Sample records for 241-c-103 organic vapor

  1. EA-0881: Tank 241-c-103 Organic Vapor and Liquid Characterization and Supporting Activities, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to sample the vapor space and liquid waste and perform other supporting activities in Tank 241-C-103 located in the 241-C Tank Farm on the...

  2. Systems engineering study: tank 241-C-103 organic skimming,storage, treatment and disposal options

    SciTech Connect (OSTI)

    Klem, M.J.

    1996-10-23T23:59:59.000Z

    This report evaluates alternatives for pumping, storing, treating and disposing of the separable phase organic layer in Hanford Site Tank 241-C-103. The report provides safety and technology based preferences and recommendations. Two major options and several varations of these options were identified. The major options were: 1) transfer both the organic and pumpable aqueous layers to a double-shell tank as part of interim stabilization using existing salt well pumping equipment or 2) skim the organic to an above ground before interim stabilization of Tank 241-C-103. Other options to remove the organic were considered but rejected following preliminary evaluation.

  3. Removal of Separable Organic From Tank 241-C-103 Scoping Study

    SciTech Connect (OSTI)

    KOCH, M.R.

    2000-05-16T23:59:59.000Z

    This study is based on previous evaluations/proposals for removing the floating organic layer in C-103. A practical method is described with assumptions, cost and schedule estimates, and risks. Proposed operational steps include bulk organic removal, phase separation, organic washing and offsite disposal, followed by an in-situ polishing process.

  4. Safety evaluation for the interim stabilization of Tank 241-C-103

    SciTech Connect (OSTI)

    Geschke, G.R.

    1995-03-01T23:59:59.000Z

    This document provides the basis for interim stabilization of tank 241-C-103. The document covers the removal of the organic liquid layer and the aqueous supernatant from tank 241-C-103. Hazards are identified, consequences are calculated and controls to mitigate or prevent potential accidents are developed.

  5. Toxicologic evaluation of analytes from Tank 241-C-103

    SciTech Connect (OSTI)

    Mahlum, D.D.; Young, J.Y.; Weller, R.E.

    1994-11-01T23:59:59.000Z

    Westinghouse Hanford Company requested PNL to assemble a toxicology review panel (TRP) to evaluate analytical data compiled by WHC, and provide advice concerning potential health effects associated with exposure to tank-vapor constituents. The team`s objectives would be to (1) review procedures used for sampling vapors from tanks, (2) identify constituents in tank-vapor samples that could be related to symptoms reported by workers, (3) evaluate the toxicological implications of those constituents by comparison to establish toxicological databases, (4) provide advice for additional analytical efforts, and (5) support other activities as requested by WHC. The TRP represents a wide range of expertise, including toxicology, industrial hygiene, and occupational medicine. The TRP prepared a list of target analytes that chemists at the Oregon Graduate Institute/Sandia (OGI), Oak Ridge National Laboratory (ORNL), and PNL used to establish validated methods for quantitative analysis of head-space vapors from Tank 241-C-103. this list was used by the analytical laboratories to develop appropriate analytical methods for samples from Tank 241-C-103. Target compounds on the list included acetone, acetonitrile, ammonia, benzene, 1, 3-butadiene, butanal, n-butanol, hexane, 2-hexanone, methylene chloride, nitric oxide, nitrogen dioxide, nitrous oxide, dodecane, tridecane, propane nitrile, sulfur oxide, tributyl phosphate, and vinylidene chloride. The TRP considered constituent concentrations, current exposure limits, reliability of data relative to toxicity, consistency of the analytical data, and whether the material was carcinogenic or teratogenic. A final consideration in the analyte selection process was to include representative chemicals for each class of compounds found.

  6. EA-0881: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Tank 241-c-103 Organic Vapor and Liquid Characterization and Supporting Activities, Hanford Site, Richland, Washington)

  7. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R

    2012-10-23T23:59:59.000Z

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  8. Waste Tank Safety Program. Annual status report for FY 1993, Task 3: Organic chemistry

    SciTech Connect (OSTI)

    Lucke, R.B.; Clauss, T.T.W.; Hoheimer, R.; Goheen, S.C.

    1994-02-01T23:59:59.000Z

    This task supports the tank-vapor project, mainly by providing organic analytical support and by analyzing Tank 241-C-103 (Tank C-103) vapor-space samples, collected via SUMMA{trademark} canisters, by gas chromatography (GC) and GC/mass spectrometry (MS). In the absence of receiving tank-vapor samples, we have focused our efforts toward validating the normal paraffin hydrocarbon (NPH) sampling and analysis methods and preparing the SUMMA{trademark} laboratory. All required milestones were met, including a report on the update of phase I sampling and analysis on August 15, 1993. This update described the work involved in preparing to analyze phase I samples (Appendix A). This report describes the analytical support provided by Pacific Northwest Laboratory (PNL){sup (a)} to the Hanford Tank Safety Vapor Program.

  9. Quantitative organic vapor-particle sampler

    DOE Patents [OSTI]

    Gundel, Lara (Berkeley, CA); Daisey, Joan M. (Walnut Creek, CA); Stevens, Robert K. (Cary, NC)

    1998-01-01T23:59:59.000Z

    A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

  10. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Pinnau, Ingo (Palo Alto, CA); He, Zhenjie (Fremont, CA); Da Costa, Andre R. (Menlo Park, CA); Daniels, Ramin (San Jose, CA); Amo, Karl D. (Mountain View, CA); Wijmans, Johannes G. (Menlo Park, CA)

    2003-06-03T23:59:59.000Z

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  11. Recovery of benzene in an organic vapor monitor

    E-Print Network [OSTI]

    Krenek, Gregory Joel

    1980-01-01T23:59:59.000Z

    solid adsorbents available (silica gel, activated alumina, etc. ), activated charcoal is most frequently utilized. Activated charcoal has retentivity for sorbed vapors several times that of silica gel and it displays a selectivity for organic vapors... (diffusion rate) of the vapor molecules to the sur- face of the adsorbent. The adsorption process determine how effective the adsorbent collects and holds the contam- inant on the surface of the activated charcoal. Recovery of the contaminant from...

  12. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (625 Gulfwood Rd., Knoxville, TN 37923)

    1987-01-01T23:59:59.000Z

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

  13. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1987-07-14T23:59:59.000Z

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

  14. Liquid-phase and vapor-phase dehydration of organic/water solutions

    DOE Patents [OSTI]

    Huang, Yu (Palo Alto, CA); Ly, Jennifer (San Jose, CA); Aldajani, Tiem (San Jose, CA); Baker, Richard W. (Palo Alto, CA)

    2011-08-23T23:59:59.000Z

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  15. Desorption efficiencies of toluene and n-butanol in an organic vapor monitor

    E-Print Network [OSTI]

    Heaney, Mary Ann

    1979-01-01T23:59:59.000Z

    ) ~ ~ ? Experimental Volume versus Theoretical Volume for n-Butanol (liquid phase). . . . . . . 13. Conceptual Adsorption of Vapor Molecules;. . . . 41 IXI'RODDCTI 019 In 1970, the Occupational Safety and Health Adminj- strstion adopted permissible human exposure...&jards has become one of the most important industrial hygiene f unct i one e The levei of exposure to many organic vapor;=, is det r- mined by co' lecting the chemical on some type o solid sor- bent. Of the various adsorbents available {silica gel...

  16. Response of passive organic vapor dosimeters to a mixed gas exposure 

    E-Print Network [OSTI]

    Anderson, Scott Merritt

    1982-01-01T23:59:59.000Z

    ) particular compound can be made more difficult 1n an atmosphere conta1ning a m1xture of organic vapors. The purpose of this research 1s to determine the effects of a multiple vapor exposure on the collection and desorption effic1ercy of a DuPont Pro... adjustment requ1red to maintain a stable concentration with1n the exposure chamber. The desorpt1on effic1encies were determ1ned for methyl metha- crylate, styrene and the combination of methyl methacrylate and styrene. The method employed to determine...

  17. Response of passive organic vapor dosimeters to a mixed gas exposure

    E-Print Network [OSTI]

    Anderson, Scott Merritt

    1982-01-01T23:59:59.000Z

    of Advisory Comm1ttee: Dr. Richard B. Konzen The effects of the sampling order of two chemicals adsorbed onto a DuPont Pro-Tek Organic Vapor Dosimeters were investigated. The dosimeters were exposed to varying known concentrations of methyl methacrylate... experiment, Mr. Marvin Harrington of Rohm and Haas of Texas, and Mr. Fred Gsweng of Dupont for providing essential materials for the completion of this research. A special thank you must be extended to the National Institute for Occupational Safety...

  18. Vapor-liquid equilibria of sulfur dioxide in polar organic solvents

    SciTech Connect (OSTI)

    Demyanovich, R.J.; Lynn, S.

    1987-03-01T23:59:59.000Z

    Vapor-liquid equilibrium data for SO/sub 2/ in eight polar organic solvents and three mixtures of organic solvents were investigated over the temperature range 30-95/sup 0/C and over a concentration range of 0.02-0.16 weight fraction of SO/sub 2/. The solvents investigated were N, N-dimethylaniline (DMA); quinoline; the dimethyl ethers of diethylene glycol, triethylene glycol, and tetraethylene glycol; the monomethyl ether of diethylene glycol (DGM); tetramethylene sulfone; and tributyl phosphate. The mixed solvents investigated were various mixtures of DMA and DGM. The data were correlated by using the UNIQUAC, NRTL, Wilson, and Henry's law phase-equilibrium models.

  19. The effect of time and temperature on the storage of passive organic vapor dosimeters contaminated with 1,2-dichloroethane

    E-Print Network [OSTI]

    Williams, Robert Vincent

    1980-01-01T23:59:59.000Z

    Contaminated With '1, 2-Dichloroethane. (December 1980) Robert Vincent Williams, B. S. , Stetson University Chairman of Advisory Comnittee: Mr. Charles L. Gi imore The effect of time and temperature on the storage of 1, 2-dichloro- ethane (common name...--ethylene chloride) collected on passive organic vapor dosimeters was investigated. Passive organic vapor dosimeters manufactured by the 3M Company, the Walden Division of Abcor, Inc. , and the E. I. duPont de Nemours Company were statically exposed to ethylene...

  20. III-nitride quantum cascade detector grown by metal organic chemical vapor deposition

    SciTech Connect (OSTI)

    Song, Yu, E-mail: yusong@princeton.edu; Huang, Tzu-Yung; Badami, Pranav; Gmachl, Claire [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540 (United States); Bhat, Rajaram; Zah, Chung-En [Corning Incorporated, Corning, New York 14831 (United States)

    2014-11-03T23:59:59.000Z

    Quantum cascade (QC) detectors in the GaN/Al{sub x}Ga{sub 1?x}N material system grown by metal organic chemical vapor deposition are designed, fabricated, and characterized. Only two material compositions, i.e., GaN as wells and Al{sub 0.5}Ga{sub 0.5}N as barriers are used in the active layers. The QC detectors operates around 4??m, with a peak responsivity of up to ?100??A/W and a detectivity of up to 10{sup 8} Jones at the background limited infrared performance temperature around 140?K.

  1. Thermoelectric properties of lattice-matched AlInN alloy grown by metal organic chemical vapor deposition

    E-Print Network [OSTI]

    Gilchrist, James F.

    Thermoelectric properties of lattice-matched AlInN alloy grown by metal organic chemical vapor Seebeck coefficient and resistance measurement system for thermoelectric materials in the thin disk geometry Rev. Sci. Instrum. 83, 025101 (2012) High-temperature thermoelectric properties of Cu1­xInTe2

  2. Characterization and fate of vapor-phase organic constituents from atmospheric pressure fluidized bed combustors (AFBC): East Stroudsburg University AFBC

    SciTech Connect (OSTI)

    Yeh, Hsu-Chi; Newton, G.J.; Henderson, T.R.; Hobbs, C.H.

    1987-08-01T23:59:59.000Z

    Very little research has been devoted to the characterization of vapor-phase organic compounds in gaseous streams. Because of the concerns that gaseous organic compounds from FBCs may include potentially toxic and/or mutagenic materials. We will measure vapor-phase hydrocarbon concentrations in the process streams of operating FBCs. This report describes our field sampling results on the atmospheric pressure fluidized bed combustor (AFBC) at the East Stroudsburg University during its normal operation for supplying heat and hot water to the campus. This AFBC has a bed size of 36 ft/sup 2/ and was burning anthracite culm. The culm consumption rates during the week of our sampling period were 1600 to 3000 lb/hr. Emphasis was placed on characterization of process stream effluents, including particles and vapor-phase organic constituents. Results indicated that the mass concentration (or loading) of particulate matter within the effluent stream was similar to other FBCs that have been studied. The particulate mass concentration measured after the baghouse location was 0.0048 g/m/sup 3/ (0.0047 lb/10/sup 6/ Btu). This was equivalent to a total of 35 g/hr of particulate emissions. The fraction of particulate material presented as organics (extractable fraction) was, on the average, less than 2% of total mass of particulate emissions. The vapor-phase organic contents indicated that the quantities of individual polycyclic aromatic hydrocarbons (PAHs) were low, being less than 2.5 ..mu..g/m/sup 3/ for any individual sample. Most of the PAHs detected were low boiling compounds such as naphthalene or phenanthrene, with trace amounts of pyrene. 22 refs., 13 figs., 11 tabs.

  3. An evaluation of the Gilian TRACEAIR Organic Vapor Monitoring Diffusive Badge in measuring short-term exposure levels of benzene under field conditions 

    E-Print Network [OSTI]

    Pierce, Mark Edward

    1996-01-01T23:59:59.000Z

    The objective of this research is to evaluate the performance of the Gilian TRACEAIR Organic Vapor Monitoring I (OVMI) Diffusive Badge in measuring short-term benzene exposures under field conditions. In general, a diffusive badge is a device which...

  4. Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting

    SciTech Connect (OSTI)

    Mike Hack

    2008-12-31T23:59:59.000Z

    In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or shaped features. As a result, we believe that this work will lead to the development of a cost-effective manufacturing solution to produce very-high efficiency OLEDs. By comparison to more common ink-jet printing (IJP), OVJP can also produce well-defined patterns without the need to pattern the substrate with ink wells or to dry/anneal the ink. In addition, the material set is not limited by viscosity and solvent solubility. During the program we successfully demonstrated a 6-inch x 6-inch PHOLED lighting panel consisting of fine-featured red, green and blue (R-G-B) stripes (1mm width) using an OVJP deposition system that was designed, procured and installed into UDC's cleanroom as part of this program. This project will significantly accelerate the DOE's ability to meet its 2015 DOE SSL targets of 70-150 lumens/Watt and less than $10 per 1,000 lumens for high CRI lighting index (76-90). Coupled with a low cost manufacturing path through OVJP, we expect that this achievement will enable the DOE to achieve its 2015 performance goals by the year 2013, two years ahead of schedule. As shown by the technical work performed under this program, we believe that OVJP is a very promising technology to produce low cost, high efficacy, color tunable light sources. While we have made significant progress to develop OVJP technology and build a pilot line tool to study basic aspects of the technology and demonstrate a lighting panel prototype, further work needs to be performed before its full potential and commercial viability can be fully assessed.

  5. Ultra-narrow ferromagnetic resonance in organic-based thin films grown via low temperature chemical vapor deposition

    SciTech Connect (OSTI)

    Yu, H.; Harberts, M.; Adur, R.; Hammel, P. Chris; Johnston-Halperin, E., E-mail: ejh@physics.osu.edu, E-mail: epstein@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Lu, Y. [Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States); Epstein, A. J., E-mail: ejh@physics.osu.edu, E-mail: epstein@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States)

    2014-07-07T23:59:59.000Z

    We present the growth of thin films of the organic-based ferrimagnetic semiconductor V[TCNE]{sub x} (x???2, TCNE: tetracyanoethylene) via chemical vapor deposition. Under optimized growth conditions, we observe a significant increase in magnetic homogeneity, as evidenced by a Curie temperature above 600?K and sharp magnetization switching. Further, ferromagnetic resonance studies reveal a single resonance with full width at half maximum linewidth of 1.4?G, comparable to the narrowest lines measured in inorganic magnetic materials and in contrast to previous studies that showed multiple resonance features. These characteristics are promising for the development of high frequency electronic devices that take advantage of the unique properties of this organic-based material, such as the potential for low cost synthesis combined with low temperature and conformal deposition on a wide variety of substrates.

  6. Solubility parameter and activity coefficient of HDEHP dimer in select organic diluents by vapor pressure osmometry

    SciTech Connect (OSTI)

    Gray, M.; Nilsson, M. [University of California Irvine, 916 Engineering Tower, UC Irvine, Irvine, CA 92697-2575 (United States); Zalupski, P. [Idaho National Laboratory, 2525 Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2013-07-01T23:59:59.000Z

    A thorough understanding of the non-ideal behavior of the chemical components utilized in solvent extraction contributes to the success of any large-scale spent nuclear fuel treatment. To address this, our current work uses vapor pressure osmometry to characterize the non-ideal behavior of the solvent extraction agent di-(2-ethylhexyl) phosphoric acid (HDEHP), a common extractant in proposed separation schemes. Solubility parameters were fit to data on HDEHP at four temperatures using models based on Scatchard Hildebrand regular solution theory with Flory Huggins entropic corrections. The results are comparable but not identical to the activity coefficients from prior slope analysis in the literature. (authors)

  7. An evaluation of the Gilian TRACEAIR Organic Vapor Monitoring Diffusive Badge in measuring short-term exposure levels of benzene under field conditions

    E-Print Network [OSTI]

    Pierce, Mark Edward

    1996-01-01T23:59:59.000Z

    that the monitoring system places on the workers who are being sampled. The wide range of drawbacks associated with active sampling necessitated an alternative means of monitoring breathable air in the work environment; namely, a less costly and more user... time-weighted average (TWA) concentrations of airborne organic vapors. This badge was researched, developed, and patented by DuPont under the name of Pro-Tek~ G-AA Organic Vapor Air Monitoring Badge in 1985. Under this trade name, the monitor never...

  8. Oxidative chemical vapor deposition of semiconducting polymers and their use In organic photovoltaics

    E-Print Network [OSTI]

    Borrelli, David Christopher

    2014-01-01T23:59:59.000Z

    Organic photovoltaics (OPVs) have received significant interest for their potential low cost, high mechanical flexibility, and unique functionalities. OPVs employing semiconducting polymers in the photoactive layer have ...

  9. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    organic Rankine cycle," Renewable Energy, vol. 4, pp. 1196-power cycle driven by renewable energy sources," Energy,geothermal resources," Renewable Energy, vol. 37, pp. 364-

  10. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition

    SciTech Connect (OSTI)

    Xu, W.Z.; Ye, Z.Z.; Zeng, Y.J.; Zhu, L.P.; Zhao, B.H.; Jiang, L.; Lu, J.G.; He, H.P.; Zhang, S.B. [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2006-04-24T23:59:59.000Z

    We report a breakthrough in fabricating ZnO homojunction light-emitting diode by metal organic chemical vapor deposition. Using NO plasma, we are able to grow p-type ZnO thin films on n-type bulk ZnO substrates. The as-grown films on glass substrates show hole concentration of 10{sup 16}-10{sup 17} cm{sup -3} and mobility of 1-10 cm{sup 2} V{sup -1} s{sup -1}. Room-temperature photoluminescence spectra reveal nitrogen-related emissions. A typical ZnO homojunction shows rectifying behavior with a turn-on voltage of about 2.3 V. Electroluminescence at room temperature has been demonstrated with band-to-band emission at I=40 mA and defect-related emissions in the blue-yellow spectrum range.

  11. Polymers via chemical vapor deposition and their application to organic photovoltaics

    E-Print Network [OSTI]

    Barr, Miles Clark

    2012-01-01T23:59:59.000Z

    There is emerging interest in the ability to fabricate organic photovoltaics (OPVs) on flexible, lightweight substrates, which could lower the cost of installation and enable new form factors for deployment. However, ...

  12. Oxidative and initiated chemical vapor deposition for application to organic electronics

    E-Print Network [OSTI]

    Im, Sung Gap

    2009-01-01T23:59:59.000Z

    Since the first discovery of polymeric conductors in 1977, the research area of "organic electronics" has grown dramatically. However, methods for forming thin films comprised solely of conductive polymers are limited by ...

  13. Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract--In metal organic vapor phase epitaxy we developed

    E-Print Network [OSTI]

    Wetzel, Christian M.

    Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract-- In metal organic vapor phase epitaxy we developed GaInN/GaN quantum well material suitable for 500 ­ 580 nm light emitting diodes at longer wavelengths. Index Terms-- a-plane GaN, GaInN, Green light emitting diode, m-plane GaN I

  14. Distribution of volatile organic compounds in soil vapor in the vicinity of a defense fuel supply point, Hanahan, South Carolina. Water resources investigations report

    SciTech Connect (OSTI)

    Robertson, J.F.; Aelion, C.M.; Vroblesky, D.A.

    1993-12-31T23:59:59.000Z

    The report describes the results of a reconnaissance study to identify areas of potential contamination of the water table aquifer by volatile organic compounds (VOC`s) beneath a Defense Fuel Supply Point and adjacent properties near Hanahan, S.C. Six areas in and around the DFSP facility were investigated with soil-vapor techniques. The northern boundary area has been studied extensively and was, therefore, not included in the investigation.

  15. Temperature dependent photoluminescence of lateral polarity junctions of metal organic chemical vapor deposition grown GaN

    E-Print Network [OSTI]

    Nabben, Reinhard

    implantation of Cu, Li and Ag into silicon doped GaN films grown by Metalorganic Chemical Vapor Deposition temperature (700-900°C) annealing. Low temperature (6K) photoluminescence (PL) for Cu-implanted GaN showed recovery of standard crystalline GaN features. Additional donor-acceptor pair features are observed below 3

  16. Elemental diffusion during the droplet epitaxy growth of In(Ga)As/GaAs(001) quantum dots by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Chen, Z. B.; Chen, B.; Wang, Y. B.; Liao, X. Z., E-mail: xiaozhou.liao@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Lei, W. [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA 6009 (Australia); Tan, H. H.; Jagadish, C. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Zou, J. [Materials Engineering and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072 (Australia); Ringer, S. P. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-01-13T23:59:59.000Z

    Droplet epitaxy is an important method to produce epitaxial semiconductor quantum dots (QDs). Droplet epitaxy of III-V QDs comprises group III elemental droplet deposition and the droplet crystallization through the introduction of group V elements. Here, we report that, in the droplet epitaxy of InAs/GaAs(001) QDs using metal-organic chemical vapor deposition, significant elemental diffusion from the substrate to In droplets occurs, resulting in the formation of In(Ga)As crystals, before As flux is provided. The supply of As flux suppresses the further elemental diffusion from the substrate and promotes surface migration, leading to large island formation with a low island density.

  17. Influence of vicinal sapphire substrate on the properties of N-polar GaN films grown by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Lin, Zhiyu; Zhang, Jincheng, E-mail: jchzhang@xidian.edu.cn; Xu, Shengrui; Chen, Zhibin; Yang, Shuangyong; Tian, Kun; Hao, Yue [Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071 (China); Su, Xujun [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123 (China); Shi, Xuefang [School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi 710071 (China)

    2014-08-25T23:59:59.000Z

    The influence of vicinal sapphire substrates on the growth of N-polar GaN films by metal-organic chemical vapor deposition is investigated. Smooth GaN films without hexagonal surface feature are obtained on vicinal substrate. Transmission electron microscope results reveal that basal-plane stacking faults are formed in GaN on vicinal substrate, leading to a reduction in threading dislocation density. Furthermore, it has been found that there is a weaker yellow luminescence in GaN on vicinal substrate than that on (0001) substrate, which might be explained by the different trends of the carbon impurity incorporation.

  18. An evaluation of the 3M Organic Vapor Monitor #3500 as a short term exposure limit sampling device for acetone, methyl ethyl ketone, and methyl iso butyl ketone

    E-Print Network [OSTI]

    Andrew, Lloyd B.

    1982-01-01T23:59:59.000Z

    AN EVALUATION OF THE 3M ORGANIC VAPOR MONITOR 43500 AS A SHOR'I TERM EXPOSURE LIMIT SAMPLING DEVICE FOR ACETONE, METHYL ETHYL KETONE, AND METHYL ISO BUTYL KETONE A Thesis by LLOYD B. ANDREW III Submitted to the Graduate College of Texas ASM..., METHYL ETHYL KETONE, AND METHYL ISO BUTYL KETONE A Thesis by Lloyd B. Andrew III Approved as to style and content by: (Chai iy' of Co ' i tee) (He of Departme t) e4mY ~. (Member) C~& n (Member) December 1982 ABSTRACT An Evaluation of the 3M...

  19. To estimate vapor pressure easily

    SciTech Connect (OSTI)

    Yaws, C.L.; Yang, H.C. (Lamar Univ., Beaumont, TX (USA))

    1989-10-01T23:59:59.000Z

    Vapor pressures as functions of temperature for approximately 700 major organic chemical compounds are given. The tabulation also gives the temperature range for which the data are applicable. Minimum and maximum temperatures are denoted by TMIN and TMAX. The Antoine equation that correlates vapor pressure as a function of temperature is described. A representative comparison of calculated and actual data values for vapor pressure is shown for ethyl alcohol. The coefficient tabulation is based on both literature (experimental data) and estimated values.

  20. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Dutta, P., E-mail: pdutta2@central.uh.edu; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Zheng, N.; Ahrenkiel, P. [Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701 (United States); Martinez, J. [Materials Evaluation Laboratory, NASA Johnson Space Center, Houston, Texas 77085 (United States)

    2014-09-01T23:59:59.000Z

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ?10{sup 7?}cm{sup ?2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300?cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  1. As-grown deep-level defects in n-GaN grown by metal-organic chemical vapor deposition on freestanding GaN

    SciTech Connect (OSTI)

    Chen Shang; Ishikawa, Kenji; Hori, Masaru [Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Honda, Unhi; Shibata, Tatsunari; Matsumura, Toshiya; Tokuda, Yutaka [Aichi Institute of Technology, Yakusa, Toyota 470-0392 (Japan); Ueda, Hiroyuki; Uesugi, Tsutomu; Kachi, Tetsu [Toyota Central R and D Laboratories, Inc., Yokomichi, Nagakute 480-1192 (Japan)

    2012-09-01T23:59:59.000Z

    Traps of energy levels E{sub c}-0.26 and E{sub c}-0.61 eV have been identified as as-grown traps in n-GaN grown by metal-organic chemical vapor deposition by using deep level transient spectroscopy of the Schottky contacts fabricated by resistive evaporation. The additional traps of E{sub c}-0.13 and E{sub c}-0.65 eV have been observed in samples whose contacts are deposited by electron-beam evaporation. An increase in concentration of the E{sub c}-0.13 and E{sub c}-0.65 eV traps when approaching the interface between the contact and the GaN film supports our argument that these traps are induced by electron-beam irradiation. Conversely, the depth profiles of as-grown traps show different profiles between several samples with increased or uniform distribution in the near surface below 50 nm. Similar profiles are observed in GaN grown on a sapphire substrate. We conclude that the growth process causes these large concentrations of as-grown traps in the near-surface region. It is speculated that the finishing step in the growth process should be an essential issue in the investigation of the surface state of GaN.

  2. Vapor intrusion modeling : limitations, improvements, and value of information analyses

    E-Print Network [OSTI]

    Friscia, Jessica M. (Jessica Marie)

    2014-01-01T23:59:59.000Z

    Vapor intrusion is the migration of volatile organic compounds (VOCs) from a subsurface source into the indoor air of an overlying building. Vapor intrusion models, including the Johnson and Ettinger (J&E) model, can be ...

  3. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26T23:59:59.000Z

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  4. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, John P. (Idaho Falls, ID); Larson, Ronald A. (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Hall, Harold J. (Idaho Falls, ID); Stoddard, Billy D. (Idaho Falls, ID); Davis, Sean G. (Idaho Falls, ID); Kaser, Timothy G. (Idaho Falls, ID); Conrad, Frank J. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  5. Gas phase photocatalytic degradation on TiO{sub 2} pellets of volatile chlorinated organic compounds from a soil vapor extraction well

    SciTech Connect (OSTI)

    Yamazaki-Nishida, S.; Read, H.W.; Nagano, J.K.; Anderson, M.A. [Wisconsin Univ., Madison, WI (United States). Water Chemistry Program; Cervera-March, S. [Barcelona Univ., (Spain). Department of Chemical Engineering; Jarosch, T.R.; Eddy-Dilek, C.A. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-05-20T23:59:59.000Z

    The mineralization of trichloroethylene (TCE) and tetrachloroethylene (PCE) in gas stream from a soil vapor extraction (SVE) well was demonstrated with an annular photocatalytic reactor packed with porous TiO{sub 2} pellets in field trials at the Savannah River Site in Aiken, SC. The TiO{sub 2} pellets were prepared using a sol-gel method. The experiments were performed at 55 to 60{degree}C using space times of 10{sup 8} to 10{sup 10} g s/mol for TCE and PCE. Chloroform (CHCl{sub 3}) and carbon tetrachloride (CCl{sub 4}) were detected as minor products from side reactions. On a molar basis, CCl{sub 4} and CHCl{sub 3} produced were about 2% and 0.2 % of the reactants.

  6. Low trap states in in situ SiN{sub x}/AlN/GaN metal-insulator-semiconductor structures grown by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Lu, Xing; Ma, Jun; Jiang, Huaxing; Liu, Chao; Lau, Kei May, E-mail: eekmlau@ust.hk [Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-09-08T23:59:59.000Z

    We report the use of SiN{sub x} grown in situ by metal-organic chemical vapor deposition as the gate dielectric for AlN/GaN metal-insulator-semiconductor (MIS) structures. Two kinds of trap states with different time constants were identified and characterized. In particular, the SiN{sub x}/AlN interface exhibits remarkably low trap state densities in the range of 10{sup 11}–10{sup 12?}cm{sup ?2}eV{sup ?1}. Transmission electron microscopy and X-ray photoelectron spectroscopy analyses revealed that the in situ SiN{sub x} layer can provide excellent passivation without causing chemical degradation to the AlN surface. These results imply the great potential of in situ SiN{sub x} as an effective gate dielectric for AlN/GaN MIS devices.

  7. Ge-related faceting and segregation during the growth of metastable (GaAs){sub 1{minus}x}(Ge{sub 2}){sub x} alloy layers by metal{endash}organic vapor-phase epitaxy

    SciTech Connect (OSTI)

    Norman, A.G.; Olson, J.M.; Geisz, J.F.; Moutinho, H.R.; Mason, A.; Al-Jassim, M.M. [National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401 (United States)] [National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401 (United States); Vernon, S.M. [Spire Corporation, One Patriots Park, Bedford, Massachusetts 01730 (United States)] [Spire Corporation, One Patriots Park, Bedford, Massachusetts 01730 (United States)

    1999-03-01T23:59:59.000Z

    (GaAs){sub 1{minus}x}(Ge{sub 2}){sub x} alloy layers, 0{lt}x{lt}0.22, have been grown by metal{endash}organic vapor-phase epitaxy on vicinal (001) GaAs substrates. Transmission electron microscopy revealed pronounced phase separation in these layers, resulting in regions of GaAs-rich zinc-blende and Ge-rich diamond cubic material that appears to lead to substantial band-gap narrowing. For x=0.1 layers, the phase-separated microstructure consisted of intersecting sheets of Ge-rich material on {l_brace}115{r_brace}B planes surrounding cells of GaAs-rich material, with little evidence of antiphase boundaries. Atomic force microscopy revealed {l_brace}115{r_brace}B surface faceting associated with the phase separation. {copyright} {ital 1999 American Institute of Physics.}

  8. Installation and Operation of Sorbathene Solvent Vapor Recovery Units to Recover and Recycle Volatile Organic Compounds at Operating Sites within the Dow Chemical Company

    E-Print Network [OSTI]

    Hall, T. L.; Larrinaga, L.

    the SORBATHENE vacuum swing adsorption as an economical alternative for the recovery of volatile organic compounds (VOC's) from storage, loading, and process vents streams. This paper discusses the application of the technology on nineteen units to collect...

  9. Ex 7.6(a) The vapor pressure of benzene is 400 Torr at 60.6C, but it fell to 386 Torr when 19.0 g of an involatile organic compound was dissolved in 500 g of benzene. Calculate the

    E-Print Network [OSTI]

    Findley, Gary L.

    Ex 7.6(a) The vapor pressure of benzene is 400 Torr at 60.6°C, but it fell to 386 Torr when 19.0 g of an involatile organic compound was dissolved in 500 g of benzene. Calculate the molar mass of the involatile

  10. Vapor spill monitoring method

    DOE Patents [OSTI]

    Bianchini, Gregory M. (Livermore, CA); McRae, Thomas G. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  11. Vapor scavenging by atmospheric aerosol particles

    SciTech Connect (OSTI)

    Andrews, E.

    1996-05-01T23:59:59.000Z

    Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

  12. Double-sided reel-to-reel metal-organic chemical vapor deposition system of YBa{sub 2}Cu{sub 3}O{sub 7-?} thin films

    SciTech Connect (OSTI)

    Zhang, Fei; Xiong, Jie, E-mail: jiexiong@uestc.edu.cn; Liu, Xin; Zhao, Ruipeng; Zhao, Xiaohui; Tao, Bowan; Li, Yanrong [State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-07-01T23:59:59.000Z

    Two-micrometer thick YBa{sub 2}Cu{sub 3}O{sub 7-?} (YBCO) films have been successfully deposited on both sides of LaAlO{sub 3} single crystalline substrates by using a home-made reel-to-reel metal-organic chemical vapor deposition (MOCVD) system, which has two opposite symmetrical shower heads and a special-designed heater. This technique can simultaneously fabricate double-sided films with high deposition rate up to 500?nm/min, and lead to doubling current carrying capability of YBCO, especially for coated conductors (CCs). X-ray diffraction analysis showed that YBCO films were well crystallized and highly epitaxial with the full width at half maximum values of 0.2°???0.3° for the rocking curves of (005) YBCO and 1.0° for ?-scans of (103) YBCO. Scanning electron microscope revealed dense, crack-free, slightly rough surface with Ba-Cu-O precipitates. The films showed critical current density (J{sub c}, 77?K, 0?T) of about 1 MA/cm{sup 2}, and overall critical current of 400?A/cm, ascribed to the double-sided structure. Our results also demonstrated that the temperature and composition in the deposition zone were uniform, which made MOCVD preparation of low cost and high performance double-sided YBCO CCs more promising for industrialization.

