Powered by Deep Web Technologies
Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

COLING 2014 The 25th International Conference  

E-Print Network [OSTI]

COLING 2014 The 25th International Conference on Computational Linguistics Proceedings), a collocated event at the 25th International Conference on Computational Linguistics (COLING 2014) , 23 - 29 of the Conference the 5th Workshop on South and Southeast Asian NLP WSSANLP - 2014 August 23, 2014 Dublin, Ireland

2

California's 25th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 25th congressional district 3 Registered Policy Organizations in California's 25th congressional district 4 Registered Energy Companies in California's 25th congressional district 5 Registered Financial Organizations in California's 25th congressional district 6 Energy Generation Facilities in California's 25th congressional district US Recovery Act Smart Grid Projects in California's 25th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 25th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 25th congressional district

3

EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition  

E-Print Network [OSTI]

and regional resolution the likely grid impacts of defensible penetration scenario in the US for the 2030 impacts of generating electricity, which then in turn has electric rate impacts to rate payers are the impacts of a plausible penetration of plug- in hybrid electric vehicles (PHEVs) on the electricity

4

Texas's 25th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Contents Contents 1 US Recovery Act Smart Grid Projects in Texas's 25th congressional district 2 Registered Research Institutions in Texas's 25th congressional district 3 Registered Networking Organizations in Texas's 25th congressional district 4 Registered Policy Organizations in Texas's 25th congressional district 5 Registered Energy Companies in Texas's 25th congressional district 6 Registered Financial Organizations in Texas's 25th congressional district 7 Utility Companies in Texas's 25th congressional district US Recovery Act Smart Grid Projects in Texas's 25th congressional district Center for the Commercialization of Electric Technologies Smart Grid Demonstration Project Pecan Street Project, Inc. Smart Grid Demonstration Project Registered Research Institutions in Texas's 25th congressional district

5

Scientists Create Worlds Smallest Battery | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scientists Create World's Smallest Battery Scientists Create World's Smallest Battery Stories of Discovery & Innovation Scientists Create World's Smallest Battery Enlarge Photo Image shows distortion of nanowire electrode during charging. Researchers were able to observe charging and discharging in real time at atomic-level resolution. 05.16.11 Scientists Create World's Smallest Battery Effort yields insights that could improve battery performance. Rechargeable lithium-ion (Li-ion) batteries have become the workhorse of the contemporary electronic age, powering everything from cell phones and laptop computers to hybrid electric vehicles. But while superior to many alternatives for electrical energy storage, Li-ion batteries are not optimal in every respect. Despite much progress over the years, their

6

Scientists Create World's Smallest Battery | U.S. DOE Office of Science  

Office of Science (SC) Website

Scientists Create World's Smallest Battery Scientists Create World's Smallest Battery Discovery & Innovation Stories of Discovery & Innovation Brief Science Highlights SBIR/STTR Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 05.16.11 Scientists Create World's Smallest Battery Effort yields insights that could improve battery performance. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image shows distortion of nanowire electrode during charging Image shows distortion of nanowire electrode during charging. Researchers were able to observe charging and discharging in real time at atomic-level resolution. Rechargeable lithium-ion (Li-ion) batteries have become the workhorse of

7

23rd -25th September 2013 Berlin, Germany  

E-Print Network [OSTI]

23rd - 25th September 2013 Berlin, Germany Sustainable Global Conference on Manufacturing Berlin - Germany Tel.: +49 30 314-25117 Fax: +49 30 314-22759 E-Mail: gcsm@mf.tu-berlin.de Website: www" Germany, on 23rd - 25th September 2013. It will be hosted by Technische Universität Berlin. · Value

Berlin,Technische Universität

8

Green Racing Marks Its 25th Competition | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Green Racing Marks Its 25th Competition Green Racing Marks Its 25th Competition Green Racing Marks Its 25th Competition September 13, 2011 - 5:21pm Addthis One of the competitors from the Michelin Green X Challenge takes center stage outside the National Press Club. | Photo courtesy of Green Racing. One of the competitors from the Michelin Green X Challenge takes center stage outside the National Press Club. | Photo courtesy of Green Racing. Lee Slezak Vehicle Systems and Testing Manager The Green Racing program, a motorsports competition geared toward raising awareness of fuel efficiency, alternative fuels and advanced vehicle technologies, recently hit a major milestone as the state of Wisconsin played host to the 25th race in the Michelin Green X Challenge. It was the latest in a series of American Le Mans series (ALMS) races in which teams

9

Green Racing Marks Its 25th Competition | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Racing Marks Its 25th Competition Racing Marks Its 25th Competition Green Racing Marks Its 25th Competition September 13, 2011 - 5:21pm Addthis One of the competitors from the Michelin Green X Challenge takes center stage outside the National Press Club. | Photo courtesy of Green Racing. One of the competitors from the Michelin Green X Challenge takes center stage outside the National Press Club. | Photo courtesy of Green Racing. Lee Slezak Vehicle Systems and Testing Manager The Green Racing program, a motorsports competition geared toward raising awareness of fuel efficiency, alternative fuels and advanced vehicle technologies, recently hit a major milestone as the state of Wisconsin played host to the 25th race in the Michelin Green X Challenge. It was the latest in a series of American Le Mans series (ALMS) races in which teams

10

PROFESSOR EMANUEL PELED is a world leading scientist in the field of batteries and fuel cells. He  

E-Print Network [OSTI]

PROFESSOR EMANUEL PELED is a world leading scientist in the field of batteries and fuel cells. He has published over 150 papers and 45 patents and patent pending in the fields of batteries and fuel 2003 he is the chairman of the Fuel Cells and Battery Center (funded by Israel MOS) and the incumbent

Rabani, Eran

11

Proceedings of the 25th intersociety energy conversion engineering conference  

SciTech Connect (OSTI)

This book contains the proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Volume 5 is organized under the following headings: Photovoltaics I, Photovoltaics II, Geothermal power, Thermochemical conversion of biomass, Energy from waste and biomass, Solar thermal systems for environmental applications, Solar thermal low temperature systems and components, Solar thermal high temperature systems and components, Wind systems, Space power sterling technology Stirling cooler developments, Stirling solar terrestrial I, Stirling solar terrestrial II, Stirling engine generator sets, Stirling models and simulations, Stirling engine analysis, Stirling models and simulations, Stirling engine analysis, Stirling engine loss understanding, Novel engine concepts, Coal conversion and utilization, Power cycles, MHD water propulsion I, Underwater vehicle powerplants - performance, MHD underwater propulsion II, Nuclear power, Update of advanced nuclear power reactor concepts.

Nelson, P.A.; Schertz, W.W.; Till, R.H.

1990-01-01T23:59:59.000Z

12

SciTech Connect: Proceedings of the 25th Seismic Research Review...  

Office of Scientific and Technical Information (OSTI)

5th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base Citation Details In-Document Search Title: Proceedings of the 25th Seismic Research Review...

13

Shakespeare SC 30th Sammy the Slug 25th UCSC Foundation 40th  

E-Print Network [OSTI]

Shakespeare SC 30th Sammy the Slug 25th UCSC Foundation 40th Fiscal Foundation founded Merry-Go-Round completed Kresge Co-Op founded Long Marine Lab completed Life

California at Santa Cruz, University of

14

Assignment 3: Create a game world Due: Monday (morning!) Feb. 25th.  

E-Print Network [OSTI]

with mountains, and say that they were inspired by the rocky mountains. You could also try to directly recreate type that you have chosen i.e. If I choose a platformer, I shouldn't have a flat plain with nothing of the rocky mountains, I would discuss how I was going to modify my mountain so that my player could use

Carette, Jacques

15

25th AIAA Applied Aerodynamics Conference June 2528, 2007/Miami, FL  

E-Print Network [OSTI]

25th AIAA Applied Aerodynamics Conference June 25­28, 2007/Miami, FL Validation Study of Aerodynamic Analysis Tools for Design Optimization of Helicopter Rotors Seongim Choi , Juan J. Alonso , Edwin current aerodynamic analysis tools in predicting the unsteady flow field generated by helicopter rotors

Alonso, Juan J.

16

The 3rd Annual Silicon Valley Social Innovation Leadership Forum April 25th, 2014 (Friday)  

E-Print Network [OSTI]

The 3rd Annual Silicon Valley Social Innovation Leadership Forum April 25th, 2014 (Friday) San Jose | Director, Social Innovation Initiative, Global Leadership Advancement Center (GLAC), San José State University 8:40 ­ 9:15am Opening Panel: Social Innovation and Housing Jennifer Loving | Executive Director

Su, Xiao

17

Symposium Commemorating the 25th Anniversary of the Discovery of Mendelevium  

DOE R&D Accomplishments [OSTI]

The Symposium honoring the 25th Anniversary of the discovery of mendelevium was held at the Lawrence Berkeley Laboratory on March 28, 1980. The following three papers were presented: Chemical Properties of Mendelevium; Nuclear Properties of Mendelevium; and Radioactive Decay of Md Isotopes. Besides these papers there were introductory remarks, reminiscences, and concluding remarks.

Seaborg, G. T. (ed.)

1980-03-28T23:59:59.000Z

18

Return on Investment for State Highway Projects 25th Annual Transportation Research Conference  

E-Print Network [OSTI]

Return on Investment for State Highway Projects 25th Annual Transportation Research Conference May ­ Maintain and repair existing roads and bridges · Grow the Economy by Making Your Transportation Investments investments. · Documents innovative approaches state leaders are already using to make systems more efficient

Minnesota, University of

19

Technical Challenges in Low-velocity SRF Development ATLAS 25th Anniversary Celebration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Challenges in Low-velocity SRF Development Challenges in Low-velocity SRF Development ATLAS 25th Anniversary Celebration October 22-23, 2010 Physics Division, Argonne National Laboratory Building 203, Auditorium Speaker: Mike Kelly ATLAS Energy Upgrade: Commissioned June 2009 14.5 MV in 5 meters using 7 SC Quarter-wave Cavities Superconductivity 1911 - superconductivity discovered by Kamerlingh Onnes in a sample of Hg at 4 Kelvin 1950's: - Ginsburg-Landau theory developed - 1957 - Bardeen, Cooper, and Schrieffer theory First applications such as SC magnets 1964 - SC resonators developed for accelerator applications at Stanford Leiden, ca. 1910 4 Outline Materials from: Ken Shepard, Joel Fuerst I. Some superconductivity background II. Progress in RF superconductivity

20

Nuclear batteries  

Science Journals Connector (OSTI)

Nuclear batteries ... Describes the structure, operation, and application of nuclear batteries. ... Nuclear / Radiochemistry ...

Alfred B. Garrett

1956-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

insertion reactions. For Li-ion battery materials, it refersis widespread throughout the Li-ion battery literature, thisthe chemistry of the Li-ion battery is not fixed, unlike the

Doeff, Marca M

2011-01-01T23:59:59.000Z

22

Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: System Demonstrations, pages 115119, Dublin, Ireland, August 23-29 2014.  

E-Print Network [OSTI]

Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: System Demonstrations, pages 115­119, Dublin, Ireland, August 23-29 2014. Method51 for Mining Insight from Social Media methodological proposals. 1 Introduction Social scientists wish to apply language processing technology on social

23

Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pages 18131823, Dublin, Ireland, August 23-29 2014.  

E-Print Network [OSTI]

Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics explore the contribution of different feature sets and the potential of different algorithms in testing the testing conditions. 1 Introduction In recent years, the increasing usage of large vocabulary continuous

24

Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pages 917927, Dublin, Ireland, August 23-29 2014.  

E-Print Network [OSTI]

Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics Ranking for Document Enrichment Muyu Zhang, Bing Qin , Ting Liu, Mao Zheng Research Center for Social, there are mainly two kinds of document enrichment researches according to the resource they relying on. The first

25

Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pages 245256, Dublin, Ireland, August 23-29 2014.  

E-Print Network [OSTI]

Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics.0 International License. Page numbers and proceedings footer are added by the organizers. License details: http a Composition of Text Simi- larity Measures. In Proceedings of the 24th International Conference

26

Boosting batteries | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boosting batteries Boosting batteries Broad use possible for lithium-silicon batteries Findings could pave the way for widespread adoption of lithium ion batteries for applications...

27

Batteries - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

28

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint  

Broader source: Energy.gov [DOE]

To be Presented at 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition; Shenzhen, China; November 5-9, 2010

29

Entering a New Stage of Learning from the U.S. Fuel Cell Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Demonstration Project: Preprint To be Presented at 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition; Shenzhen, China; November 5-9,...

30

EMSL - batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

batteries en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defects-...

31

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

materials, although electro-active compounds containing these metals exist. Todays technologically important cathodesactive field. Characteristics of battery cathode materials

Doeff, Marca M

2011-01-01T23:59:59.000Z

32

KAir Battery  

Broader source: Energy.gov [DOE]

KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

33

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

and Titanates as High-Energy Cathode Materials for Li-IonI, Amine K (2009) High Energy Cathode Material for Long-LifeA New Cathode Material for Batteries of High Energy Density.

Doeff, Marca M

2011-01-01T23:59:59.000Z

34

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

35

Batteries: Overview of Battery Cathodes  

SciTech Connect (OSTI)

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

36

Metal-Air Batteries  

SciTech Connect (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

37

Battery business boost  

Science Journals Connector (OSTI)

... year, A123 formed deals with the US car manufacturer Chrysler to make batteries for its electric cars. Other applications for A123 products include batteries for portable power tools and huge batteries ... batteries are not yet developed enough to be considered for use in its Prius hybrid electric car, preferring instead to keep using nickel metal hydride batteries. ...

Katharine Sanderson

2009-09-24T23:59:59.000Z

38

Battery Safety Testing  

Broader source: Energy.gov (indexed) [DOE]

mechanical modeling battery crash worthiness for USCAR Abuse tolerance evaluation of cells, batteries, and systems Milestones Demonstrate improved abuse tolerant cells and...

39

25th Birthday Cern- Restaurant  

ScienceCinema (OSTI)

Crmonie du 25me anniversaire du Cern avec plusieurs orateurs et la prsence de nombreux autorits cantonales et communales genevoises et personnalits, directeurs gnraux, ministres, chercheurs.... Le conseiller fderal et chef du dpartement des affaires trangres de la confdration Monsieur Pierre Aubert prend la parole pour clbrer la fois les rsultats trs remarquables de la coopration internationale en matire scientifique, mais aussi la volont politique des tats europens de mettre en commun leurs ressources pour faire oeuvre d'avenir. Un grand hommage est aussi donn aux deux directeurs disparus, les prof.Bakker et Gregory.

None

2011-04-25T23:59:59.000Z

40

25th Annual Users' Conference  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Registration Conference Schedule Poster Information Banquet Directions SSRLUO Ballot Lodging Information Travel to SLAC Visitor Information For Additional Information Contact:...

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

25th Birthday Cern- Amphi  

ScienceCinema (OSTI)

Crmonie du 25me anniversaire du Cern avec 2 orateurs: le Prof.Weisskopf parle de la signification et le rle du Cern et le Prof.Casimir(?) fait un expos sur les rlations entre la science pure et la science applique et la "big science" (science lgre)

None

2011-04-25T23:59:59.000Z

42

Safety Hazards of Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

43

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name: Optima Batteries Place: Milwaukee, WI Website: http:www.optimabatteries.com References: Optima Batteries1 Information About...

44

Recycling of Li-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Linda Gaines Center for Transportation Research Argonne National Laboratory Recycling of Li-Ion Batteries Illinois Sustainable Technology Center University of Illinois We don't want to trade one crisis for another!  Battery material shortages are unlikely - We demonstrated that lithium demand can be met - Recycling mitigates potential scarcity  Life-cycle analysis checks for unforeseen impacts  We need to find something to do with the used materials - Safe - Economical 2 We answer these questions to address material supply issues  How many electric-drive vehicles will be sold in the US and world-wide?  What kind of batteries might they use? - How much lithium would each battery use?  How much lithium would be needed each year?

45

Modeling & Simulation - Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

46

Batteries and Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

47

Battery cell feedthrough apparatus  

DOE Patents [OSTI]

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

48

Batteries and Fuel Cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher

1984-01-01T23:59:59.000Z

49

Batteries and fuel cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher; Frank C. Walsh

1993-01-01T23:59:59.000Z

50

Electric Vehicle Battery Testing: It's Hot Stuff! | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! May 26, 2011 - 2:45pm Addthis NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder Sarah LaMonaca Communications Specialist, Office of Energy Efficiency & Renewable Energy What does this mean for me? Increased performance and travel distance in future hybrid and

51

Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

52

Batteries and Energy Storage | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Joint Center for Energy Storage Research (JCESR) is a major research The Joint Center for Energy Storage Research (JCESR) is a major research partnership that integrates government, academic and industrial researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology. Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes and ultimate deployment by industry. At Argonne, our multidisciplinary team of world-renowned researchers are working in overdrive to develop advanced energy storage technologies to aid the growth of the U.S. battery manufacturing industry, transition the U.S. automotive fleet to plug-in hybrid and electric vehicles, and enable

53

Batteries Breakout Session  

Broader source: Energy.gov (indexed) [DOE]

capture external conditions (consumer and infrastructure) * Capture Secondary use of batteries * EV100 Primary Vehicle, felt not practical? Barriers Interfering with Reaching the...

54

Vehicle Technologies Office: Batteries  

Broader source: Energy.gov [DOE]

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

55

battery2.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Power Battery Systems Company 5 Silkin Street, Apt. 40 Sarov, Nizhny Novgorod Russia, 607190 Alexander A. Potanin 7-(83130)-43701 (phonefax), potanin@hpbs.ru General...

56

EMSL - battery materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery-materials en Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments. http:www.emsl.pnl.govemslwebpublications...

57

GBP Battery | Open Energy Information  

Open Energy Info (EERE)

GBP Battery Place: China Product: Shenzhen-China-based maker of Li-Poly and Li-ion batteries suitable for EVs and other applications. References: GBP Battery1 This article is...

58

Non-Aqueous Battery Systems  

Science Journals Connector (OSTI)

...0 V. Practical non-aqueous batteries have energies extending from 100...electric watches to 20 kWh secondary batteries being developed for vehicle traction...10 years, to a military lithium thermal battery delivering all of its energy in...

1996-01-01T23:59:59.000Z

59

Electric Vehicle Smart Charging Infrastructure  

E-Print Network [OSTI]

Vehicles on the US Power Grid." The 25th World Battery,infrastructure assignment and power grid impacts assessmentfrom the vehicle to the power grid and overcome its current

Chung, Ching-Yen

2014-01-01T23:59:59.000Z

60

An Update on Advanced Battery Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

An Update on Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing October 16, 2012 - 9:41am Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs What are the key facts? The advanced battery market is expanding dramatically in the U.S. and around the world -- from $5 billion in 2010 to nearly $50 billion in 2020, an average annual growth rate of roughly 25 percent. The Department of Energy, with strong bipartisan support, awarded $2 billion in grants to 29 companies to build or retool 45 manufacturing facilities spread across 20 states to build advanced batteries, engines, drive trains and other key components for electric vehicles. More than 30 of these plants are already in operation, employing thousands of American workers, and our grants were matched dollar for

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Steps to Commercialization: Nickel Metal Hydride Batteries | Department of  

Broader source: Energy.gov (indexed) [DOE]

Steps to Commercialization: Nickel Metal Hydride Batteries Steps to Commercialization: Nickel Metal Hydride Batteries Steps to Commercialization: Nickel Metal Hydride Batteries October 17, 2011 - 10:42am Addthis Steps to Commercialization: Nickel Metal Hydride Batteries Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs How does it work? Through licensing and collaborative work, Energy Department-sponsored research can yield great economic benefits and help bring important new products to market. The Energy Department funds cutting-edge research on a broad range of topics ranging from advanced battery construction to the modeling of industrial processes and supercomputer simulation of supernovae. But this research is not only about furthering our understanding of the world around

62

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References: Prieto Battery1 This article is a stub. You can...

