Powered by Deep Web Technologies
Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nuclear electricity  

Science Journals Connector (OSTI)

... p.344-6) and referred to in my letter of 23 October. The retail price index (RPI) has been used to correct for inflation and a uniform interest rate ... as given by historic costs, and if a previously unconsidered effect of inflation on nuclear fuel costs is included, the margin becomes 34 per cent above that for coal.

J.W. JEFFERY

1981-08-27T23:59:59.000Z

2

nuclear electricity | OpenEI  

Open Energy Info (EERE)

nuclear electricity nuclear electricity Dataset Summary Description This dataset presents summary information related to world nuclear energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Source Earth Policy Institute Date Released January 12th, 2011 (3 years ago) Date Updated Unknown Keywords EU nuclear nuclear electricity world Data application/vnd.ms-excel icon Summary nuclear energy consumption data (xls, 68.6 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License Comment "Reuse of our data is permitted. We merely ask that wherever it is listed, it be appropriately cited"

3

Electric Power Produced from Nuclear Reactor | National Nuclear...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Power Produced from Nuclear Reactor | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

4

Electric Power Produced from Nuclear Reactor | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Power Produced from Nuclear Reactor | National Nuclear Security Electric Power Produced from Nuclear Reactor | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Electric Power Produced from Nuclear Reactor Electric Power Produced from Nuclear Reactor December 20, 1951 Arco, ID Electric Power Produced from Nuclear Reactor

5

World Net Nuclear Electric Power Generation, 1980-2007 - Datasets...  

Open Energy Info (EERE)

U.S. Energy Information ... World Net Nuclear Electric ... Dataset Activity Stream World Net Nuclear Electric Power Generation, 1980-2007 International data showing world net...

6

THE BIRTH OF NUCLEAR-GENERATED ELECTRICITY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BIRTH OF NUCLEAR-GENERATED ELECTRICITY BIRTH OF NUCLEAR-GENERATED ELECTRICITY The first time that electricity was generated from nuclear energy occurred in an experimental breeder reactor in Idaho in 1951. The idea for a breeder reactor (a reactor that could produce more fuel than it uses) first occurred to scientists working on the nation's wartime atomic energy program in the early 1940's. Experimental evidence indicated that the breeding of nuclear fuel was possible in a properly designed reactor, but time and resources were not then available to pursue the idea After the war, the newly established Atomic Energy Commission (now the Department of Energy) assigned some of the nation's nuclear skills and resources to developing peaceful uses of the atom. The large bodies of uranium ore found in the 1950's were

7

Nuclear Spin Relaxation and Nuclear Electric Dipole Moments  

Science Journals Connector (OSTI)

Proposals that nuclear spin relaxation in an appropriate system could serve as a test for the existence of a nuclear electric dipole moment are examined with attention to the consequences of the fact that the electric field at the nucleus is proportional to the nuclear acceleration. It is found that low-frequency fluctuations of the local electric field are suppressed. In particular, the necessarily negative correlation of the momentum transferred in consecutive collisions of an atom in a gas alters the spectral density of the perturbation, from that of uncorrelated pulses, by the factor ?2?c2(1+?2?c2), where ?c is the mean time between collisions. It follows that fairly low gas density is preferable to high. At optimum density a light gas at room temperature carrying electric dipole moments of magnitude e×10-14 cm should have a spin relaxation time, in the absence of competing processes, of around 10 minutes. A formula is given for the electrically induced spin relaxation rate in a crystal. The process is hopelessly slow. In the electric coupling of the lattice vibrations to the spin the ordinarily dominant "two-phonon" or "Raman" process is absent, because of the linearity of the connection between local electric field and nuclear motion.

E. M. Purcell

1960-02-01T23:59:59.000Z

8

Electric generating prospects for nuclear power  

Science Journals Connector (OSTI)

Most of the nuclear power plants in the U.S. today are of the light-water variety. In many parts of the U.S. these plants are competitive with plants burning coal, but the electricity that they generate will be more costly in the future as uranium supplies ...

Manson Benedict

1970-07-01T23:59:59.000Z

9

Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle  

Science Journals Connector (OSTI)

The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and ...

Frank A. Settle

2009-03-01T23:59:59.000Z

10

Carbon pricing, nuclear power and electricity markets  

SciTech Connect (OSTI)

In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised electricity market, looking at the impact of the seven key variables and provide conclusions on the portfolio that a utility would be advised to maintain, given the need to limit risks but also to move to low carbon power generation. Such portfolio diversification would not only limit financial investor risk, but also a number of non-financial risks (climate change, security of supply, accidents). (authors)

Cameron, R.; Keppler, J. H. [OECD Nuclear Energy Agency, 12, boulevard des Iles, 92130 Issy-les-Moulineaux (France)

2012-07-01T23:59:59.000Z

11

Electricity production levelized costs for nuclear, gas and coal  

Office of Scientific and Technical Information (OSTI)

Levelized costs for nuclear, gas and coal for Electricity, under the Mexican scenario. Javier C. Palacios, Gustavo Alonso, Ramn Ramrez, Armando Gmez, Javier Ortiz, Luis C....

12

Nuclear Electric Dipole Moment of 3He  

SciTech Connect (OSTI)

A permanent electric dipole moment (EDM) of a physical system would require time-reversal (T) violation, which is equivalent to charge-conjugation-parity (CP) violation by CPT invariance. Experimental programs are currently pushing the limits on EDMs in atoms, nuclei, and the neutron to regimes of fundamental theoretical interest. Nuclear EDMs can be studied at ion storage rings with sensitivities that may be competitive with atomic and neutron measurements. Here we calculate the magnitude of the CP-violating EDM of {sup 3}He and the expected sensitivity of such a measurement to the underlying CP-violating interactions. Assuming that the coupling constants are of comparable magnitude for {pi}-, {rho}-, and {omega}-exchanges, we find that the pion-exchange contribution dominates. Finally, our results suggest that a measurement of the {sup 3}He EDM is complementary to the planned neutron and deuteron experiments, and could provide a powerful constraint for the theoretical models of the pion-nucleon P,T-violating interaction.

Stetcu, I; P.Liu, C; Friar, J L; Hayes, A C; Navratil, P

2008-04-08T23:59:59.000Z

13

Recent advances in nuclear powered electric propulsion for space exploration  

Science Journals Connector (OSTI)

Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems.

R. Joseph Cassady; Robert H. Frisbee; James H. Gilland; Michael G. Houts; Michael R. LaPointe; Colleen M. Maresse-Reading; Steven R. Oleson; James E. Polk; Derrek Russell; Anita Sengupta

2008-01-01T23:59:59.000Z

14

EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS  

SciTech Connect (OSTI)

Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

2014-09-01T23:59:59.000Z

15

U.S. Nuclear Generation of Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Nuclear Generation and Generating Capacity Data Released: September 26, 2014 Data for: July 2014 Next Release: October 2014 Year Capacity and Generation by State and Reactor...

16

Scoping calculations of power sources for nuclear electric propulsion  

SciTech Connect (OSTI)

This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.

Difilippo, F.C. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

1994-05-01T23:59:59.000Z

17

Market Potential for Non-electric Applications of Nuclear Energy  

SciTech Connect (OSTI)

The paper presents results of a recent IAEA study to assess the market potential for non-electric applications of nuclear energy in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, energy supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While technical details are covered only briefly, emphasis is placed on economics and other factors that may promote or hinder the penetration of nuclear options in the markets for non-electric energy services. The study makes a distinction between the market size (demand for a given service) and the market potential for nuclear penetration (which may be smaller because of technical or non-technical constraints). Near-term nuclear prospects are assessed on the basis of on-going projects in the final stages of design or under construction. For the long term, use has been made of a qualitative scale ranging from 0 to 2 for five critical areas: market structure, demand pressure, technical basis, economic competitiveness, and public acceptance. The paper presents the resulting evaluation of long-term prospects for nuclear energy entering into non-electric markets. (authors)

Konishi, T.; Kononov, S.; Kupitz, J.; McDonald, A.; Rogner, H.H. [International Atomic Energy Agency (IAEA), Wagramer Strasse 5, Vienna (Austria); Nisan, S. [Commissariat a l'energie atomique (CEA), CEA/CEN Cadarache, F-13108 Saint Paul-lez-Durance (France)

2002-07-01T23:59:59.000Z

18

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

19

Nuclear qualified in-containment electrical connectors and method of connecting electrical conductors  

DOE Patents [OSTI]

A nuclear qualified in-containment electrical connection comprises an insulated, sheathed instrument lead having electrical conductors extending from one end thereof to provide two exposed lead wires, a watertight cable having electrical conducting wires therein and extending from one end of the cable to provide two lead wires therefrom, two butt splice connectors each connecting the ends of respective ones of the lead wires from the instrument lead and cable, a length of heat shrinkable plastic tubing positioned over each butt splice connector and an adjacent portion of a respective lead wire from the cable and heat shrunk into position, a length of heat shrinkable plastic tubing on the end portion of the instrument lead adjacent the lead wires therefrom and heat shrunk thereon and a length of outer heat shrinkable plastic tubing extending over the end portion of the instrument lead and the heat shrinkable tubing thereon and over the butt splice connectors and a portion of the cable adjacent the cable lead lines, the outer heat shrinkable tubing being heat shrunk into sealing position on the instrument lead and cable.

Powell, J. G. (Clifton Park, NY)

1991-01-01T23:59:59.000Z

20

Innovation Dynamics in the Development of Nuclear Energy and Electric Vehicles in France  

E-Print Network [OSTI]

Innovation Dynamics in the Development of Nuclear Energy and Electric Vehicles in France Abdelkrim-- innovation processes; nuclear energy; electric vehicles ; technological trajectory. I. INTRODUCTION of national energy security policy in France after the 1973 oil crisis that catalyzed a shift from dependence

de Weck, Olivier L.

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Development of a computational model for nuclear electric orbital transfer vehicles  

E-Print Network [OSTI]

DEVELOPMENT OF A COMPUTATIONAL MODEL FOR NUCLEAR ELECTRIC ORBITAL TRANSFER VEHICLES A Thesis by WILLIAM FOUNTAIN LYON III Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1989 Major Subject: Nuclear Engineering DEVELOPMENT OF A COMPUTATIONAL MODEL FOR NUCLEAR ELECTRIC ORBITAL TRANSFER VEHICLES A Thesis by WILLIAM FOUNTAIN LYON III Approved as to style and content by: K. L...

Lyon, William Fountain

2012-06-07T23:59:59.000Z

22

Light weight space power reactors for nuclear electric propulsion  

SciTech Connect (OSTI)

A Nuclear Electric Propulsion (NEP) unit capable of propelling a manned vehicle to MARS will be required to have a value of {alpha} (kg/kWe) which is less than five. In order to meet this goal the reactor mass, and thus its contribution to the value of {alpha} will have to be minimized. In this paper a candidate for such a reactor is described. It consists of a gas cooled Particle Bed Reactor (PBR), with specially chosen materials which allow it to operate at an exit temperature of approximately 2000 K. One of the unique features of a PBR is the direct cooling of particulate fuel by the working fluid. This feature allows for high power densities, highest possible gas exit temperatures, for a given fuel temperature and because of the thin particle bed a low pressure drop. The PBR's described in this paper will have a ceramic moderator (Be{sub 2}C), ZrC coated fuel particles and a carbon/carbon hot frit. All the reactors will be designed with sufficient fissile loading to operate at full power for seven years. The burn up possible with particulate fuel is approximately 30%--50%. These rector designs achieve a value of {alpha} less than unity in the power range of interest (5 MWe). 5 refs., 3 figs.

Ludewig, H.; Mughabghab, S.; Lazareth, O.; Perkins, K.; Schmidt, E.; Powell, J.R.

1991-01-01T23:59:59.000Z

23

Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen  

SciTech Connect (OSTI)

Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

Charles Forsberg; Steven Aumeier

2014-04-01T23:59:59.000Z

24

Nuclear electric propulsion : assessing the design of Project Prometheus.  

E-Print Network [OSTI]

The high fuel efficiency of electric propulsion makes it a viable alternative for long-distance space travel. Project Prometheus was a NASA-led project that sought to demonstrate that distant electric propulsion missions ...

Goycoolea, Martin

2013-01-01T23:59:59.000Z

25

Decoherence and coherence in gravitational, electric and strong nuclear fields  

E-Print Network [OSTI]

Inspired in the work of Erich Joos which appreciated the role played by matter in making the decoherence of the gravitational field, we developed an alternative way of treating the former problem. Besides this, we used the alternative approach to examine the decoherence of the electric field performed by the conduction electrons in metals. As a counterpoint, we studied the coherence of the electric color field inside nucleons, which renders the strong field a totally quantum character.

P. R. Silva

2010-10-25T23:59:59.000Z

26

A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production  

SciTech Connect (OSTI)

The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

2012-07-01T23:59:59.000Z

27

Application of the enabler to nuclear electric propulsion  

Science Journals Connector (OSTI)

This paper describes a power system concept that provides the electric power for a baseline electric propulsion system for a piloted mission to Mars. A 10?MWe space power system is formed by coupling an Enabler reactor with a simple non?recuperated closed Brayton cycle. The Enabler reactor is a gas?cooled reactor based on proven reactor technology developed under the NERVA/Rover programs. The selected power cycle which uses a helium?xenon mixture at 1920 K at the turbine inlet is diagramed and described. The specific mass of the power system over the power range from 5 to 70 MWe is given. The impact of operating life on the specific mass of a 10?MWe system is also shown.

Bill L. Pierce

1991-01-01T23:59:59.000Z

28

The effect of the Fukushima nuclear accident on stock prices of electric power utilities in Japan  

Science Journals Connector (OSTI)

The purpose of this study is to investigate the effect of the accident at the Fukushima Daiichi nuclear power station, which is owned by Tokyo Electric Power Co. (TEPCO), on the stock prices of the other electric power utilities in Japan. Because the other utilities were not directly damaged by the Fukushima nuclear accident, their stock price responses should reflect the change in investor perceptions on risk and return associated with nuclear power generation. Our first finding is that the stock prices of utilities that own nuclear power plants declined more sharply after the accident than did the stock prices of other electric power utilities. In contrast, investors did not seem to care about the risk that may arise from the use of the same type of nuclear power reactors as those at the Fukushima Daiichi station. We also observe an increase of both systematic and total risks in the post-Fukushima period, indicating that negative market reactions are not merely caused by one-time losses but by structural changes in society and regulation that could increase the costs of operating a nuclear power plant.

Shingo Kawashima; Fumiko Takeda

2012-01-01T23:59:59.000Z

29

Studies on electrical cable insulation for nuclear applications  

SciTech Connect (OSTI)

Two new polyethylene cable insulations have been formulated for nuclear applications, and have been tested under gamma radiation. Both insulations are based on low density polyethylene, one with PbO and the other with Sb{sub 2}O{sub 3} as additives. The test results show that the concept of using inorganic anti-oxidants to retard radiation initiated oxidation is viable, and PbO is more effective than Sb{sub 2}O{sub 3} in slowing down radiation initiated oxidation (RIO). Also, radiation degradation data for polyethylene and polyvinyl chloride at 60{degrees}C have been generated, which will be used to understand radiation initiated oxidation process on these materials combined with the 25{degrees}C data that will be generated in the future. 14 refs., 41 figs., 3 tabs.

Lee, B.S.; Soo, P.; MacKenzie, D.R. [Brookhaven National Lab., Upton, NY (USA); Blackburn, P. [Beloit Junior-Senior High School, KS (USA)

1989-12-01T23:59:59.000Z

30

Nuclear Electric Dipole Moments in Chiral Effective Field Theory  

E-Print Network [OSTI]

We provide the first consistent and complete calculation of the electric dipole moments of the deuteron, helion, and triton in the framework of chiral effective field theory. The CP-conserving and CP-violating interactions are treated on equal footing and we consider CP-violating one-, two-, and three-nucleon operators up to next-to-leading-order in the chiral power counting. In particular, we calculate for the first time EDM contributions induced by the CP-violating three-pion operator. We find that effects of CP-violating nucleon-nucleon contact interactions are larger than those found in previous studies based on phenomenological models for the CP-conserving nucleon-nucleon interactions. Our results are model-independent and can be used to test various scenarios of CP violation. As examples, we study the implications of our results on the QCD $\\theta$-term and the minimal left-right symmetric model.

Bsaisou, J; Hanhart, C; Liebig, S; Meißner, Ulf-G; Minossi, D; Nogga, A; Wirzba, A

2014-01-01T23:59:59.000Z

31

Electric dipole-forbidden nuclear transitions driven by super-intense laser fields  

E-Print Network [OSTI]

Electric dipole-forbidden transitions of nuclei interacting with super-intense laser fields are investigated considering stable isotopes with suitable low-lying first excited states. Different classes of transitions are identified, and all magnetic sublevels corresponding to the near-resonantly driven nuclear transition are included in the description of the nuclear quantum system. We find that large transition matrix elements and convenient resonance energies qualify nuclear M1 transitions as good candidates for the coherent driving of nuclei. We discuss the implications of resonant interaction of intense laser fields with nuclei beyond the dipole approximation for the controlled preparation of excited nuclear states and important aspects of possible experiments aimed at observing these effects.

Adriana Pálffy; Jörg Evers; Christoph H. Keitel

2008-04-14T23:59:59.000Z

32

Electric-dipole-forbidden nuclear transitions driven by super-intense laser fields  

Science Journals Connector (OSTI)

Electric-dipole-forbidden transitions of nuclei interacting with super-intense laser fields are investigated by considering stable isotopes with suitable low-lying first excited states. Different classes of transitions are identified, and all magnetic sublevels corresponding to the near-resonantly driven nuclear transition are included in the description of the nuclear quantum system. We find that large transition matrix elements and convenient resonance energies qualify nuclear M1 transitions as good candidates for the coherent driving of nuclei. We discuss the implications of resonant interaction of intense laser fields with nuclei beyond the dipole approximation for the controlled preparation of excited nuclear states and important aspects of possible experiments aimed at observing these effects.

Adriana Pálffy, Jörg Evers, and Christoph H. Keitel

2008-04-11T23:59:59.000Z

33

Finite nuclear mass corrections to electric and magnetic interactions in diatomic molecules  

SciTech Connect (OSTI)

In order to interpret precise measurements of molecular properties, finite nuclear mass corrections to the Born-Oppenheimer approximation have to be accounted for. It is demonstrated that they can be obtained systematically using nonadiabatic perturbation theory. The formulas for the leading corrections to the relativistic contribution to energy, the transition electric dipole moment, the electric polarizability, and the magnetic shielding constant are derived. They can be conveniently calculated for a fixed position of nuclei, as in the Born-Oppenheimer approximation, and then averaged over the rovibrational function.

Pachucki, Krzysztof [Institute of Theoretical Physics, University of Warsaw, PL-00-681 Warsaw, Hoza 69 (Poland)

2010-03-15T23:59:59.000Z

34

Radioisotope electric propulsion (REP): A near-term approach to nuclear propulsion  

Science Journals Connector (OSTI)

Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

George R. Schmidt; David H. Manzella; Hani Kamhawi; Tibor Kremic; Steven R. Oleson; John W. Dankanich; Leonard A. Dudzinski

2010-01-01T23:59:59.000Z

35

The costs of generating electricity and the competitiveness of nuclear power  

Science Journals Connector (OSTI)

Abstract This paper provides an analysis on the costs of generating electricity from nuclear and fossil sources (coal and natural gas) based on the most recent technical data available in literature. The aim is to discuss the competitiveness of nuclear power in a liberalized market context by considering the impact on the generating costs of the main factors affecting the viability of the nuclear option. Particular attention will be devoted to study the variability of the generating costs regarding the level of risk perceived by investors through a sensitivity analysis of the generating costs with respect to the cost of capital and the debt fraction of initial investment. The impact of environment policies is also considered by including a “tax” on carbon emissions. The analysis reveals that nuclear power could have ample potentiality also in a competitive market, particularly if the level of risk perceived by the investors keeps standing low. For low values of the cost of capital, nuclear power seems to be the most viable solution. Uncertainty about environmental policies and unpredictability of carbon emissions costs might offer further margins of competitiveness.

Carlo Mari

2014-01-01T23:59:59.000Z

36

The development of the time dependence of the nuclear EMP electric field  

SciTech Connect (OSTI)

The nuclear electromagnetic pulse (EMP) electric field calculated with the legacy code CHAP is compared with the field given by an integral solution of Maxwell's equations, also known as the Jefimenko equation, to aid our current understanding on the factors that affect the time dependence of the EMP. For a fair comparison the CHAP current density is used as a source in the Jefimenko equation. At first, the comparison is simplified by neglecting the conduction current and replacing the standard atmosphere with a constant density air slab. The simplicity of the resultant current density aids in determining the factors that affect the rise, peak and tail of the EMP electric field versus time. The three dimensional nature of the radiating source, i.e. sources off the line-of-sight, and the time dependence of the derivative of the current density with respect to time are found to play significant roles in shaping the EMP electric field time dependence. These results are found to hold even when the conduction current and the standard atmosphere are properly accounted for. Comparison of the CHAP electric field with the Jefimenko electric field offers a direct validation of the high-frequency/outgoing wave approximation.