  13. Chemical vapor deposition of organosilicon and sacrificial polymer thin films

    E-Print Network [OSTI]

    Casserly, Thomas Bryan

    2005-01-01T23:59:59.000Z

    Chemical vapor deposition (CVD) produced films for a wide array of applications from a variety of organosilicon and organic precursors. The structure and properties of thin films were controlled by varying processing ...

  14. Combined rankine and vapor compression cycles

    DOE Patents [OSTI]

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19T23:59:59.000Z

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  15. Vapor generation methods for explosives detection research. ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vapor generation methods for explosives detection research. Vapor generation methods for explosives detection research. Abstract: The generation of calibrated vapor samples of...

  16. Compact organic vapor jet printing print head

    DOE Patents [OSTI]

    Forrest, Stephen R; McGraw, Gregory

    2013-12-24T23:59:59.000Z

    A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print header further includes a first layer comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.

  17. Electrolyte vapor condenser

    DOE Patents [OSTI]

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08T23:59:59.000Z

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  18. In-well vapor stripping drilling and characterization work plan

    SciTech Connect (OSTI)

    Koegler, K.J.

    1994-03-13T23:59:59.000Z

    This work plan provides the information necessary for drilling, sampling, and hydrologic testing of wells to be completed in support of a demonstration of the in-well vapor stripping system. The in-well vapor stripping system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase. Air-lift pumping is used to lift and aerate groundwater within the well. The volatiles escaping the aerated water are drawn off by a slight vacuum and treated at the surface while the water is allowed to infiltrate the vadose zone back to the watertable.

  19. Stratified vapor generator

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

    2008-05-20T23:59:59.000Z

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  20. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    SciTech Connect (OSTI)

    Eric M. Suuberg; Vahur Oja

    1997-07-01T23:59:59.000Z

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  1. Tank Vapor Characterization Project: Annual status report for FY 1996

    SciTech Connect (OSTI)

    Silvers, K.L.; Fruchter, J.S.; Huckaby, J.L.; Almeida, T.L.; Evans, J.C. Jr.; Pool, K.H.; Simonen, C.A.; Thornton, B.M.

    1997-01-01T23:59:59.000Z

    In Fiscal Year 1996, staff at the Vapor Analytical Laboratory at Pacific Northwest National Laboratory performed work in support of characterizing the vapor composition of the headspaces of radioactive waste tanks at the Hanford Site. Work performed included support for technical issues and sampling methodologies, upgrades for analytical equipment, analytical method development, preparation of unexposed samples, analyses of tank headspaces samples, preparation of data reports, and operation of the tank vapor database. Progress made in FY 1996 included completion and issuance of 50 analytical data reports. A sampling system comparison study was initiated and completed during the fiscal year. The comparison study involved the vapor sampling system (VSS), a truck-based system, and the in situ vapor sampling system (ISVS), a cart-based system. Samples collected during the study were characterized for inorganic, permanent gases, total non-methane organic compounds and organic speciation by SUMMA{trademark} and TST methods. The study showed comparable sampling results between the systems resulting in the program switching from the VSS to the less expensive ISVS methodology in late May 1996. A temporal study was initiated in January 1996 in order to understand the influences seasonal temperatures changes have on the vapors in the headspace of Hanford waste tanks. A holding time study was initiated in the fourth quarter of FY 1996. Samples were collected from tank S-102 and rushed to the laboratory for time zero analysis. Additional samples will be analyzed at 1, 2, 4, 8, 16, and 32 weeks.

  2. Water Vapor Experiment Concludes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE AwardsDNitrateEnergyNews3 Water Vapor

  3. ARM Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP Update Information on new,Scanning Radar323ARM Water Vapor IOP

  4. Vapor Transport in Dry Soils

    SciTech Connect (OSTI)

    Gee, Glendon W.; Ward, Anderson L.

    2001-11-16T23:59:59.000Z

    Water-vapor movement in soils is a complex process, controlled by both diffusion and advection and influenced by pressure and thermal gradients acting across tortuous flow paths. Wide-ranging interest in water-vapor transport includes both theoretical and practical aspects. Just how pressure and thermal gradients enhance water-vapor flow is still not completely understood and subject to ongoing research. Practical aspects include dryland farming (surface mulching), water harvesting (aerial wells), fertilizer placement, and migration of contaminants at waste-sites. The following article describes the processes and practical applications of water-vapor transport, with emphasis on unsaturated (dry) soil systems.

  5. Vaporization of zinc from scrap

    SciTech Connect (OSTI)

    Ozturk, B.; Fruehan, R.J. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1996-12-31T23:59:59.000Z

    The rate of zinc vaporization from galvanized scrap was measured using a thermogravimetric apparatus along with chemical analysis. It is found that the rate of zinc vaporization is very fast in nitrogen and carbon monoxide atmospheres at temperatures higher than 950 C. At lower temperature rate decreases with decreasing temperature and is controlled by the gas phase mass transport. The simultaneous oxidation and vaporization of zinc occurs when the samples were heated in carbon dioxide and air. The current experimental results indicate that almost all of the zinc from scrap vaporizes during the heating process in a very short period of time after the temperature reaches above 850 C.

  6. Vapor spill pipe monitor

    DOE Patents [OSTI]

    Bianchini, G.M.; McRae, T.G.

    1983-06-23T23:59:59.000Z

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  7. Adsorption of Ethylene Glycol Vapor on r-Al2O3 (0001) and Amorphous

    E-Print Network [OSTI]

    Adsorption of Ethylene Glycol Vapor on r-Al2O3 (0001) and Amorphous SiO2 Surfaces: Observation W. 18th Avenue, Columbus, Ohio 43210 Vapor adsorption is an important process influencing the migration and the fates of many organic pollutants in the environment. In this study, adsorption of ethylene

  8. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09T23:59:59.000Z

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  9. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

    1996-01-01T23:59:59.000Z

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  10. Vapor Retarder Classification - Building America Top Innovation...

    Energy Savers [EERE]

    the Top Innovation. See an example of vapor retarder best practices in action. Find other case studies of Building America projects across the country that utilizes vapor retarder...

  11. Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects

    E-Print Network [OSTI]

    Chickos, James S.

    Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid hydrocarbons and their perdeuterated analogues have been determined by correlation-gas chromatography of cyclohexane-d12 and benzene-d6. Other hydrocarbons studied include the perdeuterated forms of hexane, toluene

  12. Passive vapor extraction feasibility study

    SciTech Connect (OSTI)

    Rohay, V.J.

    1994-06-30T23:59:59.000Z

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft{sup 3}/min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft{sup 3}/min air flow rates, passive vapor extraction is more cost effective below 100 ppm.

  13. Oxidative chemical vapor deposition of conductive polymers for use in novel photovoltaic device architectures

    E-Print Network [OSTI]

    Howden, Rachel M. (Rachel Mary)

    2013-01-01T23:59:59.000Z

    The conductive polymer poly(3,4-ethylenedioxythiophene), (PEDOT), deposited via oxidative chemical vapor deposition (oCVD) has been investigated for use in organic electronic devices. The oCVD process as well as the ...

  14. Portable vapor diffusion coefficient meter

    DOE Patents [OSTI]

    Ho, Clifford K. (Albuquerque, NM)

    2007-06-12T23:59:59.000Z

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  15. Vapor deposition of hardened niobium

    DOE Patents [OSTI]

    Blocher, Jr., John M. (Columbus, OH); Veigel, Neil D. (Columbus, OH); Landrigan, Richard B. (Columbus, OH)

    1983-04-19T23:59:59.000Z

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  16. Image Storage in Hot Vapors

    E-Print Network [OSTI]

    L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

    2007-10-22T23:59:59.000Z

    We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

  17. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  18. Adsorption -capacity data for 283 organic compounds

    SciTech Connect (OSTI)

    Yaws, C.L.; Bu, L.; Nijhawan, S. [Lamar Univ., Beaumont, TX (United States)

    1995-05-01T23:59:59.000Z

    Adsorption on activated carbon is a widely used method for removing volatile organic compounds (VOCs) from gases and other exhaust streams. This article presents a compilation of adsorption-capacity data as a function of the VOC concentration in the gas. The results are useful in engineering and environmental studies, and in the design of carbon-based adsorption systems to remove unwanted organic pollutants from gases. For vapor control, carbon-based systems typically combine a carbon-adsorption unit with a secondary control method to reclaim or destroy the vapors desorbed during carbon-bed regeneration. To remove organics dissolved in wastewater, air stripping is typically used to transfer the organics to a vapor stream. Carbon adsorption is then used to separate the organics from the stripper exhaust. Collected vapors can be recovered for reuse or destroyed, depending on their value.

  19. Vacuum vapor deposition gun assembly

    DOE Patents [OSTI]

    Zeren, Joseph D. (Boulder, CO)

    1985-01-01T23:59:59.000Z

    A vapor deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, a hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  20. Hydrogen Cars and Water Vapor

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    misidentified as "zero-emissions vehicles." Fuel cell vehicles emit water vapor. A global fleet could have, with discernible effects on people and ecosystems. The broad environmental effects of fuel cell vehicles. This cycle is currently under way with hydrogen fuel cells. As fuel cell cars are suggested as a solution

  1. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, Barbara K. (Charleston, WV)

    1991-01-01T23:59:59.000Z

    Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  2. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    DOE Patents [OSTI]

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02T23:59:59.000Z

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  3. Vapor canister heater for evaporative emissions systems

    SciTech Connect (OSTI)

    Bishop, R.P.; Berg, P.G.

    1987-01-01T23:59:59.000Z

    Automotive evaporative emissions systems use a charcoal canister to store evaporative hydrocarobn emissions. These stored vapors are later purged and burned during engine operation. Under certain conditions the engine cannot completely purge the canister of the stored fuel vapors, which results in a decreased vapor storage capacity in the canister. A self-regulating PTC (Positive Temperature Coefficient) heater has been developed to warm the purge air as it enters the canister, in order to provide thermal energy for increased release of the vapors from charcoal sites. This paper describes the construction and operation of the vapor canister heater as it relates to improved evaporative emission system performance.

  4. Three-dimensional computer simulations of bioremediation and vapor extraction

    SciTech Connect (OSTI)

    Travis, B.; Trent, B.

    1991-01-01T23:59:59.000Z

    Numerical simulations of two remediation strategies are presented. These calculations are significant in they they will play a major role in the actual field implementation of two very different techniques. The first set of calculations simulates the actual spill event of nearly 60,000 gallons of No. 2 diesel fuel oil and its subsequent flow toward the water table for 13 years. Hydrogen peroxide saturated water flooding is then performed and the bioremediation of the organic material is then calculated. The second set of calculations describes the vacuum extraction of organic vapors and indicates the sensitivity to various assumed formation properties and boundary conditions. 7 refs., 5 figs.

  5. Means and method for vapor generation

    DOE Patents [OSTI]

    Carlson, Larry W. (Oswego, IL)

    1984-01-01T23:59:59.000Z

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  6. Control of flow through a vapor generator

    DOE Patents [OSTI]

    Radcliff, Thomas D.

    2005-11-08T23:59:59.000Z

    In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

  7. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    SciTech Connect (OSTI)

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15T23:59:59.000Z

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE flowchart provides a structured process to determine if the technology is, or is not, reasonable and defensible for a particular site. The central basis for that decision is the expected performance of PSVE under the site specific conditions. Will PSVE have sufficient mass removal rates to reduce the release, or flux, of contamination into the underlying groundwater so that the site can meet it overall remedial objectives? The summary technical information, case study experiences, and structured decision process provided in this 'user guide' should assist environmental decision-makers, regulators, and engineers in selecting and successfully implementing PSVE at appropriate sites.

  8. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Miller, John L. (Dublin, CA)

    1993-01-01T23:59:59.000Z

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  9. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, D.G.; Miller, J.L.

    1993-02-23T23:59:59.000Z

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  10. Overview of chemical vapor infiltration

    SciTech Connect (OSTI)

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-06-01T23:59:59.000Z

    Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

  11. Wick for metal vapor laser

    DOE Patents [OSTI]

    Duncan, David B. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

  12. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, B.K.

    1991-12-17T23:59:59.000Z

    Volatilized metal compounds are described which are capable of retarding vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  13. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, V.J.; Johnson, S.A.

    1999-08-03T23:59:59.000Z

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  14. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, Vincent J. (Downers Grove, IL); Johnson, Stanley A. (Countryside, IL)

    1999-01-01T23:59:59.000Z

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  15. Tropospheric water vapor and climate sensitivity

    SciTech Connect (OSTI)

    Schneider, E.K.; Kirtman, B.P.; Lindzen, R.S. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)] [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    1999-06-01T23:59:59.000Z

    Estimates are made of the effect of changes in tropospheric water vapor on the climate sensitivity to doubled carbon dioxide (CO{sub 2}) using a coarse resolution atmospheric general circulation model coupled to a slab mixed layer ocean. The sensitivity of the model to doubled CO{sub 2} is found as the difference between the equilibrium responses for control and doubled CO{sub 2} cases. Clouds are specified to isolate the water vapor feedback. Experiments in which the water vapor distribution is specified rather than internally calculated are used to find the contribution of water vapor in various layers and latitude belts to the sensitivity. The contribution of water vapor in layers of equal mass to the climate sensitivity varies by about a factor of 2 with height, with the largest contribution coming from layers between 450 and 750 mb, and the smallest from layers above 230 mb. The positive feedback on the global mean surface temperature response to doubled CO{sub 2} from water vapor above 750 mb is about 2.6 times as large as that from water vapor below 750 mb. The feedback on global mean surface temperature due to water vapor in the extratropical free troposphere is about 50% larger than the feedback due to the lower-latitude free troposphere water vapor. Several important sources of nonlinearity of the radiative heating rates were identified in the process of constructing the specified cloud and water vapor fields. These are (1) the interaction of clouds and solar radiation, which produces much more reflection of solar radiation for time mean clouds than for the instantaneous clouds; (2) the correlation of clouds and water vapor, which produces less downward longwave radiation at the ground for correlated clouds and water vapor than when these fields are independent; and (3) the interaction of water vapor with long wave radiation, which produces less downward longwave radiation at the ground of the average over instantaneous water vapor distributions than of the time mean water vapor distribution.

  16. LNG fire and vapor control system technologies

    SciTech Connect (OSTI)

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01T23:59:59.000Z

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  17. 6, 80698095, 2006 Water vapor in Asian

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of Sciences, Beijing, China 2 National Center for Atmospheric Research, Boulder, CO, USA Received: 23 May 2006 vapor from European Center for Medium-Range Weather20 Forecasts (ECMWF) analyses. 1 Introduction Upper Tropospheric Water Vapor (UTWV) is a key greenhouse gas which exerts a major influence on the energy balance

  18. An evaluation of two passive organic vapor monitors

    E-Print Network [OSTI]

    LaBonville, William Lawrence

    1979-01-01T23:59:59.000Z

    randomly selected and exposed for a I0 minute sample period. Unlike the passive mon!ters, the amount of toluene adsorbed in the charcoal tub. syste!!s was 1ndependent of time, but depend nt upon the vo!ume of air drawn through the charcoal tube... signi- ficant amount of variation occurred in toluene recovered from those monitors that were analyzed the day following exposure. Four passive monitors from each test group were exposed to 104 ppm for a four hour period. The monitors were set aside...

  19. Sandia National Laboratories: metal organic chemical vapor deposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnership, Research & Capabilities, Solid-State Lighting Solid state lighting (SSL), which uses light-emitting diodes (LEDs), has the potential to be 10 times more energy...

  20. Organic lateral heterojunction devices for vapor-phase chemical detection

    E-Print Network [OSTI]

    Ho, John C., 1980-

    2009-01-01T23:59:59.000Z

    As the U.S. is engaged in battle overseas, there is an urgent need for the development of sensors for early warning and protection of military forces against potential attacks. On the battlefields, improvised explosive ...

  1. SPATIALLY ORGANIZED PARYLENE NANOWIRES FABRICATED BY OBLIQUE ANGLE VAPOR DEPOSITION

    E-Print Network [OSTI]

    Demirel, Melik C.

    surfaces by functionalization through two methods: (i) electroless method of creating a porous Nickel 50-80 nm thin nickel film can be obtained by electroless deposition on the pary

  2. Stimulated emission of ultraviolet radiation by vapors of complex molecules

    SciTech Connect (OSTI)

    Barkova, L.A.; Gruzinskii, V.V.; Danilova, V.I.; Degtyarenko, K.M.; Kopylova, T.N.; Kuznetsov, A.L.

    1981-08-01T23:59:59.000Z

    Lasing was observed in vapors of new organic compounds: para-terphenyl, 2-phenylbenzoxazole, 2-(n-tolyl) benzoxazole, 2-(n-methoxyphenyl) benzoxazole, 2-(n-dimethylaminophenyl) benzoxazole, 2-biphenylbenzoxazole, 2-(..cap alpha..-naphthyl) benzoxazole, and also 1,4-di(n-phenylethynyl) benzole, and para-quaterphenyl pumped transversely by XeCl excimer laser radiation at lambda/sub p/ = 308 nm. The lasing bands without tuning covered the 330--370 nm range. The shortest-wavelength maximum (333.5 nm) was observed for 2-(n-methoxyphenyl) benzoxazole. An analysis was made of the lasing ability of the molecules.

  3. HANFORD CHEMICAL VAPORS WORKER CONCERNS & EXPOSURE EVALUATION

    SciTech Connect (OSTI)

    ANDERSON, T.J.

    2006-12-20T23:59:59.000Z

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors.

  4. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank U-204, Results from samples collected on August 8, 1995

    SciTech Connect (OSTI)

    Clauss, T.W.; Evans, J.C.; McVeety, B.D.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Ligotke, M.W.

    1995-11-01T23:59:59.000Z

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-204 (Tank U-204) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the results is listed. Detailed descriptions of the analytical results appear in the text.

  5. Stacked vapor fed amtec modules

    DOE Patents [OSTI]

    Sievers, Robert K. (North Huntingdon, PA)

    1989-01-01T23:59:59.000Z

    The present invention pertains to a stacked AMTEC module. The invention includes a tubular member which has an interior. The member is comprised of a ion conductor that substantially conducts ions relative to electrons, preferably a beta"-alumina solid electrolyte, positioned about the interior. A porous electrode for conducting electrons and allowing sodium ions to pass therethrough, and wherein electrons and sodium ions recombine to form sodium is positioned about the beta"-alumina solid electrolyte. The electrode is operated at a temperature and a pressure that allows the recombined sodium to vaporize. Additionally, an outer current collector grid for distributing electrons throughout the porous electrode is positioned about and contacts the porous electrode. Also included in the invention is transporting means for transporting liquid sodium to the beta"-alumina solid electrolyte of the tubular member. A transition piece is positioned about the interior of the member and contacts the transporting means. The transition piece divides the member into a first cell and a second cell such that each first and second cell has a beta"-alumina solid electrolyte, a first and second porous electrode and a grid. The transition piece conducts electrons from the interior of the tubular member. There is supply means for supplying sodium to the transporting means. Preferably the supply means is a shell which surrounds the tubular member and is operated at a temperature such that the vaporized sodium condenses thereon. Returning means for returning the condensed sodium from the shell to the transporting means provides a continuous supply of liquid sodium to the transporting means. Also, there are first conducting means for conducting electric current from the transition piece which extends through the shell, and second conducting means for conducting electric current to the grid of the first cell which extends through the shell.

  6. Quantitative Infrared Intensity Studies of Vapor-PhaseGlyoxal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal, and 2,3-Butanedione (Diacetyl) with Quantitative Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal,...

  7. Absolute integrated intensities of vapor-phase hydrogen peroxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Absolute integrated intensities of vapor-phase hydrogen peroxide (H202) in the mid-infrared at atmospheric pressure. Absolute integrated intensities of vapor-phase hydrogen...

  8. Hydrogen-Bond Acidic Polymers for Chemical Vapor Sensing. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acidic Polymers for Chemical Vapor Sensing. Hydrogen-Bond Acidic Polymers for Chemical Vapor Sensing. Abstract: A review with 171 references. Hydrogen-bond acidic polymers for...

  9. Sulfurization of a carbon surface for vapor phase mercury removal II: Sulfur forms and mercury uptake

    E-Print Network [OSTI]

    Borguet, Eric

    promote the formation of organic sulfur and the presence of H2S during the cooling process increased in the presence of H2S was very effective towards Hg uptake in nitrogen. Corre- lation of mercury uptake capacitySulfurization of a carbon surface for vapor phase mercury removal ­ II: Sulfur forms and mercury

  10. Recovering hydrocarbons from hydrocarbon-containing vapors

    DOE Patents [OSTI]

    Mirza, Zia I. (La Verne, CA); Knell, Everett W. (Los Alamitos, CA); Winter, Bruce L. (Danville, CA)

    1980-09-30T23:59:59.000Z

    Values are recovered from a hydrocarbon-containing vapor by contacting the vapor with quench liquid consisting essentially of hydrocarbons to form a condensate and a vapor residue, the condensate and quench fluid forming a combined liquid stream. The combined liquid stream is mixed with a viscosity-lowering liquid to form a mixed liquid having a viscosity lower than the viscosity of the combined liquid stream to permit easy handling of the combined liquid stream. The quench liquid is a cooled portion of the mixed liquid. Viscosity-lowering liquid is separated from a portion of the mixed liquid and cycled to form additional mixed liquid.

  11. Method and apparatus for detection of chemical vapors

    DOE Patents [OSTI]

    Mahurin, Shannon Mark (Knoxville, TN); Dai, Sheng (Knoxville, TN); Caja, Josip (Knoxville, TN)

    2007-05-15T23:59:59.000Z

    The present invention is a gas detector and method for using the gas detector for detecting and identifying volatile organic and/or volatile inorganic substances present in unknown vapors in an environment. The gas detector comprises a sensing means and a detecting means for detecting electrical capacitance variance of the sensing means and for further identifying the volatile organic and volatile inorganic substances. The sensing means comprises at least one sensing unit and a sensing material allocated therein the sensing unit. The sensing material is an ionic liquid which is exposed to the environment and is capable of dissolving a quantity of said volatile substance upon exposure thereto. The sensing means constitutes an electrochemical capacitor and the detecting means is in electrical communication with the sensing means.

  12. Chemical vapor infiltration using microwave energy

    DOE Patents [OSTI]

    Devlin, David J. (Los Alamos, NM); Currier, Robert P. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Barbero, Robert S. (Santa Cruz, NM)

    1993-01-01T23:59:59.000Z

    A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

  13. Chemical vapor deposition of functionalized isobenzofuran polymers

    E-Print Network [OSTI]

    Olsson, Ylva Kristina

    2007-01-01T23:59:59.000Z

    This thesis develops a platform for deposition of polymer thin films that can be further tailored by chemical surface modification. First, we explore chemical vapor deposition of functionalized isobenzofuran films using ...

  14. An advanced vapor-compression desalination system 

    E-Print Network [OSTI]

    Lara Ruiz, Jorge Horacio Juan

    2006-04-12T23:59:59.000Z

    Currently, the two dominant desalination methods are reverse osmosis (RO) and multi-stage flash (MSF). RO requires large capital investment and maintenance, whereas MSF is too energy intensive. An innovative vapor-compression desalination system...

  15. Modeling of LNG Pool Spreading and Vaporization

    E-Print Network [OSTI]

    Basha, Omar 1988-

    2012-11-20T23:59:59.000Z

    In this work, a source term model for estimating the rate of spreading and vaporization of LNG on land and sea is introduced. The model takes into account the composition changes of the boiling mixture, the varying thermodynamic properties due...

  16. Chemical vapor deposition of antimicrobial polymer coatings

    E-Print Network [OSTI]

    Martin, Tyler Philip, 1977-

    2007-01-01T23:59:59.000Z

    There is large and growing interest in making a wide variety of materials and surfaces antimicrobial. Initiated chemical vapor deposition (iCVD), a solventless low-temperature process, is used to form thin films of polymers ...

  17. Composites for removing metals and volatile organic compounds and method thereof

    DOE Patents [OSTI]

    Coronado, Paul R. (Livermore, CA); Coleman, Sabre J. (Oakland, CA); Reynolds, John G. (San Ramon, CA)

    2006-12-12T23:59:59.000Z

    Functionalized hydrophobic aerogel/solid support structure composites have been developed to remove metals and organic compounds from aqueous and vapor media. The targeted metals and organics are removed by passing the aqueous or vapor phase through the composite which can be in molded, granular, or powder form. The composites adsorb the metals and the organics leaving a purified aqueous or vapor stream. The species-specific adsorption occurs through specific functionalization of the aerogels tailored towards specific metals and/or organics. After adsorption, the composites can be disposed of or the targeted metals and/or organics can be reclaimed or removed and the composites recycled.

  18. Solid-Vapor Sorption Refrigeration Systems 

    E-Print Network [OSTI]

    Graebel, W.; Rockenfeller, U.; Kirol, L.

    1991-01-01T23:59:59.000Z

    SOLID-VAPOR SORPTION REFRIGERATION SYSTEMS DR. WILLIAM GRAEBEL DR. UWE ROCKENFELLER MR. LANCE KIROL Engineer President Chief Engineer Rocky Research Rocky Research Rocky Research Boulder city, NV Boulder city, NV Boulder City, NV Abstract.... Complex compounds have a number of advantages as working media, including: 43 SOLID-VAPOR SORPTION REFRIGERATION SYSTEMS DR. WILLIAM GRAEBEL Engineer Rocky Research Boulder city, NV DR. UWE ROCKENFELLER President Rocky Research Boulder city, NV MR...

  19. Detection of volatile organic compounds using surface enhanced Raman scattering

    SciTech Connect (OSTI)

    Chang, A S; Maiti, A; Ileri, N; Bora, M; Larson, C C; Britten, J A; Bond, T C

    2012-03-22T23:59:59.000Z

    The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

  20. Development of New Biphasic Metal Organic Working Fluids for...

    Open Energy Info (EERE)

    principally from sensible heat gained while passing through the heat exchanger in the liquid state and from vaporization of the organic working fluid near the exit of the heat...

  1. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III

    SciTech Connect (OSTI)

    LOCKREM, L.L.

    1999-08-13T23:59:59.000Z

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999.

  2. Performance assessment of the In-Well Vapor-Stripping System

    SciTech Connect (OSTI)

    Gilmore, T.J.; White, M.D.; Spane, F.A. Jr. [and others] [and others

    1996-10-01T23:59:59.000Z

    In-well vapor stripping is a remediation technology designed to preferentially extract volatile organic compounds dissolved in groundwater by converting them to a vapor phase and then treating the vapor. This vapor-stripping system is distinctly different from the more traditional in situ air-sparging concept. In situ sparging takes place in the aquifer formation; in-well vapor stripping takes place within the well casing. The system was field demonstrated at Edwards Air Force Base, California; the first-time demonstration of this technology in the United States. Installation and testing of the system were completed in late 1995, and the demonstration was operated nearly continuously for 6 months (191 days) between January 16 and July 25, 1996. Postdemonstration hydrochemical sampling continued until September 1996. The demonstration was conducted by collaborating researchers from Pacific Northwest National Laboratory (a) and Stanford University as part of an interim cleanup action at the base. Edwards Air Force Base and its environmental subcontractor, Earth Technology Corporation, as well as EG&G Environmental, holders of the commercial rights to the technology, were also significant contributors to the demonstration.

  3. Tank vapor characterization project: Tank 241-BX-104 fifth temporal study: Headspace gas and vapor characterization results from samples collected on June 10, 1997

    SciTech Connect (OSTI)

    Hayes, J.C.; Pool, K.H.; Evans, J.C.; Olsen, K.B. [and others

    1997-07-01T23:59:59.000Z

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-104 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.270% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.675% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  4. Tank vapor characterization project: Tank 241-S-102 temporal study headspace gas and vapor characterization results from samples collected on September 19, 1996

    SciTech Connect (OSTI)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Sklarew, D.S. [and others

    1997-08-01T23:59:59.000Z

    This report presents the results from analysis of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. Ammonia was determined to be above the immediate notification limit of 150 ppm as specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 2.948% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <3.659% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Tables S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  5. APPLICATION OF STIR BAR SORPTIVE EXTRACTION TO ANALYSIS OF VOLATILE AND SEMIVOLATILE ORGANIC CHEMICALS OF POTENTIAL CONCERN IN SOLIDS AND AQUEOUS SAMPLES FROM THE HANFORD SITE

    SciTech Connect (OSTI)

    FRYE JM; KUNKEL JM

    2009-03-05T23:59:59.000Z

    Stir bar sorptive extraction was applied to aqueous and solid samples for the extraction and analysis of organic compounds from the Hanford chemicals of potential concern list, as identified in the vapor data quality objectives. The 222-S Laboratory analyzed these compounds from vapor samples on thermal desorption tubes as part of the Hanford Site industrial hygiene vapor sampling effort.

  6. Method and Apparatus for Concentrating Vapors for Analysis

    DOE Patents [OSTI]

    Grate, Jay W. (West Richland, WA); Baldwin, David L. (Kennewick, WA); Anheier, Jr., Norman C. (Richland, WA)

    2008-10-07T23:59:59.000Z

    An apparatus and method are disclosed for pre-concentrating gaseous vapors for analysis. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable. Vapors sorbed and concentrated within the bed of the apparatus can be thermally desorbed achieving at least partial separation of vapor mixtures. The apparatus is suitable, e.g., for preconcentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than for direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications.

  7. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2007-10-23T23:59:59.000Z

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  8. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2006-07-26T23:59:59.000Z

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  9. Adsorption of water vapor on reservoir rocks

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  10. Thermal electric vapor trap arrangement and method

    DOE Patents [OSTI]

    Alger, T.

    1988-03-15T23:59:59.000Z

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself. 4 figs.

  11. Thermal electric vapor trap arrangement and method

    DOE Patents [OSTI]

    Alger, Terry (Tracy, CA)

    1988-01-01T23:59:59.000Z

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself.

  12. Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions 

    E-Print Network [OSTI]

    Kirol, L.

    1987-01-01T23:59:59.000Z

    Chemical heat pumps utilizing liquid-vapor reactions can be configured in forms analogous to electric drive vapor-compression heat pumps and heat activated absorption heat pumps. Basic thermodynamic considerations eliminate some heat pumps and place...

  13. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01T23:59:59.000Z

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  14. OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL RESERVOIRS CONSIDERING ADSORPTION governing the behavior of vapor- dominated geothermal reservoirs. These mechanisms affect both was to determine the most effective injection strategy once these two effects are considered. Geothermal reservoir

  15. Advancing Explosives Detection Capabilities: Vapor Detection

    ScienceCinema (OSTI)

    Atkinson, David

    2014-07-24T23:59:59.000Z

    A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

  16. Vaporization of synthetic fuels. Final report. [Thesis

    SciTech Connect (OSTI)

    Sirignano, W.A.; Yao, S.C.; Tong, A.Y.; Talley, D.

    1983-01-01T23:59:59.000Z

    The problem of transient droplet vaporization in a hot convective environment is examined. The main objective of the present study is to develop an algorithm for the droplet vaporization which is simple enough to be feasibly incorporated into a complete spray combustion analysis and yet will also account for the important physics such as liquid-phase internal circulation, unsteady droplet heating and axisymmetric gas-phase convection. A simplified liquid-phase model has been obtained based on the assumption of the existence of a Hill's spherical vortex inside the droplet together with some approximations made in the governing diffusion equation. The use of the simplified model in a spray situation has also been examined. It has been found that droplet heating and vaporization are essentially unsteady and droplet temperature is nonuniform for a significant portion of its lifetime. It has also been found that the droplet vaporization characteristic can be quite sensitive to the particular liquid-phase and gas-phase models. The results of the various models are compared with the existing experimental data. Due to large scattering in the experimental measurements, particularly the droplet diameter, no definite conclusion can be drawn based on the experimental data. Finally, certain research problems which are related to the present study are suggested for future studies.

  17. Chemical vapor deposition of mullite coatings

    DOE Patents [OSTI]

    Sarin, Vinod (Lexington, MA); Mulpuri, Rao (Boston, MA)

    1998-01-01T23:59:59.000Z

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  18. Atomic-vapor-laser isotope separation

    SciTech Connect (OSTI)

    Davis, J.I.

    1982-10-01T23:59:59.000Z

    This paper gives a brief history of the scientific considerations leading to the development of laser isotope separation (LIS) processes. The close relationship of LIS to the broader field of laser-induced chemical processes is evaluated in terms of physical criteria to achieve an efficient production process. Atomic-vapor LIS processes under development at Livermore are reviwed. 8 figures.

  19. Program performs vapor-liquid equilibrium calculations

    SciTech Connect (OSTI)

    Rice, V.L.

    1982-06-28T23:59:59.000Z

    A program designed for the Hewlett-Packard HP-41CV or 41C calculators solves basic vapor-liquid equilibrium problems, including figuring the dewpoint, bubblepoint, and equilibrium flash. The algorithm uses W.C. Edmister's method for predicting ideal-solution K values.