63

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

64

Tanks for the Batteries  

Science Journals Connector (OSTI)

...kg), in the most common flow batteries that number ranges from 20 to 50 Wh/kg. Most modular units now under development range in size from refrigerators to railcars. A flow battery in Osaka, Japan, that's capable of storing a megawatt...

Robert F. Service

2014-04-25T23:59:59.000Z

65

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network [OSTI]

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

66

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

67

Lithium Metal Anodes for Rechargeable Batteries. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

68

Blue Sky Batteries Inc | Open Energy Information  

Open Energy Info (EERE)

Batteries Inc Jump to: navigation, search Name: Blue Sky Batteries Inc Place: Laramie, Wyoming Zip: 82072-3 Product: Nanoengineers materials for rechargeable lithium batteries....

69

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

Doyle, C.M.

2010-01-01T23:59:59.000Z

70

Aerospatiale Batteries ASB | Open Energy Information  

Open Energy Info (EERE)

Aerospatiale Batteries ASB Jump to: navigation, search Name: Aerospatiale Batteries (ASB) Place: France Product: Research, design and manufacture of Thermal Batteries. References:...

71

American Battery Charging Inc | Open Energy Information  

Open Energy Info (EERE)

American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad battery chargers. References: American Battery Charging...

72

Temperature maintained battery system  

SciTech Connect (OSTI)

A chassis contains a battery charger connected to a multi-cell battery. The charger receives direct current from an external direct current power source and has means to automatically selectively charge the battery in accordance with a preselected charging program relating to temperature adjusted state of discharge of the battery. A heater device is positioned within the chassis which includes heater elements and a thermal switch which activates the heater elements to maintain the battery above a certain predetermined temperature in accordance with preselected temperature conditions occurring within the chassis. A cooling device within the chassis includes a cooler regulator, a temperature sensor, and peltier effect cooler elements. The cooler regulator activates and deactivates the peltier cooler elements in accordance with preselected temperature conditions within the chassis sensed by the temperature sensor. Various vehicle function circuitry may also be positioned within the chassis. The contents of the chassis are positioned to form a passage proximate the battery in communication with an inlet and outlet in the chassis to receive air for cooling purposes from an external source.

Newman, W.A.

1980-10-21T23:59:59.000Z

73

Changes of the transverse diameter and volume and dosimetry before the 25th fraction during the course of intensity-modulated radiation therapy (IMRT) for patients with nasopharyngeal carcinoma  

SciTech Connect (OSTI)

To quantify changes of the transverse diameter and volume and dosimetry, and to illustrate the inferiority of non-replanning during intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC) patients. Fifty-three NPC patients who received IMRT in 33 fractions were enrolled in this prospective trial. Before the 25th fraction, a new simulation computed tomography (CT) scan was acquired for all patients. The dose-volume histograms of the phantom plan were compared with the initial plan. Significant reduction of the transverse diameter of the nasopharyngeal, the neck, and 2 parotid glands volume was observed on second CT compared with the first CT (mean reduction 7.48 {+-} 4.45 mm, 6.80 {+-} 15.14 mm, 5.70 {+-} 6.26 mL, and 5.04 {+-} 5.85 mL, respectively; p < 0.01). The maximum dose and V-40 of the spinal cord, mean dose, and V30 of the left and right parotid, and V-50 of the brain stem were increased significantly in the phantom plan compared with the initial plan (mean increase 4.75 {+-} 5.55 Gy, 7.18 {+-} 10.07%, 4.51 {+-} 8.55 Gy, 6.59 {+-} 17.82%, 5.33 {+-} 8.55 Gy, 11.68 {+-} 17.11% and 1.48 {+-} 3.67%, respectively; p < 0.01). On the basis of dose constraint criterion in the RTOG0225 protocol, the dose of the normal critical structures for 52.83% (28/53) of the phantom plans were out of limit compared with 1.89% (1/53) of the initial plans (p < 0.0001). Because of the significant change in anatomy and dose before the 25th fraction during IMRT, replanning should be necessary during IMRT with NPC.

Yang Haihua [Department of Radiation Oncology, Taizhou Hospital, Wenzhou Medical College, Taizhou, Zhejiang (China); Hu Wei, E-mail: huw@tzhospital.com [Department of Radiation Oncology, Taizhou Hospital, Wenzhou Medical College, Taizhou, Zhejiang (China); Ding Weijun; Shan Guoping; Wang Wei; Yu Changhui; Wang Biyun; Shao Minghai; Wang Jianhua; Yang Weifang [Department of Radiation Oncology, Taizhou Hospital, Wenzhou Medical College, Taizhou, Zhejiang (China)

2012-07-01T23:59:59.000Z

74

Current developments at Giprokoks for coke-battery construction and reconstruction  

SciTech Connect (OSTI)

Approaches developed at Giprokoks for coke-battery construction and reconstruction are considered. Recommendations regarding furnace construction and reconstruction are made on the basis of Ukrainian and world experience.

V.I. Rudyka; Y.E. Zingerman; V.B. Kamenyuka; O.N. Surenskii; G.E. Kos'kova; V.V. Derevich; V.A. Gushchin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

75

Nickel coated aluminum battery cell tabs  

DOE Patents [OSTI]

A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

2014-07-29T23:59:59.000Z

76

Electrocatalysts for Nonaqueous LithiumAir Batteries:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalysts for Nonaqueous LithiumAir Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous LithiumAir Batteries: Status, Challenges,...

77

Battery Vent Mechanism And Method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

78

Battery venting system and method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

79

Nuclear Batteries for Implantable Applications  

Science Journals Connector (OSTI)

The nuclear battery is so named because its source of ... the nucleus of the atoms of the fuel, rather than in the electrons that surround ... the fundamental source of energy for the chemical batteries describ...

David L. Purdy

1986-01-01T23:59:59.000Z

80

batteries | OpenEI  

Open Energy Info (EERE)

batteries batteries Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal Hydro market data NREL performance data PV wind Data application/vnd.ms-excel icon Technology Profiles (market and performance data) (xls, 207.4 KiB) Quality Metrics Level of Review Some Review

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Transparent lithium-ion batteries  

Science Journals Connector (OSTI)

...computers). Typically, a battery is composed of electrode...nanotubes (5, 7), graphene (11), and organic...is not suitable for batteries, because, to our knowledge...production of 30-inch graphene films for transparent electrodes...rechargeable lithium batteries . Nature 414 : 359 367...

Yuan Yang; Sangmoo Jeong; Liangbing Hu; Hui Wu; Seok Woo Lee; Yi Cui

2011-01-01T23:59:59.000Z

82

Batteries - EnerDel Lithium-Ion Battery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

83

Empowering Women: The Role of Economic Development, Political Culture and Institutional Design in the Worlds Societies  

E-Print Network [OSTI]

Paraguay, Sri Lanka, Suriname, Thailand, Turkey, Ukraine,South Africa, Spain, Suriname, Sweden, Switzerland 25 th -75

Alexander, Amy C.

2007-01-01T23:59:59.000Z

84

Current balancing for battery strings  

DOE Patents [OSTI]

A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

Galloway, James H. (New Baltimore, MI)

1985-01-01T23:59:59.000Z

85

Battery electrode growth accommodation  

DOE Patents [OSTI]

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

86

Johnson Controls Develops an Improved Vehicle Battery, Works...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

87

Predictive Models of Li-ion Battery Lifetime (Presentation)  

SciTech Connect (OSTI)

Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. Lacking accurate models and tests, lifetime uncertainty must be absorbed by overdesign and warranty costs. Degradation models are needed that predict lifetime more accurately and with less test data. Models should also provide engineering feedback for next generation battery designs. This presentation reviews both multi-dimensional physical models and simpler, lumped surrogate models of battery electrochemical and mechanical degradation. Models are compared with cell- and pack-level aging data from commercial Li-ion chemistries. The analysis elucidates the relative importance of electrochemical and mechanical stress-induced degradation mechanisms in real-world operating environments. Opportunities for extending the lifetime of commercial battery systems are explored.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A.

2014-09-01T23:59:59.000Z

88

Thin-film Lithium Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

89

25th Annual CTS Transportation Research Conference  

E-Print Network [OSTI]

structure! · Bridge type will provide for easier and improved inspection for early detection of any problems the implements of husbandry distribute their loads within a bridge structural system · Provide recommendations factors · Generic rating vehicle to represent IOH vehicles · Posting signage to represent IOH vehicles Mn

Minnesota, University of

90

Advanced Battery Manufacturing (VA)  

SciTech Connect (OSTI)

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATTs products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATTs work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

91

Batteries, mobile phones & small electrical devices  

E-Print Network [OSTI]

at the ANU (eg. lead acid car batteries) send an email to recycle@anu.edu.au A bit of information about by batteries. Rechargeable batteries have been found to save resources, money and energy and therefore are a more environmentally friendly alternative to single use batteries. However rechargeable batteries

92

US advanced battery consortium in-vehicle battery testing procedure  

SciTech Connect (OSTI)

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

93

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

94

Vent construction for batteries  

SciTech Connect (OSTI)

A battery casing to be hermetically sealed is described the casing having main side walls with end walls bridging the end portions of the side walls, at least one of the end walls facing and being exposed to the battery interior, the improvement in vent means for the casing which ruptures when internal casing pressure exceeds a given value. The vent means include at least one vent-forming rib of a given length and width projecting outward from a portion of the end wall normally facing the battery interior, the rib being in a central band or segment of the one end wall and oriented so that the length of the rib is parallel to the band or segment; and the rib having formed therein a vent-forming groove which extends transversely of the length of the rib only part way substantially symmetrically along the transverse contour thereof, so that both ends of the groove are spaced from the base of the rib and the groove extends comparable distances on both sides of the top or center point of the rib contour.

Romero, A.

1986-07-22T23:59:59.000Z

95

ABAA - 6th International Conference on Advanced Lithium Batteries for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Greetings! Greetings! Khalil Amine Chairman Khalil Amine Dear Colleagues, Welcome to the website of the 6th International Conference on Advanced Lithium Batteries for Automotive Applications (ABAA6). As Chairman of the ABAA Conference Organizing Committee, it is my great pleasure to cordially invite you to attend ABAA6. Every year, the ABAA Conference Organizing Committee hosts distinguished speakers from all over the world in the field of lithium battery research and development with a focus on automotive applications. ABAA6's primary goal is to provide attendees from both academia and industry an opportunity to meet and exchange information on advances in lithium battery research with the aim of enabling the electrification of vehicles. This year, the conference will focus on:

96

Nickel recovery aids battery development  

Science Journals Connector (OSTI)

GM is developing the zinc/nickel-oxide battery for the small commuter-type electric car that the company expects to produce in a few years. ...

1981-11-02T23:59:59.000Z

97

United States Advanced Battery Consortium  

Broader source: Energy.gov (indexed) [DOE]

of internal short circuit as a potential failure mechanism * Public Perception: - Media and other promotion of unrealistic expectations for battery capabilities present a...

98

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or...

99

Advanced battery modeling using neural networks  

E-Print Network [OSTI]

battery models are available today that can accurately predict the performance of the battery system. This thesis presents a modeling technique for batteries employing neural networks. The advantage of using neural networks is that the effect of any...

Arikara, Muralidharan Pushpakam

1993-01-01T23:59:59.000Z

100

Promising Magnesium Battery Research at ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ...

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

interface in the Li-ion battery. Electrochimica Acta 50,K. The role of Li-ion battery electrolyte reactivity inK. The role of Li-ion battery electrolyte reactivity in

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

102

VP 100: President Obama Hails Electric-Vehicle Battery Plant | Department  

Broader source: Energy.gov (indexed) [DOE]

VP 100: President Obama Hails Electric-Vehicle Battery Plant VP 100: President Obama Hails Electric-Vehicle Battery Plant VP 100: President Obama Hails Electric-Vehicle Battery Plant July 15, 2010 - 5:05pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this project do? Puts the U.S. in position to produce 40 percent of the world's supply of advanced batteries by 2015 - up from it's current level of 2 percent Makes us less dependent on foreign oil Creates jobs in an emerging sector of manufacturing The electric-vehicle industry received more support Thursday when President Obama delivered remarks in Holland, Michigan, at the groundbreaking ceremony for an American Recovery and Reinvestment Act-funded battery cell plant. "This is about more than just building a new factory," President Obama told

103

Pushing the Boundaries in Energy Technbology: Materials Design for Battery Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pushing the Boundaries in Energy Technology: Materials Design for Battery Applications" Pushing the Boundaries in Energy Technology: Materials Design for Battery Applications" Co-Organizers: Elena Shevchenko (CNM), Mitra Taheri (Drexel University), and Mali Balasubramanian (APS) Batteries are a key element for storing and supplying energy. Transformational battery technologies require tailoring novel materials and/or incorporating new chemical processes. Energy storage devices are intrinsically complex with the relevant materials processes covering time-scales from picoseconds to years and length-scales from angstroms to millimeters. Advanced x-ray and electron microscopy methods have opened a new window by which vital structural and electronic properties of battery materials can be obtained at the appropriate spatio- temporal scales using spectroscopic, scattering and imaging techniques under real world

104

NREL: Energy Storage - NREL Battery Calorimeters Win R&D 100 Award  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Calorimeters Win R&D 100 Award Battery Calorimeters Win R&D 100 Award The NREL Energy Storage team Dirk Long, John Ireland, Matthew Keyser, Ahmad Pesaran, and Mark Mihalic of NREL's Energy Storage Team. Photo by Amy Glickson, NREL 27242 August 28, 2013 Isothermal Battery Calorimeters (IBCs) developed by the National Renewable Energy Laboratory (NREL) and NETZSCH North America are among the winners of the 2013 R&D 100 Awards, known in the research and development community as "the Oscars of Innovation." The IBCs are the only calorimeters in the world capable of performing the precise thermal measurements needed to make safer, longer-lasting, and more cost-effective lithium-ion batteries. Understanding and controlling temperature is necessary for the successful operation of battery packs in electric-drive vehicles (EDVs). The IBCs are

105

VP 100: President Obama Hails Electric-Vehicle Battery Plant | Department  

Broader source: Energy.gov (indexed) [DOE]

President Obama Hails Electric-Vehicle Battery Plant President Obama Hails Electric-Vehicle Battery Plant VP 100: President Obama Hails Electric-Vehicle Battery Plant July 15, 2010 - 5:05pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this project do? Puts the U.S. in position to produce 40 percent of the world's supply of advanced batteries by 2015 - up from it's current level of 2 percent Makes us less dependent on foreign oil Creates jobs in an emerging sector of manufacturing The electric-vehicle industry received more support Thursday when President Obama delivered remarks in Holland, Michigan, at the groundbreaking ceremony for an American Recovery and Reinvestment Act-funded battery cell plant. "This is about more than just building a new factory," President Obama told

106

Sandia National Laboratories: Evaluating Powerful Batteries for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

107

Polymer Electrolytes for Advanced Lithium Batteries | Department...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Lithium Batteries Polymer Electrolytes for Advanced Lithium Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

108

Batteries lose in game of thorns | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries lose in game of thorns Batteries lose in game of thorns Scientists see how and where disruptive structures form and cause voltage fading Images from EMSL's scanning...

109

Disordered Materials Hold Promise for Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

110

Hierarchically Structured Materials for Lithium Batteries. |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles,...

111

Ford Electric Battery Group | Open Energy Information  

Open Energy Info (EERE)

Group Jump to: navigation, search Name: Ford Electric Battery Group Place: Dearborn, MI References: Ford Battery1 Information About Partnership with NREL Partnership with...

112

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Newman, "Thermal Modeling of the LithiumIPolymer Battery I.J. Newman, "Thermal Modeling of the LithiumIPolymer Battery

Doyle, C.M.

2010-01-01T23:59:59.000Z

113

Advanced Battery Factory | Open Energy Information  

Open Energy Info (EERE)

Factory Jump to: navigation, search Name: Advanced Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in...

114

Ovonic Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Ovonic Battery Company Inc Place: Michigan Zip: 48309 Sector: Hydro, Hydrogen Product: Focused on commercializing its patented and proprietary NiMH battery technology through...

115

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

116

PHEV Battery Cost Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

117

PHEV Battery Cost Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

118

Coordination Chemistry in magnesium battery electrolytes: how...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry in magnesium battery electrolytes: how ligands affect their performance. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance....

119

Upgrading the Vanadium Redox Battery | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Upgrading the Vanadium Redox Battery Upgrading the Vanadium Redox Battery New electrolyte mix increases energy storage by 70 percent After developing a more effective...

120

A review of nuclear batteries  

Science Journals Connector (OSTI)

Abstract This paper reviews recent efforts in the literature to miniaturize nuclear battery systems. The potential of a nuclear battery for longer shelf-life and higher energy density when compared with other modes of energy storage make them an attractive alternative to investigate. The performance of nuclear batteries is a function of the radioisotope(s), radiation transport properties and energy conversion transducers. The energy conversion mechanisms vary significantly between different nuclear battery types, where the radioisotope thermoelectric generator, or RTG, is typically considered a performance standard for all nuclear battery types. The energy conversion efficiency of non-thermal-type nuclear batteries requires that the two governing scale lengths of the system, the range of ionizing radiation and the size of the transducer, be well-matched. Natural mismatches between these two properties have been the limiting factor in the energy conversion efficiency of small-scale nuclear batteries. Power density is also a critical performance factor and is determined by the interface of the radioisotope to the transducer. Solid radioisotopes are typically coated on the transducer, forcing the cell power density to scale with the surface area (limiting power density). Methods which embed isotopes within the transducer allow the power density to scale with cell volume (maximizing power density). Other issues that are examined include the limitations of shelf-life due to radiation damage in the transducers and the supply of radioisotopes to sustain a commercial enterprise. This review of recent theoretical and experimental literature indicates that the physics of nuclear batteries do not currently support the objectives of miniaturization, high efficiency and high power density. Instead, the physics imply that nuclear batteries will be of moderate size and limited power density. The supply of radioisotopes is limited and cannot support large scale commercialization. Niche applications for nuclear batteries exist, and advances in materials science may enable the development of high-efficiency solid-state nuclear batteries in the near term.

Mark A. Prelas; Charles L. Weaver; Matthew L. Watermann; Eric D. Lukosi; Robert J. Schott; Denis A. Wisniewski

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Designing an Architecture for Delivering Mobile Information Services to the Rural Developing World  

E-Print Network [OSTI]

phone is the perfect bridging device. Long battery life, connectivity, solid-state memory, low price, solid-state memory, wireless connectivity, affordable price) make it a better-suited device for rural represent an opportunity to bootstrap computing in the developing world. Several features (battery operation

Parikh, Tapan S.

122

Redox Flow Batteries, a Review  

SciTech Connect (OSTI)

Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

2011-07-15T23:59:59.000Z

123

Lithium batteries for pulse power  

SciTech Connect (OSTI)

New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

Redey, L.

1990-01-01T23:59:59.000Z

124

Battery system with temperature sensors  

DOE Patents [OSTI]

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

125

Definition: Battery | Open Energy Information  

Open Energy Info (EERE)

Battery Battery Jump to: navigation, search Dictionary.png Battery An energy storage device comprised of two or more electrochemical cells enclosed in a container and electrically interconnected in an appropriate series/parallel arrangement to provide the required operating voltage and current levels. Under common usage, the term battery also applies to a single cell if it constitutes the entire electrochemical storage system.[1] View on Wikipedia Wikipedia Definition Also Known As Electrochemical cell Related Terms Fuel cell, energy, operating voltage, smart grid References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#B Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Battery&oldid=502543

126

Nanocarbon Networks for Advanced Rechargeable Lithium Batteries  

Science Journals Connector (OSTI)

His research focuses on energy storage and conversion with batteries, fuel cells, and solar cells. ... As an important type of secondary battery, lithium-ion batteries (LIBs) have quickly dominated the market for consumer electronics and become one of key technologies in the battery industry after their first release by Sony Company in the early 1990s. ...

