Powered by Deep Web Technologies
Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

,"Pittsburg, NH Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pittsburg, NH Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

2

Pittsburg, NH Natural Gas Exports to Canada  

Annual Energy Outlook 2012 (EIA)

56,879 39,438 26,767 18,297 19,826 47,451 1998-2012 Pipeline Prices 7.52 9.72 5.04 5.48 5.45 4.08 1998...

3

Pittsburg, NH Natural Gas Exports to Canada  

Gasoline and Diesel Fuel Update (EIA)

7 2008 2009 2010 2011 2012 View History Pipeline Volumes 0 64 0 0 336 199 2007-2012 Pipeline Prices -- 7.61 -- -- 7.54 2.62 2007-2012...

4

703CALIFORNIA STATE UNIVERSITY, FULLERTON 2011-2013 CATALOG 2011-2013 UNIVERSITY CATALOG  

E-Print Network (OSTI)

703CALIFORNIA STATE UNIVERSITY, FULLERTON · 2011-2013 CATALOG 2011-2013 UNIVERSITY CATALOG, write to the specific office, college or department. California State University, Fullerton P.O. Box enacted by the Legislature, rules and policies adopted by the Board of Trustees of the California State

de Lijser, Peter

5

Wisconsin Strategic Highway Safety Plan 2011 2013  

E-Print Network (OSTI)

Wisconsin Strategic Highway Safety Plan 2011 ­ 2013 Published by the Wisconsin Department preventable traffic death is one too many Wisconsin Strategic Highway Safety Plan 2011 ­ 2013 Wisconsin Strategic Highway Safety Plan for 2011-2013. This document provides background and details about highway

Sheridan, Jennifer

6

Pittsburg, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pittsburg, California: Energy Resources Pittsburg, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.0279762°, -121.8846806° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.0279762,"lon":-121.8846806,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

7

Pittsburg, NH Natural Gas Pipeline Exports to Canada (Million...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 64 0 2010's 0 336 199 - No Data Reported; -- Not Applicable; NA Not Available; W ...

8

Pittsburg, NH Natural Gas Pipeline Exports to Canada (Dollars...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 7.61 -- 2010's -- 7.54 2.62 - No Data Reported; -- Not Applicable; NA Not Available; W...

9

Pittsburg, NH Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 22,820 2000's 38,289 45,808 29,014 34,983 17,257 28,041 31,853 56,879 39,438 26,767 2010's...

10

Pittsburg, NH Natural Gas Pipeline Exports to Canada (Dollars...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 7.54 2012 2.20 2.65 2.46 3.48 2013 14.87 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld to...

11

Pittsburg, NH Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5,804 3,798 865 295 2,790 248 792 242 144 126 655 4,066 2012 6,044 5,109 1,927 2,629 2,692 3,438 3,976 3,786 4,614 3,630...

12

Pittsburg, NH Natural Gas Pipeline Exports to Canada (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 336 2012 0 138 55 5 2013 21 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld to avoid...

13

Pittsburg, NH Natural Gas Pipeline Imports From Canada (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2.61 2000's 4.07 4.01 3.37 6.08 6.44 10.88 7.26 7.52 9.72 5.04 2010's 5.48 5.45 4.08...

14

Pittsburg, NH Natural Gas Pipeline Imports From Canada (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 6.06 5.95 6.14 5.56 4.91 5.14 5.66 4.76 4.54 4.33 4.49 4.58 2012 4.22 3.79 3.14 2.55 2.72 3.49 3.75 3.52 3.30 3.80 5.65...

15

Pittsburg County, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pittsburg County, Oklahoma: Energy Resources Pittsburg County, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9879281°, -95.8142885° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9879281,"lon":-95.8142885,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

16

Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2003.  

DOE Green Energy (OSTI)

Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, were located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, was located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving delisting goals established by National Marine Fisheries Service (NMFS or NOAA Fisheries) and ultimately to provide fall Chinook adults through the Lower Snake River Compensation Plan program as mitigation for construction and operation of the four lower Snake River dams. Complete adult returns (all age classes) for all three acclimation facilities occurred in the year 2002. Progeny (which would then be natural origin fish) would be counted towards achieving Endangered Species Act delisting criteria. In 2003, a total of 2,138,391 fish weighing 66,201 pounds were released from the three acclimation facilities. The total includes 437,633 yearling fish weighing 44,330 pounds and 1,700,758 sub-yearling fish weighing 21,871 pounds.

McLeod, Bruce

2004-01-01T23:59:59.000Z

17

Fall Chinook Aclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2001.  

DOE Green Energy (OSTI)

Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, and will ultimately work towards achieving delisting goals established by National Marine Fisheries Service (NMFS). Complete returns for all three acclimation facilities will not occur until the year 2002. Progeny (which would then be natural origin fish protected under the Endangered Species Act) from those returns will be returning for the next five years. In 2001, a total of 2,051,099 fish weighing 59,647 pounds were released from the three acclimation facilities. The total includes 318,932 yearling fish weighing 31,128 pounds and 1,732,167 sub-yearling fish weighing 28,519 pounds. Yearling fish numbers were reduced by Bacterial Kidney Disease (BKD) and sub-yearling acclimation time was limited by record low river water flows.

McLeod, Bruce

2004-01-01T23:59:59.000Z

18

Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2002.  

DOE Green Energy (OSTI)

Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving delisting goals established by National Marine Fisheries Service (NMFS or NOAA Fisheries) and ultimately to provide fall Chinook adults through the Lower Snake River Compensation Plan program as mitigation for construction and operation of the four lower Snake River dams. Complete adult returns (all age classes) for all three acclimation facilities occurred in the year 2002. Progeny (which would then be natural origin fish) would be counted towards achieving Endangered Species Act delisting criteria. In 2002, a total of 2,877,437 fish weighing 47,347 pounds were released from the three acclimation facilities. The total includes 479,358 yearling fish weighing 33,930 pounds and 2,398,079 sub-yearling fish weighing 19,115 pounds. This is the largest number of fish ever released in one year from the acclimation facilities.

McLeod, Bruce

2003-01-01T23:59:59.000Z

19

U.S. Natural Gas Pipeline Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

25,575 142,032 133,749 128,589 130,297 122,391 1997-2013 25,575 142,032 133,749 128,589 130,297 122,391 1997-2013 To Canada 70,735 81,695 75,846 66,473 68,325 69,733 1973-2013 Eastport, ID 6 2011-2013 Calais, ME 2,021 1,528 433 652 122 185 2011-2013 Detroit, MI 3,571 4,430 3,769 3,933 4,131 3,885 2011-2013 Marysville, MI 2,983 1,470 995 1,856 1,521 1,400 2011-2013 Sault Ste. Marie, MI 1,531 1,171 935 1,231 849 911 2011-2013 St. Clair, MI 43,917 56,075 54,114 42,609 45,524 47,795 2011-2013 Noyes, MN 76 171 316 1,331 447 445 2011-2013 Babb, MT 2011-2011 Havre, MT 184 188 174 177 183 166 2011-2013 Pittsburg, NH 2011-2013 Grand Island, NY 47 20 10 10 11 2011-2013 Massena, NY 2012-2012 Niagara Falls, NY 13,738 13,789 13,174 13,904 13,939 13,022 2011-2013 Waddington, NY

20

Category:Concord, NH | Open Energy Information  

Open Energy Info (EERE)

Go Back to PV Economics By Location Go Back to PV Economics By Location Media in category "Concord, NH" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Concord NH Public Service Co of NH.png SVFullServiceRestauran... 74 KB SVHospital Concord NH Public Service Co of NH.png SVHospital Concord NH ... 75 KB SVLargeHotel Concord NH Public Service Co of NH.png SVLargeHotel Concord N... 74 KB SVLargeOffice Concord NH Public Service Co of NH.png SVLargeOffice Concord ... 76 KB SVMediumOffice Concord NH Public Service Co of NH.png SVMediumOffice Concord... 74 KB SVMidriseApartment Concord NH Public Service Co of NH.png SVMidriseApartment Con... 71 KB SVOutPatient Concord NH Public Service Co of NH.png SVOutPatient Concord N... 72 KB SVPrimarySchool Concord NH Public Service Co of NH.png

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NH NH NH NH  

NLE Websites -- All DOE Office Websites (Extended Search)

- Grand Station Foyer Continental Breakfast - Grand Station iii PoSt-CoMbuStion MeMbrane-baS Moderator - Jos Figueroa, U.S. Department of Energy, National Energy Techno tueSday,...

22

Updated 6/10 Volunteer NH!  

E-Print Network (OSTI)

Plant a garden 5 Hitchcock Hall Durham, NH 03824 Marianne Fortescue, Coordinator 603-862-2197 marianne.fortescue

Pohl, Karsten

23

DOE - Office of Legacy Management -- R Brew Co - NH 01  

NLE Websites -- All DOE Office Websites (Extended Search)

R Brew Co - NH 01 R Brew Co - NH 01 FUSRAP Considered Sites Site: R. BREW CO. (NH.01 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Concord , New Hampshire NH.01-1 Evaluation Year: 1994 NH.01-2 Site Operations: Conducted vacuum furnace tests using uranium and copper billets. NH.01-1 NH.01-3 Site Disposition: Eliminated - Potential for contamination remote NH.01-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NH.01-1 NH.01-3 Radiological Survey(s): Yes - radiological monitoring during operations NH.01-3 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to R. BREW CO. NH.01-1 - Memorandum/Checklist; Landis to File; Subject: R. Brew

24

NH House Committee_April27 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Mercury Control Technology R&D Program for Coal-Fired Boilers Working Session of the New Hampshire House Science, Technology, & Energy Committee April 26, 2005 Concord, New Hampshire Thomas J. Feeley, III thomas.feeley@netl.doe.gov National Energy Technology Laboratory NH House Committee_April 2005 Mercury Control Technology Field Testing Program Performance/Cost Objectives * Have technologies ready for commercial demonstration by 2007 for all coals * Reduce "uncontrolled" Hg emissions by 50-70% * Reduce cost by 25-50% compared to baseline cost estimates Baseline Costs: $50,000 - $70,000 / lb Hg Removed 2000 Year Cost NH House Committee_April 2005 Stages of Mercury Control Technology Development DOE RD&D Model Lab/Bench/Pilot-Scale Testing Field Testing

25

NH Clean Power Act (New Hampshire) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NH Clean Power Act (New Hampshire) NH Clean Power Act (New Hampshire) NH Clean Power Act (New Hampshire) < Back Eligibility Agricultural Commercial Industrial Investor-Owned Utility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Hampshire Program Type Environmental Regulations Provider NH Department of Environmental Services The Act calls for annual reductions of multiple pollutants, including SO2, Nox, CO2, and mercury. The Act calls for an 87% reduction in SO2 emissions and a 70% reduction in Nox emissions from 1999 levels. CO2 emissions are to be reduced to 1990 levels by the end of 2006. Act is implemented under NH Rules Env-A 2900. This act applies specifically to three existing fossil

26

Public Service Co of NH | Open Energy Information  

Open Energy Info (EERE)

NH NH (Redirected from PSNH) Jump to: navigation, search Name Public Service Co of NH Place New Hampshire Service Territory New Hampshire Website www.psnh.com Green Button Landing Page www.psnh.com/SaveEnergyMo Green Button Reference Page www.psnh.com/SaveEnergyMo Green Button Implemented Yes Utility Id 15472 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections

27

Public Service Co of NH | Open Energy Information  

Open Energy Info (EERE)

Name Public Service Co of NH Name Public Service Co of NH Place New Hampshire Service Territory New Hampshire Website www.psnh.com Green Button Landing Page www.psnh.com/SaveEnergyMo Green Button Reference Page www.psnh.com/SaveEnergyMo Green Button Implemented Yes Utility Id 15472 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now!

28

ARM - Field Campaign - PGS Validatation 2011-2013  

NLE Websites -- All DOE Office Websites (Extended Search)

the University of Oklahoma. Additional hypotheses, specific to the experiment are that biofuel production will 1) result in greater growing season carbon uptake than...

29

Characterization of the selective reduction of NO by NH/sub 3/  

Science Conference Proceedings (OSTI)

The selective reduction of NO by NH/sub 3/ addition has been studied in a lean-burning oil-fired laboratory combustion tunnel as a function of equivalence ratio, NH/sub 3/ injection temperature, concentration of NH/sub 3/ added, and the source of NO. Ammonia breakthrough was found to depend strongly on the NH/sub 3/ addition temperature. The total concentration of nitrogen containing species other N/sub 2/, NO, and NH/sub 3/ was measured with a variety of techniques and was found to be less than 5 ppM over the range of conditions studied.

Lucas, D.; Brown, N.J.

1981-04-01T23:59:59.000Z

30

Page 1 of 7 2013 NH 4-H HORSE QUIZ BOWL  

E-Print Network (OSTI)

at http://extension.unh.edu/4H/NH4-HHorseProject.htm or by sending an Excel document to Rhiannon.Beauregard

New Hampshire, University of

31

U.S. Liquefied Natural Gas Exports To Brazil  

Annual Energy Outlook 2012 (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to...

32

CHARACTERIZATION STUDIES OF THE SELECTIVE REDUCTION OF NO by NH3  

E-Print Network (OSTI)

and Maloney, K.L. , "NOx Reduction with Ammonia: Laboratoryand Hashizawa, K. , "Reduction of NOx in Combustion ExhaustSelective Noncatalytic Reduction of NOx with NH3," EPRI NOx

Brown, N.J.

2013-01-01T23:59:59.000Z

33

Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction  

SciTech Connect

Multiple catalytic functions (NOx conversion, NO and NH3 oxidation, NH3 storage) of a commercial Cu-zeolite urea/NH3-SCR catalyst were assessed in a laboratory fixed-bed flow reactor system after differing degrees of hydrothermal aging. Catalysts were characterized by using x-ray diffraction (XRD), 27Al solid state nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) / energy dispersive X-ray (EDX) spectroscopy to develop an understanding of the degradation mechanisms during catalyst aging. The catalytic reaction measurements of laboratory-aged catalysts were performed, which allows us to obtain a universal curve for predicting the degree of catalyst performance deterioration as a function of time at each aging temperature. Results show that as the aging temperature becomes higher, the zeolite structure collapses in a shorter period of time after an induction period. The decrease in SCR performance was explained by zeolite structure destruction and/or Cu agglomeration, as detected by XRD/27Al NMR and by TEM/EDX, respectively. Destruction of the zeolite structure and agglomeration of the active phase also results in a decrease in the NO/NH3 oxidation activity and the NH3 storage capacity of the catalyst. Selected laboratory aging conditions (16 h at 800oC) compare well with a 135,000 mile vehicle-aged catalyst for both performance and characterization criteria.

Schmieg, Steven J.; Oh, Se H.; Kim, Chang H.; Brown, David B.; Lee, Jong H.; Peden, Charles HF; Kim, Do Heui

2012-04-30T23:59:59.000Z

34

Photolysis of solid NH{sub 3} and NH{sub 3}-H{sub 2}O mixtures at 193 nm  

SciTech Connect

We have studied UV photolysis of solid ammonia and ammonia-dihydrate samples at 40 K, using infrared spectroscopy, mass spectrometry, and microgravimetry. We have shown that in the pure NH{sub 3} sample, the main species ejected are NH{sub 3}, H{sub 2}, and N{sub 2}, where the hydrogen and nitrogen increase with laser fluence. This increase in N{sub 2} ejection with laser fluence explains the increase in mass loss rate detected by a microbalance. In contrast, for the ammonia-water mixture, we see very weak signals of H{sub 2} and N{sub 2} in the mass spectrometer, consistent with the very small mass loss during the experiment and with a <5% decrease in the NH{sub 3} infrared absorption bands spectroscopy after a fluence of {approx}3 x 10{sup 19} photons/cm{sup 2}. The results imply that ammonia-ice mixtures in the outer solar system are relatively stable under solar irradiation.

Loeffler, M. J. [Astrochemistry Laboratory, NASA Goddard Space Flight Center, Code 691, Greenbelt, Maryland 20771 (United States); Laboratory for Atomic and Surface Physics, Engineering Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Baragiola, R. A. [Laboratory for Atomic and Surface Physics, Engineering Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)

2010-12-07T23:59:59.000Z

35

Grants to Help N.H. Towns Conserve Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grants to Help N.H. Towns Conserve Energy Grants to Help N.H. Towns Conserve Energy Grants to Help N.H. Towns Conserve Energy March 19, 2010 - 4:17pm Addthis New Hampshire has a plan to lower expenses and create jobs, all while conserving energy. In all, the state has received $17.3 million in Energy Efficiency and Conservation Block Grant (EECBG) funding. Of that, $9.6 million has been sent to the New Hampshire Office of Energy and Planning (NHOEP) to launch several energy saving projects. NHOEP established a subgrant program to award $6.6 million of the EECBG grant funding to local municipalities and counties. New Hampshire municipalities and counties submitted over 270 applications, totaling over $21 million in grant requests. "Substantial energy efficiency improvements will be made throughout the

36

Grants to Help N.H. Towns Conserve Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grants to Help N.H. Towns Conserve Energy Grants to Help N.H. Towns Conserve Energy Grants to Help N.H. Towns Conserve Energy March 19, 2010 - 4:17pm Addthis New Hampshire has a plan to lower expenses and create jobs, all while conserving energy. In all, the state has received $17.3 million in Energy Efficiency and Conservation Block Grant (EECBG) funding. Of that, $9.6 million has been sent to the New Hampshire Office of Energy and Planning (NHOEP) to launch several energy saving projects. NHOEP established a subgrant program to award $6.6 million of the EECBG grant funding to local municipalities and counties. New Hampshire municipalities and counties submitted over 270 applications, totaling over $21 million in grant requests. "Substantial energy efficiency improvements will be made throughout the

37

Synthesis and Characterization of Th2N2(NH) Isomorphous to Th2N3  

SciTech Connect

Using a new, low-temperature, fluoride-based process, thorium nitride imide of the chemical formula Th{sub 2}N{sub 2}(NH) was synthesized from thorium dioxide via an ammonium thorium fluoride intermediate. The resulting product phase was characterized by powder X-ray diffraction (XRD) analysis and was found to be crystallographically similar to Th{sub 2}N{sub 3}. Its unit cell was hexagonal with a space group of P3m{bar 1} and lattice parameters of a = b = 3.886(1) and c = 6.185(2) {angstrom}. The presence of -NH in the nitride phase was verified by Fourier transform infrared spectroscopy (FTIR). Total energy calculations performed using all-electron scalar relativistic density functional theory (DFT) showed that the hydrogen atom in the Th{sub 2}N{sub 2}(NH) prefers to bond with nitrogen atoms occupying 1a Wyckoff positions of the unit cell. Lattice fringe disruptions observed in nanoparticle areas of the nitride species by high-resolution transmission electron microscopic (HRTEM) images also displayed some evidence for the presence of -NH group. As ThO{sub 2} was identified as an impurity, possible reaction mechanisms involving its formation are discussed.

Silva, G W Chinthaka M [ORNL; Yeamans, Charles B. [University of California, Berkeley; Hunn, John D [ORNL; Sattelberger, Alfred P [Argonne National Laboratory (ANL); Czerwinski, Ken R. [University of Nevada, Las Vegas; Weck, Dr. Phil F [University of Nevada, Las Vegas

2012-01-01T23:59:59.000Z

38

Page 1 of 16 2013 NH 4-H Horse Quiz Bowl  

E-Print Network (OSTI)

: 9:00 AM to 5:00 PM Location: Belmont Middle School, 38 School Street, Belmont NH 03220 Deadline Quiz Bowl is an event where youth demonstrate their knowledge of equine science in a contest similar to high school quiz bowls. Teams of four race to hit their buzzers and answer equine-related questions

New Hampshire, University of

39

Page 1 of 16 2014 NH 4-H Horse Quiz Bowl  

E-Print Network (OSTI)

their knowledge of equine science in a contest similar to high school quiz bowls. Teams of four race to hitPage 1 of 16 2014 NH 4-H Horse Quiz Bowl Date: Saturday January 25, 2014 Time: 9:00 AM to 5:00 PM the day of the contest. The New Hampshire 4-H Quiz Bowl is an event where youth demonstrate

New Hampshire, University of

40

Theoretical Investigations on the Formation and Dehydrogenation Reaction Pathways of H(NH2BH2)nH (n=1-4) Oligomers: Importance of Dihydrogen Interactions (DHI)  

DOE Green Energy (OSTI)

The H(NH2BH2)nH oligomers are possible products from dehydrogenation of ammonia borane (NH3BH3) and ammonium borohydride (NH4BH4), which belong to a class of boron-nitrogen-hydrogen (BNHx) compounds that are promising materials for chemical hydrogen storage. Understanding the kinetics and reaction pathways of formation of these oligomers and their further dehydrogenation is essential for developing BNHx-based hydrogen storage materials. We have performed computational modeling using density functional theory (DFT), ab initio wavefunction theory, and Car-Parrinello molecular dynamics (CPMD) simulations on the energetics and formation pathways for the H(NH2BH2)nH (n=1-4) oligomers, polyaminoborane (PAB), from NH3BH3 monomers and the subsequent dehydrogenation steps to form polyiminoborane (PIB). Through transition state searches and evaluation of the intrinsic reaction coordinates, we have investigated the B-N bond cleavage, the reactions of NH3BH3 molecule with intermediates, dihydrogen release through intra- and intermolecular hydrogen transfer, dehydrocoupling/cyclization of the oligomers, and the dimerization of NH3BH3 molecules. We discovered the formation mechanism of H(NH2BH2)n+1H oligomers through reactions of the H(NH2BH2)nH oligomers first with BH3 followed by reactions with NH3 and the release of H2, where the BH3 and NH3 intermediates are formed through dissociation of NH3BH3. We also found that the dimerization of the NH3BH3 molecules to form c-(NH2BH2)2 is slightly exothermic, with an unexpected transition state that leads to the simultaneous release of two H2 molecules. The dehydrogenations of the oligomers are also exothermic, typically by less than 10 kcal/(mol of H2), with the largest exothermicity for n=3. The transition state search shows that the one-step direct dehydrocoupling cyclization of the oligomers is not a favored pathway because of high activation barriers. The dihydrogen bonding, in which protic (HN) hydrogens interact with hydridic (HB) hydrogens, plays a vital role in stabilizing different structures of the reactants, transition states, and products. The dihydrogen interaction (DHI) within the -BH2(?2-H2) moiety accounts for both the formation mechanisms of the oligomers and for the dehydrogenation of ammonia borane. Support was provided from the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division and from the U.S. Department of Energy, Energy Efficiency and Renewable Energy, Chemical Hydrogen Storage Center of Excellence. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Li, Jun; Kathmann, Shawn M.; Hu, Han-Shi; Schenter, Gregory K.; Autrey, Thomas; Gutowski, Maciej S.

2010-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A WATER MASER AND NH{sub 3} SURVEY OF GLIMPSE EXTENDED GREEN OBJECTS  

SciTech Connect

We present the results of a Nobeyama 45 m H{sub 2}O maser and NH{sub 3} survey of all 94 northern GLIMPSE extended green objects (EGOs), a sample of massive young stellar objects (MYSOs) identified based on their extended 4.5 {mu}m emission. We observed the NH{sub 3}(1,1), (2,2), and (3,3) inversion lines, and detected emission toward 97%, 63%, and 46% of our sample, respectively (median rms {approx} 50 mK). The H{sub 2}O maser detection rate is 68% (median rms {approx} 0.11 Jy). The derived H{sub 2}O maser and clump-scale gas properties are consistent with the identification of EGOs as young MYSOs. To explore the degree of variation among EGOs, we analyze subsamples defined based on mid-infrared (MIR) properties or maser associations. H{sub 2}O masers and warm dense gas, as indicated by emission in the higher-excitation NH{sub 3} transitions, are most frequently detected toward EGOs also associated with both Class I and II CH{sub 3}OH masers. Ninety-five percent (81%) of such EGOs are detected in H{sub 2}O (NH{sub 3}(3,3)), compared to only 33% (7%) of EGOs without either CH{sub 3}OH maser type. As populations, EGOs associated with Class I and/or II CH{sub 3}OH masers have significantly higher NH{sub 3} line widths, column densities, and kinetic temperatures than EGOs undetected in CH{sub 3}OH maser surveys. However, we find no evidence for statistically significant differences in H{sub 2}O maser properties (such as maser luminosity) among any EGO subsamples. Combining our data with the 1.1 mm continuum Bolocam Galactic Plane Survey, we find no correlation between isotropic H{sub 2}O maser luminosity and clump number density. H{sub 2}O maser luminosity is weakly correlated with clump (gas) temperature and clump mass.

Cyganowski, C. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)] [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Koda, J.; Towers, S.; Meyer, J. Donovan [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)] [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Rosolowsky, E. [Department of Physics and Astronomy, University of British Columbia, Okanagan, Kelowna BC V1V 1V7 (Canada)] [Department of Physics and Astronomy, University of British Columbia, Okanagan, Kelowna BC V1V 1V7 (Canada); Egusa, F. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)] [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Momose, R. [Department of Astronomy, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)] [Department of Astronomy, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Robitaille, T. P., E-mail: ccyganowski@cfa.harvard.edu [Max Planck Institute for Astronomy, Heidelberg (Germany)

2013-02-10T23:59:59.000Z

42

[(CH3)4N][(C5H5NH)0.8((CH3)3NH)0.2]U2Si9O23F4 (USH-8): An Organically Templated Open-Framework Uranium Silicate  

E-Print Network (OSTI)

-Framework Uranium Silicate Xiqu Wang, Jin Huang, and Allan J. Jacobson* Department of Chemistry, Uni pyramids we obtained also a number of open-framework uranium silicates.18,19 These new compounds were-framework uranium fluorosilicate [(CH3)4N][(C5H5NH)0.8((CH3)3NH)0.2]U2Si9O23F4 (USH- 8) that has been synthesized

Wang, Xiqu

43

Ammonia as a hydrogen energy-storage medium. [LH/sub 2/, MeOH, and NH/sub 3/  

DOE Green Energy (OSTI)

Liquid Hydrogen (LH/sub 2/), Methanol (MeOH), and Ammonia (NH/sub 3/) are compared as hydrogen energy-storage media on the basis of reforming the MeOH to produce H/sub 2/ and dissociating (cracking) the NH/sub 3/ to release H/sub 2/. The factors important in this storage concept are briefly discussed. Results of the comparison show that, in terms of energy input for media manufacture from natural gas, hydrogen energy content of the medium, and energy cost ($/10/sup 6/ Btu), NH/sub 3/ has a wide advantage and comes the closest to matching gasoline. The tasks required in developing a safe and practicial hydrogen energy-storage system based on the storage and cracking of NH/sub 3/ are listed. Results of the technical and economic evaluation of this concept will provide the basis for continued development.

Strickland, G

1980-08-01T23:59:59.000Z

44

Metallicity of InN and GaN surfaces exposed to NH{sub 3}.  

Science Conference Proceedings (OSTI)

A systematic study of energies and structures of InN and GaN (0001) surfaces exposed to NH{sub 3} and its decomposition products was performed with first-principles methods. A phenomenological model including electron counting contributions is developed based on calculated DFT energies and is used to identify low-energy structures. These predictions are checked with additional DFT calculations. The equilibrium phase diagrams are found to contain structures that violate the electron counting rule. Densities of states for these structures indicate n-type conductivity, consistent with available experimental results.

Walkosz, W.; Zapol, P.; Stephenson, G. B. (Materials Science Division)

2012-01-01T23:59:59.000Z

45

Quasielastic neutron scattering of -NH3 and -BH3 rotational dynamics in orthorhombic ammonia borane  

Science Conference Proceedings (OSTI)

Neutrons scattering techniques are ideally suited to directly probe H in materials due to the large incoherent scattering cross-section of hydrogen atom, and have been invaluable in providing direct insight into the local fluctuations and large amplitude motions in AB. Dihydrogen bonding may have a significant affect on materials to be used to store hydrogen for fuel-cell powered applications. We have noticed a trend of low temperature release of H2 in materials composed of hydridic and protonic hydrogen. This phenomenon has caught our attention and motivated our interest to gain more insight into dihydrogen bonding interactions in AB. We present results from a thorough Quasielastic Neutron Scattering (QENS) investigation of diffusive hydrogen motion in NH311BH3 and ND311BH3 to obtain (1) a direct measure of the rotational energy barriers the protonated species and (2) a confirmation of the 3-site jump model for rotational motion. The amplitude of the energy barrier of rotation of BH3 and NH3 determined by QENS are compared to those determined for BD3 and ND3 determined by 2H NMR studies.

Hess, Nancy J.; Hartman, Michael R.; Brown, Craig; Mamontov, Eugene; Karkamkar, Abhijeet J.; Heldebrant, David J.; Daemen, Luke L.; Autrey, Thomas

2008-06-27T23:59:59.000Z

46

Herschel / HIFI observations of CO, H2O and NH3 in Mon R2  

E-Print Network (OSTI)

Context. Mon R2 is the only ultracompact HII region (UCHII) where the associated photon-dominated region (PDR) can be resolved with Herschel. Due to its brightness and proximity, it is the best source to investigate the chemistry and physics of highly UV-irradiated PDRs. Aims. Our goal is to estimate the abundance of H2O and NH3 in this region and investigate their origin. Methods. We present new observations obtained with HIFI and the IRAM-30m telescope. Using a large velocity gradient approach, we model the line intensities and derive an average abundance of H2O and NH3 across the region. Finally, we model the line profiles with a non-local radiative transfer model and compare these results with the abundance predicted by the Meudon PDR code. Results. The variations of the line profiles and intensities indicate complex geometrical and kinematical patterns. The H2O lines present a strong absorption at the ambient velocity and emission in high velocity wings towards the HII region. The spatial distribution of...

Pilleri, P; Cernicharo, J; Ossenkopf, V; Bern, O; Gerin, M; Pety, J; Goicoechea, J R; Rizzo, J R; Montillaud, J; Gonzlez-Garca, M; Joblin, C; Bourlot, J Le; Petit, F Le; Kramer, C

2012-01-01T23:59:59.000Z

47

Growth kinetics and micromorphology of NH{sub 4}Cl:Mn{sup 2+} crystals formed in the NH{sub 4}Cl-MnCl{sub 2}-H{sub 2}O-CONH{sub 3} system  

Science Conference Proceedings (OSTI)

The growth kinetics and elementary growth processes on the surface of NH{sub 4}Cl:Mn{sup 2+} heterogeneous crystals formed in the NH{sub 4}Cl-MnCl{sub 2}-H{sub 2}O-CONH{sub 3} system are experimentally studied. It is found that a change in the composition of complexes in an NH{sub 4}Cl crystal from Mn(NH{sub 4}){sub 2}Cl{sub 4} {center_dot} 2H{sub 2}O to MnCl{sub 2} {center_dot} 2CONH{sub 3} leads to the occurrence of a local maximum in the kinetic curve and a change in the shape of dislocation growth centers from flat to conical. The growth kinetics of {l_brace}100{r_brace} faces of heterogeneous NH{sub 4}Cl:Mn{sup 2+} crystals is described within the Bliznakov model using the Fowler-Guggenheim adsorption isotherm, which takes into account the lateral interaction of adsorbed particles.

Pyankova, L. A., E-mail: lyuba_pyan@mail.ru; Punin, Yu. O.; Bocharov, S. N.; Shtukenberg, A. G. [Petersburg State University (Russian Federation)

2012-03-15T23:59:59.000Z

48

Verification of Allowable Stresses In ASME Section III Subsection NH For Grade 91 Steel & Alloy 800H  

Science Conference Proceedings (OSTI)

The database for the creep-rupture of 9Cr-1Mo-V (Grade 91) steel was collected and reviewed to determine if it met the needs for recommending time-dependent strength values, S{sub t}, for coverage in ASME Section III Subsection NH (ASME III-NH) to 650 C (1200 F) and 600,000 hours. The accumulated database included over 300 tests for 1% total strain, nearly 400 tests for tertiary creep, and nearly 1700 tests to rupture. Procedures for analyzing creep and rupture data for ASME III-NH were reviewed and compared to the procedures used to develop the current allowable stress values for Gr 91 for ASME II-D. The criteria in ASME III-NH for estimating S{sub t} included the average strength for 1% total strain for times to 600,000 hours, 80% of the minimum strength for tertiary creep for times to 600,000 hours, and 67% of the minimum rupture strength values for times to 600,000 hours. Time-temperature-stress parametric formulations were selected to correlate the data and make predictions of the long-time strength. It was found that the stress corresponding to 1% total strain and the initiation of tertiary creep were not the controlling criteria over the temperature-time range of concern. It was found that small adjustments to the current values in III-NH could be introduced but that the existing values were conservative and could be retained. The existing database was found to be adequate to extend the coverage to 600,000 hours for temperatures below 650 C (1200 F).

R. W. Swindeman; M. J. Swindeman; B. W. Roberts; B. E. Thurgood; D. L. Marriott

2007-11-30T23:59:59.000Z

49

Effect of sulfated CaO on NO reduction by NH{sub 3} in the presence of excess oxygen  

Science Conference Proceedings (OSTI)

The effect of sulfated CaO on NO reduction by NH{sub 3} in the presence of excess oxygen was investigated to evaluate the potential of simultaneous SO{sub 2} and NO removal at the temperature range of 700-850{sup o}C. The physical and chemical properties of the CaO sulfation products were analyzed to investigate the NO reduction mechanism. Experimental results showed that sulfated CaO had a catalytic effect on NO reduction by NH{sub 3} in the presence of excess O{sub 2} after the sulfation reaction entered the transition control stage. With the increase of CaO sulfation extent in this stage, the activity for NO reduction first increased and then decreased, and the selectivity of NH{sub 3} for NO reduction to N{sub 2} increased. The byproduct (NO{sub 2} and N{sub 2}O) formation during NO reduction experiments was negligible. X-ray photoelectron spectroscopy (XPS) analysis showed that neither CaSO{sub 3} nor CaS was detected, indicating that the catalytic activity of NO reduction by NH{sub 3} in the presence of excess O{sub 2} over sulfated CaO was originated from the CaSO{sub 4} product. These results revealed that simultaneous SO{sub 2} and NOx control by injecting NH{sub 3} into the dry flue gas desulfurization process for NO reduction might be achieved. 38 refs., 6 figs., 1 tab.

Tianjin Li; Yuqun Zhuo; Yufeng Zhao; Changhe Chen; Xuchang Xu [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education

2009-04-15T23:59:59.000Z

50

Plasma-sprayed semiconductor electrodes: Photoelectrochemical characterization and NH sub 3 photoproduction by substoichiometric tungsten oxides  

Science Conference Proceedings (OSTI)

Two substoichiometric tungsten oxide coatings have been obtained by plasma spray of WO{sub 3} powder on Ti substrates. The films are 40 {plus minus} 20 {mu}m thick and are yellow (WO{sub 2.99}) or dark blue (WO{sub 2.97}). WO{sub 2.99} coatings show a highly textured surface with a specific area 27.9 times the geometrical one. X-ray diffraction pattern reveals that their structure is a mixture of monoclinic and triclinic phases. The yellow films have been characterized photoelectrochemically in regenerative cells by using O{sub 2}/H{sub 2}O redox at pH 2.0. Under anodic polarization of 1.5 V (SCE) their quantum yield is between 10% and 20% in the wavelength range comprised between 270 and 430 nm with an indirect bandgap of 2.55 eV and a flatband potential of {minus}0.1 V. WO{sub 2.99} films have been tested for NH{sub 3} photoproduction.

Ladouceur, M.; Dodelet, J.P. (INRS-Energie, Varennes, Quebec (Canada)); Tourillon, G. (Universite Paris-Sud, Orsay (France)); Parent, L.; Dallaire, S. (IGM, Boucherville, Quebec (Canada))

1990-05-31T23:59:59.000Z

51

Capacitive deionization of NH{sub 4}CIO{sub 4} solutions with carbon aerogel electrodes. Revision 1  

Science Conference Proceedings (OSTI)

A process for capacitive deionization of water with a stack of carbon aerogel electrodes was developed. Unlike ion exchange, one of the more conventional deionization processes, no chemicals are required for regeneration of the system; electricity is used instead. An aqueous solution of NH{sub 4}ClO{sub 4} is pumped through the electrochemical cell. After polarization, NH{sub 4}{sup +} and ClO{sub 4}{sup -} ions are removed from the water by the imposed electric field and trapped in the extensive cathodic and anodic double layers. Thsi process produces one stream of purified water and a second stream of concentrate. Effects of cell voltage, salt concentration, and cycling on electrosorption capacity were studied and results reported.

Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

1996-01-01T23:59:59.000Z

52

A reaction mechanism for titanium nitride CVD from TiCl{sub 4} and NH{sub 3}  

Science Conference Proceedings (OSTI)

A gas-phase and surface reaction mechanism for the CVD of TiN from TiCl{sub 4} and NH{sub 3} is proposed. The only gas-phase process is complex formation, which can compete with deposition. The surface mechanism postulates the stepwise elimination of Cl and H atoms from TiCl{sub 4} and NH{sub 3}, respectively, to form solid TiN and gaseous HCl. The mechanism also accounts for the change in oxidation state of Ti by allowing for liberation of N{sub 2}. Provided that the surface composition is at steady state, the stoichiometry of the overall reaction is reproduced exactly. In addition, the global kinetic law predicted by the mechanism is successfully fit to new deposition data from a rotating disk reactor and is shown to be consistent with literature results.

Larson, R.S.; Allendorf, M.D.

1995-12-01T23:59:59.000Z

53

UNH Cooperative Extension is an equal opportunity educator and employer, UNH, U.S. Dept. of Agriculture and NH counties cooperating.  

E-Print Network (OSTI)

-up of what you did to Rhiannon Beauregard, 4-H State Program Coordinator. Signature of Applicant Date: Rhiannon Beauregard, 4-H State Program Coordinator Moiles House, 180 Main Street, Durham, NH 03824 Rhiannon.beauregard

New Hampshire, University of

54

DENSE GAS TRACERS IN PERSEUS: RELATING THE N{sub 2}H{sup +}, NH{sub 3}, AND DUST CONTINUUM PROPERTIES OF PRE- AND PROTOSTELLAR CORES  

SciTech Connect

We investigate 35 prestellar cores and 36 protostellar cores in the Perseus molecular cloud. We find a very tight correlation between the physical parameters describing the N{sub 2}H{sup +} and NH{sub 3} gas. Both the velocity centroids and the line widths of N{sub 2}H{sup +} and NH{sub 3} correlate much better than either species correlates with CO, as expected if the nitrogen-bearing species are probing primarily the dense core gas where the CO has been depleted. We also find a tight correlation in the inferred abundance ratio between N{sub 2}H{sup +} and para-NH{sub 3} across all cores, with N(p-NH{sub 3})/N(N{sub 2}H{sup +}) = 22 +- 10. We find a mild correlation between NH{sub 3} (and N{sub 2}H{sup +}) column density and the (sub)millimeter dust continuum derived H{sub 2} column density for prestellar cores, N(p-NH{sub 3})/N(H{sub 2}) {approx}10{sup -8}, but do not find a fixed ratio for protostellar cores. The observations suggest that in the Perseus molecular cloud the formation and destruction mechanisms for the two nitrogen-bearing species are similar, regardless of the physical conditions in the dense core gas. While the equivalence of N{sub 2}H{sup +} and NH{sub 3} as powerful tracers of dense gas is validated, the lack of correspondence between these species and the (sub)millimeter dust continuum observations for protostellar cores is disconcerting and presently unexplained.