  20. Effects of capillarity and vapor adsorption in the depletion of vapor-dominated geothermal reservoirs

    SciTech Connect (OSTI)

    Pruess, Karsten; O'Sullivan, Michael

    1992-01-01T23:59:59.000Z

    Vapor-dominated geothermal reservoirs in natural (undisturbed) conditions contain water as both vapor and liquid phases. The most compelling evidence for the presence of distributed liquid water is the observation that vapor pressures in these systems are close to saturated vapor pressure for measured reservoir temperatures (White et al., 1971; Truesdell and White, 1973). Analysis of natural heat flow conditions provides additional, indirect evidence for the ubiquitous presence of liquid. From an analysis of the heat pipe process (vapor-liquid counterflow) Preuss (1985) inferred that effective vertical permeability to liquid phase in vapor-dominated reservoirs is approximately 10{sup 17} m{sup 2}, for a heat flux of 1 W/m{sup 2}. This value appears to be at the high end of matrix permeabilities of unfractured rocks at The Geysers, suggesting that at least the smaller fractures contribute to liquid permeability. For liquid to be mobile in fractures, the rock matrix must be essentially completely liquid-saturated, because otherwise liquid phase would be sucked from the fractures into the matrix by capillary force. Large water saturation in the matrix, well above the irreducible saturation of perhaps 30%, has been shown to be compatible with production of superheated steam (Pruess and Narasimhan, 1982). In response to fluid production the liquid phase will boil, with heat of vaporization supplied by the reservoir rocks. As reservoir temperatures decline reservoir pressures will decline also. For depletion of ''bulk'' liquid, the pressure would decline along the saturated vapor pressure curve, while for liquid held by capillary and adsorptive forces inside porous media, an additional decline will arise from ''vapor pressure lowering''. Capillary pressure and vapor adsorption effects, and associated vapor pressure lowering phenomena, have received considerable attention in the geothermal literature, and also in studies related to geologic disposal of heat generating nuclear wastes, and in the drying of porous materials. Geothermally oriented studies were presented by Chicoine et al. (1977), Hsieh and Ramey (1978, 1981), Herkelrath et al. (1983), and Nghiem and Ramey (1991). Nuclear waste-related work includes papers by Herkelrath and O'Neal (1985), Pollock (1986), Eaton and Bixler (1987), Pruess et al. (1990), Nitao (1990), and Doughty and E'ruess (1991). Applications to industrial drying of porous materials have been discussed by Hamiathy (1969) arid Whitaker (1977). This paper is primarily concerned with evaluating the impact of vapor pressure lowering (VPL) effects on the depletion behavior of vapor-dominated reservoirs. We have examined experimental data on vapor adsorption and capillary pressures in an effort to identify constitutive relationships that would be applicable to the tight matrix rocks of vapor-dominated systems. Numerical simulations have been performed to evaluate the impact of these effects on the depletion of vapor-dominated reservoirs.

  1. Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines

    E-Print Network [OSTI]

    Cho, Yeunwoo, 1973-

    2004-01-01T23:59:59.000Z

    A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption that the multi-grade oil can be modeled as a compound of several ...

  2. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, Earl R. (Livermore, CA); Alger, Terry W. (Tracy, CA)

    1995-01-01T23:59:59.000Z

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.

  3. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, E.R.; Alger, T.W.

    1995-03-07T23:59:59.000Z

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  4. Industrial Heat Pumps Using Solid/Vapor Working Fluids

    E-Print Network [OSTI]

    Rockenfeller, U.

    with vapor re-compression recovery systems. The state-of-the-art heat pump equipment employing liquid/vapor working fluids fulfills the requirements only in some applications. The employment of solid/vapor complex compounds leads to 'nore cost effective... allows for firing temperatures much higher than possible with liquid/vapor systems. The high energy density per unit mass and the independence of the vapor pressure from the refrigerant concentration (p = f (T), p "# f( x)) over a wide range leads...

  5. Precision micro drilling with copper vapor lasers

    SciTech Connect (OSTI)

    Chang, J.J.; Martinez, M.W.; Warner, B.E.; Dragon, E.P.; Huete, G.; Solarski, M.E.

    1994-09-02T23:59:59.000Z

    The authors have developed a copper vapor laser based micro machining system using advanced beam quality control and precision wavefront tilting technologies. Micro drilling has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratio up to 1:40 have been consistently drilled on a variety of metals with good quality. For precision trepanned holes, the hole-to-hole size variation is typically within 1% of its diameter. Hole entrance and exit are both well defined with dimension error less than a few microns. Materialography of sectioned holes shows little (sub-micron scale) recast layer and heat affected zone with surface roughness within 1--2 microns.

  6. Atomic vapor spectroscopy in integrated photonic structures

    E-Print Network [OSTI]

    Ritter, Ralf; Pernice, Wolfram; Kübler, Harald; Pfau, Tilman; Löw, Robert

    2015-01-01T23:59:59.000Z

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  7. Apparatus and method for photochemical vapor deposition

    DOE Patents [OSTI]

    Jackson, Scott C. (Wilmington, DE); Rocheleau, Richard E. (Wilmington, DE)

    1987-03-31T23:59:59.000Z

    A photochemical vapor deposition apparatus includes a reactor housing having a window in one wall above a reaction chamber in the housing. A transparent curtain divides the reaction chamber into a reaction zone and a flush zone. At least one substrate is mounted in the reaction zone in light communication with the window so that ultraviolet radiation may penetrate through the window into the reaction zone. The window is kept clear by a gas flowing through the flush zone.

  8. Solid-Vapor Sorption Refrigeration Systems

    E-Print Network [OSTI]

    Graebel, W.; Rockenfeller, U.; Kirol, L.

    SOLID-VAPOR SORPTION REFRIGERATION SYSTEMS DR. WILLIAM GRAEBEL DR. UWE ROCKENFELLER MR. LANCE KIROL Engineer President Chief Engineer Rocky Research Rocky Research Rocky Research Boulder city, NV Boulder city, NV Boulder City, NV Abstract... Complex compound sorption reactions are ideally suited for use in refrigeration cycles as an economically viable alternative to CFC refrigerants. Complex compound refrigeration provides a number of energy-saving advantages over present refrigeration...

  9. DuPont Chemical Vapor Technical Report

    SciTech Connect (OSTI)

    MOORE, T.L.

    2003-10-03T23:59:59.000Z

    DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH&Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations.

  10. Vapor-phase heat-transport system

    SciTech Connect (OSTI)

    Hedstrom, J.C.

    1983-01-01T23:59:59.000Z

    A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

  11. High volume fuel vapor release valve

    SciTech Connect (OSTI)

    Gimby, D.R.

    1991-09-03T23:59:59.000Z

    This patent describes a fuel vapor release valve for use in a vehicle fuel system. It comprises a valve housing 10 placed in a specific longitudinal orientation, the valve housing 10 defining an interior cavity 22 having an inlet 20 for admitting fuel vapor and an outlet 14 for discharging such fuel vapor; a valve member 24 positioned in the cavity 22 for movement between an outlet 14 opening position and an outlet 14 closing position, the valve member 24 including a cap member 34 having a seat surface 36 for mating with the outlet 14 and an orifice 42 extending through the cap member 34 providing a passageway from the outlet 14 to the cavity 22, the orifice 42 extending through the cap member 34 providing a passageway from the outlet 14 to the cavity 22, the orifice 42 having a lesser radius than the outlet 14; the valve member 24 further including a plug member 30 engaged with the cap member 34 for movement between an orifice 42 opening position and an orifice 42 closing position; and, a valve housing tilt responsive means for moving the valve member 24 to an outlet 14 and orifice 42 closing position in response to tilting of the valve 10 about its longitudinal axis whereby, upon the return of the valve 10 to its specified longitudinal orientation, the plug member 30 first moves to an orifice 42 opening position and the cap member 34 subsequently moves to an outlet 14 opening position.

  12. Tank 241-B-103 headspace gas and vapor characterization: Results for homogeneity samples collected on October 16, 1996. Tank vapor characterization project

    SciTech Connect (OSTI)

    Olsen, K.B.; Pool, K.H.; Evans, J.C. [and others

    1997-06-01T23:59:59.000Z

    This report presents the results of analyses of samples taken from the headspace of waste storage tank 241-B-103 (Tank B-103) at the Hanford Site in Washington State. Samples were collected to determine the homogeneity of selected inorganic and organic headspace constituents. Two risers (Riser 2 and Riser 7) were sampled at three different elevations (Bottom, Middle, and Top) within the tank. Tank headspace samples were collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL.

  13. FIRST DETECTION OF WATER VAPOR IN A PRE-STELLAR CORE

    SciTech Connect (OSTI)

    Caselli, Paola; Douglas, Thomas [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Keto, Eric [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bergin, Edwin A. [Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Tafalla, Mario [Observatorio Astronomico Nacional (IGN), Calle Alfonso XII, 3, E-28014 Madrid (Spain); Aikawa, Yuri [Department of Earth and Planetary Sciences, Kobe University, Nada, 657-8501 Kobe (Japan); Pagani, Laurent [LERMA and UMR 8112 du CNRS, Observatoire de Paris, 61 Av. de l'Observatoire, F-75014 Paris (France); Yildiz, Umut A.; Kristensen, Lars E.; Van Dishoeck, Ewine F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Van der Tak, Floris F. S. [SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV, Groningen (Netherlands); Walmsley, C. Malcolm; Codella, Claudio [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Nisini, Brunella, E-mail: p.caselli@leeds.ac.uk [INAF-Osservatorio Astronomico di Roma, I-00040 Monte Porzio Catone (Italy)

    2012-11-10T23:59:59.000Z

    Water is a crucial molecule in molecular astrophysics as it controls much of the gas/grain chemistry, including the formation and evolution of more complex organic molecules in ices. Pre-stellar cores provide the original reservoir of material from which future planetary systems are built, but few observational constraints exist on the formation of water and its partitioning between gas and ice in the densest cores. Thanks to the high sensitivity of the Herschel Space Observatory, we report on the first detection of water vapor at high spectral resolution toward a dense cloud on the verge of star formation, the pre-stellar core L1544. The line shows an inverse P-Cygni profile, characteristic of gravitational contraction. To reproduce the observations, water vapor has to be present in the cold and dense central few thousand AU of L1544, where species heavier than helium are expected to freeze out onto dust grains, and the ortho:para H{sub 2} ratio has to be around 1:1 or larger. The observed amount of water vapor within the core (about 1.5 Multiplication-Sign 10{sup -6} M{sub Sun }) can be maintained by far-UV photons locally produced by the impact of galactic cosmic rays with H{sub 2} molecules. Such FUV photons irradiate the icy mantles, liberating water vapor in the core center. Our Herschel data, combined with radiative transfer and chemical/dynamical models, shed light on the interplay between gas and solids in dense interstellar clouds and provide the first measurement of the water vapor abundance profile across the parent cloud of a future solar-type star and its potential planetary system.

  14. Method and apparatus for concentrating vapors for analysis

    DOE Patents [OSTI]

    Grate, Jay W. (West Richland, WA); Baldwin, David L. (Kennewick, WA); Anheier, Jr., Norman C. (Richland, WA)

    2012-06-05T23:59:59.000Z

    A pre-concentration device and a method are disclosed for concentrating gaseous vapors for analysis. Vapors sorbed and concentrated within the bed of the pre-concentration device are thermally desorbed, achieving at least partial separation of the vapor mixtures. The pre-concentration device is suitable, e.g., for pre-concentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable.

  15. G-Band Vapor Radiometer Profiler (GVRP) Handbook

    SciTech Connect (OSTI)

    Caddeau, MP

    2010-06-23T23:59:59.000Z

    The G-Band Vapor Radiometer Profiler (GVRP) provides time-series measurements of brightness temperatures from 15 channels between 170 and 183.310 GHz. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. Channels between 170.0 and 176.0 GHz are particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from the GVRP instrument are therefore especially useful during low-humidity conditions (PWV < 5 mm). In addition to integrated water vapor and liquid water, the GVRP can provide low-resolution vertical profiles of water vapor in very dry conditions.

  16. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

    1981-01-01T23:59:59.000Z

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  17. Heat Recovery in Distillation by Mechanical Vapor Recompression

    E-Print Network [OSTI]

    Becker, F. E.; Zakak, A. I.

    tower energy requirements can be achieved by mechanical vapor recompression. Three design approaches for heating a distillation tower reboiler by mechanical vapor recompression are presented. The advantages of using a screw compressor are discussed... for lowering energy consumption in the distillation process through various heat recovery techniques. (3-8) One such technique utilizes mechanical vapor recompression. (9-12) The principle of this ap proach involves the use of a compressor to recycle...

  18. Review of enhanced vapor diffusion in porous media

    SciTech Connect (OSTI)

    Webb, S.W.; Ho, C.K.

    1998-08-01T23:59:59.000Z

    Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper.

  19. Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions

    E-Print Network [OSTI]

    Kirol, L.

    ADVANCED CHEMICAL HEAT PUMPS USING LIQUID-VAPOR REACTIONS LANCE KIROL Senior Program Specialist Idaho National Engineering Laboratory Idaho Falls, Idaho . ABSTRACT Chemical heat pumps utilizing liquid-vapor reactions can be configured... in forms analogous to electric drive vapor-compression heat pumps and heat activated absorption heat pumps. Basic thermodynamic considerations eliminate some heat pumps and place restrictive working fluid requirements on others, but two thermodynam...

  20. Chemical vapor deposition of epitaxial silicon

    DOE Patents [OSTI]

    Berkman, Samuel (Florham Park, NJ)

    1984-01-01T23:59:59.000Z

    A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

  1. Copper vapor laser acoustic thermometry system

    DOE Patents [OSTI]

    Galkowski, Joseph J. (Livermore, CA)

    1987-01-01T23:59:59.000Z

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  2. Vapor Retarder Classification - Building America Top Innovation |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment of Energy Photo of a vapor retarder

  3. Category:Mercury Vapor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury Vapor page? For detailed

  4. acetone vapor sensing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XI, Universit de 7 ATMOSPHERIC WATER VAPOR PROFILES DERIVED FROM REMOTE-SENSING RADIOMETER MEASUREMENTS CiteSeer Summary: The feasibility and preliminary testing of a low...

  5. Rotary Vapor Compression Cycle Technology: A Pathway to Ultra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air...

  6. alkali vapor species: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of hexagonal patterns in a nonlinear optical system: Alkali metal vapor in a single-mirror arrangement Physics Websites Summary: Secondary bifurcations of hexagonal patterns in...

  7. alkali atom vapor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low power requirements, these "chip-scale" atomic Popovic, Zoya 3 Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas M. V. Romalis Physics...

  8. assisted chemical vapor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nanodiamonds (NDs) with 70-80 nm size via bead assisted sonic disintegration (BASD) of a polycrystalline chemical vapor deposition (CVD) film. The NDs display high crystalline...

  9. A new vapor pressure equation originating at the critical point

    E-Print Network [OSTI]

    Nuckols, James William

    1976-01-01T23:59:59.000Z

    - tence curve has been developed from critical scaling theory. The agreement between published vapor pressures and vapor pressures predicted by this equation is very good, especially in the critical region where many other vapor pressure equations fail... vapor pressure data f' or Ar, N2, 02H6, and H20, w1th the parameters ai to a being determined by an unweighted least squares curve 5 fit. The method of least squares has been described adequately elsewhere, e. g. Wylie (1966), and the theory w111...

  10. atmospheric water vapor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    greenhouse gas, contributing to approximately two-thirds of the Earth's greenhouse effect Mitchell, 1989; IntergovernmentalA meta-analysis of water vapor...

  11. Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons

    E-Print Network [OSTI]

    Chickos, James S.

    of Polyaromatic Hydrocarbons William Hanshaw, Marjorie Nutt, and James S. Chickos* Department of Chemistry and liquid vapor pressures from T ) 298.15 K to T ) 510 K of a series of polyaromatic hydrocarbons have been protocols are also made, and agreement generally is quite good. Introduction Polyaromatic hydrocarbons (PAHs

  12. M. Bahrami ENSC 461 (S 11) Vapor Power Cycles 1 Vapor Power Cycles

    E-Print Network [OSTI]

    Bahrami, Majid

    is not a suitable model for steam power cycle since: The turbine has to handle steam with low quality which will cause erosion and wear in turbine blades. It is impractical to design a compressor that handles two vapor expands isentropically in turbine and produces work. 4-1: Const P heat rejection High quality

  13. The control of confined vapor phase explosions

    SciTech Connect (OSTI)

    Scilly, N.F. [Laporte plc, Widnes (United Kingdom); Owen, O.J.R. [Fine Organics, Ltd., Middlesborough (United Kingdom); Wilberforce, J.K. [Solvay SA, Brussels (Belgium)

    1995-12-31T23:59:59.000Z

    The probability of, for example, a fire or explosion occurring during a process operation is related both to the fire-related properties of the materials used, such as flash point, flammable limits etc., i.e. the material or intrinsic factors, and the nature of the operation and the equipment used, i.e. the extrinsic factors. The risk, or frequency of occurrence, of other hazards such as reaction runaway, major toxic release etc. can be determined in a similar manner. For a vapor phase explosion (and a fire) the probability of the event is the product of the probability of generating a flammable atmosphere and the probability of ignition. Firstly, materials may be coded using properties that are relevant to the hazard in question. Secondly, different operations have different degrees of risk and these risks are assigned as Low, Medium, High etc. according to criteria outlined here. Combination of these two factors will then be a measure of the overall risk of the operation with the specified material and may be used to define operating standards. Currently, the hazard/risk of a vapor phase explosions is examined by this method but in due course dust explosions, fires, condensed phase explosions, reaction runaways, physical explosions, major toxic releases and incompatibility will be included.

  14. Vapor and gas sampling of Single-Shell Tank 241-A-101 using the Vapor Sampling System

    SciTech Connect (OSTI)

    Caprio, G.S.

    1995-11-01T23:59:59.000Z

    This document presents sampling data resulting from the June 8, 1995, sampling of SST 241-A-101 using the Vapor Sampling System.

  15. Design, demonstration and evaluation of a thermal enhanced vapor extraction system

    SciTech Connect (OSTI)

    Phelan, J.; Reavis, B.; Swanson, J. [and others

    1997-08-01T23:59:59.000Z

    The Thermal Enhanced Vapor Extraction System (TEVES), which combines powerline frequency heating (PLF) and radio frequency (RF) heating with vacuum soil vapor extraction, was used to effectively remove volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) from a pit in the chemical waste landfill (CWL) at Sandia National Laboratories (SNL) within a two month heating period. Volume average temperatures of 83{degrees}C and 112{degrees}C were reached for the PLF and RF heating periods, respectively, within the 15 ft x 45 ft x 18.5 ft deep treated volume. This resulted in the removal of 243 lb of measured toxic organic compounds (VOCs and SVOCs), 55 gallons of oil, and 11,000 gallons of water from the site. Reductions of up to 99% in total chromatographic organics (TCO) was achieved in the heated zone. Energy balance calculations for the PLF heating period showed that 36.4% of the heat added went to heating the soil, 38.5% went to evaporating water and organics, 4.2% went to sensible heat in the water, 7.1% went to heating the extracted air, and 6.6% was lost. For the RF heating period went to heating the soil, 23.5% went to evaporating water and organics, 2.4% went to sensible heat in the water, 7.5% went to heating extracted air, and 9.7% went to losses. Energy balance closure was 92.8% for the PLF heating and 98% for the RF heating. The energy input requirement per unit soil volume heated per unit temperature increase was 1.63 kWH/yd{sup 3}-{degrees}C for PLF heating and 0.73 kWH/yd{sup 3}{degrees}C for RF heating.

  16. 1-Dimensional Numerical Model of Thermal Conduction and Vapor Diffusion

    E-Print Network [OSTI]

    Schörghofer, Norbert

    developed by Samar Khatiwala, 2001 extended to variable thermal properties and irregular grid by Norbert Sch for c. Upper boundary condition: a) Radiation Q + k T z z=0 = T4 z=0 Q is the incoming solar flux of Water Vapor with Phase Transitions developed by Norbert Sch¨orghofer, 2003­2004 3 phases: vapor, free

  17. Fenton Oxidation of TCE Vapors in a Foam Reactor

    E-Print Network [OSTI]

    Fenton Oxidation of TCE Vapors in a Foam Reactor Eunsung Kan,a,b Seongyup Kim,a and Marc A.interscience.wiley.com). DOI 10.1002/ep.10205 Oxidation of dilute TCE vapors in a foam reactor using Fenton's reagent composition of Fenton's reagents, the foam reactor configuration provided a higher rate absorption and greater

  18. ADHESION FORCES BETWEEN MICA SURFACES IN UNDERSATURATED VAPORS OF HYDROCARBONS

    E-Print Network [OSTI]

    Matsuoka, Hiroshige

    ADHESION FORCES BETWEEN MICA SURFACES IN UNDERSATURATED VAPORS OF HYDROCARBONS H. MATSUOKA1 , T] or meniscus force [3], which have been neglected in the conventional and relatively large mechani- cal systems forces between mica surfaces in under- saturated vapors of several kind of hydrocarbon liquids are mea

  19. The Vapor Plume at Material Disposal Are C in Relation to Pajarito Corridor Facilities

    SciTech Connect (OSTI)

    Masse, William B. [Los Alamos National Laboratory

    2012-04-02T23:59:59.000Z

    A vapor plume made up of volatile organic compounds is present beneath Material Disposal Area C (MDA C) at Los Alamos National Laboratory (LANL). The location and concentrations within the vapor plume are discussed in relation to existing and planned facilities and construction activities along Pajarito Road (the 'Pajarito Corridor') and in terms of worker health and safety. This document provides information that indicates that the vapor plume does not pose a threat to the health of LANL workers nor will it pose a threat to workers during construction of proposed facilities along Pajarito Road. The Los Alamos National Laboratory (LANL or the Laboratory) monitors emissions, effluents, and environmental media to meet environmental compliance requirements, determine actions to protect the environment, and monitor the long-term health of the local environment. LANL also studies and characterizes 'legacy' waste from past Laboratory operations to make informed decisions regarding eventual corrective actions and the disposition of that waste. Starting in 1969, these activities have been annually reported in the LANL Environmental Report (formerly Environmental Surveillance Report), and are detailed in publicly accessible technical reports meeting environmental compliance requirements. Included among the legacy sites being investigated are several formerly used material disposal areas (MDAs) set aside by the Laboratory for the general on-site disposal of waste from mission-related activities. One such area is MDA C located in Technical Area 50 (TA-50), which was used for waste disposal between 1948 and 1974. The location of TA-50 is depicted in Figure 1. The present paper uses a series of maps and cross sections to address the public concerns raised about the vapor plume at MDA C. As illustrated here, extensive sampling and data interpretation indicate that the vapor plume at MDA C does not pose a threat to the health of LANL workers nor will it pose a threat to workers during construction of the proposed facilities and utility trenches. The public cannot be directly exposed to the vapor plume beneath MDA C because Pajarito Road is closed to the public.

  20. Analysis of electron-beam vaporization of refractory metals

    SciTech Connect (OSTI)

    Kheshgi, H.S.; Gresho, P.M.

    1986-09-01T23:59:59.000Z

    An electron beam is focussed onto a small area on the surface of a refractory metal to locally raise the temperature and vaporize metal. At high vaporization rates the hot area is on the surface of a churning liquid-metal pool contained in a solid-metal skull which sits in a cooled crucible. Inner workings of the process are revealed by analysis of momentum, energy, and mass transfer. At the surface high temperature causes high vaporization rate and high vapor thrust, depressing the vapor/liquid surface. In the liquid pool surface-tension gradients and thermal buoyancy drive a (typically) chaotic flow. In the solid skull thermal conductivity and contact resistance regulate the rate of heat transfer from pool to crucible. Analyses of these phenomena together reveal process performance sensitivities - e.g., to depression size or to magnitude of surface-tension gradients. 12 refs., 3 figs.

  1. Temperature dependent vapor pressures of chlorinated catechols, syringols, and syringaldehydes

    SciTech Connect (OSTI)

    Lei, Y.D.; Shiu, W.Y.; Boocock, D.G.B. [Univ. of Toronto, Ontario (Canada). Dept. of Chemical Engineering and Applied Chemistry] [Univ. of Toronto, Ontario (Canada). Dept. of Chemical Engineering and Applied Chemistry; Wania, F. [WECC Wania Environmental Chemists Corp., Toronto, Ontario (Canada)] [WECC Wania Environmental Chemists Corp., Toronto, Ontario (Canada)

    1999-03-01T23:59:59.000Z

    The vapor pressures of nine chlorinated catechols, syringols, and syringaldehydes were determined as a function of temperature with a gas chromatographic retention time technique. The vapor pressures at 298.15 K were in the range of 0.02--1 Pa, and the enthalpies of vaporization, between 68 and 82 kJ/mol. The validity of the technique was established by a calibration involving four chlorinated phenols with well-known vapor pressures. Using these data and previously reported solubility data, Henry`s law constants for these substances and some chlorinated guaiacols and veratrols were estimated. The vapor pressure of these substances tends to decrease with increasing polarity and an increasing number of chlorine atoms. Henry`s law constants decrease sharply with increasing polarity, suggesting that methylation can result in a significant increase in a chemical`s potential for volatilization from water.

  2. Kinetics of wet sodium vapor complex plasma

    SciTech Connect (OSTI)

    Mishra, S. K., E-mail: nishfeb@rediffmail.com [Institute for Plasma Research (IPR), Gandhinagar 382428 (India); Sodha, M. S. [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)] [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)

    2014-04-15T23:59:59.000Z

    In this paper, we have investigated the kinetics of wet (partially condensed) Sodium vapor, which comprises of electrons, ions, neutral atoms, and Sodium droplets (i) in thermal equilibrium and (ii) when irradiated by light. The formulation includes the balance of charge over the droplets, number balance of the plasma constituents, and energy balance of the electrons. In order to evaluate the droplet charge, a phenomenon for de-charging of the droplets, viz., evaporation of positive Sodium ions from the surface has been considered in addition to electron emission and electron/ion accretion. The analysis has been utilized to evaluate the steady state parameters of such complex plasmas (i) in thermal equilibrium and (ii) when irradiated; the results have been graphically illustrated. As a significant outcome irradiated, Sodium droplets are seen to acquire large positive potential, with consequent enhancement in the electron density.

  3. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOE Patents [OSTI]

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01T23:59:59.000Z

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  4. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, A.

    1989-11-21T23:59:59.000Z

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  5. Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System

    SciTech Connect (OSTI)

    None

    2012-01-04T23:59:59.000Z

    HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

  6. Thermophilic Biotrickling Filtration of Ethanol Vapors

    E-Print Network [OSTI]

    .g., from the tobacco, (4) the pulp and paper, (5) and food industry (6). One option is cooling these gases containing organic packing materials: treatment of NOx at 55 °C, (7) co-treatment of methanol and R temperatures. High operating temperatures accelerate the degradation of the organic packing material, (4, 9)

  7. alkali-metal vapor density: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system: Alkali metal vapor in a single-mirror arrangement Physics Websites Summary: Secondary bifurcations of hexagonal patterns in a nonlinear optical system: Alkali metal vapor...

  8. Trace analysis of atmospheric organic bases

    E-Print Network [OSTI]

    Clark, Dwayne C.

    1984-01-01T23:59:59.000Z

    chromatographic fractions for NS analyses ( 121) and its use as a thin layer chromatography (TLC) adsorbent ( 122). The National Institute of Occupational Safety and Health (NIOSH) recommends its use in the analysis of many industrial vapors ( 113 - 120... analysis of atmospheric organic bases were investigated; the study included (1) the analysis of submarine charcoal filter bed samples for nitrogen bases and (2) the use of metallic tetraphenylporphines (TPP) as specific adsorbents for atmospheric...

  9. Controlling the vapor pressure of a mercury lamp

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

    1988-01-01T23:59:59.000Z

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

  10. New Regenerative Cycle for Vapor Compression Refrigeration

    SciTech Connect (OSTI)

    Mark J. Bergander

    2005-08-29T23:59:59.000Z

    The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and second step of compression. In the proposed system, the compressor compresses the vapor only to 50-60% of the final pressure, while the additional compression is provided by a jet device using internal potential energy of the working fluid flow. Therefore, the amount of mechanical energy required by a compressor is significantly reduced, resulting in the increase of efficiency (either COP or EER). The novelty of the cycle is in the equipment and in the way the multi-staging is accomplished. The anticipated result will be a new refrigeration system that requires less energy to accomplish a cooling task. The application of this technology will be for more efficient designs of: (1) Industrial chillers, (2) Refrigeration plants, (3) Heat pumps, (4) Gas Liquefaction plants, (5) Cryogenic systems.

  11. Photoinitiated chemical vapor depostion [sic] : mechanism and applications

    E-Print Network [OSTI]

    Baxamusa, Salmaan Husain

    2009-01-01T23:59:59.000Z

    Photoinitiated chemical vapor deposition (piCVD) is developed as a simple, solventless, and rapid method for the deposition of swellable hydrogels and functional hydrogel copolymers. Mechanistic experiments show that piCVD ...

  12. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression 

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01T23:59:59.000Z

    of each approach as a function of the source and sink temperatures and magnitude of heat flow. Generic heat pumps and vapor recompression designs are explained, costed, estimated in performance, and evaluated as a function of the economic parameters...

  13. Optical Precursors in Rubidium Vapor and Their Relation to Superradiance

    E-Print Network [OSTI]

    Yang, Wenlong

    2012-10-19T23:59:59.000Z

    Optical precursor is the sharp optical pulse front that does not show delay in absorptive media. In this thesis, optical precursor behavior in rubidium (Rb) vapor was investigated in the picoseconds regime. An amplified femtosecond laser was shaped...

  14. Applications of Mechanical Vapor Recompression to Evaporation and Crystallization

    E-Print Network [OSTI]

    Outland, J. S.

    there is no boiler plant available or when electrical power is priced competitively in comparison to steam. Vapor recompression is accomplished using centrifugal, axial-flow, or positive displacement compressors and these compressors can be powered by electricity...

  15. Melt and vapor characteristics in an electron beam evaporator

    SciTech Connect (OSTI)

    Blumenfeld, L.; Fleche, J.L.; Gonella, C. [DCC/DPE/SPEA Centre d`Etudes de Saclay, Gif-sur-Yvette (France)

    1994-12-31T23:59:59.000Z

    We compare the free surface temperatures T{sub s}, calculated by two methods, in cerium or copper evaporation experiments. The first method considers properties of the melt: by an empirical law we take into account turbulent thermal convection, instabilities and craterization of the free surface. The second method considers the vapor flow expansion and connects T{sub s} to the measured terminal parallel temperature and the terminal mean parallel velocity of the vapor jet, by Direct Simulation Monte Carlo calculations including an atom-atom inelastic collision algorithm. The agreement between the two approaches is better for cerium than for copper in the high craterization case. The analysis, from the point of view of the properties of the melt, of the terminal parameters of the vapor jet for the high beam powers shows that T{sub s} and the Knudsen number at the vapor source reach a threshold when the beam power increases.

  16. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vignola, F.; Andreas, A.

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  17. Initiated chemical vapor deposition of functional polyacrylic thin films

    E-Print Network [OSTI]

    Mao, Yu, 1975-

    2005-01-01T23:59:59.000Z

    Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

  18. All graphene electromechanical switch fabricated by chemical vapor deposition

    E-Print Network [OSTI]

    Milaninia, Kaveh M.

    We demonstrate an electromechanical switch comprising two polycrystalline graphene films; each deposited using ambient pressure chemical vapor deposition. The top film is pulled into electrical contact with the bottom film ...

  19. Apparent Temperature Dependence on Localized Atmospheric Water Vapor

    E-Print Network [OSTI]

    Salvaggio, Carl

    Apparent Temperature Dependence on Localized Atmospheric Water Vapor Matthew Montanaroa, Carl temperature of the target if not properly accounted for. The temperature error is defined as the difference between the target leaving apparent temperature and observed apparent temperature. The effects

  20. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01T23:59:59.000Z

    The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

  1. Enabling integration of vapor-deposited polymer thin films

    E-Print Network [OSTI]

    Petruczok, Christy D. (Christy Danielle)

    2014-01-01T23:59:59.000Z

    Initiated Chemical Vapor Deposition (iCVD) is a versatile, one-step process for synthesizing conformal and functional polymer thin films on a variety of substrates. This thesis emphasizes the development of tools to further ...

  2. Systems and methods for generation of hydrogen peroxide vapor

    DOE Patents [OSTI]

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02T23:59:59.000Z

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  3. Type B Accident Investigation of the Acid Vapor Inhalation on...

    Broader source: Energy.gov (indexed) [DOE]

    2005, in TA-48, Building RC-1 Room 402 at the Los Alamos National Laboratory Type B Accident Investigation of the Acid Vapor Inhalation on June 7, 2005, in TA-48, Building RC-1...

  4. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cadeddu, Maria

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  5. Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol

    E-Print Network [OSTI]

    Collins, Gary S.

    Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol Rachel L. Atlas1' gas-phase emissions and the aerosols they form (figure 6), including a cloud condensation nuclei Cloud condensation nuclei (CCN) are particles which water vapor condenses onto to form cloud droplets

  6. Intermediate Vapor Expansion Distillation and Nested Enrichment Cascade Distillation

    E-Print Network [OSTI]

    Erickson, D. C.

    INTERMEDIATE VAPOR EXPANSION DISTILLATION AND NESTED ENRICHMENT CASCADE DISTILLATION D.. C. Erickson Energy Concepts Company Annapolis, Maryland ABSTRACT Although it is known that incorporating an intermediate reboiler or reflux... condenser in a distillation ~olumn will improve column efficiency by 15 to 100%, there has been little use of this technique to date." Intermediate vapor compression heat pumping was recently introduced as one practical means of achieving this benefit...

  7. Injection locked oscillator system for pulsed metal vapor lasers

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Ault, Earl R. (Dublin, CA)

    1988-01-01T23:59:59.000Z

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  8. Vaporizer design criteria for ethanol fueled internal combustion engines

    E-Print Network [OSTI]

    Ariyaratne, Arachchi Rallage

    1985-01-01T23:59:59.000Z

    Properties of Alcohols, Water and Petroleum Fuels. 2 Results of regression analysis. 3 Effect of various parameters on vaporization length. 51 4 Predicted tube length for different fuel requirements (Ten stainless steel tubes, 4. 7 mm ID. ). 60 ix LIST... with quality with increasing heat flux as parameter. 18 5 Reynolds Number Factor, F. 6 Suppression Factor, S. 27 27 7 Flow chart of the algorithm for vaporization length. 8 The single tube heat exchanger. 33 36 9 Thermocouple arrangement along...

  9. Optimal determination of the vapor pressure critical exponent

    E-Print Network [OSTI]

    Walton, Clifford Wayne

    1977-01-01T23:59:59.000Z

    , 1969), while scaling theory predicts about 0. 1 (Vicentini-Missoni et al. , 1969; Widom and Rowlinson, 1970). The object of this study was to determine the optimum value of 0 by means of a least squares fit of various nonanalytic vapor pressure... onal : cj ence Foundation, Grant ENG76-00692, is acknowl- edged. vi TABLE OF CONTENTS Page SCOPE. CONCLUSIONS AND SIGNII'ICANCE INTRODUCTION Theory. Development of Vapor Pressure Equations PROCEDURE. Curve Fit Method (CFN). Numerical...