Eng, C

2009-10-30T23:59:59.000Z

37

Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production  

SciTech Connect (OSTI)

A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

2007-09-01T23:59:59.000Z

38

A two-step photon-intermediate technique for the production of electricity, chemicals or lasers in nuclear energy conversion  

Science Journals Connector (OSTI)

The authors have developed an energy conversion concept, called Photon-Intermediate Direct Energy Conversion (PIDEC), that makes possible a two-step conversion of high grade nuclear energy (fission or fusion) to electricity or other useful high grade energy forms without intermediate thermalization. In PIDEC the nuclear fuel has a low average density, with local scale lengths significantly shorter than the range of the energetic nuclear reaction products. In the first step of the process, the nuclear energetic reaction product energy is transported to a fluorescer gas which converts it into photons. Then, in the second step of the process, the photons are transported out of the nuclear reactor to a medium which converts the photon energy to the desired product high grade energy form, such as electricity. We calculate that electricity can be produced, non-thermally, with an efficiency of up to 30%. With the addition of intermediate and bottoming thermal cycles, efficiency for electricity production could be as high as 70%, double that of conventional nuclear power plants. In addition to electric power, photolysis makes other product forms possible. These products include useful feedstock, or combustion chemicals, such as hydrogen and carbon monoxide, and excited molecular and atomic states, used for laser amplifiers or oscillators.

M.A. Prelas; F.P. Boody; E.J. Charlson; G.H. Miley

1990-01-01T23:59:59.000Z

39

Packaging and deployment of a 5. 5 MWe potassium---Rankine nuclear electric propulsion spacecraft  

SciTech Connect (OSTI)

A design study was performed to investigate packaging and deployment options for the potassium---Rankine, nuclear electric propulsion (NEP) spacecraft described by Rovang (1992). The subject spacecraft is the cargo portion of a split-sprint (cargo/piloted) Mars mission, carrying 144 mt of cargo. Two parallel SP-100 type reactors, potassium---Rankine power conversion assemblies, and argon ion thrusters are utilized in the selected architecture. A spacecraft design and deployment approach which uses two heavy lift launch vehicles (HLLV) to insert the entire spacecraft into low Earth orbit is presented.

Rovang, R.D.; Marko, M. (Rockwell International, Rocketdyne Division, 6633 Canoga Avenue, P.O. Box 7922, Canoga Park, California 91309-7922 (United States))

1993-01-20T23:59:59.000Z

40

Method and apparatus for steam mixing a nuclear fueled electricity generation system  

DOE Patents [OSTI]

A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

Conklin, Jim [ORNL; Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

42

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

Conklin, James C.; Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2007-07-01T23:59:59.000Z

43

Nuclear EMP simulation for large-scale urban environments. FDTD for electrically large problems.  

SciTech Connect (OSTI)

In case of a terrorist nuclear attack in a metropolitan area, EMP measurement could provide: (1) a prompt confirmation of the nature of the explosion (chemical or nuclear) for emergency response; and (2) and characterization parameters of the device (reaction history, yield) for technical forensics. However, urban environment could affect the fidelity of the prompt EMP measurement (as well as all other types of prompt measurement): (1) Nuclear EMP wavefront would no longer be coherent, due to incoherent production, attenuation, and propagation of gamma and electrons; and (2) EMP propagation from source region outward would undergo complicated transmission, reflection, and diffraction processes. EMP simulation for electrically-large urban environment: (1) Coupled MCNP/FDTD (Finite-difference time domain Maxwell solver) approach; and (2) FDTD tends to be limited to problems that are not 'too' large compared to the wavelengths of interest because of numerical dispersion and anisotropy. We use a higher-order low-dispersion, isotropic FDTD algorithm for EMP propagation.

Smith, William S. [Los Alamos National Laboratory; Bull, Jeffrey S. [Los Alamos National Laboratory; Wilcox, Trevor [Los Alamos National Laboratory; Bos, Randall J. [Los Alamos National Laboratory; Shao, Xuan-Min [Los Alamos National Laboratory; Goorley, John T. [Los Alamos National Laboratory; Costigan, Keeley R. [Los Alamos National Laboratory

2012-08-13T23:59:59.000Z

44

Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

Warner, E. S.; Heath, G. A.

2012-04-01T23:59:59.000Z

45

Aging Management Guideline for commercial nuclear power plants: Electrical switchgear. Final report  

SciTech Connect (OSTI)

This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant electrical switchgear important to license renewal. The latent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance, to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

Toman, G.; Gazdzinski, R.; Schuler, K. [Ogden Environmental and Energy Services Co., Inc., Blue Bell, PA (United States)

1993-07-01T23:59:59.000Z

46

Review of experiments to evaluate the ability of electrical heater rods to simulate nuclear fuel rod behavior during postulated loss-of-coolant accidents in light water reactors  

SciTech Connect (OSTI)

Issues related to using electrical fuel rod simulators to simulate nuclear fuel rod behavior during postulated loss-of-coolant accident (LOCA) conditions in light water reactors are summarized. Experimental programs which will provide a data base for comparing electrical heater rod and nuclear fuel rod LOCA responses are reviewed.

McPherson, G D; Tolman, E L

1980-01-01T23:59:59.000Z

47

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric-and Nuclear Power: A Life-cycle  

E-Print Network [OSTI]

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric- and Nuclear, photovoltaic, nuclear, life cycle 1 #12;Introduction The production of energy by burning fossil fuels generates, it is envisioned that expanding generation technologies based on nuclear power and renewable energy sources would

48

Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion. Final report  

SciTech Connect (OSTI)

NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.

Moriarty, M.P.

1993-11-01T23:59:59.000Z

49

Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies  

Science Journals Connector (OSTI)

Abstract Legal barriers currently prohibit nuclear power for electricity generation in Australia. For this reason, published future electricity scenarios aimed at policy makers for this country have not seriously considered a full mix of energy options. Here we addressed this deficiency by comparing the life-cycle sustainability of published scenarios using multi-criteria decision-making analysis, and modeling the optimized future electricity mix using a genetic algorithm. The published ‘CSIRO e-future’ scenario under its default condition (excluding nuclear) has the largest aggregate negative environmental and economic outcomes (score = 4.51 out of 8), followed by the Australian Energy Market Operator’s 100% renewable energy scenario (4.16) and the Greenpeace scenario (3.97). The e-future projection with maximum nuclear-power penetration allowed yields the lowest negative impacts (1.46). After modeling possible future electricity mixes including or excluding nuclear power, the weighted criteria recommended an optimized scenario mix where nuclear power generated >40% of total electricity. The life-cycle greenhouse-gas emissions of the optimization scenarios including nuclear power were nuclear power is an effective and logical option for the environmental and economic sustainability of a future electricity network in Australia.

Sanghyun Hong; Corey J.A. Bradshaw; Barry W. Brook

2014-01-01T23:59:59.000Z

50

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A quantity of at lezst 5 grams would probably be sufficient for our purpose, and this was included in our 3@icntion for license to the Atonic Energy Coskqission.. This license has been approved, 2nd rre would Llp!Jreciate informztion as to how to ?r*oceed to obtain thit: m2teria.l.

51

Investment in nuclear generation in a restricted electricity market : an analysis of risks and financing options  

E-Print Network [OSTI]

Since the late 1970s, the US electric power industry has been undergoing major changes. The electric utility industry had mainly consisted of highly regulated, vertically integrated, local monopolies, providing customers ...

Berger, Raphael

2006-01-01T23:59:59.000Z

52

Potential use of the Large Coil Test Facility (LCTF) for testing of ion thrusters for nuclear electric propulsion  

SciTech Connect (OSTI)

Nuclear Electric Propulsion (NEP) is one of several supporting technologies identified as necessary for exploration of the planets. At a workshop held in June 1990, experts from national laboratories and industry identified approximately a dozen reactor concepts to produce electric power to drive ion thrusters which convert the electricity into propulsion. Subsequent to the workshop, a DOE-sponsored facilities panel toured U.S. facilities where the technologies might be developed and tested. The Large Coil Test Facility (LCTF) at Oak Ridge National Laboratory (ORNL) is an attractive option for testing of ion thrusters. This paper reviews the thruster concepts proposed, discusses key features of the LCTF, and outlines how thruster testing could be performed in this facility.

Homan, F.J.; Lubell, M.S.; Schwenterly, S.W.; Whealton, J.H. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States))

1993-01-20T23:59:59.000Z

53

Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California  

SciTech Connect (OSTI)

During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1993-10-01T23:59:59.000Z

54

Keeping Nuclear as a Viable Option for Electric Power Generation in the Brazilian Matrix  

SciTech Connect (OSTI)

This paper discusses all alternatives that are part of the general solution for the electric energy problem in Brazil.

Henning, F.

2004-10-06T23:59:59.000Z

55

Testing of T-odd, P-even interactions by nonpolarized neutron transmission through a nonpolarized nuclear target placed into electric field  

E-Print Network [OSTI]

A new possibility for the study of time-reversal violation is described. It consists in measurement of nonpolarized neutron transmission through nonpolarized nuclear target placed into electric field

V. G. Baryshevsky

2003-12-01T23:59:59.000Z

56

Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat  

SciTech Connect (OSTI)

A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500W{sub e} at 9.2 V and 15.7{percent} efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel. {copyright} {ital 1997 American Institute of Physics.}

Wilson, V.C. [General Electric RDC, retired 2446 A Del Norte Dr. SW Albuquerque, New Mexico871059 (United States)

1997-01-01T23:59:59.000Z

57

Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat  

SciTech Connect (OSTI)

A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10 A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500 W{sub e} at 9.2 V and 15.7% efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel.

Wilson, Volney C. [General Electric R and DC, retired 2446 A Del Norte Dr. SW Albuquerque, New Mexico 87105 (United States)

1997-01-10T23:59:59.000Z

58

Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation  

Science Journals Connector (OSTI)

A study was conducted to compare the electricity generation costs of a number of current commercial technologies with technologies expected to become commercially available within the coming decade or so. The amount of greenhouse gas emissions resulting per kWh of electricity generated were evaluated. A range of fossil fuel alternatives (with and without physical carbon sequestration), were compared with the baseline case of a pulverised coal, steam cycle power plant. Nuclear, hydro, wind, bioenergy and solar generating plants were also evaluated. The objectives were to assess the comparative costs of mitigation per tonne of carbon emissions avoided, and to estimate the total amount of carbon mitigation that could result from the global electricity sector by 2010 and 2020 as a result of fuel switching, carbon dioxide sequestration and the greater uptake of renewable energy. Most technologies showed potential to reduce both generating costs and carbon emission avoidance by 2020 with the exception of solar power and carbon dioxide sequestration. The global electricity industry has potential to reduce its carbon emissions by over 15% by 2020 together with cost saving benefits compared with existing generation.

Ralph E.H. Sims; Hans-Holger Rogner; Ken Gregory

2003-01-01T23:59:59.000Z

59

Method of calculating the cost of water and electrical power for nuclear desalination system  

Science Journals Connector (OSTI)

A method of determining the economic factors of double-purpose systems is set out; this provides separate and fairly strict determinations of the expenses involved in the production of electrical power and fre...

Yu. I. Koryakin; A. A. Loginov; V. A. Chernyaev; I. I. Zakharov

1965-08-01T23:59:59.000Z

60

Overview of the Electricity Market of Estonia and the Plausibility of Nuclear Energy Production  

Science Journals Connector (OSTI)

The Republic of Estonia is a small country in Northern Europe, with electrical energy production dependent mostly on oil shale. The local supply of oil shale has given Estonia its energetic independence but it...

Mariliis Lehtveer; Alan Tkaczyk

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Innovation Dynamics in the Development of Nuclear Energy and Electric Vehicles in France  

E-Print Network [OSTI]

Technological change is shaped by a confluence of processes that are governed by socio-political, economic, and regulatory factors within a region. In this paper we describe the transformation of the electricity generation ...

Doufene, Abdelkrim

62

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

On other hand, accidents at nuclear facilities could nott ed expos ur e from a nuclear accident which would warrantresulting from accidents at nuclear facilities. Average

Nero, A.V.

2010-01-01T23:59:59.000Z

63

Monthly/Annual Energy Review - nuclear section  

Reports and Publications (EIA)

Monthly and latest annual statistics on nuclear electricity capacity, generation, and number of operable nuclear reactors.

2015-01-01T23:59:59.000Z

64

Climate Change, Nuclear Power and Nuclear  

E-Print Network [OSTI]

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters Rob Goldston MIT IAP biomass wind hydro coal CCS coal nat gas CCS nat gas nuclear Gen IV nuclear Gen III nuclear Gen II 5-1 Electricity Generation: CCS and Nuclear Power Technology Options Available Global Electricity Generation WRE

65

Harmonic effects of solar geomagnetically induced currents on the electrical distribution system in nuclear power plants  

SciTech Connect (OSTI)

Most previous analysis on the effects of geomagnetically induced currents (GIC) on electric utility systems has steady-state phenomena, with the main interest in the generator step-up transformer and the off-site power system. This paper begins to investigate the possible effects that a GIC event might have on the power plant itself, by examining the harmonic distortion that could exist at various voltage levels in the on-site distribution system.

Carroll, D.P. [Florida Univ., Gainesville, FL (United States); Kasturi, S. [MOS, Inc., Melville, NY (United States); Subudhi, M.; Gunther, W. [Brookhaven National Lab., Upton, NY (United States)

1992-12-31T23:59:59.000Z

66

Harmonic effects of solar geomagnetically induced currents on the electrical distribution system in nuclear power plants  

SciTech Connect (OSTI)

Most previous analysis on the effects of geomagnetically induced currents (GIC) on electric utility systems has steady-state phenomena, with the main interest in the generator step-up transformer and the off-site power system. This paper begins to investigate the possible effects that a GIC event might have on the power plant itself, by examining the harmonic distortion that could exist at various voltage levels in the on-site distribution system.

Carroll, D.P. (Florida Univ., Gainesville, FL (United States)); Kasturi, S. (MOS, Inc., Melville, NY (United States)); Subudhi, M.; Gunther, W. (Brookhaven National Lab., Upton, NY (United States))

1992-01-01T23:59:59.000Z

67

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Health and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-FuelHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

68

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

in U. S. Conunercial Nuclear Power Plants", Report WASH-Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"

Nero, A.V.

2010-01-01T23:59:59.000Z

69

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

U. S. Conunercial Nuclear Power Plants", Report WASH-1400 (Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Response Planning for Nuclear Power Plants in California,"

Nero, A.V.

2010-01-01T23:59:59.000Z

70

Technical-evaluation report on the adequacy of station electric-distribution-system voltages for the Vermont Yankee Nuclear Power Station. Document No. 50-271  

SciTech Connect (OSTI)

This report documents the technical evaluation of the adequacy of the station electric distribution system voltages for the Vermont Yankee Nuclear Power Station. The evaluation is to determine if the onsite distribution system, in conjunction with the offsite power sources, has sufficient capacity to automatically start and operate all Class 1E loads within the equipment voltage ratings under certain conditions established by the Nuclear Regulatory Commission. The evaluation finds that the voltage analyses submitted demonstrate that adequate voltage will be supplied to the Class 1E equipment under worst case conditions.

Selan, J.C.

1982-09-03T23:59:59.000Z

71

Energy, environmental, health and cost benefits of cogeneration from fossil fuels and nuclear energy using the electrical utility facilities of a province  

Science Journals Connector (OSTI)

A method is investigated for increasing the utilization efficiency of energy resources and reducing environmental emissions, focusing on utility-scale cogeneration and the contributions of nuclear energy. A case study is presented for Ontario using the nuclear and fossil facilities of the main provincial electrical utility. Implementation of utility-based cogeneration in Ontario or a region with a similar energy system and attributes is seen to be able to reduce significantly annual and cumulative uranium and fossil fuel use and related emissions, provide economic benefits for the province and its electrical utility, and substitute nuclear energy for fossil fuels. The reduced emissions of greenhouse gases are significant, and indicate that utility-based cogeneration can contribute notably to efforts to combat climate change. Ontario and other regions with similar energy systems and characteristics would benefit from working with the regional electrical utilities and other relevant parties to implementing cogeneration in a careful and optimal manner. Implementation decisions need to balance the interests of the stakeholders when determining which cogeneration options to adopt and barriers to regional utility-based cogeneration need to be overcome.

Marc A. Rosen

2009-01-01T23:59:59.000Z

72

Costs of Electricity  

Science Journals Connector (OSTI)

A major reason for the decreased interest in the building of new nuclear power plants in recent years has been the relatively high cost of nuclear power. In this section, we will consider the role of costs in electricity

2005-01-01T23:59:59.000Z

73

Atoms to electricity. [Booklet  

SciTech Connect (OSTI)

This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle and the role of nuclear energy as one of the domestic energy resources being developed to help meet our national energy demand. Nuclear power accounted for over 16 percent of the US electric energy supply in 1986 and was second only to coal as a source of our electric power. In the 1990s, nuclear energy is expected to provide almost 20 percent of the Nation's electricity. 38 figs., 5 tabs.

Not Available

1987-11-01T23:59:59.000Z

74

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

EMERGENCY PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSINGEmergency Planning for Nuclear Power Plants Determination ofproposed nuclear power plants . . . . . . . . . • . . . .

Yen, W.W.S.

2010-01-01T23:59:59.000Z

75

Interagency Advanced Power Group, Joint Electrical and Nuclear Working Group, meeting minutes, November 16--17, 1993  

SciTech Connect (OSTI)

Reports on soldier power R&D review, N-MCT power electronic building blocks, silicon carbide power semiconductor work, and ground based radar were made to the Power Conditioning Panel. An introduction to high temperature electronics needs, research and development was made to the High Temperature Electronics Subcommittee. The Pulse Power Panel received reports on the navy ETC gun, and army pulse power. The Superconductivity Panel received reports on high-tc superconducting wires, superconducting magnetic energy storage, and superconducting applications. The Nuclear Working Group received presentations on the Topaz nuclear power program, and space nuclear work in the Department of Energy.

Not Available

1993-12-31T23:59:59.000Z

76

Atoms to electricity  

SciTech Connect (OSTI)

This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle and the role of nuclear energy as one of the domestic energy resources being developed to help meet our national energy demand. Nuclear power accounted for some 12 percent of the US electric energy supply in 1982. In the 1990's, it is expected to become second only to coal as a source of our electric power, almost doubling its present contribution to our national electricity supply. 14 references, 40 figures, 5 tables.

Not Available

1983-11-01T23:59:59.000Z

77

Annual Energy Outlook 2014: Electricity Working Group Meeting...  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Analysis Team Office of Electricity, Coal, Nuclear, and Renewables Analysis Office of Energy Analysis Annual Energy Outlook 2014: Electricity Working Group Meeting July...

78

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Response Planning for Nuclear Power Plants in California",and Related Standards for Nuclear Power Plants", Lawrencejected lifetime for a nuclear power plant is 40 years, a

Nero, jA.V.

2010-01-01T23:59:59.000Z

79

Nuclear Eclectic Power  

Science Journals Connector (OSTI)

...much higher future costs for oil and natural gas. However, the...ELECTRICITY GENERATION FROM COAL, OIL, AND NUCLEAR FUEL, NUCLEAR...electricity generation from coal, oil, and nuclear fuel, cite about...possibility that stimu-lated a marathon debate between the Union of...

David J. Rose

1974-04-19T23:59:59.000Z

80

Environmental Assessment for Authorizing the Puerto Rico Electric Power Authority (PREPA) to allow Public Access to the Boiling Nuclear Superheat (BONUS) Reactor Building, Ricon, Puerto Rico  

Broader source: Energy.gov (indexed) [DOE]

394: Public Access to the BONUS Facility January 2003 394: Public Access to the BONUS Facility January 2003 i DOE/EA-1394 ENVIRONMENTAL ASSESSMENT FOR AUTHORIZING THE PUERTO RICO ELECTRIC POWER AUTHORITY (PREPA) TO ALLOW PUBLIC ACCESS TO THE BOILING NUCLEAR SUPERHEAT (BONUS) REACTOR BUILDING, RINCÓN, PUERTO RICO January 2003 U.S. Department of Energy Oak Ridge Operations Office Oak Ridge, Tennessee DOE/EA-1394: Public Access to the BONUS Facility January 2003 ii TABLE OF CONTENTS LIST OF FIGURES V LIST OF TABLES V ACRONYMS VI UNIT ABBREVIATIONS VII SUMMARY VIII 1. INTRODUCTION 10 1.1 Purpose and Need for Action 10 1.2 Operational and Decommissioning History 15 1.3 Summary of Radiological Conditions at the BONUS Facility 19 2. DESCRIPTION OF THE PROPOSED ACTION AND ALTERNATIVES 25

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

82

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Nuclear Regulatory Commission Standard Review Plan for LightRegulatory Commission. Office of Nuclear Reactor Licens- ing. Standard Review Plan.

Nero, jA.V.

2010-01-01T23:59:59.000Z

83

Charge dependence and electric quadrupole effects on single-nucleon removal in relativistic and intermediate energy nuclear collisions  

Science Journals Connector (OSTI)

Single-nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsäcker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

John W. Norbury

1990-11-01T23:59:59.000Z

84

Supporting Our Nation's Nuclear Industry  

ScienceCinema (OSTI)

On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

Lyons, Peter

2013-05-29T23:59:59.000Z

85

A Perspective on Nuclear Waste  

Science Journals Connector (OSTI)

The management of spent nuclear fuel and high-level nuclear waste has the deserved reputation as one of ... facing the United States and other nations using nuclear reactors for electric power generation. This pa...

D. Warner North

1999-08-01T23:59:59.000Z

86

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy...

87

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw)...

88

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

89

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

90

Performance testing and Bayesian Reliability Analysis of small diameter, high power electric heaters for the simulation of nuclear fuel rod temperatures.  

E-Print Network [OSTI]

??The conversion of plutonium from a nuclear weapon to nuclear reactor fuel requires an evaluation of the residual gallium as a potential corrosive material within… (more)

O'Kelly, David Sean

2012-01-01T23:59:59.000Z

91

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, jA.V.

2010-01-01T23:59:59.000Z

92

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Yen, W.W.S.

2010-01-01T23:59:59.000Z

93

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Response Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

Nero, jA.V.