Johnstone, Doug; Kirk, Helen [National Research Council Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Rosolowsky, Erik [University of British Columbia Okanagan, Kelowna, BC V1V 1V7 (Canada); Tafalla, Mario, E-mail: doug.johnstone@nrc-cnrc.gc.c [Observatorio Astronomico Nacional (IGN), Alfonso XII 3, E-28014 Madrid (Spain)

2010-03-10T23:59:59.000Z

55

NOIlVUlSININdV NOIlVWdOdNI AOd3N3 ACTO3NH  

Gasoline and Diesel Fuel Update (EIA)

NOIlVUlSININdV NOIlVWdOdNI AOd3N3 NOIlVUlSININdV NOIlVWdOdNI AOd3N3 ACTO3NH 0661 This publication may be purchased from the Superintendent of Documents, U.S. Government Printing Office. Purchasing in formation for this or other Energy Information Administration (EIA) publications may be obtained from the Government Printing Office or ElA's National Energy Information Center. Questions on energy statistics should be directed to the Center by mail, telephone, or telecommunications device for the hearing impaired. Addresses, telephone numbers, and hours are as follows: National Energy Information Center Energy Information Administration Forrestal Building, Room 1F-048 Washington, DC 20585 (202) 586-8800 Telecommunications Device for the Hearing Impaired Only: (202) 586-1181 8 a.m. - 5 p.m., eastern time, M-F

56

A model of the gas-phase chemistry of boron nitride CVC from BCl{sub 3} and NH{sub 3}  

Science Conference Proceedings (OSTI)

The kinetics of gas-phase reactions occurring during the CVD of boron nitride (BN) from BCl{sub 3} and NH{sub 3} are investigated using an elementary reaction mechanism whose rate constants were obtained from theoretical predictions and literature sources. Plug-flow calculations using this mechanism predict that unimolecular decomposition of BCl{sub 3} is not significant under typical CVD conditions, but that some NH{sub 3} decomposition may occur, especially for deposition occurring at atmospheric pressure. Reaction of BCl{sub 3} with NH{sub 3} is rapid under CVD conditions and yields species containing both boron and nitrogen. One of these compounds, Cl{sub 2}BNH{sub 2}, is predicted to be a key gas-phase precursor to BN.

Allendorf, M.D.; Melius, C.F.; Osterheld, T.H.

1995-12-01T23:59:59.000Z

57

FLUORESCENCE EXCITATION MODELS OF AMMONIA AND AMIDOGEN RADICAL (NH{sub 2}) IN COMETS: APPLICATION TO COMET C/2004 Q2 (MACHHOLZ)  

SciTech Connect

Ammonia is a major reservoir of nitrogen atoms in cometary materials. However, detections of ammonia in comets are rare, with several achieved at radio wavelengths. A few more detections were obtained through near-infrared observations (around the 3 {mu}m wavelength region), but moderate relative velocity shifts are required to separate emission lines of cometary ammonia from telluric absorption lines in the 3 {mu}m wavelength region. On the other hand, the amidogen radical (NH{sub 2}-a photodissociation product of ammonia in the coma) also shows rovibrational emission lines in the 3 {mu}m wavelength region. Thus, gas production rates for ammonia can be determined from the rovibrational emission lines of ammonia (directly) and amidogen radical (indirectly) simultaneously in the near-infrared. In this article, we present new fluorescence excitation models for cometary ammonia and amidogen radical in the near-infrared, and we apply these models to the near-infrared high-dispersion spectra of comet C/2004 Q2 (Machholz) to determine the mixing ratio of ammonia to water in the comet. Based on direct detection of NH{sub 3} lines, the mixing ratio of NH{sub 3}/H{sub 2}O is 0.46% {+-} 0.03% in C/2004 Q2 (Machholz), in agreement with other results. The mixing ratio of ammonia determined from the NH{sub 2} observations (0.31%-0.79%) is consistent but has relatively larger error, owing to uncertainty in the photodissociation rates of ammonia. At the present level of accuracy, we confirm that NH{sub 3} could be the sole parent of NH{sub 2} in this comet.

Kawakita, Hideyo [Department of Physics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Mumma, Michael J., E-mail: kawakthd@cc.kyoto-su.ac.jp [Solar System Exploration Division, Mailstop 690.3, NASA Godard Space Flight Center, Greenbelt, MD 20771 (United States)

2011-02-01T23:59:59.000Z

58

Short-term recovery of NH4-15N applied to a temperate forest inceptisol and ultisol in east Tennessee USA  

Science Conference Proceedings (OSTI)

The short-term fate and retention of ammonium (NH4)-{sup 15}nitrogen (N) applied to two types of forest soils in east Tennessee was investigated. Four ridgetop forests, predominantly oak (Quercus spp.), were studied. Five applications of NH{sub 4}-{sup 15}N tracer were made to the forest floor at 2- to 4-week intervals over a 14-week period in 2004. Nitrogen-15 recovery in the forest floor, fine roots (100 weeks) indicated the forest floor is an effective filter for atmospheric N inputs.

Garten Jr, Charles T [ORNL; Brice, Deanne Jane [ORNL; Todd Jr, Donald E [ORNL

2007-11-01T23:59:59.000Z

59

Regulatory Safety Issues in the Structural Design Criteria of ASME Section III Subsection NH and for Very High Temperatures for VHTR & GEN IV  

Science Conference Proceedings (OSTI)

The objective of this task is to identify issues relevant to ASME Section III, Subsection NH [1], and related Code Cases that must be resolved for licensing purposes for VHTGRs (Very High Temperature Gas Reactor concepts such as those of PBMR, Areva, and GA); and to identify the material models, design criteria, and analysis methods that need to be added to the ASME Code to cover the unresolved safety issues. Subsection NH was originally developed to provide structural design criteria and limits for elevated-temperature design of Liquid Metal Fast Breeder Reactor (LMFBR) systems and some gas-cooled systems. The U.S. Nuclear Regulatory Commission (NRC) and its Advisory Committee for Reactor Safeguards (ACRS) reviewed the design limits and procedures in the process of reviewing the Clinch River Breeder Reactor (CRBR) for a construction permit in the late 1970s and early 1980s, and identified issues that needed resolution. In the years since then, the NRC and various contractors have evaluated the applicability of the ASME Code and Code Cases to high-temperature reactor designs such as the VHTGRs, and identified issues that need to be resolved to provide a regulatory basis for licensing. This Report describes: (1) NRC and ACRS safety concerns raised during the licensing process of CRBR , (2) how some of these issues are addressed by the current Subsection NH of the ASME Code; and (3) the material models, design criteria, and analysis methods that need to be added to the ASME Code and Code Cases to cover unresolved regulatory issues for very high temperature service.

William J. ODonnell; Donald S. Griffin

2007-05-07T23:59:59.000Z

60

Effects of gaseous NH{sub 3} and SO{sub 2} on the concentration profiles of PCDD/F in flyash under post-combustion zone conditions  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Influence of NH{sub 3} and SO{sub 2} on 2378-PCDD/F in flyash and flue gases was investigated. Black-Right-Pointing-Pointer NH{sub 3} decreased the concentration of PCDD and PCDF by 34-75% in the flyash. Black-Right-Pointing-Pointer NH{sub 3} decreased the concentration of PCDD and PCDF by 21-40% from the flue gases. Black-Right-Pointing-Pointer SO{sub 2} led to 99% PCDD and 93% PCDF reductions in the flyash. Black-Right-Pointing-Pointer SO{sub 2} led to 89% PCDD and 76% PCDF reductions in the flue gases. - Abstract: The influence of gaseous ammonia and sulphur dioxide on the formation of 2378-substituted PCDD/F on a reference flyash from a municipal waste incinerator has been investigated using a laboratory scale fixed-bed reactor. The reference flyash samples (BCR-490) was reacted under a simulated flue gas stream at temperatures of 225 and 375 Degree-Sign C for 96 h. The experiments were carried out in two series: first with simulated flue gas alone, and then with injection of NH{sub 3} or SO{sub 2} gas into the flue gas just before the reactor inlet. It was found that the injection of gaseous ammonia into the flue gas could decrease the concentration of both PCDD and PCDF by 34-75% from the solid phase and by 21-40% from the gas phase. Converting the results to I-TEQ values, it could reduce the total I-TEQ values of PCDD and PCDF in the sum of the flyash and exhaust flue gas by 42-75% and 24-57% respectively. The application of SO{sub 2} led to 99% and 93% reductions in the PCDD and PCDF average congener concentrations, respectively in the solid phase. In the gas phase, the total reductions were 89% and 76% for PCDD and PCDF, respectively. Moreover, addition of SO{sub 2} reduced the total I-TEQ value of PCDD and PCDF in the flyash and exhaust flue gas together by 60-86% and 72-82% respectively. Sulphur dioxide was more effective than ammonia in suppressing PCDD/F formation in flyash under the conditions investigated.

Hajizadeh, Yaghoub; Onwudili, Jude A. [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom)

2012-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Decomposition of NH3BH3 at sub-ambient pressures: A combined thermogravimetry-differential thermal analysis-mass spectrometry study  

DOE Green Energy (OSTI)

We report a systematic study of the isothermal decomposition of ammonia borane, NH3BH3, at 363 K as a function of argon pressure ranging between 50 and 1040 mbar using thermogravimetry and differential thermal analysis coupled with mass analysis of the volatile species. During thermal aging at 363 K, evolution of hydrogen, aminoborane and borazine is monitored, with the relative mass loss strongly depending on the pressure in the reaction chamber. Furthermore, the induction period required for hydrogen release at 363 K decreases with decreasing pressure.

Palumbo, Oriele; Paolone, Annalisa; Rispoli, Pasquale; Cantelli, Rosario; Autrey, Thomas

2010-03-15T23:59:59.000Z

62

Quantum wells on 3C-SiC/NH-SiC heterojunctions. Calculation of spontaneous polarization and electric field strength in experiments  

SciTech Connect

The results of experiments with quantum wells on 3C-SiC/4H-SiC and 3C-SiC/6H-SiC heterojunctions obtained by various methods are reconsidered. Spontaneous polarizations, field strengths, and energies of local levels in quantum wells on 3C-SiC/NH-SiC heterojunctions were calculated within a unified model. The values obtained are in agreement with the results of all considered experiments. Heterojunction types are determined. Approximations for valence band offsets on heterojunctions between silicon carbide polytypes and the expression for calculating local levels in quantum wells on the 3C-SiC/NH-SiC heterojunction are presented. The spontaneous polarizations and field strengths induced by spontaneous polarization on 3C-SiC/4H-SiC and 3C-SiC/6H-SiC heterojunctions were calculated as 0.71 and 0.47 C/m{sup 2} and 0.825 and 0.55 MV/cm, respectively.

Sbruev, I. S.; Sbruev, S. B., E-mail: science@yandex.ru [Moscow Aviation Institute (Russian Federation)

2010-10-15T23:59:59.000Z

63

HfO2 Gate Dielectric on (NH4)2S Passivated (100) GaAs Grown by Atomic Layer Deposition  

Science Conference Proceedings (OSTI)

The interface between hafnium oxide grown by atomic layer deposition and (100) GaAs treated with HCl cleaning and (NH{sub 4}){sub 2}S passivation has been characterized. Synchrotron radiation photoemission core level spectra indicated successful removal of the native oxides and formation of passivating sulfides on the GaAs surface. Layer-by-layer removal of the hafnia film revealed a small amount of As{sub 2}O{sub 3} formed at the interface during the dielectric deposition. Traces of arsenic and sulfur out-diffusion into the hafnia film were observed after a 450 C post-deposition anneal, and may be the origins for the electrically active defects. Transmission electron microscopy cross section images showed thicker HfO{sub 2} films for a given precursor exposure on S-treated GaAs versus the non-treated sample. In addition, the valence-band and the conduction-band offsets at the HfO{sub 2}/GaAs interface were deduced to be 3.18 eV and a range of 0.87-0.97 eV, respectively. It appears that HCl+(NH{sub 4})2{sub S} treatments provide a superior chemical passivation for GaAs and initial surface for ALD deposition.

Chen, P.T.; /Stanford U., Materials Sci. Dept.; Sun, Y.; /SLAC, SSRL; Kim, E.; McIntyre, P.C.; /Stanford U., Materials Sci. Dept.; Tsai, W.; Garner, M.; /Intel, Santa Clara; Pianetta, P.; /SLAC, SSRL; Nishi, Y.; /Stanford U., Elect. Eng. Dept.; Chui, C.O.; /UCLA

2007-09-28T23:59:59.000Z

64

AFFECTS OF MECHANICAL MILLING AND METAL OXIDE ADDITIVES ON SORPTION KINETICS OF 1:1 LiNH2/MgH2 MIXTURE  

DOE Green Energy (OSTI)

The destabilized complex hydride system composed of LiNH{sub 2}:MgH{sub 2} (1:1 molar ratio) is one of the leading candidates of hydrogen storage with a reversible hydrogen storage capacity of 8.1 wt%. A low sorption enthalpy of {approx}32 kJ/mole H{sub 2} was first predicted by Alapati et al. utilizing first principle density function theory (DFT) calculations and has been subsequently confirmed empirically by Lu et al. through differential thermal analysis (DTA). This enthalpy suggests that favorable sorption kinetics should be obtainable at temperatures in the range of 160 C to 200 C. Preliminary experiments reported in the literature indicate that sorption kinetics are substantially lower than expected in this temperature range despite favorable thermodynamics. Systematic isothermal and isobaric sorption experiments were performed using a Sievert's apparatus to form a baseline data set by which to compare kinetic results over the pressure and temperature range anticipated for use of this material as a hydrogen storage media. Various material preparation methods and compositional modifications were performed in attempts to increase the kinetics while lowering the sorption temperatures. This paper outlines the results of these systematic tests and describes a number of beneficial additions which influence kinetics as well as NH{sub 3} formation.

Erdy, C.; Anton, D.; Gray, J.

2010-12-08T23:59:59.000Z

65

High-throughput and in situ EDXRD investigation on the formation of two new metal aminoethylphosphonates - Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) and Ca(OH)(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3}){center_dot}2H{sub 2}O  

SciTech Connect

The system Ca{sup 2+}/2-aminoethylphosphonic acid/H{sub 2}O/NaOH was systematically investigated using high-throughput methods. The experiments led to one new compound Ca(O{sub 3}PC{sub 2} H{sub 4}NH{sub 2}) (1) and the crystal structure was determined using in house X-ray powder diffraction data (monoclinic, P2{sub 1}/c, a=9.7753(3), b=6.4931(2), c=8.4473(2) A, {beta}=106.46(2) Degree-Sign , V=514.20(2) A{sup 3}, Z=4). The formation of 1 was investigated by in situ energy dispersive X-ray diffraction measurements (EDXRD) at beamline F3 at HASYLAB (light source DORIS III), DESY, Hamburg. An intermediate, Ca(OH)(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3}){center_dot}2H{sub 2}O (2), was observed and could be isolated from the reaction mixture at ambient temperatures by quenching the reaction. The crystal structure of 2 was determined from XRPD data using synchrotron radiation (monoclinic, P2{sub 1}/m, a=11.2193(7), b=7.1488(3), c=5.0635(2) A, {beta}=100.13(4) Degree-Sign , V=399.78(3) A{sup 3}, Z=2). - Graphical abstarct: The detailed in situ energy dispersive X-ray diffraction (EDXRD) investigation on the formation of the new inorganic-organic hybrid compound Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) leads to the discovery of a new crystalline intermediate phase. Both crystal structures were elucidated using X-ray powder diffraction data. Highlights: Black-Right-Pointing-Pointer High-throughput investigation led to new metal aminoethylphosphonate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}). Black-Right-Pointing-Pointer The formation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) was followed by in situ EDXRD measurements. Black-Right-Pointing-Pointer The crystalline intermediate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was discovered. Black-Right-Pointing-Pointer Isolation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was accomplished by quenching experiments. Black-Right-Pointing-Pointer The structures were determined using X-ray powder diffraction data.

Schmidt, Corinna; Feyand, Mark [Institut fuer Anorganische Chemie, Christian-Albrechts-Universitaet, Max-Eyth Strasse 2, D 24118 Kiel (Germany); Rothkirch, Andre [HASYLAB, DESY Hamburg, Notkestrasse 85, 22607 Hamburg (Germany); Stock, Norbert, E-mail: stock@ac.uni-kiel.de [Institut fuer Anorganische Chemie, Christian-Albrechts-Universitaet, Max-Eyth Strasse 2, D 24118 Kiel (Germany)

2012-04-15T23:59:59.000Z

66

QM/MM Lineshape Simulation of the Hydrogen-bonded Uracil NH Stretching Vibration of the Adenine:Uracil Base Pair in CDCl$_3$  

E-Print Network (OSTI)

A hybrid Car-Parrinello QM/MM molecular dynamics simulation has been carried out for the Watson-Crick base pair of 9-ethyl-8-phenyladenine and 1-cyclohexyluracil in deuterochloroform solution at room temperature. The resulting trajectory is analyzed putting emphasis on the N-H$...$N Hydrogen bond geometry. Using an empirical correlation between the $\\NN$-distance and the fundamental NH-stretching frequency, the time-dependence of this energy gap along the trajectory is obtained. From the gap-correlation function we determine the infrared absorption spectrum using lineshape theory in combination with a multimode oscillator model. The obtained average transition frequency and the width of the spectrum is in reasonable agreement with recent experimental data.

Yan, Yun-an; Khn, Oliver

2008-01-01T23:59:59.000Z

67

High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH{sub 3}-based molecular beam epitaxy  

SciTech Connect

High external quantum efficiency (EQE) p-i-n heterojunction solar cells grown by NH{sub 3}-based molecular beam epitaxy are presented. EQE values including optical losses are greater than 50% with fill-factors over 72% when illuminated with a 1 sun AM0 spectrum. Optical absorption measurements in conjunction with EQE measurements indicate an internal quantum efficiency greater than 90% for the InGaN absorbing layer. By adjusting the thickness of the top p-type GaN window contact layer, it is shown that the short-wavelength (<365 nm) quantum efficiency is limited by the minority carrier diffusion length in highly Mg-doped p-GaN.

Lang, J. R.; Hurni, C. A.; Cruz, S. C.; Matioli, E.; Speck, J. S. [Department of Materials, University of California, Santa Barbara, California 93106 (United States); Neufeld, C. J.; Mishra, U. K. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

2011-03-28T23:59:59.000Z

68

Selective Catalytic Reduction (SCR) of nitric oxide with ammonia using Cu-ZSM-5 and Va-based honeycomb monolith catalysts: effect of H2 pretreatment, NH3-to-NO ratio, O2, and space velocity  

E-Print Network (OSTI)

In this work, the steady-state performance of zeolite-based (Cu-ZSM-5) and vanadium-based honeycomb monolith catalysts was investigated in the selective catalytic reduction process (SCR) for NO removal using NH3. The aim was to delineate the effect of various parameters including pretreatment of the catalyst sample with H2, NH3-to-NO ratio, inlet oxygen concentration, and space velocity. The concentrations of the species (e.g. NO, NH3, and others) were determined using a Fourier Transform Infrared (FTIR) spectrometer. The temperature was varied from ambient (25 C) to 500 C. The investigation showed that all of the above parameters (except pre-treatment with H2) significantly affected the peak NO reduction, the temperature at which peak NO reduction occurred, and residual ammonia left at higher temperatures (also known as 'NH3 slip'). Depending upon the particular values of the parameters, a peak NO reduction of around 90% was obtained for both the catalysts. However, an accompanied generation of N2O and NO2 species was observed as well, being much higher for the vanadium-based catalyst than for the Cu-ZSM-5 catalyst. For both catalysts, the peak NO reduction decreased with an increase in space velocity, and did not change significantly with an increase in oxygen concentration. The temperatures at which peak NO reduction and complete NH3 removal occurred increased with an increase in space velocity but decreased with an increase in oxygen concentration. The presence of more ammonia at the inlet (i.e. higher NH3-to-NO ratio) improved the peak NO reduction but simultaneously resulted in an increase in residual ammonia. Pretreatment of the catalyst sample with H2 (performed only for the Cu-ZSM-5 catalyst) did not produce any perceivable difference in any of the results for the conditions of these experiments.

Gupta, Saurabh

2003-08-01T23:59:59.000Z

69

Imaging ion-molecule reactions: Charge transfer and C-N bond formation in the C{sup +}+ NH{sub 3} system  

Science Conference Proceedings (OSTI)

The velocity mapping ion imaging method is applied to the ion-molecule reactions occurring between C{sup +} and NH{sub 3}. The velocity space images are collected over the relative collision energy range from 1.5 to 3.3 eV, allowing both product kinetic energy distributions and angular distributions to be obtained from the data. The charge transfer process appears to be direct, dominated by long-range electron transfer that results in minimal deflection of the products. The product kinetic energy distributions are consistent with a process dominated by energy resonance. The kinetic energy distributions for C-N bond formation appear to scale with the total available energy, providing strong evidence that energy in the [CNH{sub 3}]{sup +} precursor to products is distributed statistically. The angular distributions for C-N bond formation show pronounced forward-backward symmetry, as expected for a complex that resembles a prolate symmetric top decaying along its symmetry axis.

Pei, Linsen; Farrar, James M. [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States)

2012-05-28T23:59:59.000Z

70

LOW-TEMPERATURE ION TRAP STUDIES OF N{sup +}({sup 3} P{sub ja} ) + H{sub 2}(j) {yields} NH{sup +} + H  

SciTech Connect

Using a low-temperature 22-pole ion trap apparatus, detailed measurements for the title reaction have been performed between 10 K and 100 K in order to get some state specific information about this fundamental hydrogen abstraction process. The relative population of the two lowest H{sub 2} rotational states, j = 0 and 1, has been varied systematically. NH{sup +} formation is nearly thermo-neutral; however, to date, the energetics are not known with the accuracy required for low-temperature astrochemistry. Additional complications arise from the fact that, so far, there is no reliable theoretical or experimental information on how the reactivity of the N{sup +} ion depends on its fine-structure (FS) state {sup 3} P{sub ja} . Since in the present trapping experiment, thermalization of the initially hot FS population competes with hydrogen abstraction, the evaluation of the decay of N{sup +} ions over long storage times and at various He and H{sub 2} gas densities provides information on these processes. First assuming strict adiabatic behavior, a set of state specific rate coefficients is derived from the measured thermal rate coefficients. In addition, by recording the disappearance of the N{sup +} ions over several orders of magnitude, information on nonadiabatic transitions is extracted including FS-changing collisions.

Zymak, I.; Hejduk, M.; Mulin, D.; Plasil, R.; Glosik, J.; Gerlich, D. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic)

2013-05-01T23:59:59.000Z

71

Detailed modeling and laser-induced fluorescence imaging of nitric oxide in a NH(i)-seeded non-premixed methane/air flame  

Science Conference Proceedings (OSTI)

In this paper we study the formation of NO in laminar, nitrogen diluted methane diffusion flames that are seeded with ammonia in the fuel stream. We have performed numerical simulations with detailed chemistry as well as laser-induced fluorescence imaging measurements for a range of ammonia injection rates. For comparison with the experimental data, synthetic LIF images are calculated based on the numerical data accounting for temperature and fluorescence quenching effects. We demonstrate good agreement between measurements and computations. The LIF corrections inferred from the simulation are then used to calculate absolute NO mole fractions from the measured signal.The NO formation in both doped and undoped flames occurs in the flame sheet. In the undoped flame, four different mechanisms including thermal and prompt NO appear to contribute to NO formation. As the NH3 seeding level increases, fuel-NO becomes the dominant mechanism and N2 shifts from being a net reactant to being a net product. Nitric oxide in the undoped flame as well as in the core region of the doped flames are underpredicted by the model; we attribute this mainly to inaccuracies in the NO recycling chemistry on the fuel-rich side of the flame sheet.

Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Bessler, Wolfgang G.; Schulz, Christof; Glarborg, Peter; Jensen, Anker D.

2001-12-14T23:59:59.000Z

72

Make Checks Payable to the 4-H Foundation of New Hampshire. For more information contact Rhiannon Beauregard at Rhiannon.Beauergard@unh.edu or (603) 862-2188. All of this information can be found at the NH 4-H State Horse Show Website  

E-Print Network (OSTI)

Beauregard at Rhiannon.Beauergard@unh.edu or (603) 862-2188. All of this information can be found at the NH 4 Foundation of New Hampshire. For more information contact Rhiannon Beauregard at Rhiannon Exposition. Please notify Rhiannon Beauregard, NH 4-H Animal and Agricultural Science Education Coordinator

New Hampshire, University of

73

NH_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionNewHampshireWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of New...

74

Hydrogen storage in a combined M.sub.xAlH.sub.6/M'.sub.y(NH.sub.2).sub.z system and methods of making and using the same  

SciTech Connect

As a promising clean fuel for vehicles, hydrogen can be used for propulsion, either directly or in fuel cells. Hydrogen storage compositions having high storage capacity, good dehydrogenation kinetics, and hydrogen release and uptake reactions which are reversible are disclosed and described. Generally a hydrogen storage composition of a metal aluminum hexahydride and a metal amide can be used. A combined system (Li.sub.3AIH.sub.6/3LiNH.sub.2) with a very high inherent hydrogen capacity (7.3 wt %) can be carried out at moderate temperatures, and with approximately 95% of that inherent hydrogen storage capacity (7.0%) is reversible over repeated cycling of release and uptake.

Lu, Jun (Salt Lake City, UT); Fang, Zhigang Zak (Salt Lake City, UT); Sohn, Hong Yong (Salt Lake City, UT)

2012-04-03T23:59:59.000Z

75

Hydrogen storage in a combined M.sub.xAlH.sub.6/M'.sub.y(NH.sub.2).sub.z system and methods of making and using the same  

DOE Patents (OSTI)

As a promising clean fuel for vehicles, hydrogen can be used for propulsion, either directly or in fuel cells. Hydrogen storage compositions having high storage capacity, good dehydrogenation kinetics, and hydrogen release and uptake reactions which are reversible are disclosed and described. Generally a hydrogen storage composition of a metal aluminum hexahydride and a metal amide can be used. A combined system (Li.sub.3AIH.sub.6/3LiNH.sub.2) with a very high inherent hydrogen capacity (7.3 wt %) can be carried out at moderate temperatures, and with approximately 95% of that inherent hydrogen storage capacity (7.0%) is reversible over repeated cycling of release and uptake.

Lu, Jun (Salt Lake City, UT); Fang, Zhigang Zak (Salt Lake City, UT); Sohn, Hong Yong (Salt Lake City, UT)

2012-04-03T23:59:59.000Z

76

Mechanochemical transformation of mixtures of Ca(OH){sub 2} and (NH{sub 4}){sub 2}HPO{sub 4} or P{sub 2}O{sub 5}  

Science Conference Proceedings (OSTI)

A detailed comparative study of the mechanochemical transformation of two mixtures: Ca(OH){sub 2}-(NH{sub 4}){sub 2}HPO{sub 4} and Ca(OH){sub 2}-P{sub 2}O{sub 5}, milled in a mortar dry grinder for different periods of time was carried out. The phase transformations obtained at each milling stage were studied by X-ray diffraction, infrared spectroscopy, transmission electron microscopy, differential scanning calorimetry and thermogravimetric analysis. The transformations taking place during the first periods of milling are very different for both mixtures. However, prolonged milling, over nearly the same period, causes amorphization of both mixtures. DSC analysis of the milled powders showed the temperature of crystallization of hydroxyapatite and tricalcium phosphate ({beta}-TCP). Calcinations of all the different milled powders at 800 deg. C for 2 h, results in the formation of hydroxyapatite and {beta}-TCP.

Gonzalez, G. [Laboratorio de Materiales, Centro Tecnologico, Instituto Venezolano de Investigaciones Cientificas. Aptdo. 21827 Caracas 1020-A (Venezuela)]. E-mail: gemagonz@ivic.ve; Sagarzazu, A. [Laboratorio de Materiales, Centro Tecnologico, Instituto Venezolano de Investigaciones Cientificas. Aptdo. 21827 Caracas 1020-A (Venezuela); Villalba, R. [Laboratorio de Materiales, Centro Tecnologico, Instituto Venezolano de Investigaciones Cientificas. Aptdo. 21827 Caracas 1020-A (Venezuela)

2006-10-12T23:59:59.000Z

77

SiO{sub 2} nanospheres with tailorable interiors by directly controlling Zn{sup 2+} and NH{sub 3}.H{sub 2}O species in an emulsion process  

Science Conference Proceedings (OSTI)

SiO{sub 2} nanospheres with tailorable interiors were synthesized by a facile one-spot microemulsion process using TEOS as silica source, wherein cyclohexane including triton X-100 and n-octanol as oil phase and Zn{sup 2+} or NH{sub 3}.H{sub 2}O aqueous solution as dispersive phase, respectively. The products were characterized by Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray Powder Diffraction. It was suggested that the as-synthesized silica nanospheres possessed grape-stone-like porous or single hollow interior, and also found that the ammonia dosage and aging time played key roles in controlling the size and structure of silica nanospheres. Furthermore, the comparative results confirmed that in-situ zinc species [ZnO/Zn(OH){sub 2}] acted as the temporary templates to construct grape-stone-like interior, and a simultaneously competing etching process occurred owing to the soluble Zn(NH{sub 3}){sub 4}{sup 2+} complex formation while the additional excessive ammonia was introduced. With the aging time being extended, the in-situ nanocrystals tended to grow into bigger ones by Ostwald Ripening, producing single hollow interior. - Graphical Abstract: Formation process of SiO{sub 2} nanospheres with porous and single hollow interior. Highlights: > ZnO/Zn(OH){sub 2} nanocrystals as the temporary templates shape the interior structures of SiO{sub 2} nanospheres. > Fabrication of porous and single hollow interiors needs no additional processes such as roasting or dissolving. > Tailorable interiors can be easily obtained through adjusting the aging time of temporary templates.

Liao Yuchao [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Wu Xiaofeng [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Wang Zhen [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Chen Yunfa, E-mail: yfchen@home.ipe.ac.cn [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

2011-07-15T23:59:59.000Z

78

NH Acid Rain Control Act (New Hampshire)  

Energy.gov (U.S. Department of Energy (DOE))

The Act is implemented under New Hampshire's acid deposition control program established under the Rules to Control Air Pollution in Chapter Env-A 400. The goal of the Act is to reduce emissions...

79

Export.gov - NH Our Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Identify potential partners. Market your firm directly to local companies. Partner Search Identify potential partners and get detailed company reports. Determine the...

80

Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols  

Science Conference Proceedings (OSTI)

This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallic complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system and conditions, it was found that the oxidative dehydrogenation of dibenzylamine to Nbenzylidenebenzylamine, with N-methylmorpholine N-oxide (NMMO), was nearly quantitative (96%) within 24 h. However, the reaction with oxygen was much slower, with only a 52% yield of imine product over the same time period. Moreover, the rate of reaction was found to be influenced by the nature of the amine N-oxide. For example, the use of the weakly basic pyridine N-oxide (PyNO) led to an imine yield of only 6% after 24 h. A comparison of amine N-oxide and O2 was also examined in the oxidation of PhCH{sub 2}OH to PhCHO catalyzed by bulk gold. In this reaction, a 52% yield of the aldehyde was achieved when NMMO was used, while only a 7% product yield was afforded when O{sub 2} was the oxidant after 48 h. The bulk gold-catalyzed oxidative dehydrogenation of cyclic amines generates amidines, which upon treatment with Aerosil and water were found to undergo hydrolysis to produce lactams. Moreover, 5-, 6-, and 7-membered lactams could be prepared through a one-pot reaction of cyclic amines by treatment with oxygen, water, bulk gold, and Aerosil. This method is much more atom economical than industrial processes, does not require corrosive acids, and does not generate undesired byproducts. Additionally, the gold and Aerosil catalysts can be readily separated from the reaction mixture. The second project involved studying iron(III) tetraphenylporphyrin chloride, Fe(TPP)Cl, as a homogeneous catalyst for the generation of carbenes from diazo reagents and their reaction with heteroatom compounds. Fe(TPP)Cl, efficiently catalyzed the insertion of carbenes derived from methyl 2-phenyldiazoacetates into O-H bonds of aliphatic and aromatic alcohols. Fe(TPP)Cl was also found to be an effective catalyst for tandem N-H and O-H insertion/cyclization reactions when 1,2-diamines and 1,2-alcoholamines were treated with diazo reagents. This approach provides a one-pot process for synthesizing piperazinones and morpholinones and related analogues such as quinoxalinones and benzoxazin-2-ones.

Klobukowski, Erik

2011-12-29T23:59:59.000Z

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

82

U.S. Liquefied Natural Gas Exports to United Kingdom  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

83

U.S. Natural Gas Exports to Portugal  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

84

U.S. Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

85

U.S. Liquefied Natural Gas Exports to Japan  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

86

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

87

U.S. Natural Gas Exports to China  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

88

U.S. Liquefied Natural Gas Exports to India  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

89

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

90

Synthesis and crystal structure of a new open-framework iron phosphate (NH{sub 4}){sub 4}Fe{sub 3}(OH){sub 2}F{sub 2}[H{sub 3}(PO{sub 4}){sub 4}]: Novel linear trimer of corner-sharing Fe(III) octahedra  

SciTech Connect

A new iron phosphate (NH{sub 4}){sub 4}Fe{sub 3}(OH){sub 2}F{sub 2}[H{sub 3}(PO{sub 4}){sub 4}] has been synthesized hydrothermally at HF concentrations from 0.5 to 1.2 mL. Single-crystal X-ray diffraction analysis reveals its three-dimensional open-framework structure (monoclinic, space group P2{sub 1}/n (No. 14), a=6.2614(13) A, b=9.844(2) A, c=14.271(3) A, {beta}=92.11(1){sup o}, V=879.0(3) A{sup 3}). This structure is built from isolated linear trimers of corner-sharing Fe(III) octahedra, which are linked by (PO{sub 4}) groups to form ten-membered-ring channels along [1 0 0]. This isolated, linear trimer of corner-sharing Fe(III) octahedra, [(FeO{sub 4}){sub 3}(OH){sub 2}F{sub 2}], is new and adds to the diverse linkages of Fe polyhedra as secondary building units in iron phosphates. The trivalent iron at octahedral sites for the title compound has been confirmed by synchrotron Fe K-edge XANES spectra and magnetic measurements. Magnetic measurements also show that this compound exhibit a strong antiferromagnetic exchange below T{sub N}=17 K, consistent with superexchange interactions expected for the linear trimer of ferric octahedra with the Fe-F-Fe angle of 132.5{sup o}. -- Graphical abstract: The three-dimensional open-framework structure of (NH{sub 4}){sub 4}Fe{sub 3}(OH){sub 2}F{sub 2}[H{sub 3}(PO{sub 4}){sub 4}] is built from a novel isolated, linear (FeO{sub 4}){sub 3}(OH){sub 2}F{sub 2} trimer of corner-sharing Fe(III) octahedra linked by PO{sub 4} tetrahedra. Display Omitted

Mi, Jin-Xiao, E-mail: jxmi@xmu.edu.c [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Wang, Cheng-Xin [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Chen, Ning [Canadian Light Source, University of Saskatchewan, Saskatoon, SK, Canada S7N 0X4 (Canada); Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2 (Canada); Li, Rong [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2 (Canada); Pan, Yuanming [Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2 (Canada)

2010-12-15T23:59:59.000Z

91

Impacts of anisotropic lattice relaxation on crystal mosaicity and luminescence spectra of m-plane Al{sub x}Ga{sub 1-x}N films grown on m-plane freestanding GaN substrates by NH{sub 3} source molecular beam epitaxy  

SciTech Connect

In-plane anisotropic lattice relaxation was correlated with the crystal mosaicity and luminescence spectra for m-plane Al{sub x}Ga{sub 1-x}N films grown on a freestanding GaN substrate by NH{sub 3}-source molecular beam epitaxy. The homoepitaxial GaN film exhibited A- and B-excitonic emissions at 8 K, which obeyed the polarization selection rules. For Al{sub x}Ga{sub 1-x}N overlayers, the m-plane tilt mosaic along c-axis was the same as the substrate as far as coherent growth was maintained (x{<=}0.25). However, it became more severe than along the a-axis for lattice-relaxed films (x{>=}0.52). The results are explained in terms of anisotropic lattice and thermal mismatches between the film and the substrate. Nonetheless, all the Al{sub x}Ga{sub 1-x}N films exhibited a near-band-edge emission peak and considerably weak deep emission at room temperature.

Hoshi, T.; Hazu, K.; Ohshita, K.; Kagaya, M.; Onuma, T.; Chichibu, S. F. [CANTech, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Fujito, K. [Optoelectronics Laboratory, Mitsubishi Chemical Corporation, 1000 Higashi-Mamiana, Ushiku 300-1295 (Japan); Namita, H. [Mitsubishi Chemical Group Science and Technology Research Center, Inc., 8-3-1 Chuo, Ami, Inashiki 300-0332 (Japan)

2009-02-16T23:59:59.000Z

92

U.S. Natural Gas Pipeline Imports by Point of Entry  

U.S. Energy Information Administration (EIA)

Detroit, MI : 140 : 2011-2013: Marysville, MI: 176 : 1,080: 14 : 2011-2013: St. Clair, MI: 1,562: 1,422: 2 : 26 : 2011-2013: Noyes, MN: 13,380: 14,460: 20,624: 33,889 ...

93

U.S. Price of Natural Gas Pipeline Imports by Point of Entry  

U.S. Energy Information Administration (EIA)

Detroit, MI: 3.80 : 4.50 : 2011-2013: Marysville, MI: 3.63: 3.65 : 4.57: 4.70 : 2011-2013: St. Clair, MI: 3.75: 3.67: 4.09: 4.41 : 4.35: 2011-2013: Noyes, MN: 3.74: 3 ...

94

Poultry Curriculum Committee Meeting Minutes February 2, 2013 Boscawen, NH  

E-Print Network (OSTI)

Beauregard c. Clubs with Poultry Project Areas: i. Kim Steele (Hillsborough County): Hooves, Hens, Heifers

New Hampshire, University of

95

Page 1 of 4 2013 NH HORSE AD BOOKLET  

E-Print Network (OSTI)

or Rhiannon Beauregard, New Hampshire 4-H Animal and Agricultural Science Education Coordinator at (603) 862-2188 or Rhiannon.Beauregard@unh.edu. 1. Promote the ad campaign within your county - Work with your Extension. Send all materials to Rhiannon Beauregard (see below) by May 17, 2013. You will need to include a copy

New Hampshire, University of

96

Beef Curriculum Committee Meeting Minutes February 2, 2013 Boscawen, NH  

E-Print Network (OSTI)

) (Carroll); Jean Rudolph (Cheshire); and Rhiannon Beauregard (Rockingham) c. Names of Some Folks that should

New Hampshire, University of

97

NH4-smectite: Characterization, hydration properties and hydro mechanical behaviour  

E-Print Network (OSTI)

et al., 1993], [Shackelford, 1994], [Studds et al., 1996], [Coméaga, 1997], [Lin, 1998], [Alawaji, 1999], [Mohan et al., 1999], [Shackelford et al., 2000], #12;[Egloffstein, 2001] and [Jullien et al

Paris-Sud XI, Université de

98

Hydrothermally Stable, Low-Temperature NOx Reduction NH3 ...  

aging. In contrast, the conventional, commercially available chabazite SCR catalyst, Cu-SSZ-13, exhibits high activity only in 200-550 C range.

99

HIPAA 2013 - The National Health ISAC (NH-ISAC)  

Science Conference Proceedings (OSTI)

... Department of Homeland Security (DHS) Office of Infrastructure ... Dams Critical Manufacturing /Emergency Services Nuclear Reactors, Materials and ...

2013-05-22T23:59:59.000Z

100

Tetrahedral-Network Organo-Zincophosphates: Syntheses and Structures of (N(2)C(6)H(14)).Zn(HPO(4))(2).H(2)O, H(3)N(CH(2))(3)NH(3).Zn(2)(HPO(4))(3) and (N(2)C(6)H(14)).Zn(3)(HPO(4))(4)  

SciTech Connect

The solution-mediated syntheses and single crystal structures of (N2C6H14)Zn(HPO4)2H2O (I), H3N(CH2)3NH3Zn2(HPO4)3 (II), and (N2C6H14)Zn3(HPO4)4 (III) are described. These phases contain vertex-sharing Zn04 and HP04 tetrahedra, accompanied by doubly- protonated organic cations. Despite their formal chemical relationship, as members of the series of tZnn(HP04)n+1 (t= template, n = 1-3), these phases adopt fimdamentally different crystal structures, as one-dimensional, two-dimensional, and three-dimensional Zn04/HP04 networks, for I, II, and III respectively. Similarities and differences to some other zinc phosphates are briefly discussed. Crystal data: (N2C6H14)Zn(HP04)2H20, Mr = 389.54, monoclinic, space group P21/n (No. 14), a = 9.864 (4) , b = 8.679 (4) , c = 15.780 (3) , ? = 106.86 (2), V= 1294.2 (8) 3, Z = 4, R(F) = 4.58%, RW(F) = 5.28% [1055 reflections with I >3?(I)]. H3N(CH2)3NH3Zn2(HP04)3, Mr = 494.84, monoclinic, space group P21/c (No. 14), a= 8.593 (2), b= 9.602 (2), c= 17.001 (3), ?= 93.571 (8), V = 1400.0 (5) 3, Z = 4, R(F) = 4.09%, RW(F) = 4.81% [2794 reflections with I > 3? (I)]. (N2C6H14)Zn3(HP04)4, Mr= 694.25, monoclinic, space group P21/n (No. 14), a = 9.535 (2) , b = 23.246 (4), c= 9.587 (2), ?= 117.74 (2), V= 1880.8 (8) 3, Z = 4, R(F) = 3.23%, RW(F) = 3.89% [4255 reflections with 1> 3?(I)].