Sen Xin; Yu-Guo Guo; Li-Jun Wan

2012-09-06T23:59:59.000Z

127

Battery Thermal Management System Design Modeling (Presentation)  

SciTech Connect (OSTI)

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

128

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

1992-01-01T23:59:59.000Z

129

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

Visco, S.J.; Liu, M.; DeJonghe, L.C.

1992-11-10T23:59:59.000Z

130

Batteries, from Cradle to Grave  

Science Journals Connector (OSTI)

As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. ... Significant advances are also being made in fuel-cell technology with several companies involved in the design and manufacture of high-performance fuel cells adapted to the portable electronics, back-up energy, and traction markets (37-41). ... These hydrogen or methanol-fuelled cells draw their chemical energy from a quick-fill reservoir outside the cell (or stack) structure. ...

Michael J. Smith; Fiona M. Gray

2010-01-12T23:59:59.000Z

131

Battery SEAB Presentation  

Broader source: Energy.gov (indexed) [DOE]

The Parker Ranch installation in Hawaii The Parker Ranch installation in Hawaii US Department of Energy Vehicle Battery R&D: Current Scope and Future Directions January 31, 2012 * David Howell (EERE/VTP) * Pat Davis (EERE/VTP) * Dane Boysen (ARPA-E) * Dave Danielson (ARPA-E) * Linda Horton (BES) * John Vetrano (BES) 2 | Energy Efficiency and Renewable Energy eere.energy.gov U.S. Oil-dependence is Driven by Transportation Source: DOE/EIA Annual Energy Review, April 2010 Transportation Residential and Commercial 94% Oil-dependent Industry 41% Oil-dependent 17% Oil-dependent 72% 22% 1% 5% U.S. Oil Consumption by End-use Sector 19.1 Million Barrels per Day (2010) Electric Power 1% Oil-dependent * On-road vehicles are responsible for ~80% of transportation oil usage 3 | Energy Efficiency and Renewable Energy eere.energy.gov

132

Hunan Copower EV Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

EV Battery Co Ltd Place: Hunan Province, China Sector: Vehicles Product: Producer of batteries and battery-related products for electric vehicles. References: Hunan Copower EV...

133

In situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In situ Characterizations of New Battery Materials and the Studies of High Energy...

134

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network [OSTI]

Distribution in Thin-Film Batteries. J. Electrochem. Soc.of Lithium Polymer Batteries. J. Power Sources 2002, 110,for Rechargeable Li Batteries. Chem. Mater. 2010, 15. Padhi,

Liu, Jun

2010-01-01T23:59:59.000Z

135

Developing Next-Gen Batteries With Help From NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

136

Making Li-air batteries rechargeable: material challenges. |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Li-air batteries rechargeable: material challenges. Making Li-air batteries rechargeable: material challenges. Abstract: A Li-air battery could potentially provide three to five...

137

In Situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of High Energy...

138

Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

shutdown of Li-ion batteries is demonstrated by incorporating thermoresponsive polyethylene (PE) microspheres (ca. 4 m) onto battery anodes. When the internal battery...

139

Sandia National Laboratories: Due Diligence on Lead Acid Battery...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Due Diligence on Lead Acid Battery Recycling March 23, 2011 Lead Acid Batteries on secondary containment pallet Lead Acid Batteries on secondary containment pallet In 2004, the US...

140

EV Everywhere Battery Workshop Introduction | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Workshop Introduction EV Everywhere Battery Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the...

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Jiangsu-province-based producer of high-power high-energy Li-ion batteries for such uses as electric bicycles, hybrid vehicles, lighting, medical equipment,...

142

Battery Components, Active Materials for  

Science Journals Connector (OSTI)

A battery consists of one or more electrochemical cells that convert into electrically energy the chemical energy stored in two separated electrodes, the anode and the cathode. Inside a cell, the two electrodes ....

J. B. Goodenough

2013-01-01T23:59:59.000Z

143

Polymer Electrolyte and Polymer Battery  

Science Journals Connector (OSTI)

Generally the polymer electrolyte of the polymer battery is classified into two kinds of the electrolyte: One is a dry-type electrolyte composed of a polymer matrix and...21.1. Fig....

Toshiyuki Osawa; Michiyuki Kono

2009-01-01T23:59:59.000Z

144

Reinventing Batteries for Grid Storage  

ScienceCinema (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2013-05-29T23:59:59.000Z

145

Batteries using molten salt electrolyte  

DOE Patents [OSTI]

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

146

Thermal Batteries for Electric Vehicles  

SciTech Connect (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austins thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

147

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries  

Broader source: Energy.gov [DOE]

Partnered with NETZSCH, the National Renewable Energy Laboratory (NREL) developed an Isothermal Battery Calorimeter (IBC) used to quantify heat flow in battery cells and modules.

148

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half  

Broader source: Energy.gov [DOE]

Johnson Controls is working to increase energy density of vehicle batteries while reducing manufacturing costs for lithium-ion battery cells.

149

Iron Edison Battery Company | Open Energy Information  

Open Energy Info (EERE)

Iron Edison Battery Company Iron Edison Battery Company Jump to: navigation, search Logo: Iron Edison Battery Company Name Iron Edison Battery Company Place Lakewood, Colorado Sector Bioenergy, Carbon, Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product Nickel Iron (Ni-Fe) battery systems Year founded 2011 Number of employees 1-10 Phone number 202-681-4766 Website http://ironedison.com Region Rockies Area References Iron Edison Battery Company[1] Nickel Iron Battery Specifications[2] About the company and the owners[3] Nickel Iron Battery Association[4] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iron Edison Battery Company is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced

150

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

151

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

152

Dilmaya's World  

E-Print Network [OSTI]

burning on a funeral pyre. I had never lived for more than a day or in a world without toilets or toilet papers, where there was no central heating and no window glass to keep out the cold Himalayan winds. * * * Short of finding the very... infancy to puberty in a remote Himalayan village. So Dilmaya allowed this, as well as encouraging our love for her sons and husband. All this was achieved while she looked after us physically and stretched her mind and body to the limits...

Alan, Macfarlane

2014-08-27T23:59:59.000Z

153

5 World Oil Trends WORLD OIL TRENDS  

E-Print Network [OSTI]

5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

154

Horizon Batteries formerly Electrosource | Open Energy Information  

Open Energy Info (EERE)

Batteries formerly Electrosource Batteries formerly Electrosource Jump to: navigation, search Name Horizon Batteries (formerly Electrosource) Place Texas Sector Vehicles Product Manufacturer of high-power, light-weight batteries for use in electric and hybrid-electric vehicles, engine-starting and telecommunication stand-by power applications. References Horizon Batteries (formerly Electrosource)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Horizon Batteries (formerly Electrosource) is a company located in Texas . References ↑ "Horizon Batteries (formerly Electrosource)" Retrieved from "http://en.openei.org/w/index.php?title=Horizon_Batteries_formerly_Electrosource&oldid=346600

155

Electrolyte Model Helps Researchers Develop Better Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award October 15, 2014 -...

156

'Thirsty' Metals Key to Longer Battery Lifetimes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov PCCPxantheascover Imagine a cell phone battery that lasted a whole week on a single charge. A car battery that worked...

157

Vehicle Technologies Office: Exploratory Battery Materials Research  

Broader source: Energy.gov [DOE]

Lowering the cost and improving the performance of batteries for plug-in electric vehicles requires improving every part of the battery, from underlying chemistry to packaging. To reach the EV...

158

A User Programmable Battery Charging System  

E-Print Network [OSTI]

, high energy density and longer lasting batteries with efficient charging systems are being developed by companies and original equipment manufacturers. Whatever the application may be, rechargeable batteries, which deliver power to a load or system...

Amanor-Boadu, Judy M

2013-05-07T23:59:59.000Z

159

Vehicle Technologies Office: Advanced Battery Development, System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

learn how batteries are used in plug-in electric vehicles, visit the Alternative Fuels Data Center's page on batteries. Through the USABC, VTO supports a variety of research,...

160

Molten Salt Batteries and Fuel Cells  

Science Journals Connector (OSTI)

This chapter describes recent work on batteries and fuel cells using molten salt electrolytes. This entails a comparison with other batteries and fuel cells utilizing aqueous and organic electrolytes; for...(1,2)

D. A. J. Swinkels

1971-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Khalil Amine on Lithium-air Batteries  

ScienceCinema (OSTI)

Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Khalil Amine

2010-01-08T23:59:59.000Z

162

PHEV Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting, June 7-11, 2010 -- Washington D.C. es001barnett2010o.pdf More Documents & Publications PHEV Battery Cost Assessment PHEV and LEESS Battery Cost Assessment PHEV...

163

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

A New Rechargeable Plastic Li-Ion Battery," Lithium Batteryion battery developed at Bellcore in Red Bank, NJ.1-6 The experimental prototYpe cell has the configuration: Li

Doyle, C.M.

2010-01-01T23:59:59.000Z

164

Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference  

SciTech Connect (OSTI)

This report describes the present method of establishing traceability of absolute cavity radiometers to the World Radiometric Reference (WRR) through the process employed in the International Pyrheliometer Comparisons (IPC). This method derives the WRR reduction factor for each of the participating cavity radiometers. An alternative method is proposed, described, and evaluated as a way to reduce the uncertainty in the comparison process. The two methods are compared using a sample of data from the recent IPC-VIII conducted from September 25th to October 13th, 1995 at the World Radiation Center in Davos, Switzerland. A description of absolute cavity radiometers is also included, using a PMO-6 as an example of active cavity radiometers, and a HF as an example of passive cavity radiometers.

Reda, I.

1996-01-01T23:59:59.000Z

165

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect (OSTI)

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

166

Battery Thermal Management System Design Modeling  

SciTech Connect (OSTI)

Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

Pesaran, A.; Kim, G. H.

2006-11-01T23:59:59.000Z

167

Switching algorithms for extending battery life in Electric Vehicles Ron Adany a,*, Doron Aurbach b  

E-Print Network [OSTI]

reserved. 1. Introduction Electric Vehicles (EVs) are the next generation of cars in the world-determined threshold [3]. The energy extracted from the battery during full discharge is the integration of voltage-hours). However, an alternative definition, which we use throughout this paper, can be the total accumulated

Kraus, Sarit

168

Jeff Chamberlain on Lithium-air batteries  

ScienceCinema (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2013-04-19T23:59:59.000Z

169

Jeff Chamberlain on Lithium-air batteries  

SciTech Connect (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2009-01-01T23:59:59.000Z

170

Wearable Textile Battery Rechargeable by Solar Energy  

Science Journals Connector (OSTI)

Wearable Textile Battery Rechargeable by Solar Energy ... Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities. ... Other groups(17-20) have also developed flexible conductive substrates by engaging carbon nanomaterials, such as graphene paper, for demonstration of similar wearable energy storage devices. ...

Yong-Hee Lee; Joo-Seong Kim; Jonghyeon Noh; Inhwa Lee; Hyeong Jun Kim; Sunghun Choi; Jeongmin Seo; Seokwoo Jeon; Taek-Soo Kim; Jung-Yong Lee; Jang Wook Choi

2013-10-28T23:59:59.000Z

171

Microbial battery for efficient energy recovery  

Science Journals Connector (OSTI)

...used for decades in batteries (19). This couple...condition in Ag 2 O/Ag batteries, the overpotential...or carbon nanotube/graphene-coated macroporous substrate, such...silver oxide-zinc batteries . Ind Eng Chem Prod Res Dev...23 Xie X ( 2012 ) Graphene-sponge as high-performance...

Xing Xie; Meng Ye; Po-Chun Hsu; Nian Liu; Craig S. Criddle; Yi Cui

2013-01-01T23:59:59.000Z

172

Integrated Modeling for Intelligent Battery Thermal Management  

Science Journals Connector (OSTI)

Effective thermal management is crucial to the optimal operation of lithium ion batteries and its health management. However, the thermal behaviors of batteries are governed by complex chemical process whose parameters will degrade over time and different ... Keywords: integrated modeling, distributed parameter system, battery thermal management, intelligent learning

Zhen Liu; Han-Xiong Li

2013-10-01T23:59:59.000Z

173

Electrothermal Analysis of Lithium Ion Batteries  

SciTech Connect (OSTI)

This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

2006-03-01T23:59:59.000Z

174

Solid-state lithium battery  

DOE Patents [OSTI]

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

175

Models for Battery Reliability and Lifetime  

SciTech Connect (OSTI)

Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

2014-03-01T23:59:59.000Z

176

Advanced batteries for electric vehicle applications  

SciTech Connect (OSTI)

A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

Henriksen, G.L.

1993-08-01T23:59:59.000Z

177

Cathode material for lithium batteries  

DOE Patents [OSTI]

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

178

The Science of Battery Degradation.  

SciTech Connect (OSTI)

This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte- interphase layer, and this cross-over can be modeled and predicted.

Sullivan, John P; Fenton, Kyle R [Sandia National Laboratories, Albuquerque, NM; El Gabaly Marquez, Farid; Harris, Charles Thomas [Sandia National Laboratories, Albuquerque, NM; Hayden, Carl C.; Hudak, Nicholas [Sandia National Laboratories, Albuquerque, NM; Jungjohann, Katherine Leigh [Sandia National Laboratories, Albuquerque, NM; Kliewer, Christopher Jesse; Leung, Kevin [Sandia National Laboratories, Albuquerque, NM; McDaniel, Anthony H.; Nagasubramanian, Ganesan [Sandia National Laboratories, Albuquerque, NM; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M [Sandia National Laboratories, Albuquerque, NM; Zavadil, Kevin R. [Sandia National Laboratories, Albuquerque, NM

2015-01-01T23:59:59.000Z

179

Vehicle Battery Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

180

Promising Magnesium Battery Research at ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Promising Magnesium Battery Research Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find new solutions. One promising battery material is magnesium (Mg)-it is more dense than lithium, it is safer, and the magnesium ion carries a two-electron charge, giving it potential as a more efficient energy source. Magnesium has a high volumetric capacity, which could mean

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SECONDARY BATTERIES LITHIUM RECHARGEABLE SYSTEMS | Overview  

Science Journals Connector (OSTI)

Rechargeable lithium batteries have conquered the markets for portable consumer electronics and, recently, for electric vehicles. Lithium, the lightest and one of the most reactive of metals, having the greatest electrochemical potential (E=3.045V), provides very high energy and power densities in batteries. As lithium metal reacts violently with water and can ignite into flame, modern lithium-ion batteries use carbon negative electrode and lithium metal oxide positive electrode. The electrolyte is usually based on a lithium salt in organic solution. Thin-film batteries use solid oxide or polymer electrolytes. Rechargeable lithium-ion batteries (containing an intercalation negative electrode) should not be confused with nonrechargeable lithium primary batteries (containing metallic lithium). This article outlines energy storage in lithium batteries, basic cell chemistry, positive electrode materials, negative electrode materials, electrolytes, and state-of-charge (SoC) monitoring.

P. Kurzweil; K. Brandt

2009-01-01T23:59:59.000Z

182

Molten Air -- A new, highest energy class of rechargeable batteries  

E-Print Network [OSTI]

This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

Licht, Stuart

2013-01-01T23:59:59.000Z

183

Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries  

SciTech Connect (OSTI)

BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Todays EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

None

2010-08-01T23:59:59.000Z

184

Batteries - Next-generation Li-ion batteries Breakout session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-generation Li-ion batteries Next-generation Li-ion batteries EV Everywhere Workshop July 26, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Overall, everything is achievable, but, clearly, the cost targets are dramatic, particularly for AEV 300. (I have discussed this with Yet-Ming Chiang, who has a good feel for cost reductions, both their importance and interesting approaches.) * AEV 100 achievable with a good silicon/graphite composite anode and LMRNMC (unsure timeline) * AEV 300 would require cycleable Li-metal anode and UHVHC cathode (can't get there with Li-ion intercalation on both electrodes) (unsure timeline) Barriers Interfering with Reaching the Targets * Pack - too high a fraction of inactive materials/inefficient engineering designs.

185

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect (OSTI)

Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2014-10-28T23:59:59.000Z

186

Battery Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures (Boston) Ventures (Boston) Name Battery Ventures (Boston) Address 930 Winter Street, Suite 2500 Place Waltham, Massachusetts Zip 02451 Region Greater Boston Area Product Venture Capital Year founded 1983 Phone number (781) 478-6600 Website http://www.battery.com/ Coordinates 42.4024072°, -71.274181° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4024072,"lon":-71.274181,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

188

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

189

Cascade redox flow battery systems  

DOE Patents [OSTI]

A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

2014-07-22T23:59:59.000Z

190

Electrolytes for lithium ion batteries  

SciTech Connect (OSTI)

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

191

Battery system with temperature sensors  

SciTech Connect (OSTI)

A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

Wood, Steven J; Trester, Dale B

2014-02-04T23:59:59.000Z

192

EERE Partner Testimonials- Phil Roberts, California Lithium Battery (CalBattery)  

Broader source: Energy.gov [DOE]

Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

193

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Interfacial Studies to Practical Applications Speaker(s): Robert Kostecki Date: January 11, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney The constantly growing power requirements of portable electronic devices and the need for high-power batteries for electric vehicles have created a strong demand for new batteries or substantial improvements of existing ones. Fundamental problems associated with complex interfacial processes in batteries must be resolved to enhance battery performance and lifetime. An overview of the principles of electrode-electrolyte interfacial studies, experimental methods, recent results, and potential applications will be presented. Advanced instrumental techniques and

194

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

195

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

196

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

197

Primer on lead-acid storage batteries  

SciTech Connect (OSTI)

This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

NONE

1995-09-01T23:59:59.000Z

198

NO. REV. NO. LSPE THERMAL BATTERY TEST  

E-Print Network [OSTI]

NO. REV. NO. ATM 1086 LSPE THERMAL BATTERY TEST PAGE 1 OF DATE 2/25/72 Prepared by @c!_.e,~.~ ~P. Weir Approved by ~~---:J L. Lewis 5 #12;KC::Y, NO. LSPE THERMAL BATTERY TEST ATM 1086 2 PAGE OF DATE 2-52-72 Introduction The purpose of this ATM is to document the results of a Thermal Battery test for the Lunar Seismic

Rathbun, Julie A.

199

Epitaxial Single Crystal Nanostructures for Batteries & PVs ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single...

200

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

connecting to the solid-state lithium battery. c. An opticalbattery (discounting packaging, tabs, etc. ) demonstrate the advantage of the solid-state

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Battery systems performance studies - HIL components testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

systems performance studies - HIL components testing Battery systems performance studies - HIL components testing 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

202

NREL: Energy Storage - Battery Materials Synthesis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

power requirements and system integration demands of EDVs pose significant challenges to energy storage technologies. Making these materials durable enough that batteries last...

203

Autogenic Pressure Reactions for Battery Materials Manufacture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free reaction for producing unique...

204

Ambient Operation of Li/Air Batteries  

SciTech Connect (OSTI)

In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of ~20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg-1, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte (~70%). Lithium-metal anodes and KB-carbon anodes account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only ~ 20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products

Zhang, Jiguang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, Ralph E.

2010-07-01T23:59:59.000Z

205

Side Reactions in Lithium-Ion Batteries  

E-Print Network [OSTI]

efforts to develop new high-energy materials such as siliconNew Cathode Material for Batteries of High- Energy Density.

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

206

Sandia National Laboratories: Batteries & Energy Storage Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radioactive Waste Prioritized Safeguards and Security Issues for extended Storage of Used Nuclear Fuel Research to Improve Transportation Energy Storage Fact Sheet Sandia's Battery...

207

High Voltage Electrolyte for Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

battery using high voltage high energy cathode materials to enable large-scale, cost competitive production of the next generation of electric-drive vehicles. To...

208

Celgard and Entek - Battery Separator Development  

Broader source: Energy.gov (indexed) [DOE]

Celgard and Entek Battery Separator Development Harshad Tataria R. Pekala, Ron Smith USABC May 19, 2009 Project ID es08tataria This presentation does not contain any...

209

USABC Battery Separator Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es007smith2011p.pdf More Documents & Publications USABC Battery Separator Development Overview...