2010-01-01T23:59:59.000Z

94

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRORFCSERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 45,146 5 Electric Utilities 5,274 34...

95

Electric Currents Electric Current  

E-Print Network [OSTI]

coefficient of resistivity Electric Power: = = = Also, = . So, = = 2 = 2 Unit of Power(P): Watt (WChapter 18 Electric Currents #12;Electric Current: Flow of electric charge Current is flow of positive charge. In reality it's the electron moves in solids- Electron current. #12;Ohm's Law : Resistance

Yu, Jaehoon

96

Environmental consequences of postulated plutonium releases from General Electric Company Vallecitos Nuclear Center, Vallecitos, California, as a result of severe natural phenomena  

SciTech Connect (OSTI)

Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the General Electric Company Vallecitos Nuclear Center, Vallecitos, California. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Maximum plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values likely to occur offsite are also given. The most likely calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the earthquakes, and the 180-mph and 230-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 ..mu..Ci/m/sup 2/. The deposition values following the 135-mph tornado are below the EPA proposed guidelines.

Jamison, J.D.; Watson, E.C.

1980-11-01T23:59:59.000Z

97

Nuclear Energy Technical Assistance | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gas emitting electricity. In addition, nuclear power plants do not release air pollutants, providing an important option for improving air quality. Globally, nuclear...

98

Nuclear cheap?  

Science Journals Connector (OSTI)

... account of the fact that if there had been no nuclear contribution the additional fossil fuel supplies would have had to come from expanded output at the marginal and most expensive ... a perfectly proper accountancy basis, including allowance for costs yet to be incurred, the price we would be paying for electricity would be higher now had fossil stations been preferred ...

P.M.S. JONES

1980-12-18T23:59:59.000Z

99

The Role of Nuclear Power in Reducing Risk of the Fossil Fuel Prices and Diversity of Electricity Generation in Tunisia: A Portfolio Approach  

Science Journals Connector (OSTI)

Given the global energy trend to substitute fossil fuel, the nuclear power has known an important ... degrees of uncertainties related to nuclear and fossil fuel. The higher uncertainty of fossil fuel prices make...

Mohamed Ben Abdelhamid; Chaker Aloui; Corinne Chaton…

2010-04-01T23:59:59.000Z

100

GET TO KNOW National Nuclear Science Week  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

South Carolina's electricity and one-fourth of Georgia's electric power come from nuclear energy. Nuclear job opportunities will be plentiful. More than 10,000 new workers will be...

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

International Energy Outlook 1999 - Nuclear Power  

Gasoline and Diesel Fuel Update (EIA)

nuclear.jpg (5137 bytes) nuclear.jpg (5137 bytes) Nuclear electricity generation remains flat in the IEO99 reference case, representing a declining share of the worldÂ’s total electricity consumption. Net reductions in nuclear capacity are projected for most industrialized nations. In 1997, a total of 2,276 billion kilowatthours of electricity was generated from nuclear power worldwide, providing 17 percent of the worldÂ’s electricity generation. Among the countries with operating nuclear power plants, national dependence on nuclear power for electricity varies greatly (Figure 53). Ten countries met at least 40 percent of their total electricity demand with generation from nuclear reactors. The prospects for nuclear power to maintain a significant share of worldwide electricity generation are uncertain, despite projected growth of

102

Electric Power from Nuclear Fission  

Science Journals Connector (OSTI)

...Institute of Technology, Cambridge...Institute of Technology, Cambridge...types under development. Attention...oil, and gas-now known...through a turbine driving an...Reactor development authorities...and the gas-cooled fast-breeder...reactor technology already developed...

Manson Benedict

1971-01-01T23:59:59.000Z

103

Western Interstate Nuclear Compact State Nuclear Policy (Multiple States) |  

Broader source: Energy.gov (indexed) [DOE]

Western Interstate Nuclear Compact State Nuclear Policy (Multiple Western Interstate Nuclear Compact State Nuclear Policy (Multiple States) Western Interstate Nuclear Compact State Nuclear Policy (Multiple States) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Arizona Program Type Siting and Permitting Provider Western Interstate Energy Board Legislation authorizes states' entrance into the Western Interstate Nuclear Compact, which aims to undertake the cooperation of participating states in

104

Nuclear Power and the Public  

Science Journals Connector (OSTI)

This study is an attempt to understand attitudes, perceptions, and behaviors with respect to nuclear power and several other technological risk sources. A ... obtains about 80% of its electricity from nuclear power

Paul Slovic; James Flynn; C. K. Mertz; Marc Poumadère…

2000-01-01T23:59:59.000Z

105

Nuclear Energy Research Brookhaven National  

E-Print Network [OSTI]

Nuclear Energy Research Brookhaven National Laboratory William C. Horak, Chair Nuclear Science and Technology Department #12;BNL Nuclear Energy Research Brookhaven Graphite Research Reactor - 1948 National&T Department #12;Nuclear Energy Today 435 Operable Power Reactors, 12% electrical generation (100 in US, 19

Ohta, Shigemi

106

Implications of Low Electricity Demand Growth  

U.S. Energy Information Administration (EIA) Indexed Site

Conference July 14, 2014 | Washington, DC Jim Diefenderfer, Director, Office of Electricity, Coal, Nuclear, & Renewables Analysis U.S. Energy Information Administration...

107

Electrical Functional Area Qualification Guide Page 1 of 12  

E-Print Network [OSTI]

, electrical work planning, electrical design, electrical testing, research involving electrical energy and/or work activities involving exposure to electrical energy that is not reduced to a safe level particular to an individual sub-project and hazards unrelated to electrical energy, e.g., nuclear or chemical

108

Estimated airborne release of plutonium from the 102 Building at the General Electric Vallecitos Nuclear Center, Vallecitos, California, as a result of damage from severe wind and earthquake hazard  

SciTech Connect (OSTI)

This report estimates the potential airborne releases of plutonium as a consequence of various severities of earthquake and wind hazard postulated for the 102 Building at the General Electric Vallecitos Nuclear Center in California. The releases are based on damage scenarios developed by other specialists. The hazard severities presented range up to a nominal velocity of 230 mph for wind hazard and are in excess of 0.8 g linear acceleration for earthquakes. The consequences of thrust faulting are considered. The approaches and factors used to estimate the releases are discussed. Release estimates range from 0.003 to 3 g Pu.

Mishima, J.; Ayer, J.E.; Hays, I.D.

1980-12-01T23:59:59.000Z

109

Nuclear | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Nuclear power is the use of sustained nuclear fission to generate heat and electricity. Nuclear power plants provide about 6 percent of the world's energy and 13-14 percent of the world's electricity. Featured Five Years of Building the Next Generation of Reactors Simulated three-dimensional fission power distribution of a single 17x17 rod PWR fuel assembly. | Photo courtesy of the Consortium for Advanced Simulation of Light Water Reactors (CASL). A two-year update on the Consortium for Advanced Simulation of Light Water Reactors and the progress being made in overcoming barriers to national

110

Lesson 6 - Atoms to Electricity | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6 - Atoms to Electricity Lesson 6 - Atoms to Electricity Most power plants make electricity by boiling water to make steam that turns a turbine. A nuclear power plant works this...

111

Nuclear Energy  

Science Journals Connector (OSTI)

Nuclear Energy ... A brief summary of the history and key concepts of nuclear energy. ... Nuclear / Radiochemistry ...

Charles D. Mickey

1980-01-01T23:59:59.000Z

112

Nuclear batteries  

Science Journals Connector (OSTI)

Nuclear batteries ... Describes the structure, operation, and application of nuclear batteries. ... Nuclear / Radiochemistry ...

Alfred B. Garrett

1956-01-01T23:59:59.000Z

113

Performance testing and Bayesian Reliability Analysis of small diameter, high power electric heaters for the simulation of nuclear fuel rod temperatures  

E-Print Network [OSTI]

proposed full test using prototypic mixed-oxide fuel (MOX) containing plutonium from converted nuclear weapons. Bayesian reliability analysis methods were used to determine the expected heater failure rate because of the expected short test duration...

O'Kelly, David Sean

2012-06-07T23:59:59.000Z

114

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4...

115

EIA - AEO2010 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2010 with Projections to 2035 Electricity Demand Figure 69. U.S. electricity demand growth 1950-2035 Click to enlarge » Figure source and data excel logo Figure 60. Average annual U.S. retail electricity prices in three cases, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 61. Electricity generation by fuel in three cases, 2008 and 2035 Click to enlarge » Figure source and data excel logo Figure 62. Electricity generation capacity additions by fuel type, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 63. Levelized electricity costs for new power plants, 2020 and 2035 Click to enlarge » Figure source and data excel logo Figure 64. Electricity generating capacity at U.S. nuclear power plants in three cases, 2008, 2020, and 2035

116

International Energy Outlook 2001 - Nuclear  

Gasoline and Diesel Fuel Update (EIA)

Nuclear Power Nuclear Power picture of a printer Printer Friendly Version (PDF) Nuclear power is projected to represent a growing share of the developing worldÂ’s electricity consumption from 1999 through 2020. New plant construction and license extensions for existing plants are expected to produce a net increase in world nuclear capacity. Nuclear power plants generated electricity in 29 countries in 1999. A total of 433 nuclear power reactors were in operation (Figure 61), including 104 in the United States, 59 in France, and 53 in Japan. The largest national share of electricity from nuclear power was in France, at 75 percent (Figure 62). Belgium, Bulgaria, France, Lithuania, Slovenia, Slovakia, Sweden, Ukraine, and South Korea depended on nuclear power for at least 40

117

Honoring Our Past, Securing Our Future | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

nuclear weapons into LEU fuel for U.S. power plants, generating 10 percent of U.S. electricity. Preventing nuclear smuggling and strengthening the nonproliferation regime -...

118

ENSURING A SKILLED WORKFORCE FOR THE NUCLEAR RENAISSANCE The...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carolina. Georgia's four nuclear units account for more than one-fourth of the State's electricity generation. South Carolina's five nuclear units supply about half of the...

119

Nuclear Forensics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear forensics Nuclear Forensics AMS is a Powerful Tool for Nuclear Forensics Nuclear forensics, which can be applied to both interdicted materials and debris from a nuclear...

120

Electrical aspects of rainout  

SciTech Connect (OSTI)

Rainout commonly denotes the aggregate of phenomena associated with precipitation scavenging of radioactivity from a cloud of nuclear debris that is within a natural rain cloud. (In contrast, the term, washout, is applicable when the nuclear cloud is below the rain cloud and the term, fallout, commonly denotes the direct gravitational settling of contaminated solid material from a nuclear cloud.) Nuclear debris aerosols may be scavenged within natural clouds by a variety of different physical processes which may involve diffusion, convection, impaction, nucleation, phoresis, turbulence, and/or electricity among others. Processes which involve electrical aspects are scrutinized for their susceptibility to the intimate presence of the radioactive-cloud environment. This particular choice of electrical processes is not accidental. Nearly all of the listed processes were examined earlier by Williams. His rough estimates suggested that electrical effects, and to a lesser extent turbulence, could enhance the scavenging of those submicron aerosols which reside in the size-range that bridges the minimum in the scavenging rate coefficient which is commonly called the Greenfield gap. This minimum in the scavenging-rate coefficient is created by the simultaneous reduction of scavenging via diffusion and the reduction of scavenging via inertial impaction. However, Williams omitted the specific influence of a radioactive environment. This report aims to remedy this omission.

Rosenkilde, C.E.

1981-11-23T23:59:59.000Z

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electrical Engineers' Handbook  

Science Journals Connector (OSTI)

... THE "Standard Handbook for Electrical Engineers" first published by the McGraw Hill Book Co. in 1997, ... now constitute complete sections or sub-sections. For example, under Section 26, "Electro-physics", there is given a very satisfactory outline of nuclear energy and radioactivity, while ...

J. GREIG

1949-11-05T23:59:59.000Z

122

State Renewable Electricity Profiles  

Reports and Publications (EIA)

Presents a summary of current and recent historical data for the renewable electric power industry. The data focuses on net summer capacity and net generation for each type of renewable generator, as well as fossil-fired and nuclear power plant types, for the period 2006 through 2010.

2012-01-01T23:59:59.000Z

123

Electric power annual 1992  

SciTech Connect (OSTI)

The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

Not Available

1994-01-06T23:59:59.000Z

124

Nuclear Energy-Depend On It Helping  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy-Depend On It Helping to Power America for More Than Five Decades Past, Present, and Future ... The United States introduced nuclear energy into our domestic electricity production in 1957 and now produces approximately 20 percent of our total electricity and 70 percent of our low-carbon electricity from nuclear energy, according to the Energy Information Administration. More than 100 U.S. commercial nuclear power reactors provide reliable, affordable electricity in 31 states. Nuclear energy can help meet our Nation's need for dependable electricity into the future. The use of nuclear power is increasing around the world: z 29 countries worldwide operate a total of 437 nuclear reactors for electricity generation, with 55 new nuclear reactors under construction in 14 countries.

125

Electricity Reliability  

E-Print Network [OSTI]

Electricity Delivery and Energy Reliability High Temperature Superconductivity (HTS) Visualization in the future because they have virtually no resistance to electric current, offering the possibility of new electric power equipment with more energy efficiency and higher capacity than today's systems

126

Electrical insulation  

Science Journals Connector (OSTI)

n....Material with very low conductivity, which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers.

2007-01-01T23:59:59.000Z

127

Electrical Insulation  

Science Journals Connector (OSTI)

n...Material with very low conductivity which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers (Dissado LA...

Jan W. Gooch

2011-01-01T23:59:59.000Z

128

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Response Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,Summary of Nuclear Power Plant Operating Experience for

Nero, A.V.

2010-01-01T23:59:59.000Z

129

Nuclear | Open Energy Information  

Open Energy Info (EERE)

Nuclear Nuclear Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 82. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 9. Electricy Generating Capacity Table 96. Electricity Generation by Electricity Market Module Region and Source Table 97. Electricity Generation Capacity by Electricity Market Module Region and Source Market Trends In the AEO2011 Reference case, nuclear power capacity increases from 101.0 gigawatts in 2009 to 110.5 gigawatts in 2035 (Figure 82), including 3.8 gigawatts of expansion at existing plants and 6.3 gigawatts of new capacity. The new capacity includes completion of a second unit at the Watts Bar site, where construction on a partially completed plant has

130

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

131

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont Electricity Profile 2010 Vermont profile Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,128 50 Electric Utilities 260 45 Independent Power Producers & Combined Heat and Power 868 43 Net Generation (megawatthours) 6,619,990 49 Electric Utilities 720,853 44 Independent Power Producers & Combined Heat and Power 5,899,137 35 Emissions (thousand metric tons) Sulfur Dioxide * 51 Nitrogen Oxide 1 50 Carbon Dioxide 8 51 Sulfur Dioxide (lbs/MWh) * 51 Nitrogen Oxide (lbs/MWh) 0.2 51 Carbon Dioxide (lbs/MWh) 3 51 Total Retail Sales (megawatthours) 5,594,833 51 Full Service Provider Sales (megawatthours) 5,594,833 48 Direct Use (megawatthours) 19,806 47

132

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

133

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

134

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Electricity Profile 2010 Illinois profile Illinois Electricity Profile 2010 Illinois profile Table 1. 2010 Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRO/RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 44,127 5 Electric Utilities 4,800 35 Independent Power Producers & Combined Heat and Power 39,327 3 Net Generation (megawatthours) 201,351,872 5 Electric Utilities 12,418,332 35 Independent Power Producers & Combined Heat and Power 188,933,540 3 Emissions (thousand metric tons) Sulfur Dioxide 232 9 Nitrogen Oxide 83 8 Carbon Dioxide 103,128 6 Sulfur Dioxide (lbs/MWh) 2.5 25 Nitrogen Oxide (lbs/MWh) 0.9 38 Carbon Dioxide (lbs/MWh) 1,129 34 Total Retail Sales (megawatthours) 144,760,674 6 Full Service Provider Sales (megawatthours) 77,890,532 19

135

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

136

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

137

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

138

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

139

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

140

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

142

Transactions of the fourth symposium on space nuclear power systems  

SciTech Connect (OSTI)

This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

El-Genk, M.S.; Hoover, M.D. (eds.)

1987-01-01T23:59:59.000Z

143

Transactions of the fifth symposium on space nuclear power systems  

SciTech Connect (OSTI)

This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

El-Genk, M.S.; Hoover, M.D. (eds.)

1988-01-01T23:59:59.000Z

144

Operational Experience in Nuclear Power Stations [and Discussion  

Science Journals Connector (OSTI)

...Operational Experience in Nuclear Power Stations...self-sustaining nuclear reaction to the present...time large-scale generation of electrical power from nuclear energy has become...the C.E.G.B. reactors have been in service...

1974-01-01T23:59:59.000Z

145

The Chernobyl Nuclear Accident  

Science Journals Connector (OSTI)

...often repeated belief of the opponents of nuclear power that the risks, whatever they are, outweigh the need for and the known value of nuclear energy in developing electric power in the world. We are some 44 years away from the first development of nuclear energy, and yet the authors of this editorial... To the Editor: Cassel and Leaning began their editorial (July 27 issue)1 with a review of the report on the Chernobyl nuclear accident by Baranov et al.2 in the same issue, but they very quickly shifted to a barrage of warning shots across the bow of the ...

1990-02-08T23:59:59.000Z

146

Nuclear power plants: structure and function  

SciTech Connect (OSTI)

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

147

JAPAN’S NUCLEAR CRISIS CONTINUES  

Science Journals Connector (OSTI)

JAPAN’S NUCLEAR CRISIS CONTINUES ... IT WILL TAKE UP TO nine months before the crippled Fukushima Daiichi Nuclear Power Station in Japan is stabilized, facility owner Tokyo Electric Power Co. (TEPCO) said last week. ...

GLENN HESS

2011-04-25T23:59:59.000Z

148

Electricity Markets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Markets Electricity Markets Researchers in the electricity markets area conduct technical, economic, and policy analysis of energy topics centered on the U.S. electricity sector. Current research seeks to inform public and private decision-making on public-interest issues related to energy efficiency and demand response, renewable energy, electricity resource and transmission planning, electricity reliability and distributed generation resources. Research is conducted in the following areas: Energy efficiency research focused on portfolio planning and market assessment, design and implementation of a portfolio of energy efficiency programs that achieve various policy objectives, utility sector energy efficiency business models, options for administering energy efficiency

149

Electrical Engineer  

Broader source: Energy.gov [DOE]

This position is located in the Office of Electric Reliability. The Office of Electric Reliability helps protect and improve the reliability and security of the nation's bulk power system through...

150

REGULATION AND SYSTEM INTERDEPENDENCE: EFFECTS ON THE SITING OF CALIFORNIA ELECTRICAL ENERGY FACILITIES  

E-Print Network [OSTI]

Going to SQecific End Uses Hydroelectricity 100% electricity58% transportation Hydroelectricity ! Nuclear Geothermalsupply relied on hydroelectricity, the severe droughts,

Kooser, J.C.

2013-01-01T23:59:59.000Z

151

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

emergencies, Le. , accidents at nuclear facilities, there isas a result of nuclear accidents; these are the Protectiveassociated with a nuclear accident is of greater importance

Nero, A.V.

2010-01-01T23:59:59.000Z

152

nuclear | OpenEI  

Open Energy Info (EERE)

nuclear nuclear Dataset Summary Description This dataset presents summary information related to world nuclear energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Source Earth Policy Institute Date Released January 12th, 2011 (3 years ago) Date Updated Unknown Keywords EU nuclear nuclear electricity world Data application/vnd.ms-excel icon Summary nuclear energy consumption data (xls, 68.6 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License Comment "Reuse of our data is permitted. We merely ask that wherever it is listed, it be appropriately cited" Rate this dataset

153

EIA - 2010 International Energy Outlook - Electricity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity International Energy Outlook 2010 Electricity World electricity generation increases by 87 percent from 2007 to 2035 in the IEO2010 Reference case. Non-OECD countries account for 61 percent of world electricity use in 2035. Figure 67. Growth in world electric power generation and total energy consumption, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 68. World net electricity generation by region, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 69. Non-OECD net electricity generation by region, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 70. World net electricity generation by fuel, 2006-2030. Click to enlarge » Figure source and data excel logo Figure 71. World net electricity generation from nuclear power by region, 2007-2030.

154

Electric power annual 1997. Volume 1  

SciTech Connect (OSTI)

The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1 -- with a focus on US electric utilities -- contains final 1997 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1997 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold (based on a monthly sample: Form EIA-826, ``Monthly Electric Utility Sales and Revenue Report with State Distributions``). Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA.

NONE

1998-07-01T23:59:59.000Z

155

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Health and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel3 of HEALTH AND SAFETY IMPACTS OF FOSSIL-FUEL NUCLEAR,HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL

Nero, A.V.

2010-01-01T23:59:59.000Z

156

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

157

A REVIEW OF AIR QUALITY MODELING TECHNIQUES. VOLUME 8 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Rosen, L.C.

2010-01-01T23:59:59.000Z

158

Fears About Nuclear Proliferation  

Science Journals Connector (OSTI)

Recovery and reuse of plutonium in nuclear power programs poses serious threats regarding diversion and terrorism ... A nuclear power plant typically generates about 1000 MW of electric power and, as a worrisome by-product, makes several kilograms a week of plutonium-239. ... Many tons of plutonium- 239 are produced in U.S. power plants; most of it remains in spent fuel elements now being held in interim storage. ...

WINSTON M MANNING

1985-08-12T23:59:59.000Z

159

Annual Energy Outlook 2014 Electricity Working Group Meeting  

Gasoline and Diesel Fuel Update (EIA)

Analysis Team Office of Electricity, Coal, Nuclear, and Renewables Analysis Office of Energy Analysis WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS...