Chavez, Alejandra V.; Hannooman, Lakshitha; Harrison, William T.A.; Nenoff, Tina M.

1999-05-07T23:59:59.000Z

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ab initio simulation of ammonia monohydrate ,,NH3"H2O... and ammonium hydroxide ,,NH4OH...  

E-Print Network (OSTI)

the whole ammonia-water system. As part of a broader ongoing study into solids in the ammonia-water system,9 pseudopotential plane-wave simulations of the static properties of ammonia monohydrate phase I AMH I and ammonium of the hydrogen bonds in AMH may exhibit properties which are transferable to much more complex molecular solids

Vocadlo, Lidunka

102

Inferring efficient weights from pairwise comparison matrices.  

E-Print Network (OSTI)

Fundamentals of Decision Making. RSW Publications, Pittsburg, ... Fractional programming. in: Handbook of Global Optimization R. Horst and P.M. Pardalos,...

103

Semi-supervised Learning with Density Based Distances Avleen S. Bijral  

E-Print Network (OSTI)

Semi-supervised Learning with Density Based Distances Avleen S. Bijral Toyota Technological Institute Chicago, IL 60637 Nathan Ratliff Google Inc. Pittsburg, PA 15206 Nati Srebro Toyota Technological

Srebro, Nathan

104

To:  

Office of Legacy Management (LM)

Works, and Joplin, Missouri, located between Pittsburg, Kansas was licensed b.the NRC under Source Material License C-4352 and Special Nuclear Material Licenses SNM-154 to...

105

New ambient pressure organic superconductors:. alpha. -(BEDT-TTF) sub 2 (NH sub 4 )Hg(SCN) sub 4 ,. beta. m-(BEDO-TTF) sub 3 Cu sub 2 (NCS) sub 3 , and. kappa. -(BEDT-TTF) sub 2 Cu(N(CN) sub 2 )Br  

Science Conference Proceedings (OSTI)

More than one hundred and twenty conducting salts based on the organic donor-molecule BEDT-TTF are known, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene (abbreviated herein as ET). Several of the early salts possessed tetrahedral and octahedral anions, such as (ET){sub 2}ClO{sub 4}(TCE), (ET){sub 2}PF{sub 6}, (ET){sub 2}ReO{sub 4}, and (ET){sub 2}BrO{sub 4}. The perchlorate salt is metallic to 1.4 K,{sup 1} and the perrenate derivative was the first ET based organic superconductor ({Tc} 2 K, 4.5 kbar). Since the discovery of ambient pressure superconductivity in {beta}-(ET){sub 2}I{sub 3} ({Tc} 1.4 K),{sup 5} other isostructural {beta}-(ET){sub 2}X salts have been prepared with higher {Tc}'s. A structure-property correlation for the {beta}-type salts has been reviewed in this volume; it predicts that {Tc}'s higher than 8K are possible if {beta}-salts with linear anions longer than I{sub 3}{sup {minus}} can be synthesized. During the search for new linear anions, a variety of compounds with discovered with polymeric anions. The report of superconductivity in {kappa}-(ET){sub 4}Hg{sub 3}X{sub 8} (X = Cl, {Tc} 5.4 K 29 kbar and X = Br, {Tc} 4.3 K ambient pressure and 6.7 K 3.5 kbar) and {kappa}-(ET){sub 2}Cu(NCS){sub 2} ({Tc} 10.4 K) further stimulated the search for novel polymeric anions. A general synthetic strategy for preparing new salts containing polymeric anions is to couple a coordinatively unsaturated neutral transition metal halide/pseudohalide with a simple halide or pseudohalide during an electrocrystallization synthesis. In this article, the authors discuss three new ambient pressure organic superconductors with novel polymeric anions, {alpha}-(ET){sub 2}(NH{sub 4})Hg(SCN){sub 4}, {beta}m-(BO){sub 3}Cu{sub 2}(NCS){sub 3} and {kappa}-(ET){sub 2}Cu(N(CN){sub 2})Br. 48 refs., 8 figs., 2 tabs.

Wang, H.H.; Beno, M.A.; Carlson, K.D.; Geiser, U.; Kini, A.M.; Montgomery, L.K.; Thompson, J.E.; Williams, J.M.

1990-01-01T23:59:59.000Z

106

U.S. Natural Gas Pipeline Imports by Point of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

215,438 228,558 228,644 228,087 227,437 228,043 1997-2013 215,438 228,558 228,644 228,087 227,437 228,043 1997-2013 From Canada 215,418 228,544 228,616 227,905 227,273 227,895 1973-2013 Eastport, ID 56,795 55,526 58,195 60,900 58,601 56,407 2011-2013 Calais, ME 1,846 1,368 1,910 1,831 1,356 3,925 2011-2013 Detroit, MI 140 2011-2013 Marysville, MI 1,080 14 21 194 2011-2013 St. Clair, MI 2 26 151 211 2011-2013 Noyes, MN 20,624 33,889 31,352 11,189 13,943 20,155 2011-2013 Warroad, MN 452 328 308 292 271 290 2011-2013 Babb, MT 1,028 931 1,946 2,200 2,103 2,386 2011-2013 Port of Del Bonita, MT 20 22 18 20 21 21 2011-2013 Port of Morgan, MT 55,965 58,896 59,252 59,822 61,514 57,958 2011-2013 Sweetgrass, MT 25 991 2011-2013 Whitlash, MT

107

Ultra-Deepwater Advisory Committee Members | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advisory Committee Members Petroleum Reserves International Cooperation Natural Gas Regulation Advisory Committees 2011-2013 Ultra-Deepwater Advisory Committee Members Dr....

108

Office of the Chief Financial Officer .:. Lawrence Berkeley National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Travel Office spacer OCFO Home Send Feedback OCFO Strategic Plan OCFO Strategic Plan 2011-2013 OCFO Stratetic Plan Road Map OCFO Strategic Plan 2008-2012...

109

September 2013  

U.S. Energy Information Administration (EIA) Indexed Site

commercial consumers, by state, 2011-2013 (dollars per thousand cubic feet) - continued 2013 2012 State February January Total December November October September August Alabama...

110

September 2013  

U.S. Energy Information Administration (EIA) Indexed Site

to electric power a consumers, by state, 2011-2013 (million cubic feet) - continued 2013 2012 State February January Total December November October September August Alabama...

111

September 2013  

U.S. Energy Information Administration (EIA) Indexed Site

deliveries to commercial consumers, by state, 2011-2013 (million cubic feet) - continued 2013 2012 State February January Total December November October September August Alabama...

112

U.S. LNG Imports from Canada  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

113

U.S. Liquefied Natural Gas Exports to India  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

114

U.S. LNG Imports from Other Countries  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

115

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

116

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

117

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

118

U.S. Liquefied Natural Gas Exports to Japan  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

119

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

120

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

122

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

123

U.S. LNG Imports from Indonesia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

124

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

125

U.S. Natural Gas Exports to Portugal  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

126

U.S. LNG Imports from Canada  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

127

U.S. LNG Imports from Norway  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

128

U.S. LNG Imports from Equatorial Guinea  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

129

U.S. LNG Imports from Australia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

130

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

131

U.S. Liquefied Natural Gas Exports to Spain  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

132

U.S. Liquefied Natural Gas Exports to United Kingdom  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

133

U.S. Natural Gas Exports to Chile  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

134

U.S. Liquefied Natural Gas Exports To Brazil  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

135

U.S. Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

136

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

137

U.S. LNG Imports from Qatar  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

138

U.S. Price of Natural Gas Pipeline Imports by Point of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. Total 3.96 3.93 3.73 3.37 3.01 3.01 1997-2013 From Canada 3.96 3.93 3.73 3.37 3.01 3.01 1989-2013 Eastport, ID 3.71 3.74 3.54 3.16 2.78 2.73 2011-2013 Calais, ME 4.09 4.58 4.41 4.29 3.75 3.70 2011-2013 Detroit, MI 4.50 2011-2013 Marysville, MI 4.57 4.70 4.22 4.17 2011-2013 St. Clair, MI 4.41 4.35 3.96 4.06 2011-2013 Noyes, MN 4.12 4.08 3.84 3.79 3.44 3.54 2011-2013 Warroad, MN 4.25 4.35 4.14 3.91 3.68 3.77 2011-2013 Babb, MT 3.66 3.74 3.45 2.94 2.65 2.44 2011-2013 Port of Del Bonita, MT 3.93 3.85 3.43 2.97 2.73 2.50 2011-2013 Port of Morgan, MT 3.62 3.69 3.50 3.06 2.72 2.58 2011-2013 Sweetgrass, MT 3.69 3.73 2011-2013

139

Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico  

U.S. Energy Information Administration (EIA)

Pipeline Volumes: 19: 18: 20: 20: 14: 28: 2011-2013: Pipeline Prices: 2.42: 2.34: 2.53: 2.53: 3.21: 3.21: 2011-2013-= No Data Reported; --= Not Applicable; NA = Not ...

140

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 11082010 Location(s): Pittsburg County, Oklahoma...

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Conversion in Liquid Tin Anode SOFC SECA 2011 Pittsburg July 25 th - 28 th , 2011 By Thomas Tao CellTech Power 2 Concepts of coal conversion in LTA- SOFC Feature TinCoal...

142

Fermilab Today  

NLE Websites -- All DOE Office Websites (Extended Search)

Speaker: D. Vanden Berk, University of Pittsburg Title: Seeing the Sky Swiftly: Gamma-Ray Bursts and Beyond with the Swift Observatory 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd...

143

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1994 January ........................... 89.6 91.0 90.2 83.8 88.4 80.4 87.3 88.8 92.1 102.5 February ......................... 92.9 94.6 93.8 90.4 91.3 86.6 91.4 92.3 91.5 105.5 March .............................. 91.4 92.5 92.1 85.9 88.3 83.6 89.4 91.0 91.2 102.0 April ................................ 88.2 89.0 89.4 80.8 86.0 78.2 85.1 88.3 89.2 93.7 May ................................. 86.1 86.6 85.4 76.8 85.1 75.4 83.3 86.7 84.4 83.1 June ................................ 85.2 85.6 86.1 75.6 83.7 73.1 82.3 84.6 82.0 W July ................................. 82.7 83.1 84.2 75.6 82.1 71.8 81.6 83.0 80.5 W August ............................ 82.1 82.4 79.7 78.0 78.7 72.8 84.0 83.8 82.3 81.9 September ...................... 83.2 83.7 80.5 78.5 81.1 72.9 84.7 83.3 83.1 86.2 October ........................... 84.7

144

Up-Hill ET in (NH3)5Ru(III)-Modified Ferrocytochrome c  

NLE Websites -- All DOE Office Websites (Extended Search)

Up-Hill Electron Transfer in Pentaammineruthenium(III)-Modified Up-Hill Electron Transfer in Pentaammineruthenium(III)-Modified Ferrocytochrome c: Rates, Thermodynamics, and the Mediating Role of the Ruthenium Moiety Ji Sun, James F. Wishart, and Stephan S. Isied Inorg. Chem. 34, 3998-4000 (1995) Abstract: At moderate to high ionic strengths (>0.1 M), Co(oxalate)33- oxidizes native cytochrome c very slowly, however it undergoes a rapid reaction with pendant ruthenium complexes covalently attached to the surface of the protein. Under these conditions, the rate of the thermodynamically unfavorable (up-hill) FeII-to-RuIII electron transfer process in pentaammineruthenium-modified horse-heart cytochrome c can be revealed using sufficiently high Co(oxalate) 33- concentrations. Rate measurements performed over a wide range of CoIII concentrations confirm the proposed

145

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1995 January ........................... 86.9 87.6 86.7 77.8 84.8 78.4 87.3 85.7 88.4 102.4 February ......................... 87.4 88.2 87.8 77.4 84.9 78.5 87.3 85.9 88.5 103.4 March .............................. 86.6 87.3 87.0 76.3 82.5 77.7 87.0 85.6 87.6 103.3 April ................................ 85.4 85.8 85.2 76.7 81.9 76.6 86.5 84.8 87.0 100.0 May ................................. 86.4 86.9 86.5 78.7 84.7 75.8 86.1 84.5 85.2 93.2 June ................................ 84.6 85.2 84.2 78.1 82.5 74.5 83.2 83.9 83.0 NA July ................................. 82.0 82.4 79.4 76.9 80.6 72.9 81.7 81.7 80.0 85.1 August ............................ 80.7 81.1 77.4 76.7 80.9 73.0 85.3 81.7 82.1 W September ...................... 82.3 82.7 79.2 76.2 81.7 73.8 84.9 82.5 82.4 86.1 October ...........................

146

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1997 January ........................... 107.9 109.0 108.6 105.2 106.5 102.1 107.0 104.4 106.5 130.4 February ......................... 105.1 106.0 105.2 102.2 103.4 101.0 104.5 103.5 104.2 127.0 March .............................. 101.6 102.5 99.3 94.3 97.7 98.6 100.4 103.1 100.7 121.4 April ................................ 99.2 100.3 97.6 90.9 95.9 95.2 99.4 100.4 100.1 116.3 May ................................. 96.4 97.1 93.4 90.6 93.0 91.9 97.3 97.7 96.4 108.6 June ................................ 92.3 92.9 89.9 88.1 89.1 89.1 93.3 92.9 90.8 99.9 July ................................. 88.3 88.7 83.7 86.7 87.5 85.6 91.6 91.1 88.8 W August ............................ 86.9 86.8 84.2 85.8 84.7 85.3 91.0 92.7 89.2 W September ...................... 88.7 89.0 85.5 87.0 87.0 86.3 91.2 91.7 88.5 NA October ...........................

147

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1996 January ........................... 94.6 96.1 94.5 93.0 92.0 89.1 94.9 92.6 94.7 111.7 February ......................... 95.9 97.5 96.2 93.2 93.8 90.8 95.6 93.7 94.4 112.9 March .............................. 99.1 100.6 99.6 96.7 99.3 93.8 99.7 97.3 96.1 117.7 April ................................ 101.5 102.7 102.1 98.7 101.5 96.5 98.8 100.3 100.7 115.9 May ................................. 97.8 98.1 96.8 95.4 95.9 93.6 94.9 98.8 98.0 109.7 June ................................ 91.0 91.3 88.8 90.1 87.9 87.2 88.7 92.2 91.9 102.5 July ................................. 87.9 88.0 84.9 87.5 87.5 83.6 87.7 88.5 91.0 97.3 August ............................ 88.1 88.2 84.0 89.5 89.0 85.1 88.3 89.0 91.0 99.2 September ...................... 94.5 94.4 92.5 96.4 93.1 91.9 96.6 94.4 95.3 106.2 October ...........................

148

THE INFLUENCE OF FUEL SULFUR ON THE SELECTIVE REDUCTION OF NO BY NH3  

E-Print Network (OSTI)

No. KVB-15500-717B, 1978. Wendt, J.O. , Morcomb, J.T. andsulfur combustion chemistry. Wendt et al 9 and De Soete 10in agreement with the results of Wendt et al 9 Wendt et al

Lucas, Donald

2012-01-01T23:59:59.000Z

149

Details in Semiconductors Gordon Conference, New London, NH, August 3-8, 2008  

SciTech Connect

Continuing its tradition of excellence, this Gordon Conference will focus on research at the forefront of the field of defects in homogeneous and structured semiconductors. The conference will have a strong emphasis on the control of defects during growth and processing, with an increases emphasis on nanostructures as compared to previous conferences. Electronic, magnetic, and optical properties of bulk, thin film, and nanoscale semiconductors will be discussed in detail. In contrast to many conferences, which tend to focus on specific semiconductors, this conference deals with defects in a broad range of bulk and nanoscale electronic materials. This approach has proved to be extremely fruitful for advancing fundamental understanding in emerging materials such as wide-band-gap semiconductors, doped nanoparticles, and organic semiconductors. Presentations of state-of-the-art theoretical methods will contribute to a fundamental understanding of atomic-scale phenomena. The program consists of about twenty invited talks, with plenty of discussion time, and a number of contributed poster sessions. Because of the large amount of discussion time, the conference provides an ideal forum for dealing with topics that are new and/or controversial.

Shengbai Zhang and Nancy Ryan Gray

2009-09-16T23:59:59.000Z

150

Multi-Objective Evolutionary Fuzzy Cognitive Maps for Decision N.H. Mateou  

E-Print Network (OSTI)

motorcade as it traveled to a meeting with an opposition figure in Damascus and then trying to break

Coello, Carlos A. Coello

151

Trapped Lee Waves Observed during PYREX by Constant Volume Balloons: Comparison with Meso-NH Simulations  

Science Conference Proceedings (OSTI)

The main objective of the present paper is the use of a constant volume balloon (CVB) as a tool to (i) study trapped lee waves and (ii) assess the forecasting capability of a nonhydrostatic numerical model. Then, CVB data obtained during the ...

Ernest NDri Koffi; Marc Georgelin; Bruno Benech; Evelyne Richard

2000-07-01T23:59:59.000Z

152

Update and Improve Subsection NH - Simplified Elastic and Inelastic Design Analysis Methods  

SciTech Connect

The objective of this subtask is to develop a template for the 'Ideal' high temperature design Code, in which individual topics can be identified and worked on separately in order to provide the detail necessary to comprise a comprehensive Code. Like all ideals, this one may not be attainable as a practical matter. The purpose is to set a goal for what is believed the 'Ideal' design Code should address, recognizing that some elements are not mutually exclusive and that the same objectives can be achieved in different way. Most, if not all existing Codes may therefore be found to be lacking in some respects, but this does not mean necessarily that they are not comprehensive. While this subtask does attempt to list the elements which individually or in combination are considered essential in such a Code, the authors do not presume to recommend how these elements should be implemented or even, that they should all be implemented at all. The scope of this subtask is limited to compiling the list of elements thought to be necessary or at minimum, useful in such an 'Ideal' Code; suggestions are provided as to their relationship to one another. Except for brief descriptions, where these are needed for clarification, neither this repot, nor Task 9 as a whole, attempts to address details of the contents of all these elements. Some, namely primary load limits (elastic, limit load, reference stress), and ratcheting (elastic, e-p, reference stress) are dealt with specifically in other subtasks of Task 9. All others are merely listed; the expectation is that they will either be the focus of attention of other active DOE-ASME GenIV Materials Tasks, e.g. creep-fatigue, or to be considered in future DOE-ASME GenIV Materials Tasks. Since the focus of this Task is specifically approximate methods, the authors have deemed it necessary to include some discussion on what is meant by 'approximate'. However, the topic will be addressed in one or more later subtasks. This report describes work conducted toward developing a template for what might be the 'Ideal' high temperature design Code. While attempting to be as comprehensive as possible as to subject matter, it does not presume to recommend what individual components of a Code should be implemented, some of which is the focus of other Tasks in the DOE-ASME Gen IV/NGNP Materials Projects. This report does serve as a basis for construction of an attribute chart which is being prepared as part of Task 9.2; the intention for which is to provide a uniform format and concise means for summarizing and comparing other high temperature Codes currently in use around the world.

Jeries J. Abou-Hanna; Douglas L. Marriott; Timothy E. McGreevy

2009-06-27T23:59:59.000Z

153

Structure of the Electron-Transfer Probe Analogue trans-(NH3...  

NLE Websites -- All DOE Office Websites (Extended Search)

electron transfer in cytochrome c, azurin, and myoglobin have exploited the modification of these metalloprotein surfaces with ruthenium ammine probes attached to surface...

154

Reconstructing the NH Mean Temperature: Can Underestimation of Trends and Variability Be Avoided?  

Science Conference Proceedings (OSTI)

There are indications that hemispheric-mean climate reconstructions seriously underestimate the amplitude of low-frequency variability and trends. Some of the theory of linear regression and error-in-variables models is reviewed to identify the ...

Bo Christiansen

2011-02-01T23:59:59.000Z

155

Multipodal coordination of a tetracarboxylic crown ether with NH 4 + : A vibrational spectroscopy and computational study  

Science Conference Proceedings (OSTI)

The elucidation of the structural requirements for molecular recognition by the crown ether (18crown6)-2

Paola Hurtado; Francisco Gmez; Said Hamad; Bruno MartnezHaya; Jeffrey D. Steill; Jos Oomens

2012-01-01T23:59:59.000Z

156

Hinsdale, NH Wal-Mart's impact on small businesses in Brattleboro, VT : a case study.  

E-Print Network (OSTI)

??The debate over the effects of big box retail on smaller communities is one of the most contentious topics of public planning discourse. Many feel (more)

Sadlowski, Jin, 1970-

2010-01-01T23:59:59.000Z

157

Electron Transfer in (NH3)5Ru-Cobaltocytochrome c  

NLE Websites -- All DOE Office Websites (Extended Search)

Pentaammineruthenium(III)-Modified Cobaltocytochrome c Ji Sun, Chang Su, and James F. Wishart Inorg. Chem., 35, 5893-5901 (1996) Find paper at ACS Publications or use ACS...

158

NH3- H2O absorption systems used for research and student activities  

Science Conference Proceedings (OSTI)

In the context of the sustainable development and of the future environment and energy concerns, a new laboratory was developed based on absorption systems (a chiller-heater and a heat pump). The installation together with the proposed experimental activity ... Keywords: absorption systems, education and research activity, environment, heat pump

Ioan Boian; Alexandru Serban; Stan Fota; Florea Chiriac

2009-10-01T23:59:59.000Z

159

CHARACTERIZATION STUDIES OF THE SELECTIVE REDUCTION OF NO by NH3  

E-Print Network (OSTI)

post combustion gases of propane/air in a laboratory scalepost combustion gases of propane/air in a laboratory scaleThe combustion products of propane and air are diluted by

Brown, N.J.

2013-01-01T23:59:59.000Z

160

Continued investigations of the catalytic reduction of N? to NH? by molybdenum triamidoamine complexes  

E-Print Network (OSTI)

A study of the effects of employing different solvents and the introduction of dihydrogen during the catalytic reduction of dinitrogen to ammonia with [HIPTN 3N]Mo complexes was completed. During a catalytic reaction, the ...

Hanna, Brian S. (Brian Stewart)

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hydramotor (R) Actuator Application and Maintenance Guide: ASCO NH90 Series Hydramotors (R) for Nuclear Applications  

Science Conference Proceedings (OSTI)

Hydramotors(R), electro-hydraulic actuators manufactured by ASCO General Controls (formerly ITT Barton and ITT General Controls), are widely used in nuclear power plant systems. Many provide critical safety functions such as valve and damper operation. While Hydramotors(R) are generally very reliable, regular maintenance and overhaul is important. Improving the reliability of Hydramotor(R) actuators has become an industry focus because of the implementation of the Nuclear Regulatory Commission's Maintena...

2000-02-15T23:59:59.000Z

162

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1993 January ........................... 94.3 95.7 94.9 85.2 94.0 87.1 91.7 93.4 91.2 105.2 February ......................... 94.6 95.9 96.2 85.4 94.4 86.9 91.8 93.3 90.8 106.8 March .............................. 95.4 96.5 96.7 86.4 94.8 86.6 92.4 93.7 92.4 108.5 April ................................ 92.6 93.4 93.6 83.0 91.5 84.5 90.4 91.2 91.6 106.7 May ................................. 91.1 91.7 91.6 81.7 91.1 83.9 90.7 91.3 89.4 104.3 June ................................ 88.9 89.4 88.6 81.1 88.6 82.4 87.6 89.7 90.6 100.4 July ................................. 85.6 85.9 86.5 78.5 83.9 78.3 85.2 85.5 86.4 100.2 August ............................ 84.1 84.6 84.0 77.4 83.4 76.0 82.7 85.6 83.5 96.1 September ...................... 85.5 85.8 84.2 78.3 83.8 74.9 84.8 86.6 84.6 95.5 October ...........................

163

U.S. Price of Natural Gas Pipeline Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. Total 6.96 8.62 4.34 4.75 4.35 3.08 1985-2012 To Canada 7.17 8.86 4.59 4.84 4.45 3.17 1985-2012 Eastport, ID -- 7.43 4.49 5.85 4.74 -- 1998-2012 Calais, ME -- -- 5.62 4.53 4.46 4.30 2007-2012 Detroit, MI 6.88 8.37 4.01 4.69 4.26 3.10 1996-2012 Marysville, MI 7.77 7.48 4.85 4.87 4.48 3.18 1996-2012 Sault Ste. Marie, MI 7.13 8.75 5.04 5.27 4.23 3.20 1999-2012 St. Clair, MI 7.24 8.96 4.62 4.86 4.45 3.11 1996-2012 Noyes, MN -- -- -- -- 3.90 3.46 1998-2012 Warroad, MN 1999-2002 Babb, MT -- -- -- -- 3.39 -- 1996-2012 Havre, MT 6.16 8.14 3.63 4.05 3.82 2.40 1998-2012 Port of Morgan, MT 1998-2006 Sherwood, ND 1999-2006 Pittsburg, NH -- 7.61 -- -- 7.54 2.62 2007-2012

164

U.S. Liquefied Petroleum Gases Imports  

U.S. Energy Information Administration (EIA)

Singapore : 2007-2007: South Africa : 2006-2006: Spain: 38 : 1995-2013: Sweden : 1995-2009: Switzerland : 2008-2008: Taiwan: 75 : 2011-2013: Trinidad and Tobago :

165

U.S. Liquefied Petroleum Gases Imports  

U.S. Energy Information Administration (EIA)

Singapore : 2007-2007: South Africa : 2006-2006: Spain: 1 : 1995-2013: Sweden : 1995-2009: Switzerland : 2008-2008: Taiwan: 2 : 2011-2013: Trinidad and Tobago :

166

Partitioning of solutes between liquid water and steam in the system {l_brace}Na-NH{sub 4}-NH{sub 3}-H-Cl{r_brace} to 350{degree}C  

DOE Green Energy (OSTI)

Measurements have been made of the partitioning of solutes between liquid and vapor phases for hydrochloric acid and chloride salts found in both power plant steam cycles and in natural geothermal systems. Static sampling of equilibrium liquid and vapor phases extended from 350 C to the lowest temperatures for which reliable analytical determinations of vapor-phase solute concentrations could be made. Equilibrium constants for the partitioning of the various solutes were calculated from the measured equilibrium compositions, and represented as functions of temperature and solvent density over the full temperature range investigated. These equilibrium constants can be used to calculate equilibrium compositions of coexisting liquid and vapor phases under conditions ranging from steam production from saline geothermal brines to early-condensate formation in all-volatile treatment steam cycles.

Simonson, J.M.; Palmer, D.A. [Oak Ridge National Lab., TN (United States). Chemical and Analytical Sciences Div.

1994-12-31T23:59:59.000Z

167

2011 Laser Diagnostics in Combustion Gordon Research Conference, (August 14-19, 2011, Waterville Valley Resort, Waterville Valley, NH)  

SciTech Connect

The vast majority of the world's energy needs are met by combustion of fossil fuels. Optimum utilization of limited resources and control of emissions of pollutants and greenhouse gases demand sustained improvement of combustion technology. This task can be satisfied only by detailed knowledge of the underlying physical and chemical processes. Non-intrusive laser diagnostics continuously contribute to our growing understanding of these complex and coupled multi-scale processes. The GRC on Laser Diagnostics in Combustion focuses on the most recent scientific advances and brings together scientists and engineers working at the leading edge of combustion research. Major tasks of the community are developing and applying methods for precise and accurate measurements of fluid motion and temperatures; chemical compositions; multi-phase phenomena appearing near walls, in spray and sooting combustion; improving sensitivities, precision, spatial resolution and tracking transients in their spatio-temporal development. The properties and behaviour of novel laser sources, detectors, optical systems that lead to new diagnostic capabilities are also part of the conference program.

Thomas Settersten

2011-08-19T23:59:59.000Z

168

Reconstruction of the Extratropical NH Mean Temperature over the Last Millennium with a Method that Preserves Low-Frequency Variability  

Science Conference Proceedings (OSTI)

A new multiproxy reconstruction of the Northern Hemisphere extratropical mean temperature over the last millennium is presented. The reconstruction is performed with a novel method designed to avoid the underestimation of low-frequency variability ...

Bo Christiansen; Fredrik Charpentier Ljungqvist

2011-12-01T23:59:59.000Z

169

A numerical and experimental study of in-situ NO formation in laminar NH3-seeded syngas diffusion flames.  

E-Print Network (OSTI)

?? Oxides of nitrogen formed during combustion are significant threats to our environment. They result in the formation of acid rain, smog, and depletion of (more)

Li, Miao

2012-01-01T23:59:59.000Z

170

A numerical and experimental study of in-situ NO formation in laminar NH3-seeded syngas diffusion flames.  

E-Print Network (OSTI)

??Oxides of nitrogen formed during combustion are significant threats to our environment. They result in the formation of "acid rain", smog, and depletion of the (more)

Li, Miao

2011-01-01T23:59:59.000Z

171

USER SATISFACTION WITH INNOVATIVE COOLING RETROFITS IN SACRAMENTO PUBLIC HOUSING  

E-Print Network (OSTI)

Director - 2 - #12;Disclaimer This report was prepared as a result of work by the staff of the California Gridley Manteca Pittsburg Citrus Heights Half Moon Bay Marina Pleasant Hill Claremont Hanford Martinez of Public Works, Engineer and/or Maintenance Department. Surveys were sent and returned via electronic mail

Diamond, Richard

172

AN ASSESSMENT OF THE STUDIES USED TO DETECT IMPACTS TO MARINE  

E-Print Network (OSTI)

Impacts Thermal impacts occur as a result of discharging water used to cool the power plant back and Pittsburg Power Plants thermal effects assessment, 1991-1992. Pacific Gas and Electric Co., San Francisco Luis Obispo. 7 pp. Tenera (Tenera Environmental Sciences). 1997. Diablo Canyon Power Plant Thermal

173

I T E. o.. o , o . ,'-. ." . ! Aquarterly publication for educatorsandthe pul~lic-  

E-Print Network (OSTI)

at P&M'sMcKinley mine conduct aerial and walking surveys of the ,raptor populations. Ron Wise, P raptor surveys on the mine site to determine whether there are any negative impacts from mining tree: Prime Miner, Pittsburg and Midway Coal Company, Englewood, Colorado, Fall 1995, pp. 1, 4

Dunbar, Nelia W.

174

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

175

U.S. LNG Imports from Indonesia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

176

U.S. LNG Imports from Brunei  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

177

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

178

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

179

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

180

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

U.S. LNG Imports from Oman  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

182

U.S. LNG Imports from Australia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

183

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

184

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

185

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

186

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

187

U.S. LNG Imports from Canada  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

188

U.S. Natural Gas Imports by Pipeline from Mexico  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

189

GREEN BANK TELESCOPE OBSERVATIONS OF THE NH{sub 3} (3, 3) AND (6, 6) TRANSITIONS TOWARD SAGITTARIUS A MOLECULAR CLOUDS  

SciTech Connect

Ammonia (3, 3) and (6, 6) transitions have been observed using the Green Bank Telescope toward the Sgr A region. The gas is mainly concentrated in 50 km s{sup -1} and 20 km s{sup -1} clouds located in a plane inclined to the galactic plane. These 'main' clouds appear to be virialized and influenced by the expansion of the supernova remnant Sgr A East. The observed emission shows very complicated features in the morphology and velocity structure. Gaussian multi-component fittings of the observed spectra revealed that various 'streaming' gas components exist all over the observed region. These components include those previously known as 'streamers' and 'ridges', but most of these components appear not to be directly connected to the major gas condensations (the 50 km s{sup -1} and 20 km s{sup -1} clouds). They are apparently located out of the galactic plane, and they may have a different origin than the major gas condensations. Some of the streaming components are expected to be sources that feed the circumnuclear disk of our Galactic center directly and episodically. They may also evolve differently than major gas condensations under the influence of the activities of the Galactic center.

Minh, Young Chol [Korea Astronomy and Space Science Institute, Daeduk-daero 776, Yuseong, Daejeon 305-348 (Korea, Republic of); Liu, Hauyu Baobab; Ho, Paul T. P.; Hsieh, Pei-Ying; Su, Yu-Nung [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Kim, Sungsoo S. [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Kyungki-do 446-701 (Korea, Republic of); Wright, Melvyn [Radio Astronomy Laboratory, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)

2013-08-10T23:59:59.000Z

190

Detailed modeling and laser-induced fluorescence imaging of nitric oxide in a NH(i)-seeded non-premixed methane/air flame  

E-Print Network (OSTI)

an axisymmetric laminar diffusion flame. Proc. Comb. Inst. ,laminar diffusion flames. Combust. Sci. Tech. , [25] N .premixed ethylene/air flames. Combust. Flame, 127:2004-2022,

2001-01-01T23:59:59.000Z

191

Assessment of the use of H{sub 2}, CH{sub 4}, NH{sub 3} and CO{sub 2} as NTP propellants. Revision  

DOE Green Energy (OSTI)

In this paper the effect of changing from the traditional NTP coolant, hydrogen, to several alternative coolant is studied. Hydrogen is generally chosen as an NTP coolant, since its use maximizes the specific impulse for a given operating temperature. However, there are situations in which it may not be available as optional. The alternative coolant which were considered are ammonia, urethane, carbon dioxide and carbon monoxide. A particle bed reactor (PBR) generating 200 MW and coolant by hydrogen was used as the baseline against which all the comparisons were made. Both 19 and 37 element cases were considered and the large number of elements was found to be necessary in the case of the carbon monoxide. The coolant reactivity worth was found to be directly proportional to the hydrogen coolant content. It was found that due to differences in the thermophysical proportions of the coolant that it would not be possible to use one reactor for all the coolants. The reactor would have to constructed specifically for a coolant type.

Selcow, E.C.; Davis, R.E.; Perkins, K.R.; Ludewig, H.; Cerbone, R.J.

1991-10-01T23:59:59.000Z

192

Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting at T.J.Maxx in Manchester, NH Phase I  

SciTech Connect

A report describing the process and results of replacing existing parking lot lighting, looking at a LED option with occupancy sensors, and conventional alternates. Criteria include payback, light levels, occupant satisfaction. This report is Phase I of II. Phase I deals with initial installation.

Myer, Michael; Goettel, Russell T.

2010-06-29T23:59:59.000Z

193

Addendum to Guarantee Testing Results from the Greenidge Multi-Pollutant Control Project: Additiona NH3, NOx, and CO Testing Results  

SciTech Connect

On March 28-30 and May 1-4, 2007, CONSOL Energy Inc. Research & Development (CONSOL R&D) performed flue gas sampling at AES Greenidge to verify the performance of the multi-pollutant control system recently installed by Babcock Power Environmental Inc. (BPEI) on the 107-MW Unit 4 (Boiler 6). The multi-pollutant control system includes combustion modifications and a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NO{sub x} emissions, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system and baghouse to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter. Mercury removal is provided via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The testing in March and May demonstrated that the multi-pollutant control system attained its performance targets for NO{sub x} emissions, SO{sub 2} removal efficiency, acid gas (SO{sub 3}, HCl, and HF) removal efficiency, and mercury removal efficiency. However, the ammonia slip measured between the SCR outlet and air heater inlet was consistently greater than the guarantee of 2 ppmvd {at} 3% O{sub 2}. As a result, additional testing was performed on May 30-June 1 and on June 20-21, 2007, in conjunction with tuning of the hybrid NO{sub x} control system by BPEI, in an effort to achieve the performance target for ammonia slip. This additional testing occurred after the installation of a large particle ash (LPA) screen and removal system just above the SCR reactor and a fresh SCR catalyst layer in mid-May. This report describes the results of the additional tests. During the May 30-June 1 sampling period, CONSOL R&D and Clean Air Engineering (CAE) each measured flue gas ammonia concentrations at the air heater inlet, downstream of the in-duct SCR reactor. In addition, CONSOL R&D measured flue gas ammonia concentrations at the economizer outlet, upstream of the SCR reactor, and CAE measured flue gas NO{sub x} and CO concentrations at the sampling grids located at the inlet and outlet of the SCR reactor. During the June 20-21 sampling period, CONSOL R&D measured flue gas ammonia concentrations at the air heater inlet. All ammonia measurements were performed using a modified version of U.S. Environmental Protection Agency (EPA) Conditional Test Method (CTM) 027. The NO{sub x} and CO measurements were performed using U.S. EPA Methods 7E and 10, respectively.

Daniel P. Connell; James E. Locke

2008-03-01T23:59:59.000Z

194

Improved synthesis and application of planar-chiral nucleophilic catalysts in asymmetric reactions and copper-catalyzed enantioselective N-H insertion reactions  

E-Print Network (OSTI)

The development of an improved synthesis of nucleophilic planar-chiral catalysts is described in Chapter 1. This route is amenable to scale-up and preparative chiral HPLC is unnecessary to resolve the racemic catalysts. ...

Lee, Elaine C

2007-01-01T23:59:59.000Z

195

M h?nh T?i ?u Ha N?i Tr?i theo Xc Su?t ?u Th?  

E-Print Network (OSTI)

Artificial Intelligence (ICTAI'2003), pages 149-156, Los Alamitos, CA, November 2003. Sacramento,. California, IEEE Computer Society, (2003). [14] Ragsdell...

196

NREL RSF Weather Data 2011 A csv containing hourly weather data...  

Open Energy Info (EERE)

NREL RSF Weather Data 2011 A csv containing hourly weather data at NREL's Research and Support Facility (RSF) for 2011. 2013-02-12T18:36:26Z 2013-02-12T18:36:26Z I am submitting...

197

Regulatory Impact Review Implementation of Inter-American Tropical Tuna Commission Resolutions Adopted in  

E-Print Network (OSTI)

Regulatory Impact Review Implementation of Inter-American Tropical Tuna Commission Resolutions to implement the decisions of the IATTC. The Tuna Conventions Act (16 U.S.C. 951-961) authorizes the Secretary the Resolution on Tuna Conservation 2011-2013 (C-11-01), the Resolution Prohibiting Fishing on Data Buoys (C-11

198

NATURAL GAS ADVISORY COMMITTEE Name Affiliation Sector  

E-Print Network (OSTI)

NATURAL GAS ADVISORY COMMITTEE 2011-2013 Name Affiliation Sector Dernovsek, David Bonneville Power Defenbach, Byron Intermountain Gas Distribution Dragoon, Ken NWPCC Council Friedman, Randy NW Natural Gas Distribution Gopal, Jairam Southern CA Edison Electric Utility Hamilton, Linda Shell Trading Gas & Power

199

CX-004098: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Categorical Exclusion Determination 8: Categorical Exclusion Determination CX-004098: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant EE-0000727 KCC: Pittsburg State University Ground Source Heat Pump CX(s) Applied: B5.1 Date: 09/07/2010 Location(s): Kansas Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Pittsburg State University is proposing to use Energy Efficiency and Conservation Block Grant American Recovery and Reinvestment Act funding to install a ground source heat pump system on the university campus that will serve the heating and cooling needs for an academic building and a small chapel. The ground source heat pump system will be a vertical, closed loop system with a capacity of 60 tons. There will be 15 boreholes needed

200

CX-004963: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Categorical Exclusion Determination 3: Categorical Exclusion Determination CX-004963: Categorical Exclusion Determination California-City-Pittsburg CX(s) Applied: A9, A11, B2.5, B5.1 Date: 01/12/2011 Location(s): Pittsburg, California Office(s): Energy Efficiency and Renewable Energy Energy Efficiency and Conservation Block Grant. 1) California Youth Energy Services, 2) Green Homes Workforce Training program, 3) commercial audit and retrofit program, 4) home energy product upgrade, 5) Light-emitting diode street light replacement program, 6) California FIRST PACE Financing Program, and 7) develop climate action outreach program brochure. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-004963.pdf More Documents & Publications CX-005243: Categorical Exclusion Determination CX-001247: Categorical Exclusion Determination

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Category:Pittsburgh, PA | Open Energy Information  

Open Energy Info (EERE)

Pittsburgh, PA Pittsburgh, PA Jump to: navigation, search Go Back to PV Economics By Location Media in category "Pittsburgh, PA" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Pittsburgh PA PECO Energy Co.png SVFullServiceRestauran... 65 KB SVHospital Pittsburgh PA PECO Energy Co.png SVHospital Pittsburgh ... 60 KB SVLargeHotel Pittsburgh PA PECO Energy Co.png SVLargeHotel Pittsburg... 60 KB SVLargeOffice Pittsburgh PA PECO Energy Co.png SVLargeOffice Pittsbur... 61 KB SVMediumOffice Pittsburgh PA PECO Energy Co.png SVMediumOffice Pittsbu... 63 KB SVMidriseApartment Pittsburgh PA PECO Energy Co.png SVMidriseApartment Pit... 64 KB SVOutPatient Pittsburgh PA PECO Energy Co.png SVOutPatient Pittsburg... 62 KB SVPrimarySchool Pittsburgh PA PECO Energy Co.png

202

Integrated Gasification Combined Cycle (IGCC) Design Considerations for CO2 Capture and Storage (CCS)  

Science Conference Proceedings (OSTI)

The objectives of this research were to assess the performance and costs of coal-fired integrated gasification combined cycle (IGCC) power plants with Greenfield and retrofitted carbon dioxide (CO2) capture. The study is part of the CoalFleet Program, a collaborative research and development program that promotes deployment of advanced coal technologies, including IGCC, ultrasupercritical pulverized, oxy-fuel combustion, and supercritical circulating fluidized bed technologies. Two types of coalPittsburg...