  10. Tank vapor characterization project - Tank 241-U-112 headspace gas and vapor characterization: Results for homogeneity samples collected on December 6, 1996

    SciTech Connect (OSTI)

    Sklarew, D.S.; Pool, K.H.; Evans, J.C.; Hayes, J.C. [and others] [and others

    1997-09-01T23:59:59.000Z

    This report presents the results of analyses of samples taken from the headspace of waste storage tank 241-U-112 (Tank U-112) at the Hanford Site in Washington State. Samples were collected to determine the homogeneity of selected inorganic and organic headspace constitutents. Two risers (Riser 3 and Riser 6) were sampled at three different elevations (Bottom, Middle, and Top) within the tank. Tank headspace samples were collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan.

  11. Energy recovery system using an organic rankine cycle

    DOE Patents [OSTI]

    Ernst, Timothy C

    2013-10-01T23:59:59.000Z

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  12. Leadership, Organizations

    E-Print Network [OSTI]

    Palmeri, Thomas

    Leadership, Policy & Organizations #12;2 At Peabody students have the opportunity to develop new College, in the Department of Leadership, Policy and Organizations (LPO). The faculty believes Patricia and Rodes Hart Chair, and Professor of Education Policy and Leadership, Ellen Goldring also serves

  13. New Regenerative Cycle for Vapor Compression Refrigeration

    SciTech Connect (OSTI)

    Bergander, Mark J [Magnetic Development, Inc.; Butrymowicz, Dariusz [Polish Academy of Scinces

    2010-01-26T23:59:59.000Z

    This project was a continuation of Category 1 project, completed in August 2005. Following the successful bench model demonstration of the technical feasibility and economic viability, the main objective in this stage was to fabricate the prototype of the heat pump, working on the new thermodynamic cycle. This required further research to increase the system efficiency to the level consistent with theoretical analysis of the cycle. Another group of objectives was to provide the foundation for commercialization and included documentation of the manufacturing process, preparing the business plan, organizing sales network and raising the private capital necessary to acquire production facilities.

  14. Evaluation and prevention of explosions in soil vapor extraction systems

    SciTech Connect (OSTI)

    Hower, J.W. [Radian Corp., El Segundo, CA (United States)

    1995-12-31T23:59:59.000Z

    Due to the widespread and long term use of petroleum derived fuels and solvents, many areas have subsurface soils contaminated with petroleum derivatives. This contamination can migrate to groundwater, which is frequently used to supply drinking water needs. A common method of cleaning up that contamination is soil vapor extraction (SVE). SVE is a technique where several extraction wells are installed in the contaminated area, with screens in the appropriate vertical locations. The soil vapors re extracted form the wells using a positive displacement blower. To prevent this subsurface contamination from becoming air pollution, the extracted vapors are then sent to some hydrocarbon removal device, such as a carbon adsorption system or a thermal oxidizer. The data used in this investigation were collected as part of a Radian Corporation project for a client. The site is a former petroleum refinery, and the hydrocarbons are primarily gasoline and diesel.

  15. Interactions between Liquid-Wall Vapor and Edge Plasmas

    SciTech Connect (OSTI)

    Rognlien, T D; Rensink, M E

    2000-05-25T23:59:59.000Z

    The use of liquid walls for fusion reactors could help solve problems associated with material erosion from high plasma heat-loads and neutronic activation of structures. A key issue analyzed here is the influx of impurity ions to the core plasma from the vapor of liquid side-walls. Numerical 2D transport simulations are performed for a slab geometry which approximates the edge region of a reactor-size tokamak. Both lithium vapor (from Li or SnLi walls) and fluorine vapor (from Flibe walls) are considered for hydrogen edge-plasmas in the high- and low-recycling regimes. It is found that the minimum influx is from lithium with a low-recycling hydrogen plasma, and the maximum influx occurs for fluorine with a high-recycling hydrogen plasma.

  16. Field-usable portable analyzer for chlorinated organic compounds

    SciTech Connect (OSTI)

    Buttner, W.J.; Penrose, W.R.; Stetter, J.R.; Williams, R.D.

    1996-12-31T23:59:59.000Z

    In 1992, a chemical sensor was developed which showed almost perfect selectivity to vapors of chlorinated solvents. When interfaced to an instrument, a chemical analyzer will be produced that has near- absolute selectivity to vapors of volatile chlorinated organic compounds. TRI has just completed the second of a 2-phase program to develop this new instrument system, which is called the RCL MONITOR. In Phase II, this instrument was deployed in 5 EM40 operations. Phase II applications covered clean-up process monitoring, environmental modeling, routine monitoring, health and safety, and technology validation. Vapor levels between 0 and 100 ppM can be determined in 90 s with a lower detection limit of 0.5 ppM using the hand-portable instrument. Based on the favorable performance of the RCL MONITOR, the commercial instrument was released for commercial sales on Sept. 20, 1996.

  17. Liquid-phase compositions from vapor-phase analyses

    SciTech Connect (OSTI)

    Davis, W. Jr. (Oak Ridge Gaseous Diffusion Plant, TN (USA)); Cochran, H.D. (Oak Ridge National Lab., TN (USA))

    1990-02-01T23:59:59.000Z

    Arsenic normally is not considered to be a contaminant. However, because arsenic was found in many cylinders of UF{sub 6}, including in corrosion products, a study was performed of the distribution of the two arsenic fluorides, AsF{sub 3} and AsF{sub 5}, between liquid and vapor phases. The results of the study pertain to condensation or vaporization of liquid UF{sub 6}. This study includes use of various experimental data plus many extrapolations necessitated by the meagerness of the experimental data. The results of this study provide additional support for the vapor-liquid equilibrium model of J.M. Prausnitz and his coworkers as a means of describing the distribution of various impurities between vapor and liquid phases of UF{sub 6}. Thus, it is concluded that AsF{sub 3} will tend to concentrate in the liquid phase but that the concentration of AsF{sub 5} in the vapor phase will exceed its liquid-phase concentration by a factor of about 7.5, which is in agreement with experimental data. Because the weight of the liquid phase in a condensation operation may be in the range of thousands of times that of the vapor phase, most of any AsF{sub 5} will be in the liquid phase in spite of this separation factor of 7.5. It may also be concluded that any arsenic fluorides fed into a uranium isotope separation plant will either travel with other low-molecular-weight gases or react with materials present in the plant. 25 refs., 3 figs., 6 tabs.

  18. Organic Superconductors

    SciTech Connect (OSTI)

    Charles Mielke

    2009-02-27T23:59:59.000Z

    Intense magnetic fields are an essential tool for understanding layered superconductors. Fundamental electronic properties of organic superconductors are revealed in intense (60 tesla) magnetic fields. Properties such as the topology of the Fermi surface and the nature of the superconducting order parameter are revealed. With modest maximum critical temperatures~13K the charge transfer salt organic superconductors prove to be incredibly valuable materials as their electronically clean nature and layered (highly anisotropic) structures yield insights to the high temperature superconductors. Observation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillatory phenomena, magnetic field induced superconductivity and re-entrant superconductivity are some of the physical phenomena observed in the charge transfer organic superconductors. In this talk, I will discuss the nature of organic superconductors and give an overview of the generation of intense magnetic fields; from the 60 tesla millisecond duration to the extreme 1000 tesla microsecond pulsed magnetic fields.

  19. Balance of atmospheric water vapor over the Gulf of Mexico

    E-Print Network [OSTI]

    Hughes, Ralph Morgan

    1967-01-01T23:59:59.000Z

    / / / / I / o. i + B CAP C BBJ V S TPA PZA EHA Fig. 5. Vertical distribution of the average water-vapor flux normal to the perimeter of the Gulf of Nexico during Oct-Kov-Dec 1959. Plus values are inflow in kgm/sec-mb-. m. -o-I Pi C4 I / ~-o, i...BALANCE OF ATMOSPHERIC HATER VAPOR OVER THE GULF OF MEXICO A Thesis By RALPH MORGAN HUGHES Captain, USAF Submitted to the Graduate College of the Texas A&M University in partial fulf-'llment of the rec;uirements for the degree of MASTER...

  20. The development of a passive dosimeter for airborne benzene vapors

    E-Print Network [OSTI]

    Hager, David William

    1978-01-01T23:59:59.000Z

    THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE BENZENE VAPORS A Thesis DAVID NII LIAM HAGER Submitted to the Graduate Colleqe of Texas ASM University in partial fulfillment of the requirement for the d"gree of MASTER OF SC. IENCE May IB...7B Major Subject: Indus t& ial Hyqiene THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE BFNZENE VAPORS A Thesis by DAVID NILLIAM HAGER Approved as to style and content by: Z Chairman of Commi t e~ ~'g C'S~ Head of Department~ Member...

  1. The development of a passive dosimeter for airborne aniline vapors

    E-Print Network [OSTI]

    Campbell, James Evan

    1977-01-01T23:59:59.000Z

    THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE ANILINE VAPORS A Thesis by James Evan Campbell Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE I...'iay 1977 Major Subject: Industrial Hygiene THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE ANILINE VAPORS A Thesis by James E van Campbe1 1 Approved as to style and content by: Chairm of Com itt ea of De rtment Member Member May 1977...

  2. A study of vapor-liquid flow in porous media

    SciTech Connect (OSTI)

    Satik, Cengiz; Yortsos, Yanis C.

    1994-01-20T23:59:59.000Z

    We study the heat transfer-driven liquid-to-vapor phase change in single-component systems in porous media by using pore network models and flow visualization experiments. Experiments using glass micromodels were conducted. The flow visualization allowed us to define the rules for the numerical pore network model. A numerical pore network model is developed for vapor-liquid displacement where fluid flow, heat transfer and capillarity are included at the pore level. We examine the growth process at two different boundary conditions.

  3. A Survey of Vapors in the Headspaces of Single-Shell Waste Tanks

    SciTech Connect (OSTI)

    Stock, Leon M.; Huckaby, James L.

    2000-10-31T23:59:59.000Z

    This report summarizes data on the organic vapors in the single-shell high level radioactive waste tanks at the Hanford site to support a forthcoming toxicological study. All data were obtained from the Tank Characterization Database (PNNL 1999). The TCD contains virtually all the available tank headspace characterization data from 1992 to the present, and includes data for 109 different single-shell waste tanks. Each single-shell tank farm and all major waste types are represented. Descriptions of the sampling and analysis methods have been given elsewhere (Huckaby et al. 1995, Huckaby et al. 1996), and references for specific data are available in the TCD. This is a revision of a report with the same title issued on March 1, 2000 (Stock and Huckaby 2000).

  4. Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments

    SciTech Connect (OSTI)

    Mainhagu, Jon; Morrison, C.; Truex, Michael J.; Oostrom, Martinus; Brusseau, Mark

    2014-10-20T23:59:59.000Z

    A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. A well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. The results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.

  5. Comparison of precursor infiltration into polymer thin films via atomic layer deposition and sequential vapor infiltration using in-situ quartz crystal microgravimetry

    SciTech Connect (OSTI)

    Padbury, Richard P.; Jur, Jesse S., E-mail: jsjur@ncsu.edu [Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-07-01T23:59:59.000Z

    Previous research exploring inorganic materials nucleation behavior on polymers via atomic layer deposition indicates the formation of hybrid organic–inorganic materials that form within the subsurface of the polymer. This has inspired adaptations to the process, such as sequential vapor infiltration, which enhances the diffusion of organometallic precursors into the subsurface of the polymer to promote the formation of a hybrid organic–inorganic coating. This work highlights the fundamental difference in mass uptake behavior between atomic layer deposition and sequential vapor infiltration using in-situ methods. In particular, in-situ quartz crystal microgravimetry is used to compare the mass uptake behavior of trimethyl aluminum in poly(butylene terephthalate) and polyamide-6 polymer thin films. The importance of trimethyl aluminum diffusion into the polymer subsurface and the subsequent chemical reactions with polymer functional groups are discussed.

  6. Heat transfer during film condensation of potassium vapor on a horizontal plate

    E-Print Network [OSTI]

    Meyrial, Paul M.

    1968-01-01T23:59:59.000Z

    The object of the investigation is to analyze the following two features of heat transfer during condensation of potassium vapor: a. Heat transfer during film condensation of a pure saturated potassium vapor on a horizontal ...

  7. Chemical vapor deposition thin films as biopassivation coatings and directly patternable dielectrics

    E-Print Network [OSTI]

    Pryce Lewis, Hilton G. (Hilton Gavin), 1973-

    2001-01-01T23:59:59.000Z

    Organosilicon thin films deposited by pulsed plasma-enhanced chemical vapor deposition (PPECVD) and hot-filament chemical vapor deposition (HFCVD) were investigated as potential biopassivation coatings for neural probes. ...

  8. Control of Vapor Dispersion and Pool Fire of Liquefied Natural Gas (LNG) with Expansion Foam 

    E-Print Network [OSTI]

    Yun, Geun Woong

    2011-10-21T23:59:59.000Z

    in outdoor field tests. Thus, this research focused on experimental determination of the effect of expansion foam application on LNG vapor dispersion and pool fire. Specifically, for evaluating the use of foam to control the vapor hazard from spilled LNG...

  9. Amine functionalization by initiated chemical vapor deposition (iCVD) for interfacial adhesion and film cohesion

    E-Print Network [OSTI]

    Xu, Jingjing, Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Amine functional polymer thin films provide a versatile platform for subsequent functionalization because of their diverse reactivity. Initiated chemical vapor deposition (iCVD) is a polymer chemical vapor deposition ...

  10. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phasehydrodeoxy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of...

  11. Method and apparatus to measure vapor pressure in a flow system

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); Biblarz, Oscar (Swampscott, MA)

    1991-01-01T23:59:59.000Z

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

  12. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOE Patents [OSTI]

    Donaldson, Terrence L. (Lenior City, TN); Wilson, James H. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing.

  13. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOE Patents [OSTI]

    Donaldson, T.L.; Wilson, J.H.

    1993-09-21T23:59:59.000Z

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing. 2 figures.

  14. A transient model for a cesium vapor thermionic converter. [Cs

    SciTech Connect (OSTI)

    El-Genk, M.S.; Murray, C.S.; Chaudhuri, S. (Institute for Space Nuclear Power Studies, Department of Chemical and Nuclear Engineering, The University of New Mexico, Albuquerque, New Mexico (USA))

    1991-01-10T23:59:59.000Z

    This paper presents an analytical model for simulating the transient and steady-state operation of cesium vapor thermionic converters. A parametric analysis is performed to assess the transient response of the converter to changes in fission power and width of interelectrode gap. The model optimizes the converter performance for maximum electric power to the load.(AIP)

  15. Continuous Operation of Foamed Emulsion Bioreactors Treating Toluene Vapors

    E-Print Network [OSTI]

    Continuous Operation of Foamed Emulsion Bioreactors Treating Toluene Vapors Eunsung Kan, Marc A.interscience.wiley.com). DOI: 10.1002/bit.20619 Abstract: Continuous operation of a new bioreactor for air pollution control called the foamed emulsion bioreactor (FEBR) has been investigated. The effect of several liquid feeding

  16. DIAMOND CHEMICAL VAPOR DEPOSITION Nucleation and Early Growth Stages

    E-Print Network [OSTI]

    Dandy, David

    a reality. Epi- taxial diamond has been grown on diamond and cubic-BN. Polycrystalline diamond films haveDIAMOND CHEMICAL VAPOR DEPOSITION Nucleation and Early Growth Stages by Huimin Liu David S. Dandy of high-quality diamond coatings on preshaped parts and synthesis of free-standing shapes of diamond

  17. Forced vaporization cooling of HVDC thyristor valves. Final report

    SciTech Connect (OSTI)

    Scaringe, R.P.; Staub, F.W.; Lazarek, G.M.; Black, S.H.; Abuaf, N.

    1982-10-01T23:59:59.000Z

    The cooling of power-dissipating devices by boiling Freon R-113 was investigated. Thermohydraulic instability questions were resolved, and it was shown tht the maximum (critical) heat flux available using this coolant in a forced vaporization cooling mode provides sufficient margin for semiconductor device duty cycles. Analytical predictive tools, experimental data, and empirical correlations were developed for design purposes.

  18. Method for removing metal vapor from gas streams

    DOE Patents [OSTI]

    Ahluwalia, R.K.; Im, K.H.

    1996-04-02T23:59:59.000Z

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines. 13 figs.

  19. Method for removing metal vapor from gas streams

    DOE Patents [OSTI]

    Ahluwalia, R. K. (6440 Hillcrest Dr., Burr Ridge, IL 60521); Im, K. H. (925 Lehigh Cir., Naperville, IL 60565)

    1996-01-01T23:59:59.000Z

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines.

  20. Cometabolic Degradation of TCE Vapors in a Foamed Emulsion

    E-Print Network [OSTI]

    Cometabolic Degradation of TCE Vapors in a Foamed Emulsion Bioreactor E U N S U N G K A N A N D M the experiments, 85-101% of the degraded TCE chlorine was recovered as chloride. Overall, the results suggest to complete degradation of TCE to harmless end products. Unfortunately, no microorganism can grow on TCE

  1. Experimental Study of Water Vapor Adsorption on Geothermal

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-148 Experimental Study of Water Vapor Adsorption on Geothermal Reservoir Rocks Shubo Shang Geothermal Program under Department of Energy Grant No. DE-FG07-90IDI2934,and by the Department of Petroleum Engineering, Stanford University Stanford Geothermal Program Interdisciplinary Research in Engineering

  2. Surface Science in the Richmond Lab: Vapor/Water Studies

    E-Print Network [OSTI]

    Richmond, Geraldine L.

    Surface Science in the Richmond Lab: Vapor/Water Studies Many of the Earth's important atmospheric recovery, and emulsion stabilization. We are studying the behavior of species at the carbon tetrachloride.2 3100300029002800 pH~ 2 pH~ 4.5 pH ~ 5.5 Wavenumbers / cm-1 SFGAmp/arb.units COOH COOH COOH Emulsion Studies

  3. Assessment of radionuclide vapor-phase transport in unsaturated tuff

    SciTech Connect (OSTI)

    Smith, D.M.; Updegraff, C.D.; Bonano, E.J.; Randall, J.D.

    1986-11-01T23:59:59.000Z

    This report describes bounding calculations performed to investigate the possibility of radionuclide migration in a vapor phase associated with the emplacement of high-level waste canister in unsaturated tuff formations. Two potential radionuclide transport mechanisms in the vapor phase were examined: aerosol migration and convection/diffusion of volatile species. The former may have significant impact on the release of radionuclides to the accessible environment as the concentration in the aerosols will be equal to that in the ground water. A conservative analysis of air diffusion in a stagnant liquid film indicated that for all expected repository conditions, aerosol formation is not possible. The migration of volatile species was examined both in the vicinity of a waste canister and outside the thermally disturbed zone. Two-dimensional (radial) and three-dimensional (radial-vertical) coupled heat transfer-gas flow-liquid flow simulations were performed using the TOUGH computer code. The gas flow rate relative to the liquid flow rate predicted from the simulations allowed calculations of mobility ratios due to convection which led to the conclusion that, except for the immediate region near the canister, transport in the liquid phase will be dominant for radionuclides heavier than radon. Near the waste canister, iodine transport may also be important in the vapor phase. Bounding calculations for vertical mobility ratios were carried out as a function of saturation. These calculations are conservative and agree well with the two-dimensional simulations. Based on this analysis, it is clear that vapor-phase transport will not be important for radionuclides such as cesium and heavier species. Vapor transport for iodine may play a role in the overall release scenario depending on the particular repository conditions.

  4. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    and higher efficiency photovoltaic systems. However, forphotovoltaic system such that reasonable solar-to-electric conversion efficienciesphotovoltaic co-generation scheme could have potentially very high solar-to-electric efficiency.

  5. Diffusion of vaporous guests into a seemingly non-porous organic crystal

    SciTech Connect (OSTI)

    Herbert, Simon A.; Janiak, Agnieszka; Thallapally, Praveen K.; Atwood, Jerry L.; Barbour, Leonard J.

    2014-12-15T23:59:59.000Z

    The tetragonal apohost phase of p-tert-butyltetramethoxythiacalix[4]arene absorbs hydrochloric acid and iodine. These guest molecules occupy different sites in the solid-state structure -- either within the small intrinsic voids of the macrocycle or within the interstitial spaces between the host molecules. This study illustrates the dynamic deformation of the host, providing strong mechanistic insight into the diffusion of guests into this seemingly non-porous material.

  6. Vapor-Phase Metalation by Atomic Layer Deposition in a Metal-Organic Framework

    E-Print Network [OSTI]

    encompass deposition onto micro- and nanopowders14 and coating of nanoparticle films15 as well as aerogel coating of porous materials that exhibit ultrahigh-aspect ratios.12,13 To date, some striking examples

  7. Improved sensor selectivity for chemical vapors using organic thin-film transistors

    E-Print Network [OSTI]

    Royer, James Edward

    2012-01-01T23:59:59.000Z

    analyte/semiconductor hydrogen bonding properties of vacuumtargeted analyte. These properties include hydrogen bonding,properties are determined by selective molecular chemisorption via hydrogen-

  8. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    solar power towers [169]; also introducing more heliostats often requires increasing the field density

  9. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    steam turbines, expensive reinforcing material is necessaryof the turbine or special reinforcing material is necessaryrequiring reinforcing material for the turbine blades while

  10. Improved sensor selectivity for chemical vapors using organic thin-film transistors

    E-Print Network [OSTI]

    Royer, James Edward

    2012-01-01T23:59:59.000Z

    OTFTs exposed to 5 min pulses of 143-1430 ppm toluene, 2.8-OTFTs exposed to 5 min pulses of 143-1430 ppm toluene, 2.8-OTFTs exposed to 5 min pulses of 143-1430 ppm toluene (TOL),

  11. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    Casten. Update on US Steam Turbine technology. Presented toIn reality large steam turbines often have isentropicstill require special wet steam turbines that have expensive

  12. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    beverage, and oil refining industries [128], process heatthe refrigeration and oil refining industries. Replacing theoil and natural gas refining process and refrigeration industry

  13. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    waste heat reclamation and solar thermal energy," Energy [K Lovegrove and M Dennis, "Solar thermal energy systems inK Lovegrove and M Dennis, "Solar thermal energy systems in

  14. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

  15. Dermal Uptake of Organic Vapors Commonly Found in Indoor Air Charles J. Weschler*,,

    E-Print Network [OSTI]

    Garfunkel, Eric

    hydrocarbons, single ring aromatics, terpenes, chlorinated solvents, formaldehyde, and acrolein. Analysis

  16. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    128] V Minea, "Using Geothermal Energy and Industrial Wastesuch as solar thermal and geothermal energy will become ansolar field, and geothermal energy, where energy is obtained

  17. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    of low-grade heat," Renewable and Sustainable Energyof various applications," Renewable and Sustainable Energyorganic Rankine cycle," Renewable Energy, vol. 4, pp. 1196-

  18. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    c,e Low-Intermediate Gas turbine exhaust, boiler exhaust,cycles for micro-gas turbines," Applied Thermal Engineering,Tiba, "Optimization of gas-turbine combined cycles for solar

  19. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    large tanks of hot molten salt are stored in containments soreceiver and the liquid molten salt coolant being heated;system; for example, high molten salt temperatures increases

  20. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    temperature solar thermal electric generation with Organicthermal- photovoltaic co-generation scheme could have potentially very high solar-to-electric

  1. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    such as in solar energy and geothermal energy [183]. Solar128] V Minea, "Using Geothermal Energy and Industrial Wastegrade waste heat and geothermal energy. Similar to results

  2. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    low and mid temperature solar collectors," Journal of SolarSA Kalogirou, "Solar thermal collectors and applications,"analysis of the solar collector system is presented. Results

  3. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    Casten. Update on US Steam Turbine technology. Presented toThe low pressure steam turbine may also become impracticallygeneration above 10MW, steam turbines are able to achieve ~

  4. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    National Labs, "Solar Thermal Energy Research," in Sandiareclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"

  5. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    Optimization," in ASME International Joint Power Generationfor Solar Rankine Power Generation," ASME Journal of SolarBrayton-Cycle Solar Power Towers," ASME Journal of Solar

  6. Nanostructural engineering of vapor-processed organic photovoltaics for efficient solar energy conversion from any Surface

    E-Print Network [OSTI]

    Macko, Jill Annette (Jill Annette Rowehl)

    2014-01-01T23:59:59.000Z

    More than two billion people in the world have little or no access to electricity. To be empowered they need robust and lightweightrenewable energy conversion technologies that can be easily transported with high yield ...

  7. Epitaxial growth of aligned AlGalnN nanowires by metal-organic chemical vapor deposition

    DOE Patents [OSTI]

    Han, Jung (Woodbridge, CT); Su, Jie (New Haven, CT)

    2008-08-05T23:59:59.000Z

    Highly ordered and aligned epitaxy of III-Nitride nanowires is demonstrated in this work. <1010> M-axis is identified as a preferential nanowire growth direction through a detailed study of GaN/AlN trunk/branch nanostructures by transmission electron microscopy. Crystallographic selectivity can be used to achieve spatial and orientational control of nanowire growth. Vertically aligned (Al)GaN nanowires are prepared on M-plane AlN substrates. Horizontally ordered nanowires, extending from the M-plane sidewalls of GaN hexagonal mesas or islands demonstrate new opportunities for self-aligned nanowire devices, interconnects, and networks.

  8. Desorption efficiencies of toluene and n-butanol in an organic vapor monitor 

    E-Print Network [OSTI]

    Heaney, Mary Ann

    1979-01-01T23:59:59.000Z

    (contained within the quiescent layer inside the dosimeter); that the collection effic'ency of the adsorbent is unity, and; that the effects of the monitor wa' ls are negligible. (~~ ~ ~-) The term D(A/L) i. , tho samplin- rate for the contaminant...

  9. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

  10. Vapor space characterization of waste Tank 241-C-107: Results from samples collected on 9/29/94

    SciTech Connect (OSTI)

    Pool, K.H.; Clauss, T.W.; Ligotke, M.W. [and others

    1995-11-01T23:59:59.000Z

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-C-107 (referred to as Tank C-107). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water vapor (H{sub 2}O). Sampling for sulfur oxides (SO{sub x}) was not requested. Organic compounds were also quantitatively determined. Twenty organic tentatively identified compounds (TICs) were observed above the detection limit of (ca.) 10 ppbv, but standards for most of these were not available at the time of analysis, and the reported concentrations are semiquantitative estimates. In addition, the authors looked for the 55 TO-14 extended analytes. Of these, 3 were observed above the 5-ppbv detection limit. The 10 organic analytes with the highest estimated concentrations are listed in Summary Table 1 and account for approximately 96% of the total organic components in Tank C-107. Two permanent gases, carbon dioxide and nitrous oxide, were also detected.

  11. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    SciTech Connect (OSTI)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

    1994-10-01T23:59:59.000Z

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed.

  12. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    SciTech Connect (OSTI)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T. [Lawrence Livermore National Lab., CA (United States)

    1994-12-31T23:59:59.000Z

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of titanium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed.

  13. Water vapor and the dynamics of climate changes

    E-Print Network [OSTI]

    Schneider, Tapio; Levine, Xavier

    2009-01-01T23:59:59.000Z

    Water vapor is not only Earth's dominant greenhouse gas. Through the release of latent heat when it condenses, it also plays an active role in dynamic processes that shape the global circulation of the atmosphere and thus climate. Here we present an overview of how latent heat release affects atmosphere dynamics in a broad range of climates, ranging from extremely cold to extremely warm. Contrary to widely held beliefs, atmospheric circulation statistics can change non-monotonically with global-mean surface temperature, in part because of dynamic effects of water vapor. For example, the strengths of the tropical Hadley circulation and of zonally asymmetric tropical circulations, as well as the kinetic energy of extratropical baroclinic eddies, can be lower than they presently are both in much warmer climates and in much colder climates. We discuss how latent heat release is implicated in such circulation changes, particularly through its effect on the atmospheric static stability, and we illustrate the circul...

  14. Vapor-liquid equilibria of hydrocarbons and fuel oxygenates. 2

    SciTech Connect (OSTI)

    Bennett, A.; Lamm, S.; Orbey, H.; Sandler, S.I. (Univ. of Delaware, Newark (United States))

    1993-04-01T23:59:59.000Z

    Vapor-liquid equilibrium data for methyl tert-butyl ether (MTBE) + 1-heptene, MTBE + four-component gasoline prototype, ethanol + four-component gasoline prototype, and separately MTBE and ethanol with the Auto/Oil Air Quality Improvement Research Gasoline Blend A are reported. Small additions of MTBE have a very small effect on the total equilibrium pressure of this gasoline blend, and at most temperatures will decrease this pressure. In contrast, small additions of ethanol to this gasoline blend result in a significant increase in the equilibrium pressure at all temperatures. Analysis shows that the vapor-liquid equilibrium data for the MTBE-containing systems are easily correlated using a modified Peng-Robinson equation of state with conventional van der Waals one-fluid mixing rules. Data for mixtures containing ethanol cannot be accurately correlated in this way.

  15. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

    1989-01-01T23:59:59.000Z

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  16. Tank vapor mitigation requirements for Hanford Tank Farms

    SciTech Connect (OSTI)

    Rakestraw, L.D.

    1994-11-15T23:59:59.000Z

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  17. Piston pump and method of reducing vapor lock

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Harvey, Michael N. (DeSoto, TX)

    2000-02-15T23:59:59.000Z

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  18. Piston pump and method of reducing vapor lock

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Harvey, Michael N. (DeSoto, TX)

    2001-01-30T23:59:59.000Z

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  19. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Riley, B.; Szreders, B.E.

    1988-04-26T23:59:59.000Z

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  20. System for the removal of contaminant soil-gas vapors

    DOE Patents [OSTI]

    Weidner, Jerry R. (Iona, ID); Downs, Wayne C. (Sugar City, ID); Kaser, Timothy G. (Ammon, ID); Hall, H. James (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.

  1. High average power magnetic modulator for metal vapor lasers

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA); Miller, John L. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

  2. Screw Type Steam Compressors for Mechanical Vapor Recompression (MVR) Systems

    E-Print Network [OSTI]

    Kawamura, K.; Apaloo, Thomas-L.

    SCREW TYPE STEAM COMPRESSORS FOR MECHANICAL VAPOR RECOMPRESSION (MVR) SYSTEMS K. KAWAMURA AND THOMAS-L. APALOO MYCOM CORPORATION, LOS ANGELES, CALIFORNIA MATSUDA, MAYEKAWA MFG. CO., TOKYO, JAPAN ABSTRACT In processes of evaporation... to a usable pressure for reinjection into the process stream. Mycom has developed, designed and installed two large MVR systems using screw compressors: one for a brewery and the other for a whiskey plant. This paper discusses the system aspects...

  3. System for the removal of contaminant soil-gas vapors

    DOE Patents [OSTI]

    Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

    1997-12-16T23:59:59.000Z

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

  4. Fixation of nitrogen in the presence of water vapor

    DOE Patents [OSTI]

    Harteck, Paul (Santa Barbara, CA)

    1984-01-01T23:59:59.000Z

    A process for the fixation of nitrogen is disclosed which comprises combining a mixture of nitrogen, oxygen, metal oxide and water vapor, initially heating the combination to initiate a reaction which forms nitrate, but at a temperature and pressure range below the dissociation pressure of the nitrate. With or without the water component, the yield of fixed nitrogen is increased by the use of a Linde Molecular Sieve Catalyst.

  5. Program plan for the resolution of tank vapor issues

    SciTech Connect (OSTI)

    Osborne, J.W.; Huckaby, J.L.

    1994-05-01T23:59:59.000Z

    Since 1987, workers at the Hanford Site waste tank farms in Richland, Washington, have reported strong odors emanating from the large, underground high-level radioactive waste storage tanks. Some of these workers have complained of symptoms (e.g., headaches, nausea) related to the odors. In 1992, the U.S. Department of Energy, which manages the Hanford Site, and Westinghouse Hanford Company determined that the vapor emissions coming from the tanks had not been adequately characterized and represented a potential health risk to workers in the immediate vicinity of the tanks. At that time, workers in certain areas of the tank farms were required to use full-face, supplied-breathing-air masks to reduce their exposure to the fugitive emissions. While use of supplied breathing air reduced the health risks associated with the fugitive emissions, it introduced other health and safety risks (e.g., reduced field of vision, air-line tripping hazards, and heat stress). In 1992, an aggressive program was established to assure proper worker protection while reducing the use of supplied breathing air. This program focuses on characterization of vapors inside the tanks and industrial hygiene monitoring in the tank farms. If chemical filtration systems for mitigation of fugitive emissions are deemed necessary, the program will also oversee their design and installation. This document presents the plans for and approach to resolving the Hanford Site high-level waste tank vapor concerns. It is sponsored by the Department of Energy Office of Environmental Restoration and Waste Management.

  6. Method of and apparatus for measuring vapor density

    DOE Patents [OSTI]

    Nelson, L.D.; Cerni, T.A.

    1989-10-17T23:59:59.000Z

    Apparatus and method are disclosed which determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavelength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to an equation given in the patent where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4) + K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation. 11 figs.

  7. Method of and apparatus for measuring vapor density

    DOE Patents [OSTI]

    Nelson, Loren D. (Morrison, CO); Cerni, Todd A. (Littleton, CO)

    1989-01-01T23:59:59.000Z

    Apparatus and method determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavlength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to: ##EQU1## where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4)+K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation.

  8. VAPOR SPACE AND LIQUID/AIR INTERFACECORROSION TESTS

    SciTech Connect (OSTI)

    Zapp, P.; Hoffman, E.