160

Argonne nuclear pioneer: Leonard Koch  

SciTech Connect (OSTI)

Leonard Koch joined Argonne National Laboratory in 1948. He helped design and build Experimental Breeder Reactor-1 (EBR-1), the first reactor to generate useable amounts of electricity from nuclear energy.

Koch, Leonard

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nuclear & Uranium - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Find statistics on nuclear operable units, nuclear electricity net Find statistics on nuclear operable units, nuclear electricity net generation, nuclear share of electricity net generation, and capacity factor. + EXPAND ALL Summary Additional Formats Nuclear Overview: PDF CSV XLS Monthly statistics on nuclear operable units, nuclear electricity net generation, nuclear share of electricity net generation, and capacity factor. PDFXLS Annual statistics on nuclear generating units, power plants operations, and uranium. › Nuclear Generating Units, 1955-2010 › PDF XLS Nuclear Power Plant Operations, 1957-2010 › PDF XLS Uranium Overview, 1949-2010 › PDF XLS Uranium & Nuclear Fuel Additional Formats U.S. Uranium Reserves Estimates › Release Date: July 2010 The U.S. Energy Information Administration (EIA) has updated its estimates of uranium reserves for year-end 2008. This represents the first revision of the estimates since 2004. PDF

162

Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Programs >> Nuclear Energy Error Error Nuclear Energy Home - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Energy Home - RCC * Increasing...

163

E-Print Network 3.0 - alternative nuclear fuel Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of electricity from nuclear power plants is far less than any of the alternative energy technologies now contem... Processing of Nuclear Fuel, EGRN 430 ...

164

At What Cost? A comparative evaluation of the social costs of selected electricity generation alternatives in Ontario.  

E-Print Network [OSTI]

??This thesis examines the private and external costs of electricity generated in Ontario by natural gas, wind, refurbished nuclear and new nuclear power. The purpose… (more)

Icyk, Bryan

2007-01-01T23:59:59.000Z

165

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

166

Electric Vehicles  

SciTech Connect (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

167

Electrical hazards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and certification by ANL prior to use. The Control of Hazardous Energy Sources - LockoutTagout (LOTO) Types of Energy Sources 1. Electricity 2. Gas, steam & pressurized...

168

Microsoft PowerPoint - Why Nuclear Energy New Template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why Nuclear Energy? Why Nuclear Energy? Why Nuclear Energy? Nuclear energy already meets a significant share of the world's energy needs * There are 441 nuclear reactors in operation in 31 countries * These plants generate electricity for nearly a billion people, and account for 17% of the world's electricity production * The U.S. has 103 operating reactors producing 20% of the nation's electricity * Illinois leads all states with the highest share of nuclear (51%) * Technology significantly developed at Argonne forms the basis of all nuclear energy systems used worldwide Nuclear power is reliable and economical * In 2001, U.S. nuclear plants produced electricity for 1.68 cents per kilowatt-hour on average, second only to hydroelectric power among baseload generation options * U.S. nuclear power plant performance has steadily

169

Tapping nuclear`s growth potential: Reaching into the next 50 years  

SciTech Connect (OSTI)

Restructuring of the electricity business heralds significant changes in nuclear operations. The organization of the entire electric industry will be different as the vertically integrated monopolies that formerly provided electricity are replaced by separate companies, specializing in specific functions. Among them will likely be generating companies and a limited number of highly proficient nuclear operating companies. Producing electricity as a commodity in a competitive market will call for price-driven performance. The safety focus of nuclear operations is the constant that will carry over into the competitive electricity business.

Shanks, C. [Entergy Nuclear, Inc., Jackson, MS (United States)

1997-12-01T23:59:59.000Z

170

Partially Adaptive Stochastic Optimization for Electric Power ...  

E-Print Network [OSTI]

Electric Power Generation Expansion Planning (GEP) is the problem of ... expansion models can have significant advantages in terms of total expected costs ...... Base Load, Combined Cycle (CC), Combined Turbine (CT), Nuclear, Wind, and.

2015-01-03T23:59:59.000Z

171

Nuclear Regulatory Commission issuances  

SciTech Connect (OSTI)

This document is the March 1996 listing of NRC issuances. Included are: (1) NRC orders granting Cleveland Electric Illuminating Company`s petition for review of the ASLB order LBP-95-17, (2) NRC orders relating to the potential disqualification of two commissioners in the matter of the decommissioning of Yankee Nuclear Power Station, (3) ASLB orders pertaining to the Oncology Services Corporation, (4) ASLB orders pertaining to the Radiation Oncology Center, (5) ASLB orders pertaining to the Yankee Nuclear Power Station, and (6) Director`s decision pertaining to the Yankee Nuclear Power Station.

NONE

1996-03-01T23:59:59.000Z

172

Ch 16 Electric Charge &Ch 16. Electric Charge & Electric Field  

E-Print Network [OSTI]

Ch 16 Electric Charge &Ch 16. Electric Charge & Electric Field Liu UCD Phy1B 2012 #12;I Basic ConceptsI. Basic Concepts Static electricity: charges at rest Electric charge Like charges repel Unlike charges attract Liu UCD Phy1B 2012 #12;Electric ChargeElectric Charge Electron charge: -eElectron charge

Yoo, S. J. Ben

173

Electricity Market Module: Electricity finance and pricing submodule  

SciTech Connect (OSTI)

The purpose of this report is to document the updates to the Electricity Financial Pricing Module (EFP) to reflect the rate impacts of nuclear decommissioning. The EFP is part of the National Energy Modeling System (NEMS). The updates to the EFP related to nuclear decommissioning include both changes to the underlying data base and the methodology. Nuclear decommissioning refers to the activities performed to take a nuclear plant permanently out of service. The costs of nuclear decommissioning are substantial and uncertain. The recovery of these costs from ratepayers is to occur over the operating life of the nuclear plant. Utilities are obligated to make estimates of the nuclear decommissioning cost every few years. Given this estimate, utilities are to assess a charge upon ratepayers, such that over the operating life of the plant they collect sufficient funds to pay for the decommissioning. However, cost estimates for decommissioning have been increasing and it appears that utilities have not been collecting adequate funds to date. In addition, there is a real risk that many nuclear plants may be closed earlier than originally planned, further exacerbating the under collection problem. The updates performed in this project provide the EFP with the capability to analyze these issues. The remainder of this document is divided into two discussions: (1) Nuclear Decommissioning Data Base, and (2) Methodology. Appendix A contains the actual data base developed during the project.

NONE

1996-06-01T23:59:59.000Z

174

International Energy Outlook 2000 - Nuclear Power  

Gasoline and Diesel Fuel Update (EIA)

In the IEO2000 reference case, nuclear power represents a declining share of the worldÂ’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In the IEO2000 reference case, nuclear power represents a declining share of the worldÂ’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In 1998, a total of 2,291 billion kilowatthours of electricity was generated by nuclear power worldwide, providing 16 percent of the worldÂ’s total generation[1]. Among the countries with operating nuclear power plants, national dependence on nuclear energy for electricity varies greatly. Nine countries met at least 40 percent of total electricity demand with generation from nuclear reactors. Figure 68. Nuclear Shares of National Electricity Generation, 1998 [Sources] The prospects for nuclear power to maintain a significant share of

175

Nuclear Debate  

Science Journals Connector (OSTI)

Nuclear Debate ... This month, the Senate will consider the nominations of two women to serve on the Nuclear Regulatory Commission. ... Svinicki is a nuclear engineer with experience in the Department of Energy’s nuclear energy programs. ...

JEFF JOHNSON

2012-06-11T23:59:59.000Z

176

Electric machine  

DOE Patents [OSTI]

An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Reddy, Patel Bhageerath (Madison, WI)

2012-07-17T23:59:59.000Z

177

Where Now With Nuclear Power?  

Science Journals Connector (OSTI)

... disputes, the continuing breakdown of plant, increasing oil prices and soaring capital costs of nuclear power stations have all upset the economic balance between the four electricity generating fuels- coal, ... the chief factors in the energy equation is the fact that the capital cost of nuclear power stations is much greater than that of oil-fired stations: for about £200 million ...

1971-03-19T23:59:59.000Z

178

Nuclear Power and its Development  

Science Journals Connector (OSTI)

... make the effect on the coal industry the deciding factor in determining the development of nuclear power. The implications of technological change have been ignored, as has the effect of development ... been ignored, as has the effect of development on the cost of electricity supplied by nuclear power-stations, which Sir Christopher Hinton stressed very strongly in his Axel Ax:son Johnson ...

1959-08-08T23:59:59.000Z

179

THE NUCLEAR ENERGY REVOLUTION—1966  

Science Journals Connector (OSTI)

...of the coming generation. It is this...cheap nuclear power, about which...water nuclear power plant. At its...for a coal-fired power plant of the...Utilities Rochester Gas & Electric Consolidated...available for generation 76 per cent of...

Alvin M. Weinberg; Gale Young

1967-01-01T23:59:59.000Z

180

World nuclear outlook 1995  

SciTech Connect (OSTI)

As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

NONE

1995-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Engineering Electrical &  

E-Print Network [OSTI]

Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College

Hickman, Mark

182

Engineering Electrical &  

E-Print Network [OSTI]

Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College

Hickman, Mark

183

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

nuclear, geothermal, and fossil-fuel power plants. However,power plants, which are reviewed and licensed by the Nuclear Regulatory Commission (NRC), and relatively few areas of geothermal and

Nero, A.V.

2010-01-01T23:59:59.000Z

184

Nuclear Resonance Fluorescence for Nuclear Materials Assay  

E-Print Network [OSTI]

Potential of Nuclear Resonance Fluorescence . . . . . . . .2.9.1 Nuclear ThomsonSections . . . . . . . . . . . . . . . Nuclear Resonance

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z

185

Nuclear Regulatory Commission issuances  

SciTech Connect (OSTI)

This thirty-second volume of issuances (1--496) of the Nuclear Regulatory Commission and its Atomic Safety and Licensing Appeal Boards, Atomic Safety and Licensing Boards, and Administrative Law Judges it covers the period from July 1, 1990 to December 31, 1990. The hardbound edition of the Nuclear Regulatory commission Issuances is a final compilation of the monthly issuances. It includes all of the legal precedents for the agency within a six-month period. Any opinions, decisions, denials, memoranda and orders of the Commission inadvertently omitted from the monthly softbounds and any corrections submitted by the NRC legal staff to the printed softbound issuances are contained in the hardbound edition. Cross references in the text and indexes are to the NRCI page numbers which are the same as the page numbers in this publication. Issuances are referred to as follows: Commission--CLI, Atomic Safety and Licensing Appeal Boards--ALAB, Atomic Safety and Licensing Boards--LBP, Administrative Law Judges--ALJ, Directors'Decisions--DD, and Denial of Petitions for Rulemaking--DPRM. Specific facilities discussed are: Carroll County Nuclear Station; Palo Verde Nuclear Generating Station; Perry Nuclear Power Plant; Quad Cities Nuclear Power Stations; Seabrook Station; Shoreham Nuclear Generating Plant; Vermont Yankee Nuclear Power Station; and Vogtle Electric Generating Plant.

Not Available

1990-01-01T23:59:59.000Z

186

Nuclear Returns  

Science Journals Connector (OSTI)

Nuclear Returns ... For the first time since 1978, the Nuclear Regulatory Commission has given the green light for a new U.S. nuclear power plant. ... NRC granted a license to Southern Co. to build and operate twin 1,100-MW reactors adjacent to two operating nuclear power plants at its Vogtle nuclear facility, near Waynesboro, Ga. ...

JEFF JOHNSON

2012-02-19T23:59:59.000Z

187

Annual Energy Outlook with Projections to 2025-Market Trends - Electricity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity Index (click to jump links) Electricity Sales Electricity Generating Capacity Electricity Fuel Costs and Prices Nuclear Power Electricity from Renewable Sources Electricity Alternative Cases Electricity Sales Electricity Use Is Expected To Grow More Slowly Than GDP As generators and combined heat and power plants adjust to the evolving structure of the electricity market, they face slower growth in demand than in the past. Historically, demand for electricity has been related to economic growth; that positive relationship is expected to continue, but the ratio is uncertain. Figure 67. Population gross domestic product, and electricity sales, 1965-2025 (5-year moving average annual percent growth). Having problems, call our National Energy Information Center at 202-586-8800 for help.

188

Electricity 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity > Soliciting comments on EIA-111 Electricity > Soliciting comments on EIA-111 EIA announces the proposal of Form EIA-111, Quarterly Electricity Imports and Exports Report Released: August 15, 2011 Background On August 11, 2011, a Federal Register Notice was published soliciting comments for the new EIA-111 survey form. The EIA-111, Quarterly Electricity Imports and Exports Report will replace the OE-781R, Monthly Electricity Imports and Exports Report. The OE-781R has been suspended and will be terminated upon the approval of the EIA-111. The OE-781R administered from July 2010 through May 2011, proved complex and confusing for the repondents. As a result, the EIA-111 was developed to more effectively and efficiently collect more accurate and meaningful data. The Paperwork Reduction Act (PRA) of 1995 requires that each Federal agency obtains approval from the Office of Management and Budget (OMB) before undertaking to collect information from ten or more persons, or continuing a collection for which the OMB approval and the OMB control number are about to expire. The approval process, which is popularly known as the "OMB clearance process," is extensive. It requires two Federal Register notices and a detailed application ("supporting statement") to OMB. The first Federal Register Notice was published on August 11, 2011. EIA is prepared to address the comments submitted by each individual.

189

Nuclear Energy Program  

Broader source: Energy.gov (indexed) [DOE]

September 30, 2002 September 30, 2002 NERAC Fall 2002 Meeting Office of Nuclear Energy, Science and Technology Major Program Developments Major Program Developments 6 June 2002: Department selects three U.S. electric utilities (Dominion Energy, Entergy, and Exelon) to participate in joint government/ industry projects to demonstrate NRC's Early Site Permit (ESP) process and seek NRC approval by mid-decade 6 July 2002: Secretary Abraham announces transition of management of the Idaho National Engineering and Environmental Laboratory to Nuclear Energy and revitalization of its nuclear R&D mission 6 September 2002: Generation IV International Forum reaches agreement on six advanced reactor and fuel cycle technologies for joint development Office of Nuclear Energy, Science and Technology

190

Chapter 27 - Nuclear weapons  

Science Journals Connector (OSTI)

Abstract This chapter faces the realization that the same atoms that can produce life-saving electricity can also be used to construct weapons of mass destruction. Some facilities, such as enrichment and reprocessing, in the nuclear fuel cycle can also serve dual uses when considering proliferation. The original atomic bombs were constructed of highly enriched uranium and high-grade plutonium, but their development led to thermonuclear devices with much larger yields. Thus far, nuclear war has been avoided by policies such as mutual assured destruction and international agreements such as the Non-Proliferation Treaty. The International Atomic Energy Agency (IAEA) is charged with performing worldwide nuclear material safeguards inspections. The legacy of the nuclear weapons arms race has left considerable weapons-grade materials that must be dealt with.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

191

Electrically detected spin echoes of donor nuclei in silicon  

E-Print Network [OSTI]

The ability to probe the spin properties of solid state systems electrically underlies a wide variety of emerging technology. Here, we extend electrical readout of the nuclear spin states of phosphorus donors in silicon to the coherent regime with modified Hahn echo sequences. We find that, whilst the nuclear spins have electrically detected phase coherence times exceeding 2 ms, they are nonetheless limited by the artificially shortened lifetime of the probing donor electron.

McCamey, D R; Morley, G W; van Tol, J

2011-01-01T23:59:59.000Z

192

Nuclear Fusion  

Science Journals Connector (OSTI)

Although not yet developed at the commercial stage, nuclear fusion technology is still being considered as a ... used in nuclear warfare. Since research in nuclear fusion for the production of energy started abou...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

193

Nuclear Nonproliferation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Nonproliferation As more countries embrace nuclear power as a cost-effective and clean alternative to fossil fuels, the need exists to ensure that the nuclear fuel cycle is...

194

Nuclear Engineering Nuclear Criticality Safety  

E-Print Network [OSTI]

Nuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear, and neutron spectra. The NE nuclear criticality safety (NCS) capabilities are based on a staff with decades

Kemner, Ken

195

Overview of the nuclear fuel cycle  

SciTech Connect (OSTI)

The use of nuclear reactors to provide electrical energy has shown considerable growth since the first nuclear plant started commercial operation in the mid 1950s. Although the main purpose of this paper is to review the fuel cycle capabilities in the United States, the introduction is a brief review of the types of nuclear reactors in use and the world-wide nuclear capacity.

Leuze, R.E.

1982-01-01T23:59:59.000Z

196

www.inl.gov A Future of Nuclear Energy  

E-Print Network [OSTI]

www.inl.gov A Future of Nuclear Energy: The Nuclear Renaissance, the Role of INL, and Potential in Nuclear Energy · Electrical Generation Supply/Demand · Global Warming, Greenhouse Gas Emissions/kilowatt-hour) Facts regarding nuclear energy in the US #12;· Standardized designs based on modularization producing

197

EEE 463 Electrical Power Plants (3) [F] Course (Catalog) Description  

E-Print Network [OSTI]

. Environmental impact of electric generation (3 lectures) 9. Advanced energy conversion systems (geothermalEEE 463 Electrical Power Plants (3) [F] Course (Catalog) Description: Generation of electric power using fossil, nuclear and renewable, including solar, geothermal, wind, hydroelectric, biomass and ocean

Zhang, Junshan

198

NUCLEAR REACTORS.  

E-Print Network [OSTI]

??Nuclear reactors are devices containing fissionable material in sufficient quantity and so arranged as to be capable of maintaining a controlled, self-sustaining NUCLEAR FISSION chain… (more)

Belachew, Dessalegn

2010-01-01T23:59:59.000Z

199

nuclear reactor  

Science Journals Connector (OSTI)

...a complex atomic apparatus used to obtain energy from nuclear fission chain reaction. Used to produce nuclear energy, radioactive isotopes, and artificial elements.... atomic pile ...

2009-01-01T23:59:59.000Z

200

Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Idaho National Laboratory is the Department of Energy's lead nuclear energy research and development facility. Building upon its legacy responsibilities,...

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nuclear Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Error Error Nuclear Hydrogen - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Hydrogen - RCC * Increasing your portlet timeout setting. *...

202

Nuclear Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Underground Research Facility in South Dakota, which will search for neutrinoless double-beta decay. Strong Los Alamos programs in nuclear data and nuclear theory supports...

203

Most Viewed Documents for Fission and Nuclear Technologies: December...  

Office of Scientific and Technical Information (OSTI)

Nicolas; Pruess, Karsten (2004) 21 Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario Palacios, J.C.; Alonso, G.; Ramirez, R.; Gomez, A.;...

204

NUCLEAR ENERGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Research Institute FE DOE-Office of Fossil Energy GDP Gross domestic product GHG Greenhouse gas GWe Gigawatt (electric) GWe-yr Gigawatt-year (electric) HTGR...

205

ELECTRIC RAILWAYS  

Science Journals Connector (OSTI)

...candidate. It is safe to say that the...education in the fundamental facts and methods...Steam-engine, boilers and dynamos...road in successful operation upon or-dinary...been in successful operation for several years...now in successful operation electric rail-ways...

W. D. Marks

1886-04-09T23:59:59.000Z

206

Electric Propulsion  

Science Journals Connector (OSTI)

...is clear. The long-t?me continuous operation is required for electric propulsion pri-marily...travel against a small voltage to the cold element. The cell thereby produces an...concentrate and focus the solar rays on a heater. Little, if any, decrease in specific...

W. E. Moeckel

1963-10-11T23:59:59.000Z

207

Electricity costs  

Science Journals Connector (OSTI)

... index is used to correct for inflation. The short answer is given by the Central Electricity Generating Board's (CEGB's) 1980-81 report, paragraph 168. "The ... Generating Board's (CEGB's) 1980-81 report, paragraph 168. "The cost per kWh of fuel. . . rose by 18.6 per cent (between 1979 ...

J.W. JEFFERY

1982-03-18T23:59:59.000Z

208

electrical, engineering  

E-Print Network [OSTI]

in groundbreaking community solar project PMC-based technology products enter the market Expanding our capacity: new learning educational gaming energy-efficient data storage and computing health informatics haptic education K-12 STEM electrical energy storage thermal energy storage and conversion energy production

Zhang, Junshan

209

Nuclear Matter and Nuclear Dynamics  

E-Print Network [OSTI]

Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

M Colonna

2009-02-26T23:59:59.000Z

210

Nuclear Energy | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Nuclear Energy Argonne has contributed to the development of civilian nuclear power for over 50 years. Our scientists and engineers conduct research in advanced nuclear energy systems, nonproliferation and national security, and environmental management. Nuclear energy is the largest generator of carbon-free electricity in use today, and it will play an increasing role in worldwide power generation as advanced reactor designs and improved fuel-cycle technologies are brought into commercial application. Nearly every commercial reactor in operation today was developed from Argonne research. Building on this heritage, we are supporting the reliable, safe and secure use of nuclear power worldwide - and fostering its increased use in the future by incorporating science and engineering

211

THE GLOBAL NUCLEAR ENERGY PARTNERSHIP:  

Broader source: Energy.gov (indexed) [DOE]

GLOBAL NUCLEAR ENERGY PARTNERSHIP: GLOBAL NUCLEAR ENERGY PARTNERSHIP: Greater Energy Security in a Cleaner, Safer World The Global Nuclear Energy Partnership (GNEP) is a comprehensive strategy to increase U.S. and global energy security, encourage clean development around the world, reduce the risk of nuclear proliferation, and improve the environment. A plentiful, reliable supply of energy is the cornerstone of sustained economic growth and prosperity. Nuclear power is the only proven technology that can provide abundant supplies of base load electricity reliably and without air pollution or emissions of greenhouse gasses. In order to help meet growing demand for energy at home and encourage the growth of prosperity around the globe, GNEP provides for the safe, extensive expansion of clean nuclear power.