2010-10-01T23:59:59.000Z

203

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 1999 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1999. This was the fourth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 453,117 yearlings released from the Fall Chinook Acclimation Project facilities not only slightly exceeded the 450,000 fish quota, but a second release of 76,386 yearlings (hereafter called Surplus) were acclimated at the Big Canyon facility and released about two weeks after the primary releases. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 9,941 PIT tagged yearlings from Pittsburg Landing, 9,583 from Big Canyon, 2,511 Big Canyon Surplus and 2,494 from Captain John Rapids. The Washington Department of Fish and Wildlife released 983 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low and did not appear to increase after transport to the acclimation facilities. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Pittsburg Landing and Lyons Ferry Hatchery and relatively high at Big Canyon and Captain John Rapids. Mean fork lengths (95% confidence interval) of the release groups ranged from 147.4 mm (146.7-148.1 mm) at Captain John Rapids to 163.7 mm (163.3-164.1 mm) at Pittsburg Landing. Mean condition factors ranged from 1.04 at Pittsburg Landing to 1.23 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 87.8% (82.1-93.4%) for Big Canyon Surplus to 94.1% (90.1-98.1%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 58.7% (49.3-68.1%) for Big Canyon Surplus to 71.3% (60.1-82.5%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 9.3 river kilometers per day (rkm/d) for Captain John Rapids to 18.7 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 9.0 rkm/d for Lyons Ferry Hatchery to 17.3 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 7-10 days to Lower Granite Dam and 21-23 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from the FCAP facilities, were all from April 23-25. The median arrival date for Big Canyon Surplus was May 4. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups were all from May 7-8. Median arrival dates at McNary Dam were May 17 for Big Canyon Surplus and April 26 for Lyons Ferry Hatchery.

Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

2005-07-01T23:59:59.000Z

204

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2000 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2000. This was the fifth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 397,339 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,477 PIT tagged yearlings from Pittsburg Landing, 7,421 from Big Canyon and 2,488 from Captain John Rapids. The Washington Department of Fish and Wildlife released 980 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 157.7 mm (157.3-158.1 mm) at Big Canyon to 172.9 mm (172.2-173.6 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Captain John Rapids and Lyons Ferry Hatchery to 1.12 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 87.0% (84.7-89.4%) for Pittsburg Landing to 95.2% (91.5-98.9%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 65.8% (58.5-73.1%) for Lyons Ferry Hatchery to 84.0% (76.2-91.8%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 10.1 river kilometers per day (rkm/d) for Captain John Rapids to 19.1 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 6.0 rkm/d for Lyons Ferry Hatchery to 17.3 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 9-10 days to Lower Granite Dam and 22-25 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from Pittsburg Landing, Big Canyon and Captain John Rapids, were all from April 21-22. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups were all from May 5-6. The median arrival date at McNary Dam was April 24 for Lyons Ferry Hatchery yearlings.

Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

2005-07-01T23:59:59.000Z

205

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2001 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2001. This was the sixth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 318,932 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,503 PIT tagged yearlings from Pittsburg Landing, 7,499 from Big Canyon and 2,518 from Captain John Rapids. The Washington Department of Fish and Wildlife released 991 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 155.4 mm (154.7-156.1 mm) at Captain John Rapids to 171.6 mm (170.7-172.5 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.02 at Lyons Ferry Hatchery to 1.16 at Big Canyon and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.4% (73.2-75.5%) for Big Canyon to 85.2% (83.5-87.0%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 37.9% (36.0-40.0%) for Pittsburg Landing to 57.9% (53.0-62.8%) for Lyons Ferry Hatchery. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 6.3 river kilometers per day (rkm/d) for Big Canyon to 10.8 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 5.2 rkm/d for Lyons Ferry Hatchery to 10.9 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 13-17 days to Lower Granite Dam and 31-37 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from Pittsburg Landing, Big Canyon and Captain John Rapids, were all from April 26-27. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups were all from May 14-18. The median arrival date at McNary Dam was May 13 for Lyons Ferry Hatchery yearlings.

Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

2005-07-01T23:59:59.000Z

206

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2004 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2004. This was the ninth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 414,452 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 4,983 PIT tagged yearlings from Pittsburg Landing, 4,984 from Big Canyon and 4,982 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered low with 53-94% rating not detected to low. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 154.6 mm (154.0-155.2 mm) at Pittsburg Landing to 163.0 mm (162.6-163.4 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.16 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.7% (72.9-76.5%) for Big Canyon to 88.1% (85.7-90.6%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 45.3% (39.2-51.5%) for Pittsburg Landing to 52.1% (42.9-61.2%) for Big Canyon. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.5 river kilometers per day (rkm/d) for Captain John Rapids to 12.8 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 10.9 rkm/d for Captain John Rapids to 17.6 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 13-16 days to Lower Granite Dam and 23-29 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from Pittsburg Landing, Big Canyon and Captain John Rapids, ranged from April 18-29. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups ranged from May 1-8.

Rocklage, Stephen J. Nez Perce Tribe, Department of Fisheries Resource Management, Lapawi, ID)

2005-07-01T23:59:59.000Z

207

Natural Gas Monthly (NGM) - Energy Information Administration - November  

U.S. Energy Information Administration (EIA) Indexed Site

SEE CURRENT NATURAL GAS MONTHLY UPDATE SEE CURRENT NATURAL GAS MONTHLY UPDATE Natural Gas Monthly Data for September 2013 | Release Date: December 12, 2013 | Next Release: January 7, 2014 | full report  | Previous Issues Month: October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 October 2012 September 2012 prior issues Go Table of Contentsall tables Tables 1 Summary of Natural Gas Supply and Disposition in the United States, 2008-2013 XLS PDF CSV 2 Natural Gas Consumption in the United States, 2008-2013 XLS PDF CSV 3 Selected National Average Natural Gas Prices, 2008-2013 XLS PDF CSV 4 U.S. Natural Gas Imports, 2011-2013 XLS PDF CSV 5 U.S. Natural Gas Exports, 2011-2013 XLS PDF CSV

208

Shell and Tube Heat Exchangers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Deepwater Advisory Committee Ultra-Deepwater Advisory Committee 2012 Annual Plan Comments, Findings and Recommendations March, 2012 An Advisory Committee to the Secretary of Energy Ultra-Deepwater Advisory Committee Report Page 2 of 12 TABLE OF CONTENTS 1.0 INTRODUCTION ............................................................................................................. 3 2.0 EXECUTIVE SUMMARY ................................................................................................. 5 3.0 SUBCOMMITTEE REPORT ............................................................................................ 5 3.1 R&D PROGRAM PORTFOLIO FINDINGS AND RECOMMENDATIONS ........................ 5 4.0 ULTRA-DEEPWATER ADVISORY COMMITTEE - 2011-2013 .................................... 11

209

Final Technical Report for the Neutron Detection without Helium-3 Project  

SciTech Connect

This report details the results of the research and development work accomplished for the Neutron Detection without Helium-3 project conducted during the 2011-2013 fiscal years. The primary focus of the project was to investigate commercially available technologies that might be used in safeguards applications in the relatively near term. Other technologies that are being developed may be more applicable in the future, but were outside the scope of this study.

Ely, James H.; Bliss, Mary; Kouzes, Richard T.; Lintereur, Azaree T.; Robinson, Sean M.; Siciliano, Edward R.; Swinhoe, Martyn T.; Woodring, Mitchell L.

2013-11-01T23:59:59.000Z

210

U.S. Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

21 15 12 8 9 12 1997-2013 21 15 12 8 9 12 1997-2013 To Brazil 0 0 0 0 0 0 2010-2013 Freeport, TX 2011-2012 Sabine Pass, LA 2011-2011 To Canada 6 9 8 5 8 7 2007-2013 Sweetgrass, MT 6 9 8 5 8 7 2012-2013 To Chile 0 0 0 0 0 0 2011-2013 Sabine Pass, LA 2011-2011 To China 0 0 0 0 0 0 2011-2013 Kenai, AK 2011-2011 Sabine Pass, LA 2011-2011 To India 0 0 0 0 0 0 2010-2013 Freeport, TX 2011-2012 Sabine Pass, LA 2011-2011 To Japan 0 0 0 0 0 0 2010-2013 Cameron, LA 2011-2011 Kenai, AK 2011-2012 Sabine Pass, LA 2012-2012 To Mexico 15 6 3 3 2 4 1997-2013 Nogales, AZ 10 6 3 3 2 4 2012-2013 Otay Mesa, CA 5 2011-2013 To Portugal 2012-2012 Sabine Pass, LA 2012-2012 To Russia 0 0 0 0 0 0 2007-2013 To South Korea 0 0 0 0 0 0 2009-2013 Freeport, TX

211

U.S. Natural Gas Exports by Country  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Export Volumes Total 125,597 142,071 133,779 128,612 130,309 122,402 1973-2013 Pipeline 125,575 142,032 133,749 128,589 130,297 122,391 1997-2013 Canada 70,735 81,695 75,846 66,473 68,325 69,733 1973-2013 Mexico 54,840 60,338 57,903 62,116 61,972 52,658 1973-2013 LNG 21 15 12 8 9 12 1997-2013 Exports - 2013-2013 By Vessel - 2013-2013 China 0 0 0 0 0 0 2011-2013 Japan 0 0 0 0 0 0 1973-2013 By Truck - 2013-2013 Canada 6 9 8 5 8 7 2007-2013 Mexico 15 6 3 3 2 4 1997-2013 Re-Exports - 2013-2013 Brazil 0 0 0 0 0 0 2010-2013 Chile 0 0 0 0 0 0 2011-2013 China 0 0 0 0 0 0 2011-2013 India 0 0 0 0 0 0 2010-2013 Japan 0 0 0 0 0 0 2010-2013 Portugal

212

Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers. Ground Water. doi: 10.1111/j.1745-6584.2012.00933.x New Hampshire Department of Environmental Services (NHDES). 2010. Well Development by Hydrofracturing. http://des.nh.gov/o  

E-Print Network (OSTI)

Hydraulic fracturing of deep shale beds to develop natural gas has caused concern regarding the potential for various forms of water pollution. Two potential pathwaysadvective transport through bulk media and preferential flow through fracturescould allow the transport of contaminants from the fractured shale to aquifers. There is substantial geologic evidence that natural vertical flow drives contaminants, mostly brine, to near the surface from deep evaporite sources. Interpretative modeling shows that advective transport could require up to tens of thousands of years to move contaminants to the surface, but also that fracking the shale could reduce that transport time to tens or hundreds of years. Conductive faults or fracture zones, as found throughout the Marcellus shale region, could reduce the travel time further. Injection of up to 15,000,000 L of fluid into the shale generates high pressure at the well, which decreases with distance from the well and with time after injection as the fluid advects through the shale. The advection displaces native fluids, mostly brine, and fractures the bulk media widening existing fractures. Simulated pressure returns to pre-injection levels in about 300 d. The overall system requires from 3 to 6 years to reach a new equilibrium reflecting the significant changes caused by fracking the shale, which could allow advective transport to aquifers in less than 10 years. The rapid expansion of hydraulic fracturing requires that monitoring systems be employed to track the movement of contaminants and that gas wells have a reasonable offset from faults.

Tom Myers

2012-01-01T23:59:59.000Z

213

A Theoretical Study of the Wet Removal of Atmospheric Pollutants. Part II: The Uptake and Redistribution Of (NH4)2SO4 Particles and SO2 Gas Simultaneously Scavenged by Growing Cloud Drops  

Science Conference Proceedings (OSTI)

A theoretical model has been formulated which allows the processes which control the wet deposition of atmospheric aerosol particles and pollutant gases to be included in cloud dynamic models. The cloud considered in the model was allowed to grow ...

A. I. Flossmann; H. R. Pruppacher; J. H. Topalian

1987-10-01T23:59:59.000Z

214

The University of New Hampshire Cooperative Extension is an equal opportunity educator and employer. University of New Hampshire, U.S. Department of Agriculture and N.H. counties cooperating.  

E-Print Network (OSTI)

.com/programs For more information or to register, contact Rhiannon Beauregard, State Animal/Ag Science Coor. rhiannon.beauregard

New Hampshire, University of

215

The University of New Hampshire Cooperative Extension is an equal opportunity educator and employer. University of New Hampshire, U.S. Department of Agriculture and N.H. counties cooperating.  

E-Print Network (OSTI)

or to register, contact Rhiannon Beauregard, State Animal/Ag Science Coor. rhiannon.beauregard@unh.edu (603) 862

New Hampshire, University of

216

Use of 2,3,5-F[subscript 3]Y-beta 2 and 3-NH[subscript 2]Y-alpha 2 To Study Proton-Coupled Electron Transfer in Escherichia coli Ribonucleotide Reductase  

E-Print Network (OSTI)

Escherichia coli ribonucleotide reductase is an ?2?2 complex that catalyzes the conversion of nucleoside 5?-diphosphates (NDPs) to deoxynucleotides (dNDPs). The active site for NDP reduction resides in ?2, and the essential ...

Seyedsayamdost, Mohammad R.

217

A Theoretical Study of the Wet Removal of Atmospheric Pollutants. Part III: The Uptake, Redistribution, and Deposition of (NH4)2SO4 Particles by a Convective Cloud Using a Two-Dimensional Cloud Dynamics Model  

Science Conference Proceedings (OSTI)

Our model for the scavenging of aerosol particles has been coupled with the two-dimensional form of the convective cloud model of Clark and Collaborators. The combined model was then used to simulate a convective warm cloud for the meteorological ...

A. I. Flossmann; H. R. Pruppacher

1988-07-01T23:59:59.000Z

218

Photodissociation Dynamics of Gaseous CpCo(CO)2 and Ligand Exchange Reactions of CpCoH2 with C3H4, C3H6, and NH3  

E-Print Network (OSTI)

of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States *S Supporting CpCoH2 collisions with methane or propane (L = CH4 or C3H8), a molecular beam containing CpCoCH4 state electronic configuration. A large potential energy barrier prevents access to the reactive excited

Davis, H. Floyd

219

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2002 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam in 2002. This was the seventh year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 479,358 yearlings released from the Fall Chinook Acclimation Project facilities exceeded the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,545 PIT tagged yearlings from Pittsburg Landing, 7,482 from Big Canyon and 2,487 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium to high with 43-62% of fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 146.7 mm (146.2-147.2 mm) at Captain John Rapids to 164.8 mm (163.5-166.1 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.14 at Pittsburg Landing and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 88.6% (86.0-91.1%) for Pittsburg Landing to 97.0% (92.4-101.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 54.3% (50.2-58.3%) for Big Canyon to 70.5% (65.4-75.5%) for Pittsburg Landing. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 8.1 river kilometers per day (rkm/d) for Captain John Rapids to 14.1 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 10.9 rkm/d for Big Canyon to 15.9 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 9-12 days to Lower Granite Dam and 25-30 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from the FCAP facilities, ranged from April 20-28. Median arrival dates at McNary Dam for the FCAP groups were all May 11. The objectives of this project are to quantify and evaluate pre-release fish health, condition and mark retention as well as post-release survival, migration timing, migration rates, travel times and movement patterns of fall Chinook salmon from supplementation releases at the FCAP facilities, then provide feedback to co-managers for project specific and basin wide management decision-making.

Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

2005-07-01T23:59:59.000Z

220

"1. Moss Landing Power Plant","Gas","Dynegy -Moss Landing LLC",2529  

U.S. Energy Information Administration (EIA) Indexed Site

California" California" "1. Moss Landing Power Plant","Gas","Dynegy -Moss Landing LLC",2529 "2. Diablo Canyon","Nuclear","Pacific Gas & Electric Co",2240 "3. San Onofre","Nuclear","Southern California Edison Co",2150 "4. AES Alamitos LLC","Gas","AES Alamitos LLC",1997 "5. Castaic","Pumped Storage","Los Angeles City of",1620 "6. Haynes","Gas","Los Angeles City of",1524 "7. Ormond Beach","Gas","RRI Energy Ormond Bch LLC",1516 "8. Pittsburg Power","Gas","Mirant Delta LLC",1311 "9. AES Redondo Beach LLC","Gas","AES Redondo Beach LLC",1310

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A Flexible Nonparametric Test for Conditional Independence  

E-Print Network (OSTI)

is known as the Hjek projection. For easy reference, wevariables. We show that the projection remainder R n;h ( )^ n;h ( ) and its Hjek projection ~ n;h ( ) have the same

Huang, Meng; Sun, Yixiao; White, Hal

2013-01-01T23:59:59.000Z

222

Evaluation of geologic controls on geothermal anomalies in the Arkoma Basin, Oklahoma  

Science Conference Proceedings (OSTI)

Vitrinite-reflectance techniques were used to determine if there is a relationship between present geothermal gradient and coal rank in the Arkoma Basin. Three coal seams from high geothermal-gradient areas were compared with the same coal seams, respectively, from low geothermal-gradient areas. Samples were obtained from three core holes that were drilled in the high geothermal-gradient areas in Pittsburg and Haskell Counties, and three core holes that were drilled in the low geothermal-gradient areas in Latimer and Muskogee Counties. Nine additional coal samples were collected from active coal mines and one from an outcrop to supplement the core samples. The vitrinite-reflectance data indicates the present geothermal gradient did not produce the coal rank in the Arkoma Basin of Oklahoma. The coal rank is believed to have developed during the late Paleozoic, possibly in connection with the Ouachita orogeny. The coal isocarb maps suggest that the present geothermal-gradient pattern reflects the paleogeothermal gradient that produced the coal rank. Perhaps the intense folding and faulting associated with the Ouachita orogeny combined to transmit heat from the basement along an east-west thermal-anomaly zone through Haskell and Pittsburg Counties, Oklahoma. 60 refs., 16 figs., 3 tabs.

Cardott, B.J.; Hemish, L.A.; Johnson, C.R.; Luza, K.V.

1985-06-01T23:59:59.000Z

223

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2003 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2003. This was the eighth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 437,633 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,492 PIT tagged yearlings from Pittsburg Landing, 7,494 from Big Canyon and 2,497 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium with 37-83% of the fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 153.7 mm (153.2-154.2 mm) at Captain John Rapids to 164.2 mm (163.9-164.5 mm) at Pittsburg Landing. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.22 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 83.1% (80.7-85.5%) for Big Canyon to 91.7% (87.7-95.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 59.9% (54.6-65.2%) for Big Canyon to 69.4% (60.5-78.4%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.8 river kilometers per day (rkm/d) for Captain John Rapids to 16.2 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 11.7 rkm/d for Captain John Rapids to 17.6 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 8-15 days to Lower Granite Dam and 22-27 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from the FCAP facilities, ranged from April 23-25. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups ranged from May 4-10.

Rocklage, Stephen J. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2005-07-01T23:59:59.000Z

224

Volume 9 Number 1 Winter 2011 University of Medicine and Dentistry of New Jersey  

E-Print Network (OSTI)

, Alan P. Kirman, Beyond the Representative Agent, Edward Elgar, Aldershot and Lyme, NH, 1999. [27] D

Garfunkel, Eric

225

Tracking the Sun IV: An Historical Summary of the Installed Cost of Photovoltaics in the United States from 1998 to 2010  

E-Print Network (OSTI)

Energy Grant Program MN MSEO Solar Electric Rebate Program NH NHPUC Renewable Energy Rebate Program NJ

Darghouth, Naim

2012-01-01T23:59:59.000Z

226

The diammoniate of diborane: Crystal structure and hydrogen release  

DOE Green Energy (OSTI)

[(NH3)2BH2]+[BH4]- is formed from the room temperature decomposition of NH4+BH4-, via a NH3BH3 intermediate. Its crystal structure has been determined and contains disordered BH4- ions in 2 distinct sites. Hydrogen release is similar to that from NH3BH3 but with faster kinetics.

Bowden, Mark E.; Heldebrant, David J.; Karkamkar, Abhijeet J.; Proffen, Thomas E.; Schenter, Gregory K.; Autrey, Thomas

2010-10-12T23:59:59.000Z

227

4-H Horse Advisory Committee 23 February 2013  

E-Print Network (OSTI)

. Please join/friend for this information (Rhiannon Beauregard, NH 4-H Animal Science Group). Funding

New Hampshire, University of

228

U.S. Price of Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. Total 11.36 12.84 13.38 12.89 13.25 13.53 1997-2013 To Brazil -- -- -- -- -- -- 2010-2013 Freeport, TX 2011-2012 Sabine Pass, LA 2011-2011 To Canada 14.55 14.55 14.60 15.01 14.01 13.94 2007-2013 Sweetgrass, MT 14.55 14.55 14.60 15.01 14.01 13.94 2012-2013 To Chile -- -- -- -- -- -- 2011-2013 Sabine Pass, LA 2011-2011 To China -- -- -- -- -- -- 2011-2013 Kenai, AK 2011-2011 Sabine Pass, LA 2011-2011 To India -- -- -- -- -- -- 2010-2013 Freeport, TX 2011-2012 Sabine Pass, LA 2011-2011 To Japan -- -- -- -- -- -- 2010-2013 Cameron, LA 2011-2011 Kenai, AK 2011-2012 Sabine Pass, LA 2012-2012 To Mexico 10.13 10.36 10.40 9.91 9.77 12.81 1992-2013 Nogales, AZ 10.43 10.36 10.40 9.91 9.77 12.81 2012-2013

229

Microsoft Word - Cover Page - Exhibit 10  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Northern Pass Project Area Map of Border Crossing CANADA Northern Pass Transmission LLC is the owner of the U.S. transmission facilities Hydro-Quebec TransEnergie is the owner of the Canadian transmission facilities Border Crossing 45.017820, -71.501217 Vermont Pittsburg Errol Milan Stark Berlin Stratford Bethlehem Odell Carroll Dixville Littleton Success Columbia Clarksville Dummer Jefferson Millsfield Lancaster Jackson Randolph Shelburne Cambridge Franconia Dalton Beans Purchase Colebrook Gorham Lisbon Stewartstown Whitefield Lyman Kilkenny Chatham Second College Northumberland Dixs Grant Sugar Hill Low & Burbanks Bath Landaff Wentworths Location Lincoln Sargents Purchase Cutts Grant Atkinson & Gilmanton Thompson & Meserve Beans Grant Monroe Crawfords Purchase Hart's Location Greens Grant Pinkham's Grant

230

DOW CHEMICAL U.S.A. + WESTERN DIVISION  

Office of Legacy Management (LM)

DOW CHEMICAL U.S.A. + DOW CHEMICAL U.S.A. + WESTERN DIVISION 2855 MITCHELL DRIVE WALNUT CREEK. CtyLlFORNlA 94598 October 29,1976 415 944-2300 (., L,'; ! - J. 022 . William J. Thornton Health Protection Branch Safety and Environmental Control Division U.S. Energy Research and Development Administration Oak Ridge Operations P. 0. Box E Oak Ridge, Tennessee 37830 Dear Mr. Thornton: This letter is in response to your request of September 24,1976 for information on records of radiological condition of the laboratories at th$ Dow Pittsburg location. We have not been able to find records that would be applicable. The work was with natural uranium carried out under contract no. AT-(30-l)-GEN-236 which was concluded in 1957. We have now comileted a radiological survey of these laboratories since receipt

231

Fermilab Today  

NLE Websites -- All DOE Office Websites (Extended Search)

24, 2005 24, 2005 Calendar Monday, January 24 2:30 p.m. Particle Astrophysics Seminar - Curia II Speaker: C-W. Yip, University of Pittsburg Title: Spectral Decompositions of SDSS Quasar by the Karhunen-Loève Transform 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over 4:00 p.m. All Experimenters' Meeting - Curia II Special Topic: Tevatron BPM Upgrade Tuesday, January 25 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over THERE WILL BE NO ACCELERATOR PHYSICS AND TECHNOLOGY SEMINAR TODAY Weather Weather Partly Cloudy 31º/21º Extended Forecast Weather at Fermilab Security Secon Level 3 Cafeteria Monday, January 24 Potato Au Gratin Monte Cristo $4.75 Savory Roasted Chicken Quarters $3.75 Lasagna Bolognaise $3.75 Chicken Ranch Wrapper $4.75 Assorted Pizza Slices $2.75 Szechuan Style Pork Lo Mein $4.75

232

U. S. Atomic Energy Commission  

Office of Legacy Management (LM)

Commission Commission Division of Licensing and Regulation Washington 25, D. C. .I,.----- Attention: Mr. Eber R. Price Gentlemen: ' B?&-# This is in response to your letter of 17 April 1962 regarding the inspection conducted at our Jayhawk Works at Pittsburg, Kansas on May 2-5, 1961 under Source Material License C-4352 and Special Nuclear Material Licenses No. S&l-154 and SNM-329. Replying to your items as listed in your letter, we submit the following in- formation'for your consideration: I. Time-occupancy studies have been made in the area where high air-borne dust samples were observed. A. I&dents Involving Thorium Six incidents have been noted involving thorium, natural isotopic CLSS5.Y. follows: The counts of the air samples in these six samples are as

233

DOE - Office of Legacy Management -- Spencer Chemical Co - KS 0-01  

Office of Legacy Management (LM)

KS 0-01 KS 0-01 FUSRAP Considered Sites Site: SPENCER CHEMICAL CO. (KS.0-01 ) Eliminated from further consideration under FUSRAP - an AEC licensed operation Designated Name: Not Designated Alternate Name: Jayhawk Works KS.0-01-1 Location: Pittsburg , Kansas KS.0-01-1 Evaluation Year: 1985 KS.0-01-2 Site Operations: Processed enriched uranium (UF-6) and scrap to produce primarily uranium dioxide (UO-2) under AEC licenses. KS.0-01-3 KS.0-01-4 Site Disposition: Eliminated - No Authority - AEC licensed KS.0-01-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Normal and Enriched Uranium; Thorium KS.0-01-6 Radiological Survey(s): Yes KS.0-01-5 Site Status: Eliminated from further consideration under FUSRAP - an AEC licensed operation

234

DOE/FE-0558  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58 58 Prepared by: U.S. Department of Energy Natural Gas Imports and Exports First Quarter Report 2012 LNG LNG Japan Trinidad and Tobago Canada Yemen Mexico Qatar Brazil Egypt Norway India POINTS OF IMPORT 1. Sumas, Washington 2. Eastport, Idaho 3. Whitlash / Babb / Port of Del Bonita / Sweetgrass, Montana 4. Port of Morgan, Montana / Portal, North Dakota 5. Sherwood, North Dakota 6. Noyes / Warroad, Minnesota 7. Detroit / St. Clair / Marysville, Michigan 8. Niagara Falls / Grand Island, New York 9. Waddington, New York 10. Massena / Champlain, New York 11. Highgate Springs, Vermont 12. Pittsburg, New Hampshire 13. Calais, Maine 14. Ogilby, California 15. Alamo / Hidalgo, Texas 16. McAllen / Galvan Ranch, Texas 17. Northeast Gateway Deepwater Port 18. Neptune Deepwater Port 19. Everett,

235

DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERl\IINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DETERl\IINATION DETERl\IINATION RECIPIENT:Pittsburg State University Page 1 of2 STATE: KS PROJECf TITLE: EECBG EE-OOOO727 KeC: Pittsburgh State University Ground Source Heat Pump Funding Opportunity Announcement Number Procurement Instrument Num~r NEPA Control Number elD Number DE-FOA 0000013 EEOOOO727 0 Based on my review of the information concerning the propostd action, as NEPA Compliance Officer (authom.ed under DOE Order 451.1A), I have made the (ollowing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to cx>nserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

236

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21 - 17330 of 31,917 results. 21 - 17330 of 31,917 results. Download CX-004406: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.6 Date: 11/08/2010 Location(s): Chickasha, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-004406-categorical-exclusion-determination Download CX-004407: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 11/08/2010 Location(s): Pittsburg County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-004407-categorical-exclusion-determination Download CX-004408: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells

237

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 12320 of 28,560 results. 11 - 12320 of 28,560 results. Download CX-004407: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 11/08/2010 Location(s): Pittsburg County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-004407-categorical-exclusion-determination Download CX-004408: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 11/08/2010 Location(s): Haskell County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-004408-categorical-exclusion-determination Download CX-004409: Categorical Exclusion Determination Petroleum Processing Efficiency Improvement

238

INSIDE COVER MAP (JUNE 2012).pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60 60 Prepared by: U.S. Department of Energy Natural Gas Imports and Exports Second Quarter Report 2012 LNG LNG Japan Trinidad and Tobago Canada Yemen Mexico Qatar POINTS OF IMPORT 1. Sumas, Washington 2. Eastport, Idaho 3. Whitlash / Babb / Port of Del Bonita / Sweetgrass, Montana 4. Port of Morgan, Montana / Portal, North Dakota 5. Sherwood, North Dakota 6. Noyes / Warroad, Minnesota 7. Detroit / St. Clair / Marysville, Michigan 8. Niagara Falls / Grand Island, New York 9. Waddington, New York 10. Massena / Champlain, New York 11. Highgate Springs, Vermont 12. Pittsburg, New Hampshire 13. Calais, Maine 14. Ogilby, California 15. Alamo / Hidalgo, Texas 16. McAllen / Galvan Ranch, Texas 17. Northeast Gateway Deepwater Port 18. Neptune Deepwater Port 19. Everett, Massachusetts 20.

239

DOE/FE-0554  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Prepared by: U.S. Department of Energy Natural Gas Imports and Exports Third Quarter Report 2011 LNG LNG Japan Trinidad and Tobago Canada Yemen Mexico Nigeria Qatar China Brazil POINTS OF IMPORT 1. Sumas, Washington 2. Eastport, Idaho 3. Whitlash / Babb / Port of Del Bonita / Sweetgrass, Montana 4. Port of Morgan, Montana / Portal, North Dakota 5. Sherwood, North Dakota 6. Noyes / Warroad, Minnesota 7. Detroit / St. Clair / Marysville, Michigan 8. Niagara Falls / Grand Island, New York 9. Waddington, New York 10. Massena / Champlain, New York 11. Highgate Springs, Vermont 12. Pittsburg, New Hampshire 13. Calais, Maine 14. Ogilby, California 15. Alamo / Hidalgo, Texas 16. McAllen / Galvan Ranch, Texas 17. Northeast Gateway Deepwater Port 18. Neptune Deepwater Port 19. Everett,

240

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 - 18690 of 26,764 results. 81 - 18690 of 26,764 results. Download CX-003713: Categorical Exclusion Determination Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: A9, B3.1, B3.3, B3.6 Date: 09/09/2010 Location(s): Maine Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-003713-categorical-exclusion-determination Download CX-004098: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant EE-0000727 KCC: Pittsburg State University Ground Source Heat Pump CX(s) Applied: B5.1 Date: 09/07/2010 Location(s): Kansas Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-004098-categorical-exclusion-determination

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FRONTCOVER (3rd Qtr 2012).pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Prepared by: U.S. Department of Energy Natural Gas Imports and Exports Third Quarter Report 2012 LNG LNG Japan Trinidad and Tobago Canada Mexico Qatar POINTS OF IMPORT 1. Sumas, Washington 2. Eastport, Idaho 3. Whitlash / Babb / Port of Del Bonita / Sweetgrass, Montana 4. Port of Morgan, Montana / Portal, North Dakota 5. Sherwood, North Dakota 6. Noyes / Warroad, Minnesota 7. Detroit / St. Clair / Marysville, Michigan 8. Niagara Falls / Grand Island, New York 9. Waddington, New York 10. Massena / Champlain, New York 11. Highgate Springs, Vermont 12. Pittsburg, New Hampshire 13. Calais, Maine 14. Ogilby, California 15. Alamo / Hidalgo, Texas 16. McAllen / Galvan Ranch, Texas 17. Northeast Gateway Deepwater Port 18. Neptune Deepwater Port 19. Everett, Massachusetts 20. Cove

242

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-004409: Categorical Exclusion Determination Petroleum Processing Efficiency Improvement CX(s) Applied: B3.6 Date: 11/08/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004408: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 11/08/2010 Location(s): Haskell County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004407: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 11/08/2010 Location(s): Pittsburg County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004406: Categorical Exclusion Determination

243

FRONTCOVER (4Q11).pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Prepared by: U.S. Department of Energy Natural Gas Imports and Exports Fourth Quarter Report 2011 LNG LNG Japan Trinidad and Tobago Canada Yemen Mexico Qatar China Brazil Chile Egypt South Korea Norway POINTS OF IMPORT 1. Sumas, Washington 2. Eastport, Idaho 3. Whitlash / Babb / Port of Del Bonita / Sweetgrass, Montana 4. Port of Morgan, Montana / Portal, North Dakota 5. Sherwood, North Dakota 6. Noyes / Warroad, Minnesota 7. Detroit / St. Clair / Marysville, Michigan 8. Niagara Falls / Grand Island, New York 9. Waddington, New York 10. Massena / Champlain, New York 11. Highgate Springs, Vermont 12. Pittsburg, New Hampshire 13. Calais, Maine 14. Ogilby, California 15. Alamo / Hidalgo, Texas 16. McAllen / Galvan Ranch, Texas 17. Northeast Gateway Deepwater Port 18. Neptune Deepwater

244

U. S. Atomic Energy Commission  

Office of Legacy Management (LM)

Commission Commission Division of Licensing and Regulation Washington 25, D. C. Attention: Mr. Eber R. Price Gentlemen: This is in response to your letter of 17 April 1962 regarding the inspection conducted at our Jayhawk Works at Pittsburg, Kansas on May Z-5, 1961 under Source Material License C-4352 and Special Nuclear Material Licenses No. SW-154 and S.Iw-329. Reblying to your items as listed in your letter, we submit the following in- formation'for your consideration: I. Time-occupancy studies have been made in the area where high air-borne dust samples "ere observed. A. Incidents Involving Thorium Six incidents have bee" noted involving thorium, natural isotopic ClSS=y. The counts of the air samples in these six samples are as follows: Microcuries per ml of Air

245

INTERO)CPICE CORRC-NOKNCL  

Office of Legacy Management (LM)

s.u-or:.L~ s.u-or:.L~ p40.0-0(-b INTERO)CPICE CORRC-NOKNCL 7117-01.85.sej.08 TO: File cc: A. Wallo DATE: 27 March 1985 B. Fritz C. Young F. Hoch SUmJECT: SPENCER CHEMICAL CO., JAYHAWK WORKS A@-+ FRoMz S.E. Jones The Spencer Chemical Co. Jayhawks Works, and Joplin, Missouri, located between Pittsburg, Kansas was licensed b!!.the NRC undersource Material License C-4352 and Special NuclearMaterial Licenses SNM-154 to operate a uranium oxide pilot plant, and SNM-329 to process enriched uranium (for other licensees:). Headquarters for the Spencer Chemical Company appear to have been located at the Dwight Building, Kansas Cit,y. IMissouri. and the Research Center, 9009 West 67th Street, Merriam, Kansas. Licensing activities for the Jayhawks facilities was managed at these two locations.

246

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 - 3860 of 9,640 results. 51 - 3860 of 9,640 results. Download CX-004838: Categorical Exclusion Determination Recycling of Solar Panels CX(s) Applied: B5.1 Date: 12/22/2010 Location(s): Wisconsin Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-004838-categorical-exclusion-determination Download CX-004681: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 12/08/2010 Location(s): Pittsburg County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-004681-categorical-exclusion-determination Download CX-004658: Categorical Exclusion Determination Large Scale Solar - Ground Mounted - Ram Manufacturing CX(s) Applied: B5.1

247

Microsoft Word - non-graphics title pages.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

43 43 Prepared by: U.S. Department of Energy Natural Gas Imports and Exports First Quarter Report 2011 LNG LNG Japan Trinidad and Tobago Canada Yemen Egypt Mexico Peru India South Korea Norway Qatar Spain United Kingdom POINTS OF IMPORT 1. Sumas, Washington 2. Eastport, Idaho 3. Whitlash / Babb / Port of Del Bonita / Sweetgrass, Montana 4. Port of Morgan, Montana / Portal, North Dakota 5. Sherwood, North Dakota 6. Noyes / Warroad, Minnesota 7. Detroit / St. Clair / Marysville, Michigan 8. Niagara Falls / Grand Island, New York 9. Waddington, New York 10. Massena / Champlain, New York 11. Highgate Springs, Vermont 12. Pittsburg, New Hampshire 13. Calais, Maine 14. Ogilby, California 15. Alamo / Hidalgo, Texas 16. McAllen / Galvan Ranch, Texas 17. Northeast Gateway Deepwater Port 18.

248

CX-003864: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

864: Categorical Exclusion Determination 864: Categorical Exclusion Determination CX-003864: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant (EECBG) EE-0000727 KCC: Pittsburgh State University Ground Source Heat Pump CX(s) Applied: B5.1 Date: 09/07/2010 Location(s): Kansas Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Pittsburg State University is proposing to use Energy Efficiency and Conservation Block Grant (EECBG) American Recovery and Reinvestment (ARRA) funding to install ground source heat pump system on the university campus that will serve the heating and cooling needs for an academic building and a small chapel. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-003864.pdf More Documents & Publications CX-004098: Categorical Exclusion Determination

249

FRONTC~1.ai  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Prepared by: U.S. Department of Energy Natural Gas Imports and Exports Fourth Quarter Report 2012 LNG LNG Japan Trinidad and Tobago Canada Mexico Qatar Brazil Norway Yemen Portugal POINTS OF IMPORT 1. Sumas, Washington 2. Eastport, Idaho 3. Whitlash / Babb / Port of Del Bonita / Sweetgrass, Montana 4. Port of Morgan, Montana / Portal, North Dakota 5. Sherwood, North Dakota 6. Noyes / Warroad, Minnesota 7. Detroit / St. Clair / Marysville, Michigan 8. Niagara Falls / Grand Island, New York 9. Waddington, New York 10. Massena / Champlain, New York 11. Highgate Springs, Vermont 12. Pittsburg, New Hampshire 13. Calais, Maine 14. Ogilby, California 15. Alamo / Hidalgo, Texas 16. McAllen / Galvan Ranch, Texas 17. Northeast Gateway Deepwater Port 18. Neptune Deepwater Port 19. Everett,

250

DOE/FE-0552  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Prepared by: U.S. Department of Energy Natural Gas Imports and Exports Second Quarter Report 2011 LNG LNG Japan Trinidad and Tobago Canada Yemen Egypt Mexico Peru India South Korea Qatar Spain China Brazil POINTS OF IMPORT 1. Sumas, Washington 2. Eastport, Idaho 3. Whitlash / Babb / Port of Del Bonita / Sweetgrass, Montana 4. Port of Morgan, Montana / Portal, North Dakota 5. Sherwood, North Dakota 6. Noyes / Warroad, Minnesota 7. Detroit / St. Clair / Marysville, Michigan 8. Niagara Falls / Grand Island, New York 9. Waddington, New York 10. Massena / Champlain, New York 11. Highgate Springs, Vermont 12. Pittsburg, New Hampshire 13. Calais, Maine 14. Ogilby, California 15. Alamo / Hidalgo, Texas 16. McAllen / Galvan Ranch, Texas 17. Northeast Gateway Deepwater Port 18. Neptune Deepwater

251

Establishment of a Graduate Certificate Program in Biobased Industrial Products Final Technical Report  

DOE Green Energy (OSTI)

A certificate of graduate studies in Biobased Industrial Products is to be established at Kansas State University (KSU) along with the development of a similar program at Pittsburg State University, Pittsburg, KS. At KSU, the program of study will be coordinated through the steering committee of the Agricultural Products Utilization Forum (APUF); the certificate of graduate studies will be awarded through the Graduate School of Kansas State University. This certificate will establish an interdisciplinary program of study that will: (1) ensure participating students receive a broad education in several disciplines related to Biobased Industrial Products, (2) provide a documented course of study for students preferring a freestanding certificate program, and (3) provide a paradigm shift in student awareness away from petroleum-based feedstocks to the utilization of renewable resources for fuels and chemical feedstocks. The academic program described herein will accomplish this goal by: (1) providing exposure to several academic disciplines key to Biobased Industrial Products; (2) improving university/industry collaboration through an external advisory board, distance learning opportunities, and student internships; (3) expanding the disciplines represented on the students' supervisory committee; (4) establishing a seminar series on Biobased Industrial Products that draws upon expert speakers representing several disciplines; and (5) increasing collaboration between disciplines. Numerous research programs emphasizing Biobased Industrial Products currently exist at KSU and PSU. The certificate of graduate studies, the emphasis on interdisciplinary collaboration within the students? thesis research, the proposed seminar series, and formation of an industrial advisory board will: (1) provide an interdisciplinary academic experience that spans several departments, four colleges, four research centers, and two universities; (2) tangibly promote collaboration between KSU and PSU; (3) catalyze involvement of plant geneticists with researchers active in the development and utilization of biobased industrial products; and, (4) promote university/industry collaboration.

John R. Schlup

2005-11-04T23:59:59.000Z

252

Establishment of a Graduate Certificate Program in Biobased Industrial Products Final Technical Report  

SciTech Connect

A certificate of graduate studies in Biobased Industrial Products is to be established at Kansas State University (KSU) along with the development of a similar program at Pittsburg State University, Pittsburg, KS. At KSU, the program of study will be coordinated through the steering committee of the Agricultural Products Utilization Forum (APUF); the certificate of graduate studies will be awarded through the Graduate School of Kansas State University. This certificate will establish an interdisciplinary program of study that will: (1) ensure participating students receive a broad education in several disciplines related to Biobased Industrial Products, (2) provide a documented course of study for students preferring a freestanding certificate program, and (3) provide a paradigm shift in student awareness away from petroleum-based feedstocks to the utilization of renewable resources for fuels and chemical feedstocks. The academic program described herein will accomplish this goal by: (1) providing exposure to several academic disciplines key to Biobased Industrial Products; (2) improving university/industry collaboration through an external advisory board, distance learning opportunities, and student internships; (3) expanding the disciplines represented on the students' supervisory committee; (4) establishing a seminar series on Biobased Industrial Products that draws upon expert speakers representing several disciplines; and (5) increasing collaboration between disciplines. Numerous research programs emphasizing Biobased Industrial Products currently exist at KSU and PSU. The certificate of graduate studies, the emphasis on interdisciplinary collaboration within the students? thesis research, the proposed seminar series, and formation of an industrial advisory board will: (1) provide an interdisciplinary academic experience that spans several departments, four colleges, four research centers, and two universities; (2) tangibly promote collaboration between KSU and PSU; (3) catalyze involvement of plant geneticists with researchers active in the development and utilization of biobased industrial products; and, (4) promote university/industry collaboration.

John R. Schlup

2005-11-04T23:59:59.000Z

253

Inter-Layer Mixing in Selective Catalytic Reduction Systems  

Science Conference Proceedings (OSTI)

The primary parameter for achieving high NOx reduction and low ammonia (NH3) slip in Selective Catalytic Reduction (SCR) systems on large coal-fired boilers is a uniform NH3/NOx ratio distribution at the catalyst surface. Large non-uniformities yield local NH3/NOx ratios greater than one, leading directly to NH3 slip. Areas of low NH3/NOx ratios have low NOx reduction. Both of these conditions are undesirable. SCR system designers specify a maximum acceptable NH3/NOx non-uniformity at the catalyst inlet....

2005-12-20T23:59:59.000Z

254

Catalytic activity of ZrO2 nanotube arrays prepared by anodization method  

Science Conference Proceedings (OSTI)

ZrO2 nanotube arrays were prepared by anodization method in aqueous electrolyte containing (NH4)2SO4 and NH4F. The morphology and structure of nanotube arrays were characterized through scanning ...

Xixin Wang; Jianling Zhao; Xiaorui Hou; Qi He; Chengchun Tang

2012-01-01T23:59:59.000Z

255

Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers  

Science Conference Proceedings (OSTI)

Amino-modified double wall carbon nanotube (DWCNT-NH2)/carbon fiber (CF)/epoxy hybrid micro-nanocomposite laminates were prepared by a resin infusion technique. DWCNT-NH2/epoxy nanocomposites and carbon fiber/epoxy microcomposites ...

Fawad Inam; Doris W. Y. Wong; Manabu Kuwata; Ton Peijs

2010-01-01T23:59:59.000Z

256

Intramolecular Oxyferryl Heme Reduction in Myoglobin  

NLE Websites -- All DOE Office Websites (Extended Search)

ACS Publications Abstract: The kinetics of oxyferryl (FeIVO) heme reduction in horse heart myoglobin (Mb) by a4LRuII (a NH3; L NH3, pyridine, isonicotinamide) bound at the...

257

High Pressure Pulse Radiolysis-Reduction Cyt c by Ru(II) Complexes  

NLE Websites -- All DOE Office Websites (Extended Search)

The DV values for intramolecular electron transfer in (NH3)5RuII-His33 horse heart ferricytochrome c and (NH3)5RuII-His39 Candida krusei ferricytochrome c are -17.7 ...

258

NIST MS/MS Database and Search Program  

Science Conference Proceedings (OSTI)

... Precursor Types: [M+H] +; [M+2H] 2+; [MH] -; [M+Na] +; [M+NH4] +; [Cat] +; [An] -; [p-H2O]; [p-NH3]; etc. Database Contents: 6,999, Compounds. ...

2013-06-24T23:59:59.000Z

259

Greenhouse gas emissions from Australian beef feedlots.  

E-Print Network (OSTI)

??This thesis also explored the contribution of CH4, N2O and NH3 using IPCC default factor of 1.25% deposited NH3 is lost as N2O to total (more)

Muir, Stephanie Kate

2011-01-01T23:59:59.000Z

260

Page 1 of 2 Introduction to the New Hampshire 4-H  

E-Print Network (OSTI)

County 4-H staff member or Rhiannon Beauregard, NH 4-H Animal and Agricultural Science Education Coordinator at (603) 862-2188 or Rhiannon.Beauregard@unh.edu. #12;Page 2 of 2 Policies NH 4-H Policy

New Hampshire, University of

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT...  

U.S. Energy Information Administration (EIA) Indexed Site

201,"SPRAGUE ENERGY CORP",1,461,"DIST, < 0.05% SUL (DOM.)",0131,"PORTSMOUTH, NH","NH",100,260,"CANADA",114,0,0 0201,"SPRAGUE ENERGY CORP",2,461,"DIST, < 0.05% SUL...

262

0101,"SPRAGUE ENERGY CORP",1,150,"MOGAS, REFORMULATED",0131,...  

U.S. Energy Information Administration (EIA) Indexed Site

101,"SPRAGUE ENERGY CORP",1,150,"MOGAS, REFORMULATED",0131,"PORTSMOUTH, NH","NH",100,260,"CANADA",240,0,0 0101,"SPRAGUE ENERGY CORP",2,462,"DIST, > 0.05% SUL (DOM.)",0401,"BOSTON,...

263

Precios de Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

Precios de Gasolina para Ciudades en EEUU Pulse en el mapa para ver los precios de la gasolina en diferentes ciudades de su estado. AK VT ME NH NH MA MA RI CT CT DC NJ DE DE NY WV...

265

University of New Hampshire  

E-Print Network (OSTI)

& Learning 5 Hitchcock Hall Durham, NH 03824 Marianne Fortescue, Coordinator 603-862-2197 marianne.fortescue

Pohl, Karsten

266

Growth of InGaN HBTs by MOCVD THEODORE CHUNG,1,5  

E-Print Network (OSTI)

. Trimethylgallium (TMGa), trimethylindium (TMIn), and ammonia (NH3) are used as the sour- ces, while disilane (Si2H6

Asbeck, Peter M.

267

Hunter Building, Kelburn Campus VICTORIA UNIVERSITY  

E-Print Network (OSTI)

an toàn nht sng. C IM CHNG TR?NH Chng trình D b i hc ca i hc Victoria Wellington là mt chng trình ào, i bng rng và leo núi. Tôi có thêm rt nhiu bn tt và tri nghim rt nhiu iu thú v khi sng ti thành ph

Frean, Marcus

268

New Hampshire "4-H Horse of the Year" Peter Stone Model Horse Contest  

E-Print Network (OSTI)

Beauregard Rhiannon.Beauregard@unh.edu Moiles House 180 Main Street Durham, NH 03824-2536 Questions? Call

New Hampshire, University of

269

Directions to the 4-H Youth Center From the North  

E-Print Network (OSTI)

Beauregard, NH 4H Animal/Ag Science Coor. University of New Hampshire­Coopera ve Extension Moiles House

New Hampshire, University of

270

DOE/NETL-2001/1134 -- A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

(16) 3 2 2 2 4NH + 2NO + O --> 3N + 6H O (17) 3 2 2 2 2 SCR operates at an NH NO stoichiometric ratio of 1.0. Side reactions include oxidation of SO to 3 x 2 SO , oxidation of NH...

271

Categorical Exclusion Determinations: B1.3 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 22, 2011 February 22, 2011 CX-005372: Categorical Exclusion Determination Repair Bayou Choctaw Timber Pipe Supports CX(s) Applied: B1.3 Date: 02/22/2011 Location(s): Bayou Choctaw, Louisiana Office(s): Strategic Petroleum Reserve Field Office February 22, 2011 CX-005371: Categorical Exclusion Determination West Hackberry Off-Site Services Contract, 2011-2013 CX(s) Applied: B1.3 Date: 02/22/2011 Location(s): West Hackberry, Texas Office(s): Strategic Petroleum Reserve Field Office February 22, 2011 CX-005370: Categorical Exclusion Determination Clean and Inspect West Hackberry (WHT-14) Brine Tank CX(s) Applied: B1.3 Date: 02/22/2011 Location(s): West Hackberry, Louisiana Office(s): Strategic Petroleum Reserve Field Office February 22, 2011 CX-005369: Categorical Exclusion Determination

272

Download Fuel Economy Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Download Fuel Economy Data Download Fuel Economy Data Fuel economy data are the result of vehicle testing done at the Environmental Protection Agency's National Vehicle and Fuel Emissions Laboratory in Ann Arbor, Michigan, and by vehicle manufacturers with oversight by EPA. 2013 Ford C-MAX Hybrid Data Revised (August 15, 2013) 2011-2013 Hyundai and Kia data revised (November 2, 2012) Downloadable Fuel Economy Data Find and Compare Cars data - MPG data for all 1984-2014 vehicles (Updated: Friday December 20 2013) For Developers: Fueleconomy.gov Web Services CSV: /feg/epadata/vehicles.csv.zip (Documentation) XML: /feg/epadata/vehicles.xml.zip (Documentation) Fuel Economy Datafile* Fuel Economy Guide Adobe Acrobat Icon Green Vehicle Guide Datafile Green Vehicle Guide Adobe Acrobat Icon

273

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University of Utah University of Utah FE DE-NT0005015 Advanced Research 2011 - 2013 David Lang Approx. May 2011 - August 2013 Salt Lake City, Utah Clean and Secure Energy from Coal Continuation of (1) oxycoal combustion in the oxyfuel combustor and fluidized bed with accompanying diagnostics,(2) gasification studies in the entrained flow gasifier; & (3) underground thermal treat. 05 18 2011 David Lang Digitally signed by David Lang DN: cn=David Lang, o=US DOE, ou=NETL, email=lang@netl.doe.gov, c=US Date: 2011.05.18 14:26:29 -04'00' 05 20 2011 Fred E. Pozzuto Digitally signed by Fred E. Pozzuto DN: cn=Fred E. Pozzuto, o=USDOE, ou=NETL-Office of Project Facilitation and Compliance, email=fred.pozzuto@netl.doe.gov, c=US Reason: I am approving this document Date: 2011.05.20 14:35:15

274

Categorical Exclusion Determinations: B1.3 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 22, 2011 February 22, 2011 CX-005371: Categorical Exclusion Determination West Hackberry Off-Site Services Contract, 2011-2013 CX(s) Applied: B1.3 Date: 02/22/2011 Location(s): West Hackberry, Texas Office(s): Strategic Petroleum Reserve Field Office February 22, 2011 CX-005370: Categorical Exclusion Determination Clean and Inspect West Hackberry (WHT-14) Brine Tank CX(s) Applied: B1.3 Date: 02/22/2011 Location(s): West Hackberry, Louisiana Office(s): Strategic Petroleum Reserve Field Office February 22, 2011 CX-005369: Categorical Exclusion Determination Replacement of Big Hill Deep Anode Ground Bed Site for Cavern 103 CX(s) Applied: B1.3 Date: 02/22/2011 Location(s): Texas Office(s): Strategic Petroleum Reserve Field Office February 10, 2011 CX-005510: Categorical Exclusion Determination

275

AEP Ohio - Renewable Energy Credit (REC) Purchase Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Ohio - Renewable Energy Credit (REC) Purchase Program AEP Ohio - Renewable Energy Credit (REC) Purchase Program AEP Ohio - Renewable Energy Credit (REC) Purchase Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Wind Program Info Start Date 07/2011 State Ohio Program Type Performance-Based Incentive Rebate Amount 2011 Solar: $300/REC 2012-2013 Solar: $262.50/REC 2011-2013 Wind: $34/REC Provider AEP Ohio '''''Note: This program is currently closed. All RECs were required to be transfered into AEP Ohio's GATS account by July 15, 2013 in order to be eligible for the program. No information is available regarding future solicitations. Check the program web site for more information. '''''

276

Microsoft PowerPoint - 120824_US-China_Battery_Workshop_-_Ford_Masias_print.ppt [Compatibility Mode]  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Confidential Ford Confidential Rechargeable Energy Storage System (RESS) x Safety Research US-China EV & Battery Workshop August 24, 2012 Ford Confidential Page 2 Ford Battery Safety Research System Mechanical Thermal Electrical Battery Safety Hazards System: * RESS Safety * NHTSA Award (2011 - 2013) Mechanical: * Ford-MIT Alliance * Prof. Wierzbicki (2012 - 2014) Thermal: * U. Maryland URP * Prof. Sunderland (2012 - 2015) Electrical: * Ford-UM Alliance * Prof. Chris Mi (2012 - 2014) Research Activity Ford Confidential Page 3 NHTSA RESS Safety Solicitation Timing Solicitation 1/26/11 Proposal 4/21/11 Award Sept 2011 Finish Sept 2013 Scope HEV/PHEV/BEV Li-Ion Battery Purpose Develop Safety Test Methods & Performance Safety Metrics Tasks * Active - Single Failure * Passive - Single Failure + Loss of Control System

277

MARCH 10, 2011 MEETING OF THE ELECTRICITY ADVISORY COMMITTEE | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Meetings » 2011 2013 Meetings » 2011 Meetings » MARCH 10, 2011 MEETING OF THE ELECTRICITY ADVISORY COMMITTEE MARCH 10, 2011 MEETING OF THE ELECTRICITY ADVISORY COMMITTEE MARCH 10, 2011 MEETING OF THE ELECTRICITY ADVISORY COMMITTEE Date: Thursday, March 10, 2011 8:30 a.m. - 4:30 p.m. EDT Location: National Rural Electric Cooperatives Association Conference Center, 4301 Wilson Blvd., Arlington, Virginia. OVERVIEW The Department of Energy's Electricity Advisory Committee will hold a meeting on March 10, 2011 at the National Rural Electric Cooperative Association Conference Center, 4301 Wilson Blvd, Arlington, Virginia. Members of the public are invited on a first-come, first served basis (depending on the availability of meeting room space) to listen to the Committee proceedings and to make comments. There will be a 30-minute

278

English summary xviii This thesis deals with the synthesis of substituted 4-amino-1,2,4,5-tetrahydro-2-  

E-Print Network (OSTI)

'), respectively was expected to provide new structure activity relationships in the search for selective and potent ligands for the hMC1- to hMC5R. The -MSH analogues Aba-1 (Ac-Nle-Asp-Aba-D-Phe-Arg-Trp-Lys-NH2), Aba-2 (Ac-Nle-c[Asp-Aba-D-Phe-Arg-Trp-Lys]-NH2), Aba-3 (Ac-Nle-c[Asp-Aba-pCl-D-Phe-Arg- Trp-Lys]-NH2

Glineur, François

279

Monitoring and Evaluation of Yearling Fall Chinook Salmon Released from Acclimation Facilities Upstream of Lower Granite Dam; 1998 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery (Snake River stock) yearling fall chinook salmon that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1998. The three fall chinook acclimation facilities are operated by the Nez Perce Tribe and located at Pittsburg Landing and Captain John Rapids on the Snake River and at Big Canyon Creek on the Clearwater River. Yearlings at the Big Canyon facility consisted of two size classes that are referred to in this report as 9.5 fish per pound (fpp) and 30 fpp. The Big Canyon 9.5 fpp were comparable to the yearlings at Pittsburg Landing, Captain John Rapids and Lyons Ferry Hatchery. A total of 9,942 yearlings were PIT tagged and released at Pittsburg Landing. PIT tagged yearlings had a mean fork length of 159.9 mm and mean condition factor of 1.19. Of the 9,942 PIT tagged fish released, a total of 6,836 unique tags were detected at mainstem Snake and Columbia River dams (Lower Granite, Little Goose, Lower Monumental and McNary). A total of 4,926 9.5 fpp and 2,532 30 fpp yearlings were PIT tagged and released at Big Canyon. PIT tagged 9.5 fpp yearlings had a mean fork length of 156.9 mm and mean condition factor of 1.13. PIT tagged 30 fpp yearlings had a mean fork length of 113.1 mm and mean condition factor of 1.18. Of the 4,926 PIT tagged 9.5 fpp yearlings released, a total of 3,042 unique tags were detected at mainstem Snake and Columbia River dams. Of the 2,532 PIT tagged 30 fpp yearlings released, a total of 1,130 unique tags were detected at mainstem Snake and Columbia River dams. A total of 1,253 yearlings were PIT tagged and released at Captain John Rapids. PIT tagged yearlings had a mean fork length of 147.5 mm and mean condition factor of 1.09. Of the 1,253 PIT tagged fish released, a total of 719 unique tags were detected at mainstem Snake and Columbia River dams. A total of 2,420 yearlings were PIT tagged and released at Lyons Ferry Hatchery. PIT tagged yearlings had a mean fork length of 159.0 mm and mean condition factor of 1.10. Of the 2,420 PIT tagged fish released, a total of 979 unique tags were detected at mainstem Snake and Columbia River dams (Lower Monumental and McNary). Median travel times, based on all detections, of PIT tagged fish released from Pittsburg Landing were 10.5 days to Lower Granite Dam, 21.7 days to McNary Dam and 29.8 days to Bonneville Dam. Median migration rates were 16.4 rkm/d to Lower Granite Dam, 18.3 rkm/d to McNary Dam and 18.9 rkm/d to Bonneville Dam. The median arrival dates were April 25 at Lower Granite Dam, May 6 at McNary Dam and May 14 at Bonneville Dam. The 90% passage dates were May 5 at Lower Granite Dam, May 20 at McNary Dam and May 25 at Bonneville Dam. Median travel times, based on all detections, of PIT tagged 9.5 fpp yearlings released from Big Canyon were 13.3 days to Lower Granite Dam, 26.0 days to McNary Dam and 30.8 days to Bonneville Dam. Median migration rates were 13.0 rkm/d to Lower Granite Dam, 15.3 rkm/d to McNary Dam and 18.3 rkm/d to Bonneville Dam. The median arrival dates were April 27 at Lower Granite Dam, May 11 at McNary Dam and May 15 at Bonneville Dam. The 90% passage dates were May 9 at Lower Granite Dam, May 24 at McNary Dam and May 25 at Bonneville Dam. Median travel times, based on all detections, of PIT tagged 30 fpp yearlings released from Big Canyon were 20.8 days to Lower Granite Dam, 37.6 days to McNary Dam and 43.5 days to Bonneville Dam. Median migration rates were 8.3 rkm/d to Lower Granite Dam, 10.6 rkm/d to McNary Dam and 12.9 rkm/d to Bonneville Dam. The median arrival dates were May 5 at Lower Granite Dam, May 23 at McNary Dam and May 28 at Bonneville Dam. The 90% passage dates were May 22 at Lower Granite Dam, May 31 at McNary Dam and June 5 at Bonneville Dam. Median arrival dates, based on all detections, of PIT tagge

Rocklage, Stephen J. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2004-01-01T23:59:59.000Z

280

The way ahead  

Science Conference Proceedings (OSTI)

The idea of a linear electric motor is almost as old as that of electric motors themselves. The first linear motor was a reluctance machine built by Charles Wheatstone in 1845, to be closely followed by a similar machine by Henry Fox Talbert, better known as the father of photography. Nikola Tesla invented the induction motor in 1888. The first patent on linear induction motors was taken out by the Mayor of Pittsburg in 1895. The first electromagnetic gun was undoubtedly Birkeland's Cannon of 1918, again a reluctance device, but possibly the first tubular motor using a row of simple coils energized in sequence with d.c. In 1946, Westinghouse built a full-scale aircraft launcher, the Electopult, which was an induction motor with a moving primary. It was this machine which inspired the author to begin his own work on linear motors in the 1950s, since when there have been rapid advances in linear induction machines for producing standstill forces, for propelling high-speed vehicles and as accelerators for producing kinetic energy. This paper reports that it is this third category that forms the subject of the conference.

Laithwaite, E.R. (Imperial Coll. of Science and Technology, London (United Kingdom))

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solvent Refined Coal (SRC) process. Quarterly technical progress report, January 1979-March 1979  

Science Conference Proceedings (OSTI)

This report summarizes the progress of the Solvent Refined Coal (SRC) Project by the Pittsburg and Midway Coal Mining Co. for the Department of Energy for the period January 1, 1979 to March 31, 1979. Activities included the operation and modification of the Solvent Refined Coal Pilot Plant at Fort Lewis, Washington; the Process Development Unit P-99 at Harmarville, Pennsylvania; and research at Merriam Laboratory in Merriam, Kansas. The Pilot Plant processed Powhatan No. 5 Coal in the SRC-II mode of operation studying the effect of coal particle size and system temperature on coal slurry blending and the effect of carbon monoxide concentration in the reaction feed gas on process yields. January and February were spent completing installation of a fourth High Pressure Separator on Process Development Unit P-99 to better simulate operating conditions for the proposed Demonstration Plant. During March, one run was completed at P-99 feeding Pittsburgh Seam Coal from the Powhatan No. 5 Mine. Merriam investigations included a study of the effect of iron containing additives on SRC-I operation, the addition of carbon monoxide to the feed gas, utilization of a hydrogenated solvent (Cresap process solvent) in the SRC-I mode under both normal and short residence time operating conditions, and development of a simulated distillation technique to determine the entire boiling range distribution of product oils.

Not Available

1980-02-01T23:59:59.000Z

282

Loan Enhancement Program (New Hampshire) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Provider NH Business Finance Authority The Loan Enhancement Program enables bank and other lending institutions to provide up to 90% fixed asset financing by...

283

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind NH Department of Environmental Services Solid Waste Rules (New Hampshire) New...

284

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

DAKOTA NEBRASKA KANSAS ARIZONA NEW MEXICO OKLAHOMA ARKANSAS MISSOURI IOWA MINNESOTA WISCONSIN MICH PA MD DELAWARE CONNECTICUT RHODE ISLAND MASS NH NJ ILL INDIANA OHIO VIRGINIA WV...

285

Zeolite?Based Algae Biofilm Rotating Photobioreactor for Algae and Biomass Production.  

E-Print Network (OSTI)

?? Alkaline conditions induced by algae growth in wastewater stabilization ponds create deprotonated ammonium ions that result in ammonia gas (NH3) volatilization. If algae are (more)

Young, Ashton M.

2011-01-01T23:59:59.000Z

286

Accelerated Thermal Aging of Fe-Zeolite SCR Catalysts on an Engine Bench.  

E-Print Network (OSTI)

?? Selective catalytic reduction (SCR) of NOx with urea/NH3 is a leading candidate to the impending more stringent emissions regulations for diesel engines. Currently, there (more)

Foster, Adam Lamar

2008-01-01T23:59:59.000Z

287

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

taken conse ... Analyses of eight well samples taken consecutively during the flow test showed an inverse correlation between NH3 and Cl concentrations. The last sample taken...

288

Compound and Elemental Analysis At Lassen Volcanic National Park...  

Open Energy Info (EERE)

Unknown Notes Analyses of eight well samples taken consecutively during the flow test showed an inverse correlation between NH3 and Cl concentrations. The last sample taken...

289

Using Ionic Liquids to Make Titanium Dioxide Nanotubes - Energy ...  

... used fabrication method is anodization of titanium metal in aqueous or organic polarized electrolytes baths containing fluoride species such as NH4F, HF, or NaF.

290

Production and Handling Slide 14: Conversion of Yellow Cake to...  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium dioxide UO2, called "brown oxide," is formed by reducing ammonium diuranate (NH4)2U2O7 by the addition of hydrogen. Slide 14...

291

Global Soil Data  

NLE Websites -- All DOE Office Websites (Extended Search)

clay, rock), bulk density, cation exchange capacity, aluminum content, thermal and hydraulic conductivity, C, N (NH4, NO3 )content, N mineralization, N fixation,...

292

SAXS and SANS Investigation of Synthetic Cholesteric Liquid ...  

Science Conference Proceedings (OSTI)

... SANS is given for cholesteric PTOBEE-NH2 and the precursor PTOBEE when suspended in different solvents (D2O and ethanol) using different ...

2013-05-16T23:59:59.000Z

293

Wednesday Afternoon Sessions - TMS  

Science Conference Proceedings (OSTI)

... MD 20742-2115; David Cole, CRREL, 72 Lyme Rd., Hanover, NH 03755; Todd Gross, Department of Mechanical Engineering, University of New Hampshire,...

294

Wednesday Morning Sessions - TMS  

Science Conference Proceedings (OSTI)

... MD 20742-2115; David Cole, CRREL, 72 Lyme Rd., Hanover, NH 03755; Todd Gross, Department of Mechanical Engineering, University of New Hampshire,...

295

Thursday Morning Sessions - TMS  

Science Conference Proceedings (OSTI)

... MD 20742-2115; David Cole, CRREL, 72 Lyme Rd., Hanover, NH 03755; Todd Gross, Department of Mechanical Engineering, University of New Hampshire,...

296

Climate change: impacts and adaptation in England's woodlands  

E-Print Network (OSTI)

-763-0286 info@afsenergy.com www.afsenergy.com Bioheat USA (Fröling) Lyme, NH Pellets, wood chips 0.07 to 0

297

Monday Afternoon Sessions - TMS  

Science Conference Proceedings (OSTI)

... MD 20742-2115; David Cole, CRREL, 72 Lyme Rd., Hanover, NH 03755; Todd Gross, Department of Mechanical Engineering, University of New Hampshire,...

298

Tuesday Morning Sessions - TMS  

Science Conference Proceedings (OSTI)

... MD 20742-2115; David Cole, CRREL, 72 Lyme Rd., Hanover, NH 03755; Todd Gross, Department of Mechanical Engineering, University of New Hampshire,...

299

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(New Hampshire) New Hampshire Commercial Industrial Alternative Fuel Vehicles Hydrogen & Fuel Cells Home Weatherization Water Buying & Making Electricity Solar Wind NH Business...

300

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Schools Systems Integrator Transportation Utility Alternative Fuel Vehicles Hydrogen & Fuel Cells Home Weatherization Water Buying & Making Electricity Solar Wind NH Business...

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Business Energy Conservation Revolving Loan Fund | Open Energy...  

Open Energy Info (EERE)

of the program depends on the recycling of principal repayments and additional appropriations or other sources of revenue. Incentive Contact Contact Name NH BFA Revolving Loan...

302

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

NLE Websites -- All DOE Office Websites (Extended Search)

Concord, NH "Clean Start" - Development of a National Liquid Propane (Autogas) Refueling Network This CX form is for one location in this project selected under Clean Cities FOA...

303

Strategies in tracking and localization of distributed underwater systems  

E-Print Network (OSTI)

decoding approach for underwater acoustic communications",Mobility Prediction for Underwater Sensor Networks", W U W NH . V . , "Localization in Underwater Sensor Networks Survey

Mirza, Diba

2010-01-01T23:59:59.000Z

304

Local ammonia storage and ammonia inhibition in a monolithic copper-beta zeolite SCR catalyst  

SciTech Connect

Selective catalytic reduction of NO with NH{sub 3} was studied on a Cu-beta zeolite catalyst, with specific focus on the distributed NH{sub 3} capacity utilization and inhibition. In addition, several other relevant catalyst parameter distributions were quantified including the SCR zone, or catalyst region where SCR occurs, and NO and NH{sub 3} oxidation. We show that the full NH{sub 3} capacity (100% coverage) is used within the SCR zone for a range of temperatures. By corollary, unused NH{sub 3} capacity exists downstream of the SCR zone. Consequently, the unused capacity relative to the total capacity is indicative of the portion of the catalyst unused for SCR. Dynamic NH{sub 3} inhibition distributions, which create local transient conversion inflections, are measured. Dynamic inhibition is observed where the gas phase NH{sub 3} and NO concentrations are high, driving rapid NH{sub 3} coverage buildup and SCR. Accordingly, we observe dynamic inhibition at low temperatures and in hydrothermally aged states, but predict its existence very near the catalyst front in higher conversion conditions where we did not specifically monitor its impact. While this paper addresses some general distributed SCR performance parameters including Oxidation and SCR zone, our major new contributions are associated with the NH{sub 3} capacity saturation within the SCR zone and dynamic inhibition distributions and the associated observations. These new insights are relevant to developing accurate models, designs and control strategies for automotive SCR catalyst applications.

Auvray, Xavier P [Chalmers University of Technology, Sweden; Partridge Jr, William P [ORNL; Choi, Jae-Soon [ORNL; Pihl, Josh A [ORNL; Yezerets, Alex [Cummins, Inc; Kamasamudram, Krishna [Cummins, Inc; Currier, Neal [Cummins, Inc; Olsson, Louise [Chalmers University of Technology, Sweden

2012-01-01T23:59:59.000Z

305

Synthesis and Characterization of Methylammonium Borohydride  

DOE Green Energy (OSTI)

A new borohydride, [CH3NH3]+[BH4]-, has been synthesised by the metathesis of CH3NH3X and MBH4 in methylamine in order to determine its behaviour in comparison to ammonium borohydride [NH4]+[BH4]-. The introduction of methyl groups is expected to disrupt the hydrogen bonding network of [NH4]+[BH4]- and in turn alter the hydrogen release properties. Room temperature X-ray diffraction studies have shown that [CH3NH3]+[BH4]- adopts a tetragonal unit cell with lattice parameters of a = 4.9486 and b = 8.9083 . The room temperature structure shows considerable hydrogen mobility similar to that observed in NH3BH3. The kinetics and thermodynamics of these reactions have been investigated and show hydrogen release follows a similar pathway to that of [NH4]+[BH4]-. Both compounds decompose slowly at room temperature and rapidly at ca. 40 C to form the diammoniate of diborane or the methylated analogue [BH2(CH3NH2)2]+BH4-. The first stage of decomposition has been further investigated by means on in-situ X-ray diffraction and solid state 11B NMR spectroscopy, and appears to occur in the absence of any detectable intermediates to form crystalline [BH2(CH3NH2)2]+BH4-. [(CH3)2NH2]+[BH4]- and [BH2{(CH3)2NH}2]+BH4- have also been synthesised by analogous routes, indicating a more general applicability of the synthetic method.

Graham, Kathryn R.; Bowden, Mark E.; Kemmitt, Tim

2011-01-06T23:59:59.000Z

306

Model for a transformer-coupled toroidal plasma source  

Science Conference Proceedings (OSTI)

A two-dimensional fluid plasma model for a transformer-coupled toroidal plasma source is described. Ferrites are used in this device to improve the electromagnetic coupling between the primary coils carrying radio frequency (rf) current and a secondary plasma loop. Appropriate components of the Maxwell equations are solved to determine the electromagnetic fields and electron power deposition in the model. The effect of gas flow on species transport is also considered. The model is applied to 1 Torr Ar/NH{sub 3} plasma in this article. Rf electric field lines form a loop in the vacuum chamber and generate a plasma ring. Due to rapid dissociation of NH{sub 3}, NH{sub x}{sup +} ions are more prevalent near the gas inlet and Ar{sup +} ions are the dominant ions farther downstream. NH{sub 3} and its by-products rapidly dissociate into small fragments as the gas flows through the plasma. With increasing source power, NH{sub 3} dissociates more readily and NH{sub x}{sup +} ions are more tightly confined near the gas inlet. Gas flow rate significantly influences the plasma characteristics. With increasing gas flow rate, NH{sub 3} dissociation occurs farther from the gas inlet in regions with higher electron density. Consequently, more NH{sub 4}{sup +} ions are produced and dissociation by-products have higher concentrations near the outlet.

Rauf, Shahid; Balakrishna, Ajit; Chen Zhigang; Collins, Ken [Applied Materials, Inc., 974 E. Arques Avenue, Sunnyvale, California 94085 (United States)

2012-01-15T23:59:59.000Z

307

Measured and Modeled Light Scattering Values for Dry and Hydrated Laboratory Aerosols  

Science Conference Proceedings (OSTI)

Closure experiments were completed to compare measured and modeled aerosol optical properties and their dependence on controlled relative humidity (RH) and wavelength of light. NaCl, (NH4)2SO4, and NH4NO3 aerosol particles with approximate ...

Pinar Kus; Christian M. Carrico; Mark J. Rood; Allen Williams

2004-07-01T23:59:59.000Z

308

Very high resolution etching of magnetic nanostructures in organic gases  

Science Conference Proceedings (OSTI)

Two methods for high resolution dry etching of permalloy (NiFe) and iron (Fe) nanostructures are presented and discussed. The first involves the use of carbon monoxide (CO) and ammonia (NH"3) as etching gases, the second uses methane (CH"4), hydrogen ... Keywords: CH4/H2/O2, CO/NH3, Dry etching, Fe, NiFe

X. Kong; D. Krsa; H. P. Zhou; W. Williams; S. McVitie; J. M. R. Weaver; C. D. W. Wilkinson

2008-05-01T23:59:59.000Z

309

2013 Eastern States Exposition Dog Qualification Form Member: ___________________________________________________Birthdate: _______________Phone: _____________________________  

E-Print Network (OSTI)

with a copy of the ESE Animal Qualification Form, to Rhiannon Beauregard, NH State 4-H Animal and Agricultural with a copy of this form) to Rhiannon Beauregard by August 20. It is your responsibility to request your 4-H staff person. Mail entries to: Rhiannon Beauregard, NH 4-H Animal and Agricultural Science

New Hampshire, University of

310

Study on the Nitric Compounds during Coal Gasification  

Science Conference Proceedings (OSTI)

This investigation involved the formation and evolution of NO? HCN and NH3 during coal gasification. Since HCN and NH3 are the precursors of NOX, their summation are considered to show the characteristics of the precursors in this paper. The experiments ... Keywords: gasification, NOX precursors, particle size, agent

Jun Xiang; Qingsen Zhao; Song Hu; Lushi Sun; Sheng Su; Kai Xu; Tengfei Lu; Gang Chen

2009-10-01T23:59:59.000Z

311

Parameterization of the Optical Properties of Sulfate Aerosols  

Science Conference Proceedings (OSTI)

Parameterizations of the shortwave optical properties of ammonium sulfate [(NH4)2SO4], ammonium bisulfate (NH4HSO4), and sulfuric acid (H2SO4) are provided as functions of relative humidity for high and low spectral resolution band models. The ...

J. Li; J. G. D. Wong; J. S. Dobbie; P. Chlek

2001-01-01T23:59:59.000Z

312

Parameterization of the Optical Properties of Sulfate Aerosols in the Infrared  

Science Conference Proceedings (OSTI)

Parameterizations of absorptance depth for ammonium sulfate [(NH4)2SO4], ammonium bisulfate (NH4HSO4), and sulfuric acid (H2SO4) in the infrared are provided for an eight-band model (covering 3402500 cm?1) and for 32 individual wavenumbers in ...

J. Li; Qilong Min

2002-11-01T23:59:59.000Z

313

Gas Prices  

NLE Websites -- All DOE Office Websites (Extended Search)

Prices Gasoline Prices for U.S. Cities Click on the map to view gas prices for cities in your state. AK VT ME NH NH MA MA RI CT CT DC NJ DE DE NY WV VA NC SC FL GA AL MS TN KY IN...

314

CHEMICAL PROCESSING OF PURE AMMONIA AND AMMONIA-WATER ICES INDUCED BY HEAVY IONS  

SciTech Connect

Cosmic rays are possibly the main agents to prevent the freeze-out of molecules onto grain surfaces in cold dense clouds. Ammonia (NH{sub 3}) is one of the most abundant molecules present in dust ice mantles, with a concentration of up to 15% relative to water (H{sub 2}O). FTIR spectroscopy is used to monitor pure NH{sub 3} and NH{sub 3}-H{sub 2}O ice samples as they are irradiated with Ni and Zn ion beams (500-600 MeV) at GANIL/France. New species, such as hydrazine (N{sub 2}H{sub 4}), diazene (N{sub 2}H{sub 2} isomers), molecular hydrogen (H{sub 2}), and nitrogen (N{sub 2}) were identified after irradiation of pure NH{sub 3} ices. Nitrous oxide (N{sub 2}O), nitrogen oxide (NO), nitrogen dioxide (NO{sub 2}), and hydroxylamine (NH{sub 2}OH) are some of the products of the NH{sub 3}-H{sub 2}O ice radiolysis. The spectral band at 6.85 {mu}m was observed after irradiation of both types of ice. Besides the likely contribution of ammonium (NH{sub 4}{sup +}) and amino (NH{sub 2}) radicals, data suggest a small contribution of NH{sub 2}OH to this band profile after high fluences of irradiation of NH{sub 3}-H{sub 2}O ices. The spectral shift of the NH{sub 3} ''umbrella'' mode (9.3 {mu}m) band is parameterized as a function of NH{sub 3}/H{sub 2}O ratio in amorphous ices. Ammonia and water destruction cross-sections are obtained, as well as the rate of NH{sub 3}-H{sub 2}O (1:10) ice compaction, measured by the OH dangling bond destruction cross-section. Ammonia destruction is enhanced in the presence of H{sub 2}O in the ice and a power law relationship between stopping power and NH{sub 3} destruction cross-section is verified. Such results may provide relevant information for the evolution of molecular species in dense molecular clouds.