210

Kayo Battery Industries Group | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Shenzhen-based company, started by Hong Kong Highpower Technology and Japan Kayo Group, active in producing Lithium and NiMH batteries for various applications...

211

Benefits of battery-uItracapacitor hybrid energy storage systems  

E-Print Network [OSTI]

This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

212

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

237253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

213

Batteries as they are meant to be seen | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries as they are meant to be seen Batteries as they are meant to be seen The search for long-lasting, inexpensive rechargeable batteries Researchers have developed a way to...

214

Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing  

Broader source: Energy.gov [DOE]

To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full...

215

Challenges and Prospects of LithiumSulfur Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for rechargeable batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium-ion (Li-ion) batteries have the highest energy density among the rechargeable battery chemistries. ...

Arumugam Manthiram; Yongzhu Fu; Yu-Sheng Su

2012-10-25T23:59:59.000Z

216

MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY  

E-Print Network [OSTI]

operation and thermal management of battery modules may alsoneed for careful thermal ment of battery modules. manage~ Atfor precise thermal management of LiAl/FeS battery modules.

Pollard, Richard

2012-01-01T23:59:59.000Z

217

Thermal behavior simulation of Ni/MH battery  

Science Journals Connector (OSTI)

Thermal behavior of overcharged Ni/MH battery is studied with microcalorimeter. The battery is installed in a special device in ... Quantity of heat and heat capacity of the battery charged at different state of ...

DaHe Li; Kai Yang; Shi Chen; Feng Wu

2009-05-01T23:59:59.000Z

218

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network [OSTI]

of the assembled Li-ion battery, such as the operating1-4: Schematic of a Li-ion battery. Li + ions are shuttledprocessing of active Li-ion battery materials. Various

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

219

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

the rechargeable battery industry. Li-ion batteries rapidlyLi-ion chemistry. For grid storage applications, several other rechargeable batteryLi-ion batteries, because cadmium is highly toxic. In 1991, lithium-ion battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

220

Building Technologies Office: Battery Chargers and External Power Supplies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Chargers and Battery Chargers and External Power Supplies Framework Document Public Meeting to someone by E-mail Share Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Facebook Tweet about Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Twitter Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Google Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Delicious Rank Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Digg Find More places to share Building Technologies Office: Battery

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Department of Energy Will Hold a Batteries and Energy Storage...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Will Hold a Batteries and Energy Storage Information Meeting on October 21, 2011 Department of Energy Will Hold a Batteries and Energy Storage Information...

222

USABC Development of Advanced High-Performance Batteries for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

USABC Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel...

223

Polymers For Advanced Lithium Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

224

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

225

Polymers For Advanced Lithium Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

226

Overview of the Batteries for Advanced Transportation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Presentation from the...

227

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

228

Computer-Aided Engineering for Electric Drive Vehicle Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

229

Development of Polymer Electrolytes for Advanced Lithium Batteries...  

Broader source: Energy.gov (indexed) [DOE]

Development of Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and...

230

Overview and Progress of the Batteries for Advanced Transportation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT)...

231

NREL: Transportation Research - Innovative Way to Test Batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Innovative Way to Test Batteries Fills a Market Niche A square piece of machinery with a lid that opens upwards NETZSCH's Isothermal Battery Calorimeter (IBC 284), developed by...

232

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Broader source: Energy.gov (indexed) [DOE]

R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes 2012 DOE Hydrogen...

233

Development of Computer-Aided Design Tools for Automotive Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)...

234

Overcharge Protection for PHEV Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overcharge Protection for PHEV Batteries Overcharge Protection for PHEV Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

235

Overview of the Batteries for Advanced Transportation Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program 2010 DOE Vehicle...

236

Overview of the Batteries for Advanced Transportation Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program 2009 DOE...

237

Manipulating the Surface Reactions in Lithium Sulfur Batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

238

By losing their shape, material fails batteries | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

By losing their shape, material fails batteries By losing their shape, material fails batteries Too many electrons at the lithiation front in silicon are a problem Molecular...

239

Characterization of Li-ion Batteries using Neutron Diffraction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

240

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EV Everywhere: Innovative Battery Research Powering Up Plug-In...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 -...

242

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

243

Reality Check: Cheaper Batteries are GOOD for America's Electric...  

Energy Savers [EERE]

Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers...

244

Automotive Li-ion Battery Cooling Requirements | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Automotive Li-ion Battery Cooling Requirements Presents thermal management of lithium-ion battery packs for electric vehicles cunningham.pdf More Documents & Publications...

245

New INL High Energy Battery Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INL High Energy Battery Test Facility New INL High Energy Battery Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

246

NREL Battery Thermal and Life Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL Battery Thermal and Life Test Facility NREL Battery Thermal and Life Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit...

247

Abuse Testing of High Power Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Testing of High Power Batteries Abuse Testing of High Power Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting,...

248

Overview and Progress of the Battery Testing, Analysis, and Design...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Battery Testing, Analysis, and Design Activity Overview and Progress of the Battery Testing, Analysis, and Design Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

249

Energy Management Strategies for Fast Battery Temperature Rise...  

Broader source: Energy.gov (indexed) [DOE]

Energy Management Strategies for Fast Battery Temperature Rise and Engine Efficiency Improvement at Very Cold Conditions Energy Management Strategies for Fast Battery Temperature...

250

Li-Ion Battery Cell Manufacturing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Battery Cell Manufacturing Li-Ion Battery Cell Manufacturing 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

251

PHEV and LEESS Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PHEV and LEESS Battery Cost Assessment PHEV and LEESS Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

252

Saft America Advanced Batteries Plant Celebrates Grand Opening...  

Broader source: Energy.gov (indexed) [DOE]

Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville September 16, 2011 -...

253

Thin film buried anode battery  

DOE Patents [OSTI]

A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

2009-12-15T23:59:59.000Z

254

Graphene/Li-ion battery  

Science Journals Connector (OSTI)

Density function theory calculations were carried out to clarify storage states of Lithium (Li) ions in graphene clusters. The adsorption energy spin polarization charge distribution electronic gap surface curvature and dipole momentum were calculated for each cluster. Li-ion adsorbed graphene doped by one Li atom is spin polarized so there would be different gaps for different spin polarization in electrons. Calculation results demonstrated that a smaller cluster between each two larger clusters is preferable because it could improve grapheneLi-ion batteries; consequently the most proper graphene anode structure has been proposed.

Narjes Kheirabadi; Azizollah Shafiekhani

2012-01-01T23:59:59.000Z

255

Alloys of clathrate allotropes for rechargeable batteries  

SciTech Connect (OSTI)

The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

Chan, Candace K; Miller, Michael A; Chan, Kwai S

2014-12-09T23:59:59.000Z

256

Pioneering battery maker files for bankruptcy  

Science Journals Connector (OSTI)

... Ultimately, the fate of US battery makers will remain tied to that of the electric car itself. And for now, no battery technology can compete cost-wise with the internal ... cost-wise with the internal combustion engine. The outlook in the near future for electric cars does not look that promising, says Daniel Scherson, an electrochemist at Case Western ...

Devin Powell

2012-10-24T23:59:59.000Z

257

Battery Stack-on Process Improvement  

E-Print Network [OSTI]

Imagine yourself in a job in which you stack 10,000 batteries onto a conveyor for eight hours. Each battery weighs about 22 pounds. The work is completed in an acidic environment where temperatures can peak in the summer as high as 100 degrees...

Watkins, Robert E.

2011-12-16T23:59:59.000Z

258

Transparent lithium-ion batteries , Sangmoo Jeongb  

E-Print Network [OSTI]

, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human (11), and solar cells (12­14). However, the battery, a key component in portable electronics, has

Cui, Yi

259

Argonne Transportation - Lithium Battery Technology Patents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Awarded Lithium Battery Technology Patents Awarded Lithium Battery Technology Patents "Composite-structure" material is a promising battery electrode for electric vehicles Argonne National Laboratory has been granted two U.S. patents (U.S. Pat. 6,677,082 and U.S. Pat. 6,680,143) on new "composite-structure" electrode materials for rechargeable lithium-ion batteries. Electrode compositions of this type are receiving worldwide attention. Such electrodes offer superior cost and safety features over state-of-the-art LiCoO2 electrodes that power conventional lithium-ion batteries. Moreover, they demonstrate outstanding cycling stability and can be charged and discharged at high rates, making them excellent candidates to replace LiCoO2 for consumer electronic applications and hybrid electric vehicles.

260

Paper Battery Co | Open Energy Information  

Open Energy Info (EERE)

Paper Battery Co Paper Battery Co Jump to: navigation, search Name Paper Battery Co. Place Troy, New York Zip 12180 Product Paper Battery Co. is constructing a hybrid ultracapacitor/battery which yeilds high power and energy density. The material used is a nano-porous cellulous. Coordinates 39.066587°, -80.768578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.066587,"lon":-80.768578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Towards Safer Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Towards Safer Lithium-Ion Batteries Towards Safer Lithium-Ion Batteries Speaker(s): Guoying Chen Date: October 25, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Venkat Srinivasan Safety problems associated with rechargeable lithium batteries are now well recognized. Recent spectacular fires involving cell phones, laptops, and (here at LBNL) AA cells have made the news. These events are generally caused by overcharging and subsequent development of internal shorts. Before these batteries can be used in vehicle applications, improvement in cell safety is a must. We have been active in the area of lithium battery safety for many years. For example, a versatile, inexpensive overcharge protection approach developed in our laboratory, uses an electroactive polymer to act as a reversible, self-actuating, low resistance internal

262

The BATINTREC process for reclaiming used batteries  

SciTech Connect (OSTI)

The Integrated Battery Recycling (BATINTREC) process is an innovative technology for the recycling of used batteries and electronic waste, which combines vacuum metallurgical reprocessing and a ferrite synthesis process. Vacuum metallurgical reprocessing can be used to reclaim the mercury (Hg) in the dry batteries and the cadmium (Cd) in the Ni-Cd batteries. The ferrite synthesis process reclaims the other heavy metals by synthesizing ferrite in a liquid phase. Mixtures of manganese oxide and carbon black are also produced in the ferrite synthesis process. The effluent from the process is recycled, thus significantly minimizing its discharge. The heavy metal contents of the effluent could meet the Integrated Wastewater Discharge Standard of China if the ratio of the crushed battery scrap and powder to FeSO{sub 4}{center_dot}7H{sub 2}O is set at 1:6. This process could not only stabilize the heavy metals, but also recover useful resource from the waste.

Xia Yueqing; Li Guojian

2004-07-01T23:59:59.000Z

263

Multi-cell storage battery  

DOE Patents [OSTI]

A multi-cell storage battery, in particular to a lithium storage battery, which contains a temperature control device and in which groups of one or more individual cells arranged alongside one another are separated from one another by a thermally insulating solid layer whose coefficient of thermal conductivity lies between 0.01 and 0.2 W/(m*K), the thermal resistance of the solid layer being greater by at least a factor .lambda. than the thermal resistance of the individual cell. The individual cell is connected, at least in a region free of insulating material, to a heat exchanger, the thermal resistance of the heat exchanger in the direction toward the neighboring cell being selected to be greater by at least a factor .lambda. than the thermal resistance of the individual cell and, in addition, the thermal resistance of the heat exchanger toward the temperature control medium being selected to be smaller by at least a factor of about 10 than the thermal resistance of the individual cell, and .lambda. being the ratio of the energy content of the individual cell to the amount of energy that is needed to trigger a thermally induced cell failure at a defined upper operating temperature limit.

Brohm, Thomas (Hattersheim, DE); Bottcher, Friedhelm (Kelkheim, DE)

2000-01-01T23:59:59.000Z

264

Learning Policies For Battery Usage Optimization in Electric Vehicles  

E-Print Network [OSTI]

algorithmic chal- lenge. 1 Introduction Electric vehicles, partially or fully powered by batteries, are oneLearning Policies For Battery Usage Optimization in Electric Vehicles Stefano Ermon, Yexiang Xue for the widespread adoption of electric vehicles. Multi-battery systems that combine a standard battery

Bejerano, Gill

265

Understanding human-battery interaction on mobile phones  

Science Journals Connector (OSTI)

Mobile phone users have to deal with limited battery lifetime through a reciprocal process we call human-battery interaction (HBI). We conducted three user studies in order to understand HBI and discover the problems in existing mobile phone designs. ... Keywords: batteries, human-battery interaction, mobile phones, power management

Ahmad Rahmati; Angela Qian; Lin Zhong

2007-09-01T23:59:59.000Z

266

Solid electrolytes for battery applications a theoretical perspective a  

E-Print Network [OSTI]

solid state batteries at the present time. · Several companies are involved in all solids state batterySolid electrolytes for battery applications ­ a theoretical perspective a Natalie Holzwarth ion batteries Solid electrolytes Advantages 1. Excellent chemical and physical stability. 2. Perform

Holzwarth, Natalie

267

Aqueous Cathode for Next-Generation Alkali-Ion Batteries  

Science Journals Connector (OSTI)

The aqueous cathode in the flow-through mode can be individually stored in a fuel tank, which reduces the volume of the battery and increases the design flexibility of the battery structure, as shown in Figure 1. ... Unlike previous lithium?water batteries, the aqueous cathode is not plagued by H2 evolution from the solution, and the battery is efficiently rechargeable. ...

Yuhao Lu; John B. Goodenough; Youngsik Kim

2011-03-28T23:59:59.000Z

268

BROADBAND IDENTIFICATION OF BATTERY ELECTRICAL IMPEDANCE FOR HEV  

E-Print Network [OSTI]

­ CEA LETI/LITEN; P. Granjon ­ GIPSA-Lab; Abstract -- In recent years, Li-ion batteries have been for the broadband monitoring of a battery. Keywords-- battery impedance, spectroscopy, broadband signals, Li-ion system of EV and HEV. Li-ion battery technology is believed to be the most attractive

Paris-Sud XI, Université de

269

Modelling challenges for battery materials and electrical energy storage  

Science Journals Connector (OSTI)

Many vital requirements in world-wide energy production, from the electrification of transportation to better utilization of renewable energy production, depend on developing economical, reliable batteries with improved performance characteristics. Batteries reduce the need for gasoline and liquid hydrocarbons in an electrified transportation fleet, but need to be lighter, longer-lived and have higher energy densities, without sacrificing safety. Lighter and higher-capacity batteries make portable electronics more convenient. Less expensive electrical storage accelerates the introduction of renewable energy to electrical grids by buffering intermittent generation from solar or wind. Meeting these needs will probably require dramatic changes in the materials and chemistry used by batteries for electrical energy storage. New simulation capabilities, in both methods and computational resources, promise to fundamentally accelerate and advance the development of improved materials for electric energy storage. To fulfil this promise significant challenges remain, both in accurate simulations at various relevant length scales and in the integration of relevant information across multiple length scales. This focus section of Modelling and Simulation in Materials Science and Engineering surveys the challenges of modelling for energy storage, describes recent successes, identifies remaining challenges, considers various approaches to surmount these challenges and discusses the potential of these methods for future battery development. Zhang et al begin with atoms and electrons, with a review of first-principles studies of the lithiation of silicon electrodes, and then Fan et al examine the development and use of interatomic potentials to the study the mechanical properties of lithiated silicon in larger atomistic simulations. Marrocchelli et al study ionic conduction, an important aspect of lithium-ion battery performance, simulated by molecular dynamics. Emerging high-throughput methods allow rapid screening of promising new candidates for battery materials, illustrated for Li-ion olivine phosphates by Hajiyani et al . This collection includes descriptions of new techniques to model the chemistry at an electrodeelectrolyte interface; Gunceler et al demonstrate coupling an electronic description of the electrode chemistry with the fluid electrolyte in a joint density functional theory method. Bridging to longer length scales to probe mechanical properties and transport, Preiss et al present a proof-of-concept phase field approach for a permeation model at an electrochemical interface, An and Jiang examine finite element simulations for transient deformation and transport in electrodes, and Haftabaradaran et al study the application of an analytical model to investigate the critical thickness for fracture in thick film electrodes. The focus section concludes with a study by Chung et al which combines modelling and experiment, examining the validity of the Bruggeman relation for porous electrodes. All of the papers were peer-reviewed following the standard procedure established by the Editorial Board of Modelling and Simulation in Materials Science and Engineering .

Richard P Muller; Peter A Schultz

2013-01-01T23:59:59.000Z

270

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect (OSTI)

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28T23:59:59.000Z

271

Flow Battery System Design for Manufacturability.  

SciTech Connect (OSTI)

Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

2014-10-01T23:59:59.000Z

272

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells  

SciTech Connect (OSTI)

Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

2013-10-01T23:59:59.000Z

273

Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Influences That Will Likely Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles By Dan Santini Argonne National Laboratory dsantini@anl.gov Clean Cities Coordinators' Webinar Sept. 16, 2010 Vehicle fuel use regulation/policy measures differ. Which should measure plug-in success?  Corporate average fuel economy (CAFE) ratings do not represent real world fuel use. However, the range ratings of EVs and PHEVs are based on CAFE tests.  "Window sticker" information on vehicle fuel use predicts more gasoline and electricity use than CAFE ratings. - The GREET model (basis of GHG saving estimates) is based on real world fuel use

274

Argonne TTRDC - Publications - Transforum 10.2 - Battery Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Battery Facilities Will Help Accelerate Commercialization of Technologies New Battery Facilities Will Help Accelerate Commercialization of Technologies Gang Cheng tests batteries At existing Argonne battery testing labs, researcher Gang Cheng conducts an experiment to detect moisture in battery electrolytes. Moisture is detrimental to the performance and longevity of battery cells. Argonne will soon have three new battery facilities to bolster its research and development of battery materials and batteries for hybrid electric vehicles, plug-in hybrid electric vehicles and all other electric vehicles. The Lab was recently awarded $8.8 million in American Recovery and Reinvestment Act (ARRA) funding to build a Battery Prototype Cell Fabrication Facility, a Materials Production Scale-Up Facility and a Post-Test Analysis Facility.

275

Argonne TTRDC - APRF - Research Activities - Ultracapacitors with Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Active Combination of Ultracapacitors with Batteries for PHEVs Active Combination of Ultracapacitors with Batteries for PHEVs Ultracapacitors Ultracapacitors will dramatically boost the power of lithium-ion batteries, enabling plug-in vehicles to travel much further on a single charge. Lithium-ion battery The newest generation of lithium-ion battery (foreground) has an energy density three times that of the batteries in today's electric cars (background). Argonne researchers are investigating the benefits of combining ultracapacitors with lithium-ion batteries. This combination can dramatically boost the power of lithium-ion batteries, offering a potential solution to the battery-related challenges facing electric vehicles. This technology can: Exponentially increase the calendar and cycle lifetimes of lithium-ion batteries

276

World Energy Resources  

Science Journals Connector (OSTI)

World Energy Resources ... Coal reserves are by far the largest proved energy sources we have, said Parker. ...

1954-05-17T23:59:59.000Z

277

Redox Flow Batteries: An Engineering Perspective  

SciTech Connect (OSTI)

Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

2014-10-01T23:59:59.000Z

278

APPLICATIONS PORTABLE | Military: Batteries and Fuel Cells  

Science Journals Connector (OSTI)

Electrical power supply is a critical issue for all parts of modern armies, including today's and future foot soldiers. Batteries are the fundamental source of energy supply. However, where today mainly primary batteries are used in battlefield operations, future scenarios will more likely use secondary batteries in combination with fuel cells for recharging. Thereby, two lines of development are currently being pursued: larger recharging units in the range of 250W carried by entire squads and smaller fuel cells in the range of 25W carried by individual soldiers most likely as part of a soldier energy network.

C. Cremers; J. Tbke; M. Krausa

2009-01-01T23:59:59.000Z

279

Evolution of Strategies for Modern Rechargeable Batteries  

Science Journals Connector (OSTI)

(3) Electrochemical Energy Storage and Conversion: Interrupted by the first energy crisis and a move to the University of Oxford, England, he has used his experience with oxides to develop electrodes and solid electrolytes for rechargeable batteries and for the solid oxide fuel cell. ... The sodiumsulfur battery has also opened the door to consideration of other high-temperature battery configurations, viz. a gaseous fuel-cell/electrolysis-cell cycle via an Fe/FeOx oxidation/reduction, based on the solid-oxide fuel-cell technology. ... composites constitute flowable semi-solid fuels that are here charged and discharged in prototype flow cells. ...

John B. Goodenough

2012-07-02T23:59:59.000Z

280

Role of Recycling in the Life Cycle of Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES J.L. Sullivan, L. Gaines, and A. Burnham Argonne National Laboratory, Energy Systems Division Keywords: battery, materials, recycling, energy Abstract Over the last few decades, rechargeable battery production has increased substantially. Applications including phones, computers, power tools, power storage, and electric-drive vehicles are either commonplace or will be in the next decade or so. Because advanced rechargeable batteries, like those

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EV Everywhere Batteries Workshop- Next Generation Lithium Ion Batteries Breakout Session Report  

Broader source: Energy.gov [DOE]

Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

282

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

Doeff, Marca M.

2010-01-01T23:59:59.000Z

283

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries  

E-Print Network [OSTI]

Li-Rich Layered Oxides for Lithium Batteries. Nano Lett. 13,O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-

Lin, Feng

2014-01-01T23:59:59.000Z

284

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network [OSTI]

solid state battery ..of the thin-film solid state battery is shown in Fig. 13.the thin-film solid state battery. CHAPTER FIVE Performance

Kang, Jin Sung

2012-01-01T23:59:59.000Z

285

AEA Battery Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

AEA Battery Systems Ltd AEA Battery Systems Ltd Jump to: navigation, search Name AEA Battery Systems Ltd Place Caithness, United Kingdom Zip KW14 7XW Product Designs, manufactures and supplies specialist lithium-ion high performance cells and batteries. Coordinates 36.482929°, -94.323563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.482929,"lon":-94.323563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Coda Battery Systems | Open Energy Information  

Open Energy Info (EERE)

Coda Battery Systems Coda Battery Systems Jump to: navigation, search Name Coda Battery Systems Place Enfield, Connecticut Sector Vehicles Product Connecticut-based joint venture producing lithium-ion batteries for electric vehicles. Coordinates 36.181032°, -77.662805° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.181032,"lon":-77.662805,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Electric Fuel Battery Corporation | Open Energy Information  

Open Energy Info (EERE)

Fuel Battery Corporation Fuel Battery Corporation Jump to: navigation, search Name Electric Fuel Battery Corporation Place Auburn, Alabama Zip 36832 Product Develops and manufactures BA-8180/U high power zinc-air battery for military applications. Coordinates 42.79301°, -110.997909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.79301,"lon":-110.997909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

From corrosion to batteries: Electrochemical interface studies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From corrosion to batteries: Electrochemical interface studies Thursday, October 18, 2012 - 11:00am SSRL, Bldg. 137, Rm 226 Dr. Frank Uwe Renner Max-Planck-Institut fr...

289

Design of a thermophotovoltaic battery substitute  

Science Journals Connector (OSTI)

Many military platforms that currently use the BA-5590 primary battery or the BB-390A/U rechargeable battery are limited in performance by low storage capacity and long recharge times. Thermo Power Corporation with team members JX Crystals and Essential Research Inc. is developing an advanced thermophotovoltaic (TPV) battery substitute that will provide higher storage capacity lower weight and instantaneous recharging (by refueling). The TPV battery substitute incorporates several advanced design features including: an evacuated and sealed enclosure for the emitter and PV cells to minimize unwanted convection heat transfer from the emitter to PV cells; selective tungsten emitter with a well matched gallium antimonide PV cell receiver; optical filter to recycle nonconvertible radiant energy; and a silicon carbide thermal recuperator to recover thermal energy from exhaust gases.

Edward F. Doyle; Frederick E. Becker; Kailash C. Shukla; Lewis M. Fraas

1999-01-01T23:59:59.000Z

290

Studies On Advanced Lead-Acid Batteries.  

E-Print Network [OSTI]

??Subsequent to the studies on precursor lead-acid systems by Daniel, Grove and Sindesten, practical lead-acid batteries began with the research and inventions of Raymond Gaston (more)

Martha, Surendra Kumar

2005-01-01T23:59:59.000Z

291

Sulphur back in vogue for batteries  

Science Journals Connector (OSTI)

... densities and relative safety are more important than the thousands of charge cycles a commercial electric car requires. Researchers do not expect to see a commercial lithiumsulphur battery before the ...

Richard Van Noorden

2013-06-26T23:59:59.000Z

292

Vehicle Technologies Office: Applied Battery Research  

Broader source: Energy.gov [DOE]

Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for hybrid electric vehicle (HEV) and electric...

293

Memorandum to DOE re Battery Chargers  

Broader source: Energy.gov [DOE]

We are following up on our meeting with DOE on August 7, 2014. During the meeting, several topics were identified as warranting further investigation as related to battery chargers, including...

294

Membrane-less hydrogen bromine flow battery  

E-Print Network [OSTI]

In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for ...

Braff, William A.

295

NREL: Energy Storage - Isothermal Battery Calorimeters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

100 Maximum Constant Heat Generation (W) 50 150 4,000 Working with Industry to Fine-Tune Energy Storage Designs The IBCs' capabilities make it possible for battery developers to...

296

A monolithically integrated thermo-adsorptive battery .  

E-Print Network [OSTI]

??A rechargeable thermal battery based on advanced zeolite or metal-organic framework water adsorbents promises extremely high capacity for both cooling (>800 kJ/L) and heating (>1150 (more)

McKay, Ian Salmon

2014-01-01T23:59:59.000Z

297

How Advanced Batteries Are Energizing the Economy  

Broader source: Energy.gov [DOE]

Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This...

298

Intercalation dynamics in lithium-ion batteries  

E-Print Network [OSTI]

A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to ...

Burch, Damian

2009-01-01T23:59:59.000Z

299

A High-Performance PHEV Battery Pack  

Broader source: Energy.gov (indexed) [DOE]

cooling system we have developed in our previous program with respect to mass, volume, cost and power demand. Deliver cells and battery packs to USABC for testing. Tasks OEM...

300

USABC Battery Separator Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. es007smith2010o.pdf More Documents & Publications USABC Battery Separator Development Celgard...

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Washington: Battery Manufacturer Brings Material Production Home...  

Office of Environmental Management (EM)

Recovery and Reinvestment Act (ARRA) funds from EERE, built a new plant to produce nano-engineered carbon materials for batteries and other energy storage devices that can be...

302

Published in IET Communications Received on 25th January 2008  

E-Print Network [OSTI]

.1049/iet-com:20080058 ISSN 1751-8628 Impacts of impulse-based ultra-wideband data links on cooperative, Department of Electrical and Electronic Engineering, Imperial College, London SW7 2BT, UK E-mail: s.zhu@ic.ac.uk Abstract: The recently permitted unlicenced use of the regulated ultra-wideband (UWB) radio spectrum

Leung, Kin K.

303

Review of particle properties. 25th anniversary edition  

SciTech Connect (OSTI)

This review is a reprint of Physics Letters, Vol. IIIB, April 22, 1982, and is an updating through December 1981 of our previous review of particle properties (Particle Data Group (1980)). As in previous editions we have attempted to make the text as complete and self-contained as possible. The results of our compilation are presented in two sections, the Tables of Particle Properties and the Data Card Listings. The Tables summarize the properties of only those particles whose existence is in our judgment experimentally well founded and which have a high probability of standing the test of time. The Data Card Listings give up-to-date information, with references, on all reported particles, whether considered well established or not. The Listings also contain mini-reviews on questions of interest. As in previous editions, we include a section of miscellaneous tables, figures, and formulae. These are aimed at the practicing high energy physics experimentalist. (WHK)

Not Available

1982-04-01T23:59:59.000Z

304

May 25th, 2010 -Assessment of current water conditions  

E-Print Network [OSTI]

last week in the north central mountains of Colorado and throughout western Wyoming and northern Utah Colorado 90% of Average Overall (1% decrease from last week) #12;1 Week Change in Snotel WYTD Precipitation Precipitation as Percent of Average #12;Upper Colorado River Basin #12;Green River Basin above Flaming Gorge #12

305

ordre : 2012-25-TH THESE EN CO-TUTELLE  

E-Print Network [OSTI]

, Professeur, Université Libanaise Co-Directeur de thèse #12;#12;Dedications To my parents i #12 capabalities especially when I was lost for a while. With all their support, I started an exciting research in the future. I wish to express my warmest thanks to my parents who have given me endless love and support

Paris-Sud XI, Université de

306

AirUCI Summer 2007 Schedule Monday, June 25th  

E-Print Network [OSTI]

: Composition and Effects on Global Warming (p. 107, & 203­206) - PAH (p. 393­402) - Combustion reactions) - Global Circulation Models and Predictions (p. 212, 213 & 220 ­ 226) 11 am to 12 pm: Lunch with Air and pollutant formation - Fuels: Hydrocarbons, Aromatics, H2 (p. 283), Coal (p. 228 & 229), Petroleum

Nizkorodov, Sergey

307

High-discharge-rate lithium ion battery  

DOE Patents [OSTI]

The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

2014-04-22T23:59:59.000Z

308

Lithium-Polysulfide Flow Battery Demonstration  

SciTech Connect (OSTI)

In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

Zheng, Wesley

2014-06-30T23:59:59.000Z

309

Recent advances in lithiumsulfur batteries  

Science Journals Connector (OSTI)

Abstract Lithiumsulfur (LiS) batteries have attracted much attention lately because they have very high theoretical specific energy (2500Whkg?1), five times higher than that of the commercial LiCoO2/graphite batteries. As a result, they are strong contenders for next-generation energy storage in the areas of portable electronics, electric vehicles, and storage systems for renewable energy such as wind power and solar energy. However, poor cycling life and low capacity retention are main factors limiting their commercialization. To date, a large number of electrode and electrolyte materials to address these challenges have been investigated. In this review, we present the latest fundamental studies and technological development of various nanostructured cathode materials for LiS batteries, including their preparation approaches, structure, morphology and battery performance. Furthermore, the development of other significant components of LiS batteries including anodes, electrolytes, additives, binders and separators are also highlighted. Not only does the intention of our review article comprise the summary of recent advances in LiS cells, but also we cover some of our proposals for engineering of LiS cell configurations. These systematic discussion and proposed directions can enlighten ideas and offer avenues in the rational design of durable and high performance LiS batteries in the near future.

Lin Chen; Leon L. Shaw

2014-01-01T23:59:59.000Z

310

Jute in the world, worlds of jute  

Science Journals Connector (OSTI)

This paper is in two parts. The first sketches out the reach of jute round the world from ancient times to the present, and, through examples ranging from Brazil to Bangladesh and from Cote d'Ivoire to the USA, makes the case that jute has played such a significant role that it deserves a place in world history alongside other great commodities like spices, sugar, tea, cotton, coal, and oil, that have shaped global history. The second part of the paper opens up the worlds of jute - from peasants who grew the jute, to male and female workers in Calcutta and Dundee, to the factory owners and managers - and makes comparisons between jute settings in different countries. A key issue explored is the interplay between the economic and ideological forces inherent in the manufacturing and marketing of jute products and the local cultures and traditions of workers and peasants within which the drama of jute was played out.

Gordon T. Stewart

2014-01-01T23:59:59.000Z

311

Chongqing Wanli Storage Battery Co | Open Energy Information  

Open Energy Info (EERE)

Wanli Storage Battery Co Wanli Storage Battery Co Jump to: navigation, search Name Chongqing Wanli Storage Battery Co. Place Chongqing Municipality, China Sector Solar, Vehicles, Wind energy Product The scope of Wanli's power storage business includes batteries made for electric motorcycles and industrial vehicles, boats, and cars. It also includes batteries to store power from solar or wind power plants. References Chongqing Wanli Storage Battery Co.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Chongqing Wanli Storage Battery Co. is a company located in Chongqing Municipality, China . References ↑ "Chongqing Wanli Storage Battery Co." Retrieved from "http://en.openei.org/w/index.php?title=Chongqing_Wanli_Storage_Battery_Co&oldid=34358

312

Alternative Fuels Data Center: Battery Manufacturing Tax Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Battery Manufacturing Battery Manufacturing Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Google Bookmark Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Delicious Rank Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Battery Manufacturing Tax Incentives For taxation purposes, the taxable fair market value of manufacturing

313

Making Li-air batteries rechargeable: material challenges  

SciTech Connect (OSTI)

A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

2013-02-25T23:59:59.000Z

314

World Elephant Centre:.  

E-Print Network [OSTI]

??The World Elephant Centre tackles two problems of our time, in a global relevance framework. In fact, it is not only a typical case of (more)

Rota, M.

2014-01-01T23:59:59.000Z

315

World Wide Chemistry  

Science Journals Connector (OSTI)

World Wide Chemistry ... Plutonium has been produced for the first time at Britain's Atomic Energy Research Establishment at Harwell. ... Indian Ore Reserves ...

G. ABRAHAMSON; RAFFAELE SANSONE

1949-04-11T23:59:59.000Z

316

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

of gel electrolyte based solid-state battery chemistry alsoproject, a solid-state rechargeable battery was developedsolid-state batteries, as discussed in this dissertation, has the potential to disrupt the current battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

317

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

E-Print Network [OSTI]

Relationships in the Li-Ion Battery Electrode Material LiNiAl foil may be used for Li ion battery cathode materials andElectrode materials, Li ion battery, Na ion battery, X-ray

Doeff, Marca M.

2013-01-01T23:59:59.000Z

318

Li?Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts  

Science Journals Connector (OSTI)

Li?Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts ... Aqueous Rechargeable Li and Na Ion Batteries ...

Eunjoo Yoo; Haoshen Zhou

2011-03-25T23:59:59.000Z

319

1 - Mapping virtual worlds  

Science Journals Connector (OSTI)

Abstract Virtual worlds are many and varied. In investigating the scope of virtual communities, it is important to understand social and theoretical issues that impact online participants. Such issues as gender, ontology, socio-technological integration, and corporeal interface all impact exploration of virtual worlds.

Woody Evans

2011-01-01T23:59:59.000Z

320

World Power Conference  

Science Journals Connector (OSTI)

... A TWO-DAY meeting of the International Executive Council of the World Power Conference has been held at Stockholm. Nineteen countries were represented : Australia, Austria, Belgium, ... of the International Executive Council and of the British National Committee of the World Power Conference, who presided ; Mr. Harold Hobson, vice-chairman of the British National Committee ...

1948-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

World Power Conference  

Science Journals Connector (OSTI)

... THE theme of the Canadian Sectional Meeting of the World Power Conference, to be held in Montreal during September 7-11, 1958, will be "Economic ... other application forms, can be obtained from the Secretary, British National Committee, World Power Conference, 201 Grand Buildings, Trafalgar Square, London, W.C.2. At the meeting ...

1958-05-03T23:59:59.000Z

322

NREL: Continuum Magazine - Electric Vehicle Battery Development Gains  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle Battery Development Gains Momentum Electric Vehicle Battery Development Gains Momentum Issue 5 Print Version Share this resource Electric Vehicle Battery Development Gains Momentum CAEBAT collaboration targets EDV batteries with longer range and lifespan, at a lower cost. A photo of two men silhouetted in front of six back-lit display screens showing battery models, located in a dark room (22008). Enlarge image NREL's modeling, simulation, and testing activities include battery safety assessment, next-generation battery technologies, material synthesis and research, subsystem analysis, and battery second use studies. Photo by Dennis Schroeder, NREL "When people get behind the wheel of an electric car, it should be a great driving experience. Period." Dr. Taeyoung Han, GM technical fellow, said,

323

Ultralife Corporation formerly Ultralife Batteries Inc | Open Energy  

Open Energy Info (EERE)

Corporation formerly Ultralife Batteries Inc Corporation formerly Ultralife Batteries Inc Jump to: navigation, search Name Ultralife Corporation (formerly Ultralife Batteries Inc.) Place Newark, New Jersey Zip NY 14513 Product New Jersey-based developer and manufacturer of standard and customised lithium primary, lithium ion and lithium polymer rechargeable batteries. References Ultralife Corporation (formerly Ultralife Batteries Inc.)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ultralife Corporation (formerly Ultralife Batteries Inc.) is a company located in Newark, New Jersey . References ↑ "Ultralife Corporation (formerly Ultralife Batteries Inc.)" Retrieved from "http://en.openei.org/w/index.php?title=Ultralife_Corporation_formerly_Ultralife_Batteries_Inc&oldid=352474"

324

BatPRO: Battery Manufacturing Cost Estimation | Argonne National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BatPRO: Battery Manufacturing Cost Estimation BatPRO models a stiff prismatic pouch-type cell battery pack with cells linked in series. BatPRO models a stiff prismatic pouch-type...

325

Design and fabrication of evaporators for thermo-adsorptive batteries  

E-Print Network [OSTI]

Current heating and cooling within electric vehicles places a significant demand on the battery, greatly reducing their potential driving range. An Advanced Thermo- Adsorptive Battery (ATB) reduces this load by storing ...

Farnham, Taylor A

2014-01-01T23:59:59.000Z

326

High Voltage Electrolytes for Li-ion Batteries | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Electrolytes for Li-ion Batteries High Voltage Electrolytes for Li-ion Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

327

Shida Battery Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Co, Ltd Place: China Product: Shida is a China-based maker of NiMH and Li-Poly batteries with applications that include e-bikes. References: Shida Battery Technology Co,...

328

Zhuhai Hange Battery Tech Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Tech Co, Ltd Place: China Product: ZhuHai City - based maker of Lithium Polymer batteries. References: Zhuhai Hange Battery Tech Co, Ltd1 This article is a stub. You can...

329

NREL/CCSE PEV Battery Second Use Project (Presentation)  

SciTech Connect (OSTI)

This presentation describes the Battery Second Use Project. Preliminary analysis results show (1) the impact of competing technologies, (2) potential revenue generation, and (3) supply and demand of the second use of plug-in electric vehicle batteries. The impact of competing technologies are: maximum salve value of a used battery will be limited by future battery prices, under favorable conditions, second use can only discount today's battery prices by 12% or less, however, second use will offer batteries to second applications at reduced cost (typically < $170/kWh). Revenue streams are highly variable, allowable battery costs are highly sensitive to balance-of-system costs, and batteries need to be very cheap for these applications to be viable. Supply and demand show that high-value applications have both competition and small markets, and supply from plug-in electric vehicles has the potential to overwhelm many second use markets.

Neubauer, J.; Pesaran, A.

2011-09-01T23:59:59.000Z

330

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Two Studies Reveal Details of Lithium-Battery Function Print Wednesday, 27 February 2013 00:00 Our way of life is deeply...

331

Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes  

E-Print Network [OSTI]

Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes Huigang Zhang Supporting Information ABSTRACT: Silicon-based lithium ion battery anodes are attracting significant during cycling generally leads to anode pulverization unless the silicon is dispersed throughout a matrix

Braun, Paul

332

Meeting regarding DOE Energy Conservations Standards for Battery  

Broader source: Energy.gov [DOE]

Discussion points presented relating to the U.S. Department of Energy (DOE) Energy Conservation Standards for Battery Chargers.The DOE battery charger efficiency regulations cover only consumer...

333

Three-Dimensional Lithium-Ion Battery Model (Presentation)  

SciTech Connect (OSTI)

Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

Kim, G. H.; Smith, K.

2008-05-01T23:59:59.000Z

334

Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications  

E-Print Network [OSTI]

Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 C), flammable, and volatile organic electrolytes. These organic based ...

Hu, Qichao

335

Transport and Failure in Li-ion Batteries | Stanford Synchrotron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Li-ion Batteries Monday, February 13, 2012 - 1:30pm SSRL Conference Room 137-322 Stephen J. Harris, General Motors R&D While battery performance is well predicted by the...

336

Abuse Testing of High Power Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Abuse Testing of High Power Batteries Abuse Testing of High Power Batteries Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25,...

