Powered by Deep Web Technologies
Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EA-0881: Tank 241-c-103 Organic Vapor and Liquid Characterization and Supporting Activities, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to sample the vapor space and liquid waste and perform other supporting activities in Tank 241-C-103 located in the 241-C Tank Farm on the...

2

Vapor characterization of Tank 241-C-103  

SciTech Connect (OSTI)

The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program.

Huckaby, J.L. [Westinghouse Hanford Co., Richland, WA (United States); Story, M.S. [Northwest Instrument Systems, Inc. Richland, WA (United States)

1994-06-01T23:59:59.000Z

3

Systems engineering study: tank 241-C-103 organic skimming,storage, treatment and disposal options  

SciTech Connect (OSTI)

This report evaluates alternatives for pumping, storing, treating and disposing of the separable phase organic layer in Hanford Site Tank 241-C-103. The report provides safety and technology based preferences and recommendations. Two major options and several varations of these options were identified. The major options were: 1) transfer both the organic and pumpable aqueous layers to a double-shell tank as part of interim stabilization using existing salt well pumping equipment or 2) skim the organic to an above ground before interim stabilization of Tank 241-C-103. Other options to remove the organic were considered but rejected following preliminary evaluation.

Klem, M.J.

1996-10-23T23:59:59.000Z

4

Waste Tank Organic Safety Project: Analysis of liquid samples from Hanford waste tank 241-C-103  

SciTech Connect (OSTI)

A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unreviewed Safety Question concerning the potential for a floating organic layer in Hanford waste tank 241-C-103 to sustain a pool fire. The analysis program was the result of a Data Quality Objectives exercise conducted jointly with staff from Westinghouse Hanford Company and Pacific Northwest Laboratory (PNL). The organic layer has been analyzed for flash point, organic composition including volatile organics, inorganic anions and cations, radionuclides, and other physical and chemical parameters needed for a safety assessment leading to the resolution of the Unreviewed Safety Question. The aqueous layer underlying the floating organic material was also analyzed for inorganic, organic, and radionuclide composition, as well as other physical and chemical properties. This work was conducted to PNL Quality Assurance impact level III standards (Good Laboratory Practices).

Pool, K.H.; Bean, R.M.

1994-03-01T23:59:59.000Z

5

Safety analysis of exothermic reaction hazards associated with the organic liquid layer in tank 241-C-103  

SciTech Connect (OSTI)

Safety hazards associated with the interim storage of a potentially flammable organic liquid in waste Tank C-103 are identified and evaluated. The technical basis for closing the unreviewed safety question (USQ) associated with the floating liquid organic layer in this tank is presented.

Postma, A.K.; Bechtold, D.B.; Borsheim, G.L.; Grisby, J.M.; Guthrie, R.L.; Kummerer, M.; Turner, D.A. [Westinghouse Hanford Co., Richland, WA (United States); Plys, M.G. [Fauske and Associates, Inc., Burr Ridge, IL (United States)

1994-03-01T23:59:59.000Z

6

Safety evaluation for the interim stabilization of Tank 241-C-103  

SciTech Connect (OSTI)

This document provides the basis for interim stabilization of tank 241-C-103. The document covers the removal of the organic liquid layer and the aqueous supernatant from tank 241-C-103. Hazards are identified, consequences are calculated and controls to mitigate or prevent potential accidents are developed.

Geschke, G.R.

1995-03-01T23:59:59.000Z

7

Toxicologic evaluation of analytes from Tank 241-C-103  

SciTech Connect (OSTI)

Westinghouse Hanford Company requested PNL to assemble a toxicology review panel (TRP) to evaluate analytical data compiled by WHC, and provide advice concerning potential health effects associated with exposure to tank-vapor constituents. The team`s objectives would be to (1) review procedures used for sampling vapors from tanks, (2) identify constituents in tank-vapor samples that could be related to symptoms reported by workers, (3) evaluate the toxicological implications of those constituents by comparison to establish toxicological databases, (4) provide advice for additional analytical efforts, and (5) support other activities as requested by WHC. The TRP represents a wide range of expertise, including toxicology, industrial hygiene, and occupational medicine. The TRP prepared a list of target analytes that chemists at the Oregon Graduate Institute/Sandia (OGI), Oak Ridge National Laboratory (ORNL), and PNL used to establish validated methods for quantitative analysis of head-space vapors from Tank 241-C-103. this list was used by the analytical laboratories to develop appropriate analytical methods for samples from Tank 241-C-103. Target compounds on the list included acetone, acetonitrile, ammonia, benzene, 1, 3-butadiene, butanal, n-butanol, hexane, 2-hexanone, methylene chloride, nitric oxide, nitrogen dioxide, nitrous oxide, dodecane, tridecane, propane nitrile, sulfur oxide, tributyl phosphate, and vinylidene chloride. The TRP considered constituent concentrations, current exposure limits, reliability of data relative to toxicity, consistency of the analytical data, and whether the material was carcinogenic or teratogenic. A final consideration in the analyte selection process was to include representative chemicals for each class of compounds found.

Mahlum, D.D.; Young, J.Y.; Weller, R.E.

1994-11-01T23:59:59.000Z

8

Tank characterization report for single-shell tank 241-C-103  

SciTech Connect (OSTI)

This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-C-103. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

Winters, W.I., Westinghouse Hanford

1996-06-26T23:59:59.000Z

9

EA-0881: Final Environmental Assessment  

Broader source: Energy.gov [DOE]

Tank 241-c-103 Organic Vapor and Liquid Characterization and Supporting Activities, Hanford Site, Richland, Washington)

10

Organic vapor jet printing system  

DOE Patents [OSTI]

An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

Forrest, Stephen R

2012-10-23T23:59:59.000Z

11

Waste Tank Safety Program. Annual status report for FY 1993, Task 3: Organic chemistry  

SciTech Connect (OSTI)

This task supports the tank-vapor project, mainly by providing organic analytical support and by analyzing Tank 241-C-103 (Tank C-103) vapor-space samples, collected via SUMMA{trademark} canisters, by gas chromatography (GC) and GC/mass spectrometry (MS). In the absence of receiving tank-vapor samples, we have focused our efforts toward validating the normal paraffin hydrocarbon (NPH) sampling and analysis methods and preparing the SUMMA{trademark} laboratory. All required milestones were met, including a report on the update of phase I sampling and analysis on August 15, 1993. This update described the work involved in preparing to analyze phase I samples (Appendix A). This report describes the analytical support provided by Pacific Northwest Laboratory (PNL){sup (a)} to the Hanford Tank Safety Vapor Program.

Lucke, R.B.; Clauss, T.T.W.; Hoheimer, R.; Goheen, S.C.

1994-02-01T23:59:59.000Z

12

Quantitative organic vapor-particle sampler  

DOE Patents [OSTI]

A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

Gundel, Lara (Berkeley, CA); Daisey, Joan M. (Walnut Creek, CA); Stevens, Robert K. (Cary, NC)

1998-01-01T23:59:59.000Z

13

Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes  

DOE Patents [OSTI]

A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

Baker, Richard W. (Palo Alto, CA); Pinnau, Ingo (Palo Alto, CA); He, Zhenjie (Fremont, CA); Da Costa, Andre R. (Menlo Park, CA); Daniels, Ramin (San Jose, CA); Amo, Karl D. (Mountain View, CA); Wijmans, Johannes G. (Menlo Park, CA)

2003-06-03T23:59:59.000Z

14

Recovery of benzene in an organic vapor monitor  

E-Print Network [OSTI]

solid adsorbents available (silica gel, activated alumina, etc. ), activated charcoal is most frequently utilized. Activated charcoal has retentivity for sorbed vapors several times that of silica gel and it displays a selectivity for organic vapors... (diffusion rate) of the vapor molecules to the sur- face of the adsorbent. The adsorption process determine how effective the adsorbent collects and holds the contam- inant on the surface of the activated charcoal. Recovery of the contaminant from...

Krenek, Gregory Joel

1980-01-01T23:59:59.000Z

15

Dosimeter for monitoring vapors and aerosols of organic compounds  

DOE Patents [OSTI]

A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

Vo-Dinh, T.

1987-07-14T23:59:59.000Z

16

Organic Thin-Film Transistors for Selective Hydrogen Peroxide and Organic Peroxide Vapor Detection  

E-Print Network [OSTI]

. The mobility changes are reversible under dry air flow, whereas positive threshold voltage shifts are reversed reactive products and increasing fixed positive charge. 1. INTRODUCTION Detection of vapor-phase hydrogen they can be prepared from readily available chemicals.4,5 Environmental monitoring of organic peroxides

Kummel, Andrew C.

17

Liquid-phase and vapor-phase dehydration of organic/water solutions  

DOE Patents [OSTI]

Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

Huang, Yu (Palo Alto, CA); Ly, Jennifer (San Jose, CA); Aldajani, Tiem (San Jose, CA); Baker, Richard W. (Palo Alto, CA)

2011-08-23T23:59:59.000Z

18

Hanford Tank 241-C-103 Residual Waste Contaminant Release Models and Supporting Data  

SciTech Connect (OSTI)

This report tabulates data generated by laboratory characterization and testing of three samples collected from tank C-103. The data presented here will form the basis for a release model that will be developed for tank C-103. These release models are being developed to support the tank risk assessments performed by CH2M HILL Hanford Group, Inc. for DOE.

Cantrell, Kirk J.; Krupka, Kenneth M.; Deutsch, William J.; Lindberg, Michael J.; Schaef, Herbert T.; Geiszler, Keith N.; Arey, Bruce W.

2008-01-15T23:59:59.000Z

19

Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From  

E-Print Network [OSTI]

Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2010 William Acree, Jr. Department of Chemistry, University of North Texas, Denton, Texas 76203 James S. Chickosa... Department of Chemistry and Biochemistry

Chickos, James S.

20

Desorption efficiencies of toluene and n-butanol in an organic vapor monitor  

E-Print Network [OSTI]

) ~ ~ ? Experimental Volume versus Theoretical Volume for n-Butanol (liquid phase). . . . . . . 13. Conceptual Adsorption of Vapor Molecules;. . . . 41 IXI'RODDCTI 019 In 1970, the Occupational Safety and Health Adminj- strstion adopted permissible human exposure...&jards has become one of the most important industrial hygiene f unct i one e The levei of exposure to many organic vapor;=, is det r- mined by co' lecting the chemical on some type o solid sor- bent. Of the various adsorbents available {silica gel...

Heaney, Mary Ann

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

I  

Broader source: Energy.gov (indexed) [DOE]

and the organic vaporliquid flammability in Tank 241-C-103. The DOE also proposes to conduct other operations needed to ensure safe operating conditions. I Agency action is...

22

Response of passive organic vapor dosimeters to a mixed gas exposure  

E-Print Network [OSTI]

of Advisory Comm1ttee: Dr. Richard B. Konzen The effects of the sampling order of two chemicals adsorbed onto a DuPont Pro-Tek Organic Vapor Dosimeters were investigated. The dosimeters were exposed to varying known concentrations of methyl methacrylate... experiment, Mr. Marvin Harrington of Rohm and Haas of Texas, and Mr. Fred Gsweng of Dupont for providing essential materials for the completion of this research. A special thank you must be extended to the National Institute for Occupational Safety...

Anderson, Scott Merritt

1982-01-01T23:59:59.000Z

23

Vapor-liquid equilibria of sulfur dioxide in polar organic solvents  

SciTech Connect (OSTI)

Vapor-liquid equilibrium data for SO/sub 2/ in eight polar organic solvents and three mixtures of organic solvents were investigated over the temperature range 30-95/sup 0/C and over a concentration range of 0.02-0.16 weight fraction of SO/sub 2/. The solvents investigated were N, N-dimethylaniline (DMA); quinoline; the dimethyl ethers of diethylene glycol, triethylene glycol, and tetraethylene glycol; the monomethyl ether of diethylene glycol (DGM); tetramethylene sulfone; and tributyl phosphate. The mixed solvents investigated were various mixtures of DMA and DGM. The data were correlated by using the UNIQUAC, NRTL, Wilson, and Henry's law phase-equilibrium models.

Demyanovich, R.J.; Lynn, S.

1987-03-01T23:59:59.000Z

24

The effect of time and temperature on the storage of passive organic vapor dosimeters contaminated with 1,2-dichloroethane  

E-Print Network [OSTI]

Contaminated With '1, 2-Dichloroethane. (December 1980) Robert Vincent Williams, B. S. , Stetson University Chairman of Advisory Comnittee: Mr. Charles L. Gi imore The effect of time and temperature on the storage of 1, 2-dichloro- ethane (common name...--ethylene chloride) collected on passive organic vapor dosimeters was investigated. Passive organic vapor dosimeters manufactured by the 3M Company, the Walden Division of Abcor, Inc. , and the E. I. duPont de Nemours Company were statically exposed to ethylene...

Williams, Robert Vincent

1980-01-01T23:59:59.000Z

25

III-nitride quantum cascade detector grown by metal organic chemical vapor deposition  

SciTech Connect (OSTI)

Quantum cascade (QC) detectors in the GaN/Al{sub x}Ga{sub 1?x}N material system grown by metal organic chemical vapor deposition are designed, fabricated, and characterized. Only two material compositions, i.e., GaN as wells and Al{sub 0.5}Ga{sub 0.5}N as barriers are used in the active layers. The QC detectors operates around 4??m, with a peak responsivity of up to ?100??A/W and a detectivity of up to 10{sup 8} Jones at the background limited infrared performance temperature around 140?K.

Song, Yu, E-mail: yusong@princeton.edu; Huang, Tzu-Yung; Badami, Pranav; Gmachl, Claire [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540 (United States); Bhat, Rajaram; Zah, Chung-En [Corning Incorporated, Corning, New York 14831 (United States)

2014-11-03T23:59:59.000Z

26

Life cycle cost study for coated conductor manufacture by metal organic chemical vapor deposition  

SciTech Connect (OSTI)

The purpose of this report is to calculate the cost of producing high temperature superconducting wire by the Metal Organic Chemical Vapor Deposition (MOCVD) process. The technology status is reviewed from the literature and a plant conceptual design is assumed for the cost calculation. The critical issues discussed are the high cost of the metal organic precursors, the material utilization efficiency and the capability of the final product as measured by the critical current density achieved. Capital, operating and material costs are estimated and summed as the basis for calculating the cost per unit length of wire. Sensitivity analyses of key assumptions are examined to determine their effects on the final wire cost. Additionally, the cost of wire on the basis of cost per kiloampere per meter is calculated for operation at lower temperatures than the liquid nitrogen boiling temperature. It is concluded that this process should not be ruled out on the basis of high cost of precursors alone.

Chapman, J.N.

1999-07-13T23:59:59.000Z

27

Evaluation of the 3M Organic Vapor Monitor #3500 as a sampling device for ethyl acrylate and the effect of discontinued exposure on vapor retention  

E-Print Network [OSTI]

Sampling Theories of Adsorption Forces of Adsorption Activation Procedures Surface Structure Statement of Hypotheses METHODOLOGV Test Atmosphere Generation Exposure Chamber MIRAN Calibration and Use Monitor Exposure to EA Analytical Procedures...EVALUATION OF THE 3M ORGANIC VAPOR MONITOR 53500 AS A SAMPLING DEVICE FOR ETHYL ACRYLATE AND THE EFFECT OF DISCONTINUED EXPOSURE ON VAPOP, RETENTION A Thesis by ROBERT WAYNE BARR Submitted to the Graduate College of Texas Al!M University...

Barr, Robert Wayne

2012-06-07T23:59:59.000Z

28

A method for detecting breakthrough of organic solvent vapors in a charcoal tube using semiconductor gas sensors  

SciTech Connect (OSTI)

This study developed a method for detecting organic vapors that break through charcoal tubes, using semiconductor gas sensors as a breakthrough detector of vapors. A glass column equipped with two sensors was inserted in Teflon tubing, and air containing organic vapor was introduced at a constant flow rate. After the output signal of the sensors became stable, a charcoal tube was inserted into the tubing at the upstream of the sensors. The resistance of the sensors was collected temporally in an integrated circuit (IC) card. The vapor concentration of the air near the sensors was measured with a gas chromatograph (GC) equipped with a flame ionization detector (FID) at intervals of 5 minutes to obtain the breakthrough curve. When the relative humidity was zero, the output signals of the sensors began to change before the breakthrough point (1% breakthrough time). This tendency was almost the same for methyl acetate, ethyl acetate, isopropyl alcohol (IPA), toluene, and chloroform. For dichloromethane and 1,1,1-trichloroethane, the time when the sensor output signals began to rise was almost the same as the breakthrough point. When the relative humidity was 80 percent, the sensors could also detect many vapors before the breakthrough point, but they could not perceive dichloromethane and chloroform vapors. A personal sampling system with a breakthrough detector was developed and its availability is discussed.

Hori, Hajime; Noritake, Yuji; Murobushi, Hisako; Higashi, Toshiaki; Tanaka, Isamu

1999-08-01T23:59:59.000Z

29

Effect of organic-vapor mixtures on the service life of respirator cartridges. Part 1  

SciTech Connect (OSTI)

We challenged pairs of MSA respirator cartridges with two compounds, isopropyl alcohol (IPA) and methyl ethyl ketone (MEK), to study the adsorption characteristics of organic vapors on cartridge performance. Each vapor was injected at three concentrations: (1) each at 10 times the respective Threshold Limit Value (TLV), (2) as a mixture at a concentration equal to the sum of the two single concentrations of item (1), and (3) each alone at a concentration equal to the total-mixture challenge concentration of item (2). The experiments were repeated at 20% and 85% relative humidities. One-percent and ten-percent breakthrough times were observed experimentally in every case, and breakthrough times of the mixture agreed with the single, high-concentration challenge. Experimental data were matched to a theoretical model derived from modified Wheeler-Robell equations and showed close correlations between adsorption-rate constants for the mixture and for the individual compounds. Based on these first experiments, we feel that an accurate mathematical model is possible, and further experiments are planned to verify this. 12 refs., 1 fig., 3 tabs.

Swearengen, P.M.; Weaver, S.C.

1985-01-01T23:59:59.000Z

30

Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications  

SciTech Connect (OSTI)

Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

2008-01-01T23:59:59.000Z

31

Testing of a model to estimate vapor concentration of various organic chemicals. Master's thesis  

SciTech Connect (OSTI)

A model developed by Dr. Parker C. Reist to predict the build-up and decay rates of vapor concentrations following a chemical spill and clean-up was tested. The chemicals tested were: acetone, butyl acetate, ethyl acetate, hexane, methylene chloride, methyl ethyl ketone, and toluene. The evaporation rates of these chemicals were determined both by prediction, using a model developed by I. Kawamura and D. Mackay, and empirically and these rates were used in the Reist model. Chamber experiments were done to measure actual building-up and decay of vapor concentrations for simulated spills and simulated clean-up.

Bakalyar, S.M.

1990-01-01T23:59:59.000Z

32

Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting  

SciTech Connect (OSTI)

In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or shaped features. As a result, we believe that this work will lead to the development of a cost-effective manufacturing solution to produce very-high efficiency OLEDs. By comparison to more common ink-jet printing (IJP), OVJP can also produce well-defined patterns without the need to pattern the substrate with ink wells or to dry/anneal the ink. In addition, the material set is not limited by viscosity and solvent solubility. During the program we successfully demonstrated a 6-inch x 6-inch PHOLED lighting panel consisting of fine-featured red, green and blue (R-G-B) stripes (1mm width) using an OVJP deposition system that was designed, procured and installed into UDC's cleanroom as part of this program. This project will significantly accelerate the DOE's ability to meet its 2015 DOE SSL targets of 70-150 lumens/Watt and less than $10 per 1,000 lumens for high CRI lighting index (76-90). Coupled with a low cost manufacturing path through OVJP, we expect that this achievement will enable the DOE to achieve its 2015 performance goals by the year 2013, two years ahead of schedule. As shown by the technical work performed under this program, we believe that OVJP is a very promising technology to produce low cost, high efficacy, color tunable light sources. While we have made significant progress to develop OVJP technology and build a pilot line tool to study basic aspects of the technology and demonstrate a lighting panel prototype, further work needs to be performed before its full potential and commercial viability can be fully assessed.

Mike Hack

2008-12-31T23:59:59.000Z

33

Metal organic chemical vapor deposition of 111-v compounds on silicon  

DOE Patents [OSTI]

Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

Vernon, Stanley M. (Wellesley, MA)

1986-01-01T23:59:59.000Z

34

Oxidative chemical vapor deposition of semiconducting polymers and their use In organic photovoltaics  

E-Print Network [OSTI]

Organic photovoltaics (OPVs) have received significant interest for their potential low cost, high mechanical flexibility, and unique functionalities. OPVs employing semiconducting polymers in the photoactive layer have ...

Borrelli, David Christopher

2014-01-01T23:59:59.000Z

35

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

organic Rankine cycle," Renewable Energy, vol. 4, pp. 1196-power cycle driven by renewable energy sources," Energy,geothermal resources," Renewable Energy, vol. 37, pp. 364-

Ho, Tony

2012-01-01T23:59:59.000Z

36

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Nonconventional Fluids," ASME Jour of Engineering for Power,fluids for Organic Rankine Cycles," Applied Thermal Engineering,fluid in waste heat recovery," Applied Thermal Engineering,

Ho, Tony

2012-01-01T23:59:59.000Z

37

ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition  

SciTech Connect (OSTI)

We report a breakthrough in fabricating ZnO homojunction light-emitting diode by metal organic chemical vapor deposition. Using NO plasma, we are able to grow p-type ZnO thin films on n-type bulk ZnO substrates. The as-grown films on glass substrates show hole concentration of 10{sup 16}-10{sup 17} cm{sup -3} and mobility of 1-10 cm{sup 2} V{sup -1} s{sup -1}. Room-temperature photoluminescence spectra reveal nitrogen-related emissions. A typical ZnO homojunction shows rectifying behavior with a turn-on voltage of about 2.3 V. Electroluminescence at room temperature has been demonstrated with band-to-band emission at I=40 mA and defect-related emissions in the blue-yellow spectrum range.

Xu, W.Z.; Ye, Z.Z.; Zeng, Y.J.; Zhu, L.P.; Zhao, B.H.; Jiang, L.; Lu, J.G.; He, H.P.; Zhang, S.B. [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

2006-04-24T23:59:59.000Z

38

Oxidative and initiated chemical vapor deposition for application to organic electronics  

E-Print Network [OSTI]

Since the first discovery of polymeric conductors in 1977, the research area of "organic electronics" has grown dramatically. However, methods for forming thin films comprised solely of conductive polymers are limited by ...

Im, Sung Gap

2009-01-01T23:59:59.000Z

39

Polymers via chemical vapor deposition and their application to organic photovoltaics  

E-Print Network [OSTI]

There is emerging interest in the ability to fabricate organic photovoltaics (OPVs) on flexible, lightweight substrates, which could lower the cost of installation and enable new form factors for deployment. However, ...

Barr, Miles Clark

2012-01-01T23:59:59.000Z

40

Study on plasma assisted metal-organic chemical vapor deposition of Zr,,C,N... and Ti,,C,N... thin films and in situ plasma diagnostics with optical  

E-Print Network [OSTI]

films and in situ plasma diagnostics with optical emission spectroscopy S. J. Cho, S.-H. Nam, C.-K. JungStudy on plasma assisted metal-organic chemical vapor deposition of Zr,,C,N... and Ti,,C,N... thin C,N films were synthesized by pulsed dc plasma assisted metal-organic chemical vapor deposition

Boo, Jin-Hyo

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract--In metal organic vapor phase epitaxy we developed  

E-Print Network [OSTI]

Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract-- In metal organic vapor phase epitaxy we developed GaInN/GaN quantum well material suitable for 500 ­ 580 nm light emitting diodes at longer wavelengths. Index Terms-- a-plane GaN, GaInN, Green light emitting diode, m-plane GaN I

Wetzel, Christian M.

42

An evaluation of the 3M Organic Vapor Monitor #3500 as a short term exposure limit sampling device for acetone, methyl ethyl ketone, and methyl iso butyl ketone  

E-Print Network [OSTI]

. An exploded view of the monitor is illustrated in Figure 1. The theory of diffusive sampling considers a concentration gra- dient between the ambient air and the adsorbent to be the driving force for sampling. For the adsorption to be controlled by diffu...AN EVALUATION OF THE 3M ORGANIC VAPOR MONITOR 43500 AS A SHOR'I TERM EXPOSURE LIMIT SAMPLING DEVICE FOR ACETONE, METHYL ETHYL KETONE, AND METHYL ISO BUTYL KETONE A Thesis by LLOYD B. ANDREW III Submitted to the Graduate College of Texas ASM...

Andrew, Lloyd B.

2012-06-07T23:59:59.000Z

43

The optimization of interfaces in InAsSb/InGaAs strained-layer superlattices grown by metal-organic chemical vapor deposition  

SciTech Connect (OSTI)

We have prepared InAsSb/InGaAs strained-layer superlattice (SLS) semiconductors by metal-organic chemical vapor deposition (MOCVD) under a variety of conditions. Presence of an InGaAsSb interface layer is indicated by x-ray diffraction patterns. Optimized growth conditions involved the use of low pressure, short purge times, and no reactant flow during the purges. MOCVD was used to prepare an optically pumped, single heterostructure InAsSb/InGaAs SLS/InPSb laser which emitted at 3.9 {mu}m with a maximum operating temperature of approximately 100 K.

Biefeld, R.M.; Baucom, K.C.; Kurtz, S.R.

1993-12-31T23:59:59.000Z

44

Elemental diffusion during the droplet epitaxy growth of In(Ga)As/GaAs(001) quantum dots by metal-organic chemical vapor deposition  

SciTech Connect (OSTI)

Droplet epitaxy is an important method to produce epitaxial semiconductor quantum dots (QDs). Droplet epitaxy of III-V QDs comprises group III elemental droplet deposition and the droplet crystallization through the introduction of group V elements. Here, we report that, in the droplet epitaxy of InAs/GaAs(001) QDs using metal-organic chemical vapor deposition, significant elemental diffusion from the substrate to In droplets occurs, resulting in the formation of In(Ga)As crystals, before As flux is provided. The supply of As flux suppresses the further elemental diffusion from the substrate and promotes surface migration, leading to large island formation with a low island density.

Chen, Z. B.; Chen, B.; Wang, Y. B.; Liao, X. Z., E-mail: xiaozhou.liao@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Lei, W. [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA 6009 (Australia); Tan, H. H.; Jagadish, C. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Zou, J. [Materials Engineering and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072 (Australia); Ringer, S. P. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia)

2014-01-13T23:59:59.000Z

45

To estimate vapor pressure easily  

SciTech Connect (OSTI)

Vapor pressures as functions of temperature for approximately 700 major organic chemical compounds are given. The tabulation also gives the temperature range for which the data are applicable. Minimum and maximum temperatures are denoted by TMIN and TMAX. The Antoine equation that correlates vapor pressure as a function of temperature is described. A representative comparison of calculated and actual data values for vapor pressure is shown for ethyl alcohol. The coefficient tabulation is based on both literature (experimental data) and estimated values.

Yaws, C.L.; Yang, H.C. (Lamar Univ., Beaumont, TX (USA))

1989-10-01T23:59:59.000Z

46

Epitaxial growth of CdTe thin film on cube-textured Ni by metal-organic chemical vapor deposition  

SciTech Connect (OSTI)

CdTe thin film has been grown by metalorganic chemical vapor deposition (MOCVD) on Ni(100) substrate. Using x-ray pole figure measurements we observed the epitaxial relationship of {111}CdTe// {001}Ni with [110]CdTe//[010]Ni and [112] CdTe//[100]Ni. The 12 diffraction peaks in the (111) pole figure of CdTe film and their relative positions with respect to the four peak positions in the (111) pole figure of Ni substrate are consistent with four equivalent orientational domains of CdTe with three to four superlattice match of about 0.7% in the [110] direction of CdTe and the [010] direction of Ni. The electron backscattered diffraction (EBSD) images show that the CdTe domains are 30 degrees orientated from each other.

GIARE, C [Rensselaer Polytechnic Institute (RPI); RAO, S [Rensselaer Polytechnic Institute (RPI); RILEY, M [Rensselaer Polytechnic Institute (RPI); CHEN, L [Rensselaer Polytechnic Institute (RPI); Goyal, Amit [ORNL; BHAT, I [Rensselaer Polytechnic Institute (RPI); LU, T [Rensselaer Polytechnic Institute (RPI); WANG, G [Rensselaer Polytechnic Institute (RPI)

2012-01-01T23:59:59.000Z

47

Optimization of InAsSb/InGaAs strained-layer superlattice growth by metal-organic chemical vapor deposition for use in infrared emitters  

SciTech Connect (OSTI)

We have prepared InAsSb/InGaAs strained-layer superlattices (SLSs) by metal-organic chemical vapor deposition using a variety of growth conditions. Presence of an InGaAsSb interface layer was indicated by x-ray diffraction. This interface effect was minimized by optimizing the purge times, reactant flows, and growth conditions. The optimized growth conditions involved the use of low pressure, short purge times between the growth of the layers, and no reactant flow during the purges. Electron diffraction indicates that CuPt-type compositional ordering occurs in InAs{sub 1{minus}x}Sb{sub x} alloys and SLSs which explains an observed bandgap reduction from previously accepted alloy values.

Biefeld, R.M.; Baucom, K.C.; Follstaedt, D.M.; Kurtz, S.R.

1994-08-01T23:59:59.000Z

48

Vapor intrusion modeling : limitations, improvements, and value of information analyses  

E-Print Network [OSTI]

Vapor intrusion is the migration of volatile organic compounds (VOCs) from a subsurface source into the indoor air of an overlying building. Vapor intrusion models, including the Johnson and Ettinger (J&E) model, can be ...

Friscia, Jessica M. (Jessica Marie)

2014-01-01T23:59:59.000Z

49

Calibrated vapor generator source  

DOE Patents [OSTI]

A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

1995-09-26T23:59:59.000Z

50

Installation and Operation of Sorbathene Solvent Vapor Recovery Units to Recover and Recycle Volatile Organic Compounds at Operating Sites within the Dow Chemical Company  

E-Print Network [OSTI]

because of the history of fires caused by exothermic heat of adsorption and high flammability when adsorption occurs during a long cycle time'. Three SORBATHENE units utilizing activated carbon with a short cycle time to limit temperature rise have... to the potential presence of oxygen in the vapor phase and the increased reactivity of the chemicals on the catalytic surface of the adsorbent. The extent of temperature rises and pressure swings are critical parameters. The adsorption phenomena is exothermic...

Hall, T. L.; Larrinaga, L.

51

Gas phase photocatalytic degradation on TiO{sub 2} pellets of volatile chlorinated organic compounds from a soil vapor extraction well  

SciTech Connect (OSTI)

The mineralization of trichloroethylene (TCE) and tetrachloroethylene (PCE) in gas stream from a soil vapor extraction (SVE) well was demonstrated with an annular photocatalytic reactor packed with porous TiO{sub 2} pellets in field trials at the Savannah River Site in Aiken, SC. The TiO{sub 2} pellets were prepared using a sol-gel method. The experiments were performed at 55 to 60{degree}C using space times of 10{sup 8} to 10{sup 10} g s/mol for TCE and PCE. Chloroform (CHCl{sub 3}) and carbon tetrachloride (CCl{sub 4}) were detected as minor products from side reactions. On a molar basis, CCl{sub 4} and CHCl{sub 3} produced were about 2% and 0.2 % of the reactants.