    2009-11-09T23:59:59.000Z

    The phenomena of vapor space corrosion and liquid/air interface corrosion of carbon steel in simulated liquid waste environments have been investigated. Initial experiments have explored the hypothesis that vapor space corrosion may be accelerated by the formation of a corrosive electrolyte on the tank wall by a process of evaporation of relatively warmer waste and condensation of the vapor on the relatively cooler tank wall. Results from initial testing do not support the hypothesis of electrolyte transport by evaporation and condensation. The analysis of the condensate collected by a steel specimen suspended over a 40 C simulated waste solution showed no measurable concentrations of the constituents of the simulated solution and a decrease in pH from 14 in the simulant to 5.3 in the condensate. Liquid/air interface corrosion was studied as a galvanic corrosion system, where steel at the interface undergoes accelerated corrosion while steel in contact with bulk waste is protected. The zero-resistance-ammeter technique was used to measure the current flow between steel specimens immersed in solutions simulating (1) the high-pH bulk liquid waste and (2) the expected low-pH meniscus liquid at the liquid/air interface. Open-circuit potential measurements of the steel specimens were not significantly different in the two solutions, with the result that (1) no consistent galvanic current flow occurred and (2) both the meniscus specimen and bulk specimen were subject to pitting corrosion.

  9. Vapor-liquid equilibria for methanol + tetraethylene glycol dimethyl ether

    SciTech Connect (OSTI)

    Esteve, X.; Chaudhari, S.K.; Coronas, A. [Univ. Rovira i Virgili, Tarragona (Spain). Dept. of Electrical and Mechanical Engineering

    1995-11-01T23:59:59.000Z

    Vapor-liquid equilibrium (P-T-x) for the methanol + tetraethylene glycol dimethyl ether binary system were obtained by the static method in the range of temperatures from 293.15 to 423.15 K at 10 K intervals. The modified vapor pressure apparatus used is described. The Kuczynsky method was used to calculate the liquid and vapor composition and the activity coefficients of methanol from the initial composition of the sample and the measured pressure and temperature. The results were correlated by the NRTL and UNIQUAC temperature dependent activity coefficient models. This system shows nearly ideal behavior at 323.15 K, but positive deviations from ideality at lower temperatures and negative deviations at higher temperatures are observed. The activity coefficients become more negative with the increase in temperature and mole fraction of methanol. The excess molar enthalpy using the Gibss-Helmholtz equation and the NRTL and UNIQUAC parameters were calculated at 303.15 K and compared with experimental data. This binary system shows promise as a working pair for high-temperature heat pump applications.

  10. ANALYSIS OF VAPORS FROM METHYLENE CHLORIDE EXTRACTS OF NUCLEAR GRADE HEPA FILTER FIBERGLASS SAMPLES

    SciTech Connect (OSTI)

    FRYE JM; ANASTOS HL; GUTIERREZ FC

    2012-06-07T23:59:59.000Z

    While several organic compounds were detected in the vapor samples used in the reenactment of the preparation of mounts from the extracts of nuclear grade high-efficiency particulate air filter fiberglass samples, the most significant species present in the samples were methylene chloride, phenol, phenol-d6, and 2-fluorophenol. These species were all known to be present in the extracts, but were expected to have evaporated during the preparation of the mounts, as the mounts appeared to be dry before any vapor was collected. These species were present at the following percentages of their respective occupational exposure limits: methylene chloride, 2%; phenol, 0.4%; and phenol-d6, 0.6%. However, there is no established limit for 2-fluorophenol. Several other compounds were detected at low levels for which, as in the case of 2-fluorophenol, there are no established permissible exposure limits. These compounds include 2-chlorophenol; N-nitroso-1-propanamine; 2-fluoro-1,1{prime}-biphenyl; 1,2-dihydroacenaphthylene; 2,5-cyclohexadiene-1,4-dione,2,6-bis(1,1-dimethylethyl); trimethyl oxirane; n-propylpropanamine; 2-(Propylamino)ethanol; 4-methoxy-1-butene; 6-methyl-5-hepten-2-one; and 3,4-dimethylpyridine. Some of these were among those added as surrogates or spike standards as part ofthe Advanced Technologies and Laboratories International, Inc. preparation ofthe extract of the HEPA filter media and are indicated as such in the data tables in Section 2, Results; other compounds found were not previously known to be present. The main inorganic species detected (sulfate, sodium, and sulfur) are also consistent with species added in the preparation of the methylene chloride extract of the high-efficiency particulate air sample.

  11. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbon AboutOrganizing Committee

  12. Vapor space characterization of waste Tank 241-BY-108: Results from samples collected on 10/27/94

    SciTech Connect (OSTI)

    McVeety, B.D.; Clauss, T.W.; Ligotke, M.W. [and others

    1995-10-01T23:59:59.000Z

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-BY-108 (referred to as Tank BY-108). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water vapor (H{sub 2}O). Trends in NH{sub 3} and H{sub 2}O samples indicated a possible sampling problem. Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, the authors looked for the 40 TO-14 compounds plus an additional 15 analytes. Of these, 17 were observed above the 5-ppbv reporting cutoff. Also, eighty-one organic tentatively identified compounds (TICs) were observed above the reporting cutoff (ca.) 10 ppbv, and are reported with concentrations that are semiquantitative estimates based on internal standard response factors. The nine organic analytes with the highest estimated concentrations are listed in Summary Table 1 and account for approximately 48% of the total organic components in the headspace of Tank BY-108. Three permanent gases, hydrogen (H{sub 2}), carbon dioxide (CO{sub 2}), and nitrous oxide (N{sub 2}O) were also detected. Tank BY-108 is on the Ferrocyanide Watch List.

  13. Use of sonication for in-well softening of semivolatile organic compounds. 1997 annual progress report

    SciTech Connect (OSTI)

    Peters, R.W.; Manning, J. [Argonne National Lab., IL (US); Hoffman, M.R. [California Inst. of Tech., Pasadena, CA (US); Gorelick, S. [Stanford Univ., CA (US)

    1997-01-01T23:59:59.000Z

    'This project investigates the in-situ degradation of semivolatile organic compounds (SVOCs) and volatile organic compounds (VOCs) using in-well sonication, in-well vapor stripping, and bioremediation. Pretreating groundwaters with sonication techniques in-situ would form VOCs that can be effectively removed by in-well vapor stripping and bioremediation. The mechanistic studies focus on the coupling of megasonics and ultrasonics to soften (i.e., partially degrade) the SVOCs; oxidative reaction mechanism studies; surface corrosion studies (on the reactor walls/well); enhancement due to addition of oxidants, quantification of the hydroxyl radical formation; identification/quantification of degradation products; volatility/degradability of the treated waters; development of a computer simulation model to describe combined in-well sonication/in-well vapor stripping/bioremediation; systems analysis/economic analysis; large laboratory-scale experiment verification; and field demonstration of the integrated technology. Benefits of this approach include: (1) Remediation is performed in-situ; (2) The treatment systems complement each other; their combination can drastically reduce or remove SVOCs and VOCs; (3) Ability to convert hard-to-degrade organics into more volatile organic compounds; (4) Ability to remove residual VOCs and softened SVOCs through the combined action of in-well vapor stripping and biodegradation; (5) Does not require handling or disposing of water at the ground surface; and (6) Cost-effective and improved efficiency, resulting in shortened clean-up times to remediate a site.'

  14. Organic sponges for cost-effective CVOC abatement. Final report, September 1992--April 1994

    SciTech Connect (OSTI)

    Flanagan, W.P.; Grade, M.M.; Horney, D.P.; Mackenzie, P.D.; Salvo, J.J.; Sivavec, T.M.; Stephens, M.L.

    1994-07-01T23:59:59.000Z

    Air contaminated with CVOCs (chlorinated volatile organic compounds) arise from air stripping of ground water or from soil and dual phase vapor extraction. A research program was undertaken to develop sorbents better than activated carbon for remediation. Two such sorbents were found: Dow`s XUS polymer and Rohm and Haas` Ambersorb 563 (carbonaceous). Opportunities exist to further develop sorption and biodegradation technologies.

  15. From association to organization

    E-Print Network [OSTI]

    Mandler, George

    2011-01-01T23:59:59.000Z

    S.M. (1978). Organization theory and memory for prose: Aand summarize organization theory and relevant empiricalexplained in terms of organization theory. The hierarchical

  16. Organization Chart - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LSD Logo About Us People & Organization Research News & Events Safety Internal Resources Organization Chart Departments Scientific Staff Directory Committees Organization Chart...

  17. Treatment of Organic-Contaminated Wastewater by Pervaporation 

    E-Print Network [OSTI]

    Wijmans, J. G.; Kaschemekat, J.; Baker, R. W.; Simmons, V. L.

    1991-01-01T23:59:59.000Z

    ," Desalination 52, 327 (1988). 3. I. Blume, J.G. Wijmans, and R.W. Baker, "The Separation of Dissolved Organics from Water by Pervaporation," J. Memb. Sci. 49, 253 (1990) 4. J. Kaschemekat, J.G. Wijmans, R.W. Baker and I., Blume, "Separation of Organics... system able to treat this benzene stream would have a membrane area of 200 2 , producing a permeate with an average concentration of 26%. Because benzene is relatively insoluble in water, permeate vapor of this concentration would separate on condensation...

  18. An optical water vapor sensor for unmanned aerial vehicles

    SciTech Connect (OSTI)

    Timothy A. Berkoff; Paul L. Kebabian; Robert A. McClatchy; Charles E. Kolb; Andrew Freedman

    1998-12-01T23:59:59.000Z

    The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in August 1998. Data taken during this field campaign show excellent agreement with a chilled mirror and Lyman-alpha hygrometers and measurements confirm the ability to measure rapid, absolute water vapor fluctuations with a high degree of instrument stability and accuracy, with a noise level as low 10 ppmv (1 Hz measurement bandwidth). The construction of this small, lightweight sensor contains several unique elements which result in several significant advantages when compared to other techniques. First, the low power consumption Argon discharge lamp provides an optical beam at a fixed wavelength without a need for temperature or precision current control. The multi-pass absorption cell developed for this instrument provides a compact, low cost method that can survive deployment in the field. Fiber-optic cables, which are used to convey to light between the absorption cell, light source, and detection modules enable remote placement of the absorption cell from the opto-electronics module. Finally, the sensor does not use any moving parts which removes a significant source of potential malfunction. The result is an instrument which maintained its calibration throughout the field measurement campaign, and was not affected by high vibration and large uncontrolled temperature excursions. We believe that the development of an accurate, fast response water vapor monitor described in this report will open up new avenues of aerial-vehicle-based atmospheric research which have been relatively unexplored due to the lack of suitable low-cost, light-weight instrumentation.

  19. The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications

    SciTech Connect (OSTI)

    Brown, Daryl R.; Dirks, James A.; Fernandez, Nicholas; Stout, Tyson E.

    2010-03-31T23:59:59.000Z

    Five alternatives to vapor compression technology were qualitatively evaluated to determine their prospects for being better than vapor compression for space cooling and food refrigeration applications. The results of the assessment are summarized in the report. Overall, thermoacoustic and magnetic technologies were judged to have the best prospects for competing with vapor compression technology, with thermotunneling, thermoelectric, and thermionic technologies trailing behind in that order.

  20. Chemical Vapor Deposited Zinc Sulfide. SPIE Press Monograph

    SciTech Connect (OSTI)

    McCloy, John S.; Tustison, Randal W.

    2013-04-22T23:59:59.000Z

    Zinc sulfide has shown unequaled utility for infrared windows that require a combination of long-wavelength infrared transparency, mechanical durability, and elevated-temperature performance. This book reviews the physical properties of chemical vapor deposited ZnS and their relationship to the CVD process that produced them. An in-depth look at the material microstructure is included, along with a discussion of the material's optical properties. Finally, because the CVD process itself is central to the development of this material, a brief history is presented.

  1. Multi-cathode metal vapor arc ion source

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); MacGill, Robert A. (645 Kern St., Richmond, CA 94805)

    1988-01-01T23:59:59.000Z

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. One embodiment of the appaatus utilizes a multi-cathode arrangement for interaction with the anode.

  2. Recirculating wedges for metal-vapor plasma tubes

    DOE Patents [OSTI]

    Hall, J.P.; Sawvel, R.M.; Draggoo, V.G.

    1994-06-28T23:59:59.000Z

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior. 8 figures.

  3. Unusual thermopower of inhomogeneous graphene grown by chemical vapor deposition

    SciTech Connect (OSTI)

    Nam, Youngwoo, E-mail: youngwoo.nam@chalmers.se [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Sun, Jie; Lindvall, Niclas; Yurgens, August [Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Jae Yang, Seung; Rae Park, Chong [Department of Materials Science and Engineering, Seoul National University, Seoul 151-747 (Korea, Republic of); Woo Park, Yung [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2014-01-13T23:59:59.000Z

    We report on thermopower (TEP) and resistance measurements of inhomogeneous graphene grown by chemical vapor deposition (CVD). Unlike the conventional resistance of pristine graphene, the gate-dependent TEP shows a large electron-hole asymmetry. This can be accounted for by inhomogeneity of the CVD-graphene where individual graphene regions contribute with different TEPs. At the high magnetic field and low temperature, the TEP has large fluctuations near the Dirac point associated with the disorder in the CVD-graphene. TEP measurements reveal additional characteristics of CVD-graphene, which are difficult to obtain from the measurement of resistance alone.

  4. Vapor explosion in the RIA-ST-4 experiment. [BWR

    SciTech Connect (OSTI)

    El-Genk, M.S.

    1980-01-01T23:59:59.000Z

    A concern in assuring the safety of commercial light water reactors (LWRs) is whether core overheating, during which molten fuel is produced, can lead to massive vaporization of the coolant and shock pressurization of the system due to an energetic molten fuel-coolant interaction (MFCI). The RIA-ST-4 experiment was one of four scoping tests in the Reactivity Initiated Accident (RIA) Test Series which is being conducted in the Power Burst Facility (PBF) to define an energy deposition failure threshold and to determine modes and consequences of fuel rod failure during a postulated boiling water reactor (BWR) control rod drop accident.

  5. Recirculating wedges for metal-vapor plasma tubes

    DOE Patents [OSTI]

    Hall, Jerome P. (Livermore, CA); Sawvel, Robert M. (Modesto, CA); Draggoo, Vaughn G. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior.

  6. The development of a passive dosimeter for airborne aniline vapors 

    E-Print Network [OSTI]

    Campbell, James Evan

    1977-01-01T23:59:59.000Z

    systems has been explained by Palmes and Gunnison et al. 3 Using Fick's First Law of Diffusion in relation to a concentration gradient through a tube of fixed length and cross sectional area, Palmes developed an equation useful in the determination... as an economical and accurate means of sampling a1rborne concentrat1ons of gases and vapors in the working environment. The passive diffusion system is dependent upon a principle differing from that usually employed in gas collection devices wh1ch depend upon...

  7. In situ bioremediation enhanced with air sparging and vapor extraction

    SciTech Connect (OSTI)

    Fesko, S. [Eaton Corp., Willoughby Hills, OH (United States)

    1996-11-01T23:59:59.000Z

    Eaton Corporation operates a corporate airport hangar facility in central Michigan. Testing showed, and soil and groundwater investigation confirmed, that two underground storage tanks leaked. This release sent an undetermined amount of Jet A kerosene into the soil and groundwater. As a result, the Michigan Department of Natural Resources (MDNR) listed the facility on the Act 307 list of contaminated sites (Michigan equivalent of a Superfund listing). The objective of the remediation was to clean up an aquifer and soil system contaminated with Jet A kerosene. This cleanup used pump and treat, bioremediation, soil vapor extraction, and air sparging technologies.

  8. Moisture burst structure in satellite water vapor imagery

    E-Print Network [OSTI]

    Ulsh, David Joel

    1988-01-01T23:59:59.000Z

    The moisture burst is a tropical synoptic-scale weather event that typically originates along the ITCZ and has been defined previously in window-channel infrared imagery. This research uses 6. 7-micrometer water vapor absorption band imagery to composite 35... moisture burst events during the North Pacific cool season of 1983-1984. Composite maps are constructed at four times, each 24 h apart, during the life cycle of the moisture burst. A comparative baseline is provided by an additional composite of 35 dates...

  9. ARM - Field Campaign - ARM-FIRE Water Vapor Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006Observations ofgovCampaignsARM-FIRE Water Vapor

  10. Non-Vapor Compression HVAC Technologies Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletter NewsletterGeneral CounselNon-Vapor

  11. Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor

    DOE Patents [OSTI]

    Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S

    2014-03-04T23:59:59.000Z

    The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.

  12. LABORATORY TESTING TO SIMULATE VAPOR SPACE CORROSION IN RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    Wiersma, B.; Garcia-Diaz, B.; Gray, J.

    2013-08-30T23:59:59.000Z

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 70 years at the Hanford nuclear facility. Vapor space corrosion of the tank walls has emerged as an ongoing challenge to overcome in maintaining the structural integrity of these tanks. The interaction between corrosive and inhibitor species in condensates/supernates on the tank wall above the liquid level, and their interaction with vapor phase constituents as the liquid evaporates from the tank wall influences the formation of corrosion products and the corrosion of the carbon steel. An effort is underway to gain an understanding of the mechanism of vapor space corrosion. Localized corrosion, in the form of pitting, is of particular interest in the vapor space. CPP testing was utilized to determine the susceptibility of the steel in a simulated vapor space environment. The tests also investigated the impact of ammonia gas in the vapor space area on the corrosion of the steel. Vapor space coupon tests were also performed to investigate the evolution of the corrosion products during longer term exposures. These tests were also conducted at vapor space ammonia levels of 50 and 550 ppm NH{sub 3} (0.005, and 0.055 vol.%) in air. Ammonia was shown to mitigate vapor space corrosion.

  13. Chemical vapor deposition of organosilicon composite thin films for porous low-k dielectrics

    E-Print Network [OSTI]

    Ross, April Denise, 1977-

    2005-01-01T23:59:59.000Z

    Pulsed plasma enhanced chemical vapor deposition has produced organosilicon thin films with the potential use as low dielectric constant interconnect materials in microelectronic circuits. Both diethylsilane and ...

  14. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    DOE Patents [OSTI]

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-10-14T23:59:59.000Z

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  15. Evaluation of a gas chromatograph with a novel surface acoustic wave detector (SAW GC) for screening of volatile organic compounds in Hanford waste tank samples

    SciTech Connect (OSTI)

    Lockrem, L.L.

    1998-01-12T23:59:59.000Z

    A novel instrument, a gas chromatograph with a Surface Acoustic Wave Detector (SAW GC), was evaluated for the screening of organic compounds in Hanford tank headspace vapors. Calibration data were developed for the most common organic compounds, and the accuracy and precision were measured with a certified standard. The instrument was tested with headspace samples collected from seven Hanford waste tanks.

  16. Vapor space characterization of waste Tank 241-TY-101: Results from samples collected on 4/6/95

    SciTech Connect (OSTI)

    Klinger, G.S.; Clauss, T.W.; Ligotke, M.W.; Pool, K.H.; McVeety, B.D.; Olsen, K.B.; Bredt, O.P.; Fruchter, J.S.; Goheen, S.C.

    1995-11-01T23:59:59.000Z

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-TY-101 (referred to as Tank TY-101). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water vapor (H{sub 2}O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Off these, 5 were observed above the 5-ppbv reporting cutoff. One tentatively identified compound (TIC) was observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The six organic analyses identified are listed in Table 1 and account for approximately 100% of the total organic components in Tank TY-101. Two permanent gases, carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O), were also detected. Tank TY-101 is on the Ferrocyanide Watch List.

  17. Organic photosensitive cells grown on rough electrode with nano-scale morphology control

    DOE Patents [OSTI]

    Yang, Fan (Piscataway, NJ); Forrest, Stephen R. (Ann Arbor, MI)

    2011-06-07T23:59:59.000Z

    An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.

  18. Method of physical vapor deposition of metal oxides on semiconductors

    DOE Patents [OSTI]

    Norton, David P. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  19. Vaporization cooling for gas turbines, the return-flow cascade

    SciTech Connect (OSTI)

    Kerrebrock, J.L.; Stickler, D.B.

    2000-01-01T23:59:59.000Z

    A new paradigm for gas turbine design is treated, in which major elements of the hot section flow path are cooled by vaporization of a suitable two-phase coolant. This enables the blades to be maintained at nearly uniform temperature without detailed knowledge of the heat flux to the blades, and makes operation feasible at higher combustion temperatures using a wider range of materials than is possible in conventional gas turbines with air cooling. The new enabling technology for such cooling is the return-flow cascade, which extends to the rotating blades the heat flux capability and self-regulation usually associated with heat-pipe technology. In this paper the potential characteristics of gas turbines that use vaporization cooling are outlined briefly, but the principal emphasis is on the concept of the return-flow cascade. The concept is described and its characteristics are outlined. Experimental results are presented that confirm its conceptual validity and demonstrate its capability for blade cooling at heat fluxes representative of those required for high pressure ratio high temperature gas turbines.

  20. Polymer electrolyte fuel cell electrodes grown by vapor deposition techniques Pascal Brault*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Polymer electrolyte fuel cell electrodes grown by vapor deposition techniques Pascal Brault Abstract: Polymer fuel cell electrode growth using vapor deposition techniques is reviewed. The supports process: sputtering, CVD, PECVD, MOCVD. In each case, up-to-date fuel cell performances are highlighted

  1. Electronic Properties of Large-scale Graphene Films Chemical Vapor Synthesized on Nickel and on Copper

    E-Print Network [OSTI]

    Chen, Yong P.

    transport properties of graphene films grown on Ni and Cu. Sample Preparation The synthesis of graphene film1 Electronic Properties of Large-scale Graphene Films Chemical Vapor Synthesized on Nickel of large scale graphene films grown by chemical vapor synthesis on Ni and Cu, and then transferred to SiO2

  2. Shock wave induced vaporization of porous solids Andy H. Shen, a)

    E-Print Network [OSTI]

    Stewart, Sarah T.

    to reach high entropy, vaporized states in impact experiments. We extended calculations by Ahrens J. Appl such as Earth.1­3 During collision events, kinetic energy is converted into internal energy and such conversion spectrometry. More re- cently, the vapor products generated from a hypervelocity impact of electrostatically

  3. Computational Analysis and Optimization of a Chemical Vapor Deposition Reactor with

    E-Print Network [OSTI]

    modifications of reactor configurations and manual control of operating conditions becomes prohibitivelyComputational Analysis and Optimization of a Chemical Vapor Deposition Reactor with Large for the chemical vapor deposition (CVD) of silicon in a horizontal rotating disk reactor. A three

  4. OPTIMAL DESIGN OF A HIGH PRESSURE ORGANOMETALLIC CHEMICAL VAPOR DEPOSITION REACTOR

    E-Print Network [OSTI]

    OPTIMAL DESIGN OF A HIGH PRESSURE ORGANOMETALLIC CHEMICAL VAPOR DEPOSITION REACTOR K.J. BACHMANN vapor deposition (HPOMCVD) reactor for use in thin film crystal growth. The advantages of such a reactor decomposition pressures and increased control over local stoichiometry and defect formation. While we focus here

  5. Low temperature chemical vapor deposition of Co thin films from Co2(CO)8

    E-Print Network [OSTI]

    Wang, Gwo-Ching

    Low temperature chemical vapor deposition of Co thin films from Co2(CO)8 D.-X. Yea,*, S. Pimanpanga chemical vapor deposition with a metallorganic Co2(CO)8 precursor. After Ar sputtering of the surface, Co2(CO)8, has been extensively used in cobalt CVD and is attractive, since Co is in its elemental

  6. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    DOE Patents [OSTI]

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08T23:59:59.000Z

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  7. Lithium phosphorous oxynitride films synthesized by a plasma-assisted directed vapor deposition approach

    E-Print Network [OSTI]

    Wadley, Haydn

    Lithium phosphorous oxynitride films synthesized by a plasma-assisted directed vapor deposition vapor deposition approach has been explored for the synthesis of lithium phosphorous oxynitride Lipon the ionic transport properties of these films. This enabled the synthesis of electrolyte films with lithium

  8. Molecular Orbital Studies of Titanium Nitride Chemical Vapor Deposition: Gas Phase Complex Formation,

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Molecular Orbital Studies of Titanium Nitride Chemical Vapor Deposition: Gas Phase Complex Received June 6, 2000 The chemical vapor deposition (CVD) of titanium nitride can be carried out with TiCl4 Titanium nitride thin films have a variety of proper- ties, such as extreme hardness, high chemical

  9. Molecular Orbital Studies of Titanium Nitride Chemical Vapor Deposition: Imido Dimer Formation and

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Molecular Orbital Studies of Titanium Nitride Chemical Vapor Deposition: Imido Dimer Formation- ization of Ti(NR2)2NH in the chemical vapor deposition (CVD) of titanium nitride films. This study uses lead to the formation of higher oligomers. Introduction Titanium nitride thin films have a number

  10. Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas M. V. Romalis

    E-Print Network [OSTI]

    Romalis, Mike

    Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas M. V. Romalis; published 7 December 2010) Optical pumping of an optically thick atomic vapor typically requires a quenching the atoms. We show that optical pumping of a trace contamination of Rb present in K metal results in a 4

  11. VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE FROM

    E-Print Network [OSTI]

    ) and their binary mixtures (between 348 and 393 K). The properties of supercritical carbon dioxide were determinedVAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE the vapor-liquid equilibrium of water (between 323 and 573 K), carbon dioxide (between 230 and 290 K

  12. Tunneling characteristics in chemical vapor deposited graphene hexagonal boron nitride graphene junctions

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Tunneling characteristics in chemical vapor deposited graphene ­ hexagonal boron nitride ­ graphene junctions T. Roy1 , L. Liu2 , S. de la Barrera,3 B. Chakrabarti1,4 , Z. R. Hesabi1 , C. A. Joiner1 Abstract: Large area chemical vapor deposited graphene and hexagonal boron nitride was used to fabricate

  13. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOE Patents [OSTI]

    Yeung, E.S.; Chang, Y.C.

    1999-06-29T23:59:59.000Z

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  14. Momentum and thermal boundary-layer thickness in a stagnation flow chemical vapor deposition reactor

    E-Print Network [OSTI]

    Dandy, David

    reactor David S. Dandy and Jungheum Yun Department of Chemical Engineering, Colorado State University stagnation flows characteristic of highly convective chemical vapor deposition pedestal reactors. Expressions of diamond via low- pressure chemical vapor deposition, direct current (dc) arcjet reactor systems3­8 have

  15. Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from such as cloud mask, atmos- pheric profiles, aerosol properties, total precipitable water, and cloud properties vapor amount, aerosol particles, and the subsequently formed clouds [9]. Barnes et al. [2] provide

  16. Porous GaN nanowires synthesized using thermal chemical vapor deposition

    E-Print Network [OSTI]

    Kim, Bongsoo

    Porous GaN nanowires synthesized using thermal chemical vapor deposition Seung Yong Bae a , Hee Won 2003 Abstract Porous structured GaN nanowires were synthesized with a large scale by chemical vapor to 1 mm. The porous GaN nanowires consist of the wurtzite single crystal grown with the [0 1 1

  17. Vapor chambers with jumping-drop liquid return from superhydrophobic condensers

    E-Print Network [OSTI]

    Chen, Chuan-Hua

    Vapor chambers with jumping-drop liquid return from superhydrophobic condensers Jonathan B. Boreyko January 2013 Accepted 28 January 2013 Keywords: Jumping drops Vapor chamber Superhydrophobicity Wick-propelled jumping drops on a superhydrophobic condenser offer a new mechanism to return the working fluid

  18. Real-time growth rate metrology for a tungsten chemical vapor deposition process by acoustic sensing

    E-Print Network [OSTI]

    Rubloff, Gary W.

    to a production-scale tungsten chemical vapor deposition cluster tool for in situ process sensing. Process gasesReal-time growth rate metrology for a tungsten chemical vapor deposition process by acoustic to achieve run-to-run process control of the deposited tungsten film thickness. © 2001 American Vacuum

  19. Method and apparatus to measure vapor pressure in a flow system

    DOE Patents [OSTI]

    Grossman, M.W.; Biblarz, O.

    1991-10-15T23:59:59.000Z

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

  20. EFFECT OF FILTER TEMPERATURE ON TRAPPING ZINC VAPOR

    SciTech Connect (OSTI)

    Korinko, P.

    2011-03-25T23:59:59.000Z

    To address the {sup 65}Zn contamination issue in the TEF, a multi-task experimental program was initiated. The first experimental task was completed and is reported in Ref. 1. The results of the second experimental task are reported here. This task examined the effect of filter temperature on trapping efficiency and deposit morphology. Based on the first experimental tasks that examined filter pore size and trapping efficiency, stainless steel filter media with a 20 {micro}m pore size was selected. A series of experiments using these filters was conducted during this second task to determine the effect of filter temperature on zinc vapor trapping efficiency, adhesion and morphology. The tests were conducted with the filters heated to 60, 120, and 200 C; the zinc source material was heated to 400 C for all the experiments to provide a consistent zinc source. The samples were evaluated for mass change, deposit adhesion and morphology. As expected from the physical vapor deposition literature, a difference in deposit morphology and appearance was observed between the three filter temperatures. The filter held at 60 C had the largest average mass gain while the 120 and 200 C filters exhibited similar but lower weight gains. The standard deviations were large and suggest that all three temperatures exhibited comparable gains. No zinc was detected on the backside surface of the filters indicating high efficiency for front and internal trapping. A zinc rich deposit was formed on the surface of the 60 C filter. Based on a simple tape adhesion test, the surface zinc was readily removed from the 60 C filter while less zinc deposit was removed from the 120 and 200 C filter samples. It is surmised that the higher temperatures enable the zinc to deposit within the filter media rather than on the surface. Based on the findings that all three statistically trapped the same quantity of zinc vapor and that the higher temperatures resulted in a more adherent/better trapped product, operating the filters at 120 to 200 C is recommended.

  1. Metal-Organic Heat Carrier Nanofluids

    SciTech Connect (OSTI)

    McGrail, B. Peter; Thallapally, Praveen K.; Blanchard, Jeremy; Nune, Satish K.; Jenks, Jeromy WJ; Dang, Liem X.

    2013-09-01T23:59:59.000Z

    Nanofluids, dispersions of metal or oxide nanoparticles in a base working fluid, are being intensively studied due to improvements they offer in thermal properties of the working fluid. However, these benefits have been erratically demonstrated and proven impacts on thermal conductivity are modest and well described from long-established effective medium theory. In this paper, we describe a new class of metal-organic heat carrier (MOHC) nanofluid that offers potential for a larger performance boost in thermal vapor-liquid compression cycles. MOHCs are nanophase porous coordination solids designed to reversibly uptake the working fluid molecules in which the MOHCs are suspended. Additional heat can be extracted in a heat exchanger or solar collector from the endothermic enthalpy of desorption, which is then released as the nanofluid transits through a power generating device such as a turboexpander. Calculations for an R123 MOHC nanofluid indicated potential for up to 15% increase in power output. Capillary tube experiments show that liquid-vapor transitions occur without nanoparticle deposition on the tube walls provided entrance Reynolds number exceeds approximately 100.

  2. TREATMENT OF PRODUCED WATERS USING A SURFACTANT MODIFIED ZEOLITE/VAPOR PHASE BIOREATOR SYSTEM

    SciTech Connect (OSTI)

    LYNN E. KATZ; KERRY A. KINNEY; R.S. BOWMAN; E.J. SULLIVAN

    2003-10-01T23:59:59.000Z

    Co-produced water from the oil and gas industry is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some of them must be treated to remove organic constituents before the water is discharged. An efficient, cost-effective treatment technology is needed to remove these constituents. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. Our previous DOE research work (DE-AC26-99BC15221) demonstrated that SMZ could successfully remove BTEX compounds from the produced water. In addition, SMZ could be regenerated through a simple air sparging process. The primary goal of this project is to develop a robust SMZ/VPB treatment system to efficiently remove the organic constituents from produced water in a cost-effective manner. This report summarizes work of this project from March 2003 through September 2003. We have continued our investigation of SMZ regeneration from our previous DOE project. Ten saturation/stripping cycles have been completed for SMZ columns saturated with BTEX compounds. The results suggest that BTEX sorption capacity is not lost after ten saturation/regeneration cycles. The composition of produced water from a site operated by Crystal Solutions Ltd. in Wyoming has been characterized and was used to identify key semi-volatile components. Isotherms with selected semi-volatile components have been initiated and preliminary results have been obtained. The experimental vapor phase bioreactors for this project have been designed and assembled to treat the off-gas from the SMZ regeneration process. These columns will be used both in the laboratory and in the proposed field testing to be conducted next year. Innocula for the columns that degrade all of the BTEX columns have been developed.

  3. ACTION CONCENTRATION FOR MIXTURES OF VOLATILE ORGANIC COMPOUNDS (VOC) & METHANE & HYDROGEN

    SciTech Connect (OSTI)

    MARUSICH, R.M.

    2006-07-10T23:59:59.000Z

    Waste containers may contain volatile organic compounds (VOCs), methane, hydrogen and possibly propane. These constituents may occur individually or in mixtures. Determining if a waste container contains a flammable concentration of flammable gases and vapors (from VOCs) is important to the safety of the handling, repackaging and shipping activities. This report provides the basis for determining the flammability of mixtures of flammable gases and vapors. The concentration of a mixture that is at the lowest flammability limit for that mixture is called the action concentration. The action concentration can be determined using total VOC concentrations or actual concentration of each individual VOC. The concentrations of hydrogen and methane are included with the total VOC or individual VOC concentration to determine the action concentration. Concentrations below this point are not flammable. Waste containers with gas/vapor concentrations at or above the action concentration are considered flammable.

  4. Vadose Zone Remediation Assessment: M-Area Process Sewer Soil Vapor Extraction Units 782-5M, 782-7M, and 782-8M

    SciTech Connect (OSTI)

    Riha, B.D.

    2001-04-20T23:59:59.000Z

    This study focuses on the status of the vadose zone remediation along 1600 ft of the process sewer line between the M-Area security fence and the M-Area settling basin. Three soil vapor extraction (SVE) units 782-5M, 782-7M, and 782-8M, connected to 4 vertical wells and 3 horizontal wells have been addressing the vadose zone volatile organic contamination (VOC) since 1995. The specific objectives of this study were to obtain soil gas and sediment samples, evaluate SVE units and vadose zone remediation, and make recommendations to address further remediation needs.

  5. Isothermal vapor-liquid equilibrium accompanied by esterification; ethanol-formic acid system

    SciTech Connect (OSTI)

    Rim, J.K.; Bae, S.Y.; Lee, H.T.