212

Nuclear choices  

SciTech Connect (OSTI)

This book contains part of the series New Liberal Arts, which is intended to make science and technology more accessible to students of the liberal arts. Volume in hand provides a comprehensive, multifaceted examination of nuclear energy, in nontechnical terms. Wolfson explains the basics of nuclear energy and radiation, nuclear power..., and nuclear weapons..., and he invites readers to make their own judgments on controversial nuclear issues. Illustrated with photos and diagrams. Each chapter contains suggestions for additional reading and a glossary. For policy, science, and general collections in all libraries. (ES) Topics contained include Atoms and nuclei. Effects and uses of radiation. Energy and People. Reactor safety. Nuclear strategy. Defense in the nuclear age. Nuclear power, nuclear weapons, and nuclear futures.

Wolfson, R.

1991-01-01T23:59:59.000Z

213

LABORATORY II ELECTRIC FIELDS AND ELECTRIC POTENTIALS  

E-Print Network [OSTI]

Lab II - 1 LABORATORY II ELECTRIC FIELDS AND ELECTRIC POTENTIALS In this lab you will continue to investigate the abstract concept of electric field. If you know the electric field at a point in space, you). With this simulation you can construct a complicated charge configuration and read out the resulting electric field

Minnesota, University of

214

Electrical and Computer Engineering Electrical Engineering  

E-Print Network [OSTI]

Electrical and Computer Engineering Electrical Engineering Department Website: www.iit.edu/engineering/ece Electrical engineering is concerned with the generation, transmission, and utilization of electrical energy and with the transmitting and processing of information. Electrical engineers are involved in the analysis, design, and pro

Heller, Barbara

215

Chapter 24 - Nuclear energy future  

Science Journals Connector (OSTI)

Abstract This chapter attempts to concisely describe the role that nuclear power may take in the meeting the world’s future energy needs. Historically, economic considerations have triumphed all other considerations when selecting an energy source. Nuclear power growth stagnated in the late twentieth century for a variety of reasons. A revival in nuclear reactor construction is beginning in the United States and elsewhere at the start of the twenty-first century. World energy—and especially electricity—use is increasing and sustainable approaches to meeting this need are sought. With rising concern about climate change, nuclear power is found to be the lowest contributor to carbon dioxide emissions, even compared to solar and wind power. Besides electricity generation, power reactors can be utilized for large-scale desalination and hydrogen generation.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

216

Electric power monthly, July 1994  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels. Data on quantity, quality, and cost of fossil fuels lag data on net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour by 1 month. This difference in reporting appears in the US, Census division, and State level tables. However, for purposes of comparison, plant-level data are presented for the earlier month.

Not Available

1994-07-01T23:59:59.000Z

217

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

218

2012 Nuclear Safety Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Safety » 2012 Nuclear Safety Workshop Nuclear Safety » 2012 Nuclear Safety Workshop 2012 Nuclear Safety Workshop Glenn Podonsky 1 of 13 Glenn Podonsky Glenn Podonsky (DOE Chief Health, Safety and Security Officer) provides his welcoming remarks. Daniel Poneman 2 of 13 Daniel Poneman DOE Deputy Secretary Daniel Poneman discusses maintaining our focus on nuclear safety. Akira Kawano 3 of 13 Akira Kawano Akira Kawano, Tokyo Electric Power Company, provides lessons learned from the Fukushima nuclear accident. Bill Ostendorff 4 of 13 Bill Ostendorff NRC Commissioner Bill Ostendorff gives his perspective on the NRC's response to the Fukushima nuclear accident. Miroslav Lipar 5 of 13 Miroslav Lipar Miroslav Lipar, IAEA, provides an international perspective on the Fukushima nuclear accident. Dr. Sonja Haber 6 of 13

219

2012 Nuclear Safety Workshop Presentations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2012 Nuclear Safety Workshop Presentations 2012 Nuclear Safety Workshop Presentations 2012 Nuclear Safety Workshop Presentations Wednesday, September 19 - Plenary Session September 19, 2012 Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints Presenter: Akira Kawano, General Manager, Nuclear International Relations and Strategy Group, Nuclear Power and Plant Siting Administrative Department, Tokyo Electric Power Company September 19, 2012 A Commissioner's Perspective on USNRC Actions in Response to the Fukushima Nuclear Accident Presenter: Honorable William C. Ostendorff, Commissioner US Nuclear Regulatory Commission September 19, 2012 International Perspective on Fukushima Accident Presenter: Miroslav Lipár, Head, Operational Safety Section, Department of

220

defense nuclear security | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

nuclear security | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Chernobyl Nuclear Accident | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Chernobyl Nuclear Accident | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

222

Countering Nuclear Terrorism and Trafficking | National Nuclear...  

National Nuclear Security Administration (NNSA)

Countering Nuclear Terrorism and Trafficking | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

223

Illinois Municipal Electric Agency- Electric Efficiency Program  

Broader source: Energy.gov [DOE]

The Illinois Municipal Electric Agency (IMEA) offers rebates to member municipal utilities* (those who purchase wholesale electric service from IMEA) and retail customers for energy efficiency...

224

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

State Nuclear Profiles 2010 State Nuclear Profiles 2010 April 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | State Nuclear Profiles 2010 i Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity,

225

Chapter 17 - Nuclear Fusion  

Science Journals Connector (OSTI)

Publisher Summary Nuclear fusion, the joining of light nuclei of hydrogen into heavier nuclei of helium, has potential environmental, safety and proliferation characteristics as an energy source, as well as adequate fuel to power civilization for times long compared to human history. It is, however, more challenging to convert to an energy source than nuclear fission. This chapter introduces the physics, advantages, difficulties, progress, economics and prospects for fusion energy power plants. Nuclear fusion is the process, in which light nuclei can release large amounts of energy if they combine, or fuse, into heavier nuclei. The principal nuclear reactions which have been considered for reactor concepts involve reactions of isotopes of the two lightest elements: hydrogen and helium. The fuel costs for fusion reactors will be negligible in comparison with the value of the electricity produced. It is difficult to precisely assess the cost of fusion-generated electricity until there is experience with an operating power plant, since the cost will be dependent upon the reliability and the frequency and expense of maintenance, both of which are likely to improve with the hindsight of experience. A fusion reactor does not directly emit CO2 or other greenhouse gases, or any combustion products that contribute to acid rain, and the indirect emissions due to factors like fuel gathering and transport, plant construction and maintenance, and activated parts storage would be small. Thus, fusion power would not have appreciable adverse effects upon global warming, atmospheric quality or acidification of the oceans, lakes and streams.

Larry R. Grisham

2008-01-01T23:59:59.000Z

226

Electric power annual 1995. Volume I  

SciTech Connect (OSTI)

The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with data that may be used in understanding U.S. electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy. In the private sector, the majority of the users of the Electric Power Annual are researchers and analysts and, ultimately, individuals with policy- and decisionmaking responsibilities in electric utility companies. Financial and investment institutions, economic development organizations interested in new power plant construction, special interest groups, lobbyists, electric power associations, and the news media will find data in the Electric Power Annual useful. In the public sector, users include analysts, researchers, statisticians, and other professionals with regulatory, policy, and program responsibilities for Federal, State, and local governments. The Congress and other legislative bodies may also be interested in general trends related to electricity at State and national levels. Much of the data in these reports can be used in analytic studies to evaluate new legislation. Public service commissions and other special government groups share an interest in State-level statistics. These groups can also compare the statistics for their States with those of other jurisdictions.

NONE

1996-07-01T23:59:59.000Z

227

Electric power annual 1996. Volume 1  

SciTech Connect (OSTI)

The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1--with a focus on US electric utilities--contains final 1996 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1996 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold. Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA. Data published in the Electric Power Annual Volume 1 are compiled from three statistical forms filed monthly and two forms filed annually by electric utilities. These forms are described in detail in the Technical Notes. 5 figs., 30 tabs.

NONE

1997-08-01T23:59:59.000Z

228

Electric Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Power Electric Power From incandescent bulbs to fluorescents to LEDs, learn more about the long history of the light bulb. From incandescent bulbs to fluorescents to LEDs, learn more about the long history of the light bulb. Electricity -- the flow of electrical power -- is a secondary energy source, generated by the conversion of primary sources of energy, like fossil, nuclear, wind or solar. Keeping the power flowing to American homes and businesses is a critical necessity for everyday life and economic vitality. The Energy Department works to keep the grid secure from cyber and physical attacks; partners with states and other stakeholders to plan more resilient infrastructure that can better withstand extreme weather events; and supports efforts to

229

Electrical receptacle  

DOE Patents [OSTI]

The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

Leong, R.

1993-06-22T23:59:59.000Z

230

Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines  

E-Print Network [OSTI]

Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines the databases that will be produced in the course of the CRP and make them accessible through the IAEA's nuclear-Electrical Applications of Nuclear Power Project A.5.02: Nuclear hydrogen production CRP Title: Advances in nuclear power

De Cindio, Fiorella

231

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: September 2011 Highlights: September 2011 Cooler temperatures drove down retail sales of electricity in the Southeast compared to September 2010. Fossil steam generation decreased in much of the United States, except in the ERCOT portion of Texas where total generation increased from September, 2010. Bituminous coal stocks dropped 18% from September 2010. Key Indicators Sept. 2011 % Change from Sept. 2010 Total Net Generation (Thousand MWh) 336,264 -3% Residential Retail Price (cents/Kwh) 12.26 2% Retail Sales (Thousand MWh) 324,357 -1% Cooling Degree-Days 184 -6% Natural Gas Price, Henry Hub ($/mmBtu) 4.04 0% Coal Stocks (Thousand Tons) 144,439 -11% Coal Consumption (Thousand Tons) 76,765 -3% Natural Gas Consumption (Mcf) 702,589 -2% Nuclear Outages (MW) 9,227 70%

232

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: January 2012 Highlights: January 2012 Warm temperatures across much of the U.S. led to lower retail sales of electricity during January 2012. Coal-fired generation decreased in every region of the United States when compared to January 2011. Coal stocks recovered due to decreased consumption this January compared to the same month of 2011. Key Indicators Jan 2012 % Change from Jan. 2011 Total Net Generation (Thousand MWh) 340,743 -6.4% Residential Retail Price (cents/kWh) 11.43 4.4% Retail Sales (Thousand MWh) 310,859 -6.5% Heating Degree-Days 751 -21.4% Natural Gas Price, Henry Hub ($/MMBtu) 2.75 -40.3% Coal Stocks (Thousand Tons) 181,621 10.2% Coal Consumption (Thousand Tons) 70,595 -21.7% Natural Gas Consumption (Mcf) 676,045 19.9% Nuclear Outages (MW) 9,567 2.1%

233

Let's keep timetables realistic in moving toward a low-carbon electricity future  

SciTech Connect (OSTI)

The paper discusses technology transformation (energy efficiency, renewables, carbon capture and storage, advanced coal technologies, new nuclear energy, plug-in hybrid electric vehicles), economic analysis, and economic safeguards when moving towards a low-carbon electricity future.

Shea, Q.

2008-04-15T23:59:59.000Z

234

ELECTRICAL ENGINEERING EECS Department  

E-Print Network [OSTI]

ELECTRICAL ENGINEERING EECS Department The Electrical Engineering and Computer Science (EECS) Department at WSU offers undergraduate degrees in electrical engineering, computer engineering and computer science. The EECS Department offers master of science degrees in computer science, electrical engineering

235

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

nuclear tors. for of of These studies can examine safety systems or safety research programsnuclear power plants, and at risk. to reduce population The Light-water Reactor Safety Research Program

Nero, A.V.

2010-01-01T23:59:59.000Z

236

Reliability Engineering and System Safety 92 (2007) 609618 The nuclear industry's transition to risk-informed regulation and  

E-Print Network [OSTI]

Reliability Engineering and System Safety 92 (2007) 609­618 The nuclear industry's transition a Nuclear Science and Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA b Nuclear Power Engineering, Quality and Safety Management Department, Tokyo Electric Power

237

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

generate steam to drive a steam turbine, giving rise to theValves and Pi~ing STEAM TURBINE COMPONENT OUTAGE CAUSESbasically of a steam-driven turbine, an electric generator

Nero, A.V.

2010-01-01T23:59:59.000Z

238

Electric Wheel Hub Motor  

Science Journals Connector (OSTI)

Wheel hub motors are an innovative drive concept for electric vehicles where the electric machine and, in some cases, the...

Dipl.-Ing. Michael Gröninger; Dipl.-Ing. Felix Horch…

2012-02-01T23:59:59.000Z

239

NNSA to save $7 million on electricity at Sandia, Kirtland Air...  

National Nuclear Security Administration (NNSA)

to save 7 million on electricity at Sandia, Kirtland Air Force Base over two years | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

240

Ways Electricity Can Be Used To Replace Fossil Fuels in The French Chemical Industry  

E-Print Network [OSTI]

commissioned roughly 7,250 MW of nuclear power plants (for 600 MW of coal - fired power plants - 450 MW of gas turbine and 170 MW of hydro-plants. From now on the share of nuclear energy in production of electricity will drastically increase ELECTRICITY... commissioned roughly 7,250 MW of nuclear power plants (for 600 MW of coal - fired power plants - 450 MW of gas turbine and 170 MW of hydro-plants. From now on the share of nuclear energy in production of electricity will drastically increase ELECTRICITY...

Mongon, A.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nuclear Science  

Broader source: Energy.gov (indexed) [DOE]

Science Science and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE) Sourcebook. We have evolved and improved! The core mission of the Sourcebook has not changed, however. Our purpose is to facilitate interaction among faculty, students, industry, and government agencies to accomplish nuclear research, teaching and service activities. Since 1986 we have compiled critical information on nuclear

242

Nuclear reactions  

Science Journals Connector (OSTI)

Much reference has been made in the last chapter to nuclear energy levels and their various properties (e.g ... ways of doing this — the use of nuclear reactions, and studies of how excited nuclei...

R. J. Blin-Stoyle FRS

1991-01-01T23:59:59.000Z

243

nuclear security  

National Nuclear Security Administration (NNSA)

3%2A en Shaping the future of nuclear detection http:nnsa.energy.govblogshaping-future-nuclear-detection

244

Electrical Equipment Inspection Program Electrical Safety  

E-Print Network [OSTI]

Electrical Equipment Inspection Program Electrical Safety SLAC-I-730-0A11A-001-R003 23 March 2005 Document Title: Electrical Equipment Inspection Program Original Publication Date: 19 January 2005 Revised Publication Date: 23 March 2005 (updated 29 November 2010) Department: Electrical Safety Document Number: SLAC

Wechsler, Risa H.

245

Nuclear Ukraine  

Science Journals Connector (OSTI)

... SIR - Your article (Nature 365, 599; 1993) on the US-Ukraine stalemate over nuclear weapons prompts the following remarks. The United States made a mistake ... nuclear weapons prompts the following remarks. The United States made a mistake in not recognizing Ukraine as a legitimate successor state to the Soviet nuclear arsenal and is still insisting that ...

Arno Arrak

1994-01-13T23:59:59.000Z

246

Nuclear Energy Response in the EMF27 Study  

SciTech Connect (OSTI)

The nuclear energy response for mitigating global climate change across eighteen participating models of the EMF27 study is investigated. Diverse perspectives on the future role of nuclear power in the global energy system are evident in the broad range of nuclear power contributions from participating models of the study. In the Baseline scenario without climate policy, nuclear electricity generation and shares span 0 – 66 EJ/ year and 0 - 25% in 2100 for all models, with a median nuclear electricity generation of 39 EJ/year (1,389 GWe at 90% capacity factor) and median share of 9%. The role of nuclear energy increased under the climate policy scenarios. The median of nuclear energy use across all models doubled in the 450 ppm CO2e scenario with a nuclear electricity generation of 67 EJ/year (2,352 GWe at 90% capacity factor) and share of 17% in 2100. The broad range of nuclear electricity generation (11 – 214 EJ/year) and shares (2 - 38%) in 2100 of the 450 ppm CO2e scenario reflect differences in the technology choice behavior, technology assumptions and competitiveness of low carbon technologies. Greater clarification of nuclear fuel cycle issues and risk factors associated with nuclear energy use are necessary for understanding the nuclear deployment constraints imposed in models and for improving the assessment of the nuclear energy potential in addressing climate change.

Kim, Son H. [Joint Global Change Research Institute, College Park, MD (United States); Wada, Kenichi [Research Inst. of Innovative Technology for the Earth, Kizagawa-Shi, Kyoto (Japan); Kurosawa, Atsushi [Inst. of Applied Energy, Minato-ku, Tokyo (Japan ); Roberts, Matthew [Stanford University, Stanford, CA (United States)

2014-02-28T23:59:59.000Z

247

The collapse of nuclear power  

Science Journals Connector (OSTI)

The bombshell of the UK government statement of 9 November 1989, withdrawing all nuclear stations from privatization and cancelling the three \\{PWRs\\} which were to have followed on from Sizewell B, was a shattering blow to the nuclear industry. The reversal (at least temporarily) of decades of government support for nuclear power, and the figures which were becoming available of its relatively high-cost (confirmed by the levy on electricity sales to subsidize nuclear and other non-fossil generation), caused the House of Commons Energy Select Committee to conduct the inquiry culminating in its Report The Cost of Nuclear Power. This is certainly one of the most important and influential reports from a Committee well known for its effectiveness and is the basis for this article.

J.W. Jeffery

1991-01-01T23:59:59.000Z

248

Electrical Safety  

Broader source: Energy.gov (indexed) [DOE]

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE HANDBOOK ELECTRICAL SAFETY DOE-HDBK-1092-2013 July 2013 Superseding DOE-HDBK-1092-2004 December 2004 U.S. Department of Energy AREA SAFT Washington, D.C.20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1092-2013 Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/techstds/ ii DOE-HDBK-1092-2013 FOREWORD 1. This Department of Energy (DOE) Handbook is approved for use by the Office of Health, Safety and Security and is available to all DOE components and their contractors. 2. Specific comments (recommendations, additions, deletions, and any pertinent data) to enhance this document should be sent to: Patrick Tran

249

Nuclear Engineer (Nuclear Safety Specialist)  

Broader source: Energy.gov [DOE]

A successful candidate of this position will serve as a Nuclear Engineer (Nuclear Safety Specialist) responsible for day-to-day technical monitoring, and evaluation of aspects of authorization...

250

Does nuclear energy have a future in Europe  

SciTech Connect (OSTI)

Half of the world's nuclear-generated electricity is consumed in Europe. If only Western Europe is considered, the figure is 36%. Obviously, nuclear energy is an important source of energy in Europe. However, this situation varies from one country to another. Using the percentage of nuclear energy in total electricity generation as an indicator, nuclear energy represents 75% of the total electricity generation in France and 61% in Belgium, but 0% in several countries such as Austria, Italy, and Poland. The reasons for this variance result from several different circumstances, including the economy, energy resources, politics, the decision-making process, the environment, and public opinion. These few considerations show that electrical utilities and all the parties concerned with nuclear energy have to support public relations campaigns on nuclear topics to help and favor the development of this source of energy, guaranteeing each country a greater energy independence and a reasonable impact on the environment.

Pollier, P.

1991-01-01T23:59:59.000Z

251

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

quality assurance Standard Review Plan totally dissolvedmore fully in the Standard Review Plan (see Stage 3). Seenuclear power plants: the Standard Review Plan The Nuclear

Nero, A.V.

2010-01-01T23:59:59.000Z

253

Two Cheers for Nuclear Physics  

Science Journals Connector (OSTI)

... of the way in which the UK has supported big science was given by Sir Harry Melville, the retired chairman of the Council for Scientific Policy, in the Appleton Memorial ... the Appleton Memorial Lecture to the Institution of Electrical Engineers. In nuclear physics, Sir Harry said, the home effort was certainly too large if the powerful international facilities to ...

1967-11-11T23:59:59.000Z

254

Nuclear Deterrence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Deterrence Nuclear Deterrence Nuclear Deterrence LANL's mission is to develop and apply science and technology to ensure the safety, security, and effectiveness of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. April 12, 2012 A B-2 Spirit bomber refuels from a KC-135 Stratotanker A B-2 Spirit bomber refuels from a KC-135 Stratotanker. Contact Operator Los Alamos National Laboratory (505) 667-5061 Charlie McMillan, Director: "For the last 70 years there has not been a world war, and I have to think that our strong deterrent has something to do with that fact." Mission nuclear weapons Charlie McMillan, Director of Los Alamos National Laboratory 1:06 Director McMillan on nuclear deterrence While the role and prominence of nuclear weapons in U.S. security policy

255

International Nuclear Energy Research Initiative (I-NERI) Annual Reports |  

Broader source: Energy.gov (indexed) [DOE]

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation » Bilateral Cooperation » International Nuclear Energy Research Initiative (I-NERI) Annual Reports International Nuclear Energy Research Initiative (I-NERI) Annual Reports August 13, 2013 International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the

256

Nuclear Power: A Price Worth Paying For A Stable Climate? Will Cavendish & Robert Gross  

E-Print Network [OSTI]

and under private sector investment criteria a new nuclear station would produce electricity at more than that "nuclear energy will play an essential role in electricity production and strategies against global warming provides a significant share of the world's energy (one quarter of the UK's electricity for example

257

Nuclear Power-Water Desalting Combinations Possible by 1975  

Science Journals Connector (OSTI)

Nuclear Power-Water Desalting Combinations Possible by 1975 ... Combination nuclear power-water desalting plants may be able to provide low-cost fresh water as early as 1975. ... Dr. Roger Revelle, consultant to OST, was chairman of the group, which looked into the prospects of providing both electricity and desalted water from very large combined nuclear power and desalination plants. ...