Yamazaki-Nishida, S.; Read, H.W.; Nagano, J.K.; Anderson, M.A. [Wisconsin Univ., Madison, WI (United States). Water Chemistry Program; Cervera-March, S. [Barcelona Univ., (Spain). Department of Chemical Engineering; Jarosch, T.R.; Eddy-Dilek, C.A. [Westinghouse Savannah River Co., Aiken, SC (United States)

1993-05-20T23:59:59.000Z

52

Ge-related faceting and segregation during the growth of metastable (GaAs){sub 1{minus}x}(Ge{sub 2}){sub x} alloy layers by metal{endash}organic vapor-phase epitaxy  

SciTech Connect (OSTI)

(GaAs){sub 1{minus}x}(Ge{sub 2}){sub x} alloy layers, 0{lt}x{lt}0.22, have been grown by metal{endash}organic vapor-phase epitaxy on vicinal (001) GaAs substrates. Transmission electron microscopy revealed pronounced phase separation in these layers, resulting in regions of GaAs-rich zinc-blende and Ge-rich diamond cubic material that appears to lead to substantial band-gap narrowing. For x=0.1 layers, the phase-separated microstructure consisted of intersecting sheets of Ge-rich material on {l_brace}115{r_brace}B planes surrounding cells of GaAs-rich material, with little evidence of antiphase boundaries. Atomic force microscopy revealed {l_brace}115{r_brace}B surface faceting associated with the phase separation. {copyright} {ital 1999 American Institute of Physics.}

Norman, A.G.; Olson, J.M.; Geisz, J.F.; Moutinho, H.R.; Mason, A.; Al-Jassim, M.M. [National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401 (United States)] [National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401 (United States); Vernon, S.M. [Spire Corporation, One Patriots Park, Bedford, Massachusetts 01730 (United States)] [Spire Corporation, One Patriots Park, Bedford, Massachusetts 01730 (United States)

1999-03-01T23:59:59.000Z

53

Clustering of metal atoms in organic media. 9. High-activity Ni/MgO catalysts prepared by metal vapor methods. Surface area and particle size effects  

SciTech Connect (OSTI)

A metal vapor method was employed to prepare highly dispersed Ni metal catalysts (solvated metal atom dispersed = SMAD catalyst) supported on MgO. Compared with conventional Ni/MgO compositions, the SMAD catalysts showed much greater activities for all reactions studied (hydrogenolysis of methylcyclopentane, MCP; hydrogenation/hydrogenolysis of toluene, TOL; methanation of carbon monoxide, CO; dehydration of isopropyl alcohol, IPA). These high activities for the SMAD catalysts are attributed to the high surface area of Ni on MgO and the high percentage of this Ni in a zero-valent state (reduction degree). Conventional methods for preparing Ni/MgO catalysts did not yield nearly such favorable surface areas or reduction degrees. Nickel particle size effects were observed during hydrogenolysis studies of MCP and hydrogenation studies of TOL. These phenomena are explained by assuming the size of an active Ni particle to be largest for hydrogenolysis of MCP > hydrogenation of TOL > methanation of CO approx. = dehydrogenation of IPA. 8 figures, 2 tables.

Matsuo, K.; Klabunde, K.J.

1982-02-01T23:59:59.000Z

54

Vapor spill monitoring method  

DOE Patents [OSTI]

Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

Bianchini, Gregory M. (Livermore, CA); McRae, Thomas G. (Livermore, CA)

1985-01-01T23:59:59.000Z

55

Vapor scavenging by atmospheric aerosol particles  

SciTech Connect (OSTI)

Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

Andrews, E.

1996-05-01T23:59:59.000Z

56

Characterization of particle- and vapor-phase organic fraction emissions from a heavy-duty diesel engine equipped with a particle trap and regeneration controls  

SciTech Connect (OSTI)

The effects of a ceramic particle trap on the chemical and biological character of the exhaust from a heavy-duty diesel engine have been studied during steady-state operation and during periods of trap regeneration. Phase I of this project involved developing and refining the methods using a Caterpillar 3208 engine, and Phase II involved more detailed experiments with a Cummins LTA10-300 engine, which met Federal 1988 particulate matter standards, and a ceramic particle trap with built-in regeneration controls. During the Phase I experiments, samples wee collected at the Environmental Protection Agency (EPA)* steady-state mode 4 (50% load at intermediate speed). Varying the dilution ratio to obtain a constant filter-face temperature resulted in less variability in total particulate matter (TPM), particle-associated soluble organic fraction (SOF), solids (SOL), and polynuclear aromatic hydrocarbon (PAH) levels than sampling with a constant dilution ratio and allowing filter-face temperature to vary. A modified microsuspension Ames assay detected mutagenicity in the SOF samples, and in the semivolatile organic fraction extracted from XAD-2 resin (XAD-2 resin organic component, XOC) with at least 10 times less sample mass than the standard plate incorporation assay. Measurement techniques for PAH and nitro-PAH in the SOF and XOC also were developed during this portion of the project. For the Phase II work, two EPA steady-state rated speed modes were selected: mode 11 (25% load) and mode 9 (75% load). With or without the trap, filter-face temperatures were kept at 45 degrees +/- 2 degrees C, nitrogen dioxide (NO2) levels less than 5 parts per million (ppm), and sampling times less than 60 minutes. Particle sizes were determined using an electrical aerosol analyzer. Similar sampling methods were used when the trap was regenerated, except that a separate dilution tunnel and sampling system was designed and built to collect all of the regeneration emissions.

Bagley, S.T.; Gratz, L.D.; Leddy, D.G.; Johnson, J.H. (Michigan Technological Univ., Houghton, MI (United States))

1993-07-01T23:59:59.000Z

57

Organization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat CornellInternships,(SC) Laboratories »OrganicOrganization

58

Combined rankine and vapor compression cycles  

DOE Patents [OSTI]

An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

2005-04-19T23:59:59.000Z

59

E-Print Network 3.0 - activated chemical vapor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Orgainc vapor; Adsorption capacity 1. Introduction... containing a variety of organic chemicals. In ... Source: Cal, Mark P. - Department of Civil and Environmental Engineering,...

60

Gasoline vapor recovery  

SciTech Connect (OSTI)

In a gasoline distribution network wherein gasoline is drawn from a gasoline storage tank and pumped into individual vehicles and wherein the gasoline storage tank is refilled periodically from a gasoline tanker truck, a method of recovering liquid gasoline from gasoline vapor that collects in the headspace of the gasoline storage tank as the liquid gasoline is drawn therefrom, said method comprising the steps of: (a) providing a source of inert gas; (b) introducing inert gas into the gasoline storage tank as liquid gasoline is drawn therefrom so that liquid gasoline drawn from the tank is displaced by inert gas and gasoline vapor mixes with the inert gas in the headspace of the tank; (c) collecting the inert gas/gasoline vapor mixture from the headspace of the gasoline storage tank as the tank is refilled from a gasoline tanker truck; (d) cooling the inert gas/gasoline vapor mixture to a temperature sufficient to condense the gasoline vapor in the mixture to liquid gasoline but not sufficient to liquify the inert gas in the mixture; (e) separating the condensed liquid gasoline from the inert gas; and delivering the condensed liquid gasoline to a remote location for subsequent use.

Lievens, G.; Tiberi, T.P.

1993-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Compact organic vapor jet printing print head  

DOE Patents [OSTI]

A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print header further includes a first layer comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.

Forrest, Stephen R; McGraw, Gregory

2013-12-24T23:59:59.000Z

62

Electrolyte vapor condenser  

DOE Patents [OSTI]

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

1983-02-08T23:59:59.000Z

63

Electrolyte vapor condenser  

DOE Patents [OSTI]

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

Sederquist, Richard A. (Newington, CT); Szydlowski, Donald F. (East Hartford, CT); Sawyer, Richard D. (Canton, CT)

1983-01-01T23:59:59.000Z

64

Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects  

E-Print Network [OSTI]

* Department of Chemistry and Biochemistry, University of MissourisSt. Louis, St. Louis, Missouri 63121 Liquid vapor pressure isotope effects have generally been observed, pD > pH.12 Vapor pressure and sublimation

Chickos, James S.

65

Stratified vapor generator  

DOE Patents [OSTI]

A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

2008-05-20T23:59:59.000Z

66

ARM - Water Vapor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmr DocumentationProductsaodsasheniraodAlaskaVisiting theWater Vapor

67

VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS  

SciTech Connect (OSTI)

This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

Eric M. Suuberg; Vahur Oja

1997-07-01T23:59:59.000Z

68

Tank Vapor Characterization Project: Annual status report for FY 1996  

SciTech Connect (OSTI)

In Fiscal Year 1996, staff at the Vapor Analytical Laboratory at Pacific Northwest National Laboratory performed work in support of characterizing the vapor composition of the headspaces of radioactive waste tanks at the Hanford Site. Work performed included support for technical issues and sampling methodologies, upgrades for analytical equipment, analytical method development, preparation of unexposed samples, analyses of tank headspaces samples, preparation of data reports, and operation of the tank vapor database. Progress made in FY 1996 included completion and issuance of 50 analytical data reports. A sampling system comparison study was initiated and completed during the fiscal year. The comparison study involved the vapor sampling system (VSS), a truck-based system, and the in situ vapor sampling system (ISVS), a cart-based system. Samples collected during the study were characterized for inorganic, permanent gases, total non-methane organic compounds and organic speciation by SUMMA{trademark} and TST methods. The study showed comparable sampling results between the systems resulting in the program switching from the VSS to the less expensive ISVS methodology in late May 1996. A temporal study was initiated in January 1996 in order to understand the influences seasonal temperatures changes have on the vapors in the headspace of Hanford waste tanks. A holding time study was initiated in the fourth quarter of FY 1996. Samples were collected from tank S-102 and rushed to the laboratory for time zero analysis. Additional samples will be analyzed at 1, 2, 4, 8, 16, and 32 weeks.

Silvers, K.L.; Fruchter, J.S.; Huckaby, J.L.; Almeida, T.L.; Evans, J.C. Jr.; Pool, K.H.; Simonen, C.A.; Thornton, B.M.

1997-01-01T23:59:59.000Z

69

ARM Water Vapor IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust DocumentationARM Participation in SuomiNet The ARM62ARM Water Vapor IOP

70

Water Vapor Experiment Concludes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3 Water Vapor Experiment Concludes The

71

Vaporization of zinc from scrap  

SciTech Connect (OSTI)

The rate of zinc vaporization from galvanized scrap was measured using a thermogravimetric apparatus along with chemical analysis. It is found that the rate of zinc vaporization is very fast in nitrogen and carbon monoxide atmospheres at temperatures higher than 950 C. At lower temperature rate decreases with decreasing temperature and is controlled by the gas phase mass transport. The simultaneous oxidation and vaporization of zinc occurs when the samples were heated in carbon dioxide and air. The current experimental results indicate that almost all of the zinc from scrap vaporizes during the heating process in a very short period of time after the temperature reaches above 850 C.

Ozturk, B.; Fruehan, R.J. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

1996-12-31T23:59:59.000Z

72

Vapor spill pipe monitor  

DOE Patents [OSTI]

The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

Bianchini, G.M.; McRae, T.G.

1983-06-23T23:59:59.000Z

73

Fuel vapor control device  

SciTech Connect (OSTI)

A fuel vapor control device is described having a valve opening and closing a passage connecting a carburetor and a charcoal canister according to a predetermined temperature. A first coil spring formed by a ''shape memory effect'' alloy is provided to urge the valve to open the passage when the temperature is high. A second coil spring urges the valve to close the passage. A solenoid is provided to urge an armature against the valve to close the passage against the force of the first coil spring when the engine is running. The solenoid heats the first coil spring to generate a spring force therein when the engine is running. When the engine is turned off, the solenoid is deactivated, and the force of the first spring overcomes the force of the second spring to open the passage until such time as the temperature of the first spring drops below the predetermined temperature.

Ota, I.; Nishimura, Y.; Nishio, S.; Yogo, K.

1987-10-20T23:59:59.000Z

74

Vapor port and groundwater sampling well  

DOE Patents [OSTI]

A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

75

Vapor port and groundwater sampling well  

DOE Patents [OSTI]

A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

Hubbell, J.M.; Wylie, A.H.

1996-01-09T23:59:59.000Z

76

Passive vapor extraction feasibility study  

SciTech Connect (OSTI)

Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft{sup 3}/min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft{sup 3}/min air flow rates, passive vapor extraction is more cost effective below 100 ppm.

Rohay, V.J.

1994-06-30T23:59:59.000Z

77

Oxidative chemical vapor deposition of conductive polymers for use in novel photovoltaic device architectures  

E-Print Network [OSTI]

The conductive polymer poly(3,4-ethylenedioxythiophene), (PEDOT), deposited via oxidative chemical vapor deposition (oCVD) has been investigated for use in organic electronic devices. The oCVD process as well as the ...

Howden, Rachel M. (Rachel Mary)

2013-01-01T23:59:59.000Z

78

Portable vapor diffusion coefficient meter  

DOE Patents [OSTI]

An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

Ho, Clifford K. (Albuquerque, NM)

2007-06-12T23:59:59.000Z

79

Vapor deposition of hardened niobium  

DOE Patents [OSTI]

A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

Blocher, Jr., John M. (Columbus, OH); Veigel, Neil D. (Columbus, OH); Landrigan, Richard B. (Columbus, OH)

1983-04-19T23:59:59.000Z

80

Headspace vapor characterization of Hanford Waste Tank 241-T-110: Results from samples collected on August 31, 1995. Tank Vapor Characterization Project  

SciTech Connect (OSTI)

This report describes the results of vapor samples taken from the headspace of waste storage tank 241-T-110 (Tank T-110) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5056. Samples were collected by WHC on August 31, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

McVeety, B.D.; Thomas, B.L.; Evans, J.C. [and others

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Vaporization Enthalpies and Vapor Pressures of Some Primary Amines of Pharmaceutical Importance by Correlation Gas  

E-Print Network [OSTI]

by Correlation Gas Chromatography Chase Gobble, Nigam Rath, and James Chickos* Department of Chemistry Information ABSTRACT: Vapor pressures, vaporization, and sublimation enthalpies of several pharmaceuticals and boiling temperatures when available. Sublimation enthalpies and vapor pressures are also evaluated for 1

Chickos, James S.

82

Vapor deposition of thin films  

DOE Patents [OSTI]

A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

83

VAPORIZATION THERMODYNAMICS OF KCl. COMBINING VAPOR PRESSURE AND GRAVIMETRIC DATA  

E-Print Network [OSTI]

.B. Department of Chemistry, Moscow State University, Moscow, 119899, Russia Bonnell D.W., Hastie J.W. National temperature chemistry situations, vapor pressures are typically less than 100 kPa. The molar volume is p = 101325 Pa). The subscript trs denotes that the changeisfor a transition, typically sublimation

Rudnyi, Evgenii B.

84

Hydrogen Cars and Water Vapor  

E-Print Network [OSTI]

misidentified as "zero-emissions vehicles." Fuel cell vehicles emit water vapor. A global fleet could have, with discernible effects on people and ecosystems. The broad environmental effects of fuel cell vehicles. This cycle is currently under way with hydrogen fuel cells. As fuel cell cars are suggested as a solution

Colorado at Boulder, University of

85

Vapor phase modifiers for oxidative coupling  

DOE Patents [OSTI]

Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

Warren, Barbara K. (Charleston, WV)

1991-01-01T23:59:59.000Z

86

Reflux condensation of pure vapors with and without a noncondensable gas inside plain and enhanced tubes  

SciTech Connect (OSTI)

Estimates of the surface-area and vapor-release reductions are obtained when commercially available enhanced tubes (spirally ribbed) replace plain tubes in a reflux unit condensing pure organic vapors with different concentrations of a noncondensable gas. This investigation was undertaken because there are no existing data and/or prediction methods that are applicable for these shell-and-tube condensers commonly used in the process industries. To obtain these estimates, existing design methods published in the open literature were used. The major findings are that (1) surface-area reductions can almost approach the single-phase heat transfer enhancement level, and (2) vapor-release reductions can approach a factor of four. The important implication is that enhanced tubes appear to be very cost effective for addressing the recovery of volatile organic vapors (VOCs), and for a vast number of different reflux-condenser applications.

Abdelmessih, A.N. [Seattle Univ., WA (United States); Rabas, T.J.; Panchal, C.B. [Argonne National Lab., IL (United States)

1997-06-01T23:59:59.000Z

87

Adsorption -capacity data for 283 organic compounds  

SciTech Connect (OSTI)

Adsorption on activated carbon is a widely used method for removing volatile organic compounds (VOCs) from gases and other exhaust streams. This article presents a compilation of adsorption-capacity data as a function of the VOC concentration in the gas. The results are useful in engineering and environmental studies, and in the design of carbon-based adsorption systems to remove unwanted organic pollutants from gases. For vapor control, carbon-based systems typically combine a carbon-adsorption unit with a secondary control method to reclaim or destroy the vapors desorbed during carbon-bed regeneration. To remove organics dissolved in wastewater, air stripping is typically used to transfer the organics to a vapor stream. Carbon adsorption is then used to separate the organics from the stripper exhaust. Collected vapors can be recovered for reuse or destroyed, depending on their value.

Yaws, C.L.; Bu, L.; Nijhawan, S. [Lamar Univ., Beaumont, TX (United States)

1995-05-01T23:59:59.000Z

88

Production of higher quality bio-oils by in-line esterification of pyrolysis vapor  

DOE Patents [OSTI]

The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

2014-12-02T23:59:59.000Z

89

Tank Vapor Characterization Project: Headspace vapor characterization of Hanford waste tank 241-S-101: Results from samples collected on 06/06/96  

SciTech Connect (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-101. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained. Analyte concentrations were based on analytical results and sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed.

Thomas, B.L.; Evans, J.C.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

1997-01-01T23:59:59.000Z

90

Vapor canister heater for evaporative emissions systems  

SciTech Connect (OSTI)

Automotive evaporative emissions systems use a charcoal canister to store evaporative hydrocarobn emissions. These stored vapors are later purged and burned during engine operation. Under certain conditions the engine cannot completely purge the canister of the stored fuel vapors, which results in a decreased vapor storage capacity in the canister. A self-regulating PTC (Positive Temperature Coefficient) heater has been developed to warm the purge air as it enters the canister, in order to provide thermal energy for increased release of the vapors from charcoal sites. This paper describes the construction and operation of the vapor canister heater as it relates to improved evaporative emission system performance.

Bishop, R.P.; Berg, P.G.

1987-01-01T23:59:59.000Z

91

Control of flow through a vapor generator  

DOE Patents [OSTI]

In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

Radcliff, Thomas D.

2005-11-08T23:59:59.000Z

92

Enhanced Attenuation Technologies: Passive Soil Vapor Extraction  

SciTech Connect (OSTI)

Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE flowchart provides a structured process to determine if the technology is, or is not, reasonable and defensible for a particular site. The central basis for that decision is the expected performance of PSVE under the site specific conditions. Will PSVE have sufficient mass removal rates to reduce the release, or flux, of contamination into the underlying groundwater so that the site can meet it overall remedial objectives? The summary technical information, case study experiences, and structured decision process provided in this 'user guide' should assist environmental decision-makers, regulators, and engineers in selecting and successfully implementing PSVE at appropriate sites.

Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

2010-03-15T23:59:59.000Z

93

Wick for metal vapor laser  

DOE Patents [OSTI]

An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

Duncan, David B. (Livermore, CA)

1992-01-01T23:59:59.000Z

94

Overview of chemical vapor infiltration  

SciTech Connect (OSTI)

Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

1993-06-01T23:59:59.000Z

95

Vapor phase modifiers for oxidative coupling  

DOE Patents [OSTI]

Volatilized metal compounds are described which are capable of retarding vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

Warren, B.K.

1991-12-17T23:59:59.000Z

96

Near real time vapor detection and enhancement using aerosol adsorption  

SciTech Connect (OSTI)

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J.; Johnson, Stanley A.

1997-12-01T23:59:59.000Z

97

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents [OSTI]

A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

Novick, V.J.; Johnson, S.A.

1999-08-03T23:59:59.000Z

98

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents [OSTI]

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J. (Downers Grove, IL); Johnson, Stanley A. (Countryside, IL)

1999-01-01T23:59:59.000Z

99

Tropospheric water vapor and climate sensitivity  

SciTech Connect (OSTI)

Estimates are made of the effect of changes in tropospheric water vapor on the climate sensitivity to doubled carbon dioxide (CO{sub 2}) using a coarse resolution atmospheric general circulation model coupled to a slab mixed layer ocean. The sensitivity of the model to doubled CO{sub 2} is found as the difference between the equilibrium responses for control and doubled CO{sub 2} cases. Clouds are specified to isolate the water vapor feedback. Experiments in which the water vapor distribution is specified rather than internally calculated are used to find the contribution of water vapor in various layers and latitude belts to the sensitivity. The contribution of water vapor in layers of equal mass to the climate sensitivity varies by about a factor of 2 with height, with the largest contribution coming from layers between 450 and 750 mb, and the smallest from layers above 230 mb. The positive feedback on the global mean surface temperature response to doubled CO{sub 2} from water vapor above 750 mb is about 2.6 times as large as that from water vapor below 750 mb. The feedback on global mean surface temperature due to water vapor in the extratropical free troposphere is about 50% larger than the feedback due to the lower-latitude free troposphere water vapor. Several important sources of nonlinearity of the radiative heating rates were identified in the process of constructing the specified cloud and water vapor fields. These are (1) the interaction of clouds and solar radiation, which produces much more reflection of solar radiation for time mean clouds than for the instantaneous clouds; (2) the correlation of clouds and water vapor, which produces less downward longwave radiation at the ground for correlated clouds and water vapor than when these fields are independent; and (3) the interaction of water vapor with long wave radiation, which produces less downward longwave radiation at the ground of the average over instantaneous water vapor distributions than of the time mean water vapor distribution.

Schneider, E.K.; Kirtman, B.P.; Lindzen, R.S. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)] [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

1999-06-01T23:59:59.000Z

100

Thermophilic Biotrickling Filtration of Ethanol Vapors  

E-Print Network [OSTI]

Thermophilic Biotrickling Filtration of Ethanol Vapors H U U B H . J . C O X , T H O M A S S E X of ethanol vapors in biotrickling filters for air pollution control was investigated. Two reactors were adaptation phase, the removal of ethanol was similar in both reactors. At a bed contact time of 57 s

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

LNG fire and vapor control system technologies  

SciTech Connect (OSTI)

This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

1982-06-01T23:59:59.000Z

102

SPATIALLY ORGANIZED PARYLENE NANOWIRES FABRICATED BY OBLIQUE ANGLE VAPOR DEPOSITION  

E-Print Network [OSTI]

surfaces by functionalization through two methods: (i) electroless method of creating a porous Nickel 50-80 nm thin nickel film can be obtained by electroless deposition on the pary

Demirel, Melik C.

103

Organic lateral heterojunction devices for vapor-phase chemical detection  

E-Print Network [OSTI]

As the U.S. is engaged in battle overseas, there is an urgent need for the development of sensors for early warning and protection of military forces against potential attacks. On the battlefields, improvised explosive ...

Ho, John C., 1980-

2009-01-01T23:59:59.000Z

104

Sandia National Laboratories: metal organic chemical vapor deposition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime is the cumulativeissues

105

HANFORD CHEMICAL VAPORS WORKER CONCERNS & EXPOSURE EVALUATION  

SciTech Connect (OSTI)

Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors.

ANDERSON, T.J.

2006-12-20T23:59:59.000Z

106

Stimulated emission of ultraviolet radiation by vapors of complex molecules  

SciTech Connect (OSTI)

Lasing was observed in vapors of new organic compounds: para-terphenyl, 2-phenylbenzoxazole, 2-(n-tolyl) benzoxazole, 2-(n-methoxyphenyl) benzoxazole, 2-(n-dimethylaminophenyl) benzoxazole, 2-biphenylbenzoxazole, 2-(..cap alpha..-naphthyl) benzoxazole, and also 1,4-di(n-phenylethynyl) benzole, and para-quaterphenyl pumped transversely by XeCl excimer laser radiation at lambda/sub p/ = 308 nm. The lasing bands without tuning covered the 330--370 nm range. The shortest-wavelength maximum (333.5 nm) was observed for 2-(n-methoxyphenyl) benzoxazole. An analysis was made of the lasing ability of the molecules.

Barkova, L.A.; Gruzinskii, V.V.; Danilova, V.I.; Degtyarenko, K.M.; Kopylova, T.N.; Kuznetsov, A.L.

1981-08-01T23:59:59.000Z

107

Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank U-204, Results from samples collected on August 8, 1995  

SciTech Connect (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-204 (Tank U-204) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the results is listed. Detailed descriptions of the analytical results appear in the text.

Clauss, T.W.; Evans, J.C.; McVeety, B.D.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Ligotke, M.W.

1995-11-01T23:59:59.000Z

108

Quantitative Infrared Intensity Studies of Vapor-PhaseGlyoxal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal, and 2,3-Butanedione (Diacetyl) with Quantitative Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal,...

109

Absolute integrated intensities of vapor-phase hydrogen peroxide...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Absolute integrated intensities of vapor-phase hydrogen peroxide (H202) in the mid-infrared at atmospheric pressure. Absolute integrated intensities of vapor-phase hydrogen...

110

Sulfurization of a carbon surface for vapor phase mercury removal II: Sulfur forms and mercury uptake  

E-Print Network [OSTI]

promote the formation of organic sulfur and the presence of H2S during the cooling process increased in the presence of H2S was very effective towards Hg uptake in nitrogen. Corre- lation of mercury uptake capacitySulfurization of a carbon surface for vapor phase mercury removal ­ II: Sulfur forms and mercury

Borguet, Eric

111

Headspace vapor characterization of Hanford Waste Tank 241-U-112: Results from samples collected on 7/09/96  

SciTech Connect (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-112 at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company.

Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

1997-01-01T23:59:59.000Z

112

Porous media to separate gases liquid droplets and/or solid particles from gases or vapors and coalesce entrained droplets  

SciTech Connect (OSTI)

Gas-vapor treating and filter mats are described that are composed of glass fibers intermixed with micro-bits of any of an expanded thermoplastic styrene-polymer or expanded thermoplastic lower polyolefin or flexible foam polyurethane and a suitable organic bonding agent, which mat may contain any of fibers of a fiber-forming terephthalate polyester, activated carbon, and gas-vapor adsorbent crystalline zeolite molecular sieve particles.

Klein, M.

1980-12-16T23:59:59.000Z

113

Tank 241-C-101 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank C-101 headspace gas and vapor samples were collected and analyzed to help determine the potential risks of fugitive emissions to tank farm workers. Gas and vapor samples from the Tank C-101 headspace were collected on July 7, 1994 using the in situ sampling (ISS) method, and again on September 1, 1994 using the more robust vapor sampling system (VSS). Gas and vapor concentrations in Tank C-101 are influenced by its connections to other tanks and its ventilation pathways. At issue is whether the organic vapors in Tank C-101 are from the waste in that tank, or from Tanks C-102 or C-103. Tank C-103 is on the Organic Watch List; the other two are not. Air from the Tank C-101 headspace was withdrawn via a 7.9-m long heated sampling probe mounted in riser 8, and transferred via heated tubing to the VSS sampling manifold. The tank headspace temperature was determined to be 34.0 C, and all heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks provided by the laboratories.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

114

Tank vapor characterization project: Tank 241-BY-101 headspace gas and vapor characterization results from samples collected on August 29, 1996  

SciTech Connect (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BY-101 (Tank BY-101) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Total non-methane organic compounds (TNMOCs) were the principal flammable constituent of the Tank By-101 headspace, determined to be present at approximately 0.136% of the LFL. Averaged measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B. [and others

1997-08-01T23:59:59.000Z

115

Tank Vapor Characterization Project: Tank 241-BX-104 headspace gas and vapor characterization results from samples collected on August 22, 1996  

SciTech Connect (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-104 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analyses plan (SAP). Total non-methane organic compounds was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.310% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.784% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Julya, J.L. [and others

1997-08-01T23:59:59.000Z

116

Chemical vapor deposition of functionalized isobenzofuran polymers  

E-Print Network [OSTI]

This thesis develops a platform for deposition of polymer thin films that can be further tailored by chemical surface modification. First, we explore chemical vapor deposition of functionalized isobenzofuran films using ...

Olsson, Ylva Kristina

2007-01-01T23:59:59.000Z

117

Chemical vapor deposition of antimicrobial polymer coatings  

E-Print Network [OSTI]

There is large and growing interest in making a wide variety of materials and surfaces antimicrobial. Initiated chemical vapor deposition (iCVD), a solventless low-temperature process, is used to form thin films of polymers ...

Martin, Tyler Philip, 1977-

2007-01-01T23:59:59.000Z

118

Method and apparatus for detection of chemical vapors  

DOE Patents [OSTI]

The present invention is a gas detector and method for using the gas detector for detecting and identifying volatile organic and/or volatile inorganic substances present in unknown vapors in an environment. The gas detector comprises a sensing means and a detecting means for detecting electrical capacitance variance of the sensing means and for further identifying the volatile organic and volatile inorganic substances. The sensing means comprises at least one sensing unit and a sensing material allocated therein the sensing unit. The sensing material is an ionic liquid which is exposed to the environment and is capable of dissolving a quantity of said volatile substance upon exposure thereto. The sensing means constitutes an electrochemical capacitor and the detecting means is in electrical communication with the sensing means.

Mahurin, Shannon Mark (Knoxville, TN); Dai, Sheng (Knoxville, TN); Caja, Josip (Knoxville, TN)

2007-05-15T23:59:59.000Z

119

Optical monitor for water vapor concentration  

DOE Patents [OSTI]

A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.

Kebabian, Paul (Acton, MA)

1998-01-01T23:59:59.000Z

120

Composites for removing metals and volatile organic compounds and method thereof  

SciTech Connect (OSTI)

Functionalized hydrophobic aerogel/solid support structure composites have been developed to remove metals and organic compounds from aqueous and vapor media. The targeted metals and organics are removed by passing the aqueous or vapor phase through the composite which can be in molded, granular, or powder form. The composites adsorb the metals and the organics leaving a purified aqueous or vapor stream. The species-specific adsorption occurs through specific functionalization of the aerogels tailored towards specific metals and/or organics. After adsorption, the composites can be disposed of or the targeted metals and/or organics can be reclaimed or removed and the composites recycled.

Coronado, Paul R. (Livermore, CA); Coleman, Sabre J. (Oakland, CA); Reynolds, John G. (San Ramon, CA)

2006-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Detection of volatile organic compounds using surface enhanced Raman scattering  

SciTech Connect (OSTI)

The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

Chang, A S; Maiti, A; Ileri, N; Bora, M; Larson, C C; Britten, J A; Bond, T C

2012-03-22T23:59:59.000Z

122

Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III  

SciTech Connect (OSTI)

This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999.

LOCKREM, L.L.

1999-08-13T23:59:59.000Z

123

Volatile organic compound sensing devices  

DOE Patents [OSTI]

Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

1995-08-29T23:59:59.000Z

124

Volatile organic compound sensing devices  

DOE Patents [OSTI]

Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

Lancaster, Gregory D. (Idaho Falls, ID); Moore, Glenn A. (Idaho Falls, ID); Stone, Mark L. (Idaho Falls, ID); Reagen, William K. (Stillwater, MN)

1995-01-01T23:59:59.000Z

125

Vapor Pressures and Vaporization, Sublimation, and Fusion Enthalpies of Some Fatty Acids  

E-Print Network [OSTI]

Vapor Pressures and Vaporization, Sublimation, and Fusion Enthalpies of Some Fatty Acids Joe A. Wilson and James S. Chickos* Department of Chemistry and Biochemistry, University of MissouriSt. Louis, St. Louis, Missouri 63121, United States *S Supporting Information ABSTRACT: Sublimation enthalpies

Chickos, James S.

126

Vapor Pressures and Vaporization Enthalpies of a Series of Dialkyl Phthalates by Correlation Gas Chromatography  

E-Print Network [OSTI]

Chromatography Chase Gobble and James Chickos* Department of Chemistry and Biochemistry University of Missouri-St. Louis, St. Louis Missouri 63121, United States Sergey P. Verevkin Department of Physical Chemistry: Experimental vapor pressures, vaporization, fusion and sublimation enthalpies of a number of dialkyl

Chickos, James S.