Bordalo, V.; Da Silveira, E. F. [Departamento de Fisica/Laboratorio do Acelerador Van de Graaff, Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de S. Vicente 225, 22451-900 Rio de Janeiro, RJ (Brazil); Lv, X. Y.; Domaracka, A.; Rothard, H.; Boduch, P. [Centre de Recherche sur les Ions, les Materiaux et la Photonique (CEA/CNRS/ENSICAEN/Universite de Caen-Basse Normandie), CIMAP-CIRIL-GANIL, Boulevard Henri Becquerel, BP 5133, F-14070 Caen Cedex 05 (France); Seperuelo Duarte, E., E-mail: vbordalo@fis.puc-rio.br [Grupo de Fisica e Astronomia, Instituto Federal do Rio de Janeiro, Rua Lucio Tavares 1045, 26530-060 Nilopolis, RJ (Brazil)

2013-09-10T23:59:59.000Z

315

Secretary Bodman Highlights President Bush's Solar America Initiative in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

President Bush's Solar America President Bush's Solar America Initiative in Merrimack , NH Secretary Bodman Highlights President Bush's Solar America Initiative in Merrimack , NH February 23, 2006 - 12:14pm Addthis MERRIMACK , NH - Department of Energy (DOE) Secretary Samuel W. Bodman joined Representatives Jeb Bradley (NH-1st) and Charles Bass (NH-2nd) to highlight President Bush's Solar America Initiative, during a visit to GT Solar Technologies in Merrimack, New Hampshire, today. The Solar America Initiative, a key component of President Bush's Advanced Energy Initiative, seeks to accelerate the widespread acceptance of clean solar energy technologies throughout the U.S. by 2015. "As our nation's economy grows we will need to find ways to diversify our energy mix, and solar is one promising way to do that," Secretary Bodman

316

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 16520 of 26,764 results. 11 - 16520 of 26,764 results. Download High-Temperature Superconductivity Cable Demonstration Projects http://energy.gov/oe/downloads/high-temperature-superconductivity-cable-demonstration-projects Download Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges http://energy.gov/oe/downloads/southern-company-doe-smart-grid-rfi-addressing-policy-and-logistical-challenges Article Secretary Bodman Highlights President Bush's Solar America Initiative in Merrimack, NH MERRIMACK , NH - Department of Energy (DOE) Secretary Samuel W. Bodman joined Representatives Jeb Bradley (NH-1st) and Charles Bass (NH-2nd) to highlight President Bush's Solar America Initiative,... http://energy.gov/articles/secretary-bodman-highlights-president-bushs-solar-america-initiative-merrimack-nh

317

Selective catalytic reduction (SCR) of nitric oxide (NO) with ammonia over vanadia-based and pillared interlayer clay-based catalysts  

E-Print Network (OSTI)

The selective catalytic reduction (SCR) of nitric oxide (NO) with ammonia over vanadia-based (V2O5-WO3/TiO2) and pillared interlayer clay-based (V2O5/Ti-PILC) monolithic honeycomb catalysts using a laboratory laminar-flow reactor was investigated. The experiments used a number of gas compositions to simulate different combustion gases. A Fourier transform infrared (FTIR) spectrometer was used to determine the concentrations of the product species. The major products were nitric oxide (NO), ammonia (NH3), nitrous oxide (N2O), and nitrogen dioxide (NO2). The aim was to delineate the effect of various parameters including reaction temperature, oxygen concentration, NH3-to-NO ratio, space velocity, heating area, catalyst arrangement, and vanadium coating on the removal of nitric oxide. The investigation showed that the change of the parameters significantly affected the removals of NO and NH3 species, the residual NH3 concentration (or NH3 slip), the temperature of the maximum NO reduction, and the temperature of complete NH3 conversion. The reaction temperature was increased from the ambient temperature (25C) to 450 C. For both catalysts, high NO and NH3 removals were obtained in the presence of a small amount of oxygen, but no significant influence was observed from 0.1 to 3.0% O2. An increase in NH3-to-NO ratio increased NO reduction but decreased NH3 conversions. For V2O5-WO3/TiO2, the decrease of space velocity increased NO and NH3 removals and broadened the active temperature window (based on NO > 88% and NH3 > 87%) about 50C. An increase in heating area decreased the reaction temperature of the maximum NO reduction from 350 to 300C, and caused the active reaction temperature window (between 250 and 400C) to shift toward 50C lower reaction temperatures (between 200 and 350C). The change of catalyst arrangements resulted slight improvement for NO and NH3 removals, therefore, the change might contribute to more gas removals. The catalyst with extra vanadium coating showed higher NO reductions and NH3 conversions than the catalyst without the extra vanadium coating.

Oh, Hyuk Jin

2006-05-01T23:59:59.000Z

318

Fuel Ethanol (Renewable) Exports by Destination  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total All Countries 32 31 27 27 38 43 2010-2013 Afghanistan 2010-2010 Albania 1 2013-2013 Angola 0 2011-2013 Anguilla 2010-2010 Antigua and Barbuda 0 2010-2013 Argentina 0 0 0 0 0 0 2010-2013 Aruba 0 0 0 2010-2013 Australia 0 0 2010-2013 Bahama Islands 0 0 0 2010-2013 Bahrain 0 2010-2013 Barbados 2010-2011 Belgium 0 0 0 0 0 2010-2013 Belize 0 2010-2013 Brazil 1 2 2 0 2010-2013 Bulgaria 2010-2010 Cambodia 2011-2011 Canada 19 21 22 23 25 24 2010-2013 Cayman Islands 2010-2012 Chile 0 0 0 0 0 0 2010-2013 China 0 0 0 0 0 2010-2013 Colombia 0 1 2010-2013 Costa Rica 0 0 0 0 0 0 2010-2013

319

November 2013  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 Created on: 12/12/2013 1:59:04 PM Table 4. U.S. natural gas imports, 2011-2013 (volumes in million cubic feet; prices in dollars per thousand cubic feet) 2013 2013 9-Month YTD 2012 9-Month YTD 2011 9-Month YTD September August July June May Imports Volume (million cubic feet) Pipeline Canada a 2,085,721 2,265,023 2,361,050 227,895 R 227,273 R 227,905 R 228,616 R 228,544 Mexico 614 244 1,480 148 164 182 28 14 Total Pipeline Imports 2,086,335 2,265,267 2,362,530 228,043 R 227,437 R 228,087 R 228,644 R 228,558 LNG By Truck Canada 367 0 0 139 139 88 0 0 By Vessel Egypt 0 2,811 29,194 0 0 0 0 0 Nigeria 2,590 0 2,362 2,590 0 0 0 0 Norway 5,627 3,286

320

Microsoft Word - table_09.doc  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Table 9 Created on: 12/12/2013 2:08:24 PM Table 9. Underground natural gas storage - by season, 2011-2013 (volumes in billion cubic feet) Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Year, Season, and Month Base Gas Working Gas Total Volume Percent Injections Withdrawals Net Withdrawals a 2011 Refill Season April 4,304 1,788 6,092 -223 -11.1 312 100 -212 May 4,304 2,187 6,491 -233 -9.6 458 58 -399 June 4,302 2,530 6,831 -210 -7.7 421 80 -340 July 4,300 2,775 7,075 -190 -6.4 359 116 -244 August 4,300 3,019 7,319 -134 -4.2 370 126 -244 September 4,301 3,416 7,717 -92 -2.6 454 55

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

December 2013  

Gasoline and Diesel Fuel Update (EIA)

26 26 Created on: 1/3/2014 2:06:11 PM Table 12. Net withdrawals from underground storage, by state, 2011-2013 (million cubic feet) 2013 State October September August July June May April March Alabama 928 -1,294 639 -421 798 -504 -1,880 773 Alaska a -1,600 -1,951 -1,482 -900 -961 -949 -968 -291 Arkansas -50 -204 -433 -406 -402 -442 -28 496 California -8,194 -9,247 -2,117 -3,173 -21,691 -32,304 -16,646 -7,757 Colorado -2,623 -5,906 -7,592 -6,810 -6,344 -3,864 1,721 3,554 Illinois -34,674 -38,902 -34,763 -32,123 -34,613 -27,221 -2,759 26,339 Indiana -3,236 -4,703 -3,675 -2,442 -2,580 -2,022 162 3,604 Iowa -11,825 -16,681 -14,568 -9,085 -6,072 -6,081 1,427 6,244 Kansas -3,833 -9,662 -11,896 -16,791 -13,321 -14,000 -3,587 12,194

322

Injections of Natural Gas into Underground Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 466,852 440,062 373,435 371,989 420,828 339,960 1973-2013 Alaska 1,065 1,131 977 1,518 1,981 1,627 2013-2013 Lower 48 States 465,787 438,931 372,458 370,471 418,848 338,332 2011-2013 Alabama 2,058 1,226 2,464 1,142 1,743 896 1994-2013 Arkansas 515 402 406 433 204 110 1990-2013 California 36,229 28,781 15,933 13,891 20,028 14,296 1990-2013 Colorado 5,575 7,902 8,359 10,862 9,051 8,258 1990-2013 Illinois 28,662 35,608 33,014 36,051 39,558 35,792 1990-2013 Indiana 2,204 2,677 2,868 3,774 5,015 3,670 1990-2013

323

Withdrawals of Natural Gas from Underground Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 49,062 68,287 98,217 101,604 66,303 85,230 1973-2013 Alaska 116 170 76 36 30 27 2013-2013 Lower 48 States 48,945 68,117 98,141 101,568 66,273 85,202 2011-2013 Alabama 1,554 2,024 2,042 1,781 450 1,824 1994-2013 Arkansas 73 61 1990-2013 California 3,925 7,090 12,760 11,774 10,781 6,102 1990-2013 Colorado 1,711 1,558 1,550 3,270 3,145 5,635 1990-2013 Illinois 1,441 994 891 1,289 656 1,119 1990-2013 Indiana 183 96 426 99 312 434 1990-2013 Iowa 523 337 651 895 1 1,474 1990-2013

324

December 2013  

Gasoline and Diesel Fuel Update (EIA)

7 7 Created on: 1/3/2014 3:01:12 PM Table 23. Average price of natural gas sold to electric power a consumers, by state, 2011-2013 (dollars per thousand cubic feet) 2013 State 2013 10-Month YTD 2012 10-Month YTD 2011 10-Month YTD October September August July June Alabama W W W W W 3.80 4.05 4.36 Alaska 4.71 4.36 5.05 4.78 5.11 4.86 4.82 4.78 Arizona W W W 4.49 4.45 4.22 4.38 4.73 Arkansas W W W 4.18 W W W W California W 3.57 4.82 4.43 4.41 R 4.26 4.45 4.55 Colorado W W 5.15 W 4.58 R 4.51 R 4.56 4.80 Connecticut 5.80 W 5.28 3.99 4.11 3.92 5.09 4.49 Delaware -- -- W -- -- -- -- -- District of Columbia -- -- 4.96 -- -- -- -- -- Florida W 4.74 5.91 W W 4.71 W 5.24 Georgia W W 4.85 4.37 3.85 4.10 W 4.60 Hawaii -- -- -- -- -- -- -- --

325

Net Withdrawals of Natural Gas from Underground Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. -136,395 -417,790 -371,775 -275,218 -270,385 -354,525 1973-2013 Alaska -968 -949 -961 -900 -1,482 -1,951 2013-2013 Lower 48 States -135,426 -416,842 -370,814 -274,317 -268,903 -352,575 2011-2013 Alabama -1,880 -504 798 -421 639 -1,294 1993-2013 Arkansas -28 -442 -402 -406 -433 -204 1990-2013 California -16,646 -32,304 -21,691 -3,173 -2,117 -9,247 1990-2013 Colorado 1,721 -3,864 -6,344 -6,810 -7,592 -5,906 1990-2013 Illinois -2,759 -27,221 -34,613 -32,123 -34,763 -38,902 1990-2013 Indiana

326

December 2013  

Gasoline and Diesel Fuel Update (EIA)

2 2 Created on: 1/3/2014 2:31:14 PM Table 16. Natural gas deliveries to industrial consumers, by state, 2011-2013 (million cubic feet) 2013 State 2013 10-Month YTD 2012 10-Month YTD 2011 10-Month YTD October September August July June Alabama 147,551 142,162 125,643 15,240 14,100 14,677 14,507 14,328 Alaska 3,288 5,197 5,576 392 311 370 297 262 Arizona 17,115 18,533 17,301 1,746 1,484 1,417 1,435 1,325 Arkansas 70,178 67,182 69,873 7,334 6,611 6,477 6,522 6,312 California 605,679 616,078 586,658 60,529 63,806 67,915 64,841 59,316 Colorado NA 57,779 58,486 6,570 4,545 4,741 4,670 NA Connecticut NA 21,998 21,736 NA 1,968 2,010 2,070 1,933 Delaware NA 23,173 14,803 2,554 NA 2,463 2,519 2,578 District of Columbia 0 0 0 0 0 0 0 0 Florida 84,328 80,433

327

U.S. Price of Liquefied Natural Gas Imports by Point of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. Total 4.90 4.51 8.65 4.59 7.42 9.96 1997-2013 From Canada -- -- -- 13.37 13.54 10.52 2013-2013 Highgate Springs, VT 13.37 13.54 10.52 2013-2013 From Algeria -- -- -- -- -- -- 1989-2013 From Australia -- -- -- -- -- -- 1997-2013 From Brunei -- -- -- -- -- -- 2001-2013 From Egypt -- -- -- -- -- -- 2003-2013 Cameron, LA 2011-2011 Elba Island, GA 2011-2012 Freeport, TX 2011-2011 Gulf LNG, MS 2011-2011 From Equatorial Guinea -- -- -- -- -- -- 2007-2013 From Indonesia -- -- -- -- -- -- 1997-2013 From Malaysia -- -- -- -- -- -- 1999-2013 From Nigeria -- -- -- -- -- 15.74 1994-2013 Cove Point, MD 15.74 2011-2013 From Norway -- -- -- -- 14.85 14.85 2007-2013

328

December 2013  

Gasoline and Diesel Fuel Update (EIA)

32 32 Created on: 1/3/2014 2:22:48 PM Table 14. Natural gas deliveries to residential consumers, by state, 2011-2013 (million cubic feet) 2013 State 2013 10-Month YTD 2012 10-Month YTD 2011 10-Month YTD October September August July June Alabama 25,157 18,997 27,689 1,146 783 771 718 984 Alaska 13,905 15,507 14,959 1,322 994 593 500 589 Arizona 31,222 27,941 29,207 1,671 1,132 1,031 1,052 1,226 Arkansas 24,919 18,775 26,676 836 R 627 634 633 758 California 363,904 366,533 381,684 28,241 19,688 21,203 20,883 22,863 Colorado 99,440 82,710 92,866 8,913 3,201 2,661 2,677 3,653 Connecticut 35,656 29,924 35,898 1,832 1,167 981 903 1,202 Delaware NA 6,094 7,846 308 180 158 149 196 District of Columbia NA 7,784 9,434 NA 275 248 274 NA Florida NA 11,477

329

Underground Working Natural Gas in Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 1,857,570 2,270,934 2,642,060 2,936,813 3,210,598 3,564,920 1973-2013 Alaska 14,007 15,277 16,187 17,087 18,569 20,455 2013-2013 Lower 48 States 1,843,563 2,255,657 2,625,874 2,919,726 3,192,029 3,544,465 2011-2013 Alabama 20,405 20,908 20,110 20,532 19,968 21,262 1995-2013 Arkansas 1,486 1,928 2,330 2,735 3,168 3,372 1990-2013 California 255,453 287,757 309,448 326,906 329,024 338,271 1990-2013 Colorado 15,625 19,489 25,833 32,642 40,240 46,136 1990-2013 Illinois 50,160 75,951 110,815 142,938 177,700 218,245 1990-2013

330

Injections of Natural Gas into Underground Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 272,001 466,852 440,062 373,435 371,989 420,828 1973-2013 Alaska 1,895 1,065 1,131 977 1,518 1,981 2013-2013 Lower 48 States 270,106 465,787 438,931 372,458 370,471 418,848 2011-2013 Alabama 2,934 2,058 1,226 2,464 1,142 1,743 1994-2013 Arkansas 213 515 402 406 433 204 1990-2013 California 21,631 36,229 28,781 15,933 13,891 20,028 1990-2013 Colorado 2,863 5,575 7,902 8,359 10,862 9,051 1990-2013 Illinois 15,713 28,662 35,608 33,014 36,051 39,558 1990-2013 Indiana 461 2,204 2,677 2,868 3,774 5,015 1990-2013

331

Underground Working Natural Gas in Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Monthly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 1,857,570 2,270,934 2,642,060 2,936,813 3,210,598 3,564,920 1973-2013 Alaska 14,007 15,277 16,187 17,087 18,569 20,455 2013-2013 Lower 48 States 1,843,563 2,255,657 2,625,874 2,919,726 3,192,029 3,544,465 2011-2013 Alabama 20,405 20,908 20,110 20,532 19,968 21,262 1995-2013 Arkansas 1,486 1,928 2,330 2,735 3,168 3,372 1990-2013 California 255,453 287,757 309,448 326,906 329,024 338,271 1990-2013 Colorado 15,625 19,489 25,833 32,642 40,240 46,136 1990-2013 Illinois 50,160 75,951 110,815 142,938 177,700 218,245 1990-2013

332

U.S. Liquefied Natural Gas Imports by Point of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

5,171 5,626 8,046 8,111 8,809 16,950 1997-2013 5,171 5,626 8,046 8,111 8,809 16,950 1997-2013 From Canada 0 0 0 88 139 139 2013-2013 Highgate Springs, VT 88 139 139 2013-2013 From Algeria 0 0 0 0 0 0 1973-2013 From Australia 0 0 0 0 0 0 1973-2013 From Brunei 0 0 0 0 0 0 2001-2013 From Egypt 0 0 0 0 0 0 2005-2013 Cameron, LA 2011-2011 Elba Island, GA 2011-2012 Freeport, TX 2011-2011 Gulf LNG, MS 2011-2011 From Equatorial Guinea 0 0 0 0 0 0 2007-2013 From Indonesia 0 0 0 0 0 0 1997-2013 From Malaysia 0 0 0 0 0 0 1999-2013 From Nigeria 0 0 0 0 0 2,590 1997-2013 Cove Point, MD 2,590 2011-2013 From Norway 0 0 0 0 2,709 2,918 2007-2013 Cove Point, MD 2011-2011 Freeport, TX 2,709 2,918 2013-2013 Sabine Pass, LA 2011-2012 From Oman 0 0 0 0 0 0 2000-2013 From Peru

333

December 2013  

Gasoline and Diesel Fuel Update (EIA)

2 2 Created on: 1/3/2014 2:40:21 PM Table 18. Natural gas deliveries to all consumers, by state, 2011-2013 (million cubic feet) 2013 State 2013 10-Month YTD 2012 10-Month YTD 2011 10-Month YTD October September August July June Alabama 471,389 520,411 451,646 45,014 R 42,915 R 50,149 R 47,114 R 45,888 Alaska NA 68,902 69,414 5,440 R 4,550 R 4,126 R 3,897 R 4,083 Arizona 253,710 286,379 233,580 21,017 R 29,941 R 37,008 R 36,692 R 28,315 Arkansas 214,482 234,496 224,318 17,438 R 17,323 R 19,742 R 20,078 R 19,845 California NA 1,917,710 1,669,231 179,561 R 184,051 R 190,833 R 186,282 R 165,343 Colorado NA 252,408 261,024 24,650 R 18,366 R 18,682 R 19,108 NA Connecticut NA 177,905 183,061 NA R 14,656 R 14,945 R 16,365 R 13,555 Delaware NA 84,156 61,996 7,087

334

November 2013  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Created on: 12/12/2013 2:01:51 PM Table 5. U.S. natural gas exports, 2011-2013 (volumes in million cubic feet; prices in dollars per thousand cubic feet) 2013 2013 9-Month YTD 2012 9-Month YTD 2011 9-Month YTD September August July June May Exports Volume (million cubic feet) Pipeline Canada 708,142 702,067 702,447 69,733 68,325 66,473 75,846 81,695 Mexico 510,300 457,595 374,670 52,658 61,972 62,116 57,903 60,338 Total Pipeline Exports 1,218,442 1,159,662 1,077,117 122,391 130,297 128,589 133,749 142,032 LNG Exports By Vessel China 0 0 1,127 0 0 0 0 0 Japan 0 7,622 13,334 0 0 0 0 0 By Truck Canada 54 0

335

Year/PAD District Cokers Catalytic Crackers Hydrocrackers Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2011 - 2013 (Barrels per Calendar Day) Reformers Capacity Inputs 2011 2,396,787 5,794,214 1,687,745 2,093,849 4,952,455 1,466,627 2,570,970 3,346,457 93,700 673,300 41,500 37,932 490,729 18,030 PADD I 188,389 266,950 373,897 1,176,972 254,000 350,063 1,017,616 223,751 PADD II 664,852 812,244 1,318,440 2,933,842 841,285 1,183,318 2,570,348 744,638 PADD III 1,243,427 1,629,967 80,350 185,800 28,200 63,362 158,192 18,214 PADD IV 96,649 120,190 530,400 824,300 522,760 459,175 715,570 461,995 PADD V 377,652 517,106 2012 2,499,293 5,611,191 1,706,540 2,173,336 4,901,284 1,528,708 2,614,571 3,246,874 74,900 489,300 20,000

336

Withdrawals of Natural Gas from Underground Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 135,607 49,062 68,287 98,217 101,604 66,303 1973-2013 Alaska 927 116 170 76 36 30 2013-2013 Lower 48 States 134,680 48,945 68,117 98,141 101,568 66,273 2011-2013 Alabama 1,053 1,554 2,024 2,042 1,781 450 1994-2013 Arkansas 184 73 1990-2013 California 4,986 3,925 7,090 12,760 11,774 10,781 1990-2013 Colorado 4,584 1,711 1,558 1,550 3,270 3,145 1990-2013 Illinois 12,953 1,441 994 891 1,289 656 1990-2013 Indiana 623 183 96 426 99 312 1990-2013 Iowa 1,655 523 337 651 895 1 1990-2013

337

INSIGHTS INTO SURFACE HYDROGENATION IN THE INTERSTELLAR MEDIUM: OBSERVATIONS OF METHANIMINE AND METHYL AMINE IN Sgr B2(N)  

SciTech Connect

Multiple observations of methanimine (CH{sub 2}NH) and methyl amine (CH{sub 3}NH{sub 2}) have been performed toward Sgr B2(N) at 1, 2, and 3 mm using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory. In the frequency range 68-280 GHz, 23 transitions of CH{sub 2}NH and 170 lines of CH{sub 3}NH{sub 2} have been observed as individual, distinguishable features, although some are partially blended with other lines. For CH{sub 2}NH, the line profiles indicate V{sub LSR} = 64.2 {+-} 1.4 km s{sup -1} and {Delta}V{sub 1/2} = 13.8 {+-} 2.8 km s{sup -1}, while V{sub LSR} = 63.7 {+-} 1.6 km s{sup -1} and {Delta}V{sub 1/2} = 15.1 {+-} 3.0 km s{sup -1} for CH{sub 3}NH{sub 2}, parameters that are very similar to those of other organic species in Sgr B2(N). From these data, rotational diagrams were constructed for both species. In the case of CH{sub 2}NH, a rotational temperature of T{sub rot} = 44 {+-} 13 K and a column density of N{sub tot} = (9.1 {+-} 4.4) Multiplication-Sign 10{sup 14} cm{sup -2} were determined from the analysis. For CH{sub 3}NH{sub 2}, T{sub rot} = 159 {+-} 30 K and N{sub tot} = (5.0 {+-} 0.9) Multiplication-Sign 10{sup 15} cm{sup -2}, indicating that this species is present in much warmer gas than CH{sub 2}NH. The fractional abundances for CH{sub 2}NH and CH{sub 3}NH{sub 2} were established to be f (H{sub 2}) Almost-Equal-To 3.0 Multiplication-Sign 10{sup -10} and f (H{sub 2}) Almost-Equal-To 1.7 Multiplication-Sign 10{sup -9}, respectively. It has been proposed that CH{sub 2}NH is formed on grains via hydrogenation of HCN; further hydrogenation of CH{sub 2}NH on surfaces leads to CH{sub 3}NH{sub 2}. However, given the dissimilarity between the rotational temperatures and distributions of CH{sub 2}NH and CH{sub 3}NH{sub 2} in Sgr B2, it is improbable that these species are closely related synthetically, at least in this source. Both CH{sub 2}NH and CH{sub 3}NH{sub 2} are more likely created by neutral-neutral processes in the gas phase.

Halfen, D. T.; Ziurys, L. M. [Departments of Chemistry and Astronomy, Arizona Radio Observatory and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)] [Departments of Chemistry and Astronomy, Arizona Radio Observatory and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Ilyushin, V. V., E-mail: halfendt@as.arizona.edu, E-mail: lziurys@as.arizona.edu [Institute of Radio Astronomy of the National Academy of Sciences Ukraine, Chervonopraporna 4, 61002 Kharkov (Ukraine)

2013-04-10T23:59:59.000Z

338

"1. Seabrook","Nuclear","NextEra Energy Seabrook LLC",1247 "2. Granite Ridge","Gas","Granite Ridge Energy LLC",678  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire" Hampshire" "1. Seabrook","Nuclear","NextEra Energy Seabrook LLC",1247 "2. Granite Ridge","Gas","Granite Ridge Energy LLC",678 "3. NAEA Newington Power","Gas","NAEA Newington Energy LLC",525 "4. Merrimack","Coal","Public Service Co of NH",485 "5. Newington","Gas","Public Service Co of NH",400 "6. S C Moore","Hydroelectric","TransCanada Hydro Northeast Inc.,",194 "7. Schiller","Coal","Public Service Co of NH",156 "8. Comerford","Hydroelectric","TransCanada Hydro Northeast Inc.,",145 "9. Berlin Gorham","Hydroelectric","Great Lakes Hydro America LLC",30

339

Thermochemical Analysis for Purification of Polysilicon Melts  

DOE Green Energy (OSTI)

Chemical Equilibrium calculations are presented that are relevant to the purification of molten silicon by gas-blowing. The equilibrium distributions of silicon, boron, phosphorus carbon and iron among the solid, liquid and gas phases are reported for a variety of added chemicals, temperatures and total pressures. The identities of the dominant chemical species for each element in each phase are also provided for these conditions. The added gases examined are O(2), air, water, wet air, HCl, Cl(2), Cl(2)/O(2), SiCl(4), NH(3), NH(4)OH, and NH(4)Cl. These calculations suggest possible purification schemes, although kinetic or transport limitations may prove to be significant

Ho, Pauline: Gee, James M.

1999-05-01T23:59:59.000Z

340

C NMR Spectra (see p S10)  

E-Print Network (OSTI)

S31 1 H and 13 C NMR Spectra (see p S10) NHBn Me Ph 10 #12;S32 1 H and 13 C NMR Spectra (see p S10) NHBn Me Ph 11 #12;S33 1 H and 13 C NMR Spectra (see p S11) NH-i-Pr n-Bu NH-i-Pr n-Bu 12 Me Me 13 #12;S34 1 H and 13 C NMR Spectra (see p S11)NH-i-Pr Me Ph 14 #12;S35 1 H and 13 C NMR Spectra (see p S11

Collum, David B.

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Title Page Applied and Environmental Microbiology 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied and Environmental Microbiology 1 Applied and Environmental Microbiology 1 2 Title Natural Competence in Thermoanaerobacter and Thermoanaerobacterium Species 3 Running Title Thermonanerobacter Natural Competence 4 5 Authors and Affiliations 6 A. Joe Shaw 1,2 , David A. Hogsett 1 , Lee R. Lynd 1,2,3 * 7 1 Mascoma Corporation, Lebanon, NH 03766 8 2 Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 9 3 Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 10 11 Corresponding Author 12 Lee R. Lynd 13 Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 14 Phone: 603.646.2231 15 Email: lee.lynd@dartmouth.edu 16 17 18 19 20 21 22 23 Copyright © 2010, American Society for Microbiology and/or the Listed Authors/Institutions. All Rights Reserved.

342

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

flux - withstand high pressure and temperature - be chemically stable in presence of steam, CO, CO 2 , CH 4 , H 2 S, NH 3 , Hg, halides, etc. Metallic membranes (Pd, Pd alloys,...

343

Some environmentally friendly formulations as inhibitors for mild ...  

Science Conference Proceedings (OSTI)

remain in solution to act as depolarizer. In acid solutions, amino acids exist as protonated species. (as a result of the presence of the NH2 group) which are not

344

Radiative Transfer Simulations Using Mesoscale Cloud Model Outputs: Comparisons with Passive Microwave and Infrared Satellite Observations for Midlatitudes  

Science Conference Proceedings (OSTI)

Real midlatitude meteorological cases are simulated over western Europe with the cloud mesoscale model Mso-NH, and the outputs are used to calculate brightness temperatures at microwave frequencies with the Atmospheric Transmission at Microwave (...

Ingo Meirold-Mautner; Catherine Prigent; Eric Defer; Juan R. Pardo; Jean-Pierre Chaboureau; Jean-Pierre Pinty; Mario Mech; Susanne Crewell

2007-05-01T23:59:59.000Z

345

Response of the Wintertime Northern Hemisphere Atmospheric Circulation to Current and Projected Arctic Sea Ice Decline: A Numerical Study with CAM5  

Science Conference Proceedings (OSTI)

The wintertime Northern Hemisphere (NH) atmospheric circulation response to current (200712) and projected (208099) Arctic sea ice decline is examined with the latest version of the Community Atmospheric Model (CAM5). The numerical experiments ...

Yannick Peings; Gudrun Magnusdottir

2014-01-01T23:59:59.000Z

346

A Strategy for the Abandonment of Modified In-Situ Oil Shale Retorts  

E-Print Network (OSTI)

spent shale, latent heat within the retort, gases, processgas and process water and leaves behind large underground chambers (retorts) of spent shale andspent shale into a pozzolan or cement, use of NH3 in the gas

Fox, J.P.; Persoff, P.; Moody, M.M.; Sisemore, C.J.

1978-01-01T23:59:59.000Z

347

SOLAR ENERGY PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1978  

E-Print Network (OSTI)

gas- fired NH3/H20 absorption chiller. The first phase ofof any single-effect absorption chiller that is similar inabsorption air conditioner will be completed during 1979. Reports on the testing of the chiller

authors, Various

2011-01-01T23:59:59.000Z

348

The science and politics of increasing nitrogen pollution from human activity : case study of the Aberjona watershed  

E-Print Network (OSTI)

The biogeochemical cycling of nitrogen has critical implications for all life on earth. The Haber-Bosch process (1909) paved the way for the industrial fixation of NH3 from unreactive atmospheric dinitrogen, a phenomenon ...

Orosz, Matthew S. (Matthew Sndor), 1977-

2006-01-01T23:59:59.000Z

349

Tropical Subsurface Salinity and Tritium Distributions in the Pacific: Their Differences and Formation Mechanisms  

Science Conference Proceedings (OSTI)

While high salinity water extends to the equator in the upper thermocline of the Pacific in the Southern Hemisphere (SH), it hits the western boundary (WB) farther north of the equator in the Northern Hemisphere (NH), suggesting that no interior ...

Masami Nonaka; Kensuke Takeuchi

2001-05-01T23:59:59.000Z

350

A Novel Low Noise Regenerative Divide-by-Four Circuit  

Science Conference Proceedings (OSTI)

... of a chip inductor of 10 nH in series with a chip capacitor of about 40 ... MHz quartz oscillator that was multiplied up to 400 MHz using ultra-low- noise ...

2002-10-15T23:59:59.000Z

351

Orographic Clouds in Terrain-Blocked Flows: An Idealized Modeling Study  

Science Conference Proceedings (OSTI)

Idealized numerical simulations of moist strongly stratified flow over topography are used to study the processes that control orographic clouds in terrain-blocked flows as a joint function of the nondimensional flow parameter Nh/U, the ...

Joseph Galewsky

2008-11-01T23:59:59.000Z

352

Using Ionic Liquids to Make Titanium Dioxide Nanotubes  

or organic polarized electrolytes baths containing fluoride species such as NH 4 F, HF, or NaF. However, anodization-produced TiO 2 NT arrays are usually covered by

353

ANAEROBIC BIOLOGICAL TREATMENT OF IN-SITU RETORT WATER  

E-Print Network (OSTI)

condensate, on the other hand, exits from the retort as steam andSteam stripping of Geokinetics retort water (initial NH3 = 3,000 mg/1) removed 90 percent of the ammonia with recycle of condensate

Ossio, Edmundo

2012-01-01T23:59:59.000Z

354

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nashua Community College, Nashua NH Nashua Community College Solar Hot Water Install 16 flat-plate solar hot water collectors atop existing gym roof. 03 04 11 Stephen B. Humble...

355

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Hampshire NH Hospital Solar Hot Water Heater Design and installation of roof-mounted solar panels used to heat water for a hot water use in the Acute Psychiatric Care Facility...

356

Interhemispheric influence of the northern summer monsoons on the southern subtropical anticyclones  

Science Conference Proceedings (OSTI)

The southern subtropical anticyclones are notably stronger in the austral winter than in summer, particularly over the Atlantic and Indian Ocean basins. This is in contrast with the Northern Hemisphere (NH), in which subtropical anticyclones are ...

Sang-Ki Lee; Carlos R. Mechoso; Chunzai Wang; J. David Neelin

357

Figure 23. Average price of natural gas delivered to U.S. commercial...  

Annual Energy Outlook 2012 (EIA)

Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey." IN OH TN WV VA KY MD PA NY VT NH MA CT ME RI DE DC NC SC GA FL NJ AL...

358

Microsoft Word - figure_22.doc  

Gasoline and Diesel Fuel Update (EIA)

Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey." IN OH TN WV VA KY MD PA NY VT NH MA CT ME RI DE DC NC SC GA FL NJ AL...

359

Microsoft Word - figure_21.doc  

Annual Energy Outlook 2012 (EIA)

of Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey." IN OH TN WV VA KY MD PA NY VT NH MA CT ME RI DE DC NC SC GA...

360

Microsoft Word - figure_23.doc  

Annual Energy Outlook 2012 (EIA)

11.00+ Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." IN OH TN WV VA KY MD PA NY VT NH MA...

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Microsoft Word - figure_23.doc  

Gasoline and Diesel Fuel Update (EIA)

Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." IN OH TN WV VA KY MD PA NY VT NH MA...

362

Microsoft Word - B5D7DEEC.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Three types of 19 percent aqueous NH 3 spills were simulated: a 400-pound (181-kilograms) leak from a valve, an uncontained 23.1-ton (21-metric ton) (6,000-gallon...

363

Ab initio study of the low-temperature phases of lithium imide  

E-Print Network (OSTI)

We present a low-temperature structural model for lithium imide (Li[subscript 2]NH) that is consistent with experimental studies. Using the cluster expansion formalism and density-functional theory, we have identified a ...

Mueller, Timothy K.

364

Vice President Biden Announces 200,000 Homes Weatherized Under...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act August 26, 2010 - 12:00am Addthis Manchester, N.H. - At an event with homeowners and workers who benefited from the program, today in Manchester, New Hampshire, Vice...

365

SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.  

E-Print Network (OSTI)

Procedure for Preparing Carbon Dioxide-Free Water. Sampleammonia (NH 3), carbon dioxide (C0 2 ), hydrogen sulfide (Hbicarbonate (NaHC0 3 ) in carbon dioxide~free water and

Fox, J.P.

2013-01-01T23:59:59.000Z

366

Interhemispheric Influence of the Northern Summer Monsoons on Southern Subtropical Anticyclones  

Science Conference Proceedings (OSTI)

The southern subtropical anticyclones are notably stronger in austral winter than summer, particularly over the Atlantic and Indian Ocean basins. This is in contrast with the Northern Hemisphere (NH), in which subtropical anticyclones are more ...

Sang-Ki Lee; Carlos R. Mechoso; Chunzai Wang; J. David Neelin

2013-12-01T23:59:59.000Z

367

Process for making whiskers, fibers and flakes of transition metal compounds  

DOE Patents (OSTI)

A process for making titanium and chromium nitrides of known morphology by reacting potassium titanate and chromium oxide in the gas phase with NH.sub.3. The products exhibit the same morphology as the starting material.

Bamberger, Carlos E. (Oak Ridge, TN)

1992-01-01T23:59:59.000Z

368

Ensemble Simulation of the Lightning Flash Variability in a 3D Cloud Model with Parameterizations of Cloud Electrification and Lightning Flashes  

Science Conference Proceedings (OSTI)

A series of ensemble simulations were performed to study the statistics of flash characteristics produced by an electrification and lightning scheme in the cloud-resolving model Mso-NH. Here, the electrical variability of two stormsone ...

Jean-Pierre Pinty; Christelle Barthe

2008-01-01T23:59:59.000Z

369

Temporal Variability in the Expression of the Arctic Oscillation in the North Pacific  

Science Conference Proceedings (OSTI)

Although the Arctic Oscillation (AO) and North Atlantic Oscillation (NAO) have been identified as important modes of climate variability during the Northern Hemisphere (NH) winter, whether the AO or the NAO is more fundamental to the description ...

Hongxu Zhao; G. W. K. Moore

2009-06-01T23:59:59.000Z

370

HEAT TRANSFER DURING THE SHOCK-INDUCED IGNITION OF AN EXPOLSIVE GAS  

E-Print Network (OSTI)

11 Stagnation Point Heat Transfer Measurements in Air atR.M. , and Kemp, N.H. , Heat Transfer from High TemperatureProceedings of the 1963 Heat Transfer and Fluid Mechanics

Heperkan, H.

2013-01-01T23:59:59.000Z

371

Effective red compensation of Sr2SiO4: Dy3+ phosphor by codoping Mn2+ ions and its energy transfer  

Science Conference Proceedings (OSTI)

Mn2+ ions codoped Sr2SiO4 : Dy3+ phosphors were prepared by the solid-state reaction method using NH4Cl as the flux. Their phase compositions, photoluminescence properties, and the energy transfer ...

Le Zhang, Zhou Lu, Pengde Han, Lixi Wang, Qitu Zhang

2012-01-01T23:59:59.000Z

372

Radiative and Dynamical Forcing of the Surface and Atmospheric Temperature Anomalies Associated with the Northern Annular Mode  

Science Conference Proceedings (OSTI)

On the basis of the total energy balance within an atmospheresurface column, an attribution analysis is conducted for the Northern Hemisphere (NH) atmospheric and surface temperature response to the northern annular mode (NAM) in boreal winter. ...

Yi Deng; Tae-Won Park; Ming Cai

2013-07-01T23:59:59.000Z

373

Tracking Soil Microbes' Response to Long-Term Warming | U.S....  

Office of Science (SC) Website

University of New Hampshire Durham, NH 03824 serita.frey@unh.edu Funding This work, including maintenance of the long-term soil warming experiments, was supported by a...

374

A Triple-Path Denuder Instrument for Ambient Particulate Sampling and Analysis  

Science Conference Proceedings (OSTI)

A field instrument for sampling sulfate and nitrate particulate matter in a controlled chemical environment has been constructed and field tested. The instrument contains HNO3 and NH3 denuders and an ambient air path, all connected by manifold to ...

Briant L. Davis; L. Ronald Johnson; Bryan J. Johnson; Robert J. Hammer

1988-02-01T23:59:59.000Z

375

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network (OSTI)

Hydrogen Using NH3-Fueled SOFC Systems, Ammonia - The Keysolid oxide fuel cell (SOFC) systems as these are relativelyper kW in an ammonia-based SOFC system compared with about $

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

376

Fusion systems and biset functors via ghost algebras  

E-Print Network (OSTI)

G ? G/N is the canonical projection. Deflation from G to G/NH denote the canonical projection morphisms. Further, defineL) and so we have canonical projection morphisms ? i : p i (

O'Hare, Shawn Michael

2013-01-01T23:59:59.000Z

377

Multiple Flow Regimes in the Northern Hemisphere Winter. Part II: Sectorial Regimes and Preferred Transitions  

Science Conference Proceedings (OSTI)

This paper presents an observational analysis of recurrent flow patterns in the Northern Hemisphere (NH) winter, based on a 37-year series of daily 700-mb height anomalies. Large-scale anomaly patterns that appear repeatedly and persist beyond ...

Masahide Kimoto; Michael Ghil

1993-08-01T23:59:59.000Z

378

The Structure and Maintenance of Stationary Waves in the Winter Northern Hemisphere  

Science Conference Proceedings (OSTI)

Previous studies of extratropical stationary waves in the winter Northern Hemisphere (NH) often focused on effects of orography and landocean thermal contrast on the formation, structure, and maintenance of these waves. In contrast, research ...

Tsing-Chang Chen

2005-10-01T23:59:59.000Z

379

On the Origin of the Surface Air Temperature Difference between the Hemispheres in Earth's Present-Day Climate  

Science Conference Proceedings (OSTI)

In today's climate, the annually averaged surface air temperature in the Northern Hemisphere (NH) is 12C higher than in the Southern Hemisphere (SH). Historically, this interhemispheric temperature difference has been attributed to a number of ...

