introducing a plasma source, a tuft of velvet, in proximity to the insulator or electrode.
Luc Dessart; S. P. Owocki
2005-03-23T23:59:59.000Z
We present initial attempts to include the multi-dimensional nature of radiation transport in hydrodynamical simulations of the small-scale structure that arises from the line-driven instability in hot-star winds. Compared to previous 1D or 2D models that assume a purely radial radiation force, we seek additionally to treat the lateral momentum and transport of diffuse line-radiation, initially here within a 2D context. A key incentive is to study the damping effect of the associated diffuse line-drag on the dynamical properties of the flow, focusing particularly on whether this might prevent lateral break-up of shell structures at scales near the lateral Sobolev angle of ca. $1^{\\rm o}$. We first explore nonlinear simulations that cast the lateral diffuse force in the simple, local form of a parallel viscosity. Second, to account for the lateral mixing of radiation associated with the radial driving, we next explore models in which the radial force is azimuthally smoothed over a chosen scale. Third, to account for both the lateral line-drag and the lateral mixing in a more self-consistent way, we explore further a method first proposed by Owocki (1999), which uses a restricted 3-ray approach that combines a radial ray with two oblique rays set to have an impact parameter $p < R_{\\ast}$ within the stellar core. From numerical simulations, we find that, compared to equivalent 1-ray simulations, the high-resolution 3-ray models show systematically a much higher lateral coherence.... (Full abstract in paper)
Chemseddine, A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Solarenergieforschung SE4, Glienicker Str. 100, 14109 Berlin (Germany)], E-mail: chemseddine@hmi.de; Bloeck, U. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Solarenergieforschung SE4, Glienicker Str. 100, 14109 Berlin (Germany)
2008-10-15T23:59:59.000Z
The structure and structural evolution of tungstic acid solutions, sols and gels are investigated by high-resolution electron microscopy (HRTEM). Acidification of sodium tungstate solutions, through a proton exchange resin, is achieved in a way that ensures homogeneity in size and shape of intermediate polytungstic species. Gelation is shown to involve polycondensation followed by a self-assembling process of polytungstic building blocks leading to sheets with a layered hexagonal structure. Single layers of this new metastable phase are composed of three-, four- and six-membered rings of WO{sub 6} octahedra located in the same plane. This is the first time that a 2D oxide crystal is isolated and observed by direct atomic resolution. Further ageing and structural evolution leading to single sheets of 2D ReO{sub 3}-type structure is directly observed by HRTEM. Based on this atomic level imaging, a model for the formation of the oxide network structure involving a self-assembling process of tritungstic based polymeric chain is proposed. The presence of tritungstic groups and their packing in electrochromic WO{sub 3} films made by different techniques is discussed. - Graphical abstract: From the isopolyanion to the extended bulk tungsten oxide: HRTEM imaging.
Analysis Code for High Gradient Dielectric Insulator Surface Breakdown
Ives, Robert Lawrence [Calabazas Creek Research, Inc.; Verboncoeur, John [University of California - Berkeley; Aldan, Manuel [University of California, Berkeley
2010-05-30T23:59:59.000Z
High voltage (HV) insulators are critical components in high-energy, accelerator and pulsed power systems that drive diverse applications in the national security, nuclear weapons science, defense and industrial arenas. In these systems, the insulator may separate vacuum/non-vacuum regions or conductors with high electrical field gradients. These insulators will often fail at electric fields over an order of magnitude lower than their intrinsic dielectric strength due to flashover at the dielectric interface. Decades of studies have produced a wealth of information on fundamental processes and mechanisms important for flashover initiation, but only for relatively simple insulator configurations in controlled environments. Accelerator and pulsed power system designers are faced with applying the fundamental knowledge to complex, operational devices with escalating HV requirements. Designers are forced to rely on “best practices” and expensive prototype testing, providing boundaries for successful operation. However, the safety margin is difficult to estimate, and system design must be very conservative for situations where testing is not practicable, or replacement of failed parts is disruptive or expensive. The Phase I program demonstrated the feasibility of developing an advanced code for modeling insulator breakdown. Such a code would be of great interest for a number of applications, including high energy physics, microwave source development, fusion sciences, and other research and industrial applications using high voltage devices.
GMC Collisions as Triggers of Star Formation. I. Parameter Space Exploration with 2D Simulations
Wu, Benjamin; Tan, Jonathan C; Bruderer, Simon
2015-01-01T23:59:59.000Z
We utilize magnetohydrodynamic (MHD) simulations to develop a numerical model for GMC-GMC collisions between nearly magnetically critical clouds. The goal is to determine if, and under what circumstances, cloud collisions can cause pre-existing magnetically subcritical clumps to become supercritical and undergo gravitational collapse. We first develop and implement new photodissociation region (PDR) based heating and cooling functions that span the atomic to molecular transition, creating a multiphase ISM and allowing modeling of non-equilibrium temperature structures. Then in 2D and with ideal MHD, we explore a wide parameter space of magnetic field strength, magnetic field geometry, collision velocity, and impact parameter, and compare isolated versus colliding clouds. We find factors of ~2-3 increase in mean clump density from typical collisions, with strong dependence on collision velocity and magnetic field strength, but ultimately limited by flux-freezing in 2D geometries. For geometries enabling flow a...
Solving the additive eigenvalue problem associated to a dynamics of a 2D-traffic system
Nadir Farhi
2009-08-25T23:59:59.000Z
This is a technical note where we solve the additive eigenvalue problem associated to a dynamics of a 2D-traffic system. The traffic modeling is not explained here. It is available in \\cite{Far08}. It consists of a microscopic road traffic model of two circular roads crossing on one junction managed with the priority-to-the-right rule. It is based on Petri nets and minplus algebra. One of our objectives in \\cite{Far08} was to derive the fundamental diagram of 2D-traffic, which is the relation between the density and the flow of vehicles. The dynamics of this system, derived from a Petri net design, is non monotone and additively homogeneous of degree 1. In this note, we solve the additive eigenvalue problem associated to this dynamics.