    1985-07-01T23:59:59.000Z

    The equilibrium total pressures after reaction between ethanol and formic acid were measured at 30, 40 and 50/sup 0/C, and the compositions of the vapor and liquid phases were determined gas chromatographically. Since the presence of the carboxylic acid in the mixture induces dimerization and trimerization of the acid in the vapor phase, the modified fugacity coefficients were calculated from ''chemical'' theory using the Lewis fugacity rule, from which are calculated the activity coefficients and the vapor-phase mole fractions using the nonrandom, two-liquid (NRTL) equation. The parameters in the NRTL equation were obtained from vapor-liquid equilibrium data for the binary system. The calculated results agree closely with the experimental vapor-phase mole-fraction data.

  6. U.S. Strategic Petroleum Reserve Vapor Pressure Committee 2009 annual report.

    SciTech Connect (OSTI)

    Allen, Ray (Allen Energy Services, Inc., Longview, TX); Eldredge, Lisa (DynMcDermott Petroleum Operations, Harahan, LA); DeLuca, Charles (DynMcDermott Petroleum Operations, Harahan, LA); Mihalik, Patrick (DynMcDermott Petroleum Operations, Harahan, LA); Maldonado, Julio (U.S. Department of Energy, Harahan, LA); Lord, David L.; Rudeen, David Keith (GRAM, Inc., Albuquerque, NM); Berndsen, Gerard (U.S. Department of Energy, Harahan, LA)

    2010-05-01T23:59:59.000Z

    This report comprises an annual summary of activities under the U.S. Strategic Petroleum Reserve (SPR) Vapor Pressure Committee in FY2009. The committee provides guidance to senior project management on the issues of crude oil vapor pressure monitoring nd mitigation. The principal objectives of the vapor pressure program are, in the event of an SPR drawdown, to minimize the impact on the environment and assure worker safety and public health from crude oil vapor emissions. The annual report reviews key program areas ncluding monitoring program status, mitigation program status, new developments in measurements and modeling, and path forward including specific recommendations on cavern sampling for the next year. The contents of this report were first presented to SPR senior anagement in December 2009, in a deliverable from the vapor pressure committee. The current SAND report is an adaptation for the Sandia technical audience.

  7. Molecular-jet chemical vapor deposition of SiC

    SciTech Connect (OSTI)

    Lubben, D.; Jellison, G.E.; Modine, F.A.

    1995-09-01T23:59:59.000Z

    SiC films have been deposited by molecular-jet chemical vapor deposition (MJCVD) on Si(001) substrates. Methylsilane (MS) diluted in He was used as a precursor for deposition under conditions which produced a MS molecular beam with 0.365 eV translational energy. Films grown at temperatures between 1000 and 1150 C and above {approx}1200 C were single crystal as judged by electron channeling, while those grown at intermediate temperatures were polycrystalline. Films grown at lower temperatures generally had a smoother surface morphology for moderate thicknesses, although all films showed at least some degree of faceting. The best thick films, up to 4 {mu}m, were obtained for substrate temperatures of {approx}1210 C under flow conditions which produced a deposition rate of {approx}1200 {angstrom} per minute.

  8. Technology alternatives to CFC/HCFC vapor compression

    SciTech Connect (OSTI)

    Fischer, S.

    1996-08-01T23:59:59.000Z

    Phaseouts of CFCs and HCFCs to protect the stratospheric ozone layer have caused many developments in replacement or alternative technologies for heat pumping. Some of this effort has been of an ``evolutionary`` nature where the designs of conventional vapor compression systems were adapted to use chlorine-free refrigerants. Other alternatives are more radical departures from conventional practice such as operating above the critical point of an alternative refrigerant. Revolutionary changes in technology based on cycles sor principles not commonly associated with refrigeration have also attracted interest. Many of these technologies are being touted because they are ``ozone-safe`` or because they do not use greenhouse gases as refrigerants. Basic principles and some advantages and disadvantages of each technology are discussed in this paper.

  9. Storage and Retrieval of Thermal Light in Warm Atomic Vapor

    E-Print Network [OSTI]

    Young-Wook Cho; Yoon-Ho Kim

    2010-07-12T23:59:59.000Z

    We report slowed propagation and storage and retrieval of thermal light in warm rubidium vapor using the effect of electromagnetically-induced transparency (EIT). We first demonstrate slowed-propagation of the probe thermal light beam through an EIT medium by measuring the second-order correlation function of the light field using the Hanbury-Brown$-$Twiss interferometer. We also report an experimental study on the effect of the EIT slow-light medium on the temporal coherence of thermal light. Finally, we demonstrate the storage and retrieval of thermal light beam in the EIT medium. The direct measurement of the photon number statistics of the retrieved light field shows that the photon number statistics is preserved during the storage and retrieval process.

  10. Field emission properties of chemical vapor deposited individual graphene

    SciTech Connect (OSTI)

    Zamri Yusop, Mohd [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Department of Materials, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Yaakob, Yazid; Takahashi, Chisato; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan)

    2014-03-03T23:59:59.000Z

    Here, we report field emission (FE) properties of a chemical vapor deposited individual graphene investigated by in-situ transmission electron microscopy. Free-standing bilayer graphene is mounted on a cathode microprobe and FE processes are investigated varying the vacuum gap of cathode and anode. The threshold field for 10?nA current were found to be 515, 610, and 870?V/?m for vacuum gap of 400, 300, and 200?nm, respectively. It is observed that the structural stability of a high quality bilayer graphene is considerably stable during emission process. By contacting the nanoprobe with graphene and applying a bias voltage, structural deformation and buckling are observed with significant rise in temperature owing to Joule heating effect. The finding can be significant for practical application of graphene related materials in emitter based devices as well as understanding the contact resistance influence and heating effect.

  11. Vapor-deposited porous films for energy conversion

    DOE Patents [OSTI]

    Jankowski, Alan F.; Hayes, Jeffrey P.; Morse, Jeffrey D.

    2005-07-05T23:59:59.000Z

    Metallic films are grown with a "spongelike" morphology in the as-deposited condition using planar magnetron sputtering. The morphology of the deposit is characterized by metallic continuity in three dimensions with continuous and open porosity on the submicron scale. The stabilization of the spongelike morphology is found over a limited range of the sputter deposition parameters, that is, of working gas pressure and substrate temperature. This spongelike morphology is an extension of the features as generally represented in the classic zone models of growth for physical vapor deposits. Nickel coatings were deposited with working gas pressures up 4 Pa and for substrate temperatures up to 1000 K. The morphology of the deposits is examined in plan and in cross section views with scanning electron microscopy (SEM). The parametric range of gas pressure and substrate temperature (relative to absolute melt point) under which the spongelike metal deposits are produced appear universal for other metals including gold, silver, and aluminum.

  12. Single Molecule DNA Detection with an Atomic Vapor Notch Filter

    E-Print Network [OSTI]

    Uhland, Denis; Widmann, Matthias; Lee, Sang-Yun; Wrachtrup, Jörg; Gerhardt, Ilja

    2015-01-01T23:59:59.000Z

    The detection of single molecules has facilitated many advances in life- and material-sciences. Commonly, it founds on the fluorescence detection of single molecules, which are for example attached to the structures under study. For fluorescence microscopy and sensing the crucial parameters are the collection and detection efficiency, such that photons can be discriminated with low background from a labeled sample. Here we show a scheme for filtering the excitation light in the optical detection of single stranded labeled DNA molecules. We use the narrow-band filtering properties of a hot atomic vapor to filter the excitation light from the emitted fluorescence of a single emitter. The choice of atomic sodium allows for the use of fluorescent dyes, which are common in life-science. This scheme enables efficient photon detection, and a statistical analysis proves an enhancement of the optical signal of more than 15% in a confocal and in a wide-field configuration.

  13. Tunable wavelength soft photoionization of ionic liquid vapors

    SciTech Connect (OSTI)

    Strasser, Daniel; Goulay, Fabien; Belau, Leonid; Kostko, Oleg; Koh, Christine; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Ahmed, Musahid; Leone, Stephen R.

    2009-11-11T23:59:59.000Z

    Combined data of photoelectron spectra and photoionization efficiency curves in the near threshold ionization region of isolated ion-pairs from [emim][Tf2N], [emim][Pf2N]and [dmpim][Tf2N]ionic liquid vapors reveal small shifts in the ionization energies of ion-pair systems due to cation and anion substitutions. Shifts towards higher binding energy following anion substitution are attributed to increased electronegativity of the anion itself, while shifts towards lower binding energies following cation substitution are attributed to an increase in the cation-anion distance that causes a lower Coulombic binding potential. The predominant ionization mechanism in the near threshold photon energy region is identified as dissociative ionization, involving dissociation of the ion-pair and the production of intact cations as the positively charged products.

  14. Low Temperature Chemical Vapor Deposition Of Thin Film Magnets

    DOE Patents [OSTI]

    Miller, Joel S. (Salt Lake City, UT); Pokhodnya, Kostyantyn I. (Salt Lake City, UT)

    2003-12-09T23:59:59.000Z

    A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

  15. Design of Stirling-driven vapor-compression system

    SciTech Connect (OSTI)

    Kagawa, N.

    1998-07-01T23:59:59.000Z

    Stirling engines have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration. On the other hand, heat pump systems are very attractive for space heating and cooling and industrial usage because of their potential to save energy. Especially, there are many environmental merits of Stirling-driven vapor-compression (SDVC) systems. This paper introduces a design method for the SDVC based on reliable mathematical methods for Stirling and Rankine cycles with reliable thermophysical information for refrigerants. The model treats a kinematic Stirling engine and a scroll compressor coupled by a belt. Some experimental coefficients are used to formulate the SDVC items. The obtained results show the performance behavior of the SDVC in detail. The measured performance of the actual system agrees with the calculated results. Furthermore, the calculated results indicate attractive SDVC performance using alternative refrigerants.

  16. Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve.

    SciTech Connect (OSTI)

    Rudeen, David Keith (GRAM, Inc., Albuquerque, NM); Lord, David L.

    2005-08-01T23:59:59.000Z

    Crude oil storage caverns at the U.S. Strategic Petroleum Reserve (SPR) are solution-mined from subsurface salt domes along the U.S. Gulf Coast. While these salt domes exhibit many attractive characteristics for large-volume, long-term storage of oil such as low cost for construction, low permeability for effective fluids containment, and secure location deep underground, they also present unique technical challenges for maintaining oil quality within delivery standards. The vapor pressures of the crude oils stored at SPR tend to increase with storage time due to the combined effects of geothermal heating and gas intrusion from the surrounding salt. This presents a problem for oil delivery offsite because high vapor-pressure oil may lead to excessive atmospheric emissions of hydrocarbon gases that present explosion hazards, health hazards, and handling problems at atmospheric pressure. Recognizing this potential hazard, the U.S. Department of Energy, owner and operator of the SPR, implemented a crude oil vapor pressure monitoring program that collects vapor pressure data for all the storage caverns. From these data, DOE evaluates the rate of change in vapor pressures of its oils in the SPR. Moreover, DOE implemented a vapor pressure mitigation program in which the oils are degassed periodically and will be cooled immediately prior to delivery in order to reduce the vapor pressure to safe handling levels. The work described in this report evaluates the entire database since its origin in 1993, and determines the current levels of vapor pressure around the SPR, as well as the rate of change for purposes of optimizing both the mitigation program and meeting safe delivery standards. Generally, the rate of vapor pressure increase appears to be lower in this analysis than reported in the past and, problematic gas intrusion seems to be limited to just a few caverns. This being said, much of the current SPR inventory exceeds vapor pressure delivery guidelines and must be degassed and cooled in order to meet current delivery standards.

  17. Vaporization modeling of petroleum-biofuel drops using a hybrid multi-component approach

    SciTech Connect (OSTI)

    Zhang, Lei; Kong, Song-Charng [Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering Building, Ames, IA 50011 (United States)

    2010-11-15T23:59:59.000Z

    Numerical modeling of the vaporization characteristics of multi-component fuel mixtures is performed in this study. The fuel mixtures studied include those of binary components, biodiesel, diesel-biodiesel, and gasoline-ethanol. The use of biofuels has become increasingly important for reasons of environmental sustainability. Biofuels are often blended with petroleum fuels, and the detailed understanding of the vaporization process is essential to designing a clean and efficient combustion system. In this study, a hybrid vaporization model is developed that uses continuous thermodynamics to describe petroleum fuels and discrete components to represent biofuels. The model is validated using the experimental data of n-heptane, n-heptane-n-decane mixture, and biodiesel. Since biodiesel properties are not universal due to the variation in feedstock, methods for predicting biodiesel properties based on the five dominant fatty acid components are introduced. Good levels of agreement in the predicted and measured drop size histories are obtained. Furthermore, in modeling the diesel-biodiesel drop, results show that the drop lifetime increases with the biodiesel concentration in the blend. During vaporization, only the lighter components of diesel fuel vaporize at the beginning. Biodiesel components do not vaporize until some time during the vaporization process. On the other hand, results of gasoline-ethanol drops indicate that both fuels start to vaporize once the process begins. At the beginning, the lighter components of gasoline have a slightly higher vaporization rate than ethanol. After a certain time, ethanol vaporizes faster than the remaining gasoline components. At the end, the drop reduces to a regular gasoline drop with heavier components. Overall, the drop lifetime increases as the concentration of ethanol increases in the drop due to the higher latent heat. (author)

  18. Organic carbon and non-refractory aerosol over the remote1 Southeast Pacific: oceanic and combustion sources2

    E-Print Network [OSTI]

    Wood, Robert

    1 Organic carbon and non-refractory aerosol over the remote1 Southeast Pacific: oceanic ratios between 0.25 and 0.40, and in some cases as high as 3.5. CO and12 black carbon (BC) measurements-salt particles30 from wave breaking and bubble bursting, as well as gas to particle conversion of vapors31

  19. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrophobic Primary Organic Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of ?-Pinene. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic...

  20. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    SciTech Connect (OSTI)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. (Argonne National Lab., IL (United States)); Banerjee, D.D. (Illinois Clean Coal Inst., Carterville, IL (United States))

    1993-01-01T23:59:59.000Z

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950[degree]C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  1. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    SciTech Connect (OSTI)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. [Argonne National Lab., IL (United States); Banerjee, D.D. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1993-04-01T23:59:59.000Z

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950{degree}C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  2. Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization

    SciTech Connect (OSTI)

    Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; To, Albert; Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.

    2009-11-25T23:59:59.000Z

    The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum ultraviolet synchrotron source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide is determined to be Delta Hvap(298.15 K) = 195+-19 kJ mol-1. The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta Hvap(298.15 K) = 174+-12 kJ mol-1) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta Hvap(298.15 K) = 171+-12 kJ mol-1) are consistent with reported experimental values using electron impact ionization. The tunable vacuum ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement with MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ab initio calculations corroborate vaporization of these RTILs as intact cation-anion ion pairs.

  3. Heterostructures based on inorganic and organic van der Waals systems

    SciTech Connect (OSTI)

    Lee, Gwan-Hyoung [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Chul-Ho [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Zande, Arend M. van der [Energy Frontier Research Center (EFRC), Columbia University, New York, New York 10027 (United States); Han, Minyong [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Cui, Xu; Arefe, Ghidewon; Hone, James [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Nuckolls, Colin [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Heinz, Tony F. [Department of Electrical Engineering, Columbia University, New York, New York 10027 (United States); Department of Physics, Columbia University, New York, New York 10027 (United States); Kim, Philip, E-mail: pk2015@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Department of Physics, Columbia University, New York, New York 10027 (United States)

    2014-09-01T23:59:59.000Z

    The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS{sub 2} heterostructures for memory devices; graphene/MoS{sub 2}/WSe{sub 2}/graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors.

  4. TMVOC, simulator for multiple volatile organic chemicals

    SciTech Connect (OSTI)

    Pruess, Karsten; Battistelli, Alfredo

    2003-03-25T23:59:59.000Z

    TMVOC is a numerical simulator for three-phase non-isothermal flow of water, soil gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. It is an extension of the TOUGH2 general-purpose simulation program developed at the Lawrence Berkeley National Laboratory. TMVOC is designed for applications to contamination problems that involve hydrocarbon fuel or organic solvent spills in saturated and unsaturated zones. It can model contaminant behavior under ''natural'' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted source remediation. TMVOC is upwards compatible with T2VOC (Falta et al., 1995) and can be initialized from T2VOC-style initial conditions. The main enhancements in TMVOC relative to T2VOC are as follows: a multicomponent mixture of volatile organic chemicals can be modeled; any and all combinations of the three phases water-oil-gas are treated; several non-condensible gases may be present; diffusion is treated in all phases in a manner that is fully coupled with phase partitioning. This paper gives a brief summary of the methodology used in TMVOC as well as highlighting some implementation issues. Simulation of a NAPL spill and subsequent remediation is discussed for a 2-D vertical section of a saturated-unsaturated flow problem.

  5. Models of the atmospheric water vapor budget for the Texas HIPLEX area: by Steven Francis Williams.

    E-Print Network [OSTI]

    Williams, Steven Francis

    1979-01-01T23:59:59.000Z

    co:erage cf. convective activ' ty, Thus, the em&unt of convection seems to be more important than the type oz pr"se. . ce of convective activi!y. An increased tran:port of water vapor near ti e surface is -hown to be an important factor... of watc-. z vapor tnrough each later, l boundary shown in Fig. 1 can be comput d by substituting Eqs. (16) ? (19), reaper tively, into Eq. (14) . Th ' net transport of water vapor 'nt the volume through la+eral oouccdaries or t?:e net horizontal tran:;port...

  6. Properties of chemical vapor infiltration diamond deposited in a diamond powder matrix

    SciTech Connect (OSTI)

    Panitz, J.K.G.; Tallant, D.R.; Hills, C.R.; Staley, D.J.

    1993-12-31T23:59:59.000Z

    Densifying non-mined diamond powder precursors with diamond produced by chemical vapor infiltration (CVI) is an attractive approach for forming thick diamond deposits that avoids many potential manufacturability problems associated with predominantly chemical vapor deposition (CVD) processes. The authors have developed two techniques: electrophoretic deposition and screen printing, to form nonmined diamond powder precursors on substrates. They then densify these precursors in a hot filament assisted reactor. Analysis indicated that a hot filament assisted chemical vapor infiltration process forms intergranular diamond deposits with properties that are to some degree different from predominantly hot-filament-assisted CVD material.

  7. Organic Photovoltaics Philip Schulz

    E-Print Network [OSTI]

    Firestone, Jeremy

    Field Effect Transistors Organic Light Emitting Diodes Organic Solar Cells .OFET, OTFT .RF-ID tag 1977 ­ Conductivity in polymers 1986 ­ First heterojunction OPV 1987 ­ First organic light emitting diode (OLED) 1993 ­ First OPV from solution processing 2001 ­ First certified organic solar cell with 2

  8. Departmental Organization and Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-06-10T23:59:59.000Z

    Effective immediately, the Departmental organization structure reflected in the chart at Attachment 1 has been approved.

  9. Characterizing the formation of secondary organic aerosols

    SciTech Connect (OSTI)

    Lunden, Melissa; Black, Douglas; Brown, Nancy

    2004-02-01T23:59:59.000Z

    Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the concentrations of important gas phase nitrogen compounds. Experiments have been ongoing at the Blodgett field site since the fall of 2000, and have included portions of the summer and fall of 2001, 2002, and 2003. Analysis of both the gas and particle phase data from the year 2000 show that the particle loading at the site correlates with both biogenic precursors emitted in the forest and anthropogenic precursors advected to the site from Sacramento and the Central Valley of California. Thus the particles at the site are affected by biogenic processing of anthropogenic emissions. Size distribution measurements show that the aerosol at the site has a geometric median diameter of approximately 100 nm. On many days, in the early afternoon, growth of nuclei mode particles (<20 nm) is also observed. These growth events tend to occur on days with lower average temperatures, but are observed throughout the summer. Analysis of the size resolved data for these growth events, combined with typical measured terpene emissions, show that the particle mass measured in these nuclei mode particles could come from oxidation products of biogenic emissions, and can serve as a significant route for SOA partitioning into the particle phase. During periods of each year, the effect of emissions for forest fires can be detected at the Blodgett field location. During the summer of 2002 emissions from the Biscuit fire, a large fire located in Southwest Oregon, was detected in the aerosol data. The results show that increases in particle scattering can be directly related to increased black carbon concentration and an appearance of a larger mode in the aerosol size distribution. These results show that emissions from fires can have significant impact on visibility over large distances. The results also reinforce the view that forest fires can be a significant source of black carbon in the atmosphere, which has important climate and visibility. Continuing work with the 2002 data set, particularly the combination of the aerosol and gas phase data, will continue to provide important information o

  10. EFFECT OF PORE SIZE ON TRAPPING ZINC VAPORS

    SciTech Connect (OSTI)

    Korinko, P.

    2010-12-17T23:59:59.000Z

    A series of experiments were conducted to determine the effect of pore size on pumping efficiency and zinc vapor trapping efficiency. A simple pumping efficiency test was conducted for all five pore diameters where it was observed that evacuation times were adversely affected by reducing the pore size below 5 {micro}m. Common test conditions for the zinc trapping efficiency experiments were used. These conditions resulted in some variability, to ascribe different efficiencies to the filter media. However, the data suggest that there is no significant difference in trapping efficiency for filter media with pores from 0.2 to 20 {micro}m with a thickness of 0.065-inch. Consequently, the 20 {micro}m pore filter media that is currently used at SRS is a suitable filter material for to utilize for future extractions. There is evidence that smaller pore filter will adversely affect the pumping times for the TEF and little evidence to suggest that a smaller pore diameters have significant impact on the trapping efficiency.

  11. Development of chemical vapor composites, CVC materials. Final report

    SciTech Connect (OSTI)

    NONE

    1998-10-05T23:59:59.000Z

    Industry has a critical need for high-temperature operable ceramic composites that are strong, non-brittle, light weight, and corrosion resistant. Improvements in energy efficiency, reduced emissions and increased productivity can be achieved in many industrial processes with ceramic composites if the reaction temperature and pressure are increased. Ceramic composites offer the potential to meet these material requirements in a variety of industrial applications. However, their use is often restricted by high cost. The Chemical Vapor composite, CVC, process can reduce the high costs and multiple fabrication steps presently required for ceramic fabrication. CVC deposition has the potential to eliminate many difficult processing problems and greatly increase fabrication rates for composites. With CVC, the manufacturing process can control the composites` density, microstructure and composition during growth. The CVC process: can grow or deposit material 100 times faster than conventional techniques; does not require an expensive woven preform to infiltrate; can use high modulus fibers that cannot be woven into a preform; can deposit composites to tolerances of less than 0.025 mm on one surface without further machining.

  12. Water, Vapor, and Salt Dynamics in a Hot Repository

    SciTech Connect (OSTI)

    Bahrami, Davood; Danko, George [Department of Mining Engineering, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557 (United States); Walton, John [Department of Civil Engineering, University of Texas at El Paso, 500 W. University, El Paso, TX, 79968 (United States)

    2007-07-01T23:59:59.000Z

    The purpose of this paper is to report the results of a new model study examining the high temperature nuclear waste disposal concept at Yucca Mountain using MULTIFLUX, an integrated in-drift- and mountain-scale thermal-hydrologic model. The results show that a large amount of vapor flow into the drift is expected during the period of above-boiling temperatures. This phenomenon makes the emplacement drift a water/moisture attractor during the above-boiling temperature operation. The evaporation of the percolation water into the drift gives rise to salt accumulation in the rock wall, especially in the crown of the drift for about 1500 years in the example. The deposited salts over the drift footprint, almost entirely present in the fractures, may enter the drift either by rock fall or by water drippage. During the high temperature operation mode, the barometric pressure variation creates fluctuating relative humidity in the emplacement drift with a time period of approximately 10 days. Potentially wet and dry conditions and condensation on salt-laden drift wall sections may adversely affect the storage environment. Salt accumulations during the above-boiling temperature operation must be sufficiently addressed to fully understand the waste package environment during the thermal period. Until the questions are resolved, a below-boiling repository design is favored where the Alloy-22 will be less susceptible to localized corrosion. (authors)

  13. Microfabricated alkali vapor cell with anti-relaxation wall coating

    SciTech Connect (OSTI)

    Straessle, R.; Pétremand, Y.; Briand, D.; Rooij, N. F. de, E-mail: nico.derooij@epfl.ch [Institute of Microengineering (IMT), Sensors, Actuators and Microsystems Laboratory (SAMLAB), Ecole Polytechnique Fédérale de Lausanne EPFL, 2000 Neuchâtel (Switzerland); Pellaton, M.; Affolderbach, C.; Mileti, G., E-mail: gaetano.mileti@unine.ch [Laboratoire Temps-Fréquence (LTF), Institut de Physique, Université de Neuchâtel, 2000 Neuchâtel (Switzerland)

    2014-07-28T23:59:59.000Z

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140?°C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantly lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.

  14. Growth of graphene underlayers by chemical vapor deposition

    SciTech Connect (OSTI)

    Fabiane, Mopeli; Khamlich, Saleh; Bello, Abdulhakeem; Dangbegnon, Julien; Momodu, Damilola; Manyala, Ncholu, E-mail: ncholu.manyala@up.ac.za [Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa)] [Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Charlie Johnson, A. T. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)] [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2013-11-15T23:59:59.000Z

    We present a simple and very convincing approach to visualizing that subsequent layers of graphene grow between the existing monolayer graphene and the copper catalyst in chemical vapor deposition (CVD). Graphene samples were grown by CVD and then transferred onto glass substrates by the bubbling method in two ways, either direct-transfer (DT) to yield poly (methyl methacrylate) (PMMA)/graphene/glass or (2) inverted transfer (IT) to yield graphene/PMMA/glass. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to reveal surface features for both the DT and IT samples. The results from FE-SEM and AFM topographic analyses of the surfaces revealed the underlayer growth of subsequent layers. The subsequent layers in the IT samples are visualized as 3D structures, where the smaller graphene layers lie above the larger layers stacked in a concentric manner. The results support the formation of the so-called “inverted wedding cake” stacking in multilayer graphene growth.

  15. Effect of dimensionality on vapor-liquid phase transition

    SciTech Connect (OSTI)

    Singh, Sudhir Kumar, E-mail: sksingh@thapar.edu [Department Chemical Engineering, Thapar University, Patiala-147004 Punjab (India)

    2014-04-24T23:59:59.000Z

    Dimensionality play significant role on ‘phase transitions’. Fluids in macroscopic confinement (bulk or 3-Dimensional, 3D) do not show significant changes in their phase transition properties with extent of confinement, since the number of molecules away from the surrounding surfaces is astronomically higher than the number of molecules in close proximity of the confining surfaces. In microscopic confinement (quasi 3D to quasi-2D), however, the number of molecules away from the close proximity of the surface is not as high as is the case with macroscopic (3D) confinement. Hence, under the same thermodynamic conditions ‘phase transition’ properties at microscopic confinement may not remain the same as the macroscopic or 3D values. Phase transitions at extremely small scale become very sensitive to the dimensions as well as the surface characteristics of the system. In this work our investigations reveal the effect of dimensionality on the phase transition from 3D to quasi-2D to 2D behavior. We have used grand canonical transition matrix Monte Carlo simulation to understand the vapor–liquid phase transitions from 3D to quasi-2D behavior. Such studies can be helpful in understanding and controlling the fluid film behaviour confined between solid surfaces of few molecular diameters, for example, in lubrication applications.

  16. Soil Vapor Extraction System Optimization, Transition, and Closure Guidance

    SciTech Connect (OSTI)

    Truex, Michael J.; Becker, Dave; Simon, Michelle A.; Oostrom, Martinus; Rice, Amy K.; Johnson, Christian D.

    2013-02-08T23:59:59.000Z

    Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants in the vadose zone. A diminishing rate of contaminant extraction over time is typically observed due to 1) diminishing contaminant mass, and/or 2) slow rates of removal for contamination in low-permeability zones. After a SVE system begins to show indications of diminishing contaminant removal rate, SVE performance needs to be evaluated to determine whether the system should be optimized, terminated, or transitioned to another technology to replace or augment SVE. This guidance specifically addresses the elements of this type of performance assessment. While not specifically presented, the approach and analyses in this guidance could also be applied at the onset of remediation selection for a site as a way to evaluate current or future impacts to groundwater from vadose zone contamination. The guidance presented here builds from existing guidance for SVE design, operation, optimization, and closure from the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, and the Air Force Center for Engineering and the Environment. The purpose of the material herein is to clarify and focus on the specific actions and decisions related to SVE optimization, transition, and/or closure.

  17. Plasma and Ion Assistance in Physical Vapor Deposition: AHistorical Perspective

    SciTech Connect (OSTI)

    Anders, Andre

    2007-02-28T23:59:59.000Z

    Deposition of films using plasma or plasma-assist can betraced back surprisingly far, namely to the 18th century for arcs and tothe 19th century for sputtering. However, only since the 1960s thecoatings community considered other processes than evaporation for largescale commercial use. Ion Plating was perhaps the first importantprocess, introducing vapor ionization and substrate bias to generate abeam of ions arriving on the surface of the growing film. Ratherindependently, cathodic arc deposition was established as an energeticcondensation process, first in the former Soviet Union in the 1970s, andin the 1980s in the Western Hemisphere. About a dozen various ion-basedcoating technologies evolved in the last decades, all characterized byspecific plasma or ion generation processes. Gridded and gridless ionsources were taken from space propulsion and applied to thin filmdeposition. Modeling and simulation have helped to make plasma and ionseffects to be reasonably well understood. Yet--due to the complex, oftennon-linear and non-equilibrium nature of plasma and surfaceinteractions--there is still a place for the experience plasma"sourcerer."

  18. Optical properties of chemical-vapor-deposited diamond films

    SciTech Connect (OSTI)

    Bi, X.X.; Eklund, P.C.; Zhang, J.G.; Rao, A.M. (Department of Physics and Astronomy, University of Kentucky, Lexington, KY (USA)); Perry, T.A.; Beetz, C.P. Jr. (Physics Department, General Motors Research Laboratory, Warren, MI (USA))

    1990-04-01T23:59:59.000Z

    Results of room-temperature optical studies on {similar to}10 micron thick, free-standing diamond films are reported. The films were grown on Si(100) substrates by hot filament-assisted chemical vapor deposition (CVD) from a methane/hydrogen mixture. The as-grown, free surface of the films exhibited a surface roughness of scale {sigma}{similar to}0.2 to 5 microns, depending on the methane/hydrogen mixture, which introduces significant optical scattering loss for frequencies greater than 0.5 eV. Specular reflection and transmission spectra in the range 0.01--10 eV were collected. Below the threshold for interband adsorption near {similar to}5 eV, the films studied behaved approximately as thin parallel plates of refractive index 2.4, with the rough free surface leading to increasingly larger loss of specular transmission/reflection with decreasing wavelength. Structure in the mid-infrared transmission spectra was observed and attributed to disorder-induced one-phonon absorption, intrinsic multi-phonon absorption, and infrared active --C--H{sub 2} stretching modes. The strength of the C--H band was observed to increase with increasing methane pressure in the growth chamber. At 5.3 eV, the onset of interband absorption was observed, in good agreement with the value of the indirect bandgap in type IIa (intrinsic) diamond.

  19. Cold Water Vapor in the Barnard 5 Molecular Cloud

    E-Print Network [OSTI]

    Wirström, E S; Persson, C M; Buckle, J V; Cordiner, M A; Takakuwa, S

    2014-01-01T23:59:59.000Z

    After more than 30 years of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds, however, there is only one region where cold (~10 K) water vapor has been detected - L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work -- likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 1_10 - 1_01) at 556.9360 GHz toward two positions in the cold molecular cloud Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  20. Aerosol chemical vapor deposition of metal oxide films

    DOE Patents [OSTI]

    Ott, Kevin C. (4745 Trinity Dr., Los Alamos, NM 87544); Kodas, Toivo T. (5200 Noreen Dr. NE., Albuquerque, NM 87111)

    1994-01-01T23:59:59.000Z

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  1. The Water Vapor Abundance in Orion KL Outflows

    E-Print Network [OSTI]

    J. Cernicharo; J. R. Goicoechea; F. Daniel; M. R. Lerate; M. J. Barlow; B. M. Swinyard; E. van Dishoeck; T. L. Lim; S. Viti; J. Yates

    2006-08-16T23:59:59.000Z

    We present the detection and modeling of more than 70 far-IR pure rotational lines of water vapor, including the 18O and 17O isotopologues, towards Orion KL. Observations were performed with the Long Wavelength Spectrometer Fabry-Perot (LWS/FP; R~6800-9700) on board the Infrared Space Observatory (ISO) between ~43 and ~197 um. The water line profiles evolve from P-Cygni type profiles (even for the H2O18 lines) to pure emission at wavelengths above ~100 um. We find that most of the water emission/absorption arises from an extended flow of gas expanding at 25+-5 kms^-1. Non-local radiative transfer models show that much of the water excitation and line profile formation is driven by the dust continuum emission. The derived beam averaged water abundance is 2-3x10^-5. The inferred gas temperature Tk=80-100 K suggests that: (i) water could have been formed in the "plateau" by gas phase neutral-neutral reactions with activation barriers if the gas was previously heated (e.g. by shocks) to >500 K and/or (ii) H2O formation in the outflow is dominated by in-situ evaporation of grain water-ice mantles and/or (iii) H2O was formed in the innermost and warmer regions (e.g. the hot core) and was swept up in ~1000 yr, the dynamical timescale of the outflow.

  2. Application of Computational Fluid Dynamics in the Forced Dispersion Modeling of LNG Vapor Clouds 

    E-Print Network [OSTI]

    Kim, Byung-Kyu

    2013-05-31T23:59:59.000Z

    droplet-LNG vapor system, which will serve in developing guidelines and establishing engineering criteria for a site-specific LNG mitigation system. Finally, the potentials of applying CFD modeling in providing guidance for setting up the design criteria...

  3. Low Temperature Chemical Vapor Deposition of Zirconium Nitride in a Fluidized Bed 

    E-Print Network [OSTI]

    Arrieta, Marie

    2012-10-19T23:59:59.000Z

    The objective of this research was to design, assemble, and demonstrate the initial performance of a fluidized bed chemical vapor deposition (FB-CVD) system capable of producing thin, uniform zirconium nitride (ZrN) coatings (1 to 10 micrometers...

  4. Millimeter-wave Radiometer for High Sensitivity Water Vapor Profiling in Arid Regions

    SciTech Connect (OSTI)

    Pazmany, Andrew

    2006-11-09T23:59:59.000Z

    Abstract - ProSensing Inc. has developed a G-band (183 GHz) water Vapor Radiometer (GVR) for long-term, unattended measurements of low concentrations of atmospheric water vapor and liquid water. Precipitable water vapor and liquid water path are estimated from zenith brightness temperatures measured from four double-sideband receiver channels, centered at 183.31 1, 3 and 7, and 14 GHz. A prototype ground-based version of the instrument was deployed at the DOE ARM program?s North Slope of Alaska site near Barrow AK in April 2005, where it collected data continuously for one year. A compact, airborne version of this instrument, packaged to operate from a standard 2-D PMS probe canister, has been tested on the ground and is scheduled for test flights in the summer of 2006. This paper presents design details, laboratory test results and examples of retrieved precipitable water vapor and liquid water path from measured brightness temperature data.

  5. Methods for reducing the loss of metal in a metal vapor laser

    DOE Patents [OSTI]

    Duncan, David B. (Auburn, CA); Alger, Terry W. (Tracy, CA)

    1990-01-01T23:59:59.000Z

    Methods are provided for reducing loss of metal from a metal vapor laser by collecting metal present outside the hot zone of the laser and introducing or confining it in the hot zone.

  6. A study of new mixture combining rules for prediction of vapor-liquid equilibria

    E-Print Network [OSTI]

    Shyu, Guor-Shiarn

    1993-01-01T23:59:59.000Z

    Wong and Sandler published two important articles in 1992 that established new mixture combining rules (MCR) for use with cubic equations of state (EOS) in the prediction and correlation of vapor-liquid equilibrium (VLE) over wide ranges of pressure...

  7. Application of Computational Fluid Dynamics in the Forced Dispersion Modeling of LNG Vapor Clouds

    E-Print Network [OSTI]

    Kim, Byung-Kyu

    2013-05-31T23:59:59.000Z

    The safety and security of liquefied natural gas (LNG) facilities has prompted the need for continued study of LNG mitigation systems. Water spray systems are widely recognized as an effective measure for dispersing LNG vapor clouds. Currently...

  8. Study of the Effects of Obstacles in Liquefied Natural Gas (LNG) Vapor Dispersion using CFD Modeling

    E-Print Network [OSTI]

    Ruiz Vasquez, Roberto

    2012-10-19T23:59:59.000Z

    The evaluation of the potential hazards related with the operation of an LNG terminal includes possible release scenarios with the consequent flammable vapor dispersion within the facility; therefore, it is important to know the behavior...

  9. Liquefied Natural Gas (LNG) Vapor Dispersion Modeling with Computational Fluid Dynamics Codes

    E-Print Network [OSTI]

    Qi, Ruifeng

    2012-10-19T23:59:59.000Z

    Federal regulation 49 CFR 193 and standard NFPA 59A require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. For modeling purposes, the physical...

  10. Optimization of multi-pressure himidification-dehumidification desalination using thermal vapor compression and hybridization

    E-Print Network [OSTI]

    Mistry, Karan Hemant

    Humidification-dehumidification (HD or HDH) desalination, and specifically HD driven by a thermal vapor compressor (TVC), is a thermal desalination method that has the potential to produce potable water efficiently in order ...

  11. Fault detection methods for vapor-compression air conditioners using electrical measurements

    E-Print Network [OSTI]

    Laughman, Christopher Reed.

    2008-01-01T23:59:59.000Z

    (cont.) This method was experimentally tested and validated on a commercially available air handler and duct system. In the second class of faults studied, liquid refrigerant, rather than vapor, enters the cylinder of a ...

  12. Structure/processing relationships in vapor-liquid-solid nanowire epitaxy

    E-Print Network [OSTI]

    Boles, Steven Tyler

    2010-01-01T23:59:59.000Z

    The synthesis of Si and III-V nanowires using the vapor-liquid-solid (VLS) growth mechanism and low-cost Si substrates was investigated. The VLS mechanism allows fabrication of heterostructures which are not readily ...

  13. Bilayer graphene growth by low pressure chemical vapor deposition on copper foil

    E-Print Network [OSTI]

    Fang, Wenjing, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Successfully integrating graphene in standard processes for applications in electronics relies on the synthesis of high-quality films. In this work we study Low Pressure Chemical Vapor Deposition (LPCVD) growth of bilayer ...

  14. Iron (III) Chloride doping of large-area chemical vapor deposition graphene

    E-Print Network [OSTI]

    Song, Yi, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Chemical doping is an effective method of reducing the sheet resistance of graphene. This thesis aims to develop an effective method of doping large area Chemical Vapor Deposition (CVD) graphene using Iron (III) Chloride ...

  15. Fluid Inclusion Evidence for Rapid Formation of the Vapor-Dominated...

    Open Energy Info (EERE)

    Formation of the Vapor-Dominated Zone at Sulphur Springs, Valles Caldera, New Mexico, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  16. Optical pumping and spectroscopy of Cs vapor at high magnetic field

    SciTech Connect (OSTI)

    Olsen, B. A.; Patton, B.; Jau, Y.-Y.; Happer, W. [Joseph Henry Laboratory, Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)

    2011-12-15T23:59:59.000Z

    We have measured changes in the ground-state populations of Cs vapor induced by optical pumping at high magnetic field. The 2.7-T field of our experiments is strong enough to decouple the nuclear and electronic spins, allowing us to independently measure each population. The spatial dependence of the Cs populations in small amounts of buffer gas obeys a simple coupled diffusion model and the relative populations reveal the details of relaxation within the vapor cell. Optical pumping can produce high nuclear polarization in the Cs vapor due to perturbations of the hyperfine interaction during collisions with buffer-gas particles and depending on the pumping transition, radiation trapping can strongly influence the electronic and nuclear polarizations in the vapor.

  17. Film boiling of saturated liquid flowing upward through a heated tube : high vapor quality range

    E-Print Network [OSTI]

    Laverty, W. F.

    1964-01-01T23:59:59.000Z

    Film boiling of saturated liquid flowing upward through a uniformly heated tube has been studied for the case in which pure saturated liquid enters the tube and nearly saturated vapor is discharged. Since a previous study ...

  18. Initiated chemical vapor deposition of polymeric thin films : mechanism and applications

    E-Print Network [OSTI]

    Chan, Kelvin, Ph. D. Massachusetts Institute of Technology

    2005-01-01T23:59:59.000Z

    Initiated chemical vapor deposition (iCVD) is a novel technique for depositing polymeric thin films. It is able to deposit thin films of application-specific polymers in one step without using any solvents. Its uniqueness ...

  19. Desalination-of water by vapor-phase transport through hydrophobic nanopores

    E-Print Network [OSTI]

    Lee, Jongho

    We propose a new approach to desalination of water whereby a pressure difference across a vapor-trapping nanopore induces selective transport of water by isothermal evaporation and condensation across the pore. Transport ...

  20. The design, fabrication, and implications of a solvothermal vapor annealing chamber

    E-Print Network [OSTI]

    Porter, Nathaniel R., Jr

    2013-01-01T23:59:59.000Z

    This thesis documents the design, fabrication, use, and benefits of a prototype aluminum solvothermal vapor annealing chamber which facilitates the self-assembly of block copolymers (BCPs) on silicon wafers which are then ...

  1. Study of the Effects of Obstacles in Liquefied Natural Gas (LNG) Vapor Dispersion using CFD Modeling 

    E-Print Network [OSTI]

    Ruiz Vasquez, Roberto

    2012-10-19T23:59:59.000Z

    The evaluation of the potential hazards related with the operation of an LNG terminal includes possible release scenarios with the consequent flammable vapor dispersion within the facility; therefore, it is important to ...

  2. Single- and few-layer graphene by ambient pressure chemical vapor deposition on nickel

    E-Print Network [OSTI]

    Reina Ceeco, Alfonso

    2010-01-01T23:59:59.000Z

    An ambient pressure chemical vapor deposition (APCVD) process is used to fabricate graphene based films consisting of one to several graphene layers across their area. Polycrystalline Ni thin films are used and the graphene ...

  3. An Analysis of Cloud Cover and Water Vapor for the ALMA Project

    E-Print Network [OSTI]

    (Chile), Chalviri (Bolivia) and Five Sites in Argentina using Satellite Data and a Verification and water vapor at Chajnantor (Chile), Chalviri (Bolivia) and four sites in Argentina. Since time

  4. Organe und Gremien Organe der Stiftung

    E-Print Network [OSTI]

    , Batavia IL (USA) Prof. Dr. F. Krausz BESSY GmbH, Berlin Prof. Dr. B. Naroska Universität Hamburg Prof. Dr. F. Pauss European Organization for Particle Physics CERN, Geneva (CH) Dr. N. Roe Lawrence Berkeley Organization for Particle Physics CERN, Geneva (CH) Dr. A. Wrulich Paul Scherrer Institut, Villigen (CH) 14 #12

  5. Organe und Gremien Organe der Stiftung

    E-Print Network [OSTI]

    Medizinische Forschung, Heidelberg Prof. Dr. E. Jaeschke BESSY GmbH, Berlin Prof. Dr. W. Jentschke Institut für Experimentalphysik, Universität Hamburg (Ehrenmitglied) Dr. K.-H. Kissler European Organization for Particle Physics Organization for Particle Physics CERN, Geneva (CH) Prof. Dr. W. Sandner Max-Born-Institut, Berlin Dr. M

  6. Organe und Gremien Organe der Stiftung

    E-Print Network [OSTI]

    Kassel Prof. Dr. S. Großmann Fachbereich Physik, Universität Marburg Prof. Dr. E. Jaeschke BESSY Gmb Organization for Particle Physics CERN, Genf (CH) Prof. Dr. V. Metag Gesellschaft für Schwerionenforschung GSI, Darmstadt Dr. D. Möhl European Organization for Particle Physics CERN, Genf (CH) Prof. Dr. J. Stachel

  7. Organe und Gremien Organe der Stiftung

    E-Print Network [OSTI]

    BESSY GmbH, Berlin Prof. Dr. W. Jentschke II. Institut für Experimentalphysik, Universität Hamburg (Ehrenmitglied) Dr. K.-H. Kissler European Organization for Particle Physics CERN, Geneva (CH) Prof. Dr. K. Königsmann Albert-Ludwigs-Universität Freiburg Dr. J. May European Organization for Particle Physics CERN

  8. Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems

    SciTech Connect (OSTI)

    Kurihara, Kiyofumi; Nakamichi, Mikiyoshi; Kojima, Kazuo (Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry)

    1993-07-01T23:59:59.000Z

    Vapor-liquid equilibrium data for methanol + ethanol + water and its three constituent binary systems methanol + ethanol, ethanol + water, and methanol + water were measured at 101.3 kPa using a liquid-vapor ebullition-type equilibrium still. The experimental binary data were correlated by the NRTL equation. The ternary system methanol + ethanol + water was predicted by means of the binary NRTL parameters with good accuracy.

  9. MEMS Lubrication by In-Situ Tribochemical Reactions From the Vapor Phase.

    SciTech Connect (OSTI)

    Dugger, Michael T.; Asay, David B.; Kim, Seong H.

    2008-01-01T23:59:59.000Z

    Vapor Phase Lubrication (VPL) of silicon surfaces with pentanol has been demonstrated. Two potential show stoppers with respect to application of this approach to real MEMS devices have been investigated. Water vapor was found to reduce the effectiveness of VPL with alcohol for a given alcohol concentration, but the basic reaction mechanism observed in water-free environments is still active, and devices operated much longer in mixed alcohol and water vapor environments than with chemisorbed monolayer lubricants alone. Complex MEMS gear trains were successfully lubricated with alcohol vapors, resulting in a factor of 104 improvement in operating life without failure. Complex devices could be made to fail if operated at much higher frequencies than previously used, and there is some evidence that the observed failure is due to accumulation of reaction products at deeply buried interfaces. However, if hypothetical reaction mechanisms involving heated surfaces are valid, then the failures observed at high frequency may not be relevant to operation at normal frequencies. Therefore, this work demonstrates that VPL is a viable approach for complex MEMS devices in conventional packages. Further study of the VPL reaction mechanisms are recommended so that the vapor composition may be optimized for low friction and for different substrate materials with potential application to conventionally fabricated, metal alloy parts in weapons systems. Reaction kinetics should be studied to define effective lubrication regimes as a function of the partial pressure of the vapor phase constituent, interfacial shear rate, substrate composition, and temperature.

  10. Mixed crystal organic scintillators

    DOE Patents [OSTI]

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16T23:59:59.000Z

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  11. Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry

    DOE Patents [OSTI]

    Mowry, Curtis Dale (Albuquerque, NM); Thornberg, Steven Michael (Peralta, NM)

    1999-01-01T23:59:59.000Z

    A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

  12. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST & 200 WEST TANK FARMS FROM CY1995 TO CY2004

    SciTech Connect (OSTI)

    HOCKING, M.J.

    2005-01-31T23:59:59.000Z

    Revised for a more comprehensive overview of vapor incidents reported at the Hanford Tank Farms. Investigation into the meteorological influences on vapor incidents in the tank farm to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems. The purpose of this document is to gather and evaluate the meteorological and weather information for the Tank Farms Shift Log Vapor Incident entries and determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases such as propane. A part of the evaluation will be determining which of the incidents are related to actual ''intrusive'' work, and which are ''transient.'' Transient vapor incidents are herein defined as those vapors encountered during walkdowns, surveys, or other activities that did not require working directly with the tanks, pits, transfer lines, etc. Another part of the investigation will involve determining if there are barometric pressures or other weather related phenomena that might cause or contribute vapors being released when there are no ''intrusive'' activities. A final purpose is to evaluate whether there is any correlation between the 242-A Evaporator operations and Vapor Incidents entered on the Shift Log.

  13. Metal film deposition by laser breakdown chemical vapor deposition

    SciTech Connect (OSTI)

    Jervis, T.R.

    1985-01-01T23:59:59.000Z

    Dielectric breakdown of gas mixtures can be used to deposit homogeneous thin films by chemical vapor deposition with appropriate control of flow and pressure conditions to suppress gas phase nucleation and particle formation. Using a pulsed CO/sub 2/ laser operating at 10.6 microns where there is no significant resonant absorption in any of the source gases, we have succeeded in depositing homogeneous films from several gas phase precursors by gas phase laser pyrolysis. Nickel and molybdenum from the respective carbonyls and tungsten from the hexafluoride have been examined to date. In each case the gas precursor is buffered to reduce the partial pressure of the reactants and to induce breakdown. The films are spectrally reflective and uniform over a large area. Films have been characterized by Auger electron spectroscopy, x-ray diffraction, pull tests, and resistivity measurements. The highest quality films have resulted from the nickel depositions. Detailed x-ray diffraction analysis of these films yields a very small domain size (approx. 50 A) consistent with rapid quenching from the gas phase reaction zone. This analysis also shows nickel carbide formation consistent with the temperature of the reaction zone and the Auger electron spectroscopy results which show some carbon and oxygen incorporation (8% and 1% respectively). Gas phase transport and condensation of the molybdenum carbonyl results in substantial carbon and oxygen contamination of the molybdenum films requiring heated substrates, a requirement not consistent with the goals of the program to maximize the quench rate of the deposition. Results from tungsten deposition experiments representing a reduction chemistry instead of the decomposition chemistry involved in the carbonyl experiments are also reported.

  14. Cellular glass insulation keeps liquefied gas from vaporizing

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The North West Shelf Project, located on the Burrup Peninsula in Western Australia, supplies much of that vast state with natural gas for domestic and industrial applications. Some of the gas is also exported to Japan as liquefied natural gas (LNG). While awaiting shipment to Japan, the LNG is stored at {minus}322 F in four storage tanks, each with a capacity of 2.5 million ft{sup 3}. When Woodside Offshore Petroleum Pty Ltd., operator of the LNG facility, selected insulation material for the storage tanks, it went in search of a material with more than just insulating value. Since the insulation is installed inside the tanks, it must be able to resist wicking or absorbing the LNG. Also, it had to have sufficient strength to withstand the weight of the 2.5 million ft{sup 3} of LNG without being crushed or losing its insulting properties. And, as a safety precaution, the selected materials should neither burn nor support combustion. Ultimately, Woodside selected a cellular glass insulation called Foamglas, from Pittsburgh Corning Corp., that met all the performance criteria and was cost competitive with the lesser-performing alternatives. Foamglas is produced from strong, inert borosilicate glass. Its insulating capability is provided by the tiny, closed cells of air encapsulated within the foam-like structure of the glass. Since the cells are closed,neither liquid nor vapor can enter the structure of the insulation. The inert glass itself will not absorb or react with LNG, nor will it burn or support a fire. The cellular structure provides effective insulation in both not and cold applications, and offers a fire barrier.

  15. Water Vapor Turbulence Profiles in Stationary Continental Convective Mixed Layers

    SciTech Connect (OSTI)

    Turner, D. D.; Wulfmeyer, Volker; Berg, Larry K.; Schween, Jan

    2014-10-08T23:59:59.000Z

    The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program’s Raman lidar at the ARM Southern Great Plains (SGP) site in north-central Oklahoma has collected water vapor mixing ratio (q) profile data more than 90% of the time since October 2004. Three hundred (300) cases were identified where the convective boundary layer was quasi-stationary and well-mixed for a 2-hour period, and q mean, variance, third order moment, and skewness profiles were derived from the 10-s, 75-m resolution data. These cases span the entire calendar year, and demonstrate that the q variance profiles at the mixed layer (ML) top changes seasonally, but is more related to the gradient of q across the interfacial layer. The q variance at the top of the ML shows only weak correlations (r < 0.3) with sensible heat flux, Deardorff convective velocity scale, and turbulence kinetic energy measured at the surface. The median q skewness profile is most negative at 0.85 zi, zero at approximately zi, and positive above zi, where zi is the depth of the convective ML. The spread in the q skewness profiles is smallest between 0.95 zi and zi. The q skewness at altitudes between 0.6 zi and 1.2 zi is correlated with the magnitude of the q variance at zi, with increasingly negative values of skewness observed lower down in the ML as the variance at zi increases, suggesting that in cases with larger variance at zi there is deeper penetration of the warm, dry free tropospheric air into the ML.

  16. Organic photovoltaics and concentrators

    E-Print Network [OSTI]

    Mapel, Jonathan King

    2008-01-01T23:59:59.000Z

    The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

  17. Organizing and Personalizing Intelligence

    E-Print Network [OSTI]

    Tan, Ah-Hwee

    Vista). More sophis- ticated ones, such as Northern Light, BullsEye and Copernic go a step further organize

  18. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, 1 July 1993--30 September 1993

    SciTech Connect (OSTI)

    Suuberg, E.M.; Oja, V.; Lilly, W.D.

    1993-12-31T23:59:59.000Z

    There is significant current interest in general area of coal pyrolysis, particularly with respect to comprehensive models of this complicated phenomenon. This interest derives from the central role of pyrolysis in all thermally driven coal conversion processes -- gasification, combustion, liquefaction, mild gasification, or thermal benefication. There remain several key data needs in these application areas. Among them is a need for more reliable correlation for prediction of vapor pressure of heavy, primary coal tars. Such information is important in design of all coal conversion processes, in which the volatility of tarry products is of major concern. Only very limited correlations exist, and these are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion. Results of the literature survey are compiled. The experimental tasks have been concerned with setup and calibration.

  19. Organic photosensitive devices

    DOE Patents [OSTI]

    Rand, Barry P; Forrest, Stephen R

    2013-11-26T23:59:59.000Z

    The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.

  20. CCPPolicyBriefing Organization

    E-Print Network [OSTI]

    Feigon, Brooke

    . METHODOLOGY · The author incorporates the economic theory of organizations into the framework of public law to establish the theory of cartel organization, and calls for further studies to disclose the sophisticatedCCPPolicyBriefing September 2008 Cartel Organization and Antitrust Enforcement W: www

  1. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOE Patents [OSTI]

    Kong, Peter C.; Detering, Brent A.

    2003-08-19T23:59:59.000Z

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  2. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Detering, Brent A. (Idaho Falls, ID)

    2004-10-19T23:59:59.000Z

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  3. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

  4. Vapor-liquid equilibria of ethanol with 2,2,4-trimethylpentane or octane at 101. 3 kPa

    SciTech Connect (OSTI)

    Hiaki, Toshihiko; Takahashi, Kenji; Tsuji, Tomoya; Hongo, Masaru (Nihon Univ., Chiba (Japan). Dept. of Industrial Chemistry); Kojima, Kazuo (Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry)

    1994-10-01T23:59:59.000Z

    Vapor-liquid equilibria (VLE) are required for engineering use such as in the design and operation of separation processes. Isobaric vapor-liquid equilibria were measured for ethanol with 2,2,4-trimethylpentane or octane at 101.3 kPa in an equilibrium still with circulation of both the vapor and liquid phases. The results were correlated with the Wilson and nonrandom two-liquid (NRTL) equations.

  5. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition

    E-Print Network [OSTI]

    . INTRODUCTION Zinc oxide ZnO is a wide direct band-gap 3.37 eV semiconductor with a broad range of applications. Dimethylzinc DMZn , N2 gas, and high-purity O2 were used as the zinc source, carrier gas, and oxidizing agent including light-emitting devices,1 varistors,2 solar cells,3 and gas sensors.4 Moreover, ZnO is a promising

  6. Development of hybrid organic-inorganic light emitting diodes using conducting polymers deposited by oxidative chemical vapor deposition process

    E-Print Network [OSTI]

    Chelawat, Hitesh

    2010-01-01T23:59:59.000Z

    Difficulties with traditional methods of synthesis and film formation for conducting polymers, many of which are insoluble, motivate the development of CVD methods. Indeed, conjugated polymers with rigid linear backbones ...

  7. Organic polymer thin films deposited on silicon and copper by plasma-enhanced chemical vapor deposition method and

    E-Print Network [OSTI]

    Boo, Jin-Hyo

    Chun-Dong, Jangan- Gu, Suwon 440-746, South Korea J. H. Boo Center for Advanced Plasma Surface Technology be grown under various deposition conditions. © 2005 American Vacuum Society. DOI: 10.1116/1.1946714 I as a dielectric and optical coating to inhibit corrosion.1,2 More- over, with increasing integration density

  8. Polycyclic Aromatic Hydrocarbons in Indoor Air and Environmental Tobacco Smoke Measured with a New Integrated Organic Vapor-Particle Sampler

    E-Print Network [OSTI]

    Gundel, L.A.; Daisey, J.M.; Mahanama, K.R.R.; Lee, C.C.; Stevens, R.K.

    1993-01-01T23:59:59.000Z

    and 2-methyl derivatives, acenaphthene and acenapthylene. At19; biphenyl, 69; acenaphthene and acenaphthylene, 4.9;

  9. From Population to Organization Thinking

    E-Print Network [OSTI]

    Lane, David; Maxfield, Robert; Read, Dwight W; van der Leeuw, Sander E

    2009-01-01T23:59:59.000Z

    Herbert Simon developed a theory of organization for complexin need of a theory of organization. As we have alreadya deeper theory of organization: complex networks,

  10. A comparison of the marginal adaptation of cathode-arc vapor-deposited titanium and cast base metal copings.

    E-Print Network [OSTI]

    Wu, Jean C; Lai, Li-Chung; Sheets, Cherilyn G; Earthman, James; Newcomb, Robert

    2011-01-01T23:59:59.000Z

    titanium reacts with oxygen, hydrogen, and nitrogen, whichdesired titanium coping thickness is achieved, nitrogen gaspurity nitrogen gas was added to the titanium vapor after

  11. The role of polymer formation during vapor phase lubrication of silicon.

    SciTech Connect (OSTI)

    Dugger, Michael Thomas; Dirk, Shawn M.; Ohlhausen, James Anthony

    2010-10-01T23:59:59.000Z

    The lubrication of silicon surfaces with alcohol vapors has recently been demonstrated. With a sufficient concentration of pentanol vapor present, sliding of a silica ball on an oxidized silicon wafer can proceed with no measurable wear. The initial results of time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of wear surfaces revealed a reaction product having thickness on the order of a monolayer, and with an ion spectrum that included fragments having molecular weights of 200 or more that occurred only inside the wear tracks. The parent alcohol molecule pentanol, has molecular weight of 88amu, suggesting that reactions of adsorbed alcohols on the wearing surfaces allowed polymerization of the alcohols to form higher molecular weight species. In addition to pin-on-disk studies, lubrication of silicon surfaces with pentanol vapors has also been demonstrated using MicroElectroMechanical Systems (MEMS) devices. Recent investigations of the reaction mechanisms of the alcohol molecules with the oxidized silicon surfaces have shown that wearless sliding requires a concentration of the alcohol vapor that is dependent upon the contact stress during sliding, with higher stress requiring a greater concentration of alcohol. Different vapor precursors including those with acid functionality, olefins, and methyl termination also produce polymeric reaction products, and can lubricate the silica surfaces. Doping the operating environment with oxygen was found to quench the formation of the polymeric reaction product, and demonstrates that polymer formation is not necessary for wearless sliding.

  12. Helium Adsorption in Silica Aerogel near the Liquid-Vapor Critical Point

    E-Print Network [OSTI]

    Tobias Herman; James Day; John Beamish

    2008-01-01T23:59:59.000Z

    We have investigated the adsorption and desorption of helium near its liquid-vapor critical point in silica aerogels with porosities between 95 % and 98%. We used a capacitive measurement technique which allowed us to probe the helium density inside the aerogel directly, even though the samples were surrounded by bulk helium. The aerogel’s very low thermal conductivity resulted in long equilibration times so we monitored the pressure and the helium density, both inside the aerogel and in the surrounding bulk, and waited at each point until all had stabilized. Our measurements were made at temperatures far from the critical point, where a well defined liquid-vapor interface exists, and at temperatures up to the bulk critical point. Hysteresis between adsorption and desorption isotherms persisted to temperatures close to the liquid-vapor critical point and there was no sign of an equilibrium liquid-vapor transition once the hysteresis disappeared. Many features of our isotherms can be described in terms of capillary condensation, although this picture becomes less applicable as the liquid-vapor critical point is approached and it is unclear how it can be applied to aerogels, whose tenuous structure includes a wide range of length scales. I.

  13. Helium adsorption in silica aerogel near the liquid-vapor critical point

    E-Print Network [OSTI]

    Tobias Herman; James Day; John Beamish

    2005-05-18T23:59:59.000Z

    We have investigated the adsorption and desorption of helium near its liquid-vapor critical point in silica aerogels with porosities between 95% and 98%. We used a capacitive measurement technique which allowed us to probe the helium density inside the aerogel directly, even though the samples were surrounded by bulk helium. The aerogel's very low thermal conductivity resulted in long equilibration times so we monitored the pressure and the helium density, both inside the aerogel and in the surrounding bulk, and waited at each point until all had stabilized. Our measurements were made at temperatures far from the critical point, where a well defined liquid-vapor interface exists, and at temperatures up to the bulk critical point. Hysteresis between adsorption and desorption isotherms persisted to temperatures close to the liquid-vapor critical point and there was no sign of an equilibrium liquid-vapor transition once the hysteresis disappeared. Many features of our isotherms can be described in terms of capillary condensation, although this picture becomes less applicable as the liquid-vapor critical point is approached and it is unclear how it can be applied to aerogels, whose tenuous structure includes a wide range of length scales.

  14. Glassy dynamics distinguishes chromosome organization across organisms

    E-Print Network [OSTI]

    Hongsuk Kang; Young-Gui Yoon; D. Thirumalai; Changbong Hyeon

    2015-06-03T23:59:59.000Z

    Recent experiments showing scaling of the intrachromosomal contact probability, $P(s)\\sim s^{-1}$ with the genomic distance $s$, are interpreted to mean a self-similar fractal-like chromosome organization. However, scaling of $P(s)$ varies across organisms, requiring an explanation. We illustrate that dynamical arrest in a highly confined space as a discriminating marker for genome organization, by modeling chromosome inside a nucleus as a self-avoiding homopolymer confined to a sphere of varying sizes. Brownian dynamics simulations show that the chain dynamics slows down as the polymer volume fraction ($\\phi$) inside the confinement approaches a critical value $\\phi_c$. Using finite size scaling analysis, we determine $\\phi_c^{\\infty}\\approx 0.44$ for a sufficiently long polymer ($N\\gg 1$). Our study shows that the onset of glassy dynamics is the reason for the formation of segregated organization in human chromosomes ($N\\approx 3\\times 10^9$, $\\phi\\gtrsim\\phi_c^{\\infty}$), whereas chromosomes of budding yeast ($N\\approx 1.2\\times 10^7$, $\\phi<\\phi_c^{\\infty}$) are equilibrated with no clear signature of such organization.

  15. Sociology: Computational Organization Theory Sociology: Computational Organization Theory

    E-Print Network [OSTI]

    Sadeh, Norman M.

    Sociology: Computational Organization Theory Sociology: Computational Organization Theory Kathleen; organization theory; organizational learning; social networks; expert systems Citation: Kathleen Carley, 1994, "Sociology: Computational Organization Theory." Social Science Computer Review, 12(4): 611-624. #12;Sociology

  16. Theory of Organic Magnetoresistance in Disordered Organic Semiconductors

    E-Print Network [OSTI]

    Flatte, Michael E.

    Theory of Organic Magnetoresistance in Disordered Organic Semiconductors Nicholas J. Harmon semiconductors, disordered semiconductors, organic magnetoresistance, percolation theory, spin transport organic semiconductors. The theory proposed here maps the complex phenomena of spin-dependent hopping onto

  17. Feasibility of Organizations -A Refinement of Chemical Organization Theory

    E-Print Network [OSTI]

    Hinze, Thomas

    Feasibility of Organizations - A Refinement of Chemical Organization Theory with Application to P a theorem providing a criteria for an unfeasible organization. This is a refinement of organization theory organization. Key words: reaction networks, constructive dynamical systems, chem- ical organization theory

  18. Method of increasing biodegradation of sparingly soluble vapors

    DOE Patents [OSTI]

    Cherry, Robert S. (Idaho Falls, ID)

    2000-01-01T23:59:59.000Z

    A method for increasing biodegradation of sparingly soluble volatile organic compounds (VOCs) in a bioreactor is disclosed. The method comprises dissolving in the aqueous phase of the bioreactor a water soluble, nontoxic, non-biodegradable polymer having a molecular weight of at least 500 and operable for decreasing the distribution coefficient of the VOCs. Polyoxyalkylene alkanols are preferred polymers. A method of increasing the growth rate of VOC-degrading microorganisms in the bioreactor and a method of increasing the solubility of sparingly soluble VOCs in aqueous solution are also disclosed.

  19. Energy and water vapor transport across a simplified cloud-clear air interface

    E-Print Network [OSTI]

    Gallana, Luca; De Santi, Francesca; Iovieno, Michele; Tordella, Daniela

    2015-01-01T23:59:59.000Z

    We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this sit...

  20. Preconcentrator with high volume chiller for high vapor pressure particle detection

    DOE Patents [OSTI]

    Linker, Kevin L

    2013-10-22T23:59:59.000Z

    Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

  1. Glass durability evaluation using product consistency, single-pass flow-through, and vapor hydration tests

    SciTech Connect (OSTI)

    Feng, X.; Hrma, P.; Kim, D. [Pacific Northwest National Lab., Richland, WA (United States)] [and others

    1996-12-31T23:59:59.000Z

    The current approach to assessing chemical durability of waste glasses focuses on a suite of short-term laboratory tests such as dynamic single-pass flow-through (SPFT) tests, static product consistency tests (PCT), and vapor hydration tests. The behavior of the glasses in the three types of tests is quite different, but each test provides insight into the glass corrosion process. The PCT data showed that at constant alumina, silica, and sodium levels the glass durability order for different glass systems is: Boron-series > Boron-Calcium-series > Calcium-series, while the opposite order is observed in SPFT tests. The order for vapor hydration tests is similar to that observed in the PCT tests. The PCT results are consistent with the current understanding of glass structure and are consistent with vapor hydration tests. The SPFT results can be explained using arguments based on solution chemistry.

  2. Experimental investigation of the latent heat of vaporization in aqueous nanofluids

    SciTech Connect (OSTI)

    Lee, Soochan; Phelan, Patrick E., E-mail: phelan@asu.edu; Dai, Lenore; Prasher, Ravi; Gunawan, Andrey [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287-6106 (United States); Taylor, Robert A. [School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney 2052 (Australia)

    2014-04-14T23:59:59.000Z

    This paper reports an experimental investigation of the latent heat of vaporization (h{sub fg}) in nanofluids. Two different types of nanoparticles, graphite and silver, suspended in deionized water were exposed to a continuous laser beam (130 mW, 532?nm) to generate boiling. The latent heat of vaporization in the nanofluids was determined by the measured vapor mass generation and the heat input. To ensure that the measured h{sub fg} values are independent of heating method, the experiments were repeated with an electrically heated hot wire as a primary heat input. These experiments show considerable variation in the h{sub fg} of nanofluids. That is, graphite nanofluid exhibits an increased h{sub fg} and silver nanofluid shows a decrease in h{sub fg} compared to the value for pure water. As such, these results indicate that relatively low mass fractions of nanoparticles can apparently create large changes in h{sub fg}.