337

Graphene-Based Composite Anodes for Lithium-Ion Batteries  

Science Journals Connector (OSTI)

Graphene has emerged as a novel, highly promising ... . As an anode material for lithium-ion batteries, it was shown that it cannot be ... cycling that leads to the failure of the batteries. To resolve this probl...

Nathalie Lavoie; Fabrice M. Courtel

2013-01-01T23:59:59.000Z

338

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

battery used for hybrid electric vehicles (HEVs) or electric vehicles (EVs) due to its low cost, low toxicity, thermal andthermal stability. 109-112 Thus, it proves to be a promising candidate cathode in battery

Zhu, Jianxin

2014-01-01T23:59:59.000Z

339

Efficient Lithium-Ion Battery Pack Electro-Thermal Simulation  

Science Journals Connector (OSTI)

A methodology to derive a computational efficient electro-thermal battery pack model is showed. It is taken ... up of three orders of magnitude for the thermal part. The electrical battery model is implemented an...

L. Kostetzer

2014-01-01T23:59:59.000Z

340

Determining the environmental and thermal characteristics of coke oven batteries  

Science Journals Connector (OSTI)

A method is proposed for assessing the environmental and thermal characteristics of coke oven batteries and is tested for coke oven batteries 1 and 5 at OAO Zaporozhkoks. On ... the basis of data for the environm...

E. I. Toryanik; A. L. Borisenko; A. S. Malysh; A. A. Lobov

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thermophysical Properties of Lithium Alloys for Thermal Batteries  

Science Journals Connector (OSTI)

Thermal batteries are electrochemical systems primarily used in defense ... . The current state-of-the art for thermal batteries relies upon the Li/FeS2...couple for power generation with the anode typically an L...

Geoffrey A. Swift

2011-10-01T23:59:59.000Z

342

Thermal runaway of valve-regulated lead-acid batteries  

Science Journals Connector (OSTI)

Valve-regulated lead-acid (VRLA) batteries that have aged on a float charge at constant voltage occasionally suffer from thermal runaway. Operating conditions for a VRLA battery have been simulated by changing th...

Junmei Hu; Yonglang Guo; Xuechou Zhou

2006-10-01T23:59:59.000Z

343

Thermal Behavior and Modeling of Lithium-Ion Cuboid Battery  

Science Journals Connector (OSTI)

Thermal behaviour and model are important items should be considered when designing a battery pack cooling system. Lithium-ion battery thermal behaviour and modelling method are investigated in this paper. The te...

Hongjie Wu; Shifei Yuan

2013-01-01T23:59:59.000Z

344

Rechargeable lithium battery energy storage systems for vehicular applications.  

E-Print Network [OSTI]

??Batteries are used on-board vehicles for broadly two applications starting-lighting-ignition (SLI) and vehicle traction. This thesis examines the suitability of the rechargeable lithium battery (more)

HURIA, TARUN

2012-01-01T23:59:59.000Z

345

Modeling the operating voltage of liquid metal battery cells  

E-Print Network [OSTI]

A one-dimensional, integrative model of the voltage during liquid metal battery operation has been developed to enhance the understanding of performance at the cell level. Two liquid metal batteries were studied: Mg-Sb for ...

Newhouse, Jocelyn Marie

2014-01-01T23:59:59.000Z

346

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

A new cathode material for batteries of high energy density.high-energy cathode for rechargeable lithium batteries. Advanced Materialsmaterials are promising cathodes, as they can provide high power and high energy,

Zhu, Jianxin

2014-01-01T23:59:59.000Z

347

Microfabricated thin-film batteries : technology and potential applications  

E-Print Network [OSTI]

High-energy-density lithium ion batteries have enabled a myriad of small consumer-electronics applications. Batteries for these applications most often employ a liquid electrolyte system. However, liquid electrolytes do ...

Greiner, Julia

2006-01-01T23:59:59.000Z

348

Water and Gold: A Promising Mix for Future Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water and Gold: A Promising Mix for Future Batteries Water and Gold: A Promising Mix for Future Batteries Berkeley Lab Study Reveals Molecular Structure of Water at Gold Electrodes...

349

Overview of Battery R&D Activities | Department of Energy  

Energy Savers [EERE]

of Battery R&D Activities Overview of Battery R&D Activities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

350

Overview of Battery R&D Activities | Department of Energy  

Energy Savers [EERE]

of Battery R&D Activities Overview of Battery R&D Activities 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

351

Are batteries ready for plug-in hybrid buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

352

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel- metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

353

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

354

Battery Park Industries Inc formerly Moltech Power Systems Inc | Open  

Open Energy Info (EERE)

Battery Park Industries Inc formerly Moltech Power Systems Inc Battery Park Industries Inc formerly Moltech Power Systems Inc Jump to: navigation, search Name Battery Park Industries Inc (formerly Moltech Power Systems, Inc) Place Gainesville, Florida Product Bundled rechargeable battery manufacturing assets of Moltech Power Systems, following that company's bankruptcy. References Battery Park Industries Inc (formerly Moltech Power Systems, Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Battery Park Industries Inc (formerly Moltech Power Systems, Inc) is a company located in Gainesville, Florida . References ↑ "Battery Park Industries Inc (formerly Moltech Power Systems, Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Battery_Park_Industries_Inc_formerly_Moltech_Power_Systems_Inc&oldid=342547"

355

Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Battery and Vehicle Battery and Engine Research Tax Credits to someone by E-mail Share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Facebook Tweet about Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Twitter Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Google Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Delicious Rank Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Digg Find More places to share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

356

Lithium-Thionyl Chloride Batteries for the Mars Pathfinder Microrover  

SciTech Connect (OSTI)

A discussion of the power requirements for the Mars Pathfinder Mission is given. Topics include: battery requirements; cell design; battery design; test descriptions and results. A summary of the results is also included.

Deligiannis, F.; Frank, H.; Staniewicz, R.J.; Willson, J. [SAFT America, Inc., Cockeysville, MD (United States)

1996-02-01T23:59:59.000Z

357

NREL: News Feature - NREL Battery Testing Capabilities Get a...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery module consisting of 12 cylindrical lithium ion cells. The unit was tested for Saft America as part of a DOEFreedomCAR project. Credit: Pat Corkery The battery research...

358

The assessment of battery-ultracapacitor hybrid energy storage systems  

E-Print Network [OSTI]

Battery-ultracapacitors hybrid energy storage systems (ESS) could combine the high power density and high life cycle of ultracapacitors with the high energy density of batteries, which forms a promising energy storage ...

He, Yiou

2014-01-01T23:59:59.000Z

359

Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd | Open Energy  

Open Energy Info (EERE)

Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd Jump to: navigation, search Name Optimum Battery Co, Ltd (formerly L&K Battery Tech Co Ltd) Place Shenzhen, Guangdong Province, China Zip 518118 Sector Services, Solar Product Shenzhen-based science and hi-tech company engaged in research development, manufacturing and sales of all types of batteries from cell to the finished product that services the power, telecommunications, electric appliance, UPS, and solar energy. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

360

Batteries - Beyond Lithium Ion Breakout session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BEYOND LITHIUM ION BREAKOUT BEYOND LITHIUM ION BREAKOUT Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - Zn-Air possible either w/ or w/o electric-hybridization; also possible with a solid electrolyte variant * 2 - Multivalent systems (e.g Mg), potentially needing hybrid-battery * 3 - Advanced Li-ion with hybridization @ cell / molecular level for high-energy and high- power * 4 - MH-air, Li-air, Li-S, all show promise * 5 - High-energy density (e.g. Na-metal ) flow battery can meet power and energy goals * 6 - Solid-state batteries (all types) * 7 - New cathode chemistries (beyond S) to increase voltage * 8 - New high-voltage non-flammable electrolytes (both li-ion and beyond li-ion) * 9 - Power to energy ratio of >=12 needed for fast charge (10 min)  So liquid refill capable

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Battery Chargers | Electrical Power Conversion and Storage  

Broader source: Energy.gov (indexed) [DOE]

Battery Chargers | Electrical Power Conversion and Storage Battery Chargers | Electrical Power Conversion and Storage 625 West A Street | Lincoln, NE 68522-1794 | LesterElectrical.com P: 402.477.8988 | F: 402.441.3727, 402.474.1769 (Sales) MEMORANDUM TO: United States Department of Energy (DOE), Via Email, expartecommunications@hq.doe.gov FROM: Spencer Stock, Product Marketing Manager, Lester Electrical DATE: June 18, 2012 RE: Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57 On Monday, June 11, 2012, representatives from Lester Electrical and Ingersoll Rand met with DOE to discuss the Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Battery Chargers and External Power Supplies, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57.

362

Composite Battery Boost | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water-Like Properties of Soft Nanoparticle Suspensions Water-Like Properties of Soft Nanoparticle Suspensions Real-Time Capture of Intermediates in Enzymatic Reactions A New Multilayer-Based Grating for Hard X-ray Grating Interferometry The Most Detailed Picture Yet of a Key AIDS Protein Superconductivity with Stripes Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Composite Battery Boost December 2, 2013 Bookmark and Share Normalized XANES spectra of Li/Se cell during cycling. Black line is the battery voltage profile. New composite materials based on selenium (Se) sulfides that act as the positive electrode in a rechargeable lithium-ion (Li-ion) battery could boost the range of electric vehicles by up to five times, according to

363

Iron-air battery development program  

SciTech Connect (OSTI)

The progress and status of the research and development program on the iron-air advanced technology battery system at the Westinghouse Electric Corporation during the period June 1978-December 1979 are described. This advanced battery system is being developed for electric vehicle propulsion applications. Testing and evaluation of 100 cm/sup 2/ size cells was undertaken while individual iron and air electrode programs continued. Progress is reported in a number of these study areas. Results of the improvements made in the utilization of the iron electrode active material coupled with manufacturing and processing studies related to improved air electrodes continue to indicate that a fully developed iron-air battery system will be capable of fulfilling the performance requirements for commuter electric vehicles.

Buzzelli, E.S.; Liu, C.T.; Bryant, W.A.

1980-05-01T23:59:59.000Z

364

High-energy metal air batteries  

DOE Patents [OSTI]

Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

2014-07-01T23:59:59.000Z

365

High-energy metal air batteries  

DOE Patents [OSTI]

Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

2013-07-09T23:59:59.000Z

366

Lithium Iron Phosphate Composites for Lithium Batteries | Argonne...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lithium Iron Phosphate Composites for Lithium Batteries Technology available for licensing: Inexpensive, electrochemically active phosphate compounds with high functionality for...

367

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes...

368

Development of Computer-Aided Design Tools for Automotive Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Vehicle Technologies Office Merit Review 2014: Development of...

369

EV Everywhere Batteries Workshop - Materials Processing and Manufactur...  

Broader source: Energy.gov (indexed) [DOE]

Materials Processing and Manufacturing Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Breakout session...

370

Abuse Testing of High Power Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

roth.pdf More Documents & Publications Abuse Tolerance Improvement Abuse Testing of High Power Batteries USABC Program Highlights...

371

Manufacturing of Protected Lithium Electrodes for Advanced Batteries  

Broader source: Energy.gov [DOE]

Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water, and Lithium-Sulfur Batteries

372

NREL Battery Thermal and Life Test Facility (Presentation)  

SciTech Connect (OSTI)

This presentation describes NREL's Battery Thermal Test Facility and identifies test requirements and equipment and planned upgrades to the facility.

Keyser, M.

2011-05-01T23:59:59.000Z

373

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Broader source: Energy.gov (indexed) [DOE]

complete Timeline Budget Barriers Partners Overview * Barriers addressed: - A. Battery cost - C. Performance: Energy Density - E. Lifetime * Targets - prototype cells...

374

Battery Calendar Life Estimator Manual Modeling and Simulation  

SciTech Connect (OSTI)

The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia

2012-10-01T23:59:59.000Z

375

Making better batteries with metal oxide & graphene composites  

ScienceCinema (OSTI)

Learn how PNNL and Princeton scientists create better materials for batteries, materials that assemble on their own into durable nanocomposites.

None

2012-12-31T23:59:59.000Z

376

Utility Accrual Real-Time Scheduling with Energy Bounds In this paper, we consider timeliness and energy optimization in battery-powered, dynamic  

E-Print Network [OSTI]

. An important technique used for optimizing the energy consumption of real-time embedded systems is dynamic in the physical world). Further, they are energy-critical, as they must operate on battery, with finite energy and minimizing the system's energy consumption, and not just the CPU's energy consumption. Moreover, such systems

Ravindran, Binoy

377

Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs but Plug-in Vehicles use More Battery Capacity  

Broader source: Energy.gov [DOE]

Of the battery packs used for electrified vehicle powertrains in model year 2013, the greatest number went into conventional hybrid vehicles which use battery packs that average about 1.3 kilowatt...

378

October 29 ESTAP Webinar: Flow Battery Basics (Part 2)  

Broader source: Energy.gov [DOE]

On Wednesday, October 29, 2014 from 1 - 2:30 p.m. ET, Clean Energy State Alliance will host the second in a series of webinars on flow batteries. OE's Imre Gyuk, Energy Storage Program Manager, will present an introduction to flow battery technology, and Dan Borneo of Sandia National Laboratories will discuss flow battery testing and technological readiness.

379

High performance batteries with carbon nanomaterials and ionic liquids  

DOE Patents [OSTI]

The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

Lu, Wen (Littleton, CO)

2012-08-07T23:59:59.000Z

380

Three-dimensional batteries using a liquid cathode  

E-Print Network [OSTI]

of 3D battery fabrication using (a) a solid-state LiCoO 2of 3D battery fabrication using (a) a solid-state LiCoO 2a solid-state silica matrix, which means that more battery

Malati, Peter Moneir

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electrical Energy Storage for the Grid: A Battery of Choices  

Science Journals Connector (OSTI)

...long research and development path. Fig. 4...the anode and a cathode consisting of...lithium battery cathodes . J. Electrochem...tetrahydroxybenzoquinone: Toward the development of a sustainable...battery research and development . J. Electrochem...Rechargeable alkali-ion cathode-flow battery...

Bruce Dunn; Haresh Kamath; Jean-Marie Tarascon

2011-11-18T23:59:59.000Z

382

Lithium Ion Batteries DOI: 10.1002/anie.201103163  

E-Print Network [OSTI]

Lithium Ion Batteries DOI: 10.1002/anie.201103163 LiMn1?xFexPO4 Nanorods Grown on Graphene Sheets for Ultrahigh- Rate-Performance Lithium Ion Batteries** Hailiang Wang, Yuan Yang, Yongye Liang, Li-Feng Cui cathode materials for rechargeable lithium ion batteries (LIBs) owing to their high capacity, excellent

Cui, Yi

383

Highly Reversible Open Framework Nanoscale Electrodes for Divalent Ion Batteries  

Science Journals Connector (OSTI)

Reversible insertion of divalent ions such as magnesium would allow the creation of new battery chemistries that are potentially safer and cheaper than lithium-based batteries. ... New developments in the chem. of secondary and flow batteries as well as regenerative fuel cells are also considered. ...

Richard Y. Wang; Colin D. Wessells; Robert A. Huggins; Yi Cui

2013-10-22T23:59:59.000Z

384

Materials Challenges and Opportunities of Lithium Ion Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for lithium ion batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithiumsulfur (LiS) batteries with a high theoretical energy density of ?2500 Wh kg1 are considered as one promising rechargeable battery chemistry for next-generation energy storage. ...

Arumugam Manthiram

2011-01-10T23:59:59.000Z

385

Life-Cycle Methods for Comparing Primary and Rechargeable Batteries  

Science Journals Connector (OSTI)

If battery materials are recycled, the recovered metals may be used in the production of new batteries, or they may be used for another secondary application. ... fuels ... The converted fuel equivalent demand is about 49 times less for rechargeable batteries than for primary ones. ...

Rebecca L. Lankey; Francis C. McMichael

2000-04-25T23:59:59.000Z

386

Combination of Lightweight Elements and Nanostructured Materials for Batteries  

Science Journals Connector (OSTI)

His research expertise is energy storage & conversion with batteries, fuel cells, and solar cells. ... (2) The main issues facing various current batteries are the slow electrode-process kinetics with large polarization and low rate of ionic diffusion/migration, resulting in limited practical energy output and battery performance. ...

Jun Chen; Fangyi Cheng

2009-04-08T23:59:59.000Z

387

Optimized Anion Exchange Membranes for Vanadium Redox Flow Batteries  

Science Journals Connector (OSTI)

vanadium redox flow battery; anion exchange membrane; ion exchange capacity; cycling performance; power density ... All electrochemical measurements were conducted using a fully automated redox flow battery testing system (Scribner 857 Redox Flow Cell System). ... Characteristics of a new all-vanadium redox flow battery ...

Dongyang Chen; Michael A. Hickner; Ertan Agar; E. Caglan Kumbur

2013-06-25T23:59:59.000Z

388

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

lithium ion batteries. Materials Science & Engineering R-Ion Batteries by Jianxin Zhu Doctor of Philosophy, Graduate Program in Materials Science and EngineeringIon Batteries A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Materials Science and Engineering

Zhu, Jianxin

2014-01-01T23:59:59.000Z

389

U.S. Battery R&D Progress and Plans  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power & Capacity Increase Life Improvement VTO Battery R&D Activities 10-100 mAh cells 0.5 - 1.0 Ah cells 5 - 40 + Ah cells 5 Battery R&D Progress Plug-In Battery Cost (per...

390

Mechanical Properties of Lithium-Ion Battery Separator Materials  

E-Print Network [OSTI]

Mechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials Science and Engineering 2013, Virginia Tech John Cannarella PhD. Candidate Mechanical and Aerospace and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical

Petta, Jason

391

Rebalancing electrolytes in redox flow battery systems  

DOE Patents [OSTI]

Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

Chang, On Kok; Pham, Ai Quoc

2014-12-23T23:59:59.000Z

392

Thin-film Rechargeable Lithium Batteries  

DOE R&D Accomplishments [OSTI]

Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

Dudney, N. J.; Bates, J. B.; Lubben, D.

1995-06-00T23:59:59.000Z

393

The world energy supply  

Science Journals Connector (OSTI)

The pattern of the world's energy supply has undergone dramatic changes over the last century, and particularly over the last twenty years. The growth in the world's population and the ever-greater demand for energy will lead to the global environment being subjected to considerable strain. The world will require a new type of energy system, one that is technically feasible, but which will face many difficulties in gaining social and economic acceptance. The world's future energy supply will depend upon the rational exploitation of resources and the development of high technical standards in the fields of reliability and safety. The required social changes will include a change to more energy-conserving life styles and a strengthening of international co-operation in long-term energy and environmental research and development.

L.H.Th. Rietjens

1991-01-01T23:59:59.000Z

394

the World Wide Web  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technical report has been made electronically available on the World Wide Web through a contribution from Walter L. Warnick In honor of Enrico Fermi Leader of the first nuclear...

395

Pleonastic possible worlds  

Science Journals Connector (OSTI)

The role of possible worlds in philosophy is hard to overestimate. Nevertheless, their nature and existence is very controversial. This is particularly serious, since their standard applications depend on ther...

Alexander Steinberg

2013-07-01T23:59:59.000Z

396

The world's largest landfill  

Science Journals Connector (OSTI)

The world's largest landfill ... GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer ... GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer ...

Joseph M. Suflita; Charles P. Gerba; Robert K. Ham; Anna C. Palmisano; William L. Rathje; Joseph A. Robinson

1992-08-01T23:59:59.000Z

397

The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems  

E-Print Network [OSTI]

Wh. INTRODUCTION A diesel hybrid system, incorporating a battery and inverter, can often provide power at a lower profile used for this study Fixed Power System Parameters The diesel and inverter were both sizedThe Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS

398

WorldLens: exploring world events through media  

E-Print Network [OSTI]

The goal of WorldLens is to provide a visual answer to the question: "what is happening in the world?" This thesis entails the design and development of a system that provides an exploratory view into world events across ...

Speiser, Jonathan Eliezer

2014-01-01T23:59:59.000Z

399

Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery  

DOE Patents [OSTI]

A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

Bockelmann, Thomas R. (Battle Creek, MI); Beaty, Kevin D. (Kalamazoo, MI); Zou, Zhanijang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

2009-07-21T23:59:59.000Z

400

Li-Ion and Other Advanced Battery Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scientist viewing computer screen scientist viewing computer screen Li-Ion and Other Advanced Battery Technologies The research aims to overcome the fundamental chemical and mechanical instabilities that have impeded the development of batteries for vehicles with acceptable range, acceleration, costs, lifetime, and safety. Its aim is to identify and better understand cell performance and lifetime limitations. These batteries have many other applications, in mobile electronic devices, for example. The work addresses synthesis of components into battery cells with determination of failure modes, materials synthesis and evaluation, advanced diagnostics, and improved electrochemical model development. This research involves: Battery development and analysis; Mathematical modeling; Sophisticated diagnostics;

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Washington: Battery Manufacturer Brings Material Production Home  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE-supported company, EnerG2, built a new plant to produce nano-engineered carbon materials for batteries and other energy storage devices that can be used in hybrid, electric, plug-in hybrid, and all-electric vehicles.

402

Solid composite electrolytes for lithium batteries  

DOE Patents [OSTI]

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2000-01-01T23:59:59.000Z

403

Anode materials for lithium-ion batteries  

DOE Patents [OSTI]

An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

2014-12-30T23:59:59.000Z

404

Alternative battery systems for transportation uses  

ScienceCinema (OSTI)

Argonne Distinguished Fellow Michael Thackeray highlights the need for alternative battery systems for transportation uses. Such systems will not only need to be smaller, lighter and more energy dense, but also able to make electric vehicles more competitive with internal combustion engine vehicles.

Michael Thackeray

2013-06-05T23:59:59.000Z

405

No Moores Law for batteries  

Science Journals Connector (OSTI)

...natures ideal fuel. A full tank of gasoline...ourselves from powering cars with gasoline. There...is still a fossil fuel, and hydrogen can presently be produced...why not power our cars this way? We already...electrolytes. A D-cell battery stores more...

Fred Schlachter

2013-01-01T23:59:59.000Z

406

Flexible Bio-battery February 7, 2013  

E-Print Network [OSTI]

Flexible Bio-battery Materials Thursday February 7, 2013 12:30pm - 1:30pm Talk by Dr. W.H. Katie at Washington State University (WSU), and 2012 International Visiting Research Scholar with the Peter Wall elastic and superior ionic conductive solid polymer electrolytes (SPEs) are prerequisite

Handy, Todd C.

407

Towards a lithium-ion fiber battery  

E-Print Network [OSTI]

One of the key objectives in the realm of flexible electronics and flexible power sources is to achieve large-area, low-cost, scalable production of flexible systems. In this thesis we propose a new Li-ion battery architecture ...

Grena, Benjamin (Benjamin Jean-Baptiste)

2013-01-01T23:59:59.000Z

408

The Utility Battery Storage Systems Program Overview  

SciTech Connect (OSTI)

Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

Not Available

1994-11-01T23:59:59.000Z

409

Temperature-Dependent Battery Models for High-Power Lithium-Ion Batteries  

SciTech Connect (OSTI)

In this study, two battery models for a high-power lithium ion (Li-Ion) cell were compared for their use in hybrid electric vehicle simulations in support of the U.S. Department of Energy's Hybrid Electric Vehicle Program. Saft America developed the high-power Li-Ion cells as part of the U.S. Advanced Battery Consortium/U.S. Partnership for a New Generation of Vehicles programs. Based on test data, the National Renewable Energy Laboratory (NREL) developed a resistive equivalent circuit battery model for comparison with a 2-capacitance battery model from Saft. The Advanced Vehicle Simulator (ADVISOR) was used to compare the predictions of the two models over two different power cycles. The two models were also compared to and validated with experimental data for a US06 driving cycle. The experimental voltages on the US06 power cycle fell between the NREL resistive model and Saft capacitance model predictions. Generally, the predictions of the two models were reasonably close to th e experimental results; the capacitance model showed slightly better performance. Both battery models of high-power Li-Ion cells could be used in ADVISOR with confidence as accurate battery behavior is maintained during vehicle simulations.

Johnson, V.H.; Pesaran, A.A. (National Renewable Energy Laboratory); Sack, T. (Saft America)

2001-01-10T23:59:59.000Z

410

Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /  

E-Print Network [OSTI]

active material for Li-ion battery, Fe2OF4. ElectrochemistryIron Fluoride, in a Li Ion Battery: A Solid-State NMR, X-raymaterials for Li-ion battery133 8.2. P2 type

Lee, Dae Hoe

2013-01-01T23:59:59.000Z

411

Membranes and separators for flowing electrolyte batteries-a review  

SciTech Connect (OSTI)

Flowing electrolyte batteries are rechargeable electrochemical storage devices in which externally stored electrolytes are circulated through the cell stack during charge or discharge. The potential advantages that flow batteries offer compared to other secondary batteries include: 1) ease of thermal and electrolyte management, 2) simple electrochemistry, 3) deep cycling capability, and 4) minimal loss of capacity with cycling. However, flow batteries are more complex than other secondary batteries and consequently may cost more and may be less reliable. Flow batteries are being developed for utility load leveling, electric vehicles, solar photovoltaic and wind turbine application. The status of flow batteries has recently been reviewed by Clark et al. The flowing electrolyte batteries place rigorous demands on the performance of separators and membranes. The operating characteristics of the iron/chromium redox battery were changed in order to accommodate the limitations in membrane performance. Low cost alternatives to the presently used membrane must be found before the zinc/ferricyanide battery can be economically feasible. The zinc/bromine battery's efficiency could be improved if a suitably selective membrane were available. It is anticipated that better and less costly membranes to meet these needs will be developed as more is learned about their preparation and performance.

Arnold, C.; Assink, R.A.

1983-01-01T23:59:59.000Z

412

Hardware Architecture for Measurements for 50-V Battery Modules  

SciTech Connect (OSTI)

Energy storage devices, especially batteries, have become critical for several industries including automotive, electric utilities, military and consumer electronics. With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. Because many of the systems these batteries integrated into are critical, there is an increased need for an accurate in-situ method of monitoring battery state-of-health. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of a compact IMB system that will perform rapid accurate measurements of a battery impedance spectrum working with higher voltage batteries of up to 300 volts. This paper discusses the successful realization of a system that will work up to 50 volts.

Patrick Bald; Evan Juras; Jon P. Christophersen; William Morrison

2012-06-01T23:59:59.000Z

413

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of evolving electronic and chemical states that, despite advances in material synthesis and structural probes, remain elusive and largely unexplored. At Beamlines 8.0.1 and 9.3.2, researchers studied lithium-ion and lithium-air batteries, respectively, using soft x-ray spectroscopy techniques. The detailed information they obtained about the evolution of electronic and chemical states will be indispensable for understanding and optimizing better battery materials.

414

TransForum - Special Issue: Batteries - August 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Special Issue: Batteries-August 2010 Special Issue: Batteries-August 2010 RESEARCH REVIEWS 2 China's Minister of Science and Technology Visits Argonne 3 Testing the Tesla 4 Six Myths about Plug-in Hybrid Electric Vehicles 6 Charging Ahead: Taking PHEVs Farther on a Single Battery Charge 7 Argonne to Explore Lithium-air Battery 8 Argonne's Lithium-ion Battery Research Produces New Materials and Technology Transfer Successes 11 New Battery Facilities Will Help Accelerate Commercialization of Technologies 12 Argonne Charges Ahead with Smart Grid Research 14 Center for Electrical Energy Storage Promises Advances in Transportation Technologies 15 PHEVs Need Further Research for Acceptable Payback 16 PUTTING ARGONNE'S RESOURCES TO WORK FOR YOU Lithium-ion Battery Research page 8 Minister of Science and

415

US Advanced Battery Consortium USABC | Open Energy Information  

Open Energy Info (EERE)

US Advanced Battery Consortium USABC US Advanced Battery Consortium USABC Jump to: navigation, search Name US Advanced Battery Consortium (USABC) Place Southfield, Michigan Zip 48075 Sector Vehicles Product Michigan-based, research consortium focused on R&D of advanced energy systems for electric vehicles. References US Advanced Battery Consortium (USABC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US Advanced Battery Consortium (USABC) is a company located in Southfield, Michigan . References ↑ "US Advanced Battery Consortium (USABC)" Retrieved from "http://en.openei.org/w/index.php?title=US_Advanced_Battery_Consortium_USABC&oldid=352587" Categories: Clean Energy Organizations

416

Energy Conservation Standards for Battery Chargers and External Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Chargers and External Battery Chargers and External Power Supplies; Proposed Rule Making - Ex Parte Communication Energy Conservation Standards for Battery Chargers and External Power Supplies; Proposed Rule Making - Ex Parte Communication Apple Inc. met with DOE to discuss the notice of proposed rule making the Department sent out regarding battery chargers and external power supplies. Below is a list of topics that Apple discussed with DOE. Apple_ex_parte_communication.pdf More Documents & Publications Request for Information on Evaluating New Products for the Battery Chargers and External Power Supply Rulemaking - Ex Parte Communication HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External

417

Transformative Battery Technology at the National Labs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are the key facts? Berkeley's Batteries for Advanced Transportation Technologies Program is developing lithium-ion technology to power a vehicle for 300 miles. Lithium-sulfur and lithium-air are "unknown known" technologies for the future of electric vehicle batteries.

418

Transformative Battery Technology at the National Labs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are the key facts? Berkeley's Batteries for Advanced Transportation Technologies Program is developing lithium-ion technology to power a vehicle for 300 miles. Lithium-sulfur and lithium-air are "unknown known" technologies for the future of electric vehicle batteries.

419

SECONDARY BATTERIES LITHIUM RECHARGEABLE SYSTEMS LITHIUM-ION | Overview  

Science Journals Connector (OSTI)

The need to increase the specific energy and energy density of secondary batteries has become more urgent as a result of the recent rapid development of new applications, such as electric vehicles (EVs), load leveling, and various types of portable equipments, including cellular phones, personal computers, camcorders, and digital cameras. Among various types of secondary batteries, rechargeable lithium-ion batteries have been used in a wide variety of portable equipments due to their high energy density. Many researchers have contributed to develop lithium-ion batteries, and their contributions are reviewed from historical aspects onward, including the researches in primary battery with metal lithium anode, and secondary battery with metal lithium negative electrode. Researches of new materials are still very active to develop new lithium-ion batteries with higher performances. The researches of positive and negative electrode active materials and electrolytes are also reviewed historically.

J. Yamaki

2009-01-01T23:59:59.000Z

420

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of evolving electronic and chemical states that, despite advances in material synthesis and structural probes, remain elusive and largely unexplored. At Beamlines 8.0.1 and 9.3.2, researchers studied lithium-ion and lithium-air batteries, respectively, using soft x-ray spectroscopy techniques. The detailed information they obtained about the evolution of electronic and chemical states will be indispensable for understanding and optimizing better battery materials.

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Battery system including batteries that have a plurality of positive terminals and a plurality of negative terminals  

DOE Patents [OSTI]

A lithium battery for use in a vehicle includes a container, a plurality of positive terminals extending from a first end of the lithium battery, and a plurality of negative terminals extending from a second end of the lithium battery. The plurality of positive terminals are provided in a first configuration and the plurality of negative terminals are provided in a second configuration, the first configuration differing from the second configuration. A battery system for use in a vehicle may include a plurality of electrically connected lithium cells or batteries.

Dougherty, Thomas J; Symanski, James S; Kuempers, Joerg A; Miles, Ronald C; Hansen, Scott A; Smith, Nels R; Taghikhani, Majid; Mrotek, Edward N; Andrew, Michael G

2014-01-21T23:59:59.000Z

422

Energy: world needs and reserves  

Science Journals Connector (OSTI)

Energy: world needs and reserves ... Lippencott takes stock of the world energy reserves and the demand the US places on these reserves. ...

W. T. Lippincott

1974-01-01T23:59:59.000Z

423

Sunergy World | Open Energy Information  

Open Energy Info (EERE)

Sunergy World Jump to: navigation, search Name: Sunergy World Place: Boise, Idaho Zip: 83707 Sector: Solar, Wind energy Product: Idaho-based wind and solar project developer....

424

world | OpenEI  

Open Energy Info (EERE)

world world Dataset Summary Description Total annual carbon dioxide emissions by country, 2005 to 2009 (million metric tons). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords carbon dioxide emissions EIA world Data text/csv icon total_carbon_dioxide_emissions_from_the_consumption_of_energy_2005_2009million_metric_tons.csv (csv, 12.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

425

Alan MacDiarmid, Conductive Polymers, and Plastic Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan MacDiarmid, Conductive Polymers, and Plastic Batteries Alan MacDiarmid, Conductive Polymers, and Plastic Batteries Resources with Additional Information · Patents Alan MacDiarmid ©Alan MacDiarmid/ University of Pennsylvania Photo by Felice Macera Until 1987, the billions of batteries that had been marketed in myriad sizes and shapes all had one thing in common. To make electricity, they depended exclusively upon chemical reactions involving metal components of the battery. But today a revolutionary new type of battery is available commercially. It stores electricity in plastic. Plastic batteries are the most radical innovation in commercial batteries since the dry cell was introduced in 1890. Plastic batteries offer higher capacity, higher voltage, and longer shelf-life than many competitive designs. Companies are testing new shapes and configurations, including flat batteries, that can be bent like cardboard. Researchers expect that the new technology will free electronic designers from many of the constraints imposed by metal batteries such as limited recharging cycles, high weight, and high cost.

426

Survey of mercury, cadmium and lead content of household batteries  

SciTech Connect (OSTI)

Highlights: A well selected sample of 146 batteries was analysed for its heavy metals content. A comparison was made between heavy metals contents in batteries in 2006 and 2011. No significant change after implementation of the new EU Batteries Directive. Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkalinemanganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinccarbon batteries, on average, contained the highest levels.

Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willsttter-Strae 11, D-12489 Berlin (Germany); Radant, Hendrik [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willsttter-Strae 11, D-12489 Berlin (Germany); Kohlmeyer, Regina [German Federal Environment Agency (UBA), Section III 1.6 Extended Producer Responsibility, Wrlitzer Platz 1, D-06844 Dessau-Rolau (Germany)

2014-01-15T23:59:59.000Z

427

Polymeric Nanoscale All-Solid State Battery Steven E. Bullock1  

E-Print Network [OSTI]

Polymeric Nanoscale All-Solid State Battery Steven E. Bullock1 , and Peter Kofinas2 1 Department to an all solid- state polymer battery. Such a battery would have greater safety, without potential, the search for an all solid-state battery has continued. Research on polymeric materials for batteries has

Kofinas, Peter

428

NEW WORLD FOR BIOFUELS  

Science Journals Connector (OSTI)

NEW WORLD FOR BIOFUELS ... SOME $170 BILLION in new technology development projects, infrastructure equipment and construction, and biofuel refineries will result from the ethanol production standards contained in energy legislation enacted into law late last year, said biotechnology industry advocates in an end-of-year briefing. ...

JEFF JOHNSON

2008-01-07T23:59:59.000Z

429

World Power Conference  

Science Journals Connector (OSTI)

... . J. T. BAKKER, chairman of the Netherlands National Committee of the World Power Conference, has agreed to become acting chairman of the International Executive Council of the ... , has agreed to become acting chairman of the International Executive Council of the Conference during the War. Correspondence intended for the International Executive Council should be addressed to ...

1939-11-04T23:59:59.000Z

430

The World Power Conference  

Science Journals Connector (OSTI)

... WE have received from the Central Office of the World Power Conference, Kingsway, London, the annual report for 1937. Dr. William F. Durand is ... president and Sir Harold Hartley is the chairman of the International Executive Council. The first conference was held in London in 1924, the second in Berlin in 1930 and the ...

1938-08-13T23:59:59.000Z

431

better world Scientists and  

E-Print Network [OSTI]

hazardous waste, control air pollution and promote environmental health. Because these fields are complex, environmental, mathematical and physical sciences. And Oregon State University is a great place to start building that experience. Here, you can study with world-renowned faculty, participate in groundbreaking

Escher, Christine

432

World energy consumption  

SciTech Connect (OSTI)

Historical and projected world energy consumption information is displayed. The information is presented by region and fuel type, and includes a world total. Measurements are in quadrillion Btu. Sources of the information contained in the table are: (1) history--Energy Information Administration (EIA), International Energy Annual 1992, DOE/EIA-0219(92); (2) projections--EIA, World Energy Projections System, 1994. Country amounts include an adjustment to account for electricity trade. Regions or country groups are shown as follows: (1) Organization for Economic Cooperation and Development (OECD), US (not including US territories), which are included in other (ECD), Canada, Japan, OECD Europe, United Kingdom, France, Germany, Italy, Netherlands, other Europe, and other OECD; (2) Eurasia--China, former Soviet Union, eastern Europe; (3) rest of world--Organization of Petroleum Exporting Countries (OPEC) and other countries not included in any other group. Fuel types include oil, natural gas, coal, nuclear, and other. Other includes hydroelectricity, geothermal, solar, biomass, wind, and other renewable sources.

NONE

1995-12-01T23:59:59.000Z

433

World Energy Outlook 2008  

U.S. Energy Information Administration (EIA) Indexed Site

OECD/IEA - OECD/IEA - 2008 © OECD/IEA - 2008 © OECD/IEA - 2008 To Cover... To Cover To Cover ... ... Transport Energy and CO 2 Where are we going? What are the dangers? How do we change direction? Primarily reporting on: IEA WEO 2008 IEA ETP 2008 On-going work with IEA's Mobility Model One or two detours to talk about modelling © OECD/IEA - 2008 0 2 000 4 000 6 000 8 000 10 000 12 000 14 000 16 000 18 000 1980 1990 2000 2010 2020 2030 Mtoe Other renewables Hydro Nuclear Biomass Gas Coal Oil World energy demand expands by 45% between now and 2030 - an average rate of increase of 1.6% per year - with coal accounting for more than a third of the overall rise Where are we headed? World Energy Outlook 2008 Where are we headed? World Energy Outlook Where are we headed? World Energy Outlook

434

Around the World  

Science Journals Connector (OSTI)

...billion-dollar mission later in the decadea constellation of spacecraft to investigate how Earth's atmosphere absorbs solar wind energywould require a budget boost if it is to be in service by the next solar maximum in 2024. Around the world...

2012-08-17T23:59:59.000Z

435

At the new General Motors, we are passionate about designing, building and selling the world's best vehicles. This vision unites us as a team each and every day and is the hallmark  

E-Print Network [OSTI]

electrification with advancements in batteries, electric motors and power controls. The GM team is also working vehicles. This vision unites us as a team each and every day and is the hallmark of our customer-driven culture. Making the world's best vehicles can only happen with the world's greatest employees. We take

Ghosh, Joydeep

436

Lightweight, durable lead-acid batteries  

DOE Patents [OSTI]

A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

Lara-Curzio, Edgar (Lenoir City, TN); An, Ke (Knoxville, TX); Kiggans, Jr., James O. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Contescu, Cristian I. (Knoxville, TN); Baker, Frederick S. (Oak Ridge, TN); Armstrong, Beth L. (Clinton, TN)

2011-09-13T23:59:59.000Z

437

Lightweight, durable lead-acid batteries  

SciTech Connect (OSTI)

A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O; Dudney, Nancy J; Contescu, Cristian I; Baker, Frederick S; Armstrong, Beth L

2013-05-21T23:59:59.000Z

438

Process to produce lithium-polymer batteries  

DOE Patents [OSTI]

A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.

MacFadden, K.O.

1998-06-30T23:59:59.000Z

439

Axion Battery Products Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Axion Battery Products Inc Place Woodbridge, Ontario, Canada Zip L4L 5Y9 Product Subsidiary of Axion Power International, which is to run three lead acid battery fabrication lines. Coordinates 38.660595°, -77.247875° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.660595,"lon":-77.247875,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

Battery using a metal particle bed electrode  

DOE Patents [OSTI]

A zinc-air battery in a case including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit.

Evans, James V. (Piedmont, CA); Savaskan, Gultekin (Albany, CA)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A Look Inside SLAC's Battery Lab  

SciTech Connect (OSTI)

In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

Wei Seh, Zhi

2014-07-17T23:59:59.000Z

442

Thermal fuse for high-temperature batteries  

DOE Patents [OSTI]

A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

Jungst, Rudolph G. (Albuquerque, NM); Armijo, James R. (Albuquerque, NM); Frear, Darrel R. (Austin, TX)

2000-01-01T23:59:59.000Z

443

How Advanced Batteries Are Energizing the Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

How Advanced Batteries Are Energizing the Economy How Advanced Batteries Are Energizing the Economy How Advanced Batteries Are Energizing the Economy August 11, 2011 - 7:15pm Addthis Thanks in part to a $300 million grant through the Recovery Act, Johnson Controls has been able to retool a shuttered plant in Holland, Michigan to produce high-tech advanced batteries. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Creates quality manufacturing jobs Positions America as a leader in the advanced battery industry Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This long dormant plant was revived by a $300 million Recovery Act grant which allowed Johnson Controls

444

Technology Analysis - Battery Recycling and Life Cycle Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lithium-Ion Battery Recycling and Life Cycle Analysis Lithium-Ion Battery Recycling and Life Cycle Analysis diagram of the battery recycling life cycle Several types of recycling processes are available, recovering materials usable at different stages of the production cycle- from metallic elements to materials that can be reused directly in new batteries. Recovery closer to final usable form avoids more impact-intensive process steps. Portions courtesy of Umicore, Inc. To identify the potential impacts of the growing market for automotive lithium-ion batteries, Argonne researchers are examining the material demand and recycling issues related to lithium-ion batteries. Research includes: Conducting studies to identify the greenest, most economical recycling processes, Investigating recycling practices to determine how much of which

445

NREL: News Feature - Award-Winning Battery's Secret is 'Buried'  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Award-Winning Battery's Secret is 'Buried' Award-Winning Battery's Secret is 'Buried' September 11, 2009 Photo of three men in a laboratory. In the background is a glovebox. NREL scientists Ed Tracy, left, Roland Pitts, right, and Dane Gillaspie, rear, pose in the lab where they continue to work on improving the award-winning buried-anode battery. Credit: Joe Poellot An innovative microbattery based on a National Renewable Energy Laboratory team's inspired digression is already bringing home major awards. But those involved with the buried anode thin-film rechargeable battery's ongoing development say the technology holds greatest promise as a building block for big batteries powering automobiles and storing power generated by wind, solar and other renewable energy systems. The PowerPlane UX, a coin-cell-sized battery produced by Planar Energy

446

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Better Anode Design to Improve A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds

447

Remember the Batteries - and Maybe a Charger? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Remember the Batteries - and Maybe a Charger? Remember the Batteries - and Maybe a Charger? Remember the Batteries - and Maybe a Charger? December 21, 2010 - 11:20am Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory Happy holidays, everyone! No matter what holidays you observe in December, chances are you are getting gifts for someone. Yes, okay, that's a little crude-there's a whole lot more to any of the holidays than gifts-but chances are, you got something, or got something for someone. And some of those somethings probably need batteries. Back when I was much younger, batteries were one of the crucial elements of Christmas. We'd get a ton of toys, and then someone would have to have the foresight to buy a bunch of batteries. And while my family is blessed with someone who plans so thoroughly that we had a mighty stockpile of every

448

ZAP Advanced Battery Technologies JV | Open Energy Information  

Open Energy Info (EERE)

ZAP Advanced Battery Technologies JV ZAP Advanced Battery Technologies JV Jump to: navigation, search Name ZAP & Advanced Battery Technologies JV Place Beijing, China Product JV between ZAP & Chinese battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Redox reactions with empirical potentials: Atomistic battery discharge simulations  

E-Print Network [OSTI]

Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each atom. Along with exchanging partial charges across bonds, atoms can swap integer charges. With redoxSQE we study the discharge behavior of a nano-battery, and demonstrate that this reproduces the generic properties of a macroscopic battery qualitatively. Examples are the dependence of the battery's capacity on temperature and discharge rate, as well as performance degradation upon recharge.

Dapp, Wolf B

2013-01-01T23:59:59.000Z

450

The Salty Science of the Aluminum-Air Battery  

Science Journals Connector (OSTI)

Fruit batteries and saltwater batteries are excellent ways to explore simple circuits in the classroom. These are examples of air batteries1 in which metal reacts with oxygen in the air in order to generate free electrons which flow through an external circuit and do work. Students are typically told that the salt or fruit water acts as an electrolyte to bring electrons from the anode to the cathode. That's true but it leaves the battery as a black box. Physics teachers often don't have the background to explain the chemistry behind these batteries. We've written this paper to explore the electrochemistry behind an air battery using coppercathode aluminum anode and saltwater.

Stephanie V. Chasteen; N. Dennis Chasteen; Paul Doherty

2008-01-01T23:59:59.000Z

451

Batteries - Lithium-ion - Developing Better High-Energy Batteries for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne's Lithium-Ion Battery Technology Offers Reliability, Greater Safety Argonne's Lithium-Ion Battery Technology Offers Reliability, Greater Safety Michael Thackeray holds a model of the molecular structure associated with Argonne's advanced cathode material. Researcher Michael Thackeray holds a model of the molecular structure associated with Argonne's advanced cathode material, a key element of the material licensed to NanoeXa. Argonne's an internationally recognized leader in the development of lithium-battery technology. "Our success reflects a combined effort with a materials group and a technology group to exploit the concept to tackle key safety and energy problems associated with conventional technology," said Argonne's Michael Thackeray. Recently, Argonne announced a licensing agreement with NanoeXa (see

452

Defective graphene as promising anode material for Na-ion battery and Ca-ion battery  

E-Print Network [OSTI]

We have investigated adsorption of Na and Ca on graphene with divacancy (DV) and Stone-Wales (SW) defect. Our results show that adsorption is not possible on pristine graphene. However, their adsorption on defective sheet is energetically favorable. The enhanced adsorption can be attributed to the increased charge transfer between adatoms and underlying defective sheet. With the increase in defect density until certain possible limit, maximum percentage of adsorption also increases giving higher battery capacity. For maximum possible DV defect, we can achieve maximum capacity of 1459 mAh/g for Na-ion batteries (NIBs) and 2900 mAh/g for Ca-ion batteries (CIBs). For graphene full of SW defect, we find the maximum capacity of NIBs and CIBs is around 1071 mAh/g and 2142 mAh/g respectively. Our results will help create better anode materials with much higher capacity and better cycling performance for NIBs and CIBs.

Datta, Dibakar; Shenoy, Vivek B

2013-01-01T23:59:59.000Z

453

Vanadium Flow Battery for Energy Storage: Prospects and Challenges  

Science Journals Connector (OSTI)

Vanadium Flow Battery for Energy Storage: Prospects and Challenges ... Her work involves investigating the strategy to improve the stability of electrolytes for the vanadium flow battery. ... Dr. Huamin Zhang currently is a tenured Professor at Dalian Institute of Chemical Physics, Chinese Academy of Science; he serves as the head of the energy storage division and chief scientist of the 973 National Project on Flow Battery. ...

Cong Ding; Huamin Zhang; Xianfeng Li; Tao Liu; Feng Xing

2013-03-28T23:59:59.000Z

454

he mobile world depends on lithium-ion batteries --today's ultimate  

E-Print Network [OSTI]

Laboratory in Berkeley, California, had cycled 1,500 times and had lost only half of their capacity1 attentionontechnologiesthatwillbecrucialin helpingtheworldtoswitchtorenewableenergy sources -- storing up solar energy for night- time down costs and boost capacity. BY RICHARD VAN NOORDEN 2

Napp, Nils

455

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energys FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

456

EV Everywhre Grand Challenge - Battery Status and Cost Reduction...  

Broader source: Energy.gov (indexed) [DOE]

EV Everywhere Grand Challenge Battery Status and Cost Reduction Prospects July 26, 2012 David Howell Team Lead, Hybrid & Electric Systems Vehicle Technologies Program U.S....

457

Sodium cobalt bronze batteries and a method for making same  

DOE Patents [OSTI]

A solid state secondary battery utilizing a low cost, environmentally sound, sodium cobalt bronze electrode. A method is provided for producing same.

Doeff, Marca M. (Hayward, CA); Ma, Yanping (Berkeley, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard (Lafayette, CA)

1999-01-01T23:59:59.000Z

458

Leading experts to speak at battery & energy storage technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leading experts to speak at battery & energy storage technology conference adipex for sale Speakers from US Department of Energy, academia and industry to meet November 5th in...

459

Ex Parte Communication Memorandum re Computer and Battery Back...  

Energy Savers [EERE]

of the Department of Energy to discuss coverage of computers and backup batteries. Ex Parte Memo re Computers More Documents & Publications Ex Parte Communication...

460

Meeting on Battery Chargers and External Power Supplies | Department...  

Energy Savers [EERE]

for Energy Conservation Standards for Battery Chargers and External Power Supplies, BatteriesandExternalPowerSupplies.pdf More Documents & Publications Ex Parte Communication...

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Sulfur@Carbon Cathodes for Lithium Sulfur Batteries > Research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single...

462

Plastic Bags to Batteries: A Green Chemistry Solution | Argonne...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plastic Bags to Batteries: A Green Chemistry Solution Share Description Plastic bags are the scourge of roadsides, parking lots and landfills. But chemistry comes to the rescue At...

463

Overview and Progress of the Batteries for Advanced Transportation...  

Broader source: Energy.gov (indexed) [DOE]

Technologies Overview and Progress of the Batteries for Advanced Transportation Technologies 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit...

464

Characterization of Materials for Li-ion Batteries: Success Stories...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Materials for Li-ion Batteries: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Materials for Li-ion...

465

Lithium/Sulfur Batteries Based on Doped Mesoporous Carbon - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Advanced Materials Find More Like This Return to Search LithiumSulfur Batteries Based on Doped Mesoporous Carbon Oak Ridge National Laboratory Contact ORNL About...

466

Three Angles on PEV Battery Second Use (Presentation)  

SciTech Connect (OSTI)

This presentation looks at three aspects of the second use of PEV batteries: Competitive technology, revenue streams, and supply and demand.

Neubauer, J.; Pesaran, A.

2011-10-01T23:59:59.000Z

467

EV Everywhere Batteries Workshop - Pack Design and Optimization...  

Broader source: Energy.gov (indexed) [DOE]

Pack Design and Optimization Breakout Session Report EV Everywhere Batteries Workshop - Pack Design and Optimization Breakout Session Report Breakout session presentation for the...

468

Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization  

Broader source: Energy.gov [DOE]

Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery thermal characterization.

469

Vehicle Technologies Office Merit Review 2014: Battery Safety Testing  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery safety...

470

Vorbeck Materials Licenses Graphene-based Battery Technologies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

America Energy Storage Energy Storage Return to Search Vorbeck Materials Licenses Graphene-based Battery Technologies Pacific Northwest National Laboratory Testing materials in...

471

Costs of lithium-ion batteries for vehicles  

SciTech Connect (OSTI)

One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

Gaines, L.; Cuenca, R.

2000-08-21T23:59:59.000Z

472

Electric Drive and Advanced Battery and Components Testbed (EDAB...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Peer Evaluation Meeting vss033carlson2012o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office...

473

Electric Drive and Advanced Battery and Components Testbed (EDAB...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review and Peer Evaluation vss033carlson2011o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Electric Drive and Advanced...

474

EV Everywhere Grand Challenge- Battery Workshop attendees list  

Broader source: Energy.gov [DOE]

Attendance list for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

475

EV Everywhere Batteries Workshop- Beyond Lithium Ion Breakout Session Report  

Broader source: Energy.gov [DOE]

Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

476

Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation  

SciTech Connect (OSTI)

The deployment and use of lithium-ion batteries in automotive and stationary energy storage applications must be optimized to justify their high up-front costs. Given that batteries degrade with use and storage, such optimizations must evaluate many years of operation. As the degradation mechanisms are sensitive to temperature, state-of-charge histories, current levels, and cycle depth and frequency, it is important to model both the battery and the application to a high level of detail to ensure battery response is accurately predicted. To address these issues, the National Renewable Energy Laboratory has developed the Battery Lifetime Analysis and Simulation Tool (BLAST) suite of tools. This suite of tools pairs NREL's high-fidelity battery degradation model with a battery electrical and thermal performance model, application-specific electrical and thermal performance models of the larger system (e.g., an electric vehicle), application-specific system use data (e.g., vehicle travel patterns and driving data), and historic climate data from cities across the United States. This provides highly realistic, long-term predictions of battery response and thereby enables quantitative comparisons of varied battery use strategies.

Neubauer, J.

2014-12-01T23:59:59.000Z

477

Innovative Cathode Coating Enables Faster Battery Charging, Dischargin...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

available for licensing: Coating increases electrical conductivity of cathode materials Coating does not hinder battery performance Provides two coating processes that...

478

Taking Battery Technology from the Lab to the Big City  

SciTech Connect (OSTI)

Urban Electric Power, a startup formed by researchers from the City University of New York (CUNY) Energy Institute, is taking breakthroughs in battery technology from the lab to the market. With industry and government funding, including a grant from the Energy Department, Urban Electric Power developed a zinc-nickel oxide battery electrolyte that circulates constantly, eliminating dendrite formation and preventing battery shortages. Their new challenge is to take this technology to the market, where they can scale up the batteries for reducing peak energy demand in urban areas and storing variable renewable electricity.

Banerjee, Sanjoy; Shmukler, Michael; Martin, Cheryl

2013-07-29T23:59:59.000Z

479

NREL: Energy Storage - Innovative Way to Test Batteries Fills...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

prototypes to a commercial product," said Ahmad Pesaran, manager of NREL's Battery and Energy Storage Research Group. "NETZSCH has a proven track record of developing and...

480

High capacity nanostructured electrode materials for lithium-ion batteries.  

E-Print Network [OSTI]

??The lithium-ion battery is currently the most widely used electrochemical storage system on the market, with applications ranging from portable electronics to electric vehicles, to (more)

Seng, Kuok H

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "25th world battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Thermal Electrochemical Dynamic Modeling of Sealed Lead Acid Batteries.  

E-Print Network [OSTI]

??Limitations to battery technology ranks second as the most vital problem facing the electronic and mechanical engineering industry in the future. The life span and (more)

Siniard, Kevin

2009-01-01T23:59:59.000Z

482

Alloys as Anode Materials in Magnesium Ion Batteries.  

E-Print Network [OSTI]

?? This thesis is a feasibility study of the possible application of magnesium alloys forfuture magnesium-ion batteries. It investigates dierent alloys and characterizesthem with respect (more)

Syvertsen, Alf Petter

2012-01-01T23:59:59.000Z

483

Batteries: Direct-write Microbatteries for Microelectronic Devices  

E-Print Network [OSTI]

Batteries: Direct-write Microbatteries for Microelectronic Devices Mesoscale electrochemical charge and ultra- capacitors have a minimal heat signature, generate no noise, and have no moving parts, so

Arnold, Craig B.

484

GRAPHENE BASED ANODE MATERIALS FOR LITHIUM-ION BATTERIES.  

E-Print Network [OSTI]

??Improvements of the anode performances in Li-ions batteries are in demand to satisfy applications in transportation. In comparison with graphitic carbons, transition metal oxides as (more)

Cheekati, Sree Lakshmi

2011-01-01T23:59:59.000Z

485

Team Led by Argonne National Lab Selected as DOE's Batteries...  

Office of Environmental Management (EM)

combine the R&D firepower of five DOE national laboratories, five universities, and four private firms in an effort aimed at achieving revolutionary advances in battery...

486

Finger wear detection for production line battery tester  

DOE Patents [OSTI]

A method is described for detecting wear in a battery tester probe. The method includes providing a battery tester unit having at least one tester finger, generating a tester signal using the tester fingers and battery tester unit with the signal characteristic of the electrochemical condition of the battery and the tester finger, applying wavelet transformation to the tester signal including computing a mother wavelet to produce finger wear indicator signals, analyzing the signals to create a finger wear index, comparing the wear index for the tester finger with the index for a new tester finger and generating a tester finger signal change signal to indicate achieving a threshold wear change. 9 figs.

Depiante, E.V.

1997-11-18T23:59:59.000Z

487

Stable Separator Identified for High-Energy Batteries | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Functional Materials for Energy Stable Separator Identified for High-Energy Batteries November 04, 2014 A combination of carbon coating and cryo-STEM technique enables atomic level...

488

Request for Information on Evaluating New Products for the Battery...  

Broader source: Energy.gov (indexed) [DOE]

and External Power Supply Rulemaking - Ex Parte Communication List of topics that Apple Inc. discussed with DOE RFIEvaluating New ProductsBattery Chargers & External Power...

489

EV Everywhere Grand Challenge- Battery Status and Cost Reduction Prospects  

Broader source: Energy.gov [DOE]

Presentation given by technology manager David Howell at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

490

Battery Thermal Modeling and Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es110smith2011p.pdf More Documents & Publications NREL Battery Thermal and Life Test Facility...

491

Development of Electrolytes for Lithium-ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

Battaglia & J. Kerr (LBNL) * M. Payne (Novolyte) * F. Puglia & B. Ravdel (Yardney) * G. Smith & O. Borodin (U. Utah) 3 3 Develop novel electrolytes for lithium ion batteries that...

492

Nuclear Batteries with Tritium and Promethium-147 Radioactive Sources.  

E-Print Network [OSTI]

??Long-lived power supplies for remote and even hostile environmental conditions are needed for space and sea missions. Nuclear batteries can uniquely serve this role. In (more)

Yakubova, Galina N.

2010-01-01T23:59:59.000Z

493

Impact of Battery Management on Fuel Efficiency Validity | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Validity Impact of Battery Management on Fuel Efficiency Validity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

494

High Voltage Electrolytes for Li-ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

* Funding for FY12 * 250K Timeline Budget Barriers * Argonne National Laboratory * Saft Batteries * U of Texas, Austin * U of Utah * U of Maryland Partners * SOA electrolytes...

495

Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature  

E-Print Network [OSTI]

Protection for 4 V Lithium Batteries at High Rates and LowRechargeable lithium batteries are known for their highBecause lithium ion batteries are especially susceptible to

Chen, Guoying

2010-01-01T23:59:59.000Z

496

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

Linden, D. , Handbook of Batteries. 2nd ed. 1995, New York:rechargeable lithium batteries. Nature, 2001. 414(6861): p.of rechargeable lithium batteries, I. Lithium manganese

Wilcox, James D.

2010-01-01T23:59:59.000Z

497

Battery concepts for high density energy storage: Principles and practice. C. Austen Angell  

E-Print Network [OSTI]

Battery concepts for high density energy storage: Principles and practice. C. Austen Angell Dept such as the lithium-air battery, and the more advanced zinc-air battery in which only the source needs to be "bottled

Angell, C. Austen

498

Fact #607: January 25, 2010 Energy and Power by Battery Type  

Broader source: Energy.gov [DOE]

Batteries are made from many different types of materials. The chart below shows the energy to power ratio for different battery types (a range is shown for each battery). An increase in specific...

499

Characterization of the Hydrogen-Bromine Flow Battery for Electrical Energy Storage  

E-Print Network [OSTI]

generating units through peak shaving and load leveling. Batteries have proper energy and power densities for these applications. A flow battery is advantageous to a secondary battery because the reactants are stored externally and the electrodes are inert...

Kreutzer, Haley Maren

2012-05-31T23:59:59.000Z

500

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

4) Lithium Battery Cathode. Electrochemical and Solid-StateBattery Electrodes Utilizing Fibrous Conductive Additives. Electrochemical and Solid-Statesolid state, these effects can become limiting in some systems. 1.3 Battery

Wilcox, James D.

2010-01-01T23:59:59.000Z