127

Tank Vapor Characterization Project: Tank 241-BX-111 headspace gas and vapor characterization results from samples collected on August 27, 1996  

SciTech Connect (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-111 (Tank BX-111) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Ammonia was the principal flammable constituent of the Tank BX-111 headspace, determined to be present at approximately 0.042 of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.157% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Pool, K.H.; Evans, J.C.; Thomas, B.L.; Sklarew, D.S. Edwards, J.A. [and others

1997-08-01T23:59:59.000Z

128

Tank Vapor Characterization Project: Tank 241-C-107 temporal study headspace gas and vapor characterization results from samples collected on September 5, 1996  

SciTech Connect (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-C-107 at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank C-107 headspace, determined to be present at approximately 1.405% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <1.519% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Pool, K.H.; Evans, J.C.; Thomas, B.L.; Edwards, J.A.; Silvers, K.L. [and others

1997-08-01T23:59:59.000Z

129

Tank 241-BY-108 fourth temporal study: Headspace gas and vapor characterization results from samples collected on November 14, 1997. Tank vapor characterization project  

SciTech Connect (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected nonradioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BY-108 headspace, determined to be present at approximately 1.390% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.830% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Evans, J.C.; Pool, K.H.; Olsen, K.B. [and others

1997-07-01T23:59:59.000Z

130

Tank vapor characterization project: Tank 241-BX-104 fifth temporal study: Headspace gas and vapor characterization results from samples collected on June 10, 1997  

SciTech Connect (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-104 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.270% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.675% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Hayes, J.C.; Pool, K.H.; Evans, J.C.; Olsen, K.B. [and others

1997-07-01T23:59:59.000Z

131

Tank Vapor Characterization Project: Tank 241-BX-103 headspace gas and vapor characterization results from samples collected on August 1, 1996  

SciTech Connect (OSTI)

This report presents the results from analyses of samples taken from headspace of waste storage tank 241-BX-103 (Tank BX-103) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-103 headspace, determined to be present at approximately 0.385% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.633% if the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Evans, J.C.; Pool, K.H.; Thomas, B.L.; Sklarew, D.S.; Edwards, J.A. [and others] [and others

1997-08-01T23:59:59.000Z

132

Tank Vapor Characterization Project: Tank 241-BX-102 headspace gas and vapor characterization results from samples collected on July 31, 1996  

SciTech Connect (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-102 (Tank BX-102) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and and analysis plan. Ammonia and TNMOCs were the principal flammable constituents of the Tank BX-102 headspace, each determined to be present at approximately 0.002% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.107% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Pool, K.H.; Evans, J.C.; Thomas, B.L.; Olsen, K.B. Edwards, J.A. [and others

1997-08-01T23:59:59.000Z

133

Tank 241-BX-104 fourth temporal study: Headspace gas and vapor characterization results from samples collected on April 7, 1997. Tank vapor characterization project  

SciTech Connect (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-04 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.208% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.536% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Mitroshkov, A.V.; Hayes, J.C.; Evans, J.C. [and others

1997-09-01T23:59:59.000Z

134

Tank 241-BX-104 third temporal study: Headspace gas and vapor characterization results from samples collected on February 6, 1997. Tank vapor characterization project  

SciTech Connect (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-104 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.178 % of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.458% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Evans, J.C.; Pool, K.H.; Hayes, J.C. [and others

1997-09-01T23:59:59.000Z

135

Tank Vapor Characterization Project: Tank 241-BY-108 temporal study headspace gas and vapor characterization results from samples collected on September 10, 1996  

SciTech Connect (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. Ammonia was determined to be above the immediate notification limit of 150 ppm specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BY-108 headspace, determined to be present at approximately 1.463% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.940% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Evans, J.C.; Pool, K.H.; Thomas, B.L.; Sklarew, D.S. [and others

1997-08-01T23:59:59.000Z

136

Tank 241-C-107 fifth temporal study: Headspace gas and vapor characterization results from samples collected on February 7, 1997. Tank vapor characterization project  

SciTech Connect (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Services Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank C-107 headspace, determined to be present at approximately 3.233% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <3.342% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Hayes, J.C.; Pool, K.H.; Evans, J.C. [and others

1997-08-01T23:59:59.000Z

137

Tank vapor characterization project: Tank 241-S-102 temporal study headspace gas and vapor characterization results from samples collected on September 19, 1996  

SciTech Connect (OSTI)

This report presents the results from analysis of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. Ammonia was determined to be above the immediate notification limit of 150 ppm as specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 2.948% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <3.659% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Tables S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Evans, J.C.; Pool, K.H.; Thomas, B.L.; Sklarew, D.S. [and others

1997-08-01T23:59:59.000Z

138

Tank 241-S-102 fifth temporal study: Headspace gas and vapor characterization results from samples collected on February 11, 1997. Tank vapor characterization project  

SciTech Connect (OSTI)

This report presents tile results from analyses of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurlsys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by tile Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based oil measured sample volumes provided by SESC. Ammonia was determined to be above tile immediate notification limit of 150 ppm as specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 1.150% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <1.624% of the LFL, Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of tile analytical results are provided in Section 3.0.

Mitroshkov, A.V.; Evans, J.C.; Hayes, J.C. [and others

1997-09-01T23:59:59.000Z

139

Tank 241-BY-108 fifth temporal study: Headspace gas and vapor characterization results from samples collected on January 30, 1997. Tank vapor characterization project  

SciTech Connect (OSTI)

This report presents the results from analyses of samples taken from tile headspace of waste storage tank 241-B-108 (Tank BY - 108) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Services Corporation (SESC) and analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BY-108 headspace, determined to be present at approximately 0.888% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <1.979% of tile LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Evans, J.C.; Pool, K.H.; Olsen, K.B. [and others

1997-09-01T23:59:59.000Z

140

Tank Vapor Characterization Project: Tank 241-S-102 fourth temporal study: Headspace gas and vapor characterization results from samples collected on December 19, 1996  

SciTech Connect (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm as specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 2.410% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Pool, K.H.; Evans, J.C.; Olsen, K.B.; Hayes, J.C. [and others

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Tank Vapor Characterization Project: Tank 241-BX-104 second temporal study headspace gas and vapor characterization results from samples collected on December 12, 1996  

SciTech Connect (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-104 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample provided by SESC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.248% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.645% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Pool, K.H.; Evans, J.C.; Hayes, J.C.; Olsen, K.B. [and others

1997-08-01T23:59:59.000Z

142

Tank Vapor Characterization Project: Tank 241-C-107 fourth temporal study: Headspace gas and vapor characterization results from samples collected on December 17, 1996  

SciTech Connect (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank C-107 headspace, determined to be present at approximately 2.825% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.935% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Pool, K.H.; Evans, J.C.; Olsen, K.B.; Hayes, J.C. [and others

1997-08-01T23:59:59.000Z

143

Method and Apparatus for Concentrating Vapors for Analysis  

DOE Patents [OSTI]

An apparatus and method are disclosed for pre-concentrating gaseous vapors for analysis. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable. Vapors sorbed and concentrated within the bed of the apparatus can be thermally desorbed achieving at least partial separation of vapor mixtures. The apparatus is suitable, e.g., for preconcentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than for direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications.

Grate, Jay W. (West Richland, WA); Baldwin, David L. (Kennewick, WA); Anheier, Jr., Norman C. (Richland, WA)

2008-10-07T23:59:59.000Z

144

Thermal electric vapor trap arrangement and method  

DOE Patents [OSTI]

A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself. 4 figs.

Alger, T.

1988-03-15T23:59:59.000Z

145

APPLICATION OF STIR BAR SORPTIVE EXTRACTION TO ANALYSIS OF VOLATILE AND SEMIVOLATILE ORGANIC CHEMICALS OF POTENTIAL CONCERN IN SOLIDS AND AQUEOUS SAMPLES FROM THE HANFORD SITE  

SciTech Connect (OSTI)

Stir bar sorptive extraction was applied to aqueous and solid samples for the extraction and analysis of organic compounds from the Hanford chemicals of potential concern list, as identified in the vapor data quality objectives. The 222-S Laboratory analyzed these compounds from vapor samples on thermal desorption tubes as part of the Hanford Site industrial hygiene vapor sampling effort.

FRYE JM; KUNKEL JM

2009-03-05T23:59:59.000Z

146

Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)  

SciTech Connect (OSTI)

In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

Not Available

2013-10-01T23:59:59.000Z

147

Desalination Using Vapor-Compression Distillation  

E-Print Network [OSTI]

and MSF, this research investigates a high-efficiency mechanical vapor-compression distillation system that employs an improved water flow arrangement. The incoming salt concentration was 0.15% salt for brackish water and 3.5% salt for seawater, whereas...

Lubis, Mirna R.

2010-07-14T23:59:59.000Z

148

Reductive Dehalogenation of Trichloroethene Vapors in an  

E-Print Network [OSTI]

to treat trichloroethene (TCE) from waste gases generated by soil vapor extraction or dual-phase extraction through the recirculating liquid as a source of hydrogen, the electron donor for Dehalococcoides strains (DPE) (4). However, these techniques result in a waste gas stream that needs further treatment. Several

149

Advancing Explosives Detection Capabilities: Vapor Detection  

ScienceCinema (OSTI)

A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

Atkinson, David

2014-07-24T23:59:59.000Z

150

Vaporization of synthetic fuels. Final report. [Thesis  

SciTech Connect (OSTI)

The problem of transient droplet vaporization in a hot convective environment is examined. The main objective of the present study is to develop an algorithm for the droplet vaporization which is simple enough to be feasibly incorporated into a complete spray combustion analysis and yet will also account for the important physics such as liquid-phase internal circulation, unsteady droplet heating and axisymmetric gas-phase convection. A simplified liquid-phase model has been obtained based on the assumption of the existence of a Hill's spherical vortex inside the droplet together with some approximations made in the governing diffusion equation. The use of the simplified model in a spray situation has also been examined. It has been found that droplet heating and vaporization are essentially unsteady and droplet temperature is nonuniform for a significant portion of its lifetime. It has also been found that the droplet vaporization characteristic can be quite sensitive to the particular liquid-phase and gas-phase models. The results of the various models are compared with the existing experimental data. Due to large scattering in the experimental measurements, particularly the droplet diameter, no definite conclusion can be drawn based on the experimental data. Finally, certain research problems which are related to the present study are suggested for future studies.

Sirignano, W.A.; Yao, S.C.; Tong, A.Y.; Talley, D.

1983-01-01T23:59:59.000Z

151

Chemical vapor deposition of mullite coatings  

DOE Patents [OSTI]

This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

Sarin, Vinod (Lexington, MA); Mulpuri, Rao (Boston, MA)

1998-01-01T23:59:59.000Z

152

Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank 241-C-204: Results from samples collected on 07/02/96  

SciTech Connect (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-C-204 (Tank C-204) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. The three highest concentration analytes detected in SUMMA{trademark} canister and triple sorbent trap samples are also listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices.

Thomas, B.L.; Evans, J.C.; Pool, K.H. [and others

1997-01-01T23:59:59.000Z

153

Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Tank 241-B-105: Results from samples collected on 07/30/96  

SciTech Connect (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-B-105 (Tank B-105) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. The three highest concentration analytes detected in SUMMA{trademark} canister and triple sorbent trap samples are also listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices.

Pool, K.H.; Evans, J.C.; Thomas, B.L. [and others

1997-01-01T23:59:59.000Z

154

Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank 241-S-103: Results from samples collected on 06/12/96  

SciTech Connect (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-103 (Tank S-103) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. The three highest concentration analytes detected in SUMMA{trademark} canister and triple sorbent trap samples are also listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices.

Evans, J.C.; Pool, K.H.; Thomas, B.L. [and others

1997-01-01T23:59:59.000Z

155

Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Tank 241-TY-102: Results from samples collected on 04/12/96  

SciTech Connect (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-TY-102 (Tank TY-102) at the Hanford Site in Washington State. The results described in this report were obtained to`characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes, and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. The three highest concentration analytes detected in SUMMA{trademark} canister and triple sorbent trap samples are also listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices.

Evans, J.C.; Pool, K.H.; Thomas, B.L. [and others

1997-01-01T23:59:59.000Z

156

Industrial Heat Pumps Using Solid/Vapor Working Fluids  

E-Print Network [OSTI]

INDUSTRIAL HEAT PUMPS USING SOLID/VAPOR WORKING FLUIDS Uwe Rockenfeller, Desert Research Institute, Boulder City, Nevada ABSTRACT Industrial heat pumps have the potential to reduce the operating costs of chemical and heat treating processes... with vapor re-compression recovery systems. The state-of-the-art heat pump equipment employing liquid/vapor working fluids fulfills the requirements only in some applications. The employment of solid/vapor complex compounds leads to 'nore cost effective...

Rockenfeller, U.

157

Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines  

E-Print Network [OSTI]

A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption that the multi-grade oil can be modeled as a compound of several ...

Cho, Yeunwoo, 1973-

2004-01-01T23:59:59.000Z

158

Apparatus and method for photochemical vapor deposition  

DOE Patents [OSTI]

A photochemical vapor deposition apparatus includes a reactor housing having a window in one wall above a reaction chamber in the housing. A transparent curtain divides the reaction chamber into a reaction zone and a flush zone. At least one substrate is mounted in the reaction zone in light communication with the window so that ultraviolet radiation may penetrate through the window into the reaction zone. The window is kept clear by a gas flowing through the flush zone.

Jackson, Scott C. (Wilmington, DE); Rocheleau, Richard E. (Wilmington, DE)

1987-03-31T23:59:59.000Z

159

DuPont Chemical Vapor Technical Report  

SciTech Connect (OSTI)

DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH&Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations.

MOORE, T.L.

2003-10-03T23:59:59.000Z

160

Copper vapor laser modular packaging assembly  

DOE Patents [OSTI]

A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

Alger, Terry W. (Tracy, CA); Ault, Earl R. (Dublin, CA); Moses, Edward I. (Castro Valley, CA)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Modeling of LNG Pool Spreading and Vaporization  

E-Print Network [OSTI]

..................................................................................... 15 Figure 5: 90 mol% Methane 10mol% Ethane mixture VLE phase envelope .................. 18 Figure 6: Boiling temperature and vapor composition of 90 mol% methane 10mol% ethane mixture... process of natural gas allows a 600 fold reduction in the volume of the gas being transported at ambient pressure. The resulting liquid which is mainly composed of methane presents some hazardous properties linked to its flammable nature and its...

Basha, Omar 1988-

2012-11-20T23:59:59.000Z

162

Vapor-phase heat-transport system  

SciTech Connect (OSTI)

A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

Hedstrom, J.C.

1983-01-01T23:59:59.000Z

163

FIRST DETECTION OF WATER VAPOR IN A PRE-STELLAR CORE  

SciTech Connect (OSTI)

Water is a crucial molecule in molecular astrophysics as it controls much of the gas/grain chemistry, including the formation and evolution of more complex organic molecules in ices. Pre-stellar cores provide the original reservoir of material from which future planetary systems are built, but few observational constraints exist on the formation of water and its partitioning between gas and ice in the densest cores. Thanks to the high sensitivity of the Herschel Space Observatory, we report on the first detection of water vapor at high spectral resolution toward a dense cloud on the verge of star formation, the pre-stellar core L1544. The line shows an inverse P-Cygni profile, characteristic of gravitational contraction. To reproduce the observations, water vapor has to be present in the cold and dense central few thousand AU of L1544, where species heavier than helium are expected to freeze out onto dust grains, and the ortho:para H{sub 2} ratio has to be around 1:1 or larger. The observed amount of water vapor within the core (about 1.5 Multiplication-Sign 10{sup -6} M{sub Sun }) can be maintained by far-UV photons locally produced by the impact of galactic cosmic rays with H{sub 2} molecules. Such FUV photons irradiate the icy mantles, liberating water vapor in the core center. Our Herschel data, combined with radiative transfer and chemical/dynamical models, shed light on the interplay between gas and solids in dense interstellar clouds and provide the first measurement of the water vapor abundance profile across the parent cloud of a future solar-type star and its potential planetary system.

Caselli, Paola; Douglas, Thomas [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Keto, Eric [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bergin, Edwin A. [Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Tafalla, Mario [Observatorio Astronomico Nacional (IGN), Calle Alfonso XII, 3, E-28014 Madrid (Spain); Aikawa, Yuri [Department of Earth and Planetary Sciences, Kobe University, Nada, 657-8501 Kobe (Japan); Pagani, Laurent [LERMA and UMR 8112 du CNRS, Observatoire de Paris, 61 Av. de l'Observatoire, F-75014 Paris (France); Yildiz, Umut A.; Kristensen, Lars E.; Van Dishoeck, Ewine F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Van der Tak, Floris F. S. [SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV, Groningen (Netherlands); Walmsley, C. Malcolm; Codella, Claudio [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Nisini, Brunella, E-mail: p.caselli@leeds.ac.uk [INAF-Osservatorio Astronomico di Roma, I-00040 Monte Porzio Catone (Italy)

2012-11-10T23:59:59.000Z

164

Tank 241-B-103 headspace gas and vapor characterization: Results for homogeneity samples collected on October 16, 1996. Tank vapor characterization project  

SciTech Connect (OSTI)

This report presents the results of analyses of samples taken from the headspace of waste storage tank 241-B-103 (Tank B-103) at the Hanford Site in Washington State. Samples were collected to determine the homogeneity of selected inorganic and organic headspace constituents. Two risers (Riser 2 and Riser 7) were sampled at three different elevations (Bottom, Middle, and Top) within the tank. Tank headspace samples were collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL.

Olsen, K.B.; Pool, K.H.; Evans, J.C. [and others

1997-06-01T23:59:59.000Z

165

Method and apparatus for concentrating vapors for analysis  

DOE Patents [OSTI]

A pre-concentration device and a method are disclosed for concentrating gaseous vapors for analysis. Vapors sorbed and concentrated within the bed of the pre-concentration device are thermally desorbed, achieving at least partial separation of the vapor mixtures. The pre-concentration device is suitable, e.g., for pre-concentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable.

Grate, Jay W. (West Richland, WA); Baldwin, David L. (Kennewick, WA); Anheier, Jr., Norman C. (Richland, WA)

2012-06-05T23:59:59.000Z

166

Chemical vapor deposition of epitaxial silicon  

DOE Patents [OSTI]

A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

Berkman, Samuel (Florham Park, NJ)

1984-01-01T23:59:59.000Z

167

Storing images in warm atomic vapor  

E-Print Network [OSTI]

Reversible and coherent storage of light in atomic medium is a key-stone of future quantum information applications. In this work, arbitrary two-dimensional images are slowed and stored in warm atomic vapor for up to 30 $\\mu$s, utilizing electromagnetically induced transparency. Both the intensity and the phase patterns of the optical field are maintained. The main limitation on the storage resolution and duration is found to be the diffusion of atoms. A techniqueanalogous to phase-shift lithography is employed to diminish the effect of diffusion on the visibility of the reconstructed image.

M. Shuker; O. Firstenberg; R. Pugatch; A. Ron; N. Davidson

2008-06-17T23:59:59.000Z

168

Mercury Vapor (Kooten, 1987) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald isMelletteEnclosed andEnergySolar SystemsVapor

169

Review of enhanced vapor diffusion in porous media  

SciTech Connect (OSTI)

Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper.

Webb, S.W.; Ho, C.K.

1998-08-01T23:59:59.000Z

170

Vaporizer design criteria for ethanol fueled internal combustion engines  

E-Print Network [OSTI]

. Stout (Member) L r x ge Edwa d A. Hiler (Head of Department) May 1985 ABSTRACT Vaporizer Design Criteria For Ethanol Fueled Internal Combustion Engines. (May 1985) Arachchi Rallage Ariyaratne, B. S. , University of Sri Lanka Chairman... VAPORIZATION LENGTH WITH UNIFORM HEAT FLUX 8 POLYNOMIAL FUNCTIONS FOR EVALUATING PARAMETERS C VARIATION OF HEAT FLUX AND AVERAGE SURFACE TEMPARATURE D PROGRAM FOR PREDICTING VAPORIZATION LENGTH 73 75 78 80 VITA 87 LIST OF TABLES TABLE Page 1...

Ariyaratne, Arachchi Rallage

2012-06-07T23:59:59.000Z

171

Method for controlling corrosion in thermal vapor injection gases  

DOE Patents [OSTI]

An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

1981-01-01T23:59:59.000Z

172

Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lassen Volcanic National Park Area (Varekamp & Buseck, 1983) Exploration...

173

The control of confined vapor phase explosions  

SciTech Connect (OSTI)

The probability of, for example, a fire or explosion occurring during a process operation is related both to the fire-related properties of the materials used, such as flash point, flammable limits etc., i.e. the material or intrinsic factors, and the nature of the operation and the equipment used, i.e. the extrinsic factors. The risk, or frequency of occurrence, of other hazards such as reaction runaway, major toxic release etc. can be determined in a similar manner. For a vapor phase explosion (and a fire) the probability of the event is the product of the probability of generating a flammable atmosphere and the probability of ignition. Firstly, materials may be coded using properties that are relevant to the hazard in question. Secondly, different operations have different degrees of risk and these risks are assigned as Low, Medium, High etc. according to criteria outlined here. Combination of these two factors will then be a measure of the overall risk of the operation with the specified material and may be used to define operating standards. Currently, the hazard/risk of a vapor phase explosions is examined by this method but in due course dust explosions, fires, condensed phase explosions, reaction runaways, physical explosions, major toxic releases and incompatibility will be included.

Scilly, N.F. [Laporte plc, Widnes (United Kingdom); Owen, O.J.R. [Fine Organics, Ltd., Middlesborough (United Kingdom); Wilberforce, J.K. [Solvay SA, Brussels (Belgium)

1995-12-31T23:59:59.000Z

174

Vapor and gas sampling of Single-Shell Tank 241-T-111 using the vapor sampling system  

SciTech Connect (OSTI)

This document presents sampling data resulting from the January 20, 1995, sampling of SST 241-T-111 using the vapor sampling system.

Caprio, G.S.

1995-09-01T23:59:59.000Z

175

Vapor and gas sampling of single-shell tank 241-BY-112 using the vapor sampling system  

SciTech Connect (OSTI)

This document presents sampling data from the November 18, 1994, sampling of SST 241-BY-112 using the vapor sampling system.

Caprio, G.S.

1995-09-20T23:59:59.000Z

176

Vapor and gas sampling of Single-Shell Tank 241-A-101 using the Vapor Sampling System  

SciTech Connect (OSTI)

This document presents sampling data resulting from the June 8, 1995, sampling of SST 241-A-101 using the Vapor Sampling System.

Caprio, G.S.

1995-11-01T23:59:59.000Z

177

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR  

E-Print Network [OSTI]

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR By SCOTT RUSSELL WAITUKAITIS A Thesis Submitted: #12;Abstract I describe a study of Faraday rotation in a hot lithium vapor. I begin by dis- cussing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 The Lithium Oven and Solenoid . . . . . . . . . . . . . . . . . 7 3 Theoretical Framework

Cronin, Alex D.

178

Isotopic composition of stratospheric water vapor: Measurements and photochemistry  

E-Print Network [OSTI]

of magnitude between the surface and the tropopause, and isotopically heavy water is pref- erentially removedIsotopic composition of stratospheric water vapor: Measurements and photochemistry David G. Johnson composition of stratospheric water vapor that result from methane oxidation and reactions with O( ¢¡ ). We

179

Chemical vapor detection with a multispectral thermal imager  

E-Print Network [OSTI]

Chemical vapor detection with a multispectral thermal imager Mark 1. G. Aithouse, MEMBER SPIE U.S. Army Chemical Research Development and Engineering Center SMCCR-DDT Aberdeen Proving Ground, Maryland algorithm 7. Conclusions 8. Acknowledgments 9. References 1. INTRODUCTION Detection of chemical vapor clouds

Chang, Chein-I

180

Informal Report . VAPOR DETECTION OF TRAFFICKING OF CONTRABAND MONEY-  

E-Print Network [OSTI]

I BNL- 62834 Informal Report . VAPOR DETECTION OF TRAFFICKING OF CONTRABAND MONEY-· [D VAPOR DETECTION OF TRAFFICKING OF CONTRABAND MONEY- A DISCUSSION OF TECHNICAL FEASIBILITY Concept MONEY --A DISCUSSION OF TECHNICAL FEASffiILITY Russell N. Dietz, Head Tracer Technology Center

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Temperature dependent vapor pressures of chlorinated catechols, syringols, and syringaldehydes  

SciTech Connect (OSTI)

The vapor pressures of nine chlorinated catechols, syringols, and syringaldehydes were determined as a function of temperature with a gas chromatographic retention time technique. The vapor pressures at 298.15 K were in the range of 0.02--1 Pa, and the enthalpies of vaporization, between 68 and 82 kJ/mol. The validity of the technique was established by a calibration involving four chlorinated phenols with well-known vapor pressures. Using these data and previously reported solubility data, Henry`s law constants for these substances and some chlorinated guaiacols and veratrols were estimated. The vapor pressure of these substances tends to decrease with increasing polarity and an increasing number of chlorine atoms. Henry`s law constants decrease sharply with increasing polarity, suggesting that methylation can result in a significant increase in a chemical`s potential for volatilization from water.

Lei, Y.D.; Shiu, W.Y.; Boocock, D.G.B. [Univ. of Toronto, Ontario (Canada). Dept. of Chemical Engineering and Applied Chemistry] [Univ. of Toronto, Ontario (Canada). Dept. of Chemical Engineering and Applied Chemistry; Wania, F. [WECC Wania Environmental Chemists Corp., Toronto, Ontario (Canada)] [WECC Wania Environmental Chemists Corp., Toronto, Ontario (Canada)

1999-03-01T23:59:59.000Z

182

Analysis of electron-beam vaporization of refractory metals  

SciTech Connect (OSTI)

An electron beam is focussed onto a small area on the surface of a refractory metal to locally raise the temperature and vaporize metal. At high vaporization rates the hot area is on the surface of a churning liquid-metal pool contained in a solid-metal skull which sits in a cooled crucible. Inner workings of the process are revealed by analysis of momentum, energy, and mass transfer. At the surface high temperature causes high vaporization rate and high vapor thrust, depressing the vapor/liquid surface. In the liquid pool surface-tension gradients and thermal buoyancy drive a (typically) chaotic flow. In the solid skull thermal conductivity and contact resistance regulate the rate of heat transfer from pool to crucible. Analyses of these phenomena together reveal process performance sensitivities - e.g., to depression size or to magnitude of surface-tension gradients. 12 refs., 3 figs.

Kheshgi, H.S.; Gresho, P.M.

1986-09-01T23:59:59.000Z

183

Chemical vapor deposition of group IIIB metals  

DOE Patents [OSTI]

Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

Erbil, A.

1989-11-21T23:59:59.000Z

184

Monitoring of vapor phase polycyclic aromatic hydrocarbons  

DOE Patents [OSTI]

An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

Vo-Dinh, Tuan; Hajaligol, Mohammad R.

2004-06-01T23:59:59.000Z

185

Kinetics of wet sodium vapor complex plasma  

SciTech Connect (OSTI)

In this paper, we have investigated the kinetics of wet (partially condensed) Sodium vapor, which comprises of electrons, ions, neutral atoms, and Sodium droplets (i) in thermal equilibrium and (ii) when irradiated by light. The formulation includes the balance of charge over the droplets, number balance of the plasma constituents, and energy balance of the electrons. In order to evaluate the droplet charge, a phenomenon for de-charging of the droplets, viz., evaporation of positive Sodium ions from the surface has been considered in addition to electron emission and electron/ion accretion. The analysis has been utilized to evaluate the steady state parameters of such complex plasmas (i) in thermal equilibrium and (ii) when irradiated; the results have been graphically illustrated. As a significant outcome irradiated, Sodium droplets are seen to acquire large positive potential, with consequent enhancement in the electron density.

Mishra, S. K., E-mail: nishfeb@rediffmail.com [Institute for Plasma Research (IPR), Gandhinagar 382428 (India); Sodha, M. S. [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)] [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)

2014-04-15T23:59:59.000Z

186

Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System  

SciTech Connect (OSTI)

HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

None

2012-01-04T23:59:59.000Z

187

Headspace vapor characterization of Hanford waste tank 241-B-107: Results from samples collected on 7/23/96  

SciTech Connect (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-B-107 (Tank B-107) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwestern National Laboratory (PNNL). A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. The three highest concentration analytes detected in SUMMA{trademark} canister and triple sorbent trap samples are also listed in the same table. Detailed descriptions of the analytical results appear in the appendices.

Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

1997-01-01T23:59:59.000Z

188

Headspace vapor characterization of Hanford waste tank 241-S-106: Results from samples collected on 06/13/96  

SciTech Connect (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-106 (Tank S-106) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. The three highest concentration analytes detected in SUMMA{trademark} canister and triple sorbent trap samples are also listed in the same table. Detailed descriptions of the analytical results appear in the appendices.

Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

1997-01-01T23:59:59.000Z

189

DOE/SC-ARM/TR-122 G-Band Vapor Radiometer Precipitable Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision2 G-Band Vapor

190

DOE/SC-ARM/TR-128 Tower Water-Vapor Mixing Ratio Value-Added  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision2 G-Band Vapor48

191

M. Bahrami ENSC 461 (S 11) Vapor Power Cycles 1 Vapor Power Cycles  

E-Print Network [OSTI]

is not a suitable model for steam power cycle since: The turbine has to handle steam with low quality which steam is condensed in the condenser 4 3 1 2 s T 1 2 34 s #12;M. Bahrami ENSC 461 (S 11) Vapor Power = 0 qin = h3 ­ h2 Turbine q = 0 wturbine,out = h3 ­ h4 Condenser w = 0 qout = h4 ­ h1 The thermal

Bahrami, Majid

192

E-Print Network 3.0 - aerosol-assisted chemical vapor Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Work to Prevent Chemical Warfare Agent Vapor Infiltration? John H. Sorensen Barbara M. Vogt Date... protection strategies to reduce exposure to vapors from chemical warfare...

193

E-Print Network 3.0 - arc vapor deposition Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

has been produced... al Vaporization and melting of materials in fusion devices 325 ENERGY DEPOSITED (Jcm21 Figure 3... VAPORIZATION AND MELTING OF MATERIALS IN FUSION...

194

E-Print Network 3.0 - atomic vapor laser Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with the exception of pagination. IEEE TRANSACTIONS ON PLASMA SCIENCE 1 Summary: vapor, atomic physics and vapor ionization, absorption reflection in a heated plasma layer, and...

195

E-Print Network 3.0 - atom vapor cells Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rotation in the vapor cell due to inten- sity-induced birefringence in the rubidium atomic vapor. While... Super efficient absorption filter for quantum memory using atomic...

196

Preliminary assessment of halogenated alkanes as vapor-phase tracers  

SciTech Connect (OSTI)

New tracers are needed to evaluate the efficiency of injection strategies in vapor-dominated environments. One group of compounds that seems to meet the requirements for vapor-phase tracing are the halogenated alkanes (HCFCs). HCFCs are generally nontoxic, and extrapolation of tabulated thermodynamic data indicate that they will be thermally stable and nonreactive in a geothermal environment. The solubilities and stabilities of these compounds, which form several homologous series, vary according to the substituent ratios of fluorine, chlorine, and hydrogen. Laboratory and field tests that will further define the suitability of HCFCs as vapor-phase tracers are under way.

Adams, Michael C.; Moore, Joseph N.; Hirtz, Paul

1991-01-01T23:59:59.000Z

197

Catalytic Reactor For Oxidizing Mercury Vapor  

DOE Patents [OSTI]

A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

Helfritch, Dennis J. (Baltimore, MD)

1998-07-28T23:59:59.000Z

198

Low Level Heat Recovery Through Heat Pumps and Vapor Recompression  

E-Print Network [OSTI]

The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

Gilbert, J.

1980-01-01T23:59:59.000Z

199

Initiated chemical vapor deposition of functional polyacrylic thin films  

E-Print Network [OSTI]

Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

Mao, Yu, 1975-

2005-01-01T23:59:59.000Z

200

All graphene electromechanical switch fabricated by chemical vapor deposition  

E-Print Network [OSTI]

We demonstrate an electromechanical switch comprising two polycrystalline graphene films; each deposited using ambient pressure chemical vapor deposition. The top film is pulled into electrical contact with the bottom film ...