1964-04-13T23:59:59.000Z

258

Mo Supply Chain for Nuclear Medicine Ladimer S. Nagurney  

E-Print Network [OSTI]

The 99 Mo Supply Chain for Nuclear Medicine Ladimer S. Nagurney Department of Electrical November 13, 2012 #12;Nuclear Medicine: Meeting Patient Needs with 99 Mo Ladimer S. Nagurney The 99 Mo Supply Chain #12;Background and Motivation Study of Nuclear Medicine Supply Chains is a combination

Nagurney, Anna

259

60 Years Since Nuclear Turned on the Lights  

Broader source: Energy.gov [DOE]

On the 60th anniversary of the world’s first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

260

CHAOTIC DATA ENCRYPTION FOR LONG-DISTANCE MONITORING OF NUCLEAR  

E-Print Network [OSTI]

State University, Nuclear Engineering Program, Columbus, OH 43210, USA E-mail: ablay.1@osu.edu Phone Engineering, Columbus, OH 43210, USA Tunc Aldemir The Ohio State University, Nuclear Engineering Program , and Tunc Aldemir3 1,3 Nuclear Engineering Program 2 Department of Electrical and Computer Engineering

Koksal, Can Emre

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Nuclear Reactor Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reactor Technologies Reactor Technologies Nuclear Reactor Technologies TVA Watts Bar Nuclear Power Plant | Photo courtesy of Tennessee Valley Authority TVA Watts Bar Nuclear Power Plant | Photo courtesy of Tennessee Valley Authority Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Small Modular Reactor Technologies Small modular reactors can also be made in factories and transported to sites where they would be ready to "plug and play" upon arrival, reducing both capital costs and construction times. The smaller size also makes these reactors ideal for small electric grids and for locations that

262

Electricity and Magnetism  

Science Journals Connector (OSTI)

... and practical applications; or, speaking briefly, theory and practice. In the theoretical part, magnetism is first treated, then electricity, in the order statical electricity, electro-chemistry, and ... first treated, then electricity, in the order statical electricity, electro-chemistry, and electro-magnetism. In the practical part are comprised telegraphy and telephony, electric lighting and transmission of ...

A. GRAY

1891-11-05T23:59:59.000Z

263

Jones Electric Moho Page 1 ImagingandobservingtheElectricalMoho  

E-Print Network [OSTI]

Jones Electric Moho Page 1 ImagingandobservingtheElectricalMoho Alan G. Jones Dublin Institute version: 18 July, 2012 Revised version: 06 February 2013 Keywords: Moho, electrical Moho, electrical conductivity, electrical resistivity, crustmantle boundary #12;Jones Electric Moho Page 2 Abstract

Jones, Alan G.

264

Simulated nuclear reactor fuel assembly  

DOE Patents [OSTI]

An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

Berta, V.T.

1993-04-06T23:59:59.000Z

265

A Safer Nuclear Enterprise  

Science Journals Connector (OSTI)

...2012 at the Nuclear Security...leadership in nuclear enterprise...multinational assessment of emerging risks and consequences...to assess nuclear risks in...or nuclear terrorism. States...and nuclear power. Since 1945...nuclear power plant can mean...

Sidney D. Drell; George P. Shultz; Steven P. Andreasen

2012-06-08T23:59:59.000Z

266

Nuclear astrophysics  

SciTech Connect (OSTI)

The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

Haxton, W.C.

1992-12-31T23:59:59.000Z

267

Nuclear astrophysics  

SciTech Connect (OSTI)

The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

Haxton, W.C.

1992-01-01T23:59:59.000Z

268

Nuclear Counterterrorism  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Cancels DOE O 457.1 and DOE M 457.1-1.

2013-08-26T23:59:59.000Z

269

List of Geothermal Electric Incentives | Open Energy Information  

Open Energy Info (EERE)

Electric Incentives Electric Incentives Jump to: navigation, search The following contains the list of 1258 Geothermal Electric Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1258) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 401 Certification (Vermont) Environmental Regulations Vermont Utility Industrial Biomass/Biogas Coal with CCS Geothermal Electric Hydroelectric energy Small Hydroelectric Nuclear Yes APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

270

Nuclear Power  

Science Journals Connector (OSTI)

Nuclear Power ... THIS WEEK’S issue contains six letters on nuclear power, a representative sample of the letters C&EN received in response to the editorial, “Resist Hysteria,” I wrote shortly after the earthquake and tsunami in Japan devastated the Fukushima Daiichi Nuclear Power Station (C&EN, March 21, page 5). ... Four of the six letters take sharp issue with the primary point I made in the editorial, which was that, despite the severity of the situation in Japan, nuclear power remains an essential component of our overall energy mix for the near to mid-term because it will help us avert the worst impacts of global climate disruption. ...

RUDY M. BAUM

2011-05-09T23:59:59.000Z

271

NUCLEAR STUDIES  

Science Journals Connector (OSTI)

Japanese nuclear power plant crisis sparks examination of U.S. REACTORS ... Calls are particularly zeroing in on reactors similar in location and design to those in Japan. ...

JEFF JOHNSON

2011-04-04T23:59:59.000Z

272

NREL: Transportation Research - Electric and Plug-In Hybrid Electric...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Electric and Plug-In Hybrid Electric Vehicles Work EVs use batteries to store the electric energy that powers the motor. EV...

273

Raft River Rural Electric Coop. Vigilante Electric Coop. Northern  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Raft River Rural Electric Coop. Vigilante Electric Coop. Northern Lights Bonners Ferry East End Mutual Heyburn Burley United Electric Albion Raft River Rural Electric Coop. Declo...

274

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Figure 34. Regional electricity cost duration curves in 2010especially focus on electricity costs and grid compositionrelatively higher electricity costs. If electricity demand

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

275

Estimating the Value of Electricity Storage Resources in Electricity...  

Broader source: Energy.gov (indexed) [DOE]

Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The...

276

Electrical Generation for More-Electric Aircraft using Solid...  

Broader source: Energy.gov (indexed) [DOE]

Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells This study, completed by...

277

Electric Vehicle Research Group  

E-Print Network [OSTI]

.................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

Liley, David

278

Electric car Gasoline car  

E-Print Network [OSTI]

ENAC/ Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares of an electric vehicle? Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares preference survey with choice situation contexts involving gasoline cars (Renault and competitors

279

ELECTRICAL ENERGY SYSTEMS ELECTRICAL ENERGY SYSTEMS  

E-Print Network [OSTI]

. In its Energy Policy, the Scottish Government stated that it is Scotland's ambition to become a worldMEng ELECTRICAL ENERGY SYSTEMS #12;MEng ELECTRICAL ENERGY SYSTEMS Electrical energy is vital aspects of modern life. One of the biggest challenges facing society is the need for reliable energy

Strathclyde, University of

280

Michelangelo Network recommendations on nuclear hydrogen production  

Science Journals Connector (OSTI)

The Michelangelo Network (MICANET) was started within the 5th EURATOM Framework Programme (FP5) with the objective to elaborate a general European R&D strategy for the further development of the nuclear industry in the short, medium, and long term. To broaden the application range of nuclear power beyond dedicated electricity generation, the network proposed an orientation for future EURATOM R&D programmes including new industrial aspects of nuclear energy, such as combined heat and power and, particularly, the production of hydrogen or other fuels as a link to CO2-free energy sources. MICANET is acting as the European counterpart and partner to the Generation IV International Forum. The MICANET project ended in November 2005. Goals achieved related to nuclear hydrogen production and other non-electrical nuclear applications are outlined in this paper.

Karl Verfondern; Werner Von Lensa

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Nuclear radiation electronic gear  

Science Journals Connector (OSTI)

Nuclear radiation electronic gear ... Examines the line of nuclear radiation instrumentation offered by Nuclear-Chicago Corporation and Victoreen Instrument Company. ... Nuclear / Radiochemistry ...

S. Z. Lewin

1961-01-01T23:59:59.000Z

282

Nuclear Weapons Journal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Weapons Journal Nuclear Weapons Journal x The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue 2,...

283

Electrical safety guidelines  

SciTech Connect (OSTI)

The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

Not Available

1993-09-01T23:59:59.000Z

284

Nuclear Forces and Nuclear Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forces and Nuclear Systems Forces and Nuclear Systems Our goal is to achieve a description of nuclear systems ranging in size from the deuteron to nuclear matter and neutron stars using a single parameterization of the nuclear forces. Our work includes both the construction of two- and three-nucleon potentials and the development of many-body techniques for computing nuclear properties with these interactions. Detailed quantitative, computationally intense studies are essential parts of this work. In the last decade we have constructed several realistic two- and three-nucleon potential models. The NN potential, Argonne v18, has a dominant charge-independent piece plus additional charge-dependent and charge-symmetry-breaking terms, including a complete electromagnetic interaction. It fits 4301 pp and np elastic scattering data with a chi**2

285

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and...

286

Electricity Monthly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Update November 28, 2012 Map of Electric System Selected for Daily Peak Demand was replaced with the correct map showing Selected Wholesale Electricity and Natural Gas Locations....

287

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S....

288

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity...

289

User Electrical Equipment Inspections  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

User Electronic and Electrical Equipment Inspection Criteria In order to be in compliance with NEC, OSHA, and DOE regulations all electronic and electrical equipment at the APS...

290

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

See all Electricity Reports Electricity Monthly Update With Data for September 2014 | Release Date: Nov. 25, 2014 | Next Release Date: Dec. 23, 2014 Previous Issues Issue:...

291

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

See all Electricity Reports Electricity Monthly Update With Data for October 2014 | Release Date: Dec. 23, 2014 | Next Release Date: Jan. 26, 2015 Previous Issues Issue:...

292

California's electricity crisis  

E-Print Network [OSTI]

The collapse of California's electricity restructuring and competition program has attracted attention around the world. Prices in California's competitive wholesale electricity market increased by 500% between the second ...

Joskow, Paul L.

2001-01-01T23:59:59.000Z

293

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

See all Electricity Reports Electricity Monthly Update With Data for August 2014 | Release Date: Oct. 24, 2014 | Next Release Date: Nov. 24, 2014 Previous Issues Issue: October...

294

Nuclear Systems Modeling, Simulation & Validation | Nuclear Science...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...

295

Nuclear Materials Management & Safeguards System | National Nuclear...  

National Nuclear Security Administration (NNSA)

System Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards...

296

International Nuclear Energy Research Initiative: 2012 Annual Report |  

Broader source: Energy.gov (indexed) [DOE]

International Nuclear Energy Research Initiative: 2012 Annual International Nuclear Energy Research Initiative: 2012 Annual Report International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the foreseeable future. U.S. researchers are collaborating with nuclear scientists and engineers around the world to develop new technologies that will lower costs,

297

Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power GNEP will build on the recent advances made by the President and Congress to stimulate new nuclear plant construction in the U.S. This will be accomplished by demonstrating the success of the streamlined regulations for siting, constructing and operating new nuclear plants through the Nuclear Power 2010 program, and by implementing incentives enacted through the Energy Policy Act of 2005 (EPACT 2005). At 20 percent of the total electricity supply in the nation, nuclear power is the second largest source of domestic electricity, while seventy percent comes from fossil burning fuels (coal, natural gas, and oil). Increasing the amount of

298

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

of the health and safety impact of fossil fuel emissions.to public health and safety, of any fossil fuel plant areHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL

Nero, A.V.

2010-01-01T23:59:59.000Z

299

"1. Bath County","Pumped Storage","Virginia Electric & Power Co",3003  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia" Virginia" "1. Bath County","Pumped Storage","Virginia Electric & Power Co",3003 "2. North Anna","Nuclear","Virginia Electric & Power Co",1864 "3. Possum Point","Gas","Virginia Electric & Power Co",1733 "4. Chesterfield","Coal","Virginia Electric & Power Co",1639 "5. Surry","Nuclear","Virginia Electric & Power Co",1638 "6. Yorktown","Coal","Virginia Electric & Power Co",1141 "7. Tenaska Virginia Generating Station","Gas","Tenaska Virginia Partners LP",927 "8. Clover","Coal","Virginia Electric & Power Co",865

300

Nuclear options  

Science Journals Connector (OSTI)

... sad if transient commercial expediency led the country to take risks now by adopting nuclear reactor designs from abroad which are in some respects technically less sound than those produced at ... much lower priority. It can be anticipated, however; that although the types of nuclear reactor selected as the best that Britain could build next may be suitable for unit designs ...

G. R. Bainbridge

1974-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electrical Safety - Monthly Analyses of Electrical Safety Occurrences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office of Analysis Office of Analysis Operating Experience Committee Safety Alerts Safety Bulletins Annual Reports Special Operations Reports Safety Advisories Special Reports Causal Analysis Reviews Contact Us HSS Logo Electrical Safety Monthly Analyses of Electrical Safety Occurrences 2013 September 2013 Electrical Safety Occurrences August 2013 Electrical Safety Occurrences July 2013 Electrical Safety Occurrences June 2013 Electrical Safety Occurrences May 2013 Electrical Safety Occurrences April 2013 Electrical Safety Occurrences March Electrical Safety Occurrence February Electrical Safety Occurrence January Electrical Safety Occurrence 2012 December Electrical Safety Occurrence November Electrical Safety Occurrence October Electrical Safety Occurrence September Electrical Safety Occurrence

302

Incremental costs and optimization of in-core fuel management of nuclear power plants  

E-Print Network [OSTI]

This thesis is concerned with development of methods for optimizing the energy production and refuelling decision for nuclear power plants in an electric utility system containing both nuclear and fossil-fuelled stations. ...

Watt, Hing Yan

1973-01-01T23:59:59.000Z

303

Vallecitos Nuclear Center, California, Site F A C T S H E E  

Office of Legacy Management (LM)

Center (VNC) is a 1,600-acre nuclear research facility and the site of a former electricity-generating nuclear power plant located in Sunol, California, about 40 miles east of...

304

The Future of Energy from Nuclear Fission  

SciTech Connect (OSTI)

Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world’s electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Association’s data, the realization of China’s deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

Kim, Son H.; Taiwo, Temitope

2013-04-13T23:59:59.000Z

305

Nuclear Reactor Materials and Fuels  

Science Journals Connector (OSTI)

Nuclear reactor materials and fuels can be classified into six categories: Nuclear fuel materials Nuclear clad materials Nuclear coolant materials Nuclear poison materials Nuclear moderator materials

Dr. James S. Tulenko

2012-01-01T23:59:59.000Z

306

An examination of the pursuit of nuclear power plant construction projects in the United States .  

E-Print Network [OSTI]

??The recent serious reconsideration of nuclear power as a means for U.S. electric utilities to increase their generation capacity provokes many questions regarding the achievable… (more)

Guyer, Brittany (Brittany Leigh)

2011-01-01T23:59:59.000Z

307

Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC- WEA-2010-05  

Broader source: Energy.gov [DOE]

Issued to Savannah River Nuclear Solutions, LLC related to a Nitric Acid Spill Event and an Electrical Arc Flash Injury Event at the Savannah River Site

308

E-Print Network 3.0 - alternate nuclear material Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Summary: of electricity from nuclear power plants is far less than any of the alternative energy technologies now... Power Plants, EGRN 630 Characterization of...

309

(Nuclear theory). [Research in nuclear physics  

SciTech Connect (OSTI)

This report discusses research in nuclear physics. Topics covered in this paper are: symmetry principles; nuclear astrophysics; nuclear structure; quark-gluon plasma; quantum chromodynamics; symmetry breaking; nuclear deformation; and cold fusion. (LSP)

Haxton, W.

1990-01-01T23:59:59.000Z

310

Nuclear Astrophysics  

E-Print Network [OSTI]

Nuclear physics has a long and productive history of application to astrophysics which continues today. Advances in the accuracy and breadth of astrophysical data and theory drive the need for better experimental and theoretical understanding of the underlying nuclear physics. This paper will review some of the scenarios where nuclear physics plays an important role, including Big Bang Nucleosynthesis, neutrino production by our sun, nucleosynthesis in novae, the creation of elements heavier than iron, and neutron stars. Big-bang nucleosynthesis is concerned with the formation of elements with A nuclear physics inputs required are few-nucleon reaction cross sections. The nucleosynthesis of heavier elements involves a variety of proton-, alpha-, neutron-, and photon-induced reactions, coupled with radioactive decay. The advent of radioactive ion beam facilities has opened an important new avenue for studying these processes, as many involve radioactive species. Nuclear physics also plays an important role in neutron stars: both the nuclear equation of state and cooling processes involving neutrino emission play a very important role. Recent developments and also the interplay between nuclear physics and astrophysics will be highlighted.

Carl R. Brune

2005-02-28T23:59:59.000Z

311

Energy Conversion to Electricity  

Science Journals Connector (OSTI)

30 May 1974 research-article Energy Conversion to Electricity D. Clark...continuing growth in the demand for energy, and of electricity as the route...the electricity share of the total energy market and of the substitution of electricity...

1974-01-01T23:59:59.000Z

312

Massachusetts Electric Vehicle Efforts  

E-Print Network [OSTI]

Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

California at Davis, University of

313

LABORATORY V ELECTRIC CIRCUITS  

E-Print Network [OSTI]

Lab V -1 LABORATORY V ELECTRIC CIRCUITS Electrical devices are the cornerstones of our modern world understanding of them. In the previous laboratory, you studied the behavior of electric fields and their effect on the motion of electrons using a cathode ray tube (CRT). This beam of electrons is one example of an electric

Minnesota, University of

314

Career Map: Electrical Engineer  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Electrical Engineer positions.

315

Electronics, Electrical Engineering  

E-Print Network [OSTI]

SCHOOL OF Electronics, Electrical Engineering and Computer Science IS IN YOUR HANDS THE FUTURE #12;SCHOOL OF Electronics, Electrical Engineering and Computer Science2 CAREERS IN ELECTRONICS, ELECTRICAL Belfast. Ranked among the top 100 in the world for Electrical and Electronic Engineering (QS World

316

Syracuse University Electrical Engineering  

E-Print Network [OSTI]

Syracuse University Electrical Engineering and Computer Science Tenure Track Faculty Position in Electrical Engineering The Department of Electrical Engineering and Computer Science is seeking applicants for a tenure track position in Electrical Engineering starting in August 2014 or January 2015. The department

Mather, Patrick T.

317

Renewable Electricity Futures Study  

E-Print Network [OSTI]

Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

318

nuclear security | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

security | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

319

Nuclear Incident Team | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Incident Team | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing...

320

nuclear navy | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

navy | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

nuclear threat science | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

threat science | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing...

322

Nuclear Operations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

323

Nuclear Radius and Nuclear Forces  

Science Journals Connector (OSTI)

The difference between the radius of the nuclear matter distribution and the nuclear force radius, RN?1.4A13×10-13 cm, for heavy nuclei (A>100) is interpreted as a consequence of the finite range of nuclear forces. Assuming that the nuclear matter distribution coincides with the charge distribution as determined at Stanford (RC=1.12A13×10-13 cm is the distance at which the charge density falls to one half value) we sum up the nuclear interactions of an incident nucleon for various proposed internucleon potentials, V(r). We also evaluate contributions from the spin, charge, and matter polarizations induced in the nuclear distributions by the incident nucleon as a test of the convergence of these calculations. The aim here is to infer some features of nuclear forces which satisfy saturation requirements and at the same time give rise to an appreciable nuclear attraction for an incident nucleon at RN. Analyses of the scattering of neutrons and protons by heavy nuclei suggest a nuclear attraction ?14 Mev at a distance RN.These considerations are primarily sensitive to the long range behavior of the direct, central part of V(r). The key point which emerges from them is that the nuclear forces must contain long range (~ meson Compton wavelength) direct, central attractions which will be felt by an incident nucleon at RN before the shorter range repulsions (hard cores, many-body forces, or exchange interactions), which are responsible for saturation, become effective. Such interactions can be constructed phenomenologically, but are not found in recent meson-theoretically deduced potentials.

S. D. Drell

1955-10-01T23:59:59.000Z

324

Nuclear condensation  

Science Journals Connector (OSTI)

This work draws an analogy between a heated nucleus breaking up into clusters and a liquid undergoing a phase transition to a gas in which droplets appear. The critical temperature and density in the nucleus are investigated using a Skyrme effective interaction and finite temperature Hartree-Fock theory. The energy and pressure as a function of density are calculated. The effects of compressibility, effective mass, and binding energy per particle on the critical temperature and critical density of nuclear systems is developed. In some cases, analytic expressions for these quantities can be obtained.NUCLEAR REACTIONS Phase transitions in hot nuclear matter.

H. Jaqaman; A. Z. Mekjian; L. Zamick

1983-06-01T23:59:59.000Z

325

Nuclear War  

SciTech Connect (OSTI)

Several chapters in Last Aid warrant the attention of the medical profession. What is known and not known about acute biologic effects following a nuclear explosion is described. The social, physical, and environmental impact of nuclear war on urban population centers is described. How nuclear weapons could affect the composition of the ozone layer and the effects this could have on human survival, including possible interruption of the aquatic ecosystem to produce single-cell organisms for the food cycle, especially seafood is noted.

MacLeod, G.K.