Georg Feulner; Stefan Rahmstorf; Anders Levermann; Silvia Volkwardt

2013-09-01T23:59:59.000Z

380

A Global Climatology of Tropical Moisture Exports  

Science Conference Proceedings (OSTI)

In a recent paper, a climatology of tropical moisture exports (TMEs) to the Northern Hemisphere (NH) was constructed on the basis of 7-day forward trajectories, started daily from the tropical lower troposphere, which were required to reach a ...

Peter Knippertz; Heini Wernli; Gregor Glser

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","92013" ,"Release Date:","12122013" ,"Next Release Date:","172014" ,"Excel File Name:","n3020nh3m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

382

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network (OSTI)

200 0 F condenser) absorber cooling airat C is fed to the condenser through the preheater, A smallAfter condensation in the condenser, the liquid NH3 expands

Authors, Various

2010-01-01T23:59:59.000Z

383

Detailed GC/MS Fragmentation Mechanisms for ...  

Science Conference Proceedings (OSTI)

... Page 39. Ionization Potentials ?Nitrogen lone pair ? 8.97 eV for CH 3 NH 2 ? Benzene ? electrons ? 9.25 eV for C 6 H 6 ? Oxygen non-bonding e- ...

2013-04-30T23:59:59.000Z

384

Microsoft Word - Cover Page - Exhibit 9  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

J. Lyman Boat Launch Facility Source: USGS 1:100,000 Topographic Quadrangles; NH GRANIT GIS Data; Vermont Center for Geographic Information; Esri; Burns & McDonnell. NORTH 7,000 0...

385

Microsoft Word - Cover Page - Exhibit 7  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C h a n d le rs P u rc h a s e Source: USGS 1:100,000 Topographic Quadrangles; NH GRANIT GIS Data; Vermont Center for Geographic Information; Esri; Burns & McDonnell. NORTH 10,000...

386

Decisions on how Alternates will be Handled at 2013 Competition: The very good question has been raised with how we are handing alternates this year. While I think this  

E-Print Network (OSTI)

is on the agenda. Any questions, please contact Rhiannon Beauregard, NH State 4-H Animal and Agricultural Science Education Coordinator at Rhiannon.beauregard@unh.edu or at (603) 862-2188. The University of New Hampshire

New Hampshire, University of

387

New England Wind Forum: More Search Options  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT More Search Options New England Wind Forum Site...

388

KK9, Nanostructure Decorated AlGaN/GaN HEMTs for Chemical ...  

Science Conference Proceedings (OSTI)

The high sensitivity of ZnO, towards the exposure to NH3, H2, O3, CO, NO2, and ethanol etc., makes it viable for gas sensing applications. Similarly, the same...

389

The New Horizons Pluto Kuiper belt Mission: An Overview with Historical Context  

E-Print Network (OSTI)

NASAs New Horizons (NH) Pluto-Kuiper belt (PKB) mission was launched on 19 January 2006 on a Jupiter Gravity Assist (JGA) trajectory toward the Pluto system for a 14 July 2015 closest approach; Jupiter

S. Alan Stern A

2007-01-01T23:59:59.000Z

390

Interannual Variability and Trends of Extratropical Ozone. Part II: Southern Hemisphere  

Science Conference Proceedings (OSTI)

A principal component analysis (PCA) is applied to the Southern Hemisphere (SH) total column ozone following the method established for analyzing the data in the Northern Hemisphere (NH) in a companion paper. The interannual variability (IAV) of ...

Xun Jiang; Steven Pawson; Charles D. Camp; J. Eric Nielsen; Run-Lie Shia; Ting Liao; Varavut Limpasuvan; Yuk L. Yung

2008-10-01T23:59:59.000Z

391

Characterizing the Variability and Extremes of the Stratospheric Polar Vortices Using 2D Moment Analysis  

Science Conference Proceedings (OSTI)

The mean state, variability, and extreme variability of the stratospheric polar vortices, with an emphasis on the Northern Hemisphere (NH) vortex, are examined using two-dimensional moment analysis and extreme value theory (EVT). The use of ...

Daniel M. Mitchell; Andrew J. Charlton-Perez; Lesley J. Gray

2011-06-01T23:59:59.000Z

392

Synthesis, Characterization, and Cytotoxicity of Platinum(IV) Carbamate Complexes  

E-Print Network (OSTI)

The synthesis, characterization, and cytotoxicity of eight new platinum(IV) complexes having the general formula cis,cis,trans-[Pt(NH[subscript 3)[subscript 2]Cl[subscript 2](O[subscript 2]CNHR)[subscript 2

Wilson, Justin Jeff

393

Determination of the primary structure and carboxyl pK As of heparin-derived oligosaccharides by band-selective homonuclear-decoupled two-dimensional 1H NMR  

E-Print Network (OSTI)

oligosaccharides by BASHD-NMR chloride and heparinase I (ECfor measuring pH in NMR tubes was obtained from Micro-NH 03110, USA). Shigemi NMR tubes were obtained from Shigemi

Nguyen, Khanh; Rabenstein, Dallas L.

2011-01-01T23:59:59.000Z

394

ROBIN LAMBERT GRAHAM  

NLE Websites -- All DOE Office Websites (Extended Search)

or 1-630-252-6333 (FAX); GrahamRL@ANL.GOV EDUCATI ON: Ph.D. (1982) Forest Ecology, Oregon State University, Corvallis, OR A.B. (1976) Biology, Dartmouth College, Hanover, NH Summa...

395

Season-Dependent Forecast Skill of the Leading Forced Atmospheric Circulation Pattern over the North Pacific and North American Region  

Science Conference Proceedings (OSTI)

Multimodel ensemble (MME) seasonal forecasts are analyzed to evaluate numerical model performance in predicting the leading forced atmospheric circulation pattern over the extratropical Northern Hemisphere (NH). Results show that the time ...

XiaoJing Jia; Hai Lin; June-Yi Lee; Bin Wang

2012-10-01T23:59:59.000Z

396

092- Phase Transformation and X-Ray Diffraction Studies of Li ...  

Science Conference Proceedings (OSTI)

The results of the effect of the impurity gases in hydrogen showed that the O2 and NH3 have .... 145- The Synergy of XRD and XRF in a Shale and Slate Analysis.

397

--No Title--  

NLE Websites -- All DOE Office Websites (Extended Search)

Ph.D. Powerspan Corp., P.O. Box 219, 54 Old Bay Road, New Durham, NH 03855 Evan J. Granite* and Henry W. Pennline National Energy Technology Laboratory, United States...

398

Metal Aminoboranes  

Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be ...

399

When Highly Qualified Teachers Use Prescriptive Curriculum: Tensions Between Fidelity and Adaptation to Local Context  

E-Print Network (OSTI)

Jossey-Bass. Berman, P. & McLaughlin, M. W. (1975). FederalNH: Heinemann. McLaughlin, M. W. (1987). Learning fromAgent Study (Berman & McLaughlin, 1975), a large scale

Maniates, Helen

2010-01-01T23:59:59.000Z

400

Steam effect on NOx reduction over lean NOx trap PtBaO/Al2O3 ...  

Science Conference Proceedings (OSTI)

Compared to dry atmosphere, steam promoted NOx reduction; however, under ... stored NOx over PtBaO/Al2O3 suggest that steam causes NH3 formation over...

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A Radar Simulator for High-Resolution Nonhydrostatic Models  

Science Conference Proceedings (OSTI)

A full radar simulator for high-resolution (15 km) nonhydrostatic models has been developed within the research nonhydrostatic mesoscale atmospheric (Meso-NH) model. This simulator is made up of building blocks, each of which describes a ...

Olivier Caumont; Vronique Ducrocq; Guy Delrieu; Marielle Gosset; Jean-Pierre Pinty; Jacques Parent du Chtelet; Herv Andrieu; Yvon Lematre; Georges Scialom

2006-08-01T23:59:59.000Z

402

The Unusual Midwinter Warming in the Southern Hemisphere Stratosphere 2002: A Comparison to Northern Hemisphere Phenomena  

Science Conference Proceedings (OSTI)

A strong midwinter warming occurred in the Southern Hemisphere (SH) stratosphere in September 2002. Based on experiences from the Northern Hemisphere (NH), this event can be defined as a major warming with a breakdown of the polar vortex in ...

Kirstin Krger; Barbara Naujokat; Karin Labitzke

2005-03-01T23:59:59.000Z

403

Some Considerations Relevant to Computing Average Hemispheric Temperature Anomalies  

Science Conference Proceedings (OSTI)

Three data bases of gridded surface temperature anomalies were used to assess the sensitivity of the average estimated Northern Hemisphere (NH) temperature anomaly to: 1) extreme gridpoint values and 2) zonal band contributions. Over the last 100 ...

S. L. Grotch

1987-07-01T23:59:59.000Z

404

Supercritical water oxidation of landfill leachate  

Science Conference Proceedings (OSTI)

Highlights: > Thermal analysis of NH{sub 3} in supercritical water oxidation reaction. > Research on the catalytic reaction of landfill leachate by using response surface method. > Kinetic research of supercritical water oxidation of NH{sub 3} with and without MnO{sub 2} catalyst. - Abstract: In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N{sub 2} is the main product, and the formation of NO{sub 2} and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 deg. C, reaction time of 50-300 s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH{sub 3} conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH{sub 3} is a refractory compound in supercritical water. The conversion of COD and NH{sub 3} were higher in the presence of MnO{sub 2} than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH{sub 3} conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH{sub 3}. The activation energy with and without catalyst for NH{sub 3} oxidation were 107.07 {+-} 8.57 kJ/mol and 83.22 {+-} 15.62 kJ/mol, respectively.

Wang Shuzhong, E-mail: s_z_wang@yahoo.cn [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China); Guo Yang [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China); Chen Chongming [Hebei Electric Power Research Institute, Shijizhuang, Hebei 050021 (China); Zhang Jie; Gong Yanmeng; Wang Yuzhen [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China)

2011-09-15T23:59:59.000Z

405

Production of carrier-free H.sup.11 CN  

DOE Patents (OSTI)

A method of synthesizing H.sup.11 CN involving the proton irradiation of N.sub.2 + H.sub.2 to produce a mixture of .sup.11 CH.sub.4 and NH.sub.3 followed by the reaction of .sup.11 CH.sub.4 and NH.sub.3 to produce H.sup.11 CN and the separation of carrier free H.sup.11 CN.

Christman, David R. (Setauket, NY); Finn, Ronald D. (Westhampton Beach, NY); Wolf, Alfred P. (Setauket, NY)

1978-01-01T23:59:59.000Z

406

Interaction of Lithium Hydride and Ammonia Borane in THF  

DOE Green Energy (OSTI)

The two-step reaction between LiH and NH3BH3 in THF leads to the production of more than 14 wt% of hydrogen at 40 C.In the present study we investigate the reactivity of AB dissolved in tetrahydrofuran (THF) with a suspension of LiH and observe the formation of LiNH2BH3 and enhanced reaction kinetics with an interesting dependence on AB concentration.

Xiong, Zhitao; Chua, Yong Shen; Wu, Guotao; Xu, W. L.; Chen, Ping; Shaw, Wendy J.; Karkamkar, Abhijeet J.; Linehan, John C.; Smurthwaite, Tricia D.; Autrey, Thomas

2008-12-01T23:59:59.000Z

407

International Energy Agency Programme of Research and Development on  

E-Print Network (OSTI)

Fischer- Tropsch or Methanol Synthesis 2nH2 + nCO (- CH2-)n + nH2O CO + 2H2 CH3OHMethane (SNG) Methanation StorageH2 in ICEs H2 & NG Blends Indirect Liquefaction SNG Carbon Products 26.1% H2 Separation Membranes Coal Strategies Central Hydrogen Production Liquid Fuel Production SNG Production Regional or Local

Oak Ridge National Laboratory

408

Assessment of Multi-Point Ammonia Measurement Systems  

Science Conference Proceedings (OSTI)

This report summarizes development and testing of in-duct gas sampling probes and a tunable diode laser (TDL) spectroscopic measurement system to determine the concentration of gaseous ammonia (NH3) in coal-fired power plant flue gases. Unlike the much slower conventional wet chemical measurement method, the duct probe and TDL NH3 measurement systems developed in this project enable plant operators to know ammonia slip concentrations in near real-time, allowing them to make appropriate adjustments.

2004-12-08T23:59:59.000Z

409

Formation of NOx precursors during Chinese pulverized coal pyrolysis in an arc plasma jet  

Science Conference Proceedings (OSTI)

The formation of NOx precursors (HCN and NH{sub 3}) from the pyrolysis of several Chinese pulverized coals in an arc plasma jet was investigated through both thermodynamic analysis of the C-H-O-N system and experiments. Results of thermodynamic analysis show that the dominant N-containing gaseous species is HCN together with a small amount of ammonia above the temperature of 2000 K. The increase of H content advances the formation of HCN and NH{sub 3}, but the yields of HCN and NH{sub 3} are decreased with a high concentration of O in the system. These results are accordant with the experimental data. The increasing of input power promotes the formation of HCN and NH{sub 3} from coal pyrolysis in an arc plasma jet. Tar-N is not formed during the process. The yield of HCN changes insignificantly with the changing of the residence time of coal particles in the reactor, but that of NH{sub 3} decreases as residence times increase because of the relative instability at high temperature. Adsorption and gasification of CO{sub 2} on the coal surface also can restrain the formation of HCN and NH{sub 3} compare to the results in an Ar plasma jet. Yields of HCN and NH{sub 3} are sensitive to the coal feeding rate, indicating that NOx precursors could interact with the nascent char to form other N-containing species. The formation of HCN and NH{sub 3} during coal pyrolysis in a H{sub 2}/Ar plasma jet are not dependent on coal rank. The N-containing gaseous species is released faster than others in the volatiles during coal pyrolysis in an arc plasma jet, and the final nitrogen content in the char is lower than that in the parent coal, which it is independent of coal type. 16 refs., 9 figs., 1 tab.

Wei-ren Bao; Jin-cao Zhang; Fan Li; Li-ping Chang [Taiyuan University of Technology, Taiyuan (China). Key Laboratory of Coal Science and Technology

2007-08-15T23:59:59.000Z

410

Alternate processing flowsheets for treating NCAW waste slurry with formic acid  

DOE Green Energy (OSTI)

High-level waste stored at the US Department of Energy`s Hanford Site will be pretreated and fed to the Hanford Waste Virtrification Plant (HWVP). The reference flowsheet used to develop the pretreatment process calls for formic acid. However, the potential for generating H{sub 2} and NH{sub 3} during treatment of high-level waste (HLW) with HCOOH was identified at Pacific Northwest Laboratory by Wiemers. Work performed at PNL during FY 1991, FY 1992, and FY 1993 further documented the generation of H{sub 2} and NH{sub 3} in neutralized current acid waste (NCAW) slurries treated with HCOOH. Studies at the University of Georgia under contract with Savannah River Technology Center (SRTC) and PNL have verified the catalytic role of noble metals in the generation of H{sub 2} and NH{sub 3}. Both laboratory-scale and pilot-scale studies at SRTC have documented the H{sub 2} and NH{sub 3} generation phenomena. Since H{sub 2} and NH{sub 3} may create hazardous conditions in a waste slurry treatment plant, it is important to reduce the H{sub 2} generation rate and the amount of NH{sub 3} to the lowest levels.

Smith, H.D.; Merz, M.D.; Wiemers, K.D.; Bell, R.D.; Williford, R.E.; Larson, D.E.

1994-04-01T23:59:59.000Z

411

Simulation and performance analysis of basic GAX and advanced GAX cycles with ammonia/water and ammonia/water/LiBr absorption fluids  

Science Conference Proceedings (OSTI)

The generator-absorber heat exchange (GAX) and branched GAX cycles are generally considered with NH{sub 3}/H{sub 2}O as their working fluid. The potential consequences of using a ternary mixture of NH{sub 3}/H{sub 2}O/LiBr (advanced fluids) in the GAX and Branched GAX (advanced cycles) are discussed in this study. A modular steady state absorption simulation model(ABSIM) was used to investigate the potential of combining the above advanced cycles with the advanced fluids. ABSIM is capable of modeling varying cycle configurations with different working fluids. Performance parameters of the cycles, including coefficient of performance (COP) and heat duties, were investigated as functions of different operating parameters in the cooling mode for both the NH {sub 3}/H{sub 2}O binary and the NH{sub 3}/H{sub 2}O/LiBr ternary mixtures. High performance potential of GAX and branched GAX cycles using the NH{sub 3}/H{sub 2}O/LiBr ternary fluid mixture was achieved especially at the high range of firing temperatures exceeding 400{degrees}F. The cooling COP`s have been improved by approximately 21% over the COP achieved with the NH{sub 3}/H{sub 2}O binary mixtures. These results show the potential of using advanced cycles with advanced fluid mixtures (ternary or quaternary fluid mixtures).

Zaltash, A.; Grossman, G.

1996-03-01T23:59:59.000Z

412

Conversion of depleted uranium hexafluoride to a solid uranium compound  

DOE Patents (OSTI)

A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

2001-01-01T23:59:59.000Z

413

Working Gas Volume Change from Year Ago  

U.S. Energy Information Administration (EIA) Indexed Site

-753,656 -616,126 -473,386 -308,388 -195,536 -128,134 1973-2013 -753,656 -616,126 -473,386 -308,388 -195,536 -128,134 1973-2013 Alaska 14,007 15,277 16,187 17,087 18,569 20,455 2013-2013 Lower 48 States -767,663 -631,403 -489,573 -325,475 -214,105 -148,588 2011-2013 Alabama 131 998 -1,015 -975 -35 2,852 1996-2013 Arkansas -1,386 -1,403 -1,240 -1,239 -1,024 -1,050 1990-2013 California -6,702 -5,997 -10,684 274 24,044 28,854 1990-2013 Colorado -2,531 537 892 1,473 1,528 1,179 1990-2013 Illinois -11,767 -14,974 -8,820 -7,918 -12,002 -6,916 1990-2013 Indiana -4,126 -2,948 -2,927 -2,773 -1,025 -212 1990-2013 Iowa -6,614 -1,173 3,389 6,425 6,747 3,169 1991-2013 Kansas -38,081 -31,497 -26,449 -17,344 -10,369 -9,217 1990-2013 Kentucky -26,238 -26,922 -21,826 -15,927 -14,959 -12,801 1990-2013

414

Retail Prices for Diesel (On-Highway) - All Types  

Gasoline and Diesel Fuel Update (EIA)

832 3.822 3.844 3.883 3.879 3.871 1994-2013 832 3.822 3.844 3.883 3.879 3.871 1994-2013 East Coast (PADD1) 3.855 3.841 3.870 3.906 3.912 3.915 1994-2013 New England (PADD 1A) 3.991 3.981 4.003 4.040 4.066 4.064 1997-2013 Central Atlantic (PADD 1B) 3.903 3.890 3.919 3.949 3.972 3.977 1997-2013 Lower Atlantic (PADD 1C) 3.793 3.779 3.808 3.848 3.837 3.840 1997-2013 Midwest (PADD 2) 3.798 3.794 3.829 3.879 3.870 3.852 1994-2013 Gulf Coast (PADD 3) 3.752 3.745 3.753 3.780 3.773 3.766 1994-2013 Rocky Mountain (PADD 4) 3.836 3.836 3.837 3.858 3.851 3.852 1994-2013 West Coast (PADD 5) 3.976 3.954 3.954 3.998 3.993 3.982 1994-2013 West Coast less California 3.881 3.872 3.872 3.929 3.906 3.884 2011-2013 States California 4.055 4.022 4.023 4.056 4.066 4.066 1995

415

Underground Natural Gas in Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

6,235,025 6,652,218 7,026,645 7,302,127 7,572,885 7,928,016 6,235,025 6,652,218 7,026,645 7,302,127 7,572,885 7,928,016 1973-2013 Alaska 28,203 29,473 30,384 31,284 32,766 34,652 2013-2013 Lower 48 States 6,206,822 6,622,745 6,996,261 7,270,844 7,540,119 7,893,364 2011-2013 Alabama 28,455 28,958 28,160 28,582 28,018 29,312 1995-2013 Arkansas 11,133 11,575 11,977 12,383 12,816 13,020 1990-2013 California 494,687 526,990 548,682 551,855 553,972 563,219 1990-2013 Colorado 70,182 74,046 80,390 87,199 94,797 100,693 1990-2013 Illinois 746,993 774,182 809,958 842,081 876,844 917,781 1990-2013 Indiana 87,254 89,244 91,822 94,240 97,911 101,106 1990-2013 Iowa 209,512 215,593 221,664 230,749 245,317 261,998 1990-2013 Kansas 200,725 214,725 228,046 244,878 256,709 266,439 1990-2013

416

December 2013  

Gasoline and Diesel Fuel Update (EIA)

7 7 Created on: 1/3/2014 2:44:45 PM Table 19. Average citygate price, by state, 2011-2013 (dollars per thousand cubic feet) 2013 State 2013 10-Month YTD 2012 10-Month YTD 2011 10-Month YTD October September August July June Alabama 4.70 5.21 5.92 4.92 4.62 4.64 4.92 5.31 Alaska 5.88 6.09 6.63 5.44 5.55 5.18 5.20 5.45 Arizona 4.61 4.57 6.18 4.24 4.41 4.47 4.46 4.88 Arkansas NA 5.74 6.61 6.02 7.51 7.33 7.69 7.52 California NA 3.25 4.60 3.88 3.73 3.94 4.20 4.65 Colorado NA 4.28 5.19 NA NA NA 7.26 6.78 Connecticut NA 5.08 6.09 5.50 NA 6.85 6.55 NA Delaware 5.98 7.68 9.30 6.12 8.57 8.27 9.62 9.62 District of Columbia -- -- -- -- -- -- -- -- Florida 4.39 3.83 5.11 4.35 4.33 4.26 4.47 4.54 Georgia NA 4.20 5.26 4.28 4.44 4.29 4.70

417

Underground Base Natural Gas in Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

4,381,284 4,384,584 4,365,315 4,362,286 4,363,096 4,364,901 4,381,284 4,384,584 4,365,315 4,362,286 4,363,096 4,364,901 1973-2013 Alaska 14,196 14,197 14,197 14,197 14,197 14,197 2013-2013 Lower 48 States 4,367,088 4,370,387 4,351,118 4,348,089 4,348,899 4,350,704 2011-2013 Alabama 8,050 8,050 8,050 8,050 8,050 8,050 1995-2013 Arkansas 9,648 9,648 9,648 9,648 9,648 9,648 1990-2013 California 239,233 239,233 224,948 224,948 224,948 224,948 1990-2013 Colorado 54,557 54,557 54,557 54,557 54,557 54,557 1990-2013 Illinois 698,232 699,144 699,144 699,144 699,536 700,017 1990-2013 Indiana 78,289 78,289 78,289 78,289 78,289 76,622 1990-2013 Iowa 197,897 197,897 197,897 197,897 197,897 197,897 1990-2013 Kansas 165,313 165,299 165,288 165,278 165,270 165,259 1990-2013

418

Underground Base Natural Gas in Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

4,377,455 4,381,284 4,384,584 4,365,315 4,362,286 4,363,096 4,377,455 4,381,284 4,384,584 4,365,315 4,362,286 4,363,096 1973-2013 Alaska 14,196 14,196 14,197 14,197 14,197 14,197 2013-2013 Lower 48 States 4,363,259 4,367,088 4,370,387 4,351,118 4,348,089 4,348,899 2011-2013 Alabama 8,050 8,050 8,050 8,050 8,050 8,050 1995-2013 Arkansas 9,648 9,648 9,648 9,648 9,648 9,648 1990-2013 California 239,233 239,233 239,233 224,948 224,948 224,948 1990-2013 Colorado 54,557 54,557 54,557 54,557 54,557 54,557 1990-2013 Illinois 696,834 698,232 699,144 699,144 699,144 699,536 1990-2013 Indiana 78,289 78,289 78,289 78,289 78,289 78,289 1990-2013 Iowa 197,897 197,897 197,897 197,897 197,897 197,897 1990-2013 Kansas 165,328 165,313 165,299 165,288 165,278 165,270 1990-2013

419

November 2013  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Created on: 12/12/2013 2:46:13 PM Table 20. Average price of natural gas sold to residential consumers, by state, 2011-2013 (dollars per thousand cubic feet) 2013 State 2013 9-Month YTD 2012 9-Month YTD 2011 9-Month YTD September August July June May Alabama NA 16.26 14.88 21.29 R 21.47 R 21.87 R 20.66 R 18.24 Alaska 8.92 8.60 8.96 9.03 9.27 9.84 9.52 R 9.00 Arizona 13.64 15.70 15.21 20.94 R 21.57 R 21.58 R 19.75 R 17.48 Arkansas 10.54 12.03 11.32 18.41 R 18.76 R 18.19 R 15.90 R 12.38 California 9.79 9.07 10.15 10.45 R 10.85 R 10.99 R 11.30 R 10.86 Colorado 7.98 8.73 8.50 12.33 R 14.01 R 13.66 R 11.52 R 8.87 Connecticut 13.17 14.11 13.72 17.93 18.88 R 17.99 15.45 13.54 Delaware 13.58 15.62 15.22 23.49 24.12 22.31 19.64 16.23 District of Columbia NA 12.50

420

November 2013  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Created on: 12/12/2013 2:56:18 PM Table 22. Average price of natural gas sold to industrial consumers, by state, 2011-2013 (dollars per thousand cubic feet) 2013 State 2013 9-Month YTD 2012 9-Month YTD 2011 9-Month YTD September August July June May Alabama 5.01 4.18 5.78 4.48 R 4.52 R 4.82 R 5.25 R 5.25 Alaska NA 4.92 3.99 7.52 7.68 8.31 NA 7.51 Arizona 6.29 5.70 7.07 7.04 6.74 R 6.30 6.58 6.33 Arkansas 6.67 6.41 7.38 6.79 R 6.67 R 6.79 R 6.75 R 6.72 California NA 5.68 7.18 6.20 6.61 6.80 6.99 6.66 Colorado 5.75 5.91 6.44 7.18 R 7.33 R 7.35 R 6.92 R 5.91 Connecticut NA 8.46 9.12 6.14 6.06 6.50 6.68 6.45 Delaware NA 11.57 11.75 11.05 11.96 NA NA 9.53 District of Columbia -- -- -- -- -- -- -- -- Florida NA 7.30 8.24

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Chemistry of combined residual chlorination  

DOE Green Energy (OSTI)

The decay of the combined chlorine residual was investigated in this work. Recent concerns about the formation of undesirable compounds such as chloroform with free residual chlorination have focused attention on the alternative use of combined residual chlorination. This work investigates the applicability of reactions proposed to describe the transformations and decay of the combined residual with time. Sodium hypochlorite was added to buffered solutions of ammonia with the chlorine residual being monitored over periods extending up to 10 days. The reaction was studied at four initial concentrations of hypochlorite of 100, 50, 25 and 10 mg/L as Cl/sub 2/ with molar application ratios of chlorine to ammonia, defined herein as M ratios, of 0.90, 0.50, 0.25 and 0.05 at each hypochlorite dose. Sixty-eight experiments were conducted at the pH of 6.6 and 7.2. The conclusions are: (1) in the absence of free chlorine, the concentration of NH/sub 3/ does not seem to affect the rate of disappearance of the residual other than through the formation of NHCl/sub 2/ by NH/sub 2/Cl hydrolysis; (2) the reaction between NHCl/sub 2/ and NH/sub 4//sup +/ to form NH/sub 2/Cl is either much slower than reported by Gray et. al. or the mechanism is different with a rate limiting step not involving NH/sub 3/ or NH/sub 4//sup +/; (3) a redox reaction in addition to the first-order decomposition of NHCl/sub 2/ appears necessary. Model simulation results indicated that a reaction of the type NH/sub 2/Cl + NHCl/sub 2/ ..-->.. P added to the first-order NHCl/sub 2/ decomposition can explain the results observed except at the higher chlorine doses.

Leao, S.F.; Selleck, R.E.

1982-01-01T23:59:59.000Z

422

From dihydrated iron(III) phosphate to monohydrated ammonium-iron(II) phosphate: Solvothermal reaction mediated by acetone-urea mixtures  

SciTech Connect

By reaction between synthetic phosphosiderite FePO{sub 4}{center_dot}2H{sub 2}O, urea (NH{sub 2}){sub 2}CO, and acetone (CH{sub 3}){sub 2}CO, we report a novel solvothermal synthesis of polycrystalline NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O. The preparation of other two individual phases, NH{sub 4}Fe{sub 2}(OH)(PO{sub 4}){sub 2}{center_dot}2H{sub 2}O and NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}, is also described. The obtained product is a function of the reaction time and the N/P molar ratio in the reagent mixture, and the existence of structural memory in the dissolution-precipitation processes is discussed. Below 25 K, NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O behaves magnetically in a complex way, because both ferromagnetic and antiferromagnetic signals are superimposed, suggesting the existence of a canting of iron(II) magnetic moments. - Graphical abstract: Solvothermal synthesis of polycrystalline NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O is presented. The preparation of other two individual phases, NH{sub 4}Fe{sub 2}(OH)(PO{sub 4}){sub 2}{center_dot}2H{sub 2}O and NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2} as a function of the N/P molar ratio in the reagent mixture and the reaction time, is also described. Highlights: Black-Right-Pointing-Pointer Solvothermal synthesis of NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O from an Fe(III) phosphate: reduction process. Black-Right-Pointing-Pointer Formation of two intermediate metastable phases: phase diagram. Black-Right-Pointing-Pointer Thermal decomposition in two steps: mass loss of both water and ammonia. Black-Right-Pointing-Pointer Magnetic behaviour: AF+constant spontaneous magnetization.

Alfonso, Belen F., E-mail: mbafernandez@uniovi.es [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain); Trobajo, Camino [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo-CINN, Julian Claveria 8, 33006 Oviedo (Spain)] [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo-CINN, Julian Claveria 8, 33006 Oviedo (Spain); Pique, Carmen [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain)] [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain); Garcia, Jose R. [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo-CINN, Julian Claveria 8, 33006 Oviedo (Spain)] [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo-CINN, Julian Claveria 8, 33006 Oviedo (Spain); Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain)] [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain)

2012-12-15T23:59:59.000Z

423

VERY LARGE ARRAY OBSERVATIONS OF THE INFRARED DARK CLOUD G19.30+0.07  

SciTech Connect

We present Very Large Array observations of ammonia (NH{sub 3}) (1,1), (2,2), and dicarbon sulfide (CCS) (2{sub 1}-1{sub 0}) emission toward the infrared dark cloud (IRDC) G19.30+0.07 at {approx}22 GHz. The NH{sub 3} emission closely follows the 8 {mu}m extinction. The NH{sub 3} (1,1) and (2,2) lines provide diagnostics of the temperature and density structure within the IRDC, with typical rotation temperatures of {approx}10-20 K and NH{sub 3} column densities of {approx}10{sup 15} cm{sup -2}. The estimated total mass of G19.30+0.07 is {approx}1130 M{sub sun}. The cloud comprises four compact NH{sub 3} clumps of mass {approx}30-160 M{sub sun}. Two coincide with 24 {mu}m emission, indicating heating by protostars, and show evidence of outflow in the NH{sub 3} emission. We report a water maser associated with a third clump; the fourth clump is apparently starless. A non-detection of 8.4 GHz emission suggests that the IRDC contains no bright H II regions and places a limit on the spectral type of an embedded zero-age main-sequence star to early-B or later. From the NH{sub 3} emission, we find that G19.30+0.07 is composed of three distinct velocity components or 'subclouds'. One velocity component contains the two 24 {mu}m sources and the starless clump, another contains the clump with the water maser, while the third velocity component is diffuse, with no significant high-density peaks. The spatial distribution of NH{sub 3} and CCS emission from G19.30+0.07 is highly anti-correlated, with the NH{sub 3} predominantly in the high-density clumps and the CCS tracing lower-density envelopes around those clumps. This spatial distribution is consistent with theories of evolution for chemically young low-mass cores, in which CCS has not yet been processed to other species and/or depleted in high-density regions.

Devine, K. E.; Churchwell, E. [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53703 (United States); Chandler, C. J.; Borg, K. J. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Brogan, C.; Indebetouw, R. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Shirley, Y., E-mail: kdevine@collegeofidaho.edu [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)

2011-05-20T23:59:59.000Z

424

Anion exchange polymer electrolytes  

DOE Patents (OSTI)

Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

2013-07-23T23:59:59.000Z

425

Enthalpy of Formation of Nitrosylpentaammineruthenium(II)  

NLE Websites -- All DOE Office Websites (Extended Search)

Enthalpy of Formation of Nitrosylpentaammineruthenium(II) from NO+(aq) Enthalpy of Formation of Nitrosylpentaammineruthenium(II) from NO+(aq) and Aquopentaammineruthenium(II) James F. Wishart, Henry Taube, Kenneth J. Breslauer and Stephan S. Isied Inorg. Chem. 25, 1479-1481 (1986) Abstract: An estimate of the enthalpy change associated with the substitution of H2O on (NH3)5RuOH22+ with NO+(aq) has been made by thermochemical measurements on a cycle of reactions, which includes the reaction of (NH3)5RuOH22+ with NO2-(aq) and which involves the assumption that the heat of dissolution of NOBF4(s) to produce NO+(aq) + BF4-(aq) is close to the heat of dissolution of CsBF4(s). The chemistry is complicated because the reaction of (NH3)5RuOH22+ with NO2-(aq) ultimately produces trans-[(NH3)4Ru(OH)NO]2+(aq) rather than [(NH3)5RuNO]3+(aq). Reasonably

426

Method of using a nuclear magnetic resonance spectroscopy standard. [SO/sub 2/ in gases by fluorescence  

DOE Patents (OSTI)

(CH/sub 3/)/sub 3/SiNSO is produced by the reaction of ((CH/sub 3/)/sub 3/SI)/sub 2/NH with SO/sub 2/. Also produced in the reaction are ((CH/sub 3/)/sub 3/Si)/sub 2/O and a new solid compound (NH/sub 4/)((CH/sub 3/)/sub 3/SiOSO/sub 2/). Both (CH/sub 3/)/sub 3/SiNSO and (NH/sub 4/)((CH/sub 3/)/sub 3/SiOSO/sub 2/) have fluorescent properties. The reaction of the subject invention is used in a method of measuring the concentration of SO/sub 2/ pollutants in gases. By the method, a sample of gas is bubbled through a solution of ((CH/sub 3/)/sub 3/Si)/sub 2/NH, whereby any SO/sub 2/ present in the gas will react to produce the two fluorescent products. The measured fluorescence of these products can then be used to calculate the concentration of SO/sub 2/ in the original gas sample. The solid product (NH/sub 4/)((CH/sub 3/)/sub 3/SiOSO/sub 2/) may be used as a standard in solid state NMR spectroscopy, wherein the resonance peaks of either /sup 1/H, /sup 13/C, /sup 15/N, or /sup 29/Si may be used as a reference.

Spicer, L.D.; Bennett, D.W.; Davis, J.F.

1983-05-09T23:59:59.000Z

427

Method of preparing (CH.sub.3).sub.3 SiNSO and byproducts thereof  

DOE Patents (OSTI)

(CH.sub.3).sub.3 SiNSO is produced by the reaction of ((CH.sub.3).sub.3 Si).sub.2 NH with SO.sub.2. Also produced in the reaction are ((CH.sub.3).sub.3 Si).sub.2 O and a new solid compound [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ]. Both (CH.sub.3).sub.3 SiNSO and [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] have fluorescent properties. The reaction of the subject invention is used in a method of measuring the concentration of SO.sub.2 pollutants in gases. By the method, a sample of gas is bubbled through a solution of ((CH.sub.3).sub.3 Si).sub.2 NH, whereby any SO.sub.2 present in the gas will react to produce the two fluorescent products. The measured fluorescence of these products can then be used to calculate the concentration of SO.sub.2 in the original gas sample. The solid product [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] may be used as a standard in solid state NMR spectroscopy.

Spicer, Leonard D. (Salt Lake City, UT); Bennett, Dennis W. (Clemson, SC); Davis, Jon F. (Salt Lake City, UT)

1984-01-01T23:59:59.000Z

428

Method of using a nuclear magnetic resonance spectroscopy standard  

DOE Patents (OSTI)

(CH.sub.3).sub.3 SiNSO is produced by the reaction of ((CH.sub.3).sub.3 Si).sub.2 NH with SO.sub.2. Also produced in the reaction are ((CH.sub.3).sub.3 Si).sub.2 O and a new solid compound [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ]. Both (CH.sub.3).sub.3 SiNSO and [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] have fluorescent properties. The reaction of the subject invention is used in a method of measuring the concentration of SO.sub.2 pollutants in gases. By the method, a sample of gas is bubbled through a solution of ((CH.sub.3).sub.3 Si).sub.2 NH, whereby any SO.sub.2 present in the gas will react to produce the two fluorescent products. The measured fluorescence of these products can then be used to calculate the concentration of SO.sub.2 in the original gas sample. The solid product [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] may be used as a standard in solid state NMR spectroscopy, wherein the resonance peaks of either .sup.1 H, .sup.13 C, .sup.15 N, or .sup.29 Si may be used as a reference.

Spicer, Leonard D. (Salt Lake City, UT); Bennett, Dennis W. (Clemson, SC); Davis, Jon F. (Salt Lake City, UT)

1985-01-01T23:59:59.000Z

429

Method of detecting sulfur dioxide  

DOE Patents (OSTI)

(CH.sub.3).sub.3 SiNSO is produced by the reaction of ((CH.sub.3).sub.3 Si).sub.2 NH with SO.sub.2. Also produced in the reaction are ((CH.sub.3).sub.3 Si).sub.2 O and a new solid compound [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ]. Both (CH.sub.3).sub.3 SiNSO and [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] have fluorescent properties. The reaction of the subject invention is used in a method of measuring the concentration of SO.sub.2 pollutants in gases. By the method, a sample of gas is bubbled through a solution of ((CH.sub.3).sub.3 Si).sub.2 NH, whereby any SO.sub.2 present in the gas will react to produce the two fluorescent products. The measured fluorescence of these products can then be used to calculate the concentration of SO.sub.2 in the original gas sample. The solid product [NH.sub.4][(CH.sub.3).sub.3 SiOSO.sub.2 ] may be used as a standard in solid state NMR spectroscopy.

Spicer, Leonard D. (Salt Lake City, UT); Bennett, Dennis W. (Clemson, SC); Davis, Jon F. (Salt Lake City, UT)

1985-01-01T23:59:59.000Z

430

A method to remove Ammonia using a Proton-Conducting Ceramic Membrane  

DOE Green Energy (OSTI)

An apparatus and method for decomposing NH{sub 3}. A fluid containing NH{sub 3} is passed in contact with a tubular membrane that is a homogeneous mixture of a ceramic and a first metal, with the ceramic being selected from one or more of a cerate having the formula of M' Ce{sub 1-x} M''O{sub 3-{delta}}, zirconates having the formula M'Zr{sub 1-x} M''3-{delta}, stannates having the formula M'Sn{sub 1-x}M''O{sub 3}-{delta}, where M' is a group IIA metal, M'' is a dopant metal of one or more of Ca, Y, Yb, In, Nd, Gd or mixtures thereof and {delta} is a variable depending on the concentration of dopant and is in the range of from 0.001 to 0.5, the first metal is a group VIII or group IB element selected from the group consisting of Pt, Ag, Pd, Fe, Co, Cr, Mn, V, Ni, Au, Cu, Rh, Ru and mixtures thereof. The tubular membrane has a catalytic metal on the side thereof in contact with the fluid containing NH{sub 3} which is effective to cause NH{sub 3} to decompose to N{sub 2} and H{sub 2}. When the H{sub 2} contacts the membrane, H{sup +} ions are formed which pass through the membrane driving the NH{sub 3} decomposition toward completion.

Balachandran, Uthamalingam; Bose, Arun C.

1999-09-22T23:59:59.000Z

431

Mercury oxidation over the V{sub 2}O{sub 5}(WO{sub 3})/TiO{sub 2} commercial SCR catalyst  

SciTech Connect

Mercury oxidation by hydrochloric acid over the V{sub 2}O{sub 5}(WO{sub 3})/TiO{sub 2} commercial SCR catalyst was investigated. Both fresh and aged catalysts with honeycomb structure, which were exposed to a coal combustion flue gas in a coal-fired boiler for over 71 000 h. were examined. The aged catalysts were characterized by X-ray and SEM-EDX analysis to examine the presence of ash deposition on the surface. The mercury oxidation rate was enhanced by increasing HCl concentrations and inhibited strongly by the presence of NH{sub 3}. This behavior could be explained by a kinetic model assuming that HCl competes for the catalyst active sites against NH{sub 3}. As the catalyst operation time increased, the mercury oxidation rate was observed to decrease considerably in the presence of NH{sub 3} while NO reduction rate was apparently nearly unchanged. By examining aged catalysts, deposits stemming from fly ash and SO{sub 2}/SO{sub 3} were observed to accumulate continuously on the catalyst surface. The ash deposited on the surface may partially block the active catalyst sites and decrease their number. The decrease of the number of active sites on the catalyst surface caused NH{sub 3} to remain unreacted in the honeycomb catalyst. The decrease of the Hg{sup 0} oxidation rate was caused by the inhibition effect of NH{sub 3} remaining in the catalyst.

Kamata, H.; Ueno, S.; Naito, T.; Yukimura, A [IHI Corp, Kanagawa (Japan)

2008-11-15T23:59:59.000Z

432

Method of detecting sulfur dioxide. [DOE patent application; 1,1,1-trimethyl-N-sulfinyl silanamine  

DOE Patents (OSTI)

(CH/sub 3/)/sub 3/SiNSO is produced by the reaction of ((CH/sub 3/)/sub 3/Si)/sub 2/NH with SO/sub 2/. Also produced in the reaction are ((CH/sub 3/)/sub 3/Si)/sub 2/O and a new solid compound (NH/sub 4/)((CH/sub 3/)/sub 3/SiOSO/sub 2/). Both (C/sub 3/)/sub 3/SiNSO and (NH/sub 4/)((CH/sub 3/)/sub 3/SiOSO/sub 2/) have fluorescent properties. The reaction of the subject invention is used in a method of measuring the concentration of SO/sub 2/ pollutants in gases. By the method, a sample of gas is bubbled through a solution of ((CH/sub 3/)/sub 3/Si)/sub 2/NH, whereby any SO/sub 2/ present in the gas will react to produce the two fluorescent products. The measured fluorescence of these products can then be used to calculate the concentration of SO/sub 2/ in the original gas sample. The solid product (NH/sub 4/)((CH/sub 3/)/sub 3/SiOSO/sub 2/) may be used as a standard in solid state NMR spectroscopy.

Spicer, L.D.; Bennett, D.W.; Davis, J.F.

1981-06-12T23:59:59.000Z

433

SULFUR REDUCTION IN GASOLINE AND DIESEL FUELS BY EXTRACTION/ADSORPTION OF REFRACTORY DIBENZOTHIOPHENES  

DOE Green Energy (OSTI)

The purpose of this study was to remove thiophene, benzothiophene and dibenzothiophene from a simulated gasoline feedstock. We found that Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} reacts with a variety of thiophenes (Th*), affording Ru(NH{sub 3}){sub 5}(Th*){sup 2+}. We used this reactivity to design a biphasic extraction process that removes more than 50% of the dibenzothiophene in the simulated feedstock. This extraction system consists of a hydrocarbon phase (simulated petroleum feedstock) and extractant Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} in an aqueous phase (70% dimethylformamide, 30% H{sub 2}O). The DBT is removed in situ from the newly formed Ru(NH{sub 3}){sub 5}(DBT){sup 2+} by either an oxidation process or addition of H{sub 2}O, to regenerate Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+}.

Scott G. McKinley; Celedonio M. Alvarez

2003-03-01T23:59:59.000Z

434

Suzaku Observations of Three FeLoBAL QSOs, SDSS J0943+5417, J1352+4239, and J1723+5553  

E-Print Network (OSTI)

We present Suzaku observations of three iron low-ionization broad absorption line quasars (FeLoBALs), SDSS J0943+5417, J1352+4239, and J1723+5553. We detect J1723+5553 (3\\sigma) in the observed 3-10 keV band, and constrain its intrinsic NH column density to NH > 7e23 cm^-2, by modeling its X-ray hardness ratio. This is only the second detection in the X-ray of an FeLoBAL. We measure the upper limits of the X-ray flux in the other two quasars. We study the broadband spectral index, aox, between the X-ray and UV bands by combining the X-ray measurements and the UV flux extrapolated from the 2MASS magnitudes, assuming a range of intrinsic column densities, and then compare the aox values for the three FeLoBALs with those from a large sample of normal quasars. We find that the three FeLoBALs are consistent with the spectral energy distribution (SED) of normal quasars if the intrinsic NH column densities are NH > 6e24 cm^-2 for J0943+5417 and J1352+4293, and 7e23 < NH < 9e24 cm^-2 for J1723+5553. At these la...

Morabito, Leah K; Leighly, Karen M; Sivakoff, Gregory R; Shankar, Francesco

2010-01-01T23:59:59.000Z

435

U.S. Department of Energy NEPA Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NH-City-Nashua NH-City-Nashua Location: City Nashua NH American Recovery and Reinvestment Act: Proposed Action or Project Description 1) Technical consultant to develop energy efficiency and conservation strategy, 2) technical consultant to manage the energy efficiency and conservation grant, 3) technical consultant to conduct building assessments and make recommendations, 4) conduct audits of municipal buildings, 5) purchase two alternative fuel vehicles, and 6) City Hall heating, ventilating, and air conditioning and building envelop retrofits Conditions: Historic preservation clause applies to this application (City Hall [1938]) Categorical Exclusion(s) Applied: A1, A9, A11, B2.5, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21

436

Padmaja Gunda 2012 Poster  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Homogeneous catalysts and their heterogenized analogs will be prepared to investigate steric and Homogeneous catalysts and their heterogenized analogs will be prepared to investigate steric and electronic effects in diene oligomerization to jet and diesel range hydrocarbons as fuel blendstocks. Development of Catalyst Systems for the Selective Trimerization of Dienes Padmaja Gunda, Glen E Fryxell, Michael A Lilga Pacific Northwest National Laboratory Chemical and Biological Process Development Group Richland, WA 99352 ( RO ) 3 Si NH 2 O O O Si NH 2 A r 2 PCl O O O Si N PA r 2 PA r 2 ( RO ) 3 Si NH 2 A r 2 PCl Si ( RO ) 3 N PA r 2 PA r 2 OH OH OH OH OH OH S t ra t e gy 1 : H e t ero g en i ze am i ne , s y n th es i ze PNP li

437

How the Membrane Protein AmtB Transports Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

How the Membrane Protein AmtB Transports Ammonia Print How the Membrane Protein AmtB Transports Ammonia Print Membrane proteins provide molecular-sized entry and exit portals for the various substances that pass into and out of cells. While life scientists have solved the structures of protein channels for ions, uncharged solutes, and even water, up to now they have only been able to guess at the precise mechanisms by which gases (such as NH3, CO2, O2, NO, N2O, etc.) cross biological membranes. But, with the first high-resolution structure of a bacterial ammonia transporter (AmtB), determined by a team in the Stroud group from the University of California, San Francisco, it is now known that this family of transporters conducts ammonia by stripping off the proton from the ammonium (NH4+) cation and conducting the uncharged NH3 "gas."

438

NETL: Gasification Systems - Warm Gas Multi-Contaminant Removal System  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Multi-Contaminant Removal System Warm Gas Multi-Contaminant Removal System Project Number: DE-SC00008243 TDA Research, Inc. is developing a high-capacity, low-cost sorbent that removes anhydrous ammonia (NH3), mercury (Hg), and trace contaminants from coal- and coal/biomass-derived syngas. The clean-up system will be used after the bulk warm gas sulfur removal step, and remove NH3 and Hg in a regenerable manner while irreversibly capturing all other trace metals (e.g., Arsenic, Selenium) reducing their concentrations to sub parts per million (ppm) levels. Current project plans include identifying optimum chemical composition and structure that provide the best sorbent performance for removing trace contaminants, determining the effect of operating parameters, conducting multiple-cycle experiments to test the life of the sorbent for NH3 and Hg removal, and conducting a preliminary design of the sorbent reactor.

439

ET Across Oligoprolines: Differences for Helical and Nonhelical Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

Distance Dependence of Intramolecular Electron Transfer Rates Across Distance Dependence of Intramolecular Electron Transfer Rates Across Oligoprolines in [(bpy)2RuIIL.-(Pro) n-CoIII(NH3)5]3+, n=1-6: Different Effects for Helical and Nonhelical Polyproline II Structures Michael Y. Ogawa, James F. Wishart, Zuyung Young, John R. Miller, Stephan S. Isied J. Phys. Chem. 97, 11456-11463 (1993) Abstract: A series of complexes of the type [(bpy)2RuIIL-(Pro) n-CoIII(NH3)5]4+, n = 1-6, where L = 4-carboxy-4'-methyl-2,2'-bipyridine, bpy = 4,4' bipyridine, have been synthesized from the corresponding [(bpy)2RuIIL] and [(NH3)5 CoIII(Pro)n] components. The compounds were characterized by metal analyses, electrochemical measurements, and absorption spectroscopy. For n = 4-6 prolines, the CD spectra of these complexes show a polyproline II

440

EERE PROJECT MANAGEMENT CENTER Nl!PA DI!Tl!Rl\.lINAIION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DFPARTIlIENT OFI!NERGY DFPARTIlIENT OFI!NERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DI!Tl!Rl\.lINAIION RECIPIENT:NH Office of Energy and Planning PROJECf TITLE : Fonnula Grant for State Energy Program· NH Page 1 of2 STATE: NH Funding Opportunity Announ~ement Number Procurement Instrument Number NEPA Control Number CID Number DE FDA 0000643 DE-FG26-06R130472 GF()'()130472-OO1 Based on my review orlbe information concerning the proposed action, as NEPA Compliance OffICer (authorized under DOE Order 4sl.tA), I have made the foUowing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A11 Technical advice and assistance to organizations A9 Information gathering, analysis, and dissemination Rational for detennination: Technical advice and planning assistance to international, national, state, and local organizatioos

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Efficiency and Conservation Block Grant Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NH-County-Belknap NH-County-Belknap Location: County NH American Recovery and Reinvestment Act: Proposed Action or Project Description: 1) Energy efficiency retrofits in County facilities, including building envelope improvements, thermostatically controlled radiator valves w/set-back capability, connect Old Wing Heating System to New Wing Heating System in the County Jail, and Water & Energy Conservation Measures throughout all County facilities (including Courthouse, built in 1893) and 2) upgrade building automation system in Nursing Home and replace hot water boilers in the County Jail. Conditions: None Categorical Exclusion(s) Applied: B2.5, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21

442

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nh3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nh3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:43 PM" "Back to Contents","Data 1: New Hampshire Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NH3" "Date","New Hampshire Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

443

Energy Efficiency and Conservation Block Grant Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NH-City-Manchester NH-City-Manchester Location: City Manchester NH American Recovery and Reinvestment Act: Proposed Action or Project Description: 1) Technical consultant to assist with energy efficiency and conservation strategy implementation, 2) perform energy audit of city buildings, 3) develop a revolving loan fund, and 4) boiler retrofits/replacement of the Heating Plant on the campus of the Manchester High School West; municipal building retrofits on identified buildings to include retro-commissioning and control; optimization and lighting upgrades; install vending machine misers; holiday schedule override on energy management system [EMS]; variable frequency drives installed on pumps/fan motors; retro-commissioning (inspecting equipment operation through the EMS and in field) and modify accordingly; HVAC retro-commissioning; lighting and controls;

444

Energy Efficiency and Conservation Block Grant Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NH-County-Cheshire NH-County-Cheshire Location: County NH American Recovery and Reinvestment Act: Proposed Action or Project Description 1) Develop strategy (master plan) for the county in partnership with Clean Air-Cool Planet, 2) convert lighting at County Nursing Home Building to LED and hire a consultant to prepare an analysis for a building- wide conversion project and create a vendor base on LED lighting, 3) install insulation in ceiling/attic of Cheshire County Court House (listed on National Register-Programmatic Agreement in place), and 4) evaluate wind potential for renewable energy at Westmoreland, New Hampshire, campus (including installation of equipment on tower to provide data) and perform virtual MET mast study Conditions: None Categorical Exclusion(s) Applied: A9, A11, B2.5, B5.1

445

Metal Aminoboranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Metal Aminoboranes Metal Aminoboranes Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. June 25, 2013 Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Available for thumbnail of Feynman Center (505) 665-9090 Email Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit. U.S. Patent No.: 7,713,506 (DOE S-112,798)

446

Cadmium zinc sulfide by solution growth  

SciTech Connect

A process for depositing thin layers of a II-VI compound cadmium zinc sulfide (CdZnS) by an aqueous solution growth technique with quality suitable for high efficiency photovoltaic or other devices which can benefit from the band edge shift resulting from the inclusion of Zn in the sulfide. A first solution comprising CdCl.sub.2 2.5H.sub.2 O, NH.sub.4 Cl, NH.sub.4 OH and ZnCl.sub.2, and a second solution comprising thiourea ((NH.sub.2).sub.2 CS) are combined and placed in a deposition cell, along with a substrate to form a thin i.e. 10 nm film of CdZnS on the substrate. This process can be sequentially repeated with to achieve deposition of independent multiple layers having different Zn concentrations.

Chen, Wen S. (Seattle, WA)

1992-05-12T23:59:59.000Z

447

Decomposition of Ammonia in IGCC Fuel Gas Streams  

SciTech Connect

The main objective of the research work is to develop technically feasible and potentially low cost processes to decompose NH{sub 3} present in coal gases at high temperatures upstream of the gas turbine. Specific objectives of the work include development of NH3 decomposition processes applicable to both air-blown and oxygen-blown coal gasification-based combined cycle power plants, Ammonia decomposition tests were carried out in a bench-scale tubular flow reactor. The flow system includes feed gas supply with flow control and pressure regulation, preheater and reactor, heaters, monitoring and control of system temperature and pressure, and feed and product analysis instrumentation. Non-catalytic NH{sub 3} decomposition tests were carried out in both Alloy RA-330 and quartz reactors. Catalytic tests were conducted only in the quartz reactor.

Qader, S.A.; Qader, Q.A. [Energy and Environmental Technology Corp., Rancho Cucamonga, CA (United States); Muzio, L.J. [Fossil Energy Research Corp., Laguna Hills, CA (United States)

1996-12-31T23:59:59.000Z

448

Sum Frequency Generation Vibrational Spectroscopy of Pyridine Hydrogenation on Platinum Nanoparticles  

DOE Green Energy (OSTI)

Pyridine hydrogenation in the presence of a surface monolayer consisting of cubic Pt nanoparticles stabilized by tetradecyltrimethylammonium bromide (TTAB) was investigated by sum frequency generation (SFG) vibrational spectroscopy using total internal reflection (TIR) geometry. TIR-SFG spectra analysis revealed that a pyridinium cation (C{sub 5}H{sub 5}NH{sup +}) forms during pyridine hydrogenation on the Pt nanoparticle surface, and the NH group in the C{sub 5}H{sub 5}NH{sup +} cation becomes more hydrogen bound with the increase of the temperature. In addition, the surface coverage of the cation decreases with the increase of the temperature. An important contribution of this study is the in situ identification of reaction intermediates adsorbed on the Pt nanoparticle monolayer during pyridine hydrogenation.

Bratlie, Kaitlin M.; Komvopoulos, Kyriakos; Somorjai, Gabor A.

2008-02-22T23:59:59.000Z

449

Microsoft Word - Gr91-CREEP-RUPTURE-rev.doc  

Office of Scientific and Technical Information (OSTI)

VERIFICATION OF ALLOWABLE STRESSES IN ASME SECTION III, SUBSECTION NH FOR GRADE 91 STEEL PART 1: BASE METAL R. W. Swindeman Cromtech Inc Oak Ridge, TN 37830-7856 M. J. Swindeman University of Dayton Research Institute Dayton, OH 45469-0110 B. W. Roberts BW Roberts Consultants Chattanooga, TN 37416 B. E. Thurgood Bpva Engineering San Diego, CA 92131 D. L. Marriott Stress Engineering Services Mason, OH 45040 September, 2007 2 ABSTRACT The database for the creep-rupture of 9Cr-1Mo-V (Grade 91) steel was collected and reviewed to determine if it met the needs for recommending time-dependent strength values, S t , for coverage in ASME Section III Subsection NH (ASME III-NH) to 650°C (1200°F) and 600,000 hours. The accumulated database included over 300 tests for 1%

450

Volume Profile for Intramolecular ET in Ru-Modified Cytochrome c  

NLE Websites -- All DOE Office Websites (Extended Search)

for for Intramolecular Electron-Transfer Reactions: Tetraammine-ruthenium(ligand) Complexes of Cytochrome c Ji Sun, Chang Su, Martin Meier, Stephan S. Isied, James F. Wishart, and Rudi van Eldik Inorg. Chem. 37, 6129-6135 (1998) [Find paper at ACS Publications] Abstract: The kinetics and thermodynamics of a series of reversible intramolecular electron-transfer reactions in systems of the type trans-(NH3)4(L)Ru(His33)-Cyt c(hh) and trans-(NH3)4(L)Ru(His39)-Cyt c(Ck), where L represents NH3, isonicotinamide, 4-ethylpyridine, 3,5-lutidine and pyridine, were studied as a function of pressure in order to construct the first complete volume profiles for such processes. The volume profiles demonstrate a significant partial molar volume increase associated with the

451

Control of catalytic hydrotreating selectivity with ammonia. [Quarterly] report, April 1, 1993--June 30, 1993  

SciTech Connect

We have chosen as our standard reaction conditions: T = 3600, total pressure about 6.9 MPa, partial pressure of PBz = 24.4 kPa, partial pressure of H{sub 2}S = 13.3 kPa, partial pressure of NH{sub 3} = 13.3 kPa, space-time = 200 h. g. cat/mol PBz. The carrier liquid is hexadecane (C{sub 16}H{sub 34}). As before, the H{sub 2}S and NH{sub 3} are generated in situ by hydrogenation of 1-dodecane thiol and n-propyl amine, respectively, added to the C{sub 16} feed. The activity of the fresh catalyst dropped to a steady state level after about 120 hours on stream following which four runs were carried out at p.p. NH{sub 3} values of 0, 13.3, 24.4 and 48.8 kPa, respectively. For each NH{sub 3} p.p., space-times were varied at the following levels: 50, 100, 200, 400 and 600. Analyses were made for propylcyclohexene (C{sub A}), propylcydohexane (C{sub B}) and benzene (C{sub D}). No other products were found in any significant amounts. The ratio C{sub B}/C{sub D} is a measure of the activity for ring hydrogenation relative to hydrocracking. The data are shown in four tables that follow. The results will be analyzed kinetically in the next quarter. However, the following generalizations are evident: NH{sub 3} significantly reduces the activity of the catalyst for both types of reaction. The activity for hydrocracking is reduced more than that for ring hydrogenation, a favorable result, but the effect is not large at the conditions studied thus far. The effect is most evident at low NH{sub 3} concentrations.

Satterfield, C.N.; Gultekin, S.

1993-09-01T23:59:59.000Z

452

Geochemical and Geophysical Changes during Ammonia Gas Treatment of Vadose Zone Sediments for Uranium Remediation  

SciTech Connect

NH3 gas treatment of low water content sediments resulted in a significant decrease in aqueous and adsorbed uranium, which is attributed to incorporation into precipitates. Uranium associated with carbonates showed little change. Uranium associated with hydrous silicates such as Na-boltwoodite showed a significant decrease in mobility but no change in Na-boltwoodite concentration (by EXAFS/XANES), so is most likely caused by non-U precipitate coatings. Complex resistivity changes occurred in the sediment during NH3 and subsequent N2 gas injection, indicating ERT/IP could be used at field scale for injection monitoring.

Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Johnson, Timothy C.; Qafoku, Nikolla; Williams, Mark D.; Greenwood, William J.; Wallin, Erin L.; Bargar, John R.; Faurie, Danielle K.

2012-10-30T23:59:59.000Z

453

Program on Technology Innovation: Monitoring Carbon Monoxide and Nitric Oxide in Combustion Gases with Laser Absorption Sensors  

Science Conference Proceedings (OSTI)

Two important considerations for monitoring CO/O2 and NO/NH3 in the flue gas of coal-fired boilers include (1) optimization of the air/fuel distribution to individual burners, thereby enabling lower excess oxygen operation, reduced NOx emissions, and improved unit heat rate, and (2) optimization of NH3/NOx distribution at the inlet of a selective catalytic reduction (SCR) reactor, thereby enabling increased NOx reduction performance while maintaining ammonia slip targets. Lower NOx emissions can be achie...

2011-04-12T23:59:59.000Z

454

Band Formation during Gaseous Diffusion in Aerogels  

E-Print Network (OSTI)

We study experimentally how gaseous HCl and NH_3 diffuse from opposite sides of and react in silica aerogel rods with porosity of 92 % and average pore size of about 50 nm. The reaction leads to solid NH_4Cl, which is deposited in thin sheet-like structures. We present a numerical study of the phenomenon. Due to the difference in boundary conditions between this system and those usually studied, we find the sheet-like structures in the aerogel to differ significantly from older studies. The influence of random nucleation centers and inhomogeneities in the aerogel is studied numerically.

M. A. Einarsrud; F. A. Maao; A. Hansen; M. Kirkedelen; J. Samseth

1997-06-18T23:59:59.000Z

455

Plasma stabilisation of metallic nanoparticles on silicon for the growth of carbon nanotubes  

SciTech Connect

Ammonia (NH{sub 3}) plasma pretreatment is used to form and temporarily reduce the mobility of Ni, Co, or Fe nanoparticles on boron-doped mono- and poly-crystalline silicon. X-ray photoemission spectroscopy proves that NH{sub 3} plasma nitrides the Si supports during nanoparticle formation which prevents excessive nanoparticle sintering/diffusion into the bulk of Si during carbon nanotube growth by chemical vapour deposition. The nitridation of Si thus leads to nanotube vertical alignment and the growth of nanotube forests by root growth mechanism.

Esconjauregui, S.; Fouquet, M.; Bayer, B. C.; Gamalski, A. D.; Chen Bingan; Xie Rongsi; Hofmann, S.; Robertson, J. [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Cepek, C.; Bhardwaj, S. [Istituto Officina dei Materiali-CNR, Laboratorio TASC, s.s. 14 km 163.5, I-34149 Trieste (Italy); Ducati, C. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom)

2012-08-01T23:59:59.000Z

456

High sensitive quasi freestanding epitaxial graphene gassensor on 6H-SiC  

E-Print Network (OSTI)

We have measured the electrical response to NO$_2$, N$_2$, NH$_3$ and CO for epitaxial graphene and quasi freestanding epitaxial graphene on 6H-SiC substrates. Quasi freestanding epitaxial graphene shows a 6 fold increase in NO2 sensitivity compared to epitaxial graphene. Both samples show a sensitivity better than the experimentally limited 1 ppb. The strong increase in sensitivity of quasi freestanding epitaxial graphene can be explained by a Fermi-energy close to the Dirac Point leading to a strongly surface doping dependent sample resistance. Both sensors show a negligible sensitivity to N$_2$, NH$_3$ and CO.

Iezhokin, I; Brongersma, S H; Giesbers, A J M; Flipse, C F J

2013-01-01T23:59:59.000Z

457

Working Gas % Change from Year Ago  

Gasoline and Diesel Fuel Update (EIA)

21.3 -15.2 -9.5 -5.7 -3.5 -2.9 1973-2013 21.3 -15.2 -9.5 -5.7 -3.5 -2.9 1973-2013 Alaska NA NA NA NA NA NA 2013-2013 Lower 48 States -21.9 -15.7 -10.0 -6.3 -4.0 -3.5 2011-2013 Alabama 5.0 -4.8 -4.5 -0.2 15.5 -12.0 1996-2013 Arkansas -42.1 -34.7 -31.2 -24.4 -23.7 -23.0 1991-2013 California -2.0 -3.3 0.1 7.9 9.3 3.4 1991-2013 Colorado 2.8 3.6 4.7 3.9 2.6 3.0 1991-2013 Illinois -16.5 -7.4 -5.2 -6.3 -3.1 -3.2 1991-2013 Indiana -21.2 -17.8 -14.8 -5.0 -0.9 -5.2 1991-2013 Iowa -6.2 16.6 24.3 16.6 5.2 -1.8 1991-2013 Kansas -38.9 -29.7 -17.9 -10.2 -8.3 -7.6 1991-2013 Kentucky -30.6 -24.1 -17.7 -15.8 -12.7 -10.5 1991-2013 Louisiana -26.6 -21.0 -10.2 -4.3 -2.3 1.0 1991-2013 Maryland -40.2 -26.0 -17.1 -4.8 1.5 0.8 1991-2013 Michigan -35.7 -26.7 -19.2 -13.9 -9.7 -6.9 1991-2013

458

Being Proactive to Increasing Supply Chain Security Challenges: A Quantitative and Qualitative Approach  

E-Print Network (OSTI)

Supply chain security has become relevant to both practitioners and academics for years, yet the understanding of this topic is still incomplete. The literature produces relatively few explanatory and confirmatory studies, offers ambiguous definitions and terminology and the theoretical development is inconsistent. In this dissertation, I review relevant research streams and employ four in-depth case studies to conceptualize supply chain security (SCS). I also utilize the principles of human immunology to propose a taxonomy of supply chain security management (SCSM) mechanisms. Building on institutional theory and the taxonomy, I further examine the antecedents as well as the consequences of SCSM mechanisms via a large empirical data set collected during 2011-2013. The sample includes responses from 462 firms. Specifically, in my first model I draw on the institutional theory and posit that five institutional isomorphism pressures (i.e., government, customer, peer, normative, and performance pressure) impact four classes of SCSM mechanisms (i.e., prevention, detection, reaction, and restoration). In addition, shared SCS perception (SSP) and top management commitment (TMC) are hypothesized to moderate (strengthen) the relationships between institutional pressures and SCSM mechanisms. In my second model, I propose that the four classes of mechanisms explain five different supply chain performance dimensions (i.e., security performance, cost performance, supply chain responsiveness, supply chain resilience, and supply chain visibility). I also specify differential effects for both models; some effects are more salient than others. The results suggest that not all institutional pressures motivate the implementation of SCSM mechanisms. While normative pressure and performance pressure act as predominantly powerful predictors of SCSM mechanisms, other pressures appear to have negligible or even adverse effects. Surprisingly, data analysis suggests that coercive institutional pressures (i.e., government pressure and customer pressure) do not exhibit the strongest effects on SCSM mechanisms as the literature would suggest. As far as the moderation effect is concerned, the results illustrate that neither SSP nor TMC interact with all institutional pressures to affect the employment of SCSM mechanisms. In addition, TMC can even impede the implementation of reaction- and restoration-oriented SCSM mechanisms when interacting with government pressure. Regarding supply chain performance, the results demonstrate that SCSM mechanisms have strong effects on multiple supply chain performance measures. Further assessments reveal that the effect of SCSM mechanisms on supply chain security performance is stronger than its effects on other performance dimensions.

Lu, Guanyi

2013-08-01T23:59:59.000Z

459

Phosphorylated Mesoporous Carbon as a Solid Acid Catalyst  

Science Conference Proceedings (OSTI)

Mesoporous carbon catalyst supports are attractive due to their wide chemical stability while potentially increasing masstransport through and providing a path for larger molecules to access catalytic sites. Herein we report the synthesis of a 10 phosphorylated mesoporous carbon solid-acid catalyst characterized by NH3-TPD and isopropanol dehydration.

Dai, Sheng [ORNL; Mayes, Richard T [ORNL; Fulvio, Pasquale F [ORNL; Ma, Zhen [ORNL

2011-01-01T23:59:59.000Z

460

Influence of air conditioning management on heat island in Paris air street temperatures  

E-Print Network (OSTI)

spatial cartography of air- cooled chillers and cooling towers in the city of Paris and surroundings have); secondly the actual situation including individual air dry coolers, wet cooling towers and an urban cooling the air cooling demand. Results of a meso-scale meteorological model (MESO-NH), coupled to an urban energy

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Materials characterization of WNxCy, WNx and WCx films for advanced barriers  

Science Conference Proceedings (OSTI)

A ternary WN"xC"y system was deposited in a thermal ALD (atomic layer deposition) reactor from ASM at 300^oC in a process sequence using tungsten hexafluoride (WF"6), triethyl borane (TEB) and ammonia (NH"3) as precursors. The WC"x layers were deposited ... Keywords: ALD, Atomic layer deposition, Barrier, WCx, WNx, WNxCy

H. Volders; Z. Tkei; H. Bender; B. Brijs; R. Caluwaerts; L. Carbonell; T. Conard; C. Drijbooms; A. Franquet; S. Garaud; I. Hoflijk; A. Moussa; F. Sinapi; Y. Travaly; D. Vanhaeren; G. Vereecke; C. Zhao; W. -M. Li; H. Sprey; A. M. Jonas

2007-11-01T23:59:59.000Z

462

Isotopic Analysis of N and O in Nitrite and Nitrate by Sequential Selective Bacterial Reduction to N2O  

E-Print Network (OSTI)

composition of NO2 - is linked to those of NO3 -, N2O, NH4 +, and N2 gas, the production or consumption in natural aquatic systems is poorly understood. Isotopic data can be used to study the sources independently, reproducible 15N and 18O values were obtained at both natural-abundance levels ((0.2-0.5 for 15N

463

Multiple roles of siderophores in free-living nitrogen-fixing A. M. L. Kraepiel J. P. Bellenger  

E-Print Network (OSTI)

on a variety of factors such as organic matter content, mineralog- ical composition, and pH. Azotobacter, siderophores extract essential metals from natural ligands and deliver them to the bacteria. This process (diazotrophs) of atmospheric N2 gas into plant-available ammonium (NH4 ? ). The enzyme nitrogenase

Morel, François M. M.

464

www.eia.gov  

U.S. Energy Information Administration (EIA)

MO MT NE NV NH NJ NM NY NC ND OH OK OR PA RI SC SD TN TX UT VT VA WA WV WI WY U.S. Number of states in which marketer is licensed ... Service Tech & Research Corp

465

Solar absorption refrigeration system using new working fluid pairs  

Science Conference Proceedings (OSTI)

Absorption refrigeration systems powered by solar energy increasingly attract research interests in the last years. In this study, thermodynamic analyses for different working fluid pairs are performed. A computer simulation model has been developed ... Keywords: NH3-LiNO3, absorption, crystallization, generator, performance, refrigeration, solar energy

Jasim M. Abdulateef; Kamaruzzaman Sopian; M. A. Alghoul; Mohd Yusof Sulaiman; Azami Zaharim; Ibrahim Ahmad

2008-02-01T23:59:59.000Z

466

Intraseasonal Variability in a Two-Layer Model and Observations  

Science Conference Proceedings (OSTI)

A two-layer shallow-water model with R15 truncation and topographic forcing is used to study intraseasonal variability in the Northern Hemispheres (NHs) extratropical atmosphere. The models variability is dominated by oscillations with average ...

Christian L. Keppenne; Steven L. Marcus; Masahide Kimoto; Michael Ghil

2000-04-01T23:59:59.000Z

467

Computational fluid dynamics study on the decomposition of ammonia in a selective porous membrane - article no. 42  

SciTech Connect

The development of alternative technologies for the removal of gas pollutants is an important aspect for the environmental friendliness of energy production. During coal gasification, N{sub 2} contained in coal is converted to NH{sub 3} and, as much as 50% of the ammonia in the fuel gas can be converted to nitrogen oxides (NOx). At these conditions, decomposition seems to be the only applicable solution for the removal of NH{sub 3}. The application of a high temperature catalytic membrane reactor process appears to offer an efficient and cost effective method of removing the NH{sub 3} from coal gasification gas streams. The present work examines the operation of such a selective membrane, used for the decomposition of NH{sub 3}, under a 2-D axissymetric CFD approach where the flow field, the chemical reactions and the selective porous membrane behavior are being modeled and computed. The main target of this effort was to obtain a more detailed view of the flow field and to investigate the decomposition of ammonia in comparison with a simpler 1-D modeling approach and, thus, to evaluate the advantages and disadvantages of each method.

Athanasios Sideridis; Dimitrios Koutsonikolas; Dimitrios Missirlis [Aristotle University of Thessaloniki (Greece)

2008-07-01T23:59:59.000Z

468

TheJournalofCellBiology The Rockefeller University Press, 0021-9525/2004/02/385/10 $8.00  

E-Print Network (OSTI)

proliferation and death but also activates the myelin genes periaxin and T protein zero, showing properties for both proliferation and death. Thus, Krox-20 can coordinately control suppression of mitogenic and death.1083/jcb.200307132 JCBArticle 385 Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell

Jessen, Kristjan R

469

ARIZONA COOPERATIVE What You Should Know When You're  

E-Print Network (OSTI)

office wall. He is also a four-time winner of the N.H. Outstanding Tree Farm Inspector of the Year. TodaySwanzey forester, inspector gets national recognition By Anika Clark Sentinel Staff Published,000 tree farm inspectors -- an army of foresters that volunteers its time to help ensure that when

Sanderson, Mike

470

National Aeronautics and Space Administration  

E-Print Network (OSTI)

office wall. He is also a four-time winner of the N.H. Outstanding Tree Farm Inspector of the Year. TodaySwanzey forester, inspector gets national recognition By Anika Clark Sentinel Staff Published,000 tree farm inspectors -- an army of foresters that volunteers its time to help ensure that when

Christian, Eric

471

United States Attorney Sally Quillian Yates Northern District of Georgia  

E-Print Network (OSTI)

office wall. He is also a four-time winner of the N.H. Outstanding Tree Farm Inspector of the Year. TodaySwanzey forester, inspector gets national recognition By Anika Clark Sentinel Staff Published,000 tree farm inspectors -- an army of foresters that volunteers its time to help ensure that when

Christian, Eric

472

Synthesis and reactivity of molybdenum organometallic complexes supported by amide ligands  

E-Print Network (OSTI)

Chapter 1. Synthesis and Reactivity of Molybdenum Alkyl Complexes Supported by a Diamidoamine Ligand. The synthesis of a new diamidoamine ligand, CH3N[CH2CH2NH(3-(CF3)C6H4)]2 (H2L) is reported. Molybdenum complexes of the ...

Hock, Adam S. (Adam Scott)

2007-01-01T23:59:59.000Z

473

Matter & Energy Electronics  

E-Print Network (OSTI)

and workers who handle chemicals have no good equivalent to monitor their exposure to potentially toxic of Illinois) Smart Toxic Gas Monitor Plug/Play sensor 10' extender cable NH3, CO, CL2, H2S, PH3, SO2, AsH3 www.Polyera.com Innovations in Action Advanced Cooling Technologies, Inc. ISO Cert. Heat Pipe Manufacturer www.1-ACT

Suslick, Kenneth S.

474

Effects of Nitrate Exposure on the Functional Structure of a Microbial Community in a Uranium-contaminated Aquifer  

E-Print Network (OSTI)

in the final model were COD, iron, and sulfate (p=0.020; f-Samples in FW101-2 and [FW102-2] (M) Day # COD aSulfate a COD, Sulfide Iron pH Nitrate U(VI) Nitrite NH 4 -H

Van Nostrand, Joy

2010-01-01T23:59:59.000Z

475

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 22nd NREL Industry Growth Forum  

E-Print Network (OSTI)

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 22nd NREL Industry Growth Forum Renewable Energy Laboratory Innovation for Our Energy Future Applications to Present MA: 22 CT: 2 NH: 2 RI

476

Nucleon spin structure at Jefferson Lab  

Science Conference Proceedings (OSTI)

In the past decade an extensive experimental program to measure the spin structure of the nucleon has been carried out in the three halls at Jefferson Lab. Using a longitudinally polarized beam scattering off longitudinally or transversely polarized 3 He NH 3 and ND 3 targets

The CLAS collaboration

2011-01-01T23:59:59.000Z

477

Fuel Etanol from Cellulosic Biomass LEE R. LYND, JANET H. CusHmAN, ROBERTA J. NICHOLS, CHARLES E. WYMAN  

E-Print Network (OSTI)

is with the Thayer School of Engineering, Dartmouth College, Hanover, NH 03755. J. H. Cushman manages the Biofuels. At the 1989 average wholesale gasoline price of $0.655 per gallon (2), the selling price required for neat), gasoline can be expected to have a wholesale price of about $0.88 per gallon (25), and a price of $0.70 per

California at Riverside, University of

478

Atmos. Chem. Phys., 12, 1005110064, 2012 www.atmos-chem-phys.net/12/10051/2012/  

E-Print Network (OSTI)

. Stagnant atmospheric conditions limited wind ventilation while highly reflective snow cover reduced day/organic markers confirmed secondary NH4NO3 (27­ 37 %), residential wood combustion (RWC; 11­51 %), and diesel minor, but detectable contributors. RWC is a more important source than diesel for organic carbon (OC

Meskhidze, Nicholas

479

Method for selective recovery of PET-usable quantities of [.sup.18 F] fluoride and [.sup.13 N] nitrate/nitrite from a single irradiation of low-enriched [.sup.18 O] water  

DOE Patents (OSTI)

A process for simultaneously producing PET-usable quantities of [.sup.13 N]NH.sub.3 and [.sup.18 F]F.sup.- for radiotracer synthesis is disclosed. The process includes producing [.sup.13 N]NO.sub.2.sup.- /NO.sub.3.sup.- and [.sup.18 F]F.sup.- simultaneously by exposing a low-enriched (20%-30%) [.sup.18 O]H.sub.2 O target to proton irradiation, sequentially isolating the [.sup.13 N]NO.sub.2.sup.- /NO.sub.3.sup.- and [.sup.18 F]F.sup.- from the [.sup.18 O]H.sub.2 O target, and reducing the [.sup.13 N]NO.sub.2.sup.- /NO.sub.3.sup.- to [.sup.13 N]NH.sub.3. The [.sup.13 N]NH.sub.3 and [.sup.18 F]F.sup.- products are then conveyed to a laboratory for radiotracer applications. The process employs an anion exchange resin for isolation of the isotopes from the [.sup.18 O]H.sub.2 O, and sequential elution of [.sup.13 N]NO.sub.2.sup.- /NO.sub.3.sup.- and [ .sup.18 F]F.sup.- fractions. Also the apparatus is disclosed for simultaneously producing PET-usable quantities of [.sup.13 N]NH.sub.3 and [.sup.18 F]F.sup.- from a single irradiation of a single low-enriched [.sup.18 O]H.sub.2 O target.

Ferrieri, Richard A. (Patchogue, NY); Schlyer, David J. (Bellport, NY); Shea, Colleen (Wading River, NY)

1995-06-13T23:59:59.000Z

480

Agent Tcl: Alpha Release 1.1 Robert S. Gray \\Lambda  

E-Print Network (OSTI)

Agent Tcl: Alpha Release 1.1 Robert S. Gray \\Lambda Department of Computer Science Dartmouth College Hanover, NH 03755 E­mail: robert.s.gray@dartmouth.edu December 1, 1995 Abstract Agent Tcl is a transportable agent system. The agents are written in an extended version of the Tool Command Lanuage (Tcl

Note: This page contains sample records for the topic "2011-2013 pittsburg nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

I. Pt-Catalyzed Tandem Epoxide Fragmentation/Pentannulation of Propargylic Esters II. Progress Toward the Kopsia Family of Indole Alkaloids  

E-Print Network (OSTI)

N H NO 2 BnO N H xylenes, catechol BnO N H 2 , Pd/C NH 2 BnOBnO N H NO 2 BnO N H xylenes, catechol 3-(2-Nitroethyl)-5-1.1 equiv. ), and 3-methyl-catechol (250 mg, 2.3 mmol, 0.1

Pujanauski, Brian Gerard

2010-01-01T23:59:59.000Z

482

Effluent Quality Prediction of Wastewater Treatment Plant Based on Fuzzy-Rough Sets and Artificial Neural Networks  

Science Conference Proceedings (OSTI)

Effluent ammonia-nitrogen (NH3-N), chemical oxygen demand (COD) and total nitrogen (TN) removals are the most common environmental and process performance indicator for all types of wastewater treatment plants (WWTPs). In this paper, a soft computing ... Keywords: neural network, fuzzy rough sets, input variable selection, wastewater treatment, prediction, soft computing

Fei Luo; Ren-hui Yu; Yu-ge Xu; Yan Li

2009-08-01T23:59:59.000Z

483