  3. Food Exemption Request Organization Information

    E-Print Network [OSTI]

    Food Exemption Request Organization Information Organization Received ______ Organizations are permitted one food exemption per semester. Requests must be submitted): ___________________________________________________________________________________________________________________________________________ ___________________________________________________________________________________________________________________________________________ Only homemade food may be provided by your organization. Initial ______ No prepared food may

  4. Treatment of Produced Water Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    SciTech Connect (OSTI)

    Lynn E. Katz; Kerry A. Kinney; Robert S. Bowman; Enid J. Sullivan; Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Craig R. Altare

    2006-01-31T23:59:59.000Z

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. Produced waters typically contain a high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component as well as chemicals added during the oil-production process. It has been estimated that a total of 14 billion barrels of produced water were generated in 2002 from onshore operations (Veil, 2004). Although much of this produced water is disposed via reinjection, environmental and cost considerations can make surface discharge of this water a more practical means of disposal. In addition, reinjection is not always a feasible option because of geographic, economic, or regulatory considerations. In these situations, it may be desirable, and often necessary from a regulatory viewpoint, to treat produced water before discharge. It may also be feasible to treat waters that slightly exceed regulatory limits for re-use in arid or drought-prone areas, rather than losing them to reinjection. A previous project conducted under DOE Contract DE-AC26-99BC15221 demonstrated that surfactant modified zeolite (SMZ) represents a potential treatment technology for produced water containing BTEX. Laboratory and field experiments suggest that: (1) sorption of benzene, toluene, ethylbenzene and xylenes (BTEX) to SMZ follows linear isotherms in which sorption increases with increasing solute hydrophobicity; (2) the presence of high salt concentrations substantially increases the capacity of the SMZ for BTEX; (3) competitive sorption among the BTEX compounds is negligible; and, (4) complete recovery of the SMZ sorption capacity for BTEX can be achieved by air sparging the SMZ. This report summarizes research for a follow on project to optimize the regeneration process for multiple sorption/regeneration cycles, and to develop and incorporate a vapor phase bioreactor (VPB) system for treatment of the off-gas generated during air sparging. To this end, we conducted batch and column laboratory SMZ and VPB experiments with synthetic and actual produced waters. Based on the results of the laboratory testing, a pilot scale study was designed and conducted to evaluate the combined SMZ/VPB process. An economic and regulatory feasibility analysis was also completed as part of the current study to assess the viability of the process for various water re-use options.

  5. Astatinated organic compounds

    DOE Patents [OSTI]

    Milius, R.A.; Lambrecht, R.M.; Bloomer, W.D.

    1989-05-02T23:59:59.000Z

    Methods and kits for incorporating a radioactive astatine isotope (particularly [sup 211]At) into an organic compound by electrophilic astatodestannylation of organostannanes. 3 figs.

  6. VAPOR PRESSURE ISOTOPE EFFECTS IN THE MEASUREMENT OF ENVIRONMENTAL TRITIUM SAMPLES.

    SciTech Connect (OSTI)

    Kuhne, W.

    2012-12-03T23:59:59.000Z

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The magnitude of the vapor pressure isotope effect is characterized as functions of the amount of water distilled from the sample aliquot and the heat settings for the distillation process. The tritium concentration in the distillate is higher than the tritium concentration in the sample early in the distillation process, it then sharply decreases due to the vapor pressure isotope effect and becomes lower than the tritium concentration in the sample, until the high tritium concentration retained in the boiling flask is evaporated at the end of the process. At that time, the tritium concentration in the distillate again overestimates the sample tritium concentration. The vapor pressure isotope effect is more pronounced the slower the evaporation and distillation process is conducted; a lower heat setting during the evaporation of the sample results in a larger bias in the tritium measurement. The experimental setup used and the fact that the current study allowed for an investigation of the relative change in vapor pressure isotope effect in the course of the distillation process distinguish it from and extend previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.034 {+-} 0.033, 1.052 {+-} 0.025, and 1.066 {+-} 0.037, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples, this implies that the tritium concentration could be underestimated by 3 - 6%.

  7. FORMATION OF COSMIC CRYSTALS IN HIGHLY SUPERSATURATED SILICATE VAPOR PRODUCED BY PLANETESIMAL BOW SHOCKS

    SciTech Connect (OSTI)

    Miura, H.; Yamada, J.; Tsukamoto, K.; Nozawa, J. [Department of Earth Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Tanaka, K. K.; Yamamoto, T. [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Nakamoto, T., E-mail: miurah@m.tohoku.ac.j [Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan)

    2010-08-10T23:59:59.000Z

    Several lines of evidence suggest that fine silicate crystals observed in primitive meteorite and interplanetary dust particles (IDPs) nucleated in a supersaturated silicate vapor followed by crystalline growth. We investigated evaporation of {mu}m-sized silicate particles heated by a bow shock produced by a planetesimal orbiting in the gas in the early solar nebula and condensation of crystalline silicate from the vapor thus produced. Our numerical simulation of shock-wave heating showed that these {mu}m-sized particles evaporate almost completely when the bow shock is strong enough to cause melting of chondrule precursor dust particles. We found that the silicate vapor cools very rapidly with expansion into the ambient unshocked nebular region; for instance, the cooling rate is estimated to be as high as 2000 K s{sup -1} for a vapor heated by a bow shock associated with a planetesimal of radius 1 km. The rapid cooling of the vapor leads to nonequilibrium gas-phase condensation of dust at temperatures much lower than those expected from the equilibrium condensation. It was found that the condensation temperatures are lower by a few hundred K or more than the equilibrium temperatures. This explains the results of the recent experimental studies of condensation from a silicate vapor that condensation in such large supercooling reproduces morphologies similar to those of silicate crystals found in meteorites. Our results strongly suggest that the planetesimal bow shock is one of the plausible sites for formation of not only chondrules but also other cosmic crystals in the early solar system.

  8. Glassy dynamics distinguishes chromosome organization across organisms

    E-Print Network [OSTI]

    Kang, Hongsuk; Thirumalai, D; Hyeon, Changbong

    2015-01-01T23:59:59.000Z

    Recent experiments showing scaling of the intrachromosomal contact probability, $P(s)\\sim s^{-1}$ with the genomic distance $s$, are interpreted to mean a self-similar fractal-like chromosome organization. However, scaling of $P(s)$ varies across organisms, requiring an explanation. We illustrate that dynamical arrest in a highly confined space as a discriminating marker for genome organization, by modeling chromosome inside a nucleus as a self-avoiding homopolymer confined to a sphere of varying sizes. Brownian dynamics simulations show that the chain dynamics slows down as the polymer volume fraction ($\\phi$) inside the confinement approaches a critical value $\\phi_c$. Using finite size scaling analysis, we determine $\\phi_c^{\\infty}\\approx 0.44$ for a sufficiently long polymer ($N\\gg 1$). Our study shows that the onset of glassy dynamics is the reason for the formation of segregated organization in human chromosomes ($N\\approx 3\\times 10^9$, $\\phi\\gtrsim\\phi_c^{\\infty}$), whereas chromosomes of budding yea...

  9. Solar-induced chemical vapor deposition of diamond-type carbon films

    DOE Patents [OSTI]

    Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.

    1994-09-13T23:59:59.000Z

    An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.

  10. Adsorption of water vapor on reservoir rocks. First quarterly report, January--March 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  11. Isothermal vapor-liquid equilibria for 2-methyl-2-butanol + 2-methyl-1-butanol + 1-pentanol

    SciTech Connect (OSTI)

    Aucejo, A.; Burguet, M.C.; Monton, J.B.; Munoz, R.; Sanchotello, M.; Vazquez, M.I. (Univ. of Valencia (Spain). Dept. de Ingenieria Quimica)

    1994-07-01T23:59:59.000Z

    Vapor-liquid equilibria (VLE) for 2-methyl-2-butanol + 2-methyl-1-butanol and 2-methyl-2-butanol + 2-methyl-1-butanol + 1-pentanol have been measured at 373.15 K. The binary VLE results have been correlated by different liquid-phase activity coefficient models. The binary interaction parameters obtained from Wilson, NRTL, and UNIQUAC models in this and a previously study are used to predict the VLE data for the ternary system. Vapor-liquid equilibrium (VLE) data are necessary for the design of distillation processes.

  12. Materials, methods and devices to detect and quantify water vapor concentrations in an atmosphere

    DOE Patents [OSTI]

    Allendorf, Mark D; Robinson, Alex L

    2014-12-09T23:59:59.000Z

    We have demonstrated that a surface acoustic wave (SAW) sensor coated with a nanoporous framework material (NFM) film can perform ultrasensitive water vapor detection at concentrations in air from 0.05 to 12,000 ppmv at 1 atmosphere pressure. The method is extendable to other MEMS-based sensors, such as microcantilevers, or to quartz crystal microbalance sensors. We identify a specific NFM that provides high sensitivity and selectivity to water vapor. However, our approach is generalizable to detection of other species using NFM to provide sensitivity and selectivity.

  13. Direct vapor/solid synthesis of mercuric iodide using compounds of mercury and iodine

    SciTech Connect (OSTI)

    Skinner, Nathan L. (Carpinteria, CA)

    1990-01-01T23:59:59.000Z

    A process is disclosed for producing high purity mercuric iodide by passing a gaseous source of a mercuric compound through a particulate bed of a low vapor pressure iodide compound which is maintained at an elevated temperature which is the lower of either: (a) just below the melting or volatilization temperature of the iodide compound (which ever is lower); or (b) just below the volatilization point of the other reaction product formed during the reaction; to cause the mercuric compound to react with the iodide compound to form mercuric iodide which then passes as a vapor out of the bed into a cooler condensation region.

  14. Comparison of vapor sampling system (VSS) and in situ vapor sampling (ISVS) methods on Tanks C-107, BY-108, and S-102

    SciTech Connect (OSTI)

    Huckaby, J.L.; Edwards, J.A.; Evans, J.C. [and others

    1996-05-01T23:59:59.000Z

    The objective of this report is to evaluate the equivalency of two methods used to sample nonradioactive gases and vapors in the Hanford Site high-level waste tank headspaces. In addition to the comparison of the two sampling methods, the effects of an in-line fine particle filter on sampling results are also examined to determine whether results are adversely affected by its presence. This report discusses data from a January 1996 sampling.

  15. Visible Light Photocatalysis with Nitrogen-Doped Titanium Dioxide Nanoparticles Prepared by Plasma Assisted Chemical Vapor Deposition

    SciTech Connect (OSTI)

    Buzby,S.; Barakat, M.; Lin, H.; Ni, C.; Rykov, S.; Chen, J.; Shah, S.

    2006-01-01T23:59:59.000Z

    Nitrogen-doped TiO{sub 2} nanoparticles were synthesized via plasma assisted metal organic chemical vapor deposition. Nitrogen dopant concentration was varied from 0 to 1.61 at. %. The effect of nitrogen ion doping on visible light photocatalysis has been investigated. Samples were analyzed by various analytical techniques such as x-ray diffraction, transmission electron microscopy, x-ray photoelectron spectroscopy, and near-edge x-ray absorption fine structure. Titanium tetraisopropoxide was used as the titanium precursor, while rf-plasma-decomposed ammonia was used as the source for nitrogen doping. The N-doped TiO{sub 2} nanoparticles were deposited on stainless steel mesh under a flow of Ar and O2 gases at 600 {sup o}C in a tube reactor. The photocatalytic activity of the prepared N-doped TiO{sub 2} samples was tested by the degradation of 2-chlorophenol (2-CP) in an aqueous solution using a visible lamp equipped with an UV filter. The efficiency of photocatalytic oxidation of 2-CP was measured using high performance liquid chromatography. Results obtained revealed the formation of N-doped TiO{sub 2} samples as TiO{sub 2-x}N{sub x}, and a corresponding increase in the visible light photocatalytic activity.

  16. Metal-Organic Heat Carrier Nanofluids. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculations for an R123 MOHC nanofluid indicated potential for up to 15% increase in power output. Capillary tube experiments show that liquid-vapor transitions occur without...

  17. Raman Spectroscopy of the Reaction of Thin Films of Solid-State Benzene with Vapor-Deposited Ag, Mg, and Al

    SciTech Connect (OSTI)

    Schalnat, Matthew C. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Chemistry and Biochemistry; Hawkridge, Adam M. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Chemistry and Biochemistry; Pemberton, Jeanne E. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Chemistry and Biochemistry

    2011-07-21T23:59:59.000Z

    Thin films of solid-state benzene at 30 K were reacted with small quantities of vapor-deposited Ag, Mg, and Al under ultrahigh vacuum, and products were monitored using surface Raman spectroscopy. Although Ag and Mg produce small amounts of metal–benzene adduct products, the resulting Raman spectra are dominated by surface enhancement of the normal benzene modes from metallic nanoparticles suggesting rapid Ag or Mg metallization of the film. In contrast, large quantities of Al adduct products are observed. Vibrational modes of the products in all three systems suggest adducts that are formed through a pathway initiated by an electron transfer reaction. The difference in reactivity between these metals is ascribed to differences in ionization potential of the metal atoms; ionization potential values for Ag and Mg are similar but larger than that for Al. These studies demonstrate the importance of atomic parameters, such as ionization potential, in solid-state metal–organic reaction chemistry.

  18. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    SciTech Connect (OSTI)

    Stevenson, Cynthia; Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R.

    2008-02-01T23:59:59.000Z

    In this paper we report results of a novel synthesis method of thin-film composite Sn/C anodes for lithium batteries. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 440 and 297 mAhg{sup -1} at C/25 and 5C discharge rates, respectively. A long term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

  19. Effective Presentations Organization

    E-Print Network [OSTI]

    Shull, David H.

    1 Pericles Effective Presentations · Content · Organization · Delivery · Visual aids and graphics Be brave Graphics · KISS · Powerpoint: ­ Font · Bigger than you'd expect · San serif ­ Lines · Thicker than · Organization · Energy · Clarity · Poise Key: Practice Web Resources · http

  20. Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa's water vapor aurora

    E-Print Network [OSTI]

    Nimmo, Francis

    aurora Lorenz Rotha,b,1 , Kurt D. Retherforda , Joachim Saurc , Darrell F. Strobeld,e , Paul D. Feldmane that the discovery of a water vapor aurora in Decem- ber 2012 by local hydrogen (H) and oxygen (O) emissions by our 2014 STIS observations. Europa | Hubble Space Telescope | aurora | water vapor plumes | Jupiter

  1. Diamond growth on WC-Co substrates by hot filament chemical vapor deposition: Effect of filamentsubstrate separation

    E-Print Network [OSTI]

    Bristol, University of

    Polycrystalline diamond films have been grown by hot filament (HF) chemical vapor deposition on WC-Co bar is an established technique for growing hard, wear- resistant polycrystalline diamond films on a range of substratesDiamond growth on WC-Co substrates by hot filament chemical vapor deposition: Effect of filament

  2. IUPAC critical evaluation of the rotationalvibrational spectra of water vapor. Part I--Energy levels and transition wavenumbers

    E-Print Network [OSTI]

    Chance, Kelly

    Keywords: Water vapor Transition wavenumbers Atmospheric physics Energy levels MARVEL Information systemIUPAC critical evaluation of the rotational­vibrational spectra of water vapor. Part I--Energy levels and transition wavenumbers for H2 17 O and H2 18 O Jonathan Tennyson a,Ã, Peter F. Bernath b

  3. The role of water vapor and solar radiation in determining temperature changes and trends measured at Armagh, 18812000

    E-Print Network [OSTI]

    The role of water vapor and solar radiation in determining temperature changes and trends measured in atmospheric circulation, are discussed. Citation: Stanhill, G. (2011), The role of water vapor and solar radiation in determining temperature changes and trends measured at Armagh, 1881­2000, J. Geophys. Res., 116

  4. Isothermal vapor-liquid equilibrium of 1,2-dibromoethane + tetrachlorolmethane at temperatures between 283. 15 and 323. 15 K

    SciTech Connect (OSTI)

    Perez, P.; Valero, J.; Gracia, M. (Univ. de Zaragoza (Spain). Dept. de Quimica Organica-Quimica Fisica)

    1994-10-01T23:59:59.000Z

    Vapor pressures of 1, 2-dibromoethane + tetrachlormethane, at 5 K interval between 283.15 and 323.15 K, were measured by a static method. Activity coefficients and excess molar Gibbs free energies G[sup E] were calculated by Barker's method. Reduction of the vapor pressure results is well represented by the Redlich-Kister, Wilson, and NRTL correlations.

  5. Growth of Large-Area Aligned Molybdenum Nanowires by High Temperature Chemical Vapor Deposition: Synthesis, Growth Mechanism, and Device Application

    E-Print Network [OSTI]

    Wang, Zhong L.

    , thermogravimetry, and differential scanning calorimetry analysis, as well as structure analysis by electron on the decomposition of MoO2 vapors through condensation of its vapor at high substrate temperatures. The aligned nanowires with H2 gas.6d-f However, the reduction process degrades the crystal- linity of the nanowires

  6. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels, Phase 2: Evaluations of Field Samples and Laboratory Blends

    SciTech Connect (OSTI)

    Gardiner, D. P.; Bardon, M. F.; LaViolette, M.

    2010-04-01T23:59:59.000Z

    Study to measure the flammability of gasoline/ethanol fuel vapors at low ambient temperatures and develop a mathematical model to predict temperatures at which flammable vapors were likely to form.

  7. Absorption of organic compounds and organometallics on ceramic substrates for wear reduction

    SciTech Connect (OSTI)

    Kennedy, P.J.; Agarwala, V.S. [Naval Air Warfare Center, Patuxent River, MD (United States)

    1996-12-31T23:59:59.000Z

    The concept of employing thermally stable compounds (that is, metal oxides) as high temperature vapor phase ceramic lubricants was investigated. A major part of this study was devoted to the development of various calorimetric and tribological techniques that could be used to determine interfacial reactions between thermally stable compounds and ceramic substrates such as zirconia and alumina. This interaction is pivotal in understanding the mechanism of high temperature lubricity. The approach consisted of selecting low sublimation temperature materials and measuring their thermodynamic interactions as vapors with the ceramic substrates. The materials studied included two easily sublimable organic compounds (that is, naphthalene and salicylic acid) and several organometallics (for example, copper phthalocyanine). Thermodynamic data such as heat of adsorption, packing density, and reversibility of the adsorption were obtained on some of these compounds and were related to wear characteristics. All of these compounds provided effective lubrication at room temperature. Copper phthalocyanine was an effective lubricant at temperatures up to 400 C.

  8. The control of mercury vapor using biotrickling filters Ligy Philip a,b,1

    E-Print Network [OSTI]

    The control of mercury vapor using biotrickling filters Ligy Philip a,b,1 , Marc A. Deshusses b mechanisms existed. Sulfur oxidizing bacteria biotrickling filters were the most effective in controlling phase bioreactor; Mercury control; Combustion gases 1. Introduction Mercury (Hg) is a hazardous chemical

  9. Semi-insulating crystalline silicon formed by oxygen doping during low-temperature chemical vapor deposition

    E-Print Network [OSTI]

    Semi-insulating crystalline silicon formed by oxygen doping during low-temperature chemical vapor) In this letter we demonstrate the use of oxygen as a dopant in silicon to create semi-insulating, crystalline of the films exhibit classical characteristics of space-charge-limited current associated with insulators

  10. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06T23:59:59.000Z

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  11. Active vapor split control for dividing-wall columns Journal: Industrial & Engineering Chemistry Research

    E-Print Network [OSTI]

    Skogestad, Sigurd

    @ntnu.no Abstract Dividing-wall distillation columns offer large potential energy savings over conventional column column Introduction Dividing-wall distillation columns such as Petlyuk arrangements and the Kaibel column vapor fraction Purities (mol %): 97.6 % (D), 97.3 % (S); 99.6 % (B) Stages: 40 in prefractionator and 80

  12. Active Vapor Split Control for Dividing-Wall Columns Deeptanshu Dwivedi,

    E-Print Network [OSTI]

    Skogestad, Sigurd

    , Norway ABSTRACT: Dividing-wall distillation columns offer large potential energy savings over the energy requirements. INTRODUCTION Dividing-wall distillation columns such as Petlyuk arrangements, where the vapor fraction or degree of subcooling in the feed is varied to achieve optimum operation.13

  13. Determination of Mercury in Coal by Isotope Dilution Cold-Vapor Generation Inductively

    E-Print Network [OSTI]

    Articles Determination of Mercury in Coal by Isotope Dilution Cold-Vapor Generation Inductively. Approximately 93% of U.S. coal consumption is used to generate electricity, and the U.S. EPA has estimated2 developed for high-accuracy determinations of mer- cury in bituminous and sub-bituminous coals. A closed

  14. Treatment of Methyl tert-Butyl Ether Vapors in Biotrickling Filters. 2.

    E-Print Network [OSTI]

    vapors of methyl tert-butyl ether (MTBE), a gasoline additive of great environmental concern MTBE treatment are discussed. Introduction The rapidly rising number of reports of groundwater con- taminated with the gasoline additive methyl tert-butyl ether (MTBE) has raised concerns about its

  15. Water vapor transport in the vicinity of imbibing saline plumes: Homogeneous and layered unsaturated porous media

    E-Print Network [OSTI]

    Weisbrod, Noam

    solutions (brines) were applied as point sources to the surface of homogenous packs of prewetted silica sand vapor transport from the residually saturated sand into the imbibing brine was observed in all sand grades and geometries. Pure water applied to sand prewetted with brine migrated into the surrounding

  16. Vapor Trapping Growth of Single-Crystalline Graphene Flowers: Synthesis, Morphology, and Electronic Properties

    E-Print Network [OSTI]

    Zhou, Chongwu

    Vapor Trapping Growth of Single-Crystalline Graphene Flowers: Synthesis, Morphology, and Electronic-crystalline graphene flowers with grain size up to 100 m. Controlled growth of graphene flowers with four lobes and six, electron backscatter diffraction study revealed that the graphene morphology had little correlation

  17. Ultralow-power local laser control of the dimer density in alkali-metal vapors

    E-Print Network [OSTI]

    Jha, Pankaj K; Yi, Zhenhuan; Yuan, Luqi; Sautenkov, Vladimir A; Rostovtsev, Yuri V; Welch, George R; Zheltikov, Aleksei M; Scully, Marlan O

    2011-01-01T23:59:59.000Z

    Ultralow-power diode-laser radiation is employed to induce photodesorption of cesium from a partially transparent thin-film cesium adsorbate on a solid surface. Using resonant Raman spectroscopy, we demonstrate that this photodesorption process enables an accurate local optical control of the density of dimer molecules in alkali-metal vapors.

  18. Cobalt Ultrathin Film Catalyzed Ethanol Chemical Vapor Deposition of Single-Walled Carbon Nanotubes

    E-Print Network [OSTI]

    Hone, James

    Cobalt Ultrathin Film Catalyzed Ethanol Chemical Vapor Deposition of Single-Walled Carbon Nanotubes (SWNTs) using a cobalt ultrathin film (1 nm) as the catalyst and ethanol as carbon feedstock flow during the growth. The trace amount of self-contained water (0.2-5 wt %) in ethanol may act

  19. Numerical investigation of a transient free jet resembling a laser-produced vapor jet

    E-Print Network [OSTI]

    Budair, Mohammed Omar

    Numerical investigation of a transient free jet resembling a laser-produced vapor jet G.M. Arshed in revised form 29 July 2003 Abstract In the present study, the transiently developing free jet emanating from a laser-impacted surface is considered. The jet velocity profiles are varied with time

  20. Development of a spatially controllable chemical vapor deposition reactor with combinatorial processing capabilities

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Development of a spatially controllable chemical vapor deposition reactor with combinatorial these limitations, a novel CVD reactor system has been developed that can explicitly control the spatial profile flexibility, we introduced a new CVD reactor concept that enables control of film deposition characteristics

  1. Field emission properties of phosphorus doped microwave plasma chemical vapor deposition diamond films by ion implantation

    E-Print Network [OSTI]

    Lee, Jong Duk

    2002; published 5 February 2003 Phosphorus doped polycrystalline diamond films were grown using ion the electrical char- acteristics of diamond FEAs to lower the operating voltage. Polycrystalline diamond hasField emission properties of phosphorus doped microwave plasma chemical vapor deposition diamond

  2. Ceramic-metallic coatings by electron beam physical vapor deposition (EB-PVD) process

    SciTech Connect (OSTI)

    Wolfe, D.E.; Singh, J. [Pennsylvania State Univ., State College, PA (United States)

    1995-12-31T23:59:59.000Z

    Electron Beam Physical Vapor Deposition (EB-PVD) process is considered to be a technology that has overcome some of the difficulties or problems associated with the chemical vapor deposition (CVD), physical vapor deposition (PVD) and metal spray processes. The EB-PVD process offers many desirable characteristics such as relatively high deposition rates (up to 100-150 {mu}m/minute with an evaporation rate {approx}10-15 Kg/hour,) dense coatings, precise compositional control, columnar and poly-crystalline microstructure, low contamination, and high thermal efficiency. Various metallic and ceramic coatings (oxides, carbides, nitrides) can be deposited at relatively low temperatures. Even elements with low vapor pressure such as molybdenum, tungsten, and carbon are readily evaporated by this process. In addition, EB-PVD is capable of producing multi-layered laminated metallic/ceramic coatings on large components by changing the EB-PVD processing conditions such as ingot composition, part manipulation, and electron beam energy. Attachment of an ion assisted beam source to the EB-PVD offers additional benefits such as dense coatings with improved adhesion. In addition, textured coatings can be obtained that are desirable in many applications such as cutting tools. This laboratory has started a new thrust in the coating area by the EB-PVD process. The microstructure of thermal barrier ceramic coatings (i.e., yttria stabilized zirconia) developed by the EB-PVD process will be presented.

  3. Chemical Vapor Deposition-Derived Graphene with Electrical Performance of Exfoliated Graphene

    E-Print Network [OSTI]

    Hone, James

    Chemical Vapor Deposition-Derived Graphene with Electrical Performance of Exfoliated Graphene a scalable method to produce large-area graphene, CVD-grown graphene has heretofore exhibited inferior of CVD-grown graphene in which two important sources of disorder, namely grain boundaries and processing

  4. IUPAC critical evaluation of the rotationalvibrational spectra of water vapor, Part III: Energy levels and transition

    E-Print Network [OSTI]

    Chance, Kelly

    rotational­ vibrational line positions, transition intensities, and energy levels, with associated critically. These transitions give rise to 18 486 validated energy levels, of which 10 446 and 8040 belong to o-H2 16 O and p-H2IUPAC critical evaluation of the rotational­vibrational spectra of water vapor, Part III: Energy

  5. IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part II.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , transition wavenumbers, atmospheric physics, energy levels, MARVEL, information system, database, WIUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part II. Energy Kingdom c Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, U.S.A. d Universit

  6. IUPAC critical evaluation of the rotationalvibrational spectra of water vapor. Part II

    E-Print Network [OSTI]

    Chance, Kelly

    Atmospheric physics Energy levels MARVEL Information system Database W@DIS Infrared spectra Microwave spectraIUPAC critical evaluation of the rotational­vibrational spectra of water vapor. Part II Energy, York, UK c Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA d

  7. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition

    E-Print Network [OSTI]

    exfoliation of graphite [1], sublimation of epitaxial SiC [4], and catalyst-assisted chemical vapor deposition (CVD) [5­9]. However, mechanical exfoliation of graphite can only supply small-size graphene (see Fig than that of graphene obtained via exfoli- ation of graphite as summarized in Fig. 1. While many

  8. Atmospheric pressure chemical vapor deposition of TiN from tetrakis(dimethylamido)titanium and ammonia

    E-Print Network [OSTI]

    of titanium in a nitrogen atmosphere forms TiN with only a slight dependence on substrate temperatureAtmospheric pressure chemical vapor deposition of TiN from tetrakis(dimethylamido)titanium, Massachusetts 02138 (Received 15 December 1994; accepted 28 October 1995) Near stoichiometric titanium nitride

  9. Ge incorporation inside 4H-SiC during Homoepitaxial growth by chemical vapor

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Ge incorporation inside 4H-SiC during Homoepitaxial growth by chemical vapor deposition. Kassem Ilmenau (Germany) Abstract. In this work, we report on the addition of GeH4 gas during homoepitaxial growth of 4H-SiC by chemical vapour deposition. Ge introduction does not affect dramatically the surface

  10. Low temperature junction growth using hot-wire chemical vapor deposition

    DOE Patents [OSTI]

    Wang, Qi; Page, Matthew; Iwaniczko, Eugene; Wang, Tihu; Yan, Yanfa

    2014-02-04T23:59:59.000Z

    A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.

  11. Water vapor variability in the tropics and its links to dynamics and precipitation

    E-Print Network [OSTI]

    Allan, Richard P.

    dioxide doubling [e.g., Intergovernmental Panel on Climate Change (IPCC), 2001]. This uncertainty stems P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia Richard P. Allan to understanding feedbacks and processes operating within the climate system. Column-integrated water vapor (CWV

  12. Control of Vapor Dispersion and Pool Fire of Liquefied Natural Gas (LNG) with Expansion Foam

    E-Print Network [OSTI]

    Yun, Geun Woong

    2011-10-21T23:59:59.000Z

    Liquefied Natural Gas (LNG) is flammable when it forms a 5 – 15 percent volumetric concentration mixture with air at atmospheric conditions. When the LNG vapor comes in contact with an ignition source, it may result in fire and/or explosion. Because...

  13. Z .Thin Solid Films 392 2001 231 235 Atmospheric pressure chemical vapor deposition of

    E-Print Network [OSTI]

    of electrochromic tungsten oxide films Roy G. Gordona,U , Sean Barryb , Jeffrey T. Bartona , Randy N.R. Broomhall oxide, WO , is a coloring layer commonly used in electrochromic windows and displays. Successful: Chemical vapor deposition; Tungsten; Oxides; Electrochromism 1. Introduction Tungsten oxide is a key

  14. The importance of snow scavenging of polychlorinated biphenyl and polycyclic aromatic hydrocarbon vapors

    SciTech Connect (OSTI)

    Wania, F. [WECC Wania Environmental Chemists Corp., Toronto, Ontario (Canada)] [WECC Wania Environmental Chemists Corp., Toronto, Ontario (Canada); Mackay, D. [Trent Univ., Peterborough, Ontario (Canada). Environmental and Resource Studies] [Trent Univ., Peterborough, Ontario (Canada). Environmental and Resource Studies; Hoff, J.T. [Univ. of Waterloo, Ontario (Canada). Dept. of Earth Science] [Univ. of Waterloo, Ontario (Canada). Dept. of Earth Science

    1999-01-01T23:59:59.000Z

    Recently, experimental data on the scavenging of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) from the atmosphere by snow were interpreted assuming that the distribution of chemical between particles and dissolved phase measured in the meltwater reflects the state of the chemical during the scavenging process. A consequence of this assumption is that vapor scavenging is found to be unimportant relative to particle scavenging. An alternative interpretation is presented that during melting repartitioning occurs from the dissolved phase to the particle-sorbed phase. Further, it is argued that a constant particle scavenging ratio may apply to all chemicals of the same class in the same precipitation event, and its value can be estimated from the scavenging characteristics of predominantly particle-sorbed, high molecular mass chemicals. This analysis suggests that for more volatile PCBs and PAHs vapor scavenging is an important, if not the dominating, snow scavenging process. Gas scavenging ratios obtained with this method are, as expected, negatively correlated with the vapor pressure of a substance, indicating that adsorption to the air-ice interface is the process responsible for vapor scavenging.

  15. investigating the source, transport, and isotope fractionation of water vapor in the atmospheric boundary layer

    E-Print Network [OSTI]

    Minnesota, University of

    investigating the source, transport, and isotope fractionation of water vapor in the atmospheric-portable mixing ratio generator and Rayleigh distillation device, Agricultural and Forest Meteorology, 150, 1607 ratio generator. Incom- ing dry air passes through a molecular sieve and then a stainless steel frit (a

  16. enhanced) in water vapor. The distribution of water ice throughout the solar nebula may

    E-Print Network [OSTI]

    Utrecht, Universiteit

    enhanced) in water vapor. The distribution of water ice throughout the solar nebula may have varied Solar System (Univ. of Arizona Press, Tucson, AZ, 1988), p. 348. The time scale for settling of solids that are a few hundred times greater than that of the canonical solar nebula (14). Turbulent

  17. High-expansion foam for LNG vapor mitigation. Topical report, September 1987-December 1989

    SciTech Connect (OSTI)

    Atallah, S.; Shah, J.N.; Peterlinz, M.E.

    1990-05-01T23:59:59.000Z

    One of the purposes of these high expansion foam systems is to reduce the extent of the hazardous vapor cloud generated during an accidental LNG release. Should the LNG ignite, these systems serve the additional function of controlling the LNG fire and minimizing its radiation to the surroundings. Foam generators have been installed along the tops of dike walls surrounding some LNG storage tanks, and around other fenced containment areas where LNG may be accidentally released, such as LNG pump pits and pipe rack trenches. To date there are no technically justifiable guidelines for the design and installation of these systems. Furthermore, there are no models that may be used describe the vapor source so as to be able to predict the reduction in the hazardous vapor cloud zone when high expansion foam is applied to an LNG spill. Information is essential not only for the optimal design of high expansion foam systems, but also for comparing the cost effectiveness of alternative LNG vapor mitigation measures.

  18. GEOSTAR-II: A PROTOTYPE WATER VAPOR IMAGER/SOUNDER FOR THE PATH Todd Gaier1

    E-Print Network [OSTI]

    Ruf, Christopher

    GEOSTAR-II: A PROTOTYPE WATER VAPOR IMAGER/SOUNDER FOR THE PATH MISSION Todd Gaier1 , Bjorn the as yet undefined mission requirements. By far the most stringent "requirement" is the recovery. The IF signals are routed to a correlator unit on coaxial cables. The system is not designed to provide full

  19. Chemical vapor deposition of W-Si-N and W-B-N

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Roherty-Osmun, Elizabeth Lynn (Albuquerque, NM); Smith, Paul M. (Albuquerque, NM); Custer, Jonathan S. (Albuquerque, NM); Jones, Ronald V. (Albuquerque, NM); Nicolet, Marc-A. (Pasadena, CA); Madar, Roland (Eybens, FR); Bernard, Claude (Brie et Angonnes, FR)

    1999-01-01T23:59:59.000Z

    A method of depositing a ternary, refractory based thin film on a substrate by chemical vapor deposition employing precursor sources of tungsten comprising WF.sub.6, either silicon or boron, and nitrogen. The result is a W--Si--N or W--B--N thin film useful for diffusion barrier and micromachining applications.

  20. Chemical vapor deposition of W-Si-N and W-B-N

    DOE Patents [OSTI]

    Fleming, J.G.; Roherty-Osmun, E.L.; Smith, P.M.; Custer, J.S.; Jones, R.V.; Nicolet, M.; Madar, R.; Bernard, C.

    1999-06-29T23:59:59.000Z

    A method of depositing a ternary, refractory based thin film on a substrate by chemical vapor deposition employing precursor sources of tungsten comprising WF[sub 6], either silicon or boron, and nitrogen. The result is a W-Si-N or W-B-N thin film useful for diffusion barrier and micromachining applications. 10 figs.