1983-01-01T23:59:59.000Z

326

Chapter 17 - Nuclear heat energy  

Science Journals Connector (OSTI)

Abstract This chapter delves into the important heating processes within a nuclear power plant. Applying Fourier’s law of heat conduction permits determining temperature distributions within the nuclear fuel rods. In contrast, convective cooling occurs on the rod surface. The coolant, cladding and fuel temperature distributions through a reactor are determined. Besides heat transfer in the reactor core, some power plants employ heat exchangers to generate steam that is fed to a turbine-generator to produce electricity. As a consequence of the second law of thermodynamics, thermal power plants reject condenser heat to the environment through mechanisms such as cooling towers.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

327

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page inTenTionally lefT blank 91 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2012, DOE/EIA-M068(2012). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

328

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 95 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2011, DOE/EIA-M068(2011). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

329

Electricity Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Market Module Market Module This page inTenTionally lefT blank 101 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2013, DOE/EIA-M068(2013). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

330

Plug-In Electric Vehicle Handbook for Electrical  

E-Print Network [OSTI]

Plug-In Electric Vehicle Handbook for Electrical Contractors #12;Plug-In Electric Vehicle Handbook for Electrical Contractors2 Table of Contents Introduction . . . . . . . 9 EVSE Training for Electrical Contractors . . . . . . . . . . . . . . . . 18

331

Introduction Computational Efficiency Electricity Portfolio Planning Electricity Portfolios  

E-Print Network [OSTI]

Introduction Computational Efficiency Electricity Portfolio Planning Electricity Portfolios 2009/11/30­12/01 István Maros Electricity Portfolio #12;Introduction Computational Efficiency Electricity Portfolio Outline 1 Introduction 2 Computational Efficiency 3 Electricity Portfolio Approximate

332

Algae fuel clean electricity generation  

Science Journals Connector (OSTI)

Algae fuel clean electricity generation ... The link between algae and electricity may seem tenuous at best. ...

DERMOT O'SULIVAN

1993-02-08T23:59:59.000Z

333

Nuclear Medicine  

Science Journals Connector (OSTI)

Nuclear medicine is the branch of medicine that is concerned with the use of in the diagnosis, management, and treatment of disease. It usually uses small amounts of radioactive materials or , substances th...

2008-01-01T23:59:59.000Z

334

Nuclear viscosity  

Science Journals Connector (OSTI)

The decay rate of momentum in a nuclear reaction is given by an exact formula expressed in terms of the T matrix. A special case, where a viscosity coefficient can be estimated, is considered.

B. Giraud; J. Le Tourneux; E. Osnes

1975-01-01T23:59:59.000Z

335

Nuclear Waste  

Science Journals Connector (OSTI)

Nuclear waste is radioactive material no longer considered valuable...238U, 235U, and 226Ra (where the latter decays to 222Rn gas by emitting an alpha particle) or formed through fission of fissile radioisotopes ...

Rob P. Rechard

2014-01-01T23:59:59.000Z

336

Nuclear Golf  

E-Print Network [OSTI]

Broadcast Transcript: Pay no attention to that nuclear warhead behind the 18th hole; just shout "Fore!" and drive your Titleist down the fairway. In a development that is bizarre even by North Korean standards, the country ...

Hacker, Randi; Tsutsui, William

2006-12-06T23:59:59.000Z

337

Nuclear Fuels  

Science Journals Connector (OSTI)

The core of a nuclear reactor is composed of a controlled critical configuration of a fissile material, which in strict a sense is the fuel. This fissile material is contained in a matrix, normally a ceramic c...

Rudy J. M. Konings; Thierry Wiss…

2011-01-01T23:59:59.000Z

338

Nuclear Energy!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

driver, see the Nuclear Clean Air Energy race car and receive a special clean energy patch on October 21 from 6:30 - 7:30 p.m. Space is limited RSVP by October 4 Hands-on...

339

Nuclear forces  

SciTech Connect (OSTI)

These lectures present an introduction into the theory of nuclear forces. We focus mainly on the modern approach, in which the forces between nucleons emerge from low-energy QCD via chiral effective field theory.

Machleidt, R. [Department of Physics, University of Idaho, Moscow, Idaho 83844 (United States)

2013-06-10T23:59:59.000Z

340

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cost and Quality of Fuels for Electric Utility Plants  

Gasoline and Diesel Fuel Update (EIA)

1) 1) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2001 March 2004 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Preface Background The Cost and Quality of Fuels for Electric Utility Plants 2001 is prepared by the Electric Power Divi- sion; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S.

342

Nuclear Physics for Nuclear Fusion  

SciTech Connect (OSTI)

The nuclear fusion data for deuteron-triton resonance near 100 keV are found to be consistent with the selective resonant tunneling model. The feature of this selective resonant tunneling is the selectivity. It selects not only the energy level, but also the damping rate (nuclear reaction rate). When the Coulomb barrier is thin and low, the resonance selects the fast reaction channel; however, when the Coulomb barrier is thick and high, the resonance selects the slow reaction channel. This mechanism might open an approach toward fusion energy with no strong nuclear radiation.

Li Xingzhong [Tsinghua University (China)

2002-01-15T23:59:59.000Z

343

ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric  

E-Print Network [OSTI]

ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

344

Producing hydrogen using nuclear energy  

Science Journals Connector (OSTI)

The earliest means of separating hydrogen from water was by electrolysis using electrical energy that usually had been produced by low-efficiency thermodynamic processes. Substitution of thermal energy for electrical energy in high-temperature electrolysis gives a somewhat higher overall efficiency, but significantly complicates the process. Today, the vast majority of hydrogen is produced by steam methane reforming (SMR) followed by a water-shift reaction. A well-designed SMR plant will yield hydrogen having 75â??80% of the energy of the methane used. Recent work in Japan has demonstrated the feasibility of substituting high-temperature heat from a gas-cooled nuclear reactor to replace the heat supplied in SMR by the combustion of methane. Using high-temperature heat from nuclear plants to drive thermochemical processes for producing hydrogen has been studied extensively. Bench-scale tests have been carried out in Japan demonstrating the sulphur-iodine (SI) process to produce hydrogen.

Robert E. Uhrig

2008-01-01T23:59:59.000Z

345

Countering Nuclear Terrorism | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Countering Nuclear Terrorism | National Nuclear Security Administration Countering Nuclear Terrorism | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Countering Nuclear Terrorism Home > Our Mission > Countering Nuclear Terrorism Countering Nuclear Terrorism NNSA provides expertise, practical tools, and technically informed policy

346

Nuclear & Uranium - Analysis & Projections - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Most Requested Most Requested Change category... Most Requested Nuclear Plants and Reactors Projections Uranium All Reports Filter by: All Data Analysis Projections Weekly Reports Today in Energy - Nuclear Short, timely articles with graphs about recent nuclear energy issues and trends Monthly Reports Monthly Energy Review - Nuclear Section Released: November 25, 2013 Recent statistics on nuclear electricity capacity, generation, and number of operable nuclear reactors. Electricity Monthly Update Released: November 22, 2013 Provides analysis and of the highlights of the data included in the Electric Power Monthly publication and presents tables of electricity generation, fuel consumption for generation, fossil fuel stocks, and average retail sales and prices of electricity. The EMU is published at the

347

Nuclear & Uranium - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Nuclear & Uranium Nuclear & Uranium Glossary › FAQS › Overview Data Summary Uranium & Nuclear Fuel Nuclear Power Plants Radioactive Waste International All Nuclear Data Reports Analysis & Projections Most Requested Nuclear Plants and Reactors Projections Uranium All Reports EIA's latest Short-Term Energy Outlook for electricity › chart showing U.S. electricity generation by fuel, all sectors Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly. Quarterly uranium production data › image chart of Quarterly uranium production as described in linked report Source: U.S. Energy Information Administration, Domestic Uranium Production Report - Quarterly, 3rd Quarter 2013, October 31, 2013. Uprates can increase U.S. nuclear capacity substantially without building

348

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

349

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

350

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

351

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

352

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

353

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

354

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 685 5.0 5,918 13.8 Coal 1,669 12.2 8,306 19.4 Hydro and Pumped Storage 1,942 14.2 659 1.5 Natural Gas 6,063 44.3 25,582 59.8 Other 1 3 * 771 1.8 Other Renewable1 304 2.2 1,274 3.0 Petroleum 3,031 22.1 296 0.7 Total 13,697 100.0 42,805 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

355

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

356

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

357

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

358

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

359

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

360

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

362

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

363

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

364

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

365

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

366

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

367

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (nw) Share of State total (percent) Net generation (thousand nwh) Share of State total (percent) Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable1 325 1.2 2,468 2.4 Petroleum 881 3.3 3,281 3.2 Total 26,744 100.0 102,885 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

368

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Illinois Nuclear Profile 2010 Illinois profile Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110 0.1 Total 44,127 100.0 201,352 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

369

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

370

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Nuclear Profile 2010 Iowa profile Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 601 4.1 4,451 7.7 Coal 6,956 47.7 41,283 71.8 Hydro and Pumped Storage 144 1.0 948 1.6 Natural Gas 2,299 15.8 1,312 2.3 Other Renewable1 3,584 24.6 9,360 16.3 Petroleum 1,007 6.9 154 .0.3 Total 14,592 100.0 57,509 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

371

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

372

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

373

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

374

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

375

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

376

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

377

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

378

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Nuclear Profile 2010 Ohio profile Ohio Nuclear Profile 2010 Ohio profile Ohio total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,134 6.5 15,805 11.0 Coal 21,360 64.6 117,828 82.1 Hydro and Pumped Storage 101 0.3 429 0.3 Natural Gas 8,203 24.8 7,128 5.0 Other 1 123 0.4 266 0.2 Other Renewable1 130 0.4 700 0.5 Petroleum 1,019 3.1 1,442 1.0 Total 33,071 100.0 143,598 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

379

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

380

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

382

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

383

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

384

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

385

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

386

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

387

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

388

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

York Nuclear Profile 2010 New York profile York Nuclear Profile 2010 New York profile New York total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 13,583 9.9 Hydro and Pumped Storage 5,714 14.5 24,942 18.2 Natural Gas 17,407 44.2 48,916 35.7 Other 1 45 0.1 832 0.6 Other Renewable1 1,719 4.4 4,815 3.5 Petroleum 6,421 16.3 2,005 1.5 Total 39,357 100.0 136,962 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

389

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

390

Electricity Consumption Electricity Consumption EIA Electricity Consumption Estimates  

Broader source: Energy.gov (indexed) [DOE]

Consumption Consumption Electricity Consumption EIA Electricity Consumption Estimates (million kWh) National Petroleum Council Assumption: The definition of electricity con- sumption and sales used in the NPC 1999 study is the equivalent ofwhat EIA calls "sales by utilities" plus "retail wheeling by power marketers." This A nn u al Gro wth total could also be called "sales through the distribution grid," 2o 99 99 to Sales by Utilities -012% #N/A Two other categories of electricity consumption tracked by EIA cover on site Retail Wheeling Sales by generation for host use. The first, "nonutility onsite direct use," covers the Power Marketen 212.25% #N/A traditional generation/cogeneration facilities owned by industrial or large All Sales Through Distribution

391

Central Electric Coop. Oregon Trail Electric Coop. Douglas Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grove Tillamook PUD Columbia River PUD West Oregon Electric Coop. Clatskanie PUD Umpqua Indian Utility Coop. McNar y Foster Cougar John Day Lost Creek Bonneville Hills Creek...

392

Electric arc saw apparatus  

DOE Patents [OSTI]

A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.

Deichelbohrer, Paul R [Richland, WA

1986-01-01T23:59:59.000Z

393

Nuclear power economics and prospects in the USA  

Science Journals Connector (OSTI)

This paper addresses three questions concerning the economics of and prospects for nuclear power in the USA: (1) What is the long-term economic future of nuclear energy? (2) Is the inability to resolve the nuclear waste issue a factor that will limit new nuclear plant development? (3) Are the new designs for nuclear plants an advance over current designs? With respect to the first question, we find that the long-term economic future of nuclear energy is uncertain, at best. Despite recent interest in a 'nuclear renaissance', objective, rigorous studies have concluded that at present, new nuclear power plants are not economically competitive with coal or natural gas for electricity generation and will not be for the foreseeable future. With respect to the second question, we find that the inability to resolve the nuclear waste issue will likely limit new nuclear plant development. Nuclear waste disposal poses a serious, seemingly intractable problem for the future of nuclear power and the waste issue could be a showstopper for new nuclear plants. With respect to the third question, the new designs for nuclear plants are an advance over current designs, but only marginally. Thus, while some new nuclear power plants will likely be built in the USA over the next two decades, a major 'nuclear renaissance' is unlikely.

Roger H. Bezdek

2009-01-01T23:59:59.000Z

394

Report, Long-Term Nuclear Technology Research and Development Plan |  

Broader source: Energy.gov (indexed) [DOE]

Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan This document constitutes the first edition of a long-term research and development (R&D) plan for nuclear technology in the United States. The federally-sponsored nuclear technology programs of the United States are almost exclusively the province of the U.S. Department of Energy (DOE). The nuclear energy areas in DOE include, but are not limited to, R&D related to power reactors and the responsibility for the waste management system for final disposition of the spent fuel resulting from nuclear power reactors. Although a major use of nuclear technology is to supply energy for electricity production, the DOE has far broader roles regarding nuclear

395

Energy market impacts of nuclear power phase-out policies  

Science Journals Connector (OSTI)

Since the Fukushima disaster in Japan in March 2011, safety concerns have escalated and policies toward nuclear power are being reconsidered in several countries. ... the upward pressure on regional electricity p...

Solveig Glomsrød; Taoyuan Wei…

2014-03-01T23:59:59.000Z

396

Bulk viscosity in nuclear and quark matter: A short review  

E-Print Network [OSTI]

The history and recent progresses in the study of bulk viscosity in nuclear and quark matter are reviewed. The constraints from baryon number conservation and electric neutrality in quark matter on particle densities and fluid velocity divergences are discussed.

Hui Dong; Nan Su; Qun Wang

2007-02-07T23:59:59.000Z

397

Nuclear waste disposal in Switzerland: science, politics and uncertainty  

Science Journals Connector (OSTI)

In Switzerland, radioactive waste arises from electricity produced by five nuclear power plants and from the use of ... fields of medicine, industry and research. The waste is grouped into three categories: High-...

Simon Loew

2004-04-01T23:59:59.000Z

398

Accelerating Innovation: How Nuclear Physics Benefits Us All  

DOE R&D Accomplishments [OSTI]

Innovation has been accelerated by nuclear physics in the areas of improving our health; making the world safer; electricity, environment, archaeology; better computers; contributions to industry; and training the next generation of innovators.

2011-00-00T23:59:59.000Z

399

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hybrid Electric Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV)

400

Electricity Distribution System Workshop  

Broader source: Energy.gov (indexed) [DOE]

Discussion Summary Discussion Summary Electricity Transmission System Workshop 1 Grid Tech Team Discussion Summary Electricity Transmission System Workshop 2 Table of Contents INTRODUCTION ............................................................................................................................................. 3 EXECUTIVE SUMMARY .................................................................................................................................. 4 Process ...................................................................................................................................................... 4 Synthesized Challenges ............................................................................................................................. 5

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ELECTRICAL & COMPUTER ENGINEERING  

E-Print Network [OSTI]

ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Agile Sensing Systems: Analysis, Design and Implementation" by Prof. Jun (Jason) Zhang Electrical and Computer Engineering University of Denver Tuesday requirements, computational complexity requirements, and robustness to time- varying physical environments

402

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Use: February 2014 Retail RatesPrices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based...

403

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: July 2014 Retail ratesprices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based...

404

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: August 2014 Retail ratesprices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based...

405

Recent Graduate Electrical Engineer  

Broader source: Energy.gov [DOE]

This position is located in the Office of Electric Reliability. The Office of Electric Reliability helps protect and improve the reliability and security of the nation's bulk power system through...

406

Electricity | Department of Energy  

Office of Environmental Management (EM)

Sources Electricity Electricity January 22, 2015 State of the Union Remarks on Energy in Four Charts We dive into the data behind President Obama's State of the Union statements...

407

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-10-01T23:59:59.000Z

408

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-11-01T23:59:59.000Z

409

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2013-04-01T23:59:59.000Z

410

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M. M.

2012-09-01T23:59:59.000Z

411

Designing electricity transmission auctions  

E-Print Network [OSTI]

The UK has ambitious plans for exploiting offshore wind for electricity production in order to meet its challenging target under the EU Renewable Energy Directive. This could involve investing up to 20bn in transmission assets to bring electricity...

Greve, Thomas; Pollitt, Michael G.

2012-10-26T23:59:59.000Z

412

Automobile Electrical Systems  

Science Journals Connector (OSTI)

The modern electrical system has been developed, over a period of some fifty years from the days of the early motor-car which usually had only one electrical system, namely, that of the ignition comp...

Arthur W. Judge

1970-01-01T23:59:59.000Z

413

2014 Electricity Form Proposals  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity and Renewable (Photovoltaic) Survey Form Changes Proposed for Electricity and Renewable (Photovoltaic) Survey Form Changes Proposed for 2014 The U.S. Energy Information Administration (EIA) is proposing changes to its electricity data collection in 2014. These changes involve the following surveys: Form EIA-63B, "Annual Photovoltaic Cell/Module Shipments Report," Form EIA-411, "Coordinated Bulk Power Supply Program Report," Form EIA-826, "Monthly Electric Utility Sales and Revenue Report with State Distributions," Form EIA-860, "Annual Electric Generator Report," Form EIA-860M, "Monthly Update to the Annual Electric Generator Report," Form EIA-861, "Annual Electric Power Industry Report," Form EIA-861S, "Annual Electric Power Industry Report (Short Form)," and

414

Nuclear Induction  

Science Journals Connector (OSTI)

The magnetic moments of nuclei in normal matter will result in a nuclear paramagnetic polarization upon establishment of equilibrium in a constant magnetic field. It is shown that a radiofrequency field at right angles to the constant field causes a forced precession of the total polarization around the constant field with decreasing latitude as the Larmor frequency approaches adiabatically the frequency of the r-f field. Thus there results a component of the nuclear polarization at right angles to both the constant and the r-f field and it is shown that under normal laboratory conditions this component can induce observable voltages. In Section 3 we discuss this nuclear induction, considering the effect of external fields only, while in Section 4 those modifications are described which originate from internal fields and finite relaxation times.

F. Bloch

1946-10-01T23:59:59.000Z

415

Collaborating Organizations - Nuclear Data Program, Nuclear Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collaborating Organizations Collaborating Organizations Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program Collaborating Organizations Bookmark and Share National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York. International Nuclear Structure and Decay Data Network, coordinated by IAEA, Vienna, Austria Heavy-Ion Nuclear Physics Group, Physics Division, Argonne National Laboratory, Argonne, Illinois. Nuclear Spectroscopy Group, Department of Nuclear Physics,

416

Nuclear Data Program - Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Program Data Program Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program We contribute to the development of comprehensive nuclear reactions and nuclear structure databases, including nuclear data measurement, analysis, modeling and evaluation methodologies, that are implemented in basic science research and advanced nuclear technologies. Bookmark and Share Recent Events Nuclear Structure 2012 Conference Argonne National Laboratory hosted the

417

Effect of the Fukushima nuclear accident on the risk perception of residents near a nuclear power plant in China  

Science Journals Connector (OSTI)

...Societal risk as seen by the French public . Risk Anal 13 ( 3 ): 253 – 258...electricity supply. Perspective on public opinion (May). Nuclear Energy Institute...1168 – 1169 . 24 Renn O ( 1990 ) Public response to the Chernobyl accident...

Lei Huang; Ying Zhou; Yuting Han; James K. Hammitt; Jun Bi; Yang Liu

2013-01-01T23:59:59.000Z

418

Electric resistive space heating  

Science Journals Connector (OSTI)

The cost of heating residential buildings using electricity is compared to the cost employing gas or oil. (AIP)

David Bodansky

1985-01-01T23:59:59.000Z

419

Nuclear Science & Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Science & Technology Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. /No/ Nuclear Science & Technology Some of these resources are LANL-only and will require Remote Access. Key Resources Databases Organizations Journals Key Resources International Atomic Energy Agency IAEA scientific and technical publications cover areas of nuclear power, radiation therapy, nuclear security, nuclear law, and emergency repose. Search under Publications/Books and Reports for scientific books, standards, technical guides and reports National Nuclear Data Center Nuclear physics data for basic nuclear research and for applied nuclear technologies, operated by Brookhaven.

420

NUCLEAR PROXIMITY FORCES  

E-Print Network [OSTI]

One might summarize of nuclear potential energy has beendegree of freedom) for the nuclear interaction between anyUniversity of California. Nuclear Proximity Forces 'I< at

Randrup, J.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nuclear Nonproliferation Programs | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Nonproliferation Programs SHARE Nuclear Nonproliferation Programs image Oak Ridge National Laboratory covers the entire spectrum of nuclear nonproliferation work, from...

422

Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in  

Broader source: Energy.gov (indexed) [DOE]

Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Nuclear power plants in the United States currently produce about 20 percent of the nation's electricity. This nuclear-generated electricity is safe, clean and economical, and does not emit greenhouse gases. Continued and expanded reliance on nuclear energy is one key to meeting future demand for electricity in the U.S. and is called for in the National Energy Policy. Nevertheless, no new nuclear plants have been built in the U.S. in many years, and none are currently slated for construction. The U.S. Department of Energy (DOE) has been working with the nuclear

423

Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in  

Broader source: Energy.gov (indexed) [DOE]

Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Nuclear power plants in the United States currently produce about 20 percent of the nation's electricity. This nuclear-generated electricity is safe, clean and economical, and does not emit greenhouse gases. Continued and expanded reliance on nuclear energy is one key to meeting future demand for electricity in the U.S. and is called for in the National Energy Policy. Nevertheless, no new nuclear plants have been built in the U.S. in many years, and none are currently slated for construction. The U.S. Department of Energy (DOE) has been working with the nuclear

424

Nuclear Power  

E-Print Network [OSTI]

of electrical grid system on the other hand. Clean coal is a secure source for long term. However the deployment of clean technologies and industrial implementation of CO2 capture have to be waited for quite a long time. One of possible option for clean... of renewable sources is one, but not the only solution due to the low energy density, large land demand on the one hand, and immaturity of some technologies and operating limitations of electrical grid system on the other hand. Clean coal is a secure source...