Milaninia, Kaveh M.

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Applications of Mechanical Vapor Recompression to Evaporation and Crystallization  

E-Print Network [OSTI]

there is no boiler plant available or when electrical power is priced competitively in comparison to steam. Vapor recompression is accomplished using centrifugal, axial-flow, or positive displacement compressors and these compressors can be powered by electricity...

Outland, J. S.

202

Melt and vapor characteristics in an electron beam evaporator  

SciTech Connect (OSTI)

We compare the free surface temperatures T{sub s}, calculated by two methods, in cerium or copper evaporation experiments. The first method considers properties of the melt: by an empirical law we take into account turbulent thermal convection, instabilities and craterization of the free surface. The second method considers the vapor flow expansion and connects T{sub s} to the measured terminal parallel temperature and the terminal mean parallel velocity of the vapor jet, by Direct Simulation Monte Carlo calculations including an atom-atom inelastic collision algorithm. The agreement between the two approaches is better for cerium than for copper in the high craterization case. The analysis, from the point of view of the properties of the melt, of the terminal parameters of the vapor jet for the high beam powers shows that T{sub s} and the Knudsen number at the vapor source reach a threshold when the beam power increases.

Blumenfeld, L.; Fleche, J.L.; Gonella, C. [DCC/DPE/SPEA Centre d`Etudes de Saclay, Gif-sur-Yvette (France)

1994-12-31T23:59:59.000Z

203

Enabling integration of vapor-deposited polymer thin films  

E-Print Network [OSTI]

Initiated Chemical Vapor Deposition (iCVD) is a versatile, one-step process for synthesizing conformal and functional polymer thin films on a variety of substrates. This thesis emphasizes the development of tools to further ...

Petruczok, Christy D. (Christy Danielle)

2014-01-01T23:59:59.000Z

204

Hyperfine Studies of Lithium Vapor using Saturated Absorption Spectroscopy  

E-Print Network [OSTI]

the frequency of a laser with respect to an atomic spectral feature.[20] As such, saturated absorptionHyperfine Studies of Lithium Vapor using Saturated Absorption Spectroscopy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Broadening Mechanisms . . . . . . . . . . . . . . . . . . . . . 15 3.4 Saturated Absorption

Cronin, Alex D.

205

Heat transfer during film condensation of a liquid metal vapor  

E-Print Network [OSTI]

The object of this investigation is to resolve the discrepancy between theory and experiment for the case of heat transfer durirnfilm condensation of liquid metal vapors. Experiments by previous investigators have yielded ...

Sukhatme, S. P.

1964-01-01T23:59:59.000Z

206

Photoinitiated chemical vapor depostion [sic] : mechanism and applications  

E-Print Network [OSTI]

Photoinitiated chemical vapor deposition (piCVD) is developed as a simple, solventless, and rapid method for the deposition of swellable hydrogels and functional hydrogel copolymers. Mechanistic experiments show that piCVD ...

Baxamusa, Salmaan Husain

2009-01-01T23:59:59.000Z

207

Optical Precursors in Rubidium Vapor and Their Relation to Superradiance  

E-Print Network [OSTI]

Optical precursor is the sharp optical pulse front that does not show delay in absorptive media. In this thesis, optical precursor behavior in rubidium (Rb) vapor was investigated in the picoseconds regime. An amplified femtosecond laser was shaped...

Yang, Wenlong

2012-10-19T23:59:59.000Z

208

Systems and methods for generation of hydrogen peroxide vapor  

DOE Patents [OSTI]

A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

2014-12-02T23:59:59.000Z

209

Type B Accident Investigation of the Acid Vapor Inhalation on...  

Broader source: Energy.gov (indexed) [DOE]

2005, in TA-48, Building RC-1 Room 402 at the Los Alamos National Laboratory Type B Accident Investigation of the Acid Vapor Inhalation on June 7, 2005, in TA-48, Building RC-1...

210

Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions  

E-Print Network [OSTI]

ically feasible systems have significant potential advantage over conventional tech nology. An electric drive reactive heat pump can use smaller heat exchangers and compressor than a vapor-compression machine, and have more flexible operating... are discussed, and performance is bounded. A discussion on liquid-vapor equilibria is included as introduction to the systems I- considered. The electric drive heat pump and TA are promising systems; the TA has potential for higher COP than absorption...

Kirol, L.

211

Injection locked oscillator system for pulsed metal vapor lasers  

DOE Patents [OSTI]

An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

Warner, Bruce E. (Livermore, CA); Ault, Earl R. (Dublin, CA)

1988-01-01T23:59:59.000Z

212

The development of a passive dosimeter for airborne benzene vapors  

E-Print Network [OSTI]

entirely different from that usually employed in gas or vapor collection devices, as there is no need for pumps and airflow control s to provi de fi xed airflows or volumes. This principle, Ficks First Law of Diffusion, states tha t the rate of transfer...+ Ilay 1978 ABSTRACT The Development of a Passive Dosimeter for Airborne Benzene Vapor. ", . (Nay 1978) David Hilliam Hager, B. S. , University of Rochester; Chairman of Advisory Committee: Dr. David F. Ciapo Passive diffusion dosimeters offer...

Hager, David William

2012-06-07T23:59:59.000Z

213

ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

Cadeddu, Maria

214

Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol  

E-Print Network [OSTI]

Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol Rachel L. Atlas1' gas-phase emissions and the aerosols they form (figure 6), including a cloud condensation nuclei Cloud condensation nuclei (CCN) are particles which water vapor condenses onto to form cloud droplets

Collins, Gary S.

215

Tank vapor characterization project - Tank 241-TY-103 headspace gas and vapor characterization: Results for homogeneity samples collected on November 22, 1996  

SciTech Connect (OSTI)

This report presents the results of analyses of samples taken from the headspace of waste storage tank 241-TY-103 (Tank TY-103) at the Hanford Site in Washington State. Samples were collected to determine the homogeneity of selected inorganic and organic headspace constituents. Two risers (Riser 8 and Riser 18) were sampled at three different elevations (Top, Middle, and Bottom) within the tank. Tank headspace samples were collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. No analytes were determined to be above immediate notification limits specified by the sampling and analysis plan (SAP).

Olsen, K.B.; Pool, K.H.; Evans, J.C.; Hayes, J.C. [and others] [and others

1997-07-01T23:59:59.000Z

216

Tank vapor characterization project - Tank 241-U-112 headspace gas and vapor characterization: Results for homogeneity samples collected on December 6, 1996  

SciTech Connect (OSTI)

This report presents the results of analyses of samples taken from the headspace of waste storage tank 241-U-112 (Tank U-112) at the Hanford Site in Washington State. Samples were collected to determine the homogeneity of selected inorganic and organic headspace constitutents. Two risers (Riser 3 and Riser 6) were sampled at three different elevations (Bottom, Middle, and Top) within the tank. Tank headspace samples were collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan.

Sklarew, D.S.; Pool, K.H.; Evans, J.C.; Hayes, J.C. [and others] [and others

1997-09-01T23:59:59.000Z

217

Headspace vapor characterization of Hanford waste Tank 241-BX-110: Results from samples collected on 04/30/96  

SciTech Connect (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-BX-110 (Tank BX-110) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. The three highest concentration analytes detected in SUMMA{trademark} canister and triple sorbent trap samples are also listed in the table. Detailed descriptions of the analytical results appear in the appendices.

Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

1997-01-01T23:59:59.000Z

218

Energy recovery system using an organic rankine cycle  

DOE Patents [OSTI]

A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

Ernst, Timothy C

2013-10-01T23:59:59.000Z

219

Impact of Convective Organization on the Response of Tropical Precipitation Extremes to Warming  

E-Print Network [OSTI]

Impact of Convective Organization on the Response of Tropical Precipitation Extremes to Warming extremes to warming in organized convection is ex- amined using a cloud-resolving model. Vertical shear, the fractional increase of precipitation extremes is similar to that of surface water vapor, which

Paris-Sud XI, Université de

220

Vapor etching of nuclear tracks in dielectric materials  

DOE Patents [OSTI]

A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.

Musket, Ronald G. (Danville, CA); Porter, John D. (Berkeley, CA); Yoshiyama, James M. (Fremont, CA); Contolini, Robert J. (Lake Oswego, OR)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Organic geochemistry and organic petrography  

SciTech Connect (OSTI)

The Vermillion Creek coals and shales contain dominantly humic organic matter originating from woody plant tissues except for one shale unit above the coals, which contains hydrogen-rich kerogen that is mostly remains of filamentous algae, of likely lacustrine origin. The coals have two unusual features - very low inertinite content and high sulfur content compared to mined western coals. However, neither of these features points to the limnic setting reported for the Vermillion Creek sequence. The vitrinite reflectance of Vermillion Creek shales is markedly lower than that of the coals and is inversely proportional to the H/C ratio of the shales. Rock-Eval pyrolysis results, analyses of H, C, and N, petrographic observations, isotope composition of organic carbon, and amounts and compositions of the CHCl/sub 3/-extractable organic matter all suggest mixtures of two types of organic matter in the Vermillion Creek coals and clay shales: (1) isotopically heavy, hydrogen-deficient, terrestrial organic matter, as was found in the coals, and (2) isotopically light, hydrogen-rich organic matter similar to that found in one of the clay-shale samples. The different compositions of the Vermillion Creek coal, the unnamed Williams Fork Formation coals, and coals from the Middle Pennsylvanian Marmaton and Cherokee Groups are apparently caused by differences in original plant composition, alteration of organic matter related to different pH conditions of the peat swamps, and slightly different organic maturation levels.

Bostick, N.H.; Hatch, J.R.; Daws, T.A.; Love, A.H.; Lubeck, S.C.M.; Threlkeld, C.N.

1987-01-01T23:59:59.000Z

222

New Regenerative Cycle for Vapor Compression Refrigeration  

SciTech Connect (OSTI)

This project was a continuation of Category 1 project, completed in August 2005. Following the successful bench model demonstration of the technical feasibility and economic viability, the main objective in this stage was to fabricate the prototype of the heat pump, working on the new thermodynamic cycle. This required further research to increase the system efficiency to the level consistent with theoretical analysis of the cycle. Another group of objectives was to provide the foundation for commercialization and included documentation of the manufacturing process, preparing the business plan, organizing sales network and raising the private capital necessary to acquire production facilities.

Bergander, Mark J [Magnetic Development, Inc.; Butrymowicz, Dariusz [Polish Academy of Scinces

2010-01-26T23:59:59.000Z

223

Interactions between Liquid-Wall Vapor and Edge Plasmas  

SciTech Connect (OSTI)

The use of liquid walls for fusion reactors could help solve problems associated with material erosion from high plasma heat-loads and neutronic activation of structures. A key issue analyzed here is the influx of impurity ions to the core plasma from the vapor of liquid side-walls. Numerical 2D transport simulations are performed for a slab geometry which approximates the edge region of a reactor-size tokamak. Both lithium vapor (from Li or SnLi walls) and fluorine vapor (from Flibe walls) are considered for hydrogen edge-plasmas in the high- and low-recycling regimes. It is found that the minimum influx is from lithium with a low-recycling hydrogen plasma, and the maximum influx occurs for fluorine with a high-recycling hydrogen plasma.

Rognlien, T D; Rensink, M E

2000-05-25T23:59:59.000Z

224

VAPORIZATION OF TUNGSTEN-METAL IN STEAM AT HIGH TEMPERATURES.  

SciTech Connect (OSTI)

The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate system. The aerosol formed a fine white smoke of tungsten-oxide which was visible to the eye as it condensed in the laminar boundary layer of steam which flowed along the surface of the rod. The aerosol continued to flow as a smoke tube downstream of the rod, flowing coaxially along the centerline axis of the quartz glass tube and depositing by impaction along the outside of a bend and at sudden area contractions in the piping. The vaporization rate data from the 17 experiments which exceeded the vaporization threshold temperature are shown in Figure 5 in the form of vaporization rates (g/cm{sup 2} s) vs. inverse temperature (K{sup {minus}1}). Two correlations to the present data are presented and compared to a published correlation by Kilpatrick and Lott. The differences are discussed.

GREENE,G.A.; FINFROCK,C.C.

2000-10-01T23:59:59.000Z

225

Evaluation and prevention of explosions in soil vapor extraction systems  

SciTech Connect (OSTI)

Due to the widespread and long term use of petroleum derived fuels and solvents, many areas have subsurface soils contaminated with petroleum derivatives. This contamination can migrate to groundwater, which is frequently used to supply drinking water needs. A common method of cleaning up that contamination is soil vapor extraction (SVE). SVE is a technique where several extraction wells are installed in the contaminated area, with screens in the appropriate vertical locations. The soil vapors re extracted form the wells using a positive displacement blower. To prevent this subsurface contamination from becoming air pollution, the extracted vapors are then sent to some hydrocarbon removal device, such as a carbon adsorption system or a thermal oxidizer. The data used in this investigation were collected as part of a Radian Corporation project for a client. The site is a former petroleum refinery, and the hydrocarbons are primarily gasoline and diesel.

Hower, J.W. [Radian Corp., El Segundo, CA (United States)

1995-12-31T23:59:59.000Z

226

Liquid-phase compositions from vapor-phase analyses  

SciTech Connect (OSTI)

Arsenic normally is not considered to be a contaminant. However, because arsenic was found in many cylinders of UF{sub 6}, including in corrosion products, a study was performed of the distribution of the two arsenic fluorides, AsF{sub 3} and AsF{sub 5}, between liquid and vapor phases. The results of the study pertain to condensation or vaporization of liquid UF{sub 6}. This study includes use of various experimental data plus many extrapolations necessitated by the meagerness of the experimental data. The results of this study provide additional support for the vapor-liquid equilibrium model of J.M. Prausnitz and his coworkers as a means of describing the distribution of various impurities between vapor and liquid phases of UF{sub 6}. Thus, it is concluded that AsF{sub 3} will tend to concentrate in the liquid phase but that the concentration of AsF{sub 5} in the vapor phase will exceed its liquid-phase concentration by a factor of about 7.5, which is in agreement with experimental data. Because the weight of the liquid phase in a condensation operation may be in the range of thousands of times that of the vapor phase, most of any AsF{sub 5} will be in the liquid phase in spite of this separation factor of 7.5. It may also be concluded that any arsenic fluorides fed into a uranium isotope separation plant will either travel with other low-molecular-weight gases or react with materials present in the plant. 25 refs., 3 figs., 6 tabs.

Davis, W. Jr. (Oak Ridge Gaseous Diffusion Plant, TN (USA)); Cochran, H.D. (Oak Ridge National Lab., TN (USA))

1990-02-01T23:59:59.000Z

227

Organic Superconductors  

SciTech Connect (OSTI)

Intense magnetic fields are an essential tool for understanding layered superconductors. Fundamental electronic properties of organic superconductors are revealed in intense (60 tesla) magnetic fields. Properties such as the topology of the Fermi surface and the nature of the superconducting order parameter are revealed. With modest maximum critical temperatures~13K the charge transfer salt organic superconductors prove to be incredibly valuable materials as their electronically clean nature and layered (highly anisotropic) structures yield insights to the high temperature superconductors. Observation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillatory phenomena, magnetic field induced superconductivity and re-entrant superconductivity are some of the physical phenomena observed in the charge transfer organic superconductors. In this talk, I will discuss the nature of organic superconductors and give an overview of the generation of intense magnetic fields; from the 60 tesla millisecond duration to the extreme 1000 tesla microsecond pulsed magnetic fields.

Charles Mielke

2009-02-27T23:59:59.000Z

228

Balance of atmospheric water vapor over the Gulf of Mexico  

E-Print Network [OSTI]

/ / / / I / o. i + B CAP C BBJ V S TPA PZA EHA Fig. 5. Vertical distribution of the average water-vapor flux normal to the perimeter of the Gulf of Nexico during Oct-Kov-Dec 1959. Plus values are inflow in kgm/sec-mb-. m. -o-I Pi C4 I / ~-o, i...BALANCE OF ATMOSPHERIC HATER VAPOR OVER THE GULF OF MEXICO A Thesis By RALPH MORGAN HUGHES Captain, USAF Submitted to the Graduate College of the Texas A&M University in partial fulf-'llment of the rec;uirements for the degree of MASTER...

Hughes, Ralph Morgan

1967-01-01T23:59:59.000Z

229

Phase effects for electrons in liquid water and water vapor  

SciTech Connect (OSTI)

The objective of these studies is to compare transport, energy loss, and other phenomena for electrons in water in the liquid and vapor phases. Understanding the differences and similarities is an interesting physics problem in its own right. It is also important for applying the relatively large body of experimental data available for the vapor to the liquid, which is of greater relevance in radiobiology. This paper presents a summary of results from a series of collaborative studies carried out by the authors at Oak Ridge National Laboratory (ORNL) and the Gesellschaft fuer Strahlen- und Umweltforschung (GSF). 14 figs.

Turner, J.E.; Paretzke, H.G.; Wright, H.A.; Hamm, R.N.; Ritchie, R.H.

1988-01-01T23:59:59.000Z

230

The development of a passive dosimeter for airborne aniline vapors  

E-Print Network [OSTI]

passive sampl1ng dosimeter was designed to measure concen- trat1ons of aniline vapor in air. Diffus1on tubes of 1. 5, 3. 0 and 4. 5 cm lengths were tested under controlled conditions of relative humid1ty, air temperature and vapor concentrations. A... of Measured vs Calculated Concentrations APPENDIX D-Student-t Test on Slopes of Measured vs Calculated Data . APPENDIX E-Statistical Analysis of Four Hour Time- Weighted Average Study on 3. 0 cm Dosimeter VITA ~pa e 42 45 48 59 62 63 65 70 73...

Campbell, James Evan

1977-01-01T23:59:59.000Z

231

Field-usable portable analyzer for chlorinated organic compounds  

SciTech Connect (OSTI)

In 1992, a chemical sensor was developed which showed almost perfect selectivity to vapors of chlorinated solvents. When interfaced to an instrument, a chemical analyzer will be produced that has near- absolute selectivity to vapors of volatile chlorinated organic compounds. TRI has just completed the second of a 2-phase program to develop this new instrument system, which is called the RCL MONITOR. In Phase II, this instrument was deployed in 5 EM40 operations. Phase II applications covered clean-up process monitoring, environmental modeling, routine monitoring, health and safety, and technology validation. Vapor levels between 0 and 100 ppM can be determined in 90 s with a lower detection limit of 0.5 ppM using the hand-portable instrument. Based on the favorable performance of the RCL MONITOR, the commercial instrument was released for commercial sales on Sept. 20, 1996.

Buttner, W.J.; Penrose, W.R.; Stetter, J.R.; Williams, R.D.

1996-12-31T23:59:59.000Z

232

A Survey of Vapors in the Headspaces of Single-Shell Waste Tanks  

SciTech Connect (OSTI)

This report summarizes data on the organic vapors in the single-shell high level radioactive waste tanks at the Hanford site to support a forthcoming toxicological study. All data were obtained from the Tank Characterization Database (PNNL 1999). The TCD contains virtually all the available tank headspace characterization data from 1992 to the present, and includes data for 109 different single-shell waste tanks. Each single-shell tank farm and all major waste types are represented. Descriptions of the sampling and analysis methods have been given elsewhere (Huckaby et al. 1995, Huckaby et al. 1996), and references for specific data are available in the TCD. This is a revision of a report with the same title issued on March 1, 2000 (Stock and Huckaby 2000).

Stock, Leon M.; Huckaby, James L.

2000-10-31T23:59:59.000Z

233

Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments  

SciTech Connect (OSTI)

A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. A well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. The results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.

Mainhagu, Jon; Morrison, C.; Truex, Michael J.; Oostrom, Martinus; Brusseau, Mark

2014-10-20T23:59:59.000Z

234

Amine functionalization by initiated chemical vapor deposition (iCVD) for interfacial adhesion and film cohesion  

E-Print Network [OSTI]

Amine functional polymer thin films provide a versatile platform for subsequent functionalization because of their diverse reactivity. Initiated chemical vapor deposition (iCVD) is a polymer chemical vapor deposition ...

Xu, Jingjing, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

235

Chemical vapor deposition thin films as biopassivation coatings and directly patternable dielectrics  

E-Print Network [OSTI]

Organosilicon thin films deposited by pulsed plasma-enhanced chemical vapor deposition (PPECVD) and hot-filament chemical vapor deposition (HFCVD) were investigated as potential biopassivation coatings for neural probes. ...

Pryce Lewis, Hilton G. (Hilton Gavin), 1973-

2001-01-01T23:59:59.000Z

236

Metalorganic chemical vapor deposition of carbon-free ZnO using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metalorganic chemical vapor deposition of carbon-free ZnO using the bis(2,2,6,6-tetramethyl-3,5-heptanedionato)zinc precursor. Metalorganic chemical vapor deposition of carbon-free...

237

Heat transfer during film condensation of potassium vapor on a horizontal plate  

E-Print Network [OSTI]

The object of the investigation is to analyze the following two features of heat transfer during condensation of potassium vapor: a. Heat transfer during film condensation of a pure saturated potassium vapor on a horizontal ...

Meyrial, Paul M.

1968-01-01T23:59:59.000Z

238

E-Print Network 3.0 - airs water vapor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water vapor Search Powered by Explorit Topic List Advanced Search Sample search results for: airs water vapor Page: << < 1 2 3 4 5 > >> 1 A laboratory experiment from the Little...

239

Method and apparatus to measure vapor pressure in a flow system  

DOE Patents [OSTI]

The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

Grossman, Mark W. (Belmont, MA); Biblarz, Oscar (Swampscott, MA)

1991-01-01T23:59:59.000Z

240

Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phasehydrodeoxy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of...

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Saving in Distillation Using Structured Packing and Vapor Recompression  

E-Print Network [OSTI]

difference across the column. VRC uses hot compressed overhead vapors, instead of steam, to heat the reboiler. Cost savings are highest when the pressure ratio for the compressor is low. The pressure ratio depends on the boiling point difference of top...

Hill, J.H.

242

DIAMOND CHEMICAL VAPOR DEPOSITION Nucleation and Early Growth Stages  

E-Print Network [OSTI]

a reality. Epi- taxial diamond has been grown on diamond and cubic-BN. Polycrystalline diamond films haveDIAMOND CHEMICAL VAPOR DEPOSITION Nucleation and Early Growth Stages by Huimin Liu David S. Dandy of high-quality diamond coatings on preshaped parts and synthesis of free-standing shapes of diamond

Dandy, David

243

Experimental Study of Water Vapor Adsorption on Geothermal  

E-Print Network [OSTI]

Geothermal Program under Department of Energy Grant No. DE-FG07-90IDI2934,and by the Department of PetroleumSGP-TR-148 Experimental Study of Water Vapor Adsorption on Geothermal Reservoir Rocks Shubo Shang Engineering, Stanford University Stanford Geothermal Program Interdisciplinary Research in Engineering

Stanford University

244

Fatigue Resistance of Asphalt Mixtures Affected by Water Vapor Movement  

E-Print Network [OSTI]

This dissertation has two key objectives: the first objective is to develop a method of predicting and quantifying the amount of water that can enter into a pavement system by vapor transport; the second objective is to identify to which extent...

Tong, Yunwei

2013-11-08T23:59:59.000Z

245

A transient model for a cesium vapor thermionic converter. [Cs  

SciTech Connect (OSTI)

This paper presents an analytical model for simulating the transient and steady-state operation of cesium vapor thermionic converters. A parametric analysis is performed to assess the transient response of the converter to changes in fission power and width of interelectrode gap. The model optimizes the converter performance for maximum electric power to the load.(AIP)

El-Genk, M.S.; Murray, C.S.; Chaudhuri, S. (Institute for Space Nuclear Power Studies, Department of Chemical and Nuclear Engineering, The University of New Mexico, Albuquerque, New Mexico (USA))

1991-01-10T23:59:59.000Z

246

CVD CNT CNT (Vapor-grown carbon fiber, VGCF)  

E-Print Network [OSTI]

CNT CNT CVD CNT CNT (Vapor-grown carbon fiber, VGCF) 10001300 CNT CVD Smalley CO 24 CCVD 1 #12; 27 mm 3% 200 sccm 800 10 10 Torr 300 sccm Ethanol tank Hot bath boat Ar/H2 Ar or Ethanol tank Hot bath Ethanol tank Hot bath Pressure gauge Maindraintube Subdraintube

Maruyama, Shigeo

247

OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL  

E-Print Network [OSTI]

OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL RESERVOIRS CONSIDERING ADSORPTION. Because of the costs associated with injection, optimizing an injection program involves not only of the injectate can become available for production and at the same time optimize the present worth of the project

Stanford University

248

High-resolution terahertz atmospheric water vapor continuum measurements  

E-Print Network [OSTI]

High-resolution terahertz atmospheric water vapor continuum measurements David M. Slocum,* Thomas M such as pollution monitoring and the detection of energetic chemicals using remote sensing over long path lengths through the atmosphere. Although there has been much attention to atmospheric effects over narrow

Massachusetts at Lowell, University of

249

UNCORRECTEDPROOF 2 Vaporization, fusion and sublimation enthalpies of the  

E-Print Network [OSTI]

UNCORRECTEDPROOF 2 Vaporization, fusion and sublimation enthalpies of the 3 dicarboxylic acids from of Chemistry and Biochemistry, University of Missouri-St. Louis, 8001 Natural Bridge, St. Louis, MO 63121, USA observed previously in the sublimation enthalpies of these compounds. The results are dis- 16 cussed

Chickos, James S.

250

Method for removing metal vapor from gas streams  

DOE Patents [OSTI]

A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines. 13 figs.

Ahluwalia, R.K.; Im, K.H.

1996-04-02T23:59:59.000Z

251

Method for removing metal vapor from gas streams  

DOE Patents [OSTI]

A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines.

Ahluwalia, R. K. (6440 Hillcrest Dr., Burr Ridge, IL 60521); Im, K. H. (925 Lehigh Cir., Naperville, IL 60565)

1996-01-01T23:59:59.000Z

252

Assessment of radionuclide vapor-phase transport in unsaturated tuff  

SciTech Connect (OSTI)

This report describes bounding calculations performed to investigate the possibility of radionuclide migration in a vapor phase associated with the emplacement of high-level waste canister in unsaturated tuff formations. Two potential radionuclide transport mechanisms in the vapor phase were examined: aerosol migration and convection/diffusion of volatile species. The former may have significant impact on the release of radionuclides to the accessible environment as the concentration in the aerosols will be equal to that in the ground water. A conservative analysis of air diffusion in a stagnant liquid film indicated that for all expected repository conditions, aerosol formation is not possible. The migration of volatile species was examined both in the vicinity of a waste canister and outside the thermally disturbed zone. Two-dimensional (radial) and three-dimensional (radial-vertical) coupled heat transfer-gas flow-liquid flow simulations were performed using the TOUGH computer code. The gas flow rate relative to the liquid flow rate predicted from the simulations allowed calculations of mobility ratios due to convection which led to the conclusion that, except for the immediate region near the canister, transport in the liquid phase will be dominant for radionuclides heavier than radon. Near the waste canister, iodine transport may also be important in the vapor phase. Bounding calculations for vertical mobility ratios were carried out as a function of saturation. These calculations are conservative and agree well with the two-dimensional simulations. Based on this analysis, it is clear that vapor-phase transport will not be important for radionuclides such as cesium and heavier species. Vapor transport for iodine may play a role in the overall release scenario depending on the particular repository conditions.

Smith, D.M.; Updegraff, C.D.; Bonano, E.J.; Randall, J.D.

1986-11-01T23:59:59.000Z

253

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

1997. [15] R DiPippo, Geothermal Power Plants: Principles,Kalina, "New Binary Geothermal Power System," in ProceedingsConference on Geothermal Power Engineering, Sochi, Russia,

Ho, Tony

2012-01-01T23:59:59.000Z

254

Improved sensor selectivity for chemical vapors using organic thin-film transistors  

E-Print Network [OSTI]

2011). B. D. Rihter, M. E. Kenney, W. E. Ford, and M. A. J.2008). B. D. Rihter, M. E. Kenney, W. E. Ford, and M. A. J.

Royer, James Edward

2012-01-01T23:59:59.000Z

255

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

engineer, improved upon the steam engine then patented theBoulton and Watt steam engine in 1775 [6]. Since then thean atmospheric heat engine that used steam) was developed by

Ho, Tony

2012-01-01T23:59:59.000Z

256

Dermal Uptake of Organic Vapors Commonly Found in Indoor Air Charles J. Weschler*,,  

E-Print Network [OSTI]

hydrocarbons, single ring aromatics, terpenes, chlorinated solvents, formaldehyde, and acrolein. Analysis

Garfunkel, Eric

257

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

condenser, and low thermal efficiencies caused by low boiler pressures that are required for superheating the steam and

Ho, Tony

2012-01-01T23:59:59.000Z

258

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

waste heat reclamation and solar thermal energy," Energy [K Lovegrove and M Dennis, "Solar thermal energy systems inK Lovegrove and M Dennis, "Solar thermal energy systems in

Ho, Tony

2012-01-01T23:59:59.000Z

259

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

159] B Sternlicht, "Waste energy recover: an excellentThis high quality waste energy though has the potential torecovery of low-grade waste heat," Energy, vol. 22, pp. 661-

Ho, Tony

2012-01-01T23:59:59.000Z

260

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

Ho, Tony

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

128] V Minea, "Using Geothermal Energy and Industrial Wastesuch as solar thermal and geothermal energy will become ansolar field, and geothermal energy, where energy is obtained

Ho, Tony

2012-01-01T23:59:59.000Z

262

Epitaxial growth of aligned AlGalnN nanowires by metal-organic chemical vapor deposition  

DOE Patents [OSTI]

Highly ordered and aligned epitaxy of III-Nitride nanowires is demonstrated in this work. <1010> M-axis is identified as a preferential nanowire growth direction through a detailed study of GaN/AlN trunk/branch nanostructures by transmission electron microscopy. Crystallographic selectivity can be used to achieve spatial and orientational control of nanowire growth. Vertically aligned (Al)GaN nanowires are prepared on M-plane AlN substrates. Horizontally ordered nanowires, extending from the M-plane sidewalls of GaN hexagonal mesas or islands demonstrate new opportunities for self-aligned nanowire devices, interconnects, and networks.

Han, Jung (Woodbridge, CT); Su, Jie (New Haven, CT)

2008-08-05T23:59:59.000Z

263

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Optimization," in ASME International Joint Power Generationfor Solar Rankine Power Generation," ASME Journal of SolarBrayton-Cycle Solar Power Towers," ASME Journal of Solar

Ho, Tony

2012-01-01T23:59:59.000Z

264

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

13] and another 1MWe CSP plant also in Arizona that uses aa natural place to locate CSP plants; unfortunately, desertsa heat sink. Therefore, CSP plants that reduce their cooling

Ho, Tony

2012-01-01T23:59:59.000Z

265

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Closed- Brayton-Cycle Solar Power Towers," ASME Journal ofNaF-NaBF4) cooled solar power tower plant is presented;high temperature solar power tower designs to date.

Ho, Tony

2012-01-01T23:59:59.000Z

266

Diffusion of vaporous guests into a seemingly non-porous organic crystal  

SciTech Connect (OSTI)

The tetragonal apohost phase of p-tert-butyltetramethoxythiacalix[4]arene absorbs hydrochloric acid and iodine. These guest molecules occupy different sites in the solid-state structure -- either within the small intrinsic voids of the macrocycle or within the interstitial spaces between the host molecules. This study illustrates the dynamic deformation of the host, providing strong mechanistic insight into the diffusion of guests into this seemingly non-porous material.

Herbert, Simon A.; Janiak, Agnieszka; Thallapally, Praveen K.; Atwood, Jerry L.; Barbour, Leonard J.

2014-12-15T23:59:59.000Z

267

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Systems for Industrial Waste Heat Recovery. c DanielCycle for Cement Kiln Waste Heat Recovery Power Plants. ”and high temperature waste heat reclamation and solar

Ho, Tony

2012-01-01T23:59:59.000Z

268

Nanostructural engineering of vapor-processed organic photovoltaics for efficient solar energy conversion from any Surface  

E-Print Network [OSTI]

More than two billion people in the world have little or no access to electricity. To be empowered they need robust and lightweightrenewable energy conversion technologies that can be easily transported with high yield ...

Macko, Jill Annette (Jill Annette Rowehl)

2014-01-01T23:59:59.000Z

269

Enthalpies of Vaporization of Organic and Organometallic Compounds, James S. Chickosa...  

E-Print Network [OSTI]

... Department of Chemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121 William E. Acree, Jr.b... Department of Chemistry, University of North Texas, Denton, Texas 76203 Received 17 June 2002; accepted 17 compendia focused on fusion and sublimation enthalpies. Sufficient data are presently available for many

Chickos, James S.

270

Highly Selective Membranes For The Separation Of Organic Vapors Using Super-Glassy Polymers  

DOE Patents [OSTI]

A process for separating hydrocarbon gases of low boiling point, particularly methane, ethane and ethylene, from nitrogen. The process is performed using a membrane made from a super-glassy material. The gases to be separated are mixed with a condensable gas, such as a C.sub.3+ hydrocarbon. In the presence of the condensable gas, improved selectivity for the low-boiling-point hydrocarbon gas over nitrogen is achieved.

Pinnau, Ingo (Palo Alto, CA); Lokhandwala, Kaaeid (Menlo Park, CA); Nguyen, Phuong (Fremont, CA); Segelke, Scott (Mountain View, CA)

1997-11-18T23:59:59.000Z

271

Vapor-Phase Metalation by Atomic Layer Deposition in a Metal-Organic Framework  

E-Print Network [OSTI]

encompass deposition onto micro- and nanopowders14 and coating of nanoparticle films15 as well as aerogel coating of porous materials that exhibit ultrahigh-aspect ratios.12,13 To date, some striking examples

272

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

c,e Low-Intermediate Gas turbine exhaust, boiler exhaust,cycles for micro-gas turbines," Applied Thermal Engineering,Tiba, "Optimization of gas-turbine combined cycles for solar

Ho, Tony

2012-01-01T23:59:59.000Z

273

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

such as in solar energy and geothermal energy [183]. Solar128] V Minea, "Using Geothermal Energy and Industrial Wastesuch as solar thermal and geothermal energy will become an

Ho, Tony

2012-01-01T23:59:59.000Z

274

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

steam turbines, expensive reinforcing material is necessaryof the turbine or special reinforcing material is necessaryrequiring reinforcing material for the turbine blades while

Ho, Tony

2012-01-01T23:59:59.000Z

275

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Casten. Update on US Steam Turbine technology. Presented toThe low pressure steam turbine may also become impracticallygeneration above 10MW, steam turbines are able to achieve ~

Ho, Tony

2012-01-01T23:59:59.000Z

276

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

Ho, Tony

2012-01-01T23:59:59.000Z

277

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

using solar heat source," Solar Energy, vol. 73, pp. 385-sources, part I: Theoretical investigation," Journal of Solar Energy,sources, part II: Experimental investigation," Journal of Solar Energy,

Ho, Tony

2012-01-01T23:59:59.000Z

278

Method and apparatus for destroying organic contaminants in aqueous liquids  

DOE Patents [OSTI]

A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing. 2 figures.

Donaldson, T.L.; Wilson, J.H.

1993-09-21T23:59:59.000Z

279

Correlation for the Vapor Pressure of Heavy Water From the Triple Point to the Critical Point  

E-Print Network [OSTI]

Correlation for the Vapor Pressure of Heavy Water From the Triple Point to the Critical Point Allan the vapor pressure of heavy water (D2O) from its triple point to its critical point. This work takes Institute of Physics. Key words: D2O; heavy water; ITS-90; vapor pressure. Contents 1. Introduction

Magee, Joseph W.

280

The control of mercury vapor using biotrickling filters Ligy Philip a,b,1  

E-Print Network [OSTI]

The control of mercury vapor using biotrickling filters Ligy Philip a,b,1 , Marc A. Deshusses b August 2007 Abstract The feasibility of using biotrickling filters for the removal of mercury vapor from. In particular, the biotrickling filters with sulfur oxidizing bacteria were able to remove 100% of mercury vapor

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Method for the generation of variable density metal vapors which bypasses the liquidus phase  

DOE Patents [OSTI]

The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.

Kunnmann, Walter (Stony Brook, NY); Larese, John Z. (Rocky Point, NY)

2001-01-01T23:59:59.000Z

282

Vapor space characterization of waste Tank 241-C-107: Results from samples collected on 9/29/94  

SciTech Connect (OSTI)

This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-C-107 (referred to as Tank C-107). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water vapor (H{sub 2}O). Sampling for sulfur oxides (SO{sub x}) was not requested. Organic compounds were also quantitatively determined. Twenty organic tentatively identified compounds (TICs) were observed above the detection limit of (ca.) 10 ppbv, but standards for most of these were not available at the time of analysis, and the reported concentrations are semiquantitative estimates. In addition, the authors looked for the 55 TO-14 extended analytes. Of these, 3 were observed above the 5-ppbv detection limit. The 10 organic analytes with the highest estimated concentrations are listed in Summary Table 1 and account for approximately 96% of the total organic components in Tank C-107. Two permanent gases, carbon dioxide and nitrous oxide, were also detected.

Pool, K.H.; Clauss, T.W.; Ligotke, M.W. [and others

1995-11-01T23:59:59.000Z

283

Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed.

Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

1994-10-01T23:59:59.000Z

284

Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of titanium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed.

Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T. [Lawrence Livermore National Lab., CA (United States)

1994-12-31T23:59:59.000Z

285

Tank vapor mitigation requirements for Hanford Tank Farms  

SciTech Connect (OSTI)

Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

Rakestraw, L.D.

1994-11-15T23:59:59.000Z

286

Piston pump and method of reducing vapor lock  

DOE Patents [OSTI]

A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

Phillips, Benjamin A. (Benton Harbor, MI); Harvey, Michael N. (DeSoto, TX)

2000-02-15T23:59:59.000Z

287

Piston pump and method of reducing vapor lock  

DOE Patents [OSTI]

A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

Phillips, Benjamin A. (Benton Harbor, MI); Harvey, Michael N. (DeSoto, TX)

2001-01-30T23:59:59.000Z

288

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents [OSTI]

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Riley, B.; Szreders, B.E.

1988-04-26T23:59:59.000Z

289

Water vapor and the dynamics of climate changes  

E-Print Network [OSTI]

Water vapor is not only Earth's dominant greenhouse gas. Through the release of latent heat when it condenses, it also plays an active role in dynamic processes that shape the global circulation of the atmosphere and thus climate. Here we present an overview of how latent heat release affects atmosphere dynamics in a broad range of climates, ranging from extremely cold to extremely warm. Contrary to widely held beliefs, atmospheric circulation statistics can change non-monotonically with global-mean surface temperature, in part because of dynamic effects of water vapor. For example, the strengths of the tropical Hadley circulation and of zonally asymmetric tropical circulations, as well as the kinetic energy of extratropical baroclinic eddies, can be lower than they presently are both in much warmer climates and in much colder climates. We discuss how latent heat release is implicated in such circulation changes, particularly through its effect on the atmospheric static stability, and we illustrate the circul...

Schneider, Tapio; Levine, Xavier

2009-01-01T23:59:59.000Z

290

Vapor-liquid equilibria of hydrocarbons and fuel oxygenates. 2  

SciTech Connect (OSTI)

Vapor-liquid equilibrium data for methyl tert-butyl ether (MTBE) + 1-heptene, MTBE + four-component gasoline prototype, ethanol + four-component gasoline prototype, and separately MTBE and ethanol with the Auto/Oil Air Quality Improvement Research Gasoline Blend A are reported. Small additions of MTBE have a very small effect on the total equilibrium pressure of this gasoline blend, and at most temperatures will decrease this pressure. In contrast, small additions of ethanol to this gasoline blend result in a significant increase in the equilibrium pressure at all temperatures. Analysis shows that the vapor-liquid equilibrium data for the MTBE-containing systems are easily correlated using a modified Peng-Robinson equation of state with conventional van der Waals one-fluid mixing rules. Data for mixtures containing ethanol cannot be accurately correlated in this way.

Bennett, A.; Lamm, S.; Orbey, H.; Sandler, S.I. (Univ. of Delaware, Newark (United States))

1993-04-01T23:59:59.000Z

291

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents [OSTI]

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

1989-01-01T23:59:59.000Z

292

System for the removal of contaminant soil-gas vapors  

DOE Patents [OSTI]

A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.

Weidner, Jerry R. (Iona, ID); Downs, Wayne C. (Sugar City, ID); Kaser, Timothy G. (Ammon, ID); Hall, H. James (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

293

System for the removal of contaminant soil-gas vapors  

DOE Patents [OSTI]

A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

1997-12-16T23:59:59.000Z

294

High average power magnetic modulator for metal vapor lasers  

DOE Patents [OSTI]

A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA); Miller, John L. (Livermore, CA)

1994-01-01T23:59:59.000Z

295

VAPOR SPACE AND LIQUID/AIR INTERFACECORROSION TESTS  

SciTech Connect (OSTI)

The phenomena of vapor space corrosion and liquid/air interface corrosion of carbon steel in simulated liquid waste environments have been investigated. Initial experiments have explored the hypothesis that vapor space corrosion may be accelerated by the formation of a corrosive electrolyte on the tank wall by a process of evaporation of relatively warmer waste and condensation of the vapor on the relatively cooler tank wall. Results from initial testing do not support the hypothesis of electrolyte transport by evaporation and condensation. The analysis of the condensate collected by a steel specimen suspended over a 40 C simulated waste solution showed no measurable concentrations of the constituents of the simulated solution and a decrease in pH from 14 in the simulant to 5.3 in the condensate. Liquid/air interface corrosion was studied as a galvanic corrosion system, where steel at the interface undergoes accelerated corrosion while steel in contact with bulk waste is protected. The zero-resistance-ammeter technique was used to measure the current flow between steel specimens immersed in solutions simulating (1) the high-pH bulk liquid waste and (2) the expected low-pH meniscus liquid at the liquid/air interface. Open-circuit potential measurements of the steel specimens were not significantly different in the two solutions, with the result that (1) no consistent galvanic current flow occurred and (2) both the meniscus specimen and bulk specimen were subject to pitting corrosion.

Zapp, P.; Hoffman, E.

2009-11-09T23:59:59.000Z

296

Program plan for the resolution of tank vapor issues  

SciTech Connect (OSTI)

Since 1987, workers at the Hanford Site waste tank farms in Richland, Washington, have reported strong odors emanating from the large, underground high-level radioactive waste storage tanks. Some of these workers have complained of symptoms (e.g., headaches, nausea) related to the odors. In 1992, the U.S. Department of Energy, which manages the Hanford Site, and Westinghouse Hanford Company determined that the vapor emissions coming from the tanks had not been adequately characterized and represented a potential health risk to workers in the immediate vicinity of the tanks. At that time, workers in certain areas of the tank farms were required to use full-face, supplied-breathing-air masks to reduce their exposure to the fugitive emissions. While use of supplied breathing air reduced the health risks associated with the fugitive emissions, it introduced other health and safety risks (e.g., reduced field of vision, air-line tripping hazards, and heat stress). In 1992, an aggressive program was established to assure proper worker protection while reducing the use of supplied breathing air. This program focuses on characterization of vapors inside the tanks and industrial hygiene monitoring in the tank farms. If chemical filtration systems for mitigation of fugitive emissions are deemed necessary, the program will also oversee their design and installation. This document presents the plans for and approach to resolving the Hanford Site high-level waste tank vapor concerns. It is sponsored by the Department of Energy Office of Environmental Restoration and Waste Management.

Osborne, J.W.; Huckaby, J.L.

1994-05-01T23:59:59.000Z

297

ESA DUE GlobVapour water vapor products: Validation  

SciTech Connect (OSTI)

The main objective of the European Space Agency (ESA) Data User Element (DUE) GlobVapour project was the development of multi-annual global water vapor data sets. Since water vapour is a key climate variable it is important to have a good understanding of its behavior in the climate system. The ESA DUE GlobVapour project provides water vapor data, including error estimates, based on carefully calibrated and inter-calibrated satellite radiances in response to user requirements for long time series satellite observations. ESA DUE GlobVapour total columnar water vapor (TCWV) products derived from GOME/SCIA/GOME-2 (1996-2008) and SSM/I+MERIS (2003-2008) have been validated for the mentioned period, using satellite-based (AIRS, ATOVS) and ground-based measurements (radiosondes and microwave radiometer). The validation results are discussed in the following. The technical specifications on bias (1 kg/m{sup 2} for SSMI+MERIS and 2 kg/m{sup 2} for GOME/SCIA/GOME-2) are generally met. For more information, documents and data download follow the link: www.globvapour.info.

Schneider, Nadine; Schroeder, Marc; Stengel, Martin [Deutscher Wetterdienst (DWD), KU22, Frankfurter Str. 135, 63067 Offenbach a. M (Germany); Lindstrot, Ramus; Preusker, Rene [Freie Universitaet Berlin (FUB), Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin (Germany); Collaboration: ESA DUE GlobVapour Consortium

2013-05-10T23:59:59.000Z

298

Vapor-liquid equilibria for methanol + tetraethylene glycol dimethyl ether  

SciTech Connect (OSTI)

Vapor-liquid equilibrium (P-T-x) for the methanol + tetraethylene glycol dimethyl ether binary system were obtained by the static method in the range of temperatures from 293.15 to 423.15 K at 10 K intervals. The modified vapor pressure apparatus used is described. The Kuczynsky method was used to calculate the liquid and vapor composition and the activity coefficients of methanol from the initial composition of the sample and the measured pressure and temperature. The results were correlated by the NRTL and UNIQUAC temperature dependent activity coefficient models. This system shows nearly ideal behavior at 323.15 K, but positive deviations from ideality at lower temperatures and negative deviations at higher temperatures are observed. The activity coefficients become more negative with the increase in temperature and mole fraction of methanol. The excess molar enthalpy using the Gibss-Helmholtz equation and the NRTL and UNIQUAC parameters were calculated at 303.15 K and compared with experimental data. This binary system shows promise as a working pair for high-temperature heat pump applications.

Esteve, X.; Chaudhari, S.K.; Coronas, A. [Univ. Rovira i Virgili, Tarragona (Spain). Dept. of Electrical and Mechanical Engineering

1995-11-01T23:59:59.000Z

299

Methanol vaporization and injection system for internal combustion engine  

SciTech Connect (OSTI)

An engine equipped with an alcohol vaporization injection system operates as a four stroke cycle diesel engine that transfers the heat of exiting exhaust gases and cylinder head walls to the fuel. The engine runs on alcohol. The alcohol becomes vaporized and its pressure is high enough so that when a valve is opened between the high pressure fuel line and the combustion chamber (when it is at the peak of its compression ratio) enough alcohol will enter the combustion chamber to allow proper combustion. The overall advantages to this type of alcohol vaporization injection system is that it adds relatively few new mechanisms to the spark ignition four cycle internal combustion engine to enable it to operate as a diesel engine with a high thermal efficiency. This alcohol injection system exploits the engine's need for greater volumes of alcohol caused by the alcohol's relatively low heat of combustion (When compared to gasoline) by using this greater volume of fuel to return greater quantities of heat back to the engine to a much greater degree than other fuels can.

Bayley, R.I.

1980-05-06T23:59:59.000Z

300

Method of and apparatus for measuring vapor density  

DOE Patents [OSTI]

Apparatus and method are disclosed which determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavelength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to an equation given in the patent where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4) + K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation. 11 figs.

Nelson, L.D.; Cerni, T.A.

1989-10-17T23:59:59.000Z

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Method of and apparatus for measuring vapor density  

DOE Patents [OSTI]

Apparatus and method determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavlength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to: ##EQU1## where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4)+K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation.

Nelson, Loren D. (Morrison, CO); Cerni, Todd A. (Littleton, CO)

1989-01-01T23:59:59.000Z

302

ANALYSIS OF VAPORS FROM METHYLENE CHLORIDE EXTRACTS OF NUCLEAR GRADE HEPA FILTER FIBERGLASS SAMPLES  

SciTech Connect (OSTI)

While several organic compounds were detected in the vapor samples used in the reenactment of the preparation of mounts from the extracts of nuclear grade high-efficiency particulate air filter fiberglass samples, the most significant species present in the samples were methylene chloride, phenol, phenol-d6, and 2-fluorophenol. These species were all known to be present in the extracts, but were expected to have evaporated during the preparation of the mounts, as the mounts appeared to be dry before any vapor was collected. These species were present at the following percentages of their respective occupational exposure limits: methylene chloride, 2%; phenol, 0.4%; and phenol-d6, 0.6%. However, there is no established limit for 2-fluorophenol. Several other compounds were detected at low levels for which, as in the case of 2-fluorophenol, there are no established permissible exposure limits. These compounds include 2-chlorophenol; N-nitroso-1-propanamine; 2-fluoro-1,1{prime}-biphenyl; 1,2-dihydroacenaphthylene; 2,5-cyclohexadiene-1,4-dione,2,6-bis(1,1-dimethylethyl); trimethyl oxirane; n-propylpropanamine; 2-(Propylamino)ethanol; 4-methoxy-1-butene; 6-methyl-5-hepten-2-one; and 3,4-dimethylpyridine. Some of these were among those added as surrogates or spike standards as part ofthe Advanced Technologies and Laboratories International, Inc. preparation ofthe extract of the HEPA filter media and are indicated as such in the data tables in Section 2, Results; other compounds found were not previously known to be present. The main inorganic species detected (sulfate, sodium, and sulfur) are also consistent with species added in the preparation of the methylene chloride extract of the high-efficiency particulate air sample.

FRYE JM; ANASTOS HL; GUTIERREZ FC

2012-06-07T23:59:59.000Z

303

Autonomous gas chromatograph system for Thermal Enhanced Vapor Extraction System (TEVES) proof of concept demonstration  

SciTech Connect (OSTI)

An autonomous gas chromatograph system was designed and built to support the Thermal Enhanced Vapor Extraction System (TEVES) demonstration. TEVES is a remediation demonstration that seeks to enhance an existing technology (vacuum extraction) by adding a new technology (soil heating). A pilot scale unit was set up at one of the organic waste disposal pits at the Sandia National Laboratories Chemical Waste Landfill (CWL) in Tech Area 3. The responsibility for engineering a major part of the process instrumentation for TEVES belonged to the Manufacturing Control Subsystems Department. The primary mission of the one-of-a-kind hardware/software system is to perform on-site gas sampling and analysis to quantify a variety of volatile organic compounds (VOCs) from various sources during TEVES operations. The secondary mission is to monitor a variety of TEVES process physical parameters such as extraction manifold temperature, pressure, humidity, and flow rate, and various subsurface pressures. The system began operation in September 1994 and was still in use on follow-on projects when this report was published.

Peter, F.J.; Laguna, G.R. [Sandia National Labs., Albuquerque, NM (United States). Manufacturing Control Subsystems Dept.

1996-09-01T23:59:59.000Z

304

Vapor space characterization of waste Tank 241-BY-108: Results from samples collected on 10/27/94  

SciTech Connect (OSTI)

This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-BY-108 (referred to as Tank BY-108). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water vapor (H{sub 2}O). Trends in NH{sub 3} and H{sub 2}O samples indicated a possible sampling problem. Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, the authors looked for the 40 TO-14 compounds plus an additional 15 analytes. Of these, 17 were observed above the 5-ppbv reporting cutoff. Also, eighty-one organic tentatively identified compounds (TICs) were observed above the reporting cutoff (ca.) 10 ppbv, and are reported with concentrations that are semiquantitative estimates based on internal standard response factors. The nine organic analytes with the highest estimated concentrations are listed in Summary Table 1 and account for approximately 48% of the total organic components in the headspace of Tank BY-108. Three permanent gases, hydrogen (H{sub 2}), carbon dioxide (CO{sub 2}), and nitrous oxide (N{sub 2}O) were also detected. Tank BY-108 is on the Ferrocyanide Watch List.

McVeety, B.D.; Clauss, T.W.; Ligotke, M.W. [and others

1995-10-01T23:59:59.000Z

305

Final Report for ARM Project Measuring 4-D Water Vapor Fields with GPS  

SciTech Connect (OSTI)

Water vapor is a primary element in the Earth’s climate system. Atmospheric water vapor is central to cloud processes, radiation transfer, and the hydrological cycle. Using funding from Department of Energy (DOE) grant DE-FG03-02ER63327, the University Corporation for Atmospheric Research (UCAR) developed new observational techniques to measure atmospheric water vapor and applied these techniques to measure four dimensional water vapor fields throughout the United States Southern Great Plains region. This report summarizes the development of a new observation from ground based Global Positioning System (GPS) stations called Slant Water Vapor (SW) and it’s utilization in retrieving four dimensional water vapor fields. The SW observation represents the integrated amount of water vapor between a GPS station and a transmitting satellite. SW observations provide improved temporal and spatial sampling of the atmosphere when compared to column-integrated quantities such as preciptitable water vapor (PW). Under funding from the DOE Atmospheric Radiation Measurement (ARM) program, GPS networks in the Southern Great Plains (SGP) region were deployed to retrieve SW to improve the characterization of water vapor throughout the region. These observations were used to estimate four dimensional water vapor fields using tomographic approaches and through assimilation into the MM5 numerical weather model.

Braun, John

2006-02-06T23:59:59.000Z

306

Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 4, Organic methods  

SciTech Connect (OSTI)

This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{sub 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.

Not Available

1993-08-01T23:59:59.000Z

307

Organization Chart - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LSD Logo About Us People & Organization Research News & Events Safety Internal Resources Organization Chart Departments Scientific Staff Directory Committees Organization Chart...

308

Organic sponges for cost-effective CVOC abatement. Final report, September 1992--April 1994  

SciTech Connect (OSTI)

Air contaminated with CVOCs (chlorinated volatile organic compounds) arise from air stripping of ground water or from soil and dual phase vapor extraction. A research program was undertaken to develop sorbents better than activated carbon for remediation. Two such sorbents were found: Dow`s XUS polymer and Rohm and Haas` Ambersorb 563 (carbonaceous). Opportunities exist to further develop sorption and biodegradation technologies.

Flanagan, W.P.; Grade, M.M.; Horney, D.P.; Mackenzie, P.D.; Salvo, J.J.; Sivavec, T.M.; Stephens, M.L.

1994-07-01T23:59:59.000Z

309

Use of sonication for in-well softening of semivolatile organic compounds. 1997 annual progress report  

SciTech Connect (OSTI)

'This project investigates the in-situ degradation of semivolatile organic compounds (SVOCs) and volatile organic compounds (VOCs) using in-well sonication, in-well vapor stripping, and bioremediation. Pretreating groundwaters with sonication techniques in-situ would form VOCs that can be effectively removed by in-well vapor stripping and bioremediation. The mechanistic studies focus on the coupling of megasonics and ultrasonics to soften (i.e., partially degrade) the SVOCs; oxidative reaction mechanism studies; surface corrosion studies (on the reactor walls/well); enhancement due to addition of oxidants, quantification of the hydroxyl radical formation; identification/quantification of degradation products; volatility/degradability of the treated waters; development of a computer simulation model to describe combined in-well sonication/in-well vapor stripping/bioremediation; systems analysis/economic analysis; large laboratory-scale experiment verification; and field demonstration of the integrated technology. Benefits of this approach include: (1) Remediation is performed in-situ; (2) The treatment systems complement each other; their combination can drastically reduce or remove SVOCs and VOCs; (3) Ability to convert hard-to-degrade organics into more volatile organic compounds; (4) Ability to remove residual VOCs and softened SVOCs through the combined action of in-well vapor stripping and biodegradation; (5) Does not require handling or disposing of water at the ground surface; and (6) Cost-effective and improved efficiency, resulting in shortened clean-up times to remediate a site.'

Peters, R.W.; Manning, J. [Argonne National Lab., IL (US); Hoffman, M.R. [California Inst. of Tech., Pasadena, CA (US); Gorelick, S. [Stanford Univ., CA (US)

1997-01-01T23:59:59.000Z

310

Atmospheric Environment 36 (2002) 51855196 FTIR measurements of functional groups and organic mass in  

E-Print Network [OSTI]

the National Center for Atmospheric Research C-130 aircraft during the passing efficiency of a low, with higher Al/Ca ratios in the boundary layer. Organic compounds were present in high and low dust conditions or may condense onto pre- existing particles. Partly as a result of this vapor-to- particle conversion

Russell, Lynn

311

An optical water vapor sensor for unmanned aerial vehicles  

SciTech Connect (OSTI)

The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in August 1998. Data taken during this field campaign show excellent agreement with a chilled mirror and Lyman-alpha hygrometers and measurements confirm the ability to measure rapid, absolute water vapor fluctuations with a high degree of instrument stability and accuracy, with a noise level as low 10 ppmv (1 Hz measurement bandwidth). The construction of this small, lightweight sensor contains several unique elements which result in several significant advantages when compared to other techniques. First, the low power consumption Argon discharge lamp provides an optical beam at a fixed wavelength without a need for temperature or precision current control. The multi-pass absorption cell developed for this instrument provides a compact, low cost method that can survive deployment in the field. Fiber-optic cables, which are used to convey to light between the absorption cell, light source, and detection modules enable remote placement of the absorption cell from the opto-electronics module. Finally, the sensor does not use any moving parts which removes a significant source of potential malfunction. The result is an instrument which maintained its calibration throughout the field measurement campaign, and was not affected by high vibration and large uncontrolled temperature excursions. We believe that the development of an accurate, fast response water vapor monitor described in this report will open up new avenues of aerial-vehicle-based atmospheric research which have been relatively unexplored due to the lack of suitable low-cost, light-weight instrumentation.

Timothy A. Berkoff; Paul L. Kebabian; Robert A. McClatchy; Charles E. Kolb; Andrew Freedman

1998-12-01T23:59:59.000Z

312

Vapor explosion in the RIA-ST-4 experiment. [BWR  

SciTech Connect (OSTI)

A concern in assuring the safety of commercial light water reactors (LWRs) is whether core overheating, during which molten fuel is produced, can lead to massive vaporization of the coolant and shock pressurization of the system due to an energetic molten fuel-coolant interaction (MFCI). The RIA-ST-4 experiment was one of four scoping tests in the Reactivity Initiated Accident (RIA) Test Series which is being conducted in the Power Burst Facility (PBF) to define an energy deposition failure threshold and to determine modes and consequences of fuel rod failure during a postulated boiling water reactor (BWR) control rod drop accident.

El-Genk, M.S.

1980-01-01T23:59:59.000Z

313

Combustion chemical vapor deposited coatings for thermal barrier coating systems  

SciTech Connect (OSTI)

The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

1995-12-31T23:59:59.000Z

314

Optical waveguides in SBN by zinc vapor diffusion  

E-Print Network [OSTI]

at 600'C for a 12. 5 i1m Wide 1000'C Zinc Vapor Diffused SBN:60 Waveguide Measured at X = 0. 81 pm. IV. SBN:60 Amplitude Modulator Results . . . . . V. SBN:60 Mach-Zehnder Interferometer Results. . . . VI. Voltage-Length Product Comparison...: (a) extraordinary (TM), (b) 1. 5 x ordinary (TE). 12. Surface damage on SBN:60 diffused at 1000'C with an SiOz diffusion mask. 13. Zinc in-diffusion in SBN:60 25 . . . . . 26 . . . . . 27 . . . . . 28 29 14. Barium out-diffuison in SBN:60...

Quinn, Jeffrey Dale

1991-01-01T23:59:59.000Z

315

Recirculating wedges for metal-vapor plasma tubes  

DOE Patents [OSTI]

A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior.

Hall, Jerome P. (Livermore, CA); Sawvel, Robert M. (Modesto, CA); Draggoo, Vaughn G. (Livermore, CA)

1994-01-01T23:59:59.000Z

316

Recirculating wedges for metal-vapor plasma tubes  

DOE Patents [OSTI]

A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior. 8 figures.

Hall, J.P.; Sawvel, R.M.; Draggoo, V.G.

1994-06-28T23:59:59.000Z

317

Io - Are vapor explosions responsible for the 5-micron outbursts  

SciTech Connect (OSTI)

It is proposed that a vapor explosion of a submerged pool of liquid sulfur will remove the crust overlying an area of about 50-km diam. Thermal radiation from the exposed liquid sulfur pool with a surface temperature of 600 K is then presumed to be responsible for the 5-micron outbursts that have been observed. The explosive volcanoes are expected to leave black sulfur calderas, which are, indeed, found on the surface. The 5-micron outburst observed by Sinton (1980), on June 11, 1979 (UT), is identified with a new caldera found on Voyager 2 photographs but which had not been present on Voyager 1 pictures.

Sinton, W.M.

1980-01-01T23:59:59.000Z

318

In situ bioremediation enhanced with air sparging and vapor extraction  

SciTech Connect (OSTI)

Eaton Corporation operates a corporate airport hangar facility in central Michigan. Testing showed, and soil and groundwater investigation confirmed, that two underground storage tanks leaked. This release sent an undetermined amount of Jet A kerosene into the soil and groundwater. As a result, the Michigan Department of Natural Resources (MDNR) listed the facility on the Act 307 list of contaminated sites (Michigan equivalent of a Superfund listing). The objective of the remediation was to clean up an aquifer and soil system contaminated with Jet A kerosene. This cleanup used pump and treat, bioremediation, soil vapor extraction, and air sparging technologies.

Fesko, S. [Eaton Corp., Willoughby Hills, OH (United States)

1996-11-01T23:59:59.000Z

319

Chemical Vapor Deposited Zinc Sulfide. SPIE Press Monograph  

SciTech Connect (OSTI)

Zinc sulfide has shown unequaled utility for infrared windows that require a combination of long-wavelength infrared transparency, mechanical durability, and elevated-temperature performance. This book reviews the physical properties of chemical vapor deposited ZnS and their relationship to the CVD process that produced them. An in-depth look at the material microstructure is included, along with a discussion of the material's optical properties. Finally, because the CVD process itself is central to the development of this material, a brief history is presented.

McCloy, John S.; Tustison, Randal W.

2013-04-22T23:59:59.000Z

320

Moisture burst structure in satellite water vapor imagery  

E-Print Network [OSTI]

The moisture burst is a tropical synoptic-scale weather event that typically originates along the ITCZ and has been defined previously in window-channel infrared imagery. This research uses 6. 7-micrometer water vapor absorption band imagery to composite 35... moisture burst events during the North Pacific cool season of 1983-1984. Composite maps are constructed at four times, each 24 h apart, during the life cycle of the moisture burst. A comparative baseline is provided by an additional composite of 35 dates...

Ulsh, David Joel

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Unusual thermopower of inhomogeneous graphene grown by chemical vapor deposition  

SciTech Connect (OSTI)

We report on thermopower (TEP) and resistance measurements of inhomogeneous graphene grown by chemical vapor deposition (CVD). Unlike the conventional resistance of pristine graphene, the gate-dependent TEP shows a large electron-hole asymmetry. This can be accounted for by inhomogeneity of the CVD-graphene where individual graphene regions contribute with different TEPs. At the high magnetic field and low temperature, the TEP has large fluctuations near the Dirac point associated with the disorder in the CVD-graphene. TEP measurements reveal additional characteristics of CVD-graphene, which are difficult to obtain from the measurement of resistance alone.

Nam, Youngwoo, E-mail: youngwoo.nam@chalmers.se [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Sun, Jie; Lindvall, Niclas; Yurgens, August [Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Jae Yang, Seung; Rae Park, Chong [Department of Materials Science and Engineering, Seoul National University, Seoul 151-747 (Korea, Republic of); Woo Park, Yung [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

2014-01-13T23:59:59.000Z

322

Vapor generation methods for explosives detection research. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II FieldVacancy-InducedCloudPoissonVampire Power1 - USAF1Vapor

323

The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications  

SciTech Connect (OSTI)

Five alternatives to vapor compression technology were qualitatively evaluated to determine their prospects for being better than vapor compression for space cooling and food refrigeration applications. The results of the assessment are summarized in the report. Overall, thermoacoustic and magnetic technologies were judged to have the best prospects for competing with vapor compression technology, with thermotunneling, thermoelectric, and thermionic technologies trailing behind in that order.

Brown, Daryl R.; Dirks, James A.; Fernandez, Nicholas; Stout, Tyson E.

2010-03-31T23:59:59.000Z

324

E-Print Network 3.0 - alkali atom vapor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a vapor cell magneto-optical trap. 1999 American... to the vacuum pumps or due to adsorption of the ... Source: Jin, Deborah - JILA, University of Colorado at Boulder...

325

Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors  

SciTech Connect (OSTI)

A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

2014-10-14T23:59:59.000Z

326

LABORATORY TESTING TO SIMULATE VAPOR SPACE CORROSION IN RADIOACTIVE WASTE STORAGE TANKS  

SciTech Connect (OSTI)

Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 70 years at the Hanford nuclear facility. Vapor space corrosion of the tank walls has emerged as an ongoing challenge to overcome in maintaining the structural integrity of these tanks. The interaction between corrosive and inhibitor species in condensates/supernates on the tank wall above the liquid level, and their interaction with vapor phase constituents as the liquid evaporates from the tank wall influences the formation of corrosion products and the corrosion of the carbon steel. An effort is underway to gain an understanding of the mechanism of vapor space corrosion. Localized corrosion, in the form of pitting, is of particular interest in the vapor space. CPP testing was utilized to determine the susceptibility of the steel in a simulated vapor space environment. The tests also investigated the impact of ammonia gas in the vapor space area on the corrosion of the steel. Vapor space coupon tests were also performed to investigate the evolution of the corrosion products during longer term exposures. These tests were also conducted at vapor space ammonia levels of 50 and 550 ppm NH{sub 3} (0.005, and 0.055 vol.%) in air. Ammonia was shown to mitigate vapor space corrosion.

Wiersma, B.; Garcia-Diaz, B.; Gray, J.

2013-08-30T23:59:59.000Z

327

E-Print Network 3.0 - acoustic wave vapor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(6). While previous systems have demonstrated success in chemical... striking visual identification of a range of ligating vapors (including alcohols, amines, ethers... ,...

328

E-Print Network 3.0 - asssited chemical vapor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nitride, chemical vapor ... Source: Dandy, David - Department of Chemical Engineering, Colorado State University Collection: Materials Science 14 DEPOSITION OF ELECTRON BEAM...

329

E-Print Network 3.0 - all-hot-wire chemical vapor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nitride, chemical vapor ... Source: Dandy, David - Department of Chemical Engineering, Colorado State University Collection: Materials Science 10 DEPOSITION OF ELECTRON BEAM...

330

E-Print Network 3.0 - atomic vapor deposited Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

S. S. - School of Nuclear Engineering, Purdue University Collection: Plasma Physics and Fusion 8 Influence of substrate temperature on the stability of glasses prepared by vapor...

331

Synthesis and Characterization of Magnetic Nanowires Prepared by Chemical Vapor Deposition.  

E-Print Network [OSTI]

??Various metal silicide and germanide magnetic nanowires were synthesized using a home-built CVD [chemical vapor deposition] system. The morphology, composition, and magnetic properties of the… (more)

Tang, Siwei

2014-01-01T23:59:59.000Z

332

Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor  

DOE Patents [OSTI]

The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.

Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S

2014-03-04T23:59:59.000Z

333

Towards improved spinnability of chemical vapor deposition generated multi-walled carbon nanotubes  

E-Print Network [OSTI]

P. J. F. 1999 Carbon nanotubes and related structures: newof vapor grown carbon nanotubes and single wall nanotubes, Eto Carbon Materials in Carbon Nanotubes: Preparation and

McKee, Gregg Sturdivant Burke

2008-01-01T23:59:59.000Z

334

Chemical vapor deposition of organosilicon composite thin films for porous low-k dielectrics  

E-Print Network [OSTI]

Pulsed plasma enhanced chemical vapor deposition has produced organosilicon thin films with the potential use as low dielectric constant interconnect materials in microelectronic circuits. Both diethylsilane and ...

Ross, April Denise, 1977-

2005-01-01T23:59:59.000Z

335

E-Print Network 3.0 - alkali vapor species Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Volume 4, novembre 1994 Summary: 60 specines aged at elevated temperatures in alkali-metal vapors have shown that such treatmerlt... -T superconductivity in C specimens annealed...

336

E-Print Network 3.0 - acetone vapor sensing Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-0150 The photophysics of vapor and liquid acetone are experimentally examined from subcritical to supercritical... injection and mixing. The fluorescence quantum yield for...

337

Numerical modeling of water injection into vapor-dominated geothermal reservoirs  

E-Print Network [OSTI]

Renewable Energy, Office of Geothermal Technologies, of theTransport in Fractured Geothermal Reservoirs, Geothermics,Depletion of Vapor-Dominated Geothermal Reservoirs, Lawrence

Pruess, Karsten

2008-01-01T23:59:59.000Z

338

The Patuha geothermal system: a numerical model of a vapor-dominated system.  

E-Print Network [OSTI]

??The Patuha geothermal system is a vapor-dominated reservoir located about 40 kilometers southwest of Bandung on western Java, Indonesia. The geothermal system consists of a… (more)

Schotanus, M.R.J.

2013-01-01T23:59:59.000Z

339

Gas chromatographic-mass spectrometric characterization of an oil aerosol-vapor microbial disinfectant .  

E-Print Network [OSTI]

??"This thesis focuses on chemical characterization studies of disinfectant vapors generated from thermal oxidation of mineral oil and biogenic oil esters. The disinfection technique holds… (more)

Wadhwa, Prakash, 1980-

2005-01-01T23:59:59.000Z

340

Vapor space characterization of waste Tank 241-TY-101: Results from samples collected on 4/6/95  

SciTech Connect (OSTI)

This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-TY-101 (referred to as Tank TY-101). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water vapor (H{sub 2}O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Off these, 5 were observed above the 5-ppbv reporting cutoff. One tentatively identified compound (TIC) was observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The six organic analyses identified are listed in Table 1 and account for approximately 100% of the total organic components in Tank TY-101. Two permanent gases, carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O), were also detected. Tank TY-101 is on the Ferrocyanide Watch List.

Klinger, G.S.; Clauss, T.W.; Ligotke, M.W.; Pool, K.H.; McVeety, B.D.; Olsen, K.B.; Bredt, O.P.; Fruchter, J.S.; Goheen, S.C.

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Prediction of blast damage from vapor cloud explosions  

SciTech Connect (OSTI)

The process industries handle a wide range of different materials and use them in different types of chemical reaction. Of particular concern is the prospect of damage and injury affecting the general public outside the boundary wall of the chemical plant. It is not wise to permit the construction of homes, schools or hospitals so close to chemical plants that they, and the people within, might be damaged or injured should there be an accidental explosion in the plant. The major hazard outside the plant is over-pressure, a consequence of an accidental explosion in a cloud of flammable gas or vapor (Vapor Cloud Explosion or VCE). It is the responsibility of plant management to ensure that any such accidental explosion is not so large as to endanger the public, and of the local planning authorities to ensure that homes, schools or hospitals are not sited so close to chemical plants that they may be endangered by accidental explosion. A vital tool for such authorities is a simple method of assessing the possible consequences of an accidental VCE. In this paper those methods of assessing the consequences are examined.

Phillips, H. [Phillips (H.), Buxton (United Kingdom)

1995-12-31T23:59:59.000Z

342

Method of physical vapor deposition of metal oxides on semiconductors  

DOE Patents [OSTI]

A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

Norton, David P. (Knoxville, TN)

2001-01-01T23:59:59.000Z

343

The Fabrication of an Inverter using Rubrene Single Crystal Organic Transistors C. Corbet, Y. Matsuoka, K. Watanabe, P.I. Yoshihiro Iwasa  

E-Print Network [OSTI]

The Fabrication of an Inverter using Rubrene Single Crystal Organic Transistors C. Corbet, Y single crystal devices. The purpose of this project is to fabricate an inverter device using organic by a physical vapor transport method with a nitrogen flow. Inverter devices were fabricated by laminating thus

Mellor-Crummey, John

344

Organic photosensitive cells grown on rough electrode with nano-scale morphology control  

DOE Patents [OSTI]

An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.

Yang, Fan (Piscataway, NJ); Forrest, Stephen R. (Ann Arbor, MI)

2011-06-07T23:59:59.000Z

345

Vapor Pressures and Vaporization Enthalpies of the n-Alkanes from C21 to C30 at T ) 298.15 K by Correlation Gas Chromatography  

E-Print Network [OSTI]

by Correlation Gas Chromatography James S. Chickos* and William Hanshaw Department of Chemistry and Biochemistry. Sublimation enthalpies for n-C17 to n-C30 are calculated by combining vaporization enthalpies with fusion

Chickos, James S.

346

Evaluation of the Vaporization, Fusion, and Sublimation Enthalpies of the 1-Alkanols: The Vaporization Enthalpy of 1-, 6-, 7-, and 9-Heptadecanol,  

E-Print Network [OSTI]

Evaluation of the Vaporization, Fusion, and Sublimation Enthalpies of the 1-Alkanols* Department of Chemistry and Biochemistry, University of MissourisSt. Louis, St. Louis, Missouri 63121 sublimation enthalpies. The sublimation enthalpies were compared to existing literature values. Agreement

Chickos, James S.

347

Polymer electrolyte fuel cell electrodes grown by vapor deposition techniques Pascal Brault*  

E-Print Network [OSTI]

Polymer electrolyte fuel cell electrodes grown by vapor deposition techniques Pascal Brault Abstract: Polymer fuel cell electrode growth using vapor deposition techniques is reviewed. The supports process: sputtering, CVD, PECVD, MOCVD. In each case, up-to-date fuel cell performances are highlighted

Paris-Sud XI, Université de

348

Lithium phosphorous oxynitride films synthesized by a plasma-assisted directed vapor deposition approach  

E-Print Network [OSTI]

Lithium phosphorous oxynitride films synthesized by a plasma-assisted directed vapor deposition vapor deposition approach has been explored for the synthesis of lithium phosphorous oxynitride Lipon the ionic transport properties of these films. This enabled the synthesis of electrolyte films with lithium

Wadley, Haydn

349

Tank 241-U-106 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-U-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

350

Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas M. V. Romalis  

E-Print Network [OSTI]

Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas M. V. Romalis; published 7 December 2010) Optical pumping of an optically thick atomic vapor typically requires a quenching the atoms. We show that optical pumping of a trace contamination of Rb present in K metal results in a 4

Romalis, Mike

351

Chem. Mater. 1995, 7, 2269-2272 2269 Water Vapor Adsorption on Chemically Treated  

E-Print Network [OSTI]

Chem. Mater. 1995, 7, 2269-2272 2269 Water Vapor Adsorption on Chemically Treated Activated Carbon August 25, 1995@ Water vapor adsorption on activated carbon cloth (ACCBO)which has been oxidized% Cl), and ACCBO (4% N), exhibits sigmoidal isotherms with hysteresis loops of varying magnitudes

Cal, Mark P.

352

VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE FROM  

E-Print Network [OSTI]

(for water: the SPC-, SPC/E-, and TIP4P-potential models; for carbon dioxide: the EPM2 potential model dioxide are calculated. For water, the SPC- and TIP4P-models give superior results for the vapor pressure when compared to the SPC/E-model. The vapor liquid equilibrium of the binary mixture carbon dioxide

353

Shock wave induced vaporization of porous solids Andy H. Shen, a)  

E-Print Network [OSTI]

to reach high entropy, vaporized states in impact experiments. We extended calculations by Ahrens J. Appl such as Earth.1­3 During collision events, kinetic energy is converted into internal energy and such conversion spectrometry. More re- cently, the vapor products generated from a hypervelocity impact of electrostatically

Stewart, Sarah T.

354

Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil  

DOE Patents [OSTI]

The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

2014-07-08T23:59:59.000Z

355

Low temperature chemical vapor deposition of Co thin films from Co2(CO)8  

E-Print Network [OSTI]

Low temperature chemical vapor deposition of Co thin films from Co2(CO)8 D.-X. Yea,*, S. Pimanpanga chemical vapor deposition with a metallorganic Co2(CO)8 precursor. After Ar sputtering of the surface, Co2(CO)8, has been extensively used in cobalt CVD and is attractive, since Co is in its elemental

Wang, Gwo-Ching

356

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS  

E-Print Network [OSTI]

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from such as cloud mask, atmos- pheric profiles, aerosol properties, total precipitable water, and cloud properties vapor amount, aerosol particles, and the subsequently formed clouds [9]. Barnes et al. [2] provide

Sheridan, Jennifer

357

Tunneling characteristics in chemical vapor deposited graphene hexagonal boron nitride graphene junctions  

E-Print Network [OSTI]

1 Tunneling characteristics in chemical vapor deposited graphene ­ hexagonal boron nitride ­ graphene junctions T. Roy1 , L. Liu2 , S. de la Barrera,3 B. Chakrabarti1,4 , Z. R. Hesabi1 , C. A. Joiner1 Abstract: Large area chemical vapor deposited graphene and hexagonal boron nitride was used to fabricate

Feenstra, Randall

358

Computational Analysis and Optimization of a Chemical Vapor Deposition Reactor with  

E-Print Network [OSTI]

Computational Analysis and Optimization of a Chemical Vapor Deposition Reactor with Large and optimization of a three- dimensional model of a horizontal chemical vapor deposition (CVD) reactor used National Laboratories February 9, 2004 Abstract A computational analysis and optimization is presented

359

Optimization of the chemical vapor deposition process for carbon nanotubes fabrication  

E-Print Network [OSTI]

Optimization of the chemical vapor deposition process for carbon nanotubes fabrication M. Grujicica-phase chemistry and surface chemistry model is developed to analyze, at the reactor length scale, chemical vapor (carrier gas) in the presence of cobalt catalytic particles in a cylindrical reactor. The model allows

Grujicic, Mica

360

OPTIMAL DESIGN OF A HIGH PRESSURE ORGANOMETALLIC CHEMICAL VAPOR DEPOSITION REACTOR  

E-Print Network [OSTI]

OPTIMAL DESIGN OF A HIGH PRESSURE ORGANOMETALLIC CHEMICAL VAPOR DEPOSITION REACTOR K.J. BACHMANN of computer simulations as an optimal design tool which lessens the costs in time and effort in experimental vapor deposition (HPOMCVD) reactor for use in thin film crystal growth. The advantages of such a reactor

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

On the optimization of a dc arcjet diamond chemical vapor deposition reactor  

E-Print Network [OSTI]

On the optimization of a dc arcjet diamond chemical vapor deposition reactor S. W. Reevea) and W. A precursor in our dc arcjet reactor.1 Based on conclusions drawn from that work, an optimization strategy diamond film growth in a dc arcjet chemical vapor deposition reactor has been developed. Introducing

Dandy, David

362

Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry  

DOE Patents [OSTI]

The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

Yeung, E.S.; Chang, Y.C.

1999-06-29T23:59:59.000Z

363

An Examination of the Thermodynamics of Fusion, Vaporization, and Sublimation of Several Parabens by Correlation Gas  

E-Print Network [OSTI]

An Examination of the Thermodynamics of Fusion, Vaporization, and Sublimation of Several Parabens, Kasetsart University, Bangkane, Bangkok 10900, Thailand 2 Department of Chemistry and Biochemistry.com). DOI 10.1002/jps.22423 ABSTRACT: The vaporization, fusion, and sublimation enthalpies of methyl, ethyl

Chickos, James S.

364

Method and apparatus to measure vapor pressure in a flow system  

DOE Patents [OSTI]

The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

Grossman, M.W.; Biblarz, O.

1991-10-15T23:59:59.000Z

365

Apparatus and method for removing mercury vapor from a gas stream  

DOE Patents [OSTI]

A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

Ganesan, Kumar (Butte, MT)

2008-01-01T23:59:59.000Z

366

Researchers develop electrodeposition process to deposit coatings on substrates, eliminate the expensive physical vapor  

E-Print Network [OSTI]

the expensive physical vapor deposition step, and improve device quality. CuIn1-xGaxSe2 (CIGS) solar cells have composition was adjusted by physical vapor deposition method. At present, we are fabricating CIGS-based solar). 2 R. N. Bhattacharya, W. Batchelor, J. F. Hiltner, and J. R. Sites, Appl. Phys. Lett., 75, 1431

367

Real-time growth rate metrology for a tungsten chemical vapor deposition process by acoustic sensing  

E-Print Network [OSTI]

to a production-scale tungsten chemical vapor deposition cluster tool for in situ process sensing. Process gasesReal-time growth rate metrology for a tungsten chemical vapor deposition process by acoustic to achieve run-to-run process control of the deposited tungsten film thickness. © 2001 American Vacuum

Rubloff, Gary W.

368

TREATMENT OF PRODUCED WATERS USING A SURFACTANT MODIFIED ZEOLITE/VAPOR PHASE BIOREATOR SYSTEM  

SciTech Connect (OSTI)

Co-produced water from the oil and gas industry is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some of them must be treated to remove organic constituents before the water is discharged. An efficient, cost-effective treatment technology is needed to remove these constituents. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. Our previous DOE research work (DE-AC26-99BC15221) demonstrated that SMZ could successfully remove BTEX compounds from the produced water. In addition, SMZ could be regenerated through a simple air sparging process. The primary goal of this project is to develop a robust SMZ/VPB treatment system to efficiently remove the organic constituents from produced water in a cost-effective manner. This report summarizes work of this project from March 2003 through September 2003. We have continued our investigation of SMZ regeneration from our previous DOE project. Ten saturation/stripping cycles have been completed for SMZ columns saturated with BTEX compounds. The results suggest that BTEX sorption capacity is not lost after ten saturation/regeneration cycles. The composition of produced water from a site operated by Crystal Solutions Ltd. in Wyoming has been characterized and was used to identify key semi-volatile components. Isotherms with selected semi-volatile components have been initiated and preliminary results have been obtained. The experimental vapor phase bioreactors for this project have been designed and assembled to treat the off-gas from the SMZ regeneration process. These columns will be used both in the laboratory and in the proposed field testing to be conducted next year. Innocula for the columns that degrade all of the BTEX columns have been developed.

LYNN E. KATZ; KERRY A. KINNEY; R.S. BOWMAN; E.J. SULLIVAN

2003-10-01T23:59:59.000Z

369

Isothermal vapor-liquid equilibrium accompanied by esterification; ethanol-formic acid system  

SciTech Connect (OSTI)

The equilibrium total pressures after reaction between ethanol and formic acid were measured at 30, 40 and 50/sup 0/C, and the compositions of the vapor and liquid phases were determined gas chromatographically. Since the presence of the carboxylic acid in the mixture induces dimerization and trimerization of the acid in the vapor phase, the modified fugacity coefficients were calculated from ''chemical'' theory using the Lewis fugacity rule, from which are calculated the activity coefficients and the vapor-phase mole fractions using the nonrandom, two-liquid (NRTL) equation. The parameters in the NRTL equation were obtained from vapor-liquid equilibrium data for the binary system. The calculated results agree closely with the experimental vapor-phase mole-fraction data.

Rim, J.K.; Bae, S.Y.; Lee, H.T.

1985-07-01T23:59:59.000Z

370

ORGANIC CHEMISTRY UCLA Organic Chemistry Faculty  

E-Print Network [OSTI]

ORGANIC CHEMISTRY UCLA Organic Chemistry Faculty perform research in molecular machines, exotic CHEMISTRY FACULTY RESEARCH INTERESTS Anne M. Andrews, Professor-in-Residence: Understanding how areas of interest include cross- coupling reactions, green chemistry, heterocycle synthesis, and natural

Levine, Alex J.

371

Strain relaxation in graphene grown by chemical vapor deposition  

SciTech Connect (OSTI)

The growth of single layer graphene by chemical vapor deposition on polycrystalline Cu substrates induces large internal biaxial compressive strain due to thermal expansion mismatch. Raman backscattering spectroscopy and atomic force microscopy were used to study the strain relaxation during and after the transfer process from Cu foil to SiO{sub 2}. Interestingly, the growth of graphene results in a pronounced ripple structure on the Cu substrate that is indicative of strain relaxation of about 0.76% during the cooling from the growth temperature. Removing graphene from the Cu substrates and transferring it to SiO{sub 2} results in a shift of the 2D phonon line by 27?cm{sup ?1} to lower frequencies. This translates into additional strain relaxation. The influence of the processing steps, used etching solution and solvents on strain, is investigated.

Troppenz, Gerald V., E-mail: gerald.troppenz@helmholtz-berlin.de; Gluba, Marc A.; Kraft, Marco; Rappich, Jörg; Nickel, Norbert H. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Silizium Photovoltaik, Kekuléstr. 5, D-12489 Berlin (Germany)

2013-12-07T23:59:59.000Z

372

Discrete Boltzmann modeling of liquid-vapor system  

E-Print Network [OSTI]

We further probe the Discrete Boltzmann Modeling(DBM) of the single-component two phase flows or the liquid-vapor system. There are two kinds of nonequilibrium effects in the system. The first is the Mechanical NonEquilibrium(MNE). The second is the Thermodynamic NonEquilibrium(TNE). The MNE is well described in the traditional fluid dynamic theory. The description of TNE resorts to the gas kinetic theory. Since based on the Boltzmann equation, the DBM makes possible to analyze both the MNE and TNE. The TNE is the main discussion of this work. A major purpose of this work is to show that the DBM results can be used to confirm and/or improve the macroscopic modeling of complex system.

Aiguo Xu; Guangcai Zhang; Yanbiao Gan

2014-03-15T23:59:59.000Z

373

Field emission properties of chemical vapor deposited individual graphene  

SciTech Connect (OSTI)

Here, we report field emission (FE) properties of a chemical vapor deposited individual graphene investigated by in-situ transmission electron microscopy. Free-standing bilayer graphene is mounted on a cathode microprobe and FE processes are investigated varying the vacuum gap of cathode and anode. The threshold field for 10?nA current were found to be 515, 610, and 870?V/?m for vacuum gap of 400, 300, and 200?nm, respectively. It is observed that the structural stability of a high quality bilayer graphene is considerably stable during emission process. By contacting the nanoprobe with graphene and applying a bias voltage, structural deformation and buckling are observed with significant rise in temperature owing to Joule heating effect. The finding can be significant for practical application of graphene related materials in emitter based devices as well as understanding the contact resistance influence and heating effect.

Zamri Yusop, Mohd [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Department of Materials, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Yaakob, Yazid; Takahashi, Chisato; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan)

2014-03-03T23:59:59.000Z

374

Feasibility of UV lasing without inversion in mercury vapor  

E-Print Network [OSTI]

We investigate the feasibility of UV lasing without inversion at a wavelength of $253.7$ nm utilizing interacting dark resonances in mercury vapor. Our theoretical analysis starts with radiation damped optical Bloch equations for all relevant 13 atomic levels. These master equations are generalized by considering technical phase noise of the driving lasers. From the Doppler broadened complex susceptibility we obtain the stationary output power from semiclassical laser theory. The finite overlap of the driving Gaussian laser beams defines an ellipsoidal inhomogeneous gain distribution. Therefore, we evaluate the intra-cavity field inside a ring laser self-consistently with Fourier optics. This analysis confirms the feasibility of UV lasing and reveals its dependence on experimental parameters.

Martin R. Sturm; Benjamin Rein; Thomas Walther; Reinhold Walser

2014-06-27T23:59:59.000Z

375

Technology alternatives to CFC/HCFC vapor compression  

SciTech Connect (OSTI)

Phaseouts of CFCs and HCFCs to protect the stratospheric ozone layer have caused many developments in replacement or alternative technologies for heat pumping. Some of this effort has been of an ``evolutionary`` nature where the designs of conventional vapor compression systems were adapted to use chlorine-free refrigerants. Other alternatives are more radical departures from conventional practice such as operating above the critical point of an alternative refrigerant. Revolutionary changes in technology based on cycles sor principles not commonly associated with refrigeration have also attracted interest. Many of these technologies are being touted because they are ``ozone-safe`` or because they do not use greenhouse gases as refrigerants. Basic principles and some advantages and disadvantages of each technology are discussed in this paper.

Fischer, S.

1996-08-01T23:59:59.000Z

376

ACTION CONCENTRATION FOR MIXTURES OF VOLATILE ORGANIC COMPOUNDS (VOC) & METHANE & HYDROGEN  

SciTech Connect (OSTI)

Waste containers may contain volatile organic compounds (VOCs), methane, hydrogen and possibly propane. These constituents may occur individually or in mixtures. Determining if a waste container contains a flammable concentration of flammable gases and vapors (from VOCs) is important to the safety of the handling, repackaging and shipping activities. This report provides the basis for determining the flammability of mixtures of flammable gases and vapors. The concentration of a mixture that is at the lowest flammability limit for that mixture is called the action concentration. The action concentration can be determined using total VOC concentrations or actual concentration of each individual VOC. The concentrations of hydrogen and methane are included with the total VOC or individual VOC concentration to determine the action concentration. Concentrations below this point are not flammable. Waste containers with gas/vapor concentrations at or above the action concentration are considered flammable.

MARUSICH, R.M.

2006-07-10T23:59:59.000Z

377

Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve.  

SciTech Connect (OSTI)

Crude oil storage caverns at the U.S. Strategic Petroleum Reserve (SPR) are solution-mined from subsurface salt domes along the U.S. Gulf Coast. While these salt domes exhibit many attractive characteristics for large-volume, long-term storage of oil such as low cost for construction, low permeability for effective fluids containment, and secure location deep underground, they also present unique technical challenges for maintaining oil quality within delivery standards. The vapor pressures of the crude oils stored at SPR tend to increase with storage time due to the combined effects of geothermal heating and gas intrusion from the surrounding salt. This presents a problem for oil delivery offsite because high vapor-pressure oil may lead to excessive atmospheric emissions of hydrocarbon gases that present explosion hazards, health hazards, and handling problems at atmospheric pressure. Recognizing this potential hazard, the U.S. Department of Energy, owner and operator of the SPR, implemented a crude oil vapor pressure monitoring program that collects vapor pressure data for all the storage caverns. From these data, DOE evaluates the rate of change in vapor pressures of its oils in the SPR. Moreover, DOE implemented a vapor pressure mitigation program in which the oils are degassed periodically and will be cooled immediately prior to delivery in order to reduce the vapor pressure to safe handling levels. The work described in this report evaluates the entire database since its origin in 1993, and determines the current levels of vapor pressure around the SPR, as well as the rate of change for purposes of optimizing both the mitigation program and meeting safe delivery standards. Generally, the rate of vapor pressure increase appears to be lower in this analysis than reported in the past and, problematic gas intrusion seems to be limited to just a few caverns. This being said, much of the current SPR inventory exceeds vapor pressure delivery guidelines and must be degassed and cooled in order to meet current delivery standards.

Rudeen, David Keith (GRAM, Inc., Albuquerque, NM); Lord, David L.

2005-08-01T23:59:59.000Z

378

Vaporization modeling of petroleum-biofuel drops using a hybrid multi-component approach  

SciTech Connect (OSTI)

Numerical modeling of the vaporization characteristics of multi-component fuel mixtures is performed in this study. The fuel mixtures studied include those of binary components, biodiesel, diesel-biodiesel, and gasoline-ethanol. The use of biofuels has become increasingly important for reasons of environmental sustainability. Biofuels are often blended with petroleum fuels, and the detailed understanding of the vaporization process is essential to designing a clean and efficient combustion system. In this study, a hybrid vaporization model is developed that uses continuous thermodynamics to describe petroleum fuels and discrete components to represent biofuels. The model is validated using the experimental data of n-heptane, n-heptane-n-decane mixture, and biodiesel. Since biodiesel properties are not universal due to the variation in feedstock, methods for predicting biodiesel properties based on the five dominant fatty acid components are introduced. Good levels of agreement in the predicted and measured drop size histories are obtained. Furthermore, in modeling the diesel-biodiesel drop, results show that the drop lifetime increases with the biodiesel concentration in the blend. During vaporization, only the lighter components of diesel fuel vaporize at the beginning. Biodiesel components do not vaporize until some time during the vaporization process. On the other hand, results of gasoline-ethanol drops indicate that both fuels start to vaporize once the process begins. At the beginning, the lighter components of gasoline have a slightly higher vaporization rate than ethanol. After a certain time, ethanol vaporizes faster than the remaining gasoline components. At the end, the drop reduces to a regular gasoline drop with heavier components. Overall, the drop lifetime increases as the concentration of ethanol increases in the drop due to the higher latent heat. (author)

Zhang, Lei; Kong, Song-Charng [Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering Building, Ames, IA 50011 (United States)

2010-11-15T23:59:59.000Z

379

Vadose Zone Remediation Assessment: M-Area Process Sewer Soil Vapor Extraction Units 782-5M, 782-7M, and 782-8M  

SciTech Connect (OSTI)

This study focuses on the status of the vadose zone remediation along 1600 ft of the process sewer line between the M-Area security fence and the M-Area settling basin. Three soil vapor extraction (SVE) units 782-5M, 782-7M, and 782-8M, connected to 4 vertical wells and 3 horizontal wells have been addressing the vadose zone volatile organic contamination (VOC) since 1995. The specific objectives of this study were to obtain soil gas and sediment samples, evaluate SVE units and vadose zone remediation, and make recommendations to address further remediation needs.

Riha, B.D.

2001-04-20T23:59:59.000Z

380

FRACTURE ENHANCED SOIL VAPOR EXTRACTION TECHNOLOGY DEMONSTRATION AT THE A-014 OUTFALL  

SciTech Connect (OSTI)

Data collected during this study show that the performance of hydraulically fractured wells (with respect to mass removal rates) may tend to decrease with time following precipitation events. These effects are due to temporary increases in water saturation in the formation within the vicinity of the fractures, therefore, the wells should tend to rebound during subsequent dry periods. The data available for fractured well versus conventional well performance (with respect to flow rate versus vacuum pressure) are limited in this study. However, the data that we have to draw from suggest that, with the possible exception of a few extreme examples, hydraulically fractured wells tend to perform better than conventional wells during soil vapor extraction (SVE) operation at the A-14 Outfall. The pancake like geometry associated with hydraulic fractures also leads to a significant increase in zone of influence (ZOI), as compared to conventional wells. The increase in ZOI is due to the radially extending, horizontal, high-permeability conduit nature of the hydraulic fracture, however, air-flow into the fracture is predominately vertical (occurring at right angles to the fracture plane). Flow rates from above and below the fracture will tend to be equivalent when the formation is homogeneous, however, in the case of directionally fining depositional sequences flow rates will be greater from the direction of increasing permeability. The Upland Unit is a fining upward sequence, therefore flow rates (and contaminant mass flow rates) will tend to be higher below the fracture. This suggests that emplacing the fractures slightly above the source zone is an important strategy for accelerating contaminant removal at the A-014 Outfall site and in the Upland Unit at the SRS. However, due to the multitude of previous borings at the A-014 Outfall site, the shallower fractures failed. More than 2500 lbs of chlorinated volatile organic compounds (cVOCs) were removed during approximately 6 months of fractured well SVE operation at the A-014 field site. Plotting total mass removed over this time period shows a roughly linear relationship Figure 7. This occurs because the mass removal rate remains fairly constant with time. When mass removal comes predominately from cVOCs stored in the vapor phase there is a marked decline in mass removal rate over a short period of time due to the limiting nature of diffusion. Constant mass removal rates suggest that a source zone has been directly targeted and, therefore, is providing a constant supply of cVOC that partitions into the vapor phase and is removed through the well. Directly targeting and removing source zones is the most efficient approach to remediating contaminated sites. Results of this study show that utilization of hydraulic fractures during SVE is an effective approach for increasing remediation efficiency at the A-014 Outfall field site and in the Upland Unit at the SRS. Hydraulically fractured wells tend to produce greater flow rates and create larger ZOI's than do conventional wells. These attributes allow fractured wells to effectively treat larger volumes of formation. The unique sand-emplacement geometry associated with hydraulically fractured wells also allows direct targeting of multiple zones located at similar elevations within a fairly large radius of the well. The ability to directly target source zones significantly decreases diffusion pathways, therefore, significantly decreasing the time required to reach remediation goals.

Riha, B; Warren Hyde, W; Richard Hall (NOEMAIL), R

2008-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 24, NO. 3, 2007, 509526 Variational Assimilation of GPS Precipitable Water Vapor and  

E-Print Network [OSTI]

Precipitable Water Vapor and Hourly Rainfall Observations for a Meso- Scale Heavy Precipitation Event During Atmospheric water vapor plays a significant role in numerical weather predictions (NWP) of heavy rain- fall of the precipitable water vapor (PWV) from delayed signals transmitted by GPS satellites, which can be assimilated

382

A new vapor pressure equation originating at the critical point  

E-Print Network [OSTI]

. , and I. J. Lawrenson, "The Vapour Pressure of Water, " J. Chem. Thermod . , 4, "/55 (1972). Ambrose, D. , and C. H. S. Sprake, "Thermodynamic Proper- ties of Organic Oxygen Compounds XXV. Vapour Pressures and Normal Boiling Temperatures of Alipha- tic... Alcohols, " J. Chem. Thermod n. , 2, 631 (1970). Ambrose, D. , C. H. S. Sprake, and R. Townsend, "Thermodynamic Properties of Organic Oxygen Compounds XXXIII. The Vapour Pressure of Acetone, " J. Chem. ~Th r od . , 6, 693 (1976). American Petroleum...

Nuckols, James William

1976-01-01T23:59:59.000Z

383

Heterostructures based on inorganic and organic van der Waals systems  

SciTech Connect (OSTI)

The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS{sub 2} heterostructures for memory devices; graphene/MoS{sub 2}/WSe{sub 2}/graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors.

Lee, Gwan-Hyoung [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Chul-Ho [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Zande, Arend M. van der [Energy Frontier Research Center (EFRC), Columbia University, New York, New York 10027 (United States); Han, Minyong [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Cui, Xu; Arefe, Ghidewon; Hone, James [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Nuckolls, Colin [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Heinz, Tony F. [Department of Electrical Engineering, Columbia University, New York, New York 10027 (United States); Department of Physics, Columbia University, New York, New York 10027 (United States); Kim, Philip, E-mail: pk2015@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Department of Physics, Columbia University, New York, New York 10027 (United States)

2014-09-01T23:59:59.000Z

384

Latitudinal survey of middle atmospheric water vapor revealed by shipboard microwave spectroscopy. Master's thesis  

SciTech Connect (OSTI)

Water vapor is one of the most important greenhouse gases and is an important tracer of atmospheric motions in the middle atmosphere. It also plays an important role in the chemistry of the middle atmosphere and through its photodissociation by solar radiation, it is the major source of hydrogen escaping to space. Ground-based microwave measurements conducted in the 1980s have provided a fair understanding of the seasonal variation of mesospheric water vapor in the northern hemisphere mid-latitudes, but the global distribution of water vapor in the middle atmosphere is only beginning to be revealed by space-based measurements.

Schrader, M.L.

1994-05-01T23:59:59.000Z

385

Tank 241-BY-103 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank 241-BY-103 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-103 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

Huckaby, J.L.

1995-05-05T23:59:59.000Z

386

Models of the atmospheric water vapor budget for the Texas HIPLEX area: by Steven Francis Williams.  

E-Print Network [OSTI]

co:erage cf. convective activ' ty, Thus, the em&unt of convection seems to be more important than the type oz pr"se. . ce of convective activi!y. An increased tran:port of water vapor near ti e surface is -hown to be an important factor... of watc-. z vapor tnrough each later, l boundary shown in Fig. 1 can be comput d by substituting Eqs. (16) ? (19), reaper tively, into Eq. (14) . Th ' net transport of water vapor 'nt the volume through la+eral oouccdaries or t?:e net horizontal tran:;port...

Williams, Steven Francis

1979-01-01T23:59:59.000Z

387

Tank 241-BY-108 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

Tank 241-BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in ``Program Plan for the Resolution of Tank Vapor Issues`` (Osborne and Huckaby 1994). Tank 241-BY-108 was vapor sampled in accordance with ``Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution (Osborne et al., 1994).

Huckaby, J.L.

1995-05-31T23:59:59.000Z

388

Tank 241-BY-105 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

Tank 241-BY-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-105 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

Huckaby, J.L.

1995-05-31T23:59:59.000Z

389

Tank 241-BY-107 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

Huckaby, J.L.

1995-05-31T23:59:59.000Z

390

Tank 241-BY-107 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues{close_quotes}. Tank 241-BY-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution{close_quotes}.

Huckaby, J.L.

1995-05-05T23:59:59.000Z

391

Tank 241-BY-106 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

Tank 241-BY-106 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-106 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

Huckaby, J.L.

1995-05-31T23:59:59.000Z

392

Tank 241-BY-104 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

Tank 241-BY-104 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-104 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

Huckaby, J.L.

1995-05-31T23:59:59.000Z

393

TMVOC, simulator for multiple volatile organic chemicals  

SciTech Connect (OSTI)

TMVOC is a numerical simulator for three-phase non-isothermal flow of water, soil gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. It is an extension of the TOUGH2 general-purpose simulation program developed at the Lawrence Berkeley National Laboratory. TMVOC is designed for applications to contamination problems that involve hydrocarbon fuel or organic solvent spills in saturated and unsaturated zones. It can model contaminant behavior under ''natural'' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted source remediation. TMVOC is upwards compatible with T2VOC (Falta et al., 1995) and can be initialized from T2VOC-style initial conditions. The main enhancements in TMVOC relative to T2VOC are as follows: a multicomponent mixture of volatile organic chemicals can be modeled; any and all combinations of the three phases water-oil-gas are treated; several non-condensible gases may be present; diffusion is treated in all phases in a manner that is fully coupled with phase partitioning. This paper gives a brief summary of the methodology used in TMVOC as well as highlighting some implementation issues. Simulation of a NAPL spill and subsequent remediation is discussed for a 2-D vertical section of a saturated-unsaturated flow problem.

Pruess, Karsten; Battistelli, Alfredo

2003-03-25T23:59:59.000Z

394

Organic Photovoltaics Philip Schulz  

E-Print Network [OSTI]

Field Effect Transistors Organic Light Emitting Diodes Organic Solar Cells .OFET, OTFT .RF-ID tag 1977 ­ Conductivity in polymers 1986 ­ First heterojunction OPV 1987 ­ First organic light emitting diode (OLED) 1993 ­ First OPV from solution processing 2001 ­ First certified organic solar cell with 2

Firestone, Jeremy

395

Departmental Organization and Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Effective immediately, the Departmental organization structure reflected in the chart at Attachment 1 has been approved.

1993-06-10T23:59:59.000Z

396

Plasma and Ion Assistance in Physical Vapor Deposition: AHistorical Perspective  

SciTech Connect (OSTI)

Deposition of films using plasma or plasma-assist can betraced back surprisingly far, namely to the 18th century for arcs and tothe 19th century for sputtering. However, only since the 1960s thecoatings community considered other processes than evaporation for largescale commercial use. Ion Plating was perhaps the first importantprocess, introducing vapor ionization and substrate bias to generate abeam of ions arriving on the surface of the growing film. Ratherindependently, cathodic arc deposition was established as an energeticcondensation process, first in the former Soviet Union in the 1970s, andin the 1980s in the Western Hemisphere. About a dozen various ion-basedcoating technologies evolved in the last decades, all characterized byspecific plasma or ion generation processes. Gridded and gridless ionsources were taken from space propulsion and applied to thin filmdeposition. Modeling and simulation have helped to make plasma and ionseffects to be reasonably well understood. Yet--due to the complex, oftennon-linear and non-equilibrium nature of plasma and surfaceinteractions--there is still a place for the experience plasma"sourcerer."

Anders, Andre

2007-02-28T23:59:59.000Z

397

EFFECT OF PORE SIZE ON TRAPPING ZINC VAPORS  

SciTech Connect (OSTI)

A series of experiments were conducted to determine the effect of pore size on pumping efficiency and zinc vapor trapping efficiency. A simple pumping efficiency test was conducted for all five pore diameters where it was observed that evacuation times were adversely affected by reducing the pore size below 5 {micro}m. Common test conditions for the zinc trapping efficiency experiments were used. These conditions resulted in some variability, to ascribe different efficiencies to the filter media. However, the data suggest that there is no significant difference in trapping efficiency for filter media with pores from 0.2 to 20 {micro}m with a thickness of 0.065-inch. Consequently, the 20 {micro}m pore filter media that is currently used at SRS is a suitable filter material for to utilize for future extractions. There is evidence that smaller pore filter will adversely affect the pumping times for the TEF and little evidence to suggest that a smaller pore diameters have significant impact on the trapping efficiency.

Korinko, P.

2010-12-17T23:59:59.000Z

398

Soil Vapor Extraction System Optimization, Transition, and Closure Guidance  

SciTech Connect (OSTI)

Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants in the vadose zone. A diminishing rate of contaminant extraction over time is typically observed due to 1) diminishing contaminant mass, and/or 2) slow rates of removal for contamination in low-permeability zones. After a SVE system begins to show indications of diminishing contaminant removal rate, SVE performance needs to be evaluated to determine whether the system should be optimized, terminated, or transitioned to another technology to replace or augment SVE. This guidance specifically addresses the elements of this type of performance assessment. While not specifically presented, the approach and analyses in this guidance could also be applied at the onset of remediation selection for a site as a way to evaluate current or future impacts to groundwater from vadose zone contamination. The guidance presented here builds from existing guidance for SVE design, operation, optimization, and closure from the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, and the Air Force Center for Engineering and the Environment. The purpose of the material herein is to clarify and focus on the specific actions and decisions related to SVE optimization, transition, and/or closure.

Truex, Michael J.; Becker, Dave; Simon, Michelle A.; Oostrom, Martinus; Rice, Amy K.; Johnson, Christian D.

2013-02-08T23:59:59.000Z

399

Growth of graphene underlayers by chemical vapor deposition  

SciTech Connect (OSTI)

We present a simple and very convincing approach to visualizing that subsequent layers of graphene grow between the existing monolayer graphene and the copper catalyst in chemical vapor deposition (CVD). Graphene samples were grown by CVD and then transferred onto glass substrates by the bubbling method in two ways, either direct-transfer (DT) to yield poly (methyl methacrylate) (PMMA)/graphene/glass or (2) inverted transfer (IT) to yield graphene/PMMA/glass. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to reveal surface features for both the DT and IT samples. The results from FE-SEM and AFM topographic analyses of the surfaces revealed the underlayer growth of subsequent layers. The subsequent layers in the IT samples are visualized as 3D structures, where the smaller graphene layers lie above the larger layers stacked in a concentric manner. The results support the formation of the so-called “inverted wedding cake” stacking in multilayer graphene growth.

Fabiane, Mopeli; Khamlich, Saleh; Bello, Abdulhakeem; Dangbegnon, Julien; Momodu, Damilola; Manyala, Ncholu, E-mail: ncholu.manyala@up.ac.za [Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa)] [Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Charlie Johnson, A. T. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)] [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

2013-11-15T23:59:59.000Z

400

Water, Vapor, and Salt Dynamics in a Hot Repository  

SciTech Connect (OSTI)

The purpose of this paper is to report the results of a new model study examining the high temperature nuclear waste disposal concept at Yucca Mountain using MULTIFLUX, an integrated in-drift- and mountain-scale thermal-hydrologic model. The results show that a large amount of vapor flow into the drift is expected during the period of above-boiling temperatures. This phenomenon makes the emplacement drift a water/moisture attractor during the above-boiling temperature operation. The evaporation of the percolation water into the drift gives rise to salt accumulation in the rock wall, especially in the crown of the drift for about 1500 years in the example. The deposited salts over the drift footprint, almost entirely present in the fractures, may enter the drift either by rock fall or by water drippage. During the high temperature operation mode, the barometric pressure variation creates fluctuating relative humidity in the emplacement drift with a time period of approximately 10 days. Potentially wet and dry conditions and condensation on salt-laden drift wall sections may adversely affect the storage environment. Salt accumulations during the above-boiling temperature operation must be sufficiently addressed to fully understand the waste package environment during the thermal period. Until the questions are resolved, a below-boiling repository design is favored where the Alloy-22 will be less susceptible to localized corrosion. (authors)

Bahrami, Davood; Danko, George [Department of Mining Engineering, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557 (United States); Walton, John [Department of Civil Engineering, University of Texas at El Paso, 500 W. University, El Paso, TX, 79968 (United States)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Effect of dimensionality on vapor-liquid phase transition  

SciTech Connect (OSTI)

Dimensionality play significant role on ‘phase transitions’. Fluids in macroscopic confinement (bulk or 3-Dimensional, 3D) do not show significant changes in their phase transition properties with extent of confinement, since the number of molecules away from the surrounding surfaces is astronomically higher than the number of molecules in close proximity of the confining surfaces. In microscopic confinement (quasi 3D to quasi-2D), however, the number of molecules away from the close proximity of the surface is not as high as is the case with macroscopic (3D) confinement. Hence, under the same thermodynamic conditions ‘phase transition’ properties at microscopic confinement may not remain the same as the macroscopic or 3D values. Phase transitions at extremely small scale become very sensitive to the dimensions as well as the surface characteristics of the system. In this work our investigations reveal the effect of dimensionality on the phase transition from 3D to quasi-2D to 2D behavior. We have used grand canonical transition matrix Monte Carlo simulation to understand the vapor–liquid phase transitions from 3D to quasi-2D behavior. Such studies can be helpful in understanding and controlling the fluid film behaviour confined between solid surfaces of few molecular diameters, for example, in lubrication applications.

Singh, Sudhir Kumar, E-mail: sksingh@thapar.edu [Department Chemical Engineering, Thapar University, Patiala-147004 Punjab (India)

2014-04-24T23:59:59.000Z

402

Cold Water Vapor in the Barnard 5 Molecular Cloud  

E-Print Network [OSTI]

After more than 30 years of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds, however, there is only one region where cold (~10 K) water vapor has been detected - L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work -- likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 1_10 - 1_01) at 556.9360 GHz toward two positions in the cold molecular cloud Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

Wirström, E S; Persson, C M; Buckle, J V; Cordiner, M A; Takakuwa, S

2014-01-01T23:59:59.000Z

403

Development of chemical vapor composites, CVC materials. Final report  

SciTech Connect (OSTI)

Industry has a critical need for high-temperature operable ceramic composites that are strong, non-brittle, light weight, and corrosion resistant. Improvements in energy efficiency, reduced emissions and increased productivity can be achieved in many industrial processes with ceramic composites if the reaction temperature and pressure are increased. Ceramic composites offer the potential to meet these material requirements in a variety of industrial applications. However, their use is often restricted by high cost. The Chemical Vapor composite, CVC, process can reduce the high costs and multiple fabrication steps presently required for ceramic fabrication. CVC deposition has the potential to eliminate many difficult processing problems and greatly increase fabrication rates for composites. With CVC, the manufacturing process can control the composites` density, microstructure and composition during growth. The CVC process: can grow or deposit material 100 times faster than conventional techniques; does not require an expensive woven preform to infiltrate; can use high modulus fibers that cannot be woven into a preform; can deposit composites to tolerances of less than 0.025 mm on one surface without further machining.

NONE

1998-10-05T23:59:59.000Z

404

The Water Vapor Abundance in Orion KL Outflows  

E-Print Network [OSTI]

We present the detection and modeling of more than 70 far-IR pure rotational lines of water vapor, including the 18O and 17O isotopologues, towards Orion KL. Observations were performed with the Long Wavelength Spectrometer Fabry-Perot (LWS/FP; R~6800-9700) on board the Infrared Space Observatory (ISO) between ~43 and ~197 um. The water line profiles evolve from P-Cygni type profiles (even for the H2O18 lines) to pure emission at wavelengths above ~100 um. We find that most of the water emission/absorption arises from an extended flow of gas expanding at 25+-5 kms^-1. Non-local radiative transfer models show that much of the water excitation and line profile formation is driven by the dust continuum emission. The derived beam averaged water abundance is 2-3x10^-5. The inferred gas temperature Tk=80-100 K suggests that: (i) water could have been formed in the "plateau" by gas phase neutral-neutral reactions with activation barriers if the gas was previously heated (e.g. by shocks) to >500 K and/or (ii) H2O formation in the outflow is dominated by in-situ evaporation of grain water-ice mantles and/or (iii) H2O was formed in the innermost and warmer regions (e.g. the hot core) and was swept up in ~1000 yr, the dynamical timescale of the outflow.

J. Cernicharo; J. R. Goicoechea; F. Daniel; M. R. Lerate; M. J. Barlow; B. M. Swinyard; E. van Dishoeck; T. L. Lim; S. Viti; J. Yates

2006-08-16T23:59:59.000Z

405

Plasma Enhanced Chemical Vapor Deposition on Living Substrates: Development, Characterization, and Biological Applications  

E-Print Network [OSTI]

This dissertation proposed the idea of “plasma-enhanced chemical vapor deposition on living substrates (PECVD on living substrates)” to bridge the gap between the thin film deposition technology and the biological and living substrates. This study...

Tsai, Tsung-Chan 1982-

2012-12-05T23:59:59.000Z

406

Understanding the Nanotube Growth Mechanism: A Strategy to Control Nanotube Chirality during Chemical Vapor Deposition Synthesis  

E-Print Network [OSTI]

during chemical vapor deposition synthesis must focus on controlling the structure of the nucleated nanotube seeds. DFT and RMD simulations demonstrate the viability of using the structures of catalyst particles over which nanotube growth proceeds...

Gomez Gualdron, Diego Armando 1983-

2012-10-26T23:59:59.000Z

407

E-Print Network 3.0 - acid vapor pressures Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 22 3b. Thermodynamics of moist air Water phase, water latent heat of vaporization Lv Summary: 3b. Thermodynamics of moist air Water phase, water latent...

408

E-Print Network 3.0 - alkali-metal vapor density Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics 65 nature physics | VOL 3 | APRIL 2007 | www.nature.comnaturephysics 227 REVIEW ARTICLE Summary: in a high-density alkali-metal vapor in low magnetic fields. Phys....

409

Vapor-Induced Solid-Liquid-Solid Process for Silicon-based Nanowire...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

J, J Liu, D Wang, D Choi, LS Fifield, CM Wang, G Xia, Z Nie, Z Yang, LR Pederson, and GL Graff.2010."Vapor-Induced Solid-Liquid-Solid Process for Silicon-based Nanowire...

410

Structure/processing relationships in vapor-liquid-solid nanowire epitaxy  

E-Print Network [OSTI]

The synthesis of Si and III-V nanowires using the vapor-liquid-solid (VLS) growth mechanism and low-cost Si substrates was investigated. The VLS mechanism allows fabrication of heterostructures which are not readily ...

Boles, Steven Tyler

2010-01-01T23:59:59.000Z

411

Optical pumping and spectroscopy of Cs vapor at high magnetic field  

SciTech Connect (OSTI)

We have measured changes in the ground-state populations of Cs vapor induced by optical pumping at high magnetic field. The 2.7-T field of our experiments is strong enough to decouple the nuclear and electronic spins, allowing us to independently measure each population. The spatial dependence of the Cs populations in small amounts of buffer gas obeys a simple coupled diffusion model and the relative populations reveal the details of relaxation within the vapor cell. Optical pumping can produce high nuclear polarization in the Cs vapor due to perturbations of the hyperfine interaction during collisions with buffer-gas particles and depending on the pumping transition, radiation trapping can strongly influence the electronic and nuclear polarizations in the vapor.

Olsen, B. A.; Patton, B.; Jau, Y.-Y.; Happer, W. [Joseph Henry Laboratory, Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)

2011-12-15T23:59:59.000Z

412

Millimeter-wave Radiometer for High Sensitivity Water Vapor Profiling in Arid Regions  

SciTech Connect (OSTI)

Abstract - ProSensing Inc. has developed a G-band (183 GHz) water Vapor Radiometer (GVR) for long-term, unattended measurements of low concentrations of atmospheric water vapor and liquid water. Precipitable water vapor and liquid water path are estimated from zenith brightness temperatures measured from four double-sideband receiver channels, centered at 183.31 1, 3 and 7, and 14 GHz. A prototype ground-based version of the instrument was deployed at the DOE ARM program?s North Slope of Alaska site near Barrow AK in April 2005, where it collected data continuously for one year. A compact, airborne version of this instrument, packaged to operate from a standard 2-D PMS probe canister, has been tested on the ground and is scheduled for test flights in the summer of 2006. This paper presents design details, laboratory test results and examples of retrieved precipitable water vapor and liquid water path from measured brightness temperature data.

Pazmany, Andrew

2006-11-09T23:59:59.000Z

413

CO-CATALYTIC ABSORPTION LAYERS FOR CONTROLLED LASER-INDUCED CHEMICAL VAPOR DEPOSITION OF CARBON NANOTUBES  

E-Print Network [OSTI]

The concept of co-catalytic layer structures for controlled laser-induced chemical vapor deposition of carbon nanotubes is established, in which a thin Ta support layer chemically aids the initial Fe catalyst reduction. This enables a significant...

Michaelis, F.B.; Weatherup, R.S.; Bayer, B.C.; Bock, M.C.D; Sugime, H.; Caneva, S.; Robertson, J.; Baumberg, J.J.; Hofmann, S.

2014-02-24T23:59:59.000Z

414

Control and Optimization of Vapor Compression Cycles Using Recursive Least Squares Estimation  

E-Print Network [OSTI]

Vapor compression cycles are the primary method by which refrigeration and air-conditioning systems operate, and thus constitute a significant portion of commercial and residential building energy consumption. This thesis presents a data...

Rani, Avinash

2012-10-19T23:59:59.000Z

415

Iron (III) Chloride doping of large-area chemical vapor deposition graphene  

E-Print Network [OSTI]

Chemical doping is an effective method of reducing the sheet resistance of graphene. This thesis aims to develop an effective method of doping large area Chemical Vapor Deposition (CVD) graphene using Iron (III) Chloride ...

Song, Yi, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

416

Temperature and water vapor pressure effects on the friction coefficient of hydrogenated diamondlike carbon films.  

SciTech Connect (OSTI)

Microtribological measurements of a hydrogenated diamondlike carbon film in controlled gaseous environments show that water vapor plays a significant role in the friction coefficient. These experiments reveal an initial high friction transient behavior that does not reoccur even after extended periods of exposure to low partial pressures of H{sub 2}O and O{sub 2}. Experiments varying both water vapor pressure and sample temperature show trends of a decreasing friction coefficient as a function of both the decreasing water vapor pressure and the increasing substrate temperature. Theses trends are examined with regard to first order gas-surface interactions. Model fits give activation energies on the order of 40 kJ/mol, which is consistent with water vapor desorption.

Dickrell, P. L.; Sawyer, W. G.; Eryilmaz, O. L.; Erdemir, A.; Energy Technology; Univ. of Florida

2009-07-01T23:59:59.000Z

417

Bilayer graphene growth by low pressure chemical vapor deposition on copper foil  

E-Print Network [OSTI]

Successfully integrating graphene in standard processes for applications in electronics relies on the synthesis of high-quality films. In this work we study Low Pressure Chemical Vapor Deposition (LPCVD) growth of bilayer ...

Fang, Wenjing, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

418

Film boiling of saturated liquid flowing upward through a heated tube : high vapor quality range  

E-Print Network [OSTI]

Film boiling of saturated liquid flowing upward through a uniformly heated tube has been studied for the case in which pure saturated liquid enters the tube and nearly saturated vapor is discharged. Since a previous study ...

Laverty, W. F.

1964-01-01T23:59:59.000Z

419

The design, fabrication, and implications of a solvothermal vapor annealing chamber  

E-Print Network [OSTI]

This thesis documents the design, fabrication, use, and benefits of a prototype aluminum solvothermal vapor annealing chamber which facilitates the self-assembly of block copolymers (BCPs) on silicon wafers which are then ...

Porter, Nathaniel R., Jr

2013-01-01T23:59:59.000Z

420

Optimization of multi-pressure himidification-dehumidification desalination using thermal vapor compression and hybridization  

E-Print Network [OSTI]

Humidification-dehumidification (HD or HDH) desalination, and specifically HD driven by a thermal vapor compressor (TVC), is a thermal desalination method that has the potential to produce potable water efficiently in order ...

Mistry, Karan Hemant

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Assessment of soot particle vaporization effects during laser-induced incandescence with  

E-Print Network [OSTI]

Assessment of soot particle vaporization effects during laser-induced incandescence with time-induced incandescence (LII) has been successfully used for soot volume fraction and particle size measurements

Hahn, David W.

422

Atmospheric pressure chemical vapor deposition of TiN from tetrakis(dimethylamido)titanium and ammonia  

E-Print Network [OSTI]

pressure chemical vapor deposition. Experiments were conducted in a belt furnace; static experiments, in particular, is used for tool coating, solar-control films, and micro- electronic applications. Optically

423

Application of Computational Fluid Dynamics in the Forced Dispersion Modeling of LNG Vapor Clouds  

E-Print Network [OSTI]

The safety and security of liquefied natural gas (LNG) facilities has prompted the need for continued study of LNG mitigation systems. Water spray systems are widely recognized as an effective measure for dispersing LNG vapor clouds. Currently...

Kim, Byung-Kyu

2013-05-31T23:59:59.000Z

424

Liquefied Natural Gas (LNG) Vapor Dispersion Modeling with Computational Fluid Dynamics Codes  

E-Print Network [OSTI]

Federal regulation 49 CFR 193 and standard NFPA 59A require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. For modeling purposes, the physical...

Qi, Ruifeng

2012-10-19T23:59:59.000Z

425

Control of Vapor Dispersion and Pool Fire of Liquefied Natural Gas (LNG) with Expansion Foam  

E-Print Network [OSTI]

, this study aimed to obtain key parameters, such as the temperature changes of methane and foam and the extent reduction of vapor concentration. This study also focused on identifying the effectiveness of foam and thermal exclusion zone by investigating...

Yun, Geun Woong

2011-10-21T23:59:59.000Z

426

Single- and few-layer graphene by ambient pressure chemical vapor deposition on nickel  

E-Print Network [OSTI]

An ambient pressure chemical vapor deposition (APCVD) process is used to fabricate graphene based films consisting of one to several graphene layers across their area. Polycrystalline Ni thin films are used and the graphene ...

Reina Ceeco, Alfonso

2010-01-01T23:59:59.000Z

427

Fault detection methods for vapor-compression air conditioners using electrical measurements  

E-Print Network [OSTI]

(cont.) This method was experimentally tested and validated on a commercially available air handler and duct system. In the second class of faults studied, liquid refrigerant, rather than vapor, enters the cylinder of a ...

Laughman, Christopher Reed.

2008-01-01T23:59:59.000Z

428

Vaporization and Sublimation Enthalpies of Acetanilide and Several Derivatives by Correlation Gas Chromatography  

E-Print Network [OSTI]

Vaporization and Sublimation Enthalpies of Acetanilide and Several Derivatives by Correlation Gas Chromatography Patamaporn Umnahanant and James Chickos* Department of Chemistry and Biochemistry, University and combined to provide their corresponding sublimation enthalpies. Since all of the materials examined

Chickos, James S.

429

Initiated chemical vapor deposition of polymeric thin films : mechanism and applications  

E-Print Network [OSTI]

Initiated chemical vapor deposition (iCVD) is a novel technique for depositing polymeric thin films. It is able to deposit thin films of application-specific polymers in one step without using any solvents. Its uniqueness ...

Chan, Kelvin, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

430

Radon Transect Studies in Vapor- and Liquid-Dominated Geothermal Reservoirs  

SciTech Connect (OSTI)

This communication describes the transect analysis conducted at the vapor-dominated reservoirs at The Geysers in California and the liquid-dominated reservoirs at Cerro Prieto in Baja, California.

Semprini, Lewis; Kruger, Paul

1980-12-16T23:59:59.000Z

431

An Analysis of Cloud Cover and Water Vapor for the ALMA Project  

E-Print Network [OSTI]

(Chile), Chalviri (Bolivia) and Five Sites in Argentina using Satellite Data and a Verification and water vapor at Chajnantor (Chile), Chalviri (Bolivia) and four sites in Argentina. Since time

432

Characterizing the formation of secondary organic aerosols  

SciTech Connect (OSTI)

Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the concentrations of important gas phase nitrogen compounds. Experiments have been ongoing at the Blodgett field site since the fall of 2000, and have included portions of the summer and fall of 2001, 2002, and 2003. Analysis of both the gas and particle phase data from the year 2000 show that the particle loading at the site correlates with both biogenic precursors emitted in the forest and anthropogenic precursors advected to the site from Sacramento and the Central Valley of California. Thus the particles at the site are affected by biogenic processing of anthropogenic emissions. Size distribution measurements show that the aerosol at the site has a geometric median diameter of approximately 100 nm. On many days, in the early afternoon, growth of nuclei mode particles (<20 nm) is also observed. These growth events tend to occur on days with lower average temperatures, but are observed throughout the summer. Analysis of the size resolved data for these growth events, combined with typical measured terpene emissions, show that the particle mass measured in these nuclei mode particles could come from oxidation products of biogenic emissions, and can serve as a significant route for SOA partitioning into the particle phase. During periods of each year, the effect of emissions for forest fires can be detected at the Blodgett field location. During the summer of 2002 emissions from the Biscuit fire, a large fire located in Southwest Oregon, was detected in the aerosol data. The results show that increases in particle scattering can be directly related to increased black carbon concentration and an appearance of a larger mode in the aerosol size distribution. These results show that emissions from fires can have significant impact on visibility over large distances. The results also reinforce the view that forest fires can be a significant source of black carbon in the atmosphere, which has important climate and visibility. Continuing work with the 2002 data set, particularly the combination of the aerosol and gas phase data, will continue to provide important information o

Lunden, Melissa; Black, Douglas; Brown, Nancy

2004-02-01T23:59:59.000Z

433

Tank 241-TY-103 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-TY-103. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

434

Tank 241-SX-106 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-SX-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

435

Tank 241-T-107 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-T-107. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

436

Tank 241-TY-104 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-TY-104. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

437

Tank 241-C-105 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-105. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

438

Tank 241-C-102 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-102. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

439

Tank 241-TY-101 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-TY-101. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

440

Tank 241-C-106 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Tank 241-B-103 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-B-103. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

442

Tank 241-BX-104 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-BX-104. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

443

Tank 241-C-109 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-109. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

444

Tank 241-C-111 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-111. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

445

Tank 241-C-110 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-110. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

446

Tank 241-C-107 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-107. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

447

Tank 241-BY-110 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-BY-110. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to the tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

448

Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems  

SciTech Connect (OSTI)

Vapor-liquid equilibrium data for methanol + ethanol + water and its three constituent binary systems methanol + ethanol, ethanol + water, and methanol + water were measured at 101.3 kPa using a liquid-vapor ebullition-type equilibrium still. The experimental binary data were correlated by the NRTL equation. The ternary system methanol + ethanol + water was predicted by means of the binary NRTL parameters with good accuracy.

Kurihara, Kiyofumi; Nakamichi, Mikiyoshi; Kojima, Kazuo (Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry)

1993-07-01T23:59:59.000Z

449

Economic and Technical Tradeoffs Between Open and Closed Cycle Vapor Compression Evaporators  

E-Print Network [OSTI]

compressor. The blowers and centrifugal compressors used for steam recompression are limited to compression ratios of around 2:1 in a single stage. This compression ratio is perfectly adequate for many applications. But if a larger driving force with a... higher compression ratio is desired. two or more compression stages must be used resulting in sig nificantly increased compressor costs. Closed Cycle Vapor Compression A schematic of a closed cycle vapor compression evaporator is shown in Figure 3...

Timm, M. L.

450

The particulate and vapor phase components of airborne polyaromatic hydrocarbons (PAHs) in coal gasification pilot plants  

E-Print Network [OSTI]

THE PARTICULATE AND VAPOR PHASE COMPONENTS OF AIRBORNE POLYAROMATIC HYDROCARBONS(PAHs) IN COAL GASIFICATION PILOT PLANTS A Thesis by ERIC JON BRINK Submitted to the Graduate College of Texas A & M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE December 1980 Major Subject: Industrial Hygiene THE PARTICULATE AND VAPOR PHASE COMPONENTS OF AIRBORNE POLYAROMATIC HYDROCARBONS (PAHs) IN COAL GASIFICATION PILOT PLANTS A Thesis by ERIC JON BRINK...

Brink, Eric Jon

1980-01-01T23:59:59.000Z

451

MEMS Lubrication by In-Situ Tribochemical Reactions From the Vapor Phase.  

SciTech Connect (OSTI)

Vapor Phase Lubrication (VPL) of silicon surfaces with pentanol has been demonstrated. Two potential show stoppers with respect to application of this approach to real MEMS devices have been investigated. Water vapor was found to reduce the effectiveness of VPL with alcohol for a given alcohol concentration, but the basic reaction mechanism observed in water-free environments is still active, and devices operated much longer in mixed alcohol and water vapor environments than with chemisorbed monolayer lubricants alone. Complex MEMS gear trains were successfully lubricated with alcohol vapors, resulting in a factor of 104 improvement in operating life without failure. Complex devices could be made to fail if operated at much higher frequencies than previously used, and there is some evidence that the observed failure is due to accumulation of reaction products at deeply buried interfaces. However, if hypothetical reaction mechanisms involving heated surfaces are valid, then the failures observed at high frequency may not be relevant to operation at normal frequencies. Therefore, this work demonstrates that VPL is a viable approach for complex MEMS devices in conventional packages. Further study of the VPL reaction mechanisms are recommended so that the vapor composition may be optimized for low friction and for different substrate materials with potential application to conventionally fabricated, metal alloy parts in weapons systems. Reaction kinetics should be studied to define effective lubrication regimes as a function of the partial pressure of the vapor phase constituent, interfacial shear rate, substrate composition, and temperature.

Dugger, Michael T.; Asay, David B.; Kim, Seong H.

2008-01-01T23:59:59.000Z

452

Mixed crystal organic scintillators  

DOE Patents [OSTI]

A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

2014-09-16T23:59:59.000Z

453

METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST & 200 WEST TANK FARMS FROM CY1995 TO CY2004  

SciTech Connect (OSTI)

Revised for a more comprehensive overview of vapor incidents reported at the Hanford Tank Farms. Investigation into the meteorological influences on vapor incidents in the tank farm to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems. The purpose of this document is to gather and evaluate the meteorological and weather information for the Tank Farms Shift Log Vapor Incident entries and determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases such as propane. A part of the evaluation will be determining which of the incidents are related to actual ''intrusive'' work, and which are ''transient.'' Transient vapor incidents are herein defined as those vapors encountered during walkdowns, surveys, or other activities that did not require working directly with the tanks, pits, transfer lines, etc. Another part of the investigation will involve determining if there are barometric pressures or other weather related phenomena that might cause or contribute vapors being released when there are no ''intrusive'' activities. A final purpose is to evaluate whether there is any correlation between the 242-A Evaporator operations and Vapor Incidents entered on the Shift Log.

HOCKING, M.J.

2005-01-31T23:59:59.000Z

454

Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, 1 July 1993--30 September 1993  

SciTech Connect (OSTI)

There is significant current interest in general area of coal pyrolysis, particularly with respect to comprehensive models of this complicated phenomenon. This interest derives from the central role of pyrolysis in all thermally driven coal conversion processes -- gasification, combustion, liquefaction, mild gasification, or thermal benefication. There remain several key data needs in these application areas. Among them is a need for more reliable correlation for prediction of vapor pressure of heavy, primary coal tars. Such information is important in design of all coal conversion processes, in which the volatility of tarry products is of major concern. Only very limited correlations exist, and these are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion. Results of the literature survey are compiled. The experimental tasks have been concerned with setup and calibration.

Suuberg, E.M.; Oja, V.; Lilly, W.D.

1993-12-31T23:59:59.000Z

455

Organic photovoltaics and concentrators  

E-Print Network [OSTI]

The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

Mapel, Jonathan King

2008-01-01T23:59:59.000Z

456

Organic photosensitive devices  

DOE Patents [OSTI]

The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.

Rand, Barry P; Forrest, Stephen R

2013-11-26T23:59:59.000Z

457

Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas  

DOE Patents [OSTI]

Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

Kong, Peter C. (Idaho Falls, ID); Detering, Brent A. (Idaho Falls, ID)

2004-10-19T23:59:59.000Z

458

Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas  

DOE Patents [OSTI]

Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

Kong, Peter C.; Detering, Brent A.

2003-08-19T23:59:59.000Z

459

Polycyclic Aromatic Hydrocarbons in Indoor Air and Environmental Tobacco Smoke Measured with a New Integrated Organic Vapor-Particle Sampler  

E-Print Network [OSTI]

and 2-methyl derivatives, acenaphthene and acenapthylene. At19; biphenyl, 69; acenaphthene and acenaphthylene, 4.9;

Gundel, L.A.; Daisey, J.M.; Mahanama, K.R.R.; Lee, C.C.; Stevens, R.K.

1993-01-01T23:59:59.000Z

460

Thermoelectric properties of lattice-matched AlInN alloy grown by metal organic chemical vapor deposition  

E-Print Network [OSTI]

Seebeck coefficient and resistance measurement system for thermoelectric materials in the thin diskInN alloy on GaN as excellent material candidate for thermoelectric application. © 2010 American Institute-nitride alloys have shown promising results for thermoelectric applications,20­30 in particular for materi- als

Gilchrist, James F.

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Development of hybrid organic-inorganic light emitting diodes using conducting polymers deposited by oxidative chemical vapor deposition process  

E-Print Network [OSTI]

Difficulties with traditional methods of synthesis and film formation for conducting polymers, many of which are insoluble, motivate the development of CVD methods. Indeed, conjugated polymers with rigid linear backbones ...

Chelawat, Hitesh

2010-01-01T23:59:59.000Z

462

Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition  

E-Print Network [OSTI]

. INTRODUCTION Zinc oxide ZnO is a wide direct band-gap 3.37 eV semiconductor with a broad range of applications. Dimethylzinc DMZn , N2 gas, and high-purity O2 were used as the zinc source, carrier gas, and oxidizing agent including light-emitting devices,1 varistors,2 solar cells,3 and gas sensors.4 Moreover, ZnO is a promising

463

Measurements of water vapor adsorption on the Geysers rocks  

SciTech Connect (OSTI)

The ORNL high temperature isopiestic apparatus was adapted for adsorption measurements. The quantity of water retained by rock samples taken from three different wells of The Geysers was measured at 150 °C and at 200 °C as a function of pressure in the range 0.00 ? p/p0 ? 0.98, where p0 is the saturated water vapor pressure. The rocks were crushed and sieved into three fractions of different grain sizes (with different specific surface areas). Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and extent of the hysteresis. Additionally, BET surface area analyses were performed by Porous Materials Inc. on the same rock samples using nitrogen or krypton adsorption measurements at 77 K. Specific surface areas and pore volumes were determined. These parameters are important in estimating water retention capability of a porous material. The same laboratory also determined the densities of the samples by helium pycnometry. Their results were then compared with our own density values obtained by measuring the effect of buoyancy in compressed argon. One of the goals of this project is to determine the dependence of the water retention capacity of the rocks as a function of temperature. The results show a significant dependence of the adsorption and desorption isotherms on the grain size of the sample. The increase in the amount of water retained with temperature observed previously (Shang et al., 1994a, 1994b, 1995) between 90 and 130°C for various reservoir rocks from The Geysers may be due to the contribution of slow chemical adsorption and may be dependent on the time allowed for equilibration. In contrast with the results of Shang et al. (1994a, 1994b, 1995), some closed and nearly closed hysteresis loops on the water adsorption/desorption isotherms (with closing points at p/p0 ? 0.6) were obtained in this study. In these cases the effects of activated processes were not present, and no increase in water adsorption with temperature was observed

Gruszkiewicz, Miroslaw S.; Horita, Juske; Simonson, John M.; Mesmer, Robert E.

1996-01-24T23:59:59.000Z

464

Vapor-liquid equilibria of ethanol with 2,2,4-trimethylpentane or octane at 101. 3 kPa  

SciTech Connect (OSTI)

Vapor-liquid equilibria (VLE) are required for engineering use such as in the design and operation of separation processes. Isobaric vapor-liquid equilibria were measured for ethanol with 2,2,4-trimethylpentane or octane at 101.3 kPa in an equilibrium still with circulation of both the vapor and liquid phases. The results were correlated with the Wilson and nonrandom two-liquid (NRTL) equations.

Hiaki, Toshihiko; Takahashi, Kenji; Tsuji, Tomoya; Hongo, Masaru (Nihon Univ., Chiba (Japan). Dept. of Industrial Chemistry); Kojima, Kazuo (Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry)

1994-10-01T23:59:59.000Z

465

Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site  

SciTech Connect (OSTI)

In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

Not Available

1991-09-01T23:59:59.000Z

466

Raman lidar profiling of water vapor and aerosols over the ARM SGP Site  

SciTech Connect (OSTI)

The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

Ferrare, R.A.

2000-01-09T23:59:59.000Z

467

RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE.  

SciTech Connect (OSTI)

We have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. This Raman lidar system is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. We have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES) (Feltz et al., 1998; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

FERRARE,R.A.

2000-01-09T23:59:59.000Z

468

Helium adsorption in silica aerogel near the liquid-vapor critical point  

E-Print Network [OSTI]

We have investigated the adsorption and desorption of helium near its liquid-vapor critical point in silica aerogels with porosities between 95% and 98%. We used a capacitive measurement technique which allowed us to probe the helium density inside the aerogel directly, even though the samples were surrounded by bulk helium. The aerogel's very low thermal conductivity resulted in long equilibration times so we monitored the pressure and the helium density, both inside the aerogel and in the surrounding bulk, and waited at each point until all had stabilized. Our measurements were made at temperatures far from the critical point, where a well defined liquid-vapor interface exists, and at temperatures up to the bulk critical point. Hysteresis between adsorption and desorption isotherms persisted to temperatures close to the liquid-vapor critical point and there was no sign of an equilibrium liquid-vapor transition once the hysteresis disappeared. Many features of our isotherms can be described in terms of capillary condensation, although this picture becomes less applicable as the liquid-vapor critical point is approached and it is unclear how it can be applied to aerogels, whose tenuous structure includes a wide range of length scales.

Tobias Herman; James Day; John Beamish

2005-05-18T23:59:59.000Z

469

Helium Adsorption in Silica Aerogel near the Liquid-Vapor Critical Point  

E-Print Network [OSTI]

We have investigated the adsorption and desorption of helium near its liquid-vapor critical point in silica aerogels with porosities between 95 % and 98%. We used a capacitive measurement technique which allowed us to probe the helium density inside the aerogel directly, even though the samples were surrounded by bulk helium. The aerogel’s very low thermal conductivity resulted in long equilibration times so we monitored the pressure and the helium density, both inside the aerogel and in the surrounding bulk, and waited at each point until all had stabilized. Our measurements were made at temperatures far from the critical point, where a well defined liquid-vapor interface exists, and at temperatures up to the bulk critical point. Hysteresis between adsorption and desorption isotherms persisted to temperatures close to the liquid-vapor critical point and there was no sign of an equilibrium liquid-vapor transition once the hysteresis disappeared. Many features of our isotherms can be described in terms of capillary condensation, although this picture becomes less applicable as the liquid-vapor critical point is approached and it is unclear how it can be applied to aerogels, whose tenuous structure includes a wide range of length scales. I.

Tobias Herman; James Day; John Beamish

2008-01-01T23:59:59.000Z

470

The role of polymer formation during vapor phase lubrication of silicon.  

SciTech Connect (OSTI)

The lubrication of silicon surfaces with alcohol vapors has recently been demonstrated. With a sufficient concentration of pentanol vapor present, sliding of a silica ball on an oxidized silicon wafer can proceed with no measurable wear. The initial results of time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of wear surfaces revealed a reaction product having thickness on the order of a monolayer, and with an ion spectrum that included fragments having molecular weights of 200 or more that occurred only inside the wear tracks. The parent alcohol molecule pentanol, has molecular weight of 88amu, suggesting that reactions of adsorbed alcohols on the wearing surfaces allowed polymerization of the alcohols to form higher molecular weight species. In addition to pin-on-disk studies, lubrication of silicon surfaces with pentanol vapors has also been demonstrated using MicroElectroMechanical Systems (MEMS) devices. Recent investigations of the reaction mechanisms of the alcohol molecules with the oxidized silicon surfaces have shown that wearless sliding requires a concentration of the alcohol vapor that is dependent upon the contact stress during sliding, with higher stress requiring a greater concentration of alcohol. Different vapor precursors including those with acid functionality, olefins, and methyl termination also produce polymeric reaction products, and can lubricate the silica surfaces. Doping the operating environment with oxygen was found to quench the formation of the polymeric reaction product, and demonstrates that polymer formation is not necessary for wearless sliding.

Dugger, Michael Thomas; Dirk, Shawn M.; Ohlhausen, James Anthony

2010-10-01T23:59:59.000Z

471

Thermal Decomposition of Molecules Relevant to Combustion and Chemical Vapor Deposition by Flash Pyrolysis Time-of-Flight Mass Spectrometry  

E-Print Network [OSTI]

of Small Molecules by Flash Pyrolysis, University ofwas performed using flash pyrolysis vacuum-ultraviolet time-Vapor Deposition by Flash Pyrolysis Time-of-Flight Mass

Lemieux, Jessy Mario

2013-01-01T23:59:59.000Z

472

Self-tuning method for monitoring the density of a gas vapor component using a tunable laser  

DOE Patents [OSTI]

The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer's law.

Hagans, Karla (Livermore, CA); Berzins, Leon (Livermore, CA); Galkowski, Joseph (Livermore, CA); Seng, Rita (Tracy, CA)

1996-01-01T23:59:59.000Z

473

Self-tuning method for monitoring the density of a gas vapor component using a tunable laser  

DOE Patents [OSTI]

The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer`s law. 6 figs.

Hagans, K.; Berzins, L.; Galkowski, J.; Seng, R.

1996-08-27T23:59:59.000Z

474

Total Organic Carbon Analyzer | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Organic Carbon Analyzer Total Organic Carbon Analyzer The carbon analyzer is used to analyze total carbon (TC), inorganic carbon (IC), total organic carbon (TOC), purgeable...

475

Method of increasing biodegradation of sparingly soluble vapors  

DOE Patents [OSTI]

A method for increasing biodegradation of sparingly soluble volatile organic compounds (VOCs) in a bioreactor is disclosed. The method comprises dissolving in the aqueous phase of the bioreactor a water soluble, nontoxic, non-biodegradable polymer having a molecular weight of at least 500 and operable for decreasing the distribution coefficient of the VOCs. Polyoxyalkylene alkanols are preferred polymers. A method of increasing the growth rate of VOC-degrading microorganisms in the bioreactor and a method of increasing the solubility of sparingly soluble VOCs in aqueous solution are also disclosed.

Cherry, Robert S. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

476

Preconcentrator with high volume chiller for high vapor pressure particle detection  

SciTech Connect (OSTI)

Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

Linker, Kevin L

2013-10-22T23:59:59.000Z

477

A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems  

SciTech Connect (OSTI)

In this article we introduce a simple grand canonical screening (GCS) approach to accurately compute vapor pressures from molecular dynamics or Monte Carlo simulations. This procedure entails a screening of chemical potentials using a conventional grand canonical scheme, and therefore it is straightforward to implement for any kind of interface. The scheme is validated against data obtained from Gibbs ensemble simulations for water and argon. Then, it is applied to obtain the vapor pressure of the coarse-grained mW water model, and it is shown that the computed value is in excellent accord with the one formally deduced using statistical thermodynamics arguments. Finally, this methodology is used to calculate the vapor pressure of a water nanodroplet of 94 molecules. Interestingly, the result is in perfect agreement with the one predicted by the Kelvin equation for a homogeneous droplet of that size.

Factorovich, Matías H.; Scherlis, Damián A. [Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA (Argentina)] [Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA (Argentina); Molinero, Valeria [Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 (United States)] [Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 (United States)

2014-02-14T23:59:59.000Z

478

Energy and water vapor transport across a simplified cloud-clear air interface  

E-Print Network [OSTI]

We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this sit...

Gallana, Luca; De Santi, Francesca; Iovieno, Michele; Tordella, Daniela

2015-01-01T23:59:59.000Z

479

Treatment of Produced Water Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System  

SciTech Connect (OSTI)

Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. Produced waters typically contain a high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component as well as chemicals added during the oil-production process. It has been estimated that a total of 14 billion barrels of produced water were generated in 2002 from onshore operations (Veil, 2004). Although much of this produced water is disposed via reinjection, environmental and cost considerations can make surface discharge of this water a more practical means of disposal. In addition, reinjection is not always a feasible option because of geographic, economic, or regulatory considerations. In these situations, it may be desirable, and often necessary from a regulatory viewpoint, to treat produced water before discharge. It may also be feasible to treat waters that slightly exceed regulatory limits for re-use in arid or drought-prone areas, rather than losing them to reinjection. A previous project conducted under DOE Contract DE-AC26-99BC15221 demonstrated that surfactant modified zeolite (SMZ) represents a potential treatment technology for produced water containing BTEX. Laboratory and field experiments suggest that: (1) sorption of benzene, toluene, ethylbenzene and xylenes (BTEX) to SMZ follows linear isotherms in which sorption increases with increasing solute hydrophobicity; (2) the presence of high salt concentrations substantially increases the capacity of the SMZ for BTEX; (3) competitive sorption among the BTEX compounds is negligible; and, (4) complete recovery of the SMZ sorption capacity for BTEX can be achieved by air sparging the SMZ. This report summarizes research for a follow on project to optimize the regeneration process for multiple sorption/regeneration cycles, and to develop and incorporate a vapor phase bioreactor (VPB) system for treatment of the off-gas generated during air sparging. To this end, we conducted batch and column laboratory SMZ and VPB experiments with synthetic and actual produced waters. Based on the results of the laboratory testing, a pilot scale study was designed and conducted to evaluate the combined SMZ/VPB process. An economic and regulatory feasibility analysis was also completed as part of the current study to assess the viability of the process for various water re-use options.

Lynn E. Katz; Kerry A. Kinney; Robert S. Bowman; Enid J. Sullivan; Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Craig R. Altare

2006-01-31T23:59:59.000Z

480

VAPOR PRESSURE ISOTOPE EFFECTS IN THE MEASUREMENT OF ENVIRONMENTAL TRITIUM SAMPLES.  

SciTech Connect (OSTI)

Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The magnitude of the vapor pressure isotope effect is characterized as functions of the amount of water distilled from the sample aliquot and the heat settings for the distillation process. The tritium concentration in the distillate is higher than the tritium concentration in the sample early in the distillation process, it then sharply decreases due to the vapor pressure isotope effect and becomes lower than the tritium concentration in the sample, until the high tritium concentration retained in the boiling flask is evaporated at the end of the process. At that time, the tritium concentration in the distillate again overestimates the sample tritium concentration. The vapor pressure isotope effect is more pronounced the slower the evaporation and distillation process is conducted; a lower heat setting during the evaporation of the sample results in a larger bias in the tritium measurement. The experimental setup used and the fact that the current study allowed for an investigation of the relative change in vapor pressure isotope effect in the course of the distillation process distinguish it from and extend previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.034 {+-} 0.033, 1.052 {+-} 0.025, and 1.066 {+-} 0.037, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples, this implies that the tritium concentration could be underestimated by 3 - 6%.

Kuhne, W.

2012-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "241-c-103 organic vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

FORMATION OF COSMIC CRYSTALS IN HIGHLY SUPERSATURATED SILICATE VAPOR PRODUCED BY PLANETESIMAL BOW SHOCKS  

SciTech Connect (OSTI)

Several lines of evidence suggest that fine silicate crystals observed in primitive meteorite and interplanetary dust particles (IDPs) nucleated in a supersaturated silicate vapor followed by crystalline growth. We investigated evaporation of {mu}m-sized silicate particles heated by a bow shock produced by a planetesimal orbiting in the gas in the early solar nebula and condensation of crystalline silicate from the vapor thus produced. Our numerical simulation of shock-wave heating showed that these {mu}m-sized particles evaporate almost completely when the bow shock is strong enough to cause melting of chondrule precursor dust particles. We found that the silicate vapor cools very rapidly with expansion into the ambient unshocked nebular region; for instance, the cooling rate is estimated to be as high as 2000 K s{sup -1} for a vapor heated by a bow shock associated with a planetesimal of radius 1 km. The rapid cooling of the vapor leads to nonequilibrium gas-phase condensation of dust at temperatures much lower than those expected from the equilibrium condensation. It was found that the condensation temperatures are lower by a few hundred K or more than the equilibrium temperatures. This explains the results of the recent experimental studies of condensation from a silicate vapor that condensation in such large supercooling reproduces morphologies similar to those of silicate crystals found in meteorites. Our results strongly suggest that the planetesimal bow shock is one of the plausible sites for formation of not only chondrules but also other cosmic crystals in the early solar system.

Miura, H.; Yamada, J.; Tsukamoto, K.; Nozawa, J. [Department of Earth Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Tanaka, K. K.; Yamamoto, T. [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Nakamoto, T., E-mail: miurah@m.tohoku.ac.j [Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan)

2010-08-10T23:59:59.000Z

482

Comparison of vapor sampling system (VSS) and in situ vapor sampling (ISVS) methods on Tanks C-107, BY-108, and S-102  

SciTech Connect (OSTI)

The objective of this report is to evaluate the equivalency of two methods used to sample nonradioactive gases and vapors in the Hanford Site high-level waste tank headspaces. In addition to the comparison of the two sampling methods, the effects of an in-line fine particle filter on sampling results are also examined to determine whether results are adversely affected by its presence. This report discusses data from a January 1996 sampling.

Huckaby, J.L.; Edwards, J.A.; Evans, J.C. [and others

1996-05-01T23:59:59.000Z

483

Solar-induced chemical vapor deposition of diamond-type carbon films  

DOE Patents [OSTI]

An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.

Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.

1994-09-13T23:59:59.000Z

484

Characteristics of countercurrent vapor-liquid flow at a perforated plate  

E-Print Network [OSTI]

of heat-sens1tive materials. Also, a column with low liqu1d holdup is more responsive to operating controls than 1s a column conta1n- 1ng a large inventory of liquid. It was found that for the plates having hole areas of 23 and 40 per cent... to the plate above by the impetus of the vapor Jetting through the liquid on the plate. In this case, the velocity of the vapor through the holes in the plate, (or slots, in the case of bubble-caps) would be the 38 controlling factor. This mechanism...

Sutherland, Samuel Shelton

2012-06-07T23:59:59.000Z

485

Solar-induced chemical vapor deposition of diamond-type carbon films  

DOE Patents [OSTI]

An improved chemical vapor deposition method for depositing transparent continuous coatings of sp.sup.3 -bonded diamond-type carbon films, comprising: a) providing a volatile hydrocarbon gas/H.sub.2 reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and b) directing a concentrated solar flux of from about 40 to about 60 watts/cm.sup.2 through said reactant mixture to produce substrate temperatures of about 750.degree. C. to about 950.degree. C. to activate deposition of the film on said substrate.

Pitts, J. Roland (Lakewood, CO); Tracy, C. Edwin (Golden, CO); King, David E. (Lakewood, CO); Stanley, James T. (Beaverton, OR)

1994-01-01T23:59:59.000Z

486

Isothermal vapor-liquid equilibria for 2-methyl-2-butanol + 2-methyl-1-butanol + 1-pentanol  

SciTech Connect (OSTI)

Vapor-liquid equilibria (VLE) for 2-methyl-2-butanol + 2-methyl-1-butanol and 2-methyl-2-butanol + 2-methyl-1-butanol + 1-pentanol have been measured at 373.15 K. The binary VLE results have been correlated by different liquid-phase activity coefficient models. The binary interaction parameters obtained from Wilson, NRTL, and UNIQUAC models in this and a previously study are used to predict the VLE data for the ternary system. Vapor-liquid equilibrium (VLE) data are necessary for the design of distillation processes.

Aucejo, A.; Burguet, M.C.; Monton, J.B.; Munoz, R.; Sanchotello, M.; Vazquez, M.I. (Univ. of Valencia (Spain). Dept. de Ingenieria Quimica)

1994-07-01T23:59:59.000Z

487

Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization  

DOE Patents [OSTI]

A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.

O'Brien, Kevin C. (San Ramon, CA); Letts, Stephan A. (San Ramon, CA); Spadaccini, Christopher M. (Oakland, CA); Morse, Jeffrey C. (Pleasant Hill, CA); Buckley, Steven R. (Modesto, CA); Fischer, Larry E. (Los Gatos, CA); Wilson, Keith B. (San Ramon, CA)

2012-01-24T23:59:59.000Z

488

Materials, methods and devices to detect and quantify water vapor concentrations in an atmosphere  

DOE Patents [OSTI]

We have demonstrated that a surface acoustic wave (SAW) sensor coated with a nanoporous framework material (NFM) film can perform ultrasensitive water vapor detection at concentrations in air from 0.05 to 12,000 ppmv at 1 atmosphere pressure. The method is extendable to other MEMS-based sensors, such as microcantilevers, or to quartz crystal microbalance sensors. We identify a specific NFM that provides high sensitivity and selectivity to water vapor. However, our approach is generalizable to detection of other species using NFM to provide sensitivity and selectivity.

Allendorf, Mark D; Robinson, Alex L

2014-12-09T23:59:59.000Z

489

A study of the mixed association of cholesterol with methyl cholate by vapor pressure osmometry  

E-Print Network [OSTI]

out on a Knauer Vapor Pressure Osmometer equipped w1th the Knauer Universal Temperature Measuring Apparatus (a sensitive Wheatstone bridge with a 10-turn helical potentiometer) and a chart recorder. A thorough discussion of some of the experimental... at the desired temperature. Two themistors are mounted in the chamber and are coupled to the Wheatstone bridge. Using syr1nges, a drop of pure solvent is placed on one themistor and a drop of solution on the other. Because of the lowering of solvent vapor...

Foster, Bruce William

1981-01-01T23:59:59.000Z

490

Direct vapor/solid synthesis of mercuric iodide using compounds of mercury and iodine  

SciTech Connect (OSTI)

A process is disclosed for producing high purity mercuric iodide by passing a gaseous source of a mercuric compound through a particulate bed of a low vapor pressure iodide compound which is maintained at an elevated temperature which is the lower of either: (a) just below the melting or volatilization temperature of the iodide compound (which ever is lower); or (b) just below the volatilization point of the other reaction product formed during the reaction; to cause the mercuric compound to react with the iodide compound to form mercuric iodide which then passes as a vapor out of the bed into a cooler condensation region.

Skinner, Nathan L. (Carpinteria, CA)

1990-01-01T23:59:59.000Z

491

Economics of Organic Rankine Cycle  

E-Print Network [OSTI]

condensing if properly selected, and because of high molecular weight and low enthalpy drop in the expansion stage can use a single stage turbine operating at low rotational speeds to accomplish l\\JABINE HeAT SOURCE VAPORIZER PUMP Fig. 1 Simplified... 0 F approach temperature in vaporizer l5 0 F approach temperature in condenser 84% expander efficiency, 95% generator efficiency, 75% pump efficiency Maintenance at 2% of investment per year Freon losses at 5% of inventory/yr, $0.85/lb...

O'Brien, W. J.

492

Effective Presentations Organization  

E-Print Network [OSTI]

1 Pericles Effective Presentations · Content · Organization · Delivery · Visual aids and graphics Be brave Graphics · KISS · Powerpoint: ­ Font · Bigger than you'd expect · San serif ­ Lines · Thicker than · Organization · Energy · Clarity · Poise Key: Practice Web Resources · http

Shull, David H.

493

Substrate effect on CdTe layers grown by metalorganic vapor phase N. V. Sochinskiia),b)  

E-Print Network [OSTI]

Substrate effect on CdTe layers grown by metalorganic vapor phase epitaxy N. V. Sochinskiia for publication 30 December 1996 CdTe layers were grown by metalorganic vapor phase epitaxy MOVPE on different substrates like sapphire, GaAs, and CdTe wafers. The growth was carried out at the temperature 340 °C

Viña, Luis

494

Effect of atmospheric water vapor on modification of stable isotopes in near-surface snow on ice sheets  

E-Print Network [OSTI]

temperature and the abundance of heavy isotopes of water found in water vapor and precipitation as functionsEffect of atmospheric water vapor on modification of stable isotopes in near-surface snow on ice fractionation model is developed to investigate postdepositional modification of stable isotopes of water

Walden, Von P.

495

Isothermal vapor-liquid equilibrium of 1,2-dibromoethane + tetrachlorolmethane at temperatures between 283. 15 and 323. 15 K  

SciTech Connect (OSTI)

Vapor pressures of 1, 2-dibromoethane + tetrachlormethane, at 5 K interval between 283.15 and 323.15 K, were measured by a static method. Activity coefficients and excess molar Gibbs free energies G[sup E] were calculated by Barker's method. Reduction of the vapor pressure results is well represented by the Redlich-Kister, Wilson, and NRTL correlations.

Perez, P.; Valero, J.; Gracia, M. (Univ. de Zaragoza (Spain). Dept. de Quimica Organica-Quimica Fisica)

1994-10-01T23:59:59.000Z

496

Diamond growth on WC-Co substrates by hot filament chemical vapor deposition: Effect of filamentsubstrate separation  

E-Print Network [OSTI]

Polycrystalline diamond films have been grown by hot filament (HF) chemical vapor deposition on WC-Co bar is an established technique for growing hard, wear- resistant polycrystalline diamond films on a range of substratesDiamond growth on WC-Co substrates by hot filament chemical vapor deposition: Effect of filament

Bristol, University of

497

IUPAC critical evaluation of the rotationalvibrational spectra of water vapor. Part I--Energy levels and transition wavenumbers  

E-Print Network [OSTI]

Keywords: Water vapor Transition wavenumbers Atmospheric physics Energy levels MARVEL Information systemIUPAC critical evaluation of the rotational­vibrational spectra of water vapor. Part I--Energy levels and transition wavenumbers for H2 17 O and H2 18 O Jonathan Tennyson a,Ã, Peter F. Bernath b

Chance, Kelly

498

Molecular Simulation of Henry's Constant at Vapor-Liquid and Liquid-Liquid Phase Richard J. Sadus  

E-Print Network [OSTI]

coexistence. 1. Introduction Henry's constant is a well-known measure of a solute's solubility in a particularMolecular Simulation of Henry's Constant at Vapor-Liquid and Liquid-Liquid Phase Boundaries Richard to determine Henry's constant from the residual chemical potential at infinite dilution at the vapor-liquid

499

Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa's water vapor aurora  

E-Print Network [OSTI]

aurora Lorenz Rotha,b,1 , Kurt D. Retherforda , Joachim Saurc , Darrell F. Strobeld,e , Paul D. Feldmane that the discovery of a water vapor aurora in Decem- ber 2012 by local hydrogen (H) and oxygen (O) emissions by our 2014 STIS observations. Europa | Hubble Space Telescope | aurora | water vapor plumes | Jupiter

Nimmo, Francis

500

Growth of Large-Area Aligned Molybdenum Nanowires by High Temperature Chemical Vapor Deposition: Synthesis, Growth Mechanism, and Device Application  

E-Print Network [OSTI]

, thermogravimetry, and differential scanning calorimetry analysis, as well as structure analysis by electron on the decomposition of MoO2 vapors through condensation of its vapor at high substrate temperatures. The aligned nanowires with H2 gas.6d-f However, the reduction process degrades the crystal- linity of the nanowires

Wang, Zhong L.