425

Electric vehicles: UK content  

Science Journals Connector (OSTI)

... overnight recharging are identified as the main obstacles to the early success of the all-electric car. Another problem is that most of the advantages accrue to society and the electricity ... in Britain. They offer the most promising prospects for private use by overcoming the pure electric car problem of short range, typically 50-70 miles. They also do not necessarily depend ...

Judy Redfearn

1980-09-11T23:59:59.000Z

426

Insulation of Electrical Equipment  

Science Journals Connector (OSTI)

... A VACATION 'school' on the insulation of electrical equipment was held in the Electrical Engineering Department of the Imperial College of ... the universities. The purpose of the course was to consider the factors which are limiting insulation design in the main classes of electrical equipment, and the general principles which should ...

1952-12-13T23:59:59.000Z

427

ELECTRICAL & COMPUTER ENGINEERING  

E-Print Network [OSTI]

ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Geometry as a Prior in Signal Processing" by Yuejie Chi Electrical Engineering Princeton University Monday, March 19, 2012, 11:00 a.m. Location LSC 210 Abstract processing. Biography: Yuejie Chi is a Ph.D. candidate in Electrical Engineering at Princeton University

428

Electricity in Horticulture  

Science Journals Connector (OSTI)

... ELECTRO-CULTURE has to take into account the effects of electric heating, electric lighting and the voltage stress on the life of plants. The first applica-tion of ... and increases up to forty per cent have been obtained. Electricity in the form of light was the next application in the aid of ...

1936-07-11T23:59:59.000Z

429

EFCOG / DOE Electrical Safety  

E-Print Network [OSTI]

of electrical hazards used in the DOE Electrical Safety Handbook and laboratory programs. Thus, portionsEFCOG / DOE Electrical Safety Improvement Project Project Area 4 ­Performance Measurement personnel. This tool is also intended to assist DOE organizations in determining and classifying ORPS

430

Electric Services in Buildings  

Science Journals Connector (OSTI)

... Institution of Electrical Engineers on October 22. In the early days, electrical installations in buildings were for lighting and bells. Wood casing was used, and, so far as ... equipment were placed anywhere where they would be out of sight. Now new and larger buildings are being erected all over the country, and electrical contractors are having difficulty in ...

1936-10-31T23:59:59.000Z

431

Electrical Equipment of Buildings  

Science Journals Connector (OSTI)

... eleventh) edition of the regulations of the Institution of Electrical Engineers for the wiring of buildings was published in June (London: Spon. Cloth 1s. 6d. net; paper cover ... of electrical energy in and about all types of dwelling houses, business premises, public buildings and factories, whether tho electric supply is derived from an external source or from ...

1939-10-14T23:59:59.000Z

432

Shell model estimate of electric dipole moment in medium and heavy nuclei  

SciTech Connect (OSTI)

The nuclear electric dipole moment (EDM) and the nuclear Schiff moment for the lowest 1/2{sup +} state of {sup 129}Xe are investigated in terms of the nuclear shell model. We estimate the upper limit for the EDM of neutral {sup 129}Xe atom using the Schiff moment. We also estimate the upper limit of the nuclear EDM, which may be directly measured through ionic atoms.

Yoshinaga, Naotaka [Department of Physics, Saitama University, Saitama City 338-8570 (Japan); Higashiyama, Koji [Department of Physics, Chiba Institute of Technology, Narashino, Chiba 275-0023 (Japan)

2011-05-06T23:59:59.000Z

433

Nuclear Data | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Data SHARE Nuclear Data Nuclear Data ORNL is a recognized, international leader in nuclear data research and development (R&D) to support nuclear applications analyses. For...

434

Nuclear Facilities | Department of Energy  

Energy Savers [EERE]

Nuclear Facilities Nuclear Facilities Nuclear Facilities Locator Map Numerical map data points indicate two or more nuclear facilities in the same geographic location. Nuclear...

435

Vehicle Technologies Office: Electrical Machines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

436

Electric Turbo Compounding Technology Update  

Broader source: Energy.gov (indexed) [DOE]

Turbo Compounding Technology Update Electric Turbo Compounding Technology Update 15 August, 2007 Carl Vuk 15 August, 2007 Carl Vuk Electric Turbo Compounding Highlights Electric...

437

Electricity Generation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Generation Electricity Generation Photo of geothermal power plant. A geothermal resource requires fluid, heat and permeability in order to generate electricity:...

438

Intelligent Power Assist Algorithms for Electric Bicycles  

E-Print Network [OSTI]

electric hub motor . . . . . . . . . . . . . . . . . . .Golden Motor electric bicycle model MT-Electric hub motor in the front

Fan, Xuan

2010-01-01T23:59:59.000Z

439

Nuclear “waffles”  

Science Journals Connector (OSTI)

Background: The dense neutron-rich matter found in supernovae and inside neutron stars is expected to form complex nonuniform phases, often referred to as nuclear pasta. The pasta shapes depend on density, temperature and proton fraction and determine many transport properties in supernovae and neutron star crusts.

A. S. Schneider; D. K. Berry; C. M. Briggs; M. E. Caplan; C. J. Horowitz

2014-11-24T23:59:59.000Z

440

Random Walks and Electrical Networks Electrical Network ...  

E-Print Network [OSTI]

Feb 4, 2008 ... Much of this talk is based on the book Random Walks and Electric. Networks by Peter .... Rx,y resistance of the edge from x to y. Cx,y = 1. Rx,y.

Jonathon Peterson

2008-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Neutrino nuclear response and photo nuclear reaction  

E-Print Network [OSTI]

Photo nuclear reactions are shown to be used for studying neutrino/weak nuclear responses involved in astro-neutrino nuclear interactions and double beta decays. Charged current weak responses for ground and excited states are studied by using photo nuclear reactions through isobaric analog states of those states, while neutral current weak responses for excited states are studied by using photo nuclear reactions through the excited states. The weak interaction strengths are studied by measuring the cross sections of the photo nuclear reactions, and the spin and parity of the state are studied by measuring angular correlations of particles emitted from the photo nuclear reactions. Medium-energy polarized photons obtained from laser photons scattered off GeV electrons are very useful. Nuclear responses studied by photo nuclear reactions are used to evaluate neutrino/weak nuclear responses, i.e. nuclear beta and double beta matrix elements and neutrino nuclear interactions, and to verify theoretical calculations for them.

H. Ejiri; A. I. Titov; M. Boswell; A. Young

2013-11-10T23:59:59.000Z

442

Electric Power Monthly  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Monthly > Electric Power Monthly Back Issues Electric Power Monthly > Electric Power Monthly Back Issues Electric Power Monthly Back Issues Monthly Excel files zipped 2010 January February March April May June July August September October November December 2009 January February March April May June July August September October November December 2008 January February March March Supplement April May June July August September October November December 2007 January February March April May June July August September October November December 2006 January February March April May June July August September October November December 2005 January February March April May June July August September October November December

443

EIA Electric Power Forms  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Forms Electric Power Forms EIA Electric Power Forms Listing of Publicly Available and Confidential Data EIA's statistical surveys encompass each significant electric supply and demand activity in the United States. Most of the electric power survey forms resulting data elements are published, but respondent confidentiality is required. The chart below shows the data elements for each survey form and how each data element is treated in regard to confidentiality. Data Categories Data collection forms EIA- 411 EIA- 826 EIA- 860 EIA- 860M EIA- 861 EIA- 923 Frame Information Utility identification and iocation -- -- -- -- X -- Plant identification and iocation -- -- -- X -- X Generation and fuel Latitude and longitude -- -- X -- -- --

444

Determination of Electric-Field, Magnetic-Field, and Electric...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric-Field, Magnetic-Field, and Electric-Current Distributions of Infrared Optical Antennas: A Near-Field Determination of Electric-Field, Magnetic-Field, and Electric-Current...

445

Nuclear Power Generating Facilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Radiation Control Program The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in Maine. The Legislature

446

Overview of nuclear energy: Present and projected use  

SciTech Connect (OSTI)

Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

Stanculescu, Alexander [Idaho National Laboratory 2525 North Fremont Avenue, Idaho Falls, Idaho 83415 (United States)

2012-06-19T23:59:59.000Z

447

Overview of Nuclear Energy: Present and Projected Use  

SciTech Connect (OSTI)

Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

Alexander Stanculescu

2011-09-01T23:59:59.000Z

448

Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity: 30 Years of Electricity: 30 Years of Electricity: 30 Years of Electricity: 30 Years of Industry Change Industry Change David K. Owens Executive Vice President Edison Electric Institute 30 Years of Energy Information and Analysis April 7, 2008 EIA Key to Policy Development and EIA Key to Policy Development and Advocacy Activities Advocacy Activities EIA Has Kept Pace With an Evolving EIA Has Kept Pace With an Evolving Energy Industry Energy Industry n EIA clearly provides more with less budgetary support l 1979: $347 million l 2007: $91 million (both in Real $2007) n EIA staff resource distribution has tracked changing energy markets and information needs Resource Management Oil & Gas Coal, Nuclear, Electric, Alt Fuels Energy Markets & End Use Integrated Analysis / Forecasting Information Technology

449

U.S. electric utility demand-side management 1995  

SciTech Connect (OSTI)

The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

NONE

1997-01-01T23:59:59.000Z

450

Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative,  

Broader source: Energy.gov (indexed) [DOE]

Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative, 12/03 Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative, 12/03 An assessment of the Electrical Safety (ES) program at XXXX was conducted during the week of December XX-XX, 2003. The assessment team evaluated the program using the programmatic areas and specific Lines of Inquiry (LOI) contained in the approved Assessment plan provided. The team consisted of the Facility Representative from National Nuclear Security Administration, as well as ES, Subject Matter Expert support. The assessment plan identified 5 areas of review for Electrical Safety. An integrated process has been established to ensure electrical safety hazards are identified and that adequate controls are defined and

451

EIA - Electric Power Data  

U.S. Energy Information Administration (EIA) Indexed Site

Survey-level Detail Data Files Survey-level Detail Data Files Electric power data are collected on survey instruments. Data collection is mandated by Congress to promote sound policymaking, efficient markets, and public understanding. The most widely used data are disseminated in reports, such as the Electric Power Monthly and the Electric Power Annual. Publicly available electric power data is available down to the plant level in the Electricity Data Browser and in detailed spreadsheets by survey below. Description Data availability State-level data (consolidated across forms) Contains electricity generation; fuel consumption; emissions; retail sales, revenue, number of customers, and retail prices; generating capacity; and financial data. 1990-2012 (monthly and annual) Electric power sales and revenue data - monthly (Form EIA-826)

452

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

453

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

454

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

455

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

456

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

457

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

458

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

459

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

460

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Nuclear Medicine CT Angiography  

E-Print Network [OSTI]

Nuclear Medicine CT Angiography Stress Testing Rotation The Nuclear Medicine/CT angiography. Understand the indications for exercise treadmill testing and specific nuclear cardiology tests, safe use Level 2 proficiency in performing and interpreting cardiac nuclear imaging tests. Progression

Ford, James

462

Technician level needs and skills development guidelines for the South African nuclear energy industry / Titus P. Mampala.  

E-Print Network [OSTI]

??The increasing demand for electrical energy to bring about development and social change has brought about renewed interest in the use of nuclear power as… (more)

Nampala, Titus Pendukeni

2012-01-01T23:59:59.000Z

463

Development of an EDM-tool for theNuclear Industry; Utveckling av ett EDM-verktyg förkärnkraftsindustrin.  

E-Print Network [OSTI]

?? Electric Discharge Machining (EDM) is a machining method suitable for repair and maintenance operations in nuclear power plants. Crack removal and material sampling are… (more)

Kaya, Rabi

2014-01-01T23:59:59.000Z

464

Industry Participation Sought for Design of Next Generation Nuclear Plant |  

Broader source: Energy.gov (indexed) [DOE]

Industry Participation Sought for Design of Next Generation Nuclear Industry Participation Sought for Design of Next Generation Nuclear Plant Industry Participation Sought for Design of Next Generation Nuclear Plant June 29, 2006 - 2:41pm Addthis Gen IV Reactor Capable of Producing Electricity and/or Hydrogen WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking expressions of interest from prospective industry teams interested in participating in the development and conceptual design for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled nuclear reactor prototype with the capability to produce process heat, electricity and/or hydrogen. The very high temperature reactor is based on research and development activities supported by DOE's Generation IV nuclear energy systems initiative.

465

International Nuclear Energy Research Initiative: 2012 Annual Report |  

Broader source: Energy.gov (indexed) [DOE]

2 Annual 2 Annual Report International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the foreseeable future. U.S. researchers are collaborating with nuclear scientists and engineers around the world to develop new technologies that will lower costs, maximize safety, minimize proliferation risk, and handle used fuel and

466

Nuclear Forensics | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Forensics | National Nuclear Security Administration Forensics | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Forensics Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Nuclear Forensics Nuclear Forensics Forensics Operations The National Technical Nuclear Forensics (NTNF) program is a Homeland Security Council and National Security

467

Nuclear structure and nuclear reactions | Argonne Leadership...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the production Automatic Dynamic Load Balancing (ADLB) library on the BGP. Steve Pieper, Argonne National Laboratory Nuclear structure and nuclear reactions PI Name: James Vary PI...

468

Audit Report National Nuclear Security Administration Nuclear...  

Broader source: Energy.gov (indexed) [DOE]

National Nuclear Security Administration Nuclear Weapons Systems Configuration Management DOEIG-0902 March 2014 U.S. Department of Energy Office of Inspector General Office of...

469

Nuclear Resonance Fluorescence for Nuclear Materials Assay  

E-Print Network [OSTI]

to learn MCNPX and nuclear safeguards, Bill B. , Steve K. ,Introduction 1.1 Nuclear Safeguards . . . . . . . . . . . .Programme to IAEA Safeguards. STUK-YTO-TR 170. Helsinki

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z

470

Quantized Liquid Drop and Some Ground-State Nuclear Properties  

Science Journals Connector (OSTI)

The liquid drop is adopted as a simple nuclear model. The zero-point motion of the quantized drop is found to alter some of the properties of the classical drop, bringing the model into better agreement with experiment. The properties discussed are the skin thickness, the electric form factor for elastic scattering, and the rms nuclear radius as a function of atomic number.

G. Reading Henry

1968-12-20T23:59:59.000Z

471

Nuclear Fuel Cycle Integrated System Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cycle Integrated System Analysis Fuel Cycle Integrated System Analysis Abdellatif M. Yacout Argonne National Laboratory Nuclear Engineering Division The nuclear fuel cycle is a complex system with multiple components and activities that are combined to provide nuclear energy to a variety of end users. The end uses of nuclear energy are diverse and include electricity, process heat, water desalination, district heating, and possibly future hydrogen production for transportation and energy storage uses. Components of the nuclear fuel cycle include front end components such as uranium mining, conversion and enrichment, fuel fabrication, and the reactor component. Back end of the fuel cycle include used fuel coming out the reactor, used fuel temporary and permanent storage, and fuel reprocessing. Combined with those components there

472

Civilian Nuclear Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Civilian Nuclear Programs Civilian Nuclear Programs Civilian Nuclear Programs Los Alamos is committed to using its advanced nuclear expertise and unique facilities to meet the civilian nuclear national security demands of the future. CONTACT US Program Director Bruce Robinson (505) 667-1910 Email Los Alamos partners extensively with other laboratories, universities, industry, and the international nuclear community to address real-world technical challenges The Civilian Nuclear Programs Office is the focal point for nuclear energy research and development and next-generation repository science at Los Alamos National Laboratory. The Civilian Nuclear Programs Office manages projects funded by the Department of Energy's offices of Nuclear Energy Environmental Management Nuclear Regulatory Commission

473

Interdisciplinary Institute for Innovation Estimating the costs of nuclear  

E-Print Network [OSTI]

on this topic is fairly confusing. Some present electricity production using nuclear power as an affordable of costs and draw a distinction between a private cost and a social cost. The private cost is what evaluating the costs it is impossible to establish the cost price, required to compare electricity production

Paris-Sud XI, Université de

474

Electric Charge and Electric Field Electrostatics: Charge at rest  

E-Print Network [OSTI]

Chapter 16 Electric Charge and Electric Field #12;Electrostatics: Charge at rest Electric Charges of conservation of Electric Charge: The net amount of electric charge produced in any process is zero. Model, neutral). #12;· All protons and electrons have same magnitude of electric charge but their masses

Yu, Jaehoon

475

Theory of nuclear reactions  

SciTech Connect (OSTI)

The book presents a theory of nuclear reaction. An account is given of the nonrelativistic nuclear reaction theory. The R - matrix description of nuclear reactions is considered and the dispersion method is formulated. Mechanisms of nuclear reactions and their relationship are studied in detail. Attention is paid to nuclear reactions involving the compound nuclear formation and to direct nuclear processes. The optical model the diffraction approach and high - energy diffraction nuclear processes involving composite particles are discussed.

Sitenko, A.G.

1990-01-01T23:59:59.000Z

476

DIVISION 16 -ELECTRICAL 16000 GENERAL  

E-Print Network [OSTI]

Electrical Code American National Standards Institute National Electrical Manufacturers Association Institute of Electrical & Electronics Engineers Insulated Cable Engineers Association 3. Three copies of the followingDIVISION 16 - ELECTRICAL _____________________________________________________________ 16000

477

Laser-induced nonresonant nuclear excitation in muonic atoms  

E-Print Network [OSTI]

Coherent nuclear excitation in strongly laser-driven muonic atoms is calculated. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived and applied to various isotopes; the excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment.

A. Shahbaz; C. Müller; T. J. Buervenich; C. H. Keitel

2008-12-13T23:59:59.000Z

478

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters  

SciTech Connect (OSTI)

Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

Robert J. Goldston

2011-04-28T23:59:59.000Z

479

Global Nuclear Energy Partnership Programmatic Environmental Impact Statement  

SciTech Connect (OSTI)

Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the President’s Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cycle—in which nuclear fuel is used in a power plant one time and the resulting spent nuclear fuel is stored for eventual disposal in a geologic repository—to a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.

R.A. Wigeland

2008-10-01T23:59:59.000Z

480

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Massachusetts Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 685 5.0 5,918 13.8 Coal 1,669 12.2 8,306 19.4 Hydro and Pumped Storage 1,942 14.2 659 1.5 Natural Gas 6,063 44.3 25,582 59.8 Other 1 3 * 771 1.8 Other Renewable 1 304 2.2 1,274 3.0 Petroleum 3,031 22.1 296 0.7 Total 13,697 100.0 42,805 100.0 * = Absolute percentage less than 0.05. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

Note: This page contains sample records for the topic "214-767-2200 nuclear electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Mississippi Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable 1 235 1.5 1,504 2.8 Petroleum 35 0.2 81 0.1 Total 15,691 100.0 54,487 100.0 * = Absolute percentage less than 0.05. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

482

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 Illinois Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable 1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110 0.1 Total 44,127 100.0 201,352 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

483

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

63 63 Wisconsin Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable 1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

484

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Georgia Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 4,061 11.1 33,512 24.4 Coal 13,230 36.1 73,298 53.3 Hydro and Pumped Storage 3,851 10.5 3,044 2.2 Natural Gas 12,668 34.6 23,884 17.4 Other 1 - - 18 * Other Renewable 1 637 1.7 3,181 2.3 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 137,577 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1

485

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Tennessee Tennessee total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 3,401 15.9 27,739 33.7 Coal 8,805 41.1 43,670 53.0 Hydro and Pumped Storage 4,277 20.0 7,416 9.0 Natural Gas 4,655 21.7 2,302 2.8 Other 1 - - 16 * Other Renewable 1 222 1.0 988 1.2 Petroleum 58 0.3 217 0.3 Total 21,417 100.0 82,349 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

486

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

Arizona Arizona Total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 3,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable 1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

487

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

7 7 Illinois Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable 1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110 0.1 Total 44,127 100.0 201,352 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

488

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee Tennessee total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 3,401 15.9 27,739 33.7 Coal 8,805 41.1 43,670 53.0 Hydro and Pumped Storage 4,277 20.0 7,416 9.0 Natural Gas 4,655 21.7 2,302 2.8 Other 1 - - 16 * Other Renewable 1 222 1.0 988 1.2 Petroleum 58 0.3 217 0.3 Total 21,417 100.0 82,349 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

489

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

48 48 Pennsylvania Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable 1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

490

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

60 60 Vermont Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable 1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 - = No data reported. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts,

491

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other 1 100 0.3 643 0.4 Other Renewable 1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

492

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 Nebraska Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,363 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,849 23.5 375 1.0 Other Renewable 1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts,

493

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

41 41 New Jersey New Jersey total electric power industry, summer capacity and net generation, by source, 2010 Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable 1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

494

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

7 7 Michigan Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable 1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

495

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

6 6 Ohio Ohio total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 2,134 6.5 15,805 11.0 Coal 21,360 64.6 117,828 82.1 Hydro and Pumped Storage 101 0.3 429 0.3 Natural Gas 8,203 24.8 7,128 5.0 Other 1 123 0.4 266 0.2 Other Renewable 1 130 0.4 700 0.5 Petroleum 1,019 3.1 1,442 1.0 Total 33,071 100.0 143,598 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

496

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

1 1 Missouri Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable 1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

497

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable 1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

498

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

1 1 Florida Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other 1 544 0.9 2,842 1.2 Other Renewable 1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

499

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 Minnesota Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,594 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable 1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

500

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

21 21 Louisiana Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable 1 325 1.2 2,468 2.4 Petroleum 881 3.3 3,281 3.2 Total 26,744 100.0 102,885 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal