Sample records for 2010-2040 quadrillion btu

  1. Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarkets EnergyConsumption5 15EnvironmentalErin

  2. MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) - Householdshort version)6/09/2015Values shownLower

  3. Computer Systems Research at UCSC: Quadrillions of Bytes and Microsecond

    E-Print Network [OSTI]

    Lee, Herbie

    , Feng Wang, Sage Weil, Joel Wu, Chris Xin, Lan Xue #12;Project overview · Scalable file systems systems (e.g., SAP) · General-purpose computing (e.g., UCSC) · Major funding from the NationalComputer Systems Research at UCSC: Quadrillions of Bytes and Microsecond Deadlines Scott A. Brandt

  4. Accurate BTU Measurement

    E-Print Network [OSTI]

    Hosseini, S.; Rusnak, J. J.

    1 represents a typical arrangement in which heat is supplied to, or absorbed by the difference in temperatures of a working fluid, generally water. (See Ref. 1). Supply (TIl- Supply (Tl1 E E Heat (BTU) He.' ~ Exchange Exchange Relurn (T2... rate (BTU/unit time) ? m Mass flow rate (lb/unit time) hI' h2 = Specific enthalpy of supply and return liquid (BTU/lb) BTU C p - Average specific heat (--~----) IboF Equations 1, 2 are instantaneous values for heat flow or energy transferred...

  5. BTU Accounting for Industry

    E-Print Network [OSTI]

    Redd, R. O.

    1979-01-01T23:59:59.000Z

    , salesmen cars, over the highway trucks, facilities startup, waste used as fuel and fuels received for storage. This is a first step in the DOE's effort to establish usage guidelines for large industrial users and, we note, it requires BTU usage data...-generated electricity, heating, ventilating, air conditioning, in-plant transportation, ore hauling, raw material storage and finished product warehousing. Categories which are excluded are corporate and divisional offices, basic research, distribution centers...

  6. A Requirement for Significant Reduction in the Maximum BTU Input...

    Energy Savers [EERE]

    A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for...

  7. Environmental Permitting of a Low-BTU Coal Gasification Facility

    E-Print Network [OSTI]

    Murawczyk, C.; Stewart, J. T.

    1983-01-01T23:59:59.000Z

    that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification...

  8. Environmental Permitting of a Low-BTU Coal Gasification Facility 

    E-Print Network [OSTI]

    Murawczyk, C.; Stewart, J. T.

    1983-01-01T23:59:59.000Z

    that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification...

  9. Property:Geothermal/CapacityBtuHr | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:Docket Number JumpAnnualGenBtuYrCapacityBtuHr

  10. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

  11. EIA - Annual Energy Outlook 2013 Early Release

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    dataWhile total liquid fuels consumption falls, consumption of domestically produced biofuels increases significantly, from 1.3 quadrillion Btu in 2011 to 2.1 quadrillion Btu in...

  12. Property:Geothermal/AnnualGenBtuYr | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:Docket Number JumpAnnualGenBtuYr Jump to:

  13. BTU International DUK International JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP ScreeningBLMBSABTBTR NewBTU

  14. High Btu gas from peat. Existing social and economic conditions

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    In 1980, the Minnesota Gas Company (Minnegasco) submitted a proposal to the US Department of Energy entitled, A Feasibility Study - High Btu Gas from Peat. The proposed study was designed to assess the overall viability of the design, construction and operation of a commercial facility for the production of high-Btu substitute natural gas (SNG) from Minnesota peat. On September 30, 1980, Minnegasco was awarded a grant by the Department of Energy to perform the proposed study. In order to complete the study, Minnegasco assembled an experienced project team with the wide range of expertise required. In addition, the State of Minnesota agreed to participate in an advisory capacity. The items to be investigated by the project team during the feasibility study include peat harvesting, dewatering, gasification process design, economic and risk assessment, site evaluation, environmental and socioeconomic impact assessment. Ertec (The Earth Technology Corporation) was selected to conduct the site evaluation and environmental assessment portions of the feasibility study. The site evaluation was completed in March of 1981 with the submittal of the first of several reports to Minnegasco. This report describes the existing social and economic conditions of the proposed project area in northern Minnesota. The baseline data presented will be used to assess the significance of potential project impacts in subsequent phases of the feasibility study. Wherever possible, the data base was established using 1980 Bureau of Census statistics. However, where the 1980 data were not yet available, the most recent information is presented. 11 figures, 46 tables.

  15. The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations 

    E-Print Network [OSTI]

    Blackwell, L. T.; Crowder, J. T.

    1983-01-01T23:59:59.000Z

    The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates...

  16. Vol. 30 no. 14 2014, pages 20912092 BIOINFORMATICS MESSAGE FROM THE ISCB doi:10.1093/bioinformatics/btu117

    E-Print Network [OSTI]

    Radivojac, Predrag

    .1093/bioinformatics/btu117 Advance Access publication March 3, 2014 The automated function prediction SIG looks back

  17. Subtask 3.16 - Low-BTU Field Gas Application to Microturbines

    SciTech Connect (OSTI)

    Darren Schmidt; Benjamin Oster

    2007-06-15T23:59:59.000Z

    Low-energy gas at oil production sites presents an environmental challenge to the sites owners. Typically, the gas is managed in flares. Microturbines are an effective alternative to flaring and provide on-site electricity. Microturbines release 10 times fewer NOx emissions than flaring, on a methane fuel basis. The limited acceptable fuel range of microturbines has prevented their application to low-Btu gases. The challenge of this project was to modify a microturbine to operate on gases lower than 350 Btu/scf (the manufacturer's lower limit). The Energy & Environmental Research Center successfully operated a Capstone C30 microturbine firing gases between 100-300 Btu/scf. The microturbine operated at full power firing gases as low as 200 Btu/scf. A power derating was experienced firing gases below 200 Btu/scf. As fuel energy content decreased, NO{sub x} emissions decreased, CO emissions increased, and unburned hydrocarbons remained less than 0.2 ppm. The turbine was self-started on gases as low as 200 Btu/scf. These results are promising for oil production facilities managing low-Btu gases. The modified microturbine provides an emission solution while returning valuable electricity to the oilfield.

  18. The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations

    E-Print Network [OSTI]

    Blackwell, L. T.; Crowder, J. T.

    1983-01-01T23:59:59.000Z

    the high costs of oxygen and methanation required to produce gas that can be transmitted over long distance. Standard low Btu fixed bed gasifiers have historically been plagued by three constraints; namely, the production of messy tars and oils...

  19. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    SciTech Connect (OSTI)

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01T23:59:59.000Z

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  20. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1980-01-01T23:59:59.000Z

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  1. Vol. 30 ISMB 2014, pages i9i18 BIOINFORMATICS doi:10.1093/bioinformatics/btu259

    E-Print Network [OSTI]

    Moret, Bernard

    Vol. 30 ISMB 2014, pages i9­i18 BIOINFORMATICS doi:10.1093/bioinformatics/btu259 Evaluating synteny

  2. An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels 

    E-Print Network [OSTI]

    Carney, Christopher Mark

    1995-01-01T23:59:59.000Z

    The objective of this research project was to identify and determine the effect of jet burner operating variables that influence combustion of low-BTU gases. This was done by simulating the combustion of a low-BTU fuel in a jet flame and predicting...

  3. An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels

    E-Print Network [OSTI]

    Carney, Christopher Mark

    1995-01-01T23:59:59.000Z

    The objective of this research project was to identify and determine the effect of jet burner operating variables that influence combustion of low-BTU gases. This was done by simulating the combustion of a low-BTU fuel in a jet flame and predicting...

  4. An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters

    E-Print Network [OSTI]

    Nebeker, C. J.

    1982-01-01T23:59:59.000Z

    As the price gap between oil and natural gas and coal continues to widen, Monsanto has carefully searched out and examined opportunities to convert fuel use to coal. Preliminary studies indicate that the low-btu gas produced by fixed-bed, air blown...

  5. Zero Energy Windows

    E-Print Network [OSTI]

    Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

    2006-01-01T23:59:59.000Z

    impact of 4.1 quadrillion BTU (quads) of primary energy 1 .systems with U-factors of 0.1 Btu/hr-ft˛-°F Dynamic windows:for 1 quadrillion (10 15 ) Btu = 1.056 EJ. percent (Apte,

  6. L:\\main\\pkc\\aeotabs\\aeo2009\\stim_all.wpd

    U.S. Energy Information Administration (EIA) Indexed Site

    An Updated Annual Energy Outlook 2009 Reference Case 16 Table A1. Total Energy Supply and Disposition Summary (Quadrillion Btu per Year, Unless Otherwise Noted) Supply,...

  7. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    Transportation sector energy demand Growth in transportation energy consumption flat across projection figure data The transportation sector consumes 27.1 quadrillion Btu of energy...

  8. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | Annual Energy Outlook 2012 Reference case Table A5. Commercial sector key indicators and consumption (quadrillion Btu per year, unless...

  9. Appendix A

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    7. Renewable energy consumption by sector and source (quadrillion Btu) Sector and source Reference case Annual growth 2012-2040 (percent) 2011 2012 2020 2025 2030 2035 2040...

  10. Determination of performance characteristics of a one-cylinder diesel engine modified to burn low-Btu (lignite) gas

    E-Print Network [OSTI]

    Blacksmith, James Richard

    1979-01-01T23:59:59.000Z

    DETERMINATION OF PERFORMANCE CHARACTERISTICS OF A ONE-CYLINDER DIESEL ENGINE MODIFIED TO BURN LOW-BTU (LIGNITE) GAS A Thesis JAMES RICHARD BLACKSMITH Submitted to the Graduate College of Texas A86YI University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1979 Major Subject: Mechanical Engineering DETERMINATION OF PERFORMANCE CHARACTERISTICS OF A ONE-CYLINDER DIESEL ENGINE MODIFIED TO BURN LOW-BTU (LIGNITE) GAS A Thesis by JAMES RICHARD BLACKSMITH...

  11. Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

  12. 4-1-09_Final_Testimony_(Gruenspecht).pdf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about 1,142 trillion British thermal units (Btu), more than 1 percent of total U.S. energy consumption of 101.9 quadrillion Btu. The components of farm energy consumption are...

  13. EIA - Annual Energy Outlook 2012 Early Release

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Btu in 2010 to 15.7 quadrillion Btu in 2025, due to projected increases in the fuel economy of highway vehicles. Projected energy consumption for LDVs increases after 2025, to...

  14. Understanding Utility Rates or How to Operate at the Lowest $/BTU

    E-Print Network [OSTI]

    Phillips, J. N.

    . The lower the energy rating (KW/Ton or KW/HP or KW/BTU) the more efficient the equipment and the less demand draw on the electric power plants, thereby reducing the need to build new power plants. To encourage DSM, utilities give rebates for high...: Bob Allwein, Oklahoma Natural Gas Company. Dick Landry, Gulf States Utility. Curtis Williford, Entex Gas Company. Bret McCants, Central Power and Light Company. Frank Tanner, Southern Union. Patric Coon, West Texas utilities. ESL-IE-93...

  15. U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-14 Dec-14 Jan-15 Feb-15(BTU perper

  16. High btu gas from peat. A feasibility study. Part 1. Executive summary. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    In September, 1980, the US Department of Energy (DOE) awarded a Grant (No. DE-FG01-80RA50348) to the Minnesota Gas Company (Minnegasco) to evaluate the commercial viability - technical, economic and environmental - of producing 80 million standard cubic feet per day (SCFD) of substitute natural gas (SNG) from peat. The proposed product, high Btu SNG would be a suitable substitute for natural gas which is widely used throughout the Upper Midwest by residential, commercial and industrial sectors. The study team consisted of Dravo Engineers and Constructors, Ertec Atlantic, Inc., The Institute of Gas Technology, Deloitte, Haskins and Sells and Minnegasco. Preliminary engineering and operating and financial plans for the harvesting, dewatering and gasification operations were developed. A site in Koochiching County near Margie was chosen for detailed design purposes only; it was not selected as a site for development. Environmental data and socioeconomic data were gathered and reconciled. Potential economic data were gathered and reconciled. Potential impacts - both positive and negative - were identified and assessed. The peat resource itself was evaluated both qualitatively and quantitatively. Markets for plant by-products were also assessed. In summary, the technical, economic, and environmental assessment indicates that a facility producing 80 billion Btu's per day SNG from peat is not commercially viable at this time. Minnegasco will continue its efforts into the development of peat and continue to examine other options.

  17. Markets for low- and medium-Btu coal gasification: an analysis of 13 site specific studies

    SciTech Connect (OSTI)

    Not Available

    1981-09-01T23:59:59.000Z

    In 1978 the US Department of Energy (DOE), through its Office of Resource Applications, developed a commercialization plan for low- and medium-Btu coal gasification. Several initial steps have been taken in that process, including a comprehensive study of industrial markets, issuance of a Notice of Program Interest, and funding of proposals under the Alternate Fuels Legislation (P.L. 96-126). To assist it in the further development and administration of the commercialization plan, the Office of Resource Applications has asked Booz, Allen and Hamilton to assess the market prospects for low- and medium-Btu coal gasification. This report covers the detailed findings of the study. Following the introduction which discusses the purpose of the study, approach used for the assignment and current market attitudes on coal gasification, there are three chapters on: systems configurations and applications; economic and finanical attractiveness; and summary of management decisions based on feasibility study results. The final chapter briefly assesses the management decisions. The general consensus seems to be that coal gasification is a technology that will be attractive in the future but is marginal now. 6 figures, 5 tables.

  18. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1985-02-12T23:59:59.000Z

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  19. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1981-01-01T23:59:59.000Z

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  20. The effect of CO? on the flammability limits of low-BTU gas of the type obtained from Texas lignite 

    E-Print Network [OSTI]

    Gaines, William Russell

    1983-01-01T23:59:59.000Z

    Chairman of Advisory Committee: Dr. W. N. Heffington An experimental study was conducted to determine if relatively large amounts of CO in a low-BTU gas of the type 2 derived from underground gasification of Texas lignite would cause significant... time when I was in need. Finally, the Center for Energy and Mineral Resources and the Texas Engineering Experiment Station for support related to this research. TABLE OF CONTENTS PAGE ABSTRACT ACKNOWLEDGEMENTS LIST OF TABLES LIST OF FIGURES V1...

  1. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W. [Zurn/NEPCO, South Portland, MA (United States); Paisley, M. [Battelle Laboratories, Columbus, OH (United States)

    1995-12-31T23:59:59.000Z

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  2. High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas

    SciTech Connect (OSTI)

    Horner, M.W.

    1980-12-01T23:59:59.000Z

    The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

  3. High Btu gas from peat. A feasibility study. Part 2. Management plans for project continuation. Task 10. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The primary objective of this task, which was the responsibility of the Minnesota Gas Company, was to determine the needs of the project upon completion of the feasibility study and determine how to implement them most effectively. The findings of the study do not justify the construction of an 80 billion Btu/day SNG from peat plant. At the present time Minnegasco will concentrate on other issues of peat development. Other processes, other products, different scales of operation - these are the issues that Minnegasco will continue to study. 3 references.

  4. Monthly energy review: September 1996

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    Energy production during June 1996 totaled 5.6 quadrillion Btu, a 0.5% decrease from the level of production during June 1995. Energy consumption during June 1996 totaled 7.1 quadrillion Btu, 2.7% above the level of consumption during June 1995. Net imports of energy during June 1996 totaled 1.6 quadrillion Btu, 4.5% above the level of net imports 1 year earlier. Statistics are presented on the following topics: energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. 37 figs., 59 tabs.

  5. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01T23:59:59.000Z

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  6. L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    3 Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Sector and source Reference case Annual growth 2010-2035 (percent) 2009 2010...

  7. Energy Information Administration / Annual Energy Outlook 2011

    Gasoline and Diesel Fuel Update (EIA)

    3 Table A2. Energy Consumption by Sector and Source (Quadrillion Btu per Year, Unless Otherwise Noted) Sector and Source Reference Case Annual Grow th 2009-2035 (percent) 2008 2009...

  8. Time, Humans and Societal Challenges

    E-Print Network [OSTI]

    poverty and population density coincide with high biodiversity. Poor people have no other choice than per year, or doubling in 35 years Fossil fuel contribution >80% globally (Quadrillion (1E15) Btu) 1

  9. Time, Humans and Societal Challenges

    E-Print Network [OSTI]

    16 Human Development Index) is UN measure of well-being. High poverty and population density coincide fuel contribution >80% globally (Quadrillion (1E15) Btu) 1 quad = 1E15 British thermal units = 2.9E11 k

  10. Tips: Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    half of us use natural gas. | Source: Buildings Energy Data Book 2011, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total)....

  11. Report: An Updated Annual Enrgy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Energy Supply and Disposition Summary" " (quadrillion Btu, unless otherwise noted)" ,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2...

  12. EIA - Annual Energy Outlook 2013 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Energy and economic factors 2011 2012 AEO2014 AEO2013 AEO2014 AEO2013 Primary energy production (quadrillion Btu) Crude oil and natural gas plant liquids 15.31 17.08 23.03...

  13. Addressing the problem with natural ventilation : producing a guide for designers to integrate natural ventilation into the early stages of building design

    E-Print Network [OSTI]

    Fennessy, Kristian (Kristian M.)

    2014-01-01T23:59:59.000Z

    Currently, the United States alone is responsible for approximately twenty percent of the world's total energy consumption. This consumption is equivalent to roughly 100 quadrillion Btu of energy, or in plainer terms, over ...

  14. U.S. Energy Information Administration (EIA) - Pub

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    and their impacts on end-use energy demand In 2010, the residential and commercial buildings sectors used 20.4 quadrillion Btu of delivered energy, or 28 percent of total U.S....

  15. Fact #792: August 12, 2013 Energy Consumption by Sector and Energy...

    Broader source: Energy.gov (indexed) [DOE]

    In the last 30 years, overall energy consumption has grown by about 22 quadrillion Btu. The share of energy consumption by the transportation sector has seen modest growth in that...

  16. Annual Energy Outlook 2015 - Appendix A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outlook 2015 Table A17. Renewable energy consumption by sector and source (quadrillion Btu per year) Sector and source Reference case Annual growth 2013-2040 (percent) 2012 2013...

  17. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOE Patents [OSTI]

    Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

    1984-07-03T23:59:59.000Z

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  18. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOE Patents [OSTI]

    Scheffer, K.D.

    1984-07-03T23:59:59.000Z

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  19. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01T23:59:59.000Z

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  20. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    SciTech Connect (OSTI)

    Davis, J.; Swenson, A.

    1998-07-01T23:59:59.000Z

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  1. Monthly energy review, July 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-29T23:59:59.000Z

    US total energy consumption in July 1990 was 6.7 quadrillion Btu Petroleum products accounted for 42 percent of the energy consumed in July 1990, while coal accounted for 26 percent and natural gas accounted for 19 percent. Residential and commercial sector consumption was 2.3 quadrillion Btu in July 1990, up 2 percent from the July 1989 level. The sector accounted for 35 percent of July 1990 total consumption, about the same share as in July 1989. Industrial sector consumption was 2.4 quadrillion Btu in July 1990, up 2 percent from the July 1989 level. The industrial sector accounted for 36 percent of July 1990 total consumption, about the same share as in July 1989. Transportation sector consumption of energy was 1.9 quadrillion Btu in July 1990, up 1 percent from the July 1989 level. The sector consumed 29 percent of July 1990 total consumption, about the same share as in July 1989. Electric utility consumption of energy totaled 2.8 quadrillion Btu in July 1990, up 2 percent from the July 1989 level. Coal contributed 53 percent of the energy consumed by electric utilities in July 1990, while nuclear electric power contributed 21 percent; natural gas, 12 percent; hydroelectric power, 9 percent; petroleum, 5 percent; and wood, waste, geothermal, wind, photovoltaic, and solar thermal energy, about 1 percent.

  2. Monthly energy review, May 1994

    SciTech Connect (OSTI)

    Not Available

    1994-05-25T23:59:59.000Z

    Energy production during February 1994 totaled 5.3 quadrillion Btu, a 2.2% increase over February 1993. Coal production increased 9%, natural gas rose 2.5%, and petroleum decreased 3.6%; all other forms of energy production combined were down 3%. Energy consumption during the same period totaled 7.5 quadrillion Btu, 4.1% above February 1993. Natural gas consumption increased 5.8%, petroleum 5.2%, and coal 2.3%; consumption of all other energy forms combined decreased 0.7%. Net imports of energy totaled 1.4 quadrillion Btu, 16.9% above February 1993; petroleum net imports increased 10.1%, natural gas net imports were down 4.9%, and coal net exports fell 43.7%. This document is divided into: energy overview, energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, international energy, appendices (conversion factors, etc.), and glossary.

  3. 7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed is to be determined.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-20 7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed/h. Then noting that each available air conditioner provides 4,000 Btu/h cooling, the number of air- conditioners

  4. U.S. Energy Flow - 1999

    SciTech Connect (OSTI)

    Kaiper, G V

    2001-03-01T23:59:59.000Z

    Lawrence Livermore National Laboratory (LLNL) has prepared similar flow charts of U.S. energy consumption since 1972. The chart follows the flow of individual fuels and compares these on the basis of a common energy unit of quadrillion British thermal units (Btu). A quadrillion, or ''quad,'' is 10{sup 15}. One Btu is the quantity of heat needed to raise the temperature of 1 pound of water by 1 F at or near 39.2 F. The width of each colored line across this chart is in proportion to the amount of quads conveyed. (Exception: lines showing extremely small amounts have been made wide enough to be clearly visible.) In most cases, the numbers used in this chart have been rounded to the nearest tenth of a quad, although the original data was published in hundredths or thousandths of a quad. As a consequence of independent rounding, some of the summary numbers may not appear to be a precise total of their various components. The first chart in this document uses quadrillion Btu's to conform with data from the U.S. Department of Energy's Energy Information Administration (EIA). However, the second chart is expressed in exajoules. A joule is the metric unit for heat. One Btu equals 1,055.06 joules; and one quadrillion Btu's equals 1.055 exajoules (an exajoule is 10{sup 18} joules).

  5. Enhancing Building Operations Through Automated Diagnostics: Field Test Results

    E-Print Network [OSTI]

    Katipamula, S.; Brambley, M. R.; Bauman, N.; Pratt, R. G.

    2003-01-01T23:59:59.000Z

    According to the Annual Energy Outlook 2003 (EIA 2003), in 2001, 17.4 quadrillion Btu (1 quad = 1015 Btu) of primary energy was consumed by commercial buildings in the United States at a cost of about 127 billion dollars (in 2001 dollars). Many... maintenance is clearly insufficient to address this issue. Manually commissioning buildings is valuable in terms of both finding problems and developing the techniques for doing so, but it is expensive. With only 1 to 2% of total construction costs...

  6. First BTU | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County, Minnesota:Island, NewFirmGreen

  7. BTU LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP ScreeningBLMBSABTBTR

  8. Built Environment For Complete Set of Factsheets visit css.snre.umich.edu

    E-Print Network [OSTI]

    Edwards, Paul N.

    % of total commercial floor space and 51% of buildings.2 Resource Consumption Energy Use · In 2010, the commercial sector consumed 18.3 quadrillion Btu of primary energy, a 72% increase from 1980.4 · Lighting and indoor climate control consumed 51% of commercial sector primary energy in 2010.4 · Average energy

  9. UT-Battelle Department of Energy

    E-Print Network [OSTI]

    generation, distribution, and consumption ­ Environmental impacts of energy use ­ National security Quadrillion Btu Solar, 0.07 Wind, 0.258 Geothermal, 0.349 Hydroelectric, 2.889 Biomass, 3.227 Coal, 23 diversity Increase our energy options and reduce dependence on oil Environmental impacts of energy Improve

  10. Entrepreneurialship Considerations in

    E-Print Network [OSTI]

    and other customers Bioenergy Climate Energy technologies Ultrascale computing National security Materials SOURCES cont. · Bio Fuels · Gas to Liquids · Solar · Geothermal #12;10 Managed by UT-Battelle for the U's energy Total U.S. energy consumption, 2007 ~102 quads Nonfossil sources ~15 quads Quadrillion Btu Solar

  11. DuPont Energy Innovations

    E-Print Network [OSTI]

    Firestone, Jeremy

    21 1 6 2 9 9 U. S. Primary Energy Consumption by Source and Sector, 2007 (Quadrillion BTU) Source by Energy Type, Indexed to 1970 INDEXEDPRICE Source: Energy Information Administration, website data #12 energy flat with 1990 levels. Progress: · Consumption down 7 percent overall as compared to 1990. · Since

  12. Modeling of Electric Power Supply Chain Networks with Fuel Suppliers Variational Inequalities

    E-Print Network [OSTI]

    Nagurney, Anna

    primary energy (coal, natural gas, uranium, and oil), or approximately 40 quadrillion BTU (British Thermal, and more than six billion Mcfs (thousand cubic feet) of natural gas were used in producing electric power Edison Electric Institute (2000), US Energy Information Administration (2002, 2005)). The US electric

  13. Mani Srivastava mbs@ucla.edu

    E-Print Network [OSTI]

    van Dyk, David

    , and crude oil burned as fuel. 10 ·41% of total energy consumption ·73% of electricity consumption ·34 in electricity, water, and gas consumption in buildings can have a significant impact #12;The Energy-Water Nexus;Resource Consumption in Buildings 2 EIA, 2008 Figure 1.0 Energy Flow, 2008 (Quadrillion Btu) 1 Includes

  14. 2012 Renewable Energy Data Book (Book), Energy Efficiency & Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Source (2000-2012) Source: EIA Coal Natural Gas Petroleum Nuclear Renewables Total Consumption (Quadrillion Btu) 2000 22.9% 24.1% 38.7% 8.0% 6.2% 98.7 2001 22.8% 23.7% 39.7%...

  15. Photoelectrochemical Water Splitting of Nitrogen and Hydrogen Treated P25 TiO2 Films

    E-Print Network [OSTI]

    Zavodivker, Liat Shari

    2014-01-01T23:59:59.000Z

    Meeting the Clean Energy Demand: Nanostructure Architectures20102040 (left) and energy demand from 1990 – 2010 with20102040 (left) and energy demand from 1990 – 2010 with

  16. Experimental program for the development of peat gasification. Process designs and cost estimates for the manufacture of 250 billion Btu/day SNG from peat by the PEATGAS Process. Interim report No. 8

    SciTech Connect (OSTI)

    Arora, J.L.; Tsaros, C.L.

    1980-02-01T23:59:59.000Z

    This report presents process designs for the manufacture of 250 billion Btu's per day of SNG by the PEATGAS Process from peats. The purpose is to provide a preliminary assessment of the process requirements and economics of converting peat to SNG by the PEATGAS Process and to provide information needed for the Department of Energy (DOE) to plan the scope of future peat gasification studies. In the process design now being presented, peat is dried to 35% moisture before feeding to the PEATGAS reactor. This is the basic difference between the Minnesota peat case discussed in the current report and that presented in the Interim Report No. 5. The current design has overall economic advantages over the previous design. In the PEATGAS Process, peat is gasified at 500 psig in a two-stage reactor consisting of an entrained-flow hydrogasifier followed by a fluidized-bed char gasifier using steam and oxygen. The gasifier operating conditions and performance are necessarily based on the gasification kinetic model developed for the PEATGAS reactor using the laboratory- and PDU-scale data as of March 1978 and April 1979, respectively. On the basis of the available data, this study concludes that, although peat is a low-bulk density and low heating value material requiring large solids handling costs, the conversion of peat to SNG appears competitive with other alternatives being considered for producing SNG because of its very favorable gasification characteristics (high methane formation tendency and high reactivity). As a direct result of the encouraging technical and economic results, DOE is planning to modify the HYGAS facility in order to begin a peat gasification pilot plant project.

  17. Monthly energy review, April 1993. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1993-04-28T23:59:59.000Z

    Energy production during January 1993 totaled 5.7 quadrillion Btu, a 3.3-percent decrease compared with the level of production during January 1992. Coal production decreased 9.9 percent, petroleum production dropped 3.9 percent, and natural gas production increased 0.5 percent. All other forms of energy production combined were up 4.9 percent from the level of reduction during January 1992. Energy consumption during January 1993 totaled 7.7 quadrillion Btu, 0.4 percent above the level of consumption during January 1992. Coal consumption increased 2.2 percent, natural gas consumption was up 1.3 percent, and petroleum consumption dropped 2.8 percent. Consumption of all other forms of energy combined increased 5.1 percent compared with the level 1 year earlier.

  18. Monthly energy review, April 1993

    SciTech Connect (OSTI)

    Not Available

    1993-04-28T23:59:59.000Z

    Energy production during January 1993 totaled 5.7 quadrillion Btu, a 3.3-percent decrease compared with the level of production during January 1992. Coal production decreased 9.9 percent, petroleum production dropped 3.9 percent, and natural gas production increased 0.5 percent. All other forms of energy production combined were up 4.9 percent from the level of reduction during January 1992. Energy consumption during January 1993 totaled 7.7 quadrillion Btu, 0.4 percent above the level of consumption during January 1992. Coal consumption increased 2.2 percent, natural gas consumption was up 1.3 percent, and petroleum consumption dropped 2.8 percent. Consumption of all other forms of energy combined increased 5.1 percent compared with the level 1 year earlier.

  19. Annual Energy Review, 1995

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This document presents statistics on energy useage for 1995. A reviving domestic economy, generally low energy prices, a heat wave in July and August, and unusually cold weather in November and December all contributed to the fourth consecutive year of growth in U.S. total energy consumption, which rose to an all-time high of almost 91 quadrillion Btu in 1995 (1.3). The increase came as a result of increases in the consumption of natural gas, coal, nuclear electric power, and renewable energy. Petroleum was the primary exception, and its use declined by only 0.3 percent. (Integrating the amount of renewable energy consumed outside the electric utility sector into U.S. total energy consumption boosted the total by about 3.4 quadrillion Btu, but even without that integration, U.S. total energy consumption would have reached a record level in 1995.)

  20. Monthly energy review, May 1995

    SciTech Connect (OSTI)

    NONE

    1995-05-24T23:59:59.000Z

    Energy production during Feb 95 totaled 5.4 quadrillion Btu (Q), 3.1% over Feb 94. Energy consumption totaled 7.4 Q, 0.7% below Feb 94. Net imports of energy totaled 1.3 Q, 5.6% below Feb 94. This publication is divided into energy overview, energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy.

  1. Monthly energy review, July 1995

    SciTech Connect (OSTI)

    NONE

    1995-07-24T23:59:59.000Z

    Energy production during April 1995 totaled 5.5 quadrillion Btu, a 1.0-percent decrease from the level of production during April 1994. Coal production decreased 7.7 percent, natural gas increased 1.3 percent, and production of crude oil and natural gas plant liquids increased 0.3 percent. All other forms of energy production combined were up 8.6 percent from the level of production during April 1994.

  2. A New Approach to Optimizing Fired Heaters

    E-Print Network [OSTI]

    Garg, A.

    2010-01-01T23:59:59.000Z

    . Optimizing the heater operation will prolong heater life and reduce NOx emissions. INTRODUCTION Petroleum Refining is the most energy intensive industry in the USA and accounts for 7.5% of the total energy consumption in the country. Energy... in the refining industry is around 7.1 Quadrillion Btu/year. Petroleum refining relies heavily on refining by- products as energy sources. About 6% of the petroleum is used as fuel. The situation is very similar in the Petrochemical and Fertilizer Industry...

  3. Research in Industrial Combustion Systems - Current and Future R&D

    E-Print Network [OSTI]

    Rebello, W. J.; Keller, J. G.

    combustor with its high pressure gain is attractive for use in the process to make Portland cement where energy is needed to heat the raw materials (coal or petroleum coke) and additional power is required for particle separation (electricity.... INTRODUCTION The total energy consumption in the U.S. in 1977 was about 76 Quads (quadrillion BTU). Of this amount, about 28 Quads were consumed by the industrial sector in the form of coal, petroleum, natural gas and electri city. The manufacturing...

  4. 1 | Fuel Cell Technologies Program Source: US DOE 8/24/2011 eere.energy.gov ASME 2011-Plenary

    E-Print Network [OSTI]

    /24/2011 eere.energy.gov U.S. Energy Consumption Total U.S. Energy = 94.6 Quadrillion Btu Source: Energy Consumption by Source and Sector #12;5 | Fuel Cell Technologies Program Source: US DOE 8/24/2011 eere.energy DOE 8/24/2011 eere.energy.gov Fuel Cell Market Overview 0 25 50 75 100 2008 2009 2010 USA Japan South

  5. What's coming in 2012 codes 

    E-Print Network [OSTI]

    Lacey, E

    2011-01-01T23:59:59.000Z

    ? High performance HVAC ? On-site renewables 2012 IECC Energy Savings and Environmental Impact ?[The 2012 IECC] represents the largest, one-step efficiency increase in the history of the national model energy code.? ? U.S. Department.... Environmental Impact ? Alliance to Save Energy: ?If all states adopted the 2012 IECC in 2012 and achieved full compliance by 2013 ?? ? 3.5 quadrillion Btu annual energy savings by 2030. ? $40 billion annual energy cost savings by 2030. ? 200 million...

  6. Monthly energy review, June 1994

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    Energy production during March 1994 totaled 5.9 quadrillion Btu, a 3.7-percent increase from the level of production during March 1993. Coal production increased 15.7 percent, petroleum production fell 4.1 percent, and natural gas production decreased 1.1 percent. All other forms of energy production combined were up 0.5 percent from the level of production during March 1993. Energy consumption during March 1994 totaled 7.5 quadrillion Btu, 1.3 percent below the level of consumption during March 1993. Natural gas consumption decreased 3.6 percent, petroleum consumption fell 1.6 percent, and coal consumption remained the same. Consumption of all other forms of energy combined increased 3.7 percent from the level 1 year earlier. Net imports of energy during March 1994 totaled 1.5 quadrillion Btu, 6.7 percent above the level of net imports 1 year earlier. Net imports of petroleum increased 3.2 percent, and net imports of natural gas were up 15.7 percent. Net exports of coal rose 2.1 percent from the level in March 1993.

  7. Monthly energy review, July 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-26T23:59:59.000Z

    Energy production during April 1994 totaled 5.5 quadrillion Btu, a 2.2-percent increase from the level of production during April 1993. Coal production increased 11.8 percent, petroleum production fell 4.0 percent, and natural gas production decreased 0.3 percent. All other forms of energy production combined were down 2.9 percent from the level of production during April 1993. Energy consumption during April 1994 totaled 6.7 quadrillion Btu, 1.4 percent above the level of consumption during April 1993. Petroleum consumption increased 3.9 percent, coal consumption rose 1.1 percent, and natural gas consumption decreased 1.5 percent. Consumption of all other forms of energy combined decreased 0.4 percent from the level 1 year earlier. Net imports of energy during April 1994 totaled 1.5 quadrillion Btu, 8.7 percent above the level of net imports 1 year earlier. Net imports of petroleum increased 4.5 percent, and net imports of natural gas were up 18.5 percent. Net exports of coal fell 9.2 percent from the level in April 1993.

  8. Monthly energy review, May 1997

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    This is an overview of the May energy statistics by the Energy Information Administration. The contents of the report include an energy overview, US energy production, trade stocks and prices for petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. Energy production during February 1997 totaled 5.4 quadrillion Btu, a 1.9% decrease from the level of production during February 1996. Coal production increased 1.2%, natural gas production decreased 2.9%, and production of crude oil and natural gas plant liquids decreased 2.1%. All other forms of energy production combined were down 6.3% from the level of production during February 1996. Energy consumption during February 1997 totaled 7.5 quadrillion Btu, 4.0% below the level of consumption during February 1996. Consumption of petroleum products decreased 4.4%, consumption of natural gas was down 3.5%, and consumption of coal fell 2.2%. Consumption of all other forms of energy combined decreased 6.7% from the level 1 year earlier. Net imports of energy during February 1997 totaled 1.5 quadrillion Btu, 14.1% above the level of net imports 1 year earlier. Net imports of petroleum increased 12.7% and net imports of natural gas were up 7.4%. Net exports of coal fell 12.1% from the level in February 1996. 37 figs., 75 tabs.

  9. Monthly Energy Review, February 1998

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    This report presents an overview of recent monthly energy statistics. Energy production during November 1997 totaled 5.6 quadrillion Btu, a 0.3-percent decrease from the level of production during November 1996. Natural gas production increased 2.8 percent, production of crude oil and natural gas plant liquids decreased 1.7 percent, and coal production decreased 1.6 percent. All other forms of energy production combined were down 1.1 percent from the level of production during November 1996. Energy consumption during November 1997 totaled 7.5 quadrillion Btu, 0.1 percent above the level of consumption during November 1996. Consumption of natural gas increased 1.5 percent, consumption of coal fell 0.3 percent, while consumption of petroleum products decreased 0.2 percent. Consumption of all other forms of energy combined decreased 0.8 percent from the level 1 year earlier. Net imports of energy during November 1997 totaled 1.7 quadrillion Btu, 8.6 percent above the level of net imports 1 year earlier. Net imports of petroleum increased 6.3 percent, and net imports of natural gas were up 1.2 percent. Net exports of coal fell 17.8 percent from the level in November 1996.

  10. Monthly energy review, October 1994

    SciTech Connect (OSTI)

    Not Available

    1994-10-26T23:59:59.000Z

    Energy production during July 1994 totaled 5.5 quadrillion Btu, a 2.8-percent increase from the level of production during July 1993. Coal production increased 8.3 percent, natural gas production rose 2.8 percent, and petroleum production decreased 1.9 percent. All other forms of energy production combined were up 1.1 percent from the level of production during July 1993. Energy consumption during July 1994 totaled 7.1 quadrillion Btu, 0.8 percent above the level of consumption during July 1993. Natural gas consumption increased 3.2 percent, petroleum consumption rose 0.7 percent, and coal consumption was down 1.6 percent. Consumption of all other forms of energy combined increased 2.4 percent from the level 1 year earlier. Net imports of energy during July 1994 totaled 1.7 quadrillion Btu, 11.3 percent above the level of net imports 1 year earlier. Net imports of petroleum increased 8.4 percent, and net imports of natural gas were up 8.4 percent. Net exports of coal fell 14.6 percent from the level in July 1993. This report is divided into: Energy overview; energy consumption; petroleum; natural gas; oil and gas resource development; coal; electricity; nuclear energy; energy prices; international energy; appendices (conversion factors); and glossary.

  11. Monthly energy review, August 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-29T23:59:59.000Z

    Energy production during May 1994 totaled 5.6 quadrillion Btu, a 2.4-percent increase from the level of production during May 1993. Coal production increased 13.3 percent, natural gas production rose 1.7 percent, and petroleum production decreased 2.5 percent. All other forms of energy production combined were down 8.3 percent from the level of production during May 1993. Energy consumption during May 1994 totaled 6.6 quadrillion Btu, 3.6 percent above the level of consumption during May 1993. Natural gas consumption increased 8.7 percent, coal consumption rose 4.6 percent, and petroleum consumption was up 3.6 percent. Consumption of all other forms of energy combined decreased 5.8 percent from the level 1 year earlier. Net imports of energy during May 1994 totaled 1.5 quadrillion Btu, 14.3 percent above the level of net imports 1 year earlier. Net imports of petroleum increased 8.4 percent, and net imports of natural gas were up 23.2 percent. Net exports of coal fell 16.8 percent from the level in May 1993.

  12. Production of low BTU gas from biomass

    E-Print Network [OSTI]

    Lee, Yung N.

    1981-01-01T23:59:59.000Z

    on gasification as far back as the 1930's. Some of the early work was done using fixed bed gasifiers with wood as the feed mate- In the 1960's, coal was proposed as another possible feed material. Most of the coal gasification was done using moving bed... of downdraft fixed bed, updraft fixed bed or moving bed gasifiers. Most of the work on fluidized bed opera- tion has been concentrated on catalytic cracking units. However, several researchers have used fluidized bed reactors for the gasification process...

  13. Production of low BTU gas from biomass 

    E-Print Network [OSTI]

    Lee, Yung N.

    1981-01-01T23:59:59.000Z

    for combustion is simple relative to the gasification or pyrolysis and construc- tion and operation of the necessary equipment should also be easier. However, the final product of com- bustion, steam energy, cannot be stored for long periods of time.... Lee, B. S. , Washington University, St. Louis, Mo. Chairman of Advisory Committee: Dr. R. G. Anthony An experimental study was conducted to examine the gasification of agricultural residues as an alter- nate energy source. The agricultural residues...

  14. Catalytic reactor for low-Btu fuels

    DOE Patents [OSTI]

    Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

    2009-04-21T23:59:59.000Z

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  15. BTU International Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: JumpBPL Global JumpBSST LLCBTMBTU

  16. Monthly Energy Review, August 1984

    SciTech Connect (OSTI)

    Not Available

    1984-11-01T23:59:59.000Z

    The Monthly Energy Review presents current data on production, consumption, stocks, imports, exports, and prices of the principal energy commodities in the United States. Also included are data on international production of crude oil, consumption of petroleum products, petroleum stocks, and production of electricity from nuclear-powered facilities. The United States produced 9.5% more energy during the first 8 months of 1984 than during the same period in 1983, and US energy consumption was up 6.6%. Net imports of all energy were 13.4% higher, with net imports of petroleum up 15.0% compared to those imports in the first 8 months of 1983. Energy production during August 1984 totaled 5.8 quadrillion Btu, a 9.8% increase compared to the level of production during August 1983. Coal production increased 22.3%, natural gas production was up 7.3%, and petroleum production increased 1.7%. Production of all other forms of energy combined increased 4.8% compared to production 1 year earlier. Energy consumption during August 1984 totaled 6.1 quadrillion Btu, 2.8% above the level of consumption during August 1983. Petroleum consumption increased 4.2%, natural gas consumption was up 2.4, and coal consumption increased 0.1%. Consumption of all other forms of energy combined increased 4.8% compared to consumption during August 1983. Net imports of energy during August 1984 totaled 0.6 quadrillion Btu, 24.4% below the level of net imports during August 1983. Net imports of petroleum decreased 21.8% while net imports of natural gas increased 4.0%. Net exports of coal were down 1.6% compared to the level in August 1983.

  17. Word Pro - S8.lwp

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand Motor44 (Quadrillion Btu) 1

  18. Word Pro - S9

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand Motor44 (Quadrillion Btu)

  19. Word Pro - S9

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand Motor44 (Quadrillion Btu)2

  20. Word Pro - S9

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand Motor44 (Quadrillion Btu)27

  1. Word Pro - S9

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand Motor44 (Quadrillion Btu)273

  2. Annual Energy Review 2010 - Released October 2011

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5 (Million810 (Quadrillion Btu)

  3. Annual Energy Review 2011 - Released September 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5 (Million810 (Quadrillion Btu)1

  4. Windows technology assessment

    SciTech Connect (OSTI)

    Baron, J.J.

    1995-10-01T23:59:59.000Z

    This assessment estimates that energy loss through windows is approximately 15 percent of all the energy used for space heating and cooling in residential and commercial buildings in New York State. The rule of thumb for the nation as a whole is about 25 percent. The difference may reflect a traditional assumption of single-pane windows while this assessment analyzed installed window types in the region. Based on the often-quoted assumption, in the United States some 3.5 quadrillion British thermal units (Btu) of primary energy, costing some $20 billion, is annually consumed as a result of energy lost through windows. According to this assessment, in New York State, the energy lost due to heat loss through windows is approximately 80 trillion Btu at an annual cost of approximately $1 billion.

  5. Lowest Pressure Steam Saves More BTU's Than You Think

    E-Print Network [OSTI]

    Vallery, S. J.

    Steam is the most common and economical way of transferring heat from one location to another. But most steam systems use the header pressure steam to do the job. The savings are substantially more than just the latent heat differences between...

  6. POTENTIAL MARKETS FOR HIGH-BTU GAS FROM COAL

    SciTech Connect (OSTI)

    Booz, Allen, and Hamilton, Inc.,

    1980-04-01T23:59:59.000Z

    It has become increasilngly clear that the energy-related ilemna facing this nation is both a long-term and deepening problem. A widespread recognition of the critical nature of our energy balance, or imbalance, evolved from the Arab Oil Embargo of 1973. The seeds of this crisis were sown in the prior decade, however, as our consumption of known energy reserves outpaced our developing of new reserves. The resultant increasing dependence on foreign energy supplies hs triggered serious fuel shortages, dramatic price increases, and a pervsive sense of unertainty and confusion throughout the country.

  7. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resourceloading new table Home

  8. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resourceloading new table HomeYear Jan

  9. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resourceloading new table HomeYear

  10. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200Decade Year-0YearThousand

  11. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200Decade Year-0YearThousandYear Jan

  12. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20Year Jan Feb Mar68 4.50

  13. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20Year Jan Feb Mar68 4.50Week

  14. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20Year Jan Feb Mar68

  15. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) inthrough 1996)Nov-14Year Jan

  16. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) inthrough 1996)Nov-14YearYear

  17. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) inthroughYear Jan Feb Mar Apr

  18. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW

  19. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Week 2 Week 3

  20. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment Activities Printable80 mPilotDataGlossary AWeek Of

  1. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through2009 2010 2011 2012

  2. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through2009 2010 2011

  3. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through2009 2010 2011Decade

  4. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through2009 2010

  5. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through2009 2010Decade Year-0

  6. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through2009 2010Decade

  7. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. If youEIA-906 &Stocks

  8. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthrough 1996)

  9. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthrough 1996)Year-Month Week 1 Week 2 WeekYear

  10. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthrough 1996)Year-Month Week 1 Week 2DecadeYear

  11. Monthly energy review, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    This publication contains statistical information and data analysis of energy production and consumption within the major energy industries of petroleum, natural gas, coal, electricity, nuclear energy and oil and gas resource development. Energy production during October 1993 totaled 5.5-quadrillion Btu, a 3.0 percent decrease from the level of production during October 1992. Coal production decreased 5.6 percent, petroleum production decreased 3.4 percent, and natural gas production increased 1.9 percent. All other forms of energy production combined were down 6.0 percent from the level of production during October 1992. Energy consumption during October 1993 totaled 6.7 quadrillion Btu, 0.9 percent above the level of consumption during October 1992. Natural gas consumption increased 6.5 percent, coal consumption rose 2.9 percent, and petroleum consumption was down 1.3 percent. Consumption of all other forms of energy combined decreased 5.5 percent from the level of 1 year earlier.

  12. Monthly energy review, March 1998

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. Energy production during December 1997 totaled 5.9 quadrillion Btu, a 2.8 percent increase from the level of production during December 1996. Coal production increased 9.5 percent, natural gas production increased 3.9 percent, and production of crude oil and natural gas plant liquids decreased 1.1 percent. All other forms of energy production combined were down 6.9 percent from the level of production during December 1996.

  13. Combined heat and power (CHP or cogeneration) for saving energy and carbon in commercial buildings

    SciTech Connect (OSTI)

    Kaarsberg, T.; Fiskum, R.; Romm, J.; Rosenfeld, A.; Koomey, J.; Teagan, W.P.

    1998-07-01T23:59:59.000Z

    Combined Heat and Power (CHP) systems simultaneously deliver electric, thermal and mechanical energy services and thus use fuel very efficiently. Today's small-scale CHP systems already provide heat, cooling and electricity at nearly twice the fuel efficiency of heat and power based on power remote plants and onsite hot water and space heating. In this paper, the authors have refined and extended the assessments of small-scale building CHP previously done by the authors. They estimate the energy and carbon savings for existing small-scale CHP technology such as reciprocating engines and two promising new CHP technologies--microturbines and fuel cells--for commercial buildings. In 2010 the authors estimate that small-scale CHP will emit 14--65% less carbon than separate heat and power (SHP) depending on the technologies compared. They estimate that these technologies in commercial buildings could save nearly two-thirds of a quadrillion Btu's of energy and 23 million tonnes of carbon.

  14. Monthly energy review: January 1995

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    Two major industry groups--the chemicals and allied products industry and the petroleum and coal products industry--accounted for more than half of US 1991 manufacturing primary energy consumption, which totaled 20.3 quadrillion Btu. Those two groups and four others (paper and allied products; primary metals; food and kindred products; and stone, clay, and glass products) accounted for 88 percent of the 1991 total. Those are among the results of the 1991 Manufacturing Energy Consumption Survey (MECS), which is one of four major energy end-use surveys conducted by the Energy Information Administration (EIA) and the only comprehensive source of national-level data on US manufacturing energy use. The 1991 MECS is the third in an ongoing series of surveys conducted at 3-year intervals through 1994.

  15. Window-Related Energy Consumption in the US Residential andCommercial Building Stock

    SciTech Connect (OSTI)

    Apte, Joshua; Arasteh, Dariush

    2006-06-16T23:59:59.000Z

    We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate that future window technologies offer energy savings potentials of up to 3.9 Quads.

  16. 2007 Estimated International Energy Flows

    SciTech Connect (OSTI)

    Smith, C A; Belles, R D; Simon, A J

    2011-03-10T23:59:59.000Z

    An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

  17. Annual report to Congress on Federal Government energy management and conservation programs, Fiscal year 1994

    SciTech Connect (OSTI)

    NONE

    1995-10-06T23:59:59.000Z

    This report provides sinformation on energy consumption in Federal buildings and operations and documents activities conducted by Federal agencies to meet statutory requirements of the National Energy Conservation Policy Act. It also describes energy conservation and management activities of the Federal Government under section 381 of the Energy Policy and Conservation Act. Implementation activities undertaken during FY94 by the Federal agencies under the Energy Policy Act of 1992 and Executive Orders 12759 and 12902 are also described. During FY94, total (gross) energy consumption of the US Government, including energy consued to produce, process, and transport energy, was 1.72 quadrillion Btu. This represents {similar_to}2.0% of the total 85.34 quads used in US.

  18. The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry

    SciTech Connect (OSTI)

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-05-01T23:59:59.000Z

    For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

  19. Household energy consumption and expenditures 1993

    SciTech Connect (OSTI)

    NONE

    1995-10-05T23:59:59.000Z

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  20. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4 Relative2.4942

  1. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4 Relative2.49422

  2. U.S. Pellet Industry Analysis

    SciTech Connect (OSTI)

    Corrie I. Nichol; Jacob J. Jacobsen; Richard D. Boardman

    2011-06-01T23:59:59.000Z

    This report is a survey of the U.S. Pellet Industry, its current capacity, economic drivers, and projected demand for biomass pellets to meet future energy consumption needs. Energy consumption in the US is projected to require an ever increasing portion of renewable energy sources including biofuels, among which are wood, and agrictulrual biomass. Goals set by federal agencies will drive an ever increasing demand for biomass. The EIA projections estimate that renewable energy produced by 2035 will be roughly 10% of all US energy consumption. Further analysis of the biofuels consumption in the US shows that of the renewable energy sources excluding biofuels, nearly 30% are wood or biomass waste. This equates to roughly 2% of the total energy consumption in the US coming from biomass in 2009, and the projections for 2035 show a strong increase in this amount. As of 2009, biomass energy production equates to roughly 2-2.5 quadrillion Btu. The EIA projections also show coal as providing 21% of energy consumed. If biomass is blended at 20% to co-fire coal plants, this will result in an additional 4 quadrillion Btu of biomass consumption. The EISA goals aim to produce 16 billion gal/year of cellulosic biofuels, and the US military has set goals for biofuels production. The Air Force has proposed to replace 50% of its domestic fuel requirements with alternative fuels from renewable sources by 2016. The Navy has likewise set a goal to provide 50% of its energy requirements from alternative sources. The Department of Energy has set similarly ambitious goals. The DOE goal is to replace 40% of 2004 gasoline use with biofuels. This equates to roughly 60 billion gal/year, of which, 45 billion gal/year would be produced from lignocellulosic resources. This would require 530 million dry tons of herbaceous and woody lignocellulosic biomass per year.

  3. Annual energy review 2003

    SciTech Connect (OSTI)

    none,

    2004-09-30T23:59:59.000Z

    The Annual Energy Review 2003 is a statistical history of energy activities in the United States in modern times. Data are presented for all major forms of energy by production (extraction of energy from the earth, water, and other parts of the environment), consumption by end-user sector, trade with other nations, storage changes, and pricing. Much of the data provided covers the fossil fuels—coal, petroleum, and natural gas. Fossil fuels are nature’s batteries; they have stored the sun’s energy over millennia past. It is primarily that captured energy that we are drawing on today to fuel the activities of the modern economy. Data in this report measure the extraordinary expansion of our use of fossil fuels from 29 quadrillion British thermal units (Btu) in 1949 to 84 quadrillion Btu in 2003. In recent years, fossil fuels accounted for 86 percent of all energy consumed in the United States. This report also records the development of an entirely new energy industry—the nuclear electric power industry. The industry got its start in this country in 1957 when the Shippingport, Pennsylvania, nuclear electric power plant came on line. Since that time, the industry has grown to account for 20 percent of our electrical output and 8 percent of all energy used in the country. Renewable energy is a third major category of energy reported in this volume. Unlike fossil fuels, which are finite in supply, renewable energy is essentially inexhaustible because it can be replenished. Types of energy covered in the renewable category include conventional hydroelectric power, which is power derived from falling water; wood; waste; alcohol fuels; geothermal; solar; and wind. Together, these forms of energy accounted for about 6 percent of all U.S. energy consumption in recent years.

  4. Performance of an industrial type combustor burning simulated fuels of medium BTU content

    E-Print Network [OSTI]

    Goehring, Howard Lee

    1983-01-01T23:59:59.000Z

    studied fuels were those produced by coal gasification (1, 2, 3, 4, 5). Other widely studied fuels include petroleum distillates, alcohol type fuel, fuel made from tar sands, fuel made from oil shale (1), petro- chemical process plants "off-gases" (2...). Harmful emissions can be reduced by using steam injection (8, 2, 9). Also the amount of equipment needed to produce and refine fuels, such as coal gas, is large; whereas, in the case of steam, the amount of' equipment needed is relatively small. Also...

  5. Production of Medium BTU Gas by In Situ Gasification of Texas Lignite 

    E-Print Network [OSTI]

    Edgar, T. F.

    1979-01-01T23:59:59.000Z

    The necessity of providing clean, combustible fuels for use in Gulf Coast industries is well established; one possible source of such a fuel is to perform in situ gasification of Texas lignite which lies below stripping depths. If oxygen (rather...

  6. An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters 

    E-Print Network [OSTI]

    Nebeker, C. J.

    1982-01-01T23:59:59.000Z

    of these factors, the difference between coal and natural gas prices and the project life are difficult to predict. The resulting uncertainty has caused Monsanto to pursue coal gasification for process heaters with cautious optimism, on a site by site basis....

  7. Production of Medium BTU Gas by In Situ Gasification of Texas Lignite

    E-Print Network [OSTI]

    Edgar, T. F.

    1979-01-01T23:59:59.000Z

    The necessity of providing clean, combustible fuels for use in Gulf Coast industries is well established; one possible source of such a fuel is to perform in situ gasification of Texas lignite which lies below stripping depths. If oxygen (rather...

  8. High-Btu gas from peat. Feasibility study. Volume II. Executive summary

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    In September 1980, the US Department of Energy awarded a grant to the Minnesota Gas Company (Minnegasco) to evaluate the commercial, technical, economic, and environmental viability of producing 80 million Standard Cubic Feet per day (SCF/day) of substitute natural gas (SNG) from peat. Minnegasco assigned the work for this study to a project team consisting of the following organizations: Dravo Engineers and Constructors for the design, engineering and economic evaluation of peat harvesting, dewatering, and gasification systems; Ertec, Inc. for environmental and socioeconomic analyses; Institute of Gas Technology for gasification process information, and technical and engineering support; and Deloitte Haskins and Sells for management advisory support. This report presents the work performed by Dravo Engineers and Constructors to meet the requirements of: Task 1, peat harvesting; Task 2, peat dewatering; Task 3, peat gasification; Task 4, long lead items; and Task 9.1, economic analysis. The final report comprises three volumes, the first is the Executive Summary. This Volume II contains all of the text of the report, and Volume III includes all of the specifications, drawings, and appendices applicable to the project. Contents of Volume II are: introduction; project scope and objectives; commercial plant description; engineering specifications; design and construction schedules; capital cost estimates; operating cost estimates; financial analysis; and future areas for investigation. 15 figures, 17 tables.

  9. High Btu gas from peat. Volume III. Part B. Environmental and socioeconomic feasibility assessment

    SciTech Connect (OSTI)

    Not Available

    1982-06-01T23:59:59.000Z

    In September 1980, the US Department of Energy awarded a grant (No. DE-FG01-80RA50348) to the Minnesota Gas Company (Minnegasco) to evaluate the current commercial viability - technical, economic, environmental, financial, and regulatory - of producing 80 million SCF/day of substitute natural gas (SNG). Minnegasco's project team for this study consisted of Dravo Engineers and Constructors (for design, engineering, and economics of peat harvesting, dewatering, and gasification systems), Ertec, Inc. (for environmental and socio-economic analyses), IGT (for providing gasification process information, and technical and engineering support to Minnegasco), and Deloitte Haskins and Sells (for providing management structural support to Minnegasco). This Final Report presents the work conducted by Ertec, Inc. under tasks 6 and 7. The study objective was to provide an initial environmental and socio-economic evaluation of the proposed facility to assess project feasibility. To accomplish this objective, detailed field studies were conducted in the areas of Hydrology, Air Quality and Socio-Economics. Less extensive surveys were conducted in the areas of Geology, Ecology, Acoustics, Land Use, Archaeology and Resource Assessment. Part B of Volume 3 contains the following contents: (1) project impact assessment which covers geological impacts, hydrology, ecological impacts, air quality and meteorology, land use, archaeology, aesthetics, acoustics, socioeconomic impacts, and peat resources; (2) impact mitigation which covers hydrology, ecology, air quality, archaeology, acoustics, and socioeconomics; (3) conclusions; and (4) appendices. 2 figures, 18 tables.

  10. High Btu gas from peat. A feasibility study. Part 3. Market analysis. Task 8. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The primary objective of this task, which was the responsibility of the Minnesota Gas Company, was to identify and characterize the market potential for the plant by-products - BTX (mixture of benzene, toluene and xylene), phenol, ammonia, sulfur, and sodium sulfate - and to assign value to them. Although traditionally a growth industry, the chemicals market has been generally weakened by the recession, and is experiencing back to back years of declining production. This is due to bad health of specific end uses, such as fertilizer from ammonia. In the long run, this trend is expected to moderate. It is felt that the proposed peat plant has a favorable position in the markets of each of its by-products. This is due to the synergism with nearby industries which are major consumers of these by-products. In the case of sulfur and ammonia, the Red River agricultural area is a large potential market. For sodium sulfate, phenols and perhaps BTX, the nearby paper and timber products industries are large potential markets. The values for these by-products used in the financial analysis were intentionally conservative. This is because of the uncertainty in the quantity and quality. More tests are needed in an integrated facility in order to determine these factors and the variability of each. This is particularly true of the by-product oils which could vary significantly with operating conditions and may even require alternate processing schemes. 18 references, 9 figures, 14 tables.

  11. High-Btu gas from peat. A feasibility study. Task 11. Technical support. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01T23:59:59.000Z

    In September 1980, the US Department of Energy awarded grant No. DE-FG01-80RA50348 to the Minnesota Gas Company (Minnegasco) to evaluate the commercial viability - technical, economic and environmental - of producing 80 million SCF/day of substitute natural gas (SNG) from peat. Minnegasco's project team for this study consisted of Dravo Engineers and Constructors (for design, engineering and economics of peat harvesting, dewatering and gasification systems); Ertec, Inc. (for environmental and socioeconomic analyses); Institute of Gas Technology (for gasification process information, and technical and engineering support). This report presents the work conducted under Task II (Technical Support) by the Institute of Gas Technology (IGT), the developer of the PEATGAS process, which was selected for the study. Task achievements are presented for: gasifier design and performance; technical support; and task management. 12 figures, 22 tables.

  12. High Btu gas from peat. Volume III. Part A. Environmental and socioeconomic feasibility assessment

    SciTech Connect (OSTI)

    Not Available

    1982-06-01T23:59:59.000Z

    In September 1980, the US Department of Energy awarded a grant (No. DE-FG01-80RA50348) to the Minnesota Gas Company (Minnegasco) to evaluate the current commercial viability - technical, economic, environmental, financial, and regulatory - of producing 80 million SCF/day of substitute natural gas (SNG). Minnegasco's project team for this study consisted of Dravo Engineers and Constructors (for design, engineering, and economics of peat harvesting, dewatering, and gasification systems), Ertec, Inc. (for environmental and socio-economic analyses), IGT (for providing gasification process information, and technical and engineering support to Minnegasco) and Deloitte Haskins and Sells (for providing management structural support to Minnegasco). This Final Report presents the work conducted by Ertec, Inc. under tasks 6 and 7. The study objective was to provide an initial environmental and socio-economic evaluation of the proposed facility to assess project feasbility. To accomplish this objective, detailed field studies were conducted in the areas of Hydrology, Air Quality and Socio-Economics. Less extensive surveys were conducted in the areas of Geology, Ecology, Acoustics, Land Use, Archaeology and Resource Assessment. Part A of Volume 3 contains the introduction and plant area conditions which include the following: (1) description of existing conditions-geology; (2) hydrology; (3) terrestrial and aquatic ecology; (4) meteorology; (5) land use existing conditions; (6) archaeology; (7) aesthetics-existing conditions; (8) acoustics; (9) existing socioeconomic conditions; and (10) resource assessment. 25 figures, 55 tables.

  13. High-Btu gas from peat. Feasibility study. Volume I. Executive summary

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    In September, 1980, the US Department of Energy awarded a grant to the Minnesota Gas Company (Minnegasco) to evaluate the commercial, technical, economic, and environmental viability of producing 80 million Standard Cubic Feet per day (SCF/day) of substitute natural gas (SNG) from peat. Minnegasco assigned the work for this study to a project team consisting of the following organizations: Dravo Engineers and Constructors for the design, engineering and economic evaluation of peat harvesting, dewatering, and gasification systems; Ertec, Inc. for environmental and socioeconomic analyses; Institute of Gas Technology for gasification process information, and technical and engineering support; and Deloitte Haskins and Sells for management advisory support. This report presents the work performed by Dravo Engineers and Constructors to meet the requirements of: Task 1, peat harvesting; Task 2, peat dewatering; Task 3, peat gasification; Task 4, long lead items; and Task 9.1, economic analysis. The final report comprises three volumes, the first of which is this Executive Summary. Subsequent volumes include Volume II which contains all of the text of the report, and Volume III which includes all of the specifications, drawings, and appendices applicable to the project. As part of this study, a scale model of the proposed gasification facility was constructed. This model was sent to Minnegasco, and photographs of the model are included at the end of this summary.

  14. Cofiring of coal and dairy biomass in a 100,000 btu/hr furnace

    E-Print Network [OSTI]

    Lawrence, Benjamin Daniel

    2009-05-15T23:59:59.000Z

    Dairy biomass (DB) is evaluated as a possible co-firing fuel with coal. Cofiring of DB offers a technique of utilizing dairy manure for power/steam generation, reducing greenhouse gas concerns, and increasing financial returns to dairy operators...

  15. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN E B R A S K A2009

  16. New Hampshire Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN E B R A SNevadaCubic

  17. New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN E B R

  18. New Mexico Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN ECoalbed

  19. New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels) LiquidsCoalbed MethaneFoot)

  20. North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65 2013 Next1.878 2.358 -NA

  1. North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65 2013A4. CensusFeet)Cubic

  2. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1 2 3+Foot) Year

  3. Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0ProvedExpected

  4. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9Yearper

  5. Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21Year Jan

  6. Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors forA2. For9,250 14,609403,972

  7. South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard ErrorsSeptember 24, 2014EconomicsEnergy

  8. South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard ErrorsSeptember 24,Feet) Year

  9. ,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePriceExpectedOtherOffshoreAnnual",2014

  10. ,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+

  11. ,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and NaturalWellhead PriceNet WithdrawalsVolumeHenry

  12. Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l dIncreases

  13. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYear JanSales (Billion

  14. Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U BCubic Feet)Appendix E2

  15. Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U (Million31 22

  16. California Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate

  17. California Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (MillionExpectedSeparation, ProvedCubic

  18. California Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (MillionExpectedSeparation,

  19. Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0c.+Foot) Decade

  20. Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0c.+Foot)

  1. Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21Company Level ImportsYear Jan

  2. Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21Company Level ImportsYear JanCubic

  3. Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21CompanyS

  4. Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21CompanySFoot) Year Jan Feb Mar

  5. Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use

  6. Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) Year Jan Feb Mar Apr May Jun Jul

  7. Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) Year Jan2009SamplingSee See

  8. Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) Year Jan2009SamplingSee

  9. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200Decade Year-0 Year-1

  10. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200Decade Year-0 Year-1Foot) Year

  11. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200DecadeCubic1.IV. NorthernFoot)

  12. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200DecadeCubic1.IV.

  13. Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess thanThousand Cubic Feet) YearFoot)

  14. Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess thanThousand Cubic Feet)

  15. Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015 IndependentFoot) Decade

  16. Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015 IndependentFoot)

  17. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015Year Jan

  18. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015Year JanFoot) Year Jan Feb

  19. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015YearYear

  20. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015YearYearFoot) Year Jan Feb

  1. Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet) Decade Year-0Foot) Decade

  2. Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet) Decade Year-0Foot)

  3. Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough, 2002 (next8,,9,7,3,

  4. Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough, 2002 (next8,,9,7,3,Foot) Year

  5. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough, 2002DecadeYear JanN E B R

  6. New Hampshire Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough,Cubic Foot) Decade Year-0 Year-1

  7. New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough,Cubic Foot)perper Thousand

  8. New Mexico Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet) Gas, WetReservesCubic

  9. New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion CubicProductionFoot) Decade Year-0 Year-1

  10. North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb Mar Apr May1.878 2.358 -Cubic

  11. North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb Mar AprYear JanFeet)Cubic

  12. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb(BillionDecadeFoot) Decade

  13. Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear Jan FebProvedFoot) Decade

  14. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear JanYearCubicDecade Year-0

  15. Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYearYear Jan8,859ProvedDecade

  16. Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity For RenewableJanuary403,972Cubic

  17. Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade217523,552.1 Table 5.1. PAD DistrictCubic

  18. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May Jun1 1,030 1,026 1,028 1,029

  19. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb MarFields34 1,035 1,036 1,036 1,036 1,037

  20. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane, No.1 andCubicEstimatedSales

  1. Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane, No.1Decade6,393 6,810 6,5154019

  2. Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane,ThousandExtensions (BillionSales

  3. Washington Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel Consumption0 0 0Feet) DecadetoYear Jan

  4. West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel Consumption0Feet) Decreases

  5. Wisconsin Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel5,266 6,090 7,16354,828 424,763CubicCubic Foot)

  6. Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved ReservesDecadeFoot)

  7. Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved

  8. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecade Year-0 Year-1

  9. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecade Year-0 Year-1Foot) Year

  10. Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year Jan Feb Mar Apr May Jun Jul

  11. Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year Jan Feb Mar Apr May Jun

  12. Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year JanDecadeExpectedFoot)

  13. Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year

  14. U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr(Percent)Babb, MT Havre,Lease

  15. U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0Sales (Billion CubicConsumption

  16. A Requirement for Significant Reduction in the Maximum BTU Input Rate of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 2010 ARRAA Liquid Layer Solution for theDecorative Vented

  17. Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricSales (Billion Cubic Feet) Colorado Dry

  18. Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricSales (BillionActivities byFuel OilDecadeEIACubic

  19. Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricSales (Million CubicThousandTobago063 1,064

  20. Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Light-Duty Vehicles, 1975-2004Foot) Decade Year-0

  1. Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Light-Duty(Million Cubic Feet)Cubic117.8 105.96 1,025

  2. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Light-Duty(MillionGlossaryOf Mexico NaturalCubic974 962

  3. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade Year-0 Year-1 Year-2Thousand Cubic6

  4. Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade Year-0 Year-1DecadeYear Jan FebYear Jan

  5. Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade949,775 898,864 835,335 777,231.

  6. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade949,7752009 2010 2011DecadeSame0 0 04

  7. Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage1Feet)YearDecadeCubic

  8. Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage1Feet)YearDecadeCubicCubic

  9. Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubic Feet)Expected

  10. Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubic Feet)ExpectedFoot) Year

  11. Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department2 Missouri22

  12. Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department2 Missouri22Cubic

  13. Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale ProductionExpectedCubic

  14. Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale

  15. Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale%73Thousand CubicFoot)

  16. Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale%73Thousand

  17. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil

  18. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) Year Jan Feb Mar Apr May Jun Jul

  19. Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantityReporting Entities,Cubic

  20. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year JanExpected Future Production (Billion

  1. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New EnglandReserves (Billion

  2. U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New EnglandReservesCubicDecade2009 2010

  3. U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New EnglandReservesCubicDecade2009 2010Year Jan

  4. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197 14,1978. Number

  5. Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197(Billion Cubic(MillionFoot)

  6. Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197(BillionYear Jan

  7. Washington Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197Cubic Feet) Gas, WetCubic Foot)

  8. West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197Cubic Feet)ProvedFeet)

  9. Wisconsin Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb MarperYork State

  10. Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan

  11. Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear JanFoot) Year Jan Feb Mar

  12. Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar(DollarsCubicThousand68.76,760.2520099 20109

  13. South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecade Year-0Feet)Thousand7ThousandYear78

  14. South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade Year-0TotalH BV CYear Jan Feb Mar AprCubic

  15. Enabling Clean Consumption of Low Btu and Reactive Fuels in Gas Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | Department ofEmily KnouseEnSys Energy Report on

  16. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales to End Users, Total Refiner Sales Volumes"for Selected6.

  17. Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) in Delaware (Million3,751,360 3,740,7578 2009 20100

  18. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) in DelawareTotal ConsumptionThousand CubicfromDryFoot)

  19. New Hampshire Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) in DelawareTotalResidential ConsumersDecadeYear28 1,030Cubic

  20. New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand Cubic Feet) Priceper Thousand Cubic44

  1. New Mexico Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand Cubic Feet)AdjustmentsSales (Billion

  2. New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand CubicFeet)perFeet) New2 1,033 1,034

  3. North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8 2.415 -CubicYear8

  4. North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire"Feet) Estimated

  5. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul AugFeet)Foot) Decade

  6. Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul9ThousandFeet)41 1,041

  7. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear Jan Feb Mar Apr May JunFoot)

  8. Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear Jan

  9. Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS willProvedExpected FutureCubic

  10. Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS willProvedExpected FutureCubicCubic

  11. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage Volume16, 2012PeterFoot)

  12. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage Volume16,

  13. Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage1 EnergyAssessment

  14. Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage1 EnergyAssessmentFoot) Year

  15. South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet)Thousand Cubic7. Net5:EnergyCubic Foot) Decade

  16. South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet)Thousand Cubic7.

  17. Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet)ThousandNumber andCrudeTemperature Maps andDecadeCubic

  18. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation, Proved ReservesSeparation,Cubic Feet)Decade

  19. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S.Developmental Wells (Thousand Feet)2009

  20. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade949,7752009Base

  1. Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade949,7752009Base6Thousand417 1,019 1,023

  2. Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecade Year-0 Year-1480 530Feet)37 1,038Cubic

  3. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecadePublication and Tables Publication

  4. Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecadePublication10.99 12.28EA9.Foot) Decade

  5. Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (Million Cubic Feet)ThousandFeet) Year JanCubic

  6. Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (Millionper ThousandCubicFeet)6 1,029

  7. Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (MillionperYear Jan FebSamenuclear5)8)May 2003

  8. Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals6,992 6,895 6,559 6,303 5,952Sales (Billion

  9. Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals6,992 6,895Vehicle FuelFeet)(DollarsFoot)

  10. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals6,992 (Million CubicFoot) Decade Year-0 Year-1

  11. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+Nonassociated NaturalPrice

  12. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+Nonassociated

  13. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan FebFeet)Reserves inDecade Year-0

  14. Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year JanThousand Cubic Feet) YearDay)Foot)

  15. Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year JanThousand CubicFoot) Decade Year-0 Year-1

  16. Washington Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year JanThousandYear Jan FebCubic Foot) Decade

  17. West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year JanThousandYearDecade Year-0 Year-1 Year-2Cubic

  18. Wisconsin Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)YearWellhead Price (DollarsYork State SHOPP

  19. Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-533 1,036 1,043 1,041

  20. EIA - Annual Energy Outlook 2013 Early Release

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    of projections in the AEO2013 and AEO2012 Reference case, 2010-2040 2025 2035 2040 Energy and economic factors 2010 2011 AEO2013 AEO2012 AEO2013 AEO2012 AEO2013 Primary energy...

  1. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    E-Print Network [OSTI]

    McKone, Thomas E.

    2011-01-01T23:59:59.000Z

    ~Mwe: conversion factor from Btu to MWe-y ( 3.345 x 10- MWe-insulation R-values [fe-hr OF I Btu] for electricity heatedspecific fuel, expressed as Btu/lb coal, Btu/ gal oil, Btu/

  2. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect (OSTI)

    Clifton B. Higdon III

    2011-01-07T23:59:59.000Z

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for energy conservation. In mobile hydraulic systems, efficiency gains through low friction would translate into improved fuel economy and fewer greenhouse gas emissions. Stationary hydraulic systems, accordingly, would consume less electrical power. Reduced tooling wear in machining operations would translate to greater operating yields, while lowering the energy consumed during processing. The AlMgB14 nanocoatings technology progressed beyond baseline laboratory tests into measurable energy savings and enhancements to product durability. Three key hydraulic markets were identified over the course of the project that will benefit from implementation: industrial vane pumps, orbiting valve-in-star hydraulic motors, and variable displacement piston pumps. In the vane pump application, the overall product efficiency was improved by as much as 11%. Similar results were observed with the hydraulic motors tested, where efficiency gains of over 10% were noted. For variable displacement piston pumps, overall efficiency was improved by 5%. For cutting tools, the most significant gains in productivity (and, accordingly, the efficiency of the machining process as a whole) were associated with the roughing and finishing of titanium components for aerospace systems. Use of the AlMgB14 nanocoating in customer field tests has shown that the coated tools were able to withstand machining rates as high as 500sfm (limited only by the substrate material), with relatively low flank wear when compared to other industrial offerings. AlMgB14 coated tools exhibited a 60% improvement over similarly applied TiAlN thin films. Furthermore, AlMgB14-based coatings in these particular tests lasted twice as long than their TiAlN counterparts at the 500sfm feed rates. Full implementation of the technology into the industrial hydraulic and cutting tool markets equates to a worldwide energy savings of 46 trillion BTU/year by 2030. U.S.-based GHG emissions associated with the markets identified would fall accordingly, dropping by as much as 50,000 tonnes annually.

  3. 1982 Annual Energy Review. [1960 to 1982; in some cases for a longer period

    SciTech Connect (OSTI)

    Not Available

    1983-04-01T23:59:59.000Z

    Total energy consumption in the United States equaled 70.9 quadrillion British thermal units (Btu) in 1982, a decline of 4.1% compared to 1981. Depressed economic activity was a major factor in reducing total energy demand. However, conservation also played a role as energy consumption per dollar of GNP continued to fall. Most of the decline in energy use involved petroleum and natural gas. Reduced petroleum demand translated into a 21.7% reduction in net petroleum imports. Natural gas demand and production fell, prompted by reduced economic activity and a substantial increase in prices. Crude oil prices fell for the first time in more than a decade. Weakened market conditions adversely affected the rate of domestic oil and gas exploration and development activities. Nonetheless, domestic crude oil production rose 1.2%. International activities were highlighted by a decline in crude oil production, especially by members of the Organization of Petroleum Exporting Countries (OPEC), a decrease in crude oil prices, and a substantial increase in electricity production by nuclear-powered utility plants in non-Communist countries. Energy production in the United States in 1982 remained essentially unchanged from that of 1981, as small gains in hydroelectric power and nuclear power production were offset by losses in natural gas production. For the third straight year, energy consumption in the United States declined. Whereas declines in 1980 and 1981 resulted primarily from consumer response to higher prices and conservation, the 1982 decline reflected primarily an economic slowdown, especially in industry. Annual per capita consumption fell to 306 million Btu, the lowest level since 1967. Changes in energy prices in 1982 were mixed. Whereas most petroleum prices declined, prices of natural gas, coal, and electricity rose.

  4. Zero Energy Windows

    SciTech Connect (OSTI)

    Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

    2006-05-17T23:59:59.000Z

    Windows in the U.S. consume 30 percent of building heating and cooling energy, representing an annual impact of 4.1 quadrillion BTU (quads) of primary energy. Windows have an even larger impact on peak energy demand and on occupant comfort. An additional 1 quad of lighting energy could be saved if buildings employed effective daylighting strategies. The ENERGY STAR{reg_sign} program has made standard windows significantly more efficient. However, even if all windows in the stock were replaced with today's efficient products, window energy consumption would still be approximately 2 quads. However, windows can be ''net energy gainers'' or ''zero-energy'' products. Highly insulating products in heating applications can admit more useful solar gain than the conductive energy lost through them. Dynamic glazings can modulate solar gains to minimize cooling energy needs and, in commercial buildings, allow daylighting to offset lighting requirements. The needed solutions vary with building type and climate. Developing this next generation of zero-energy windows will provide products for both existing buildings undergoing window replacements and products which are expected to be contributors to zero-energy buildings. This paper defines the requirements for zero-energy windows. The technical potentials in terms of national energy savings and the research and development (R&D) status of the following technologies are presented: (1) Highly insulating systems with U-factors of 0.1 Btu/hr-ft{sup 2}-F; (2) Dynamic windows: glazings that modulate transmittance (i.e., change from clear to tinted and/or reflective) in response to climate conditions; and (3) Integrated facades for commercial buildings to control/ redirect daylight. Market transformation policies to promote these technologies as they emerge into the marketplace are then described.

  5. 1992 National census for district heating, cooling and cogeneration

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    District energy systems are a major part of the energy use and delivery infrastructure of the United States. With nearly 6,000 operating systems currently in place, district energy represents approximately 800 billion BTU per hour of installed thermal production capacity, and provides over 1.1 quadrillion BTU of energy annually -- about 1.3% of all energy used in the US each year. Delivered through more that 20,000 miles of pipe, this energy is used to heat and cool almost 12 billion square feet of enclosed space in buildings that serve a diverse range of office, education, health care, military, industrial and residential needs. This Census is intended to provide a better understanding of the character and extent of district heating, cooling and cogeneration in the United States. It defines a district energy system as: Any system that provides thermal energy (steam, hot water, or chilled water) for space heating, space cooling, or process uses from a central plant, and that distributes the energy to two or more buildings through a network of pipes. If electricity is produced, the system is a cogenerating facility. The Census was conducted through surveys administered to the memberships of eleven national associations and agencies that collectively represent the great majority of the nation`s district energy system operators. Responses received from these surveys account for about 11% of all district systems in the United States. Data in this report is organized and presented within six user sectors selected to illustrate the significance of district energy in institutional, community and utility settings. Projections estimate the full extent of district energy systems in each sector.

  6. EIA and CHP: What is going on?

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Roop, Joseph M.; Fowler, Richard A.

    2003-08-01T23:59:59.000Z

    In December, 2002, the Energy Information Administration (EIA) released its Annual Energy Review, 2001 (hereafter AER01; the document is available at: http://www.eia.doe.gov/emeu/aer/contents.html), with extensive revisions to both the electricity data and the categories under which the data are reported. The basics of these revisions are explained in Appendix H of AER01, ''Estimating and Presenting Power Sector Fuel Use in EIA Publications and Analyses'' (which can be downloaded from the ''Appendices and Glossary'' link). This revision was timely and eliminated the growing ''adjustments'' that reconciled the discrepancy between the sum of fuels consumed by the four end-use sectors and the electricity sector with the total energy consumed by the four end-use sectors (i.e., with electricity losses allocated back to the four end-use sectors). This adjustment jumped from almost nothing in 1988 to 128 trillion Btu (TBtu) in 1989 and grew to a half-quadrillion British thermal unit (quad) by 199 8. In 1999 it was -3.2 quad and in 2000, as reported in the AER 2000, it was -4.3 quad. After revisions, the adjustment nearly disappears, with the largest adjustment over the period 1989-2001 at 10 trillion Btu (TBtu). Even with these revisions, however, there are still some very strange numbers. This paper explains these revisions and accounting techniques, and tries to reconcile some of the data via an appeal to the detailed Independent Power Producer survey, EIA Form 860b, for 1998 and 1999.

  7. STANDARD SYMBOLS FOR UNITS OF MEASURE AIP IEEE CDR APS

    E-Print Network [OSTI]

    Kemner, Ken

    .wt. ­ at.wt. bar bar bar bar bar British Thermal Unit Btu Btu Btu calorie (cgs) cal cal cal centimeter cm

  8. Determination of performance characteristics of a one-cylinder diesel engine modified to burn low-Btu (lignite) gas 

    E-Print Network [OSTI]

    Blacksmith, James Richard

    1979-01-01T23:59:59.000Z

    directly supervised my work. As a faculty advisor, Dr. Lalk was a graduate student's dream, and only rarely a nightmare. Finally, I would like to thank my wife, Sally. Only one person worked harder than she did on this project, and he is most grateful... gasification facility. An intermediate project will be conducted at the gasifica- tion facility in an attempt to verify the one-cylinder en- gine's performance trends determined in the laboratory. Subsequent sections of this thesis review background...

  9. High-Btu gas from peat. A feasibility study. Task 9. 2. Financial risk analysis. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01T23:59:59.000Z

    In September 1980, the US Department of Energy awarded grant No. DE-FG01-80RA50348 to the Minnesota Gas Company (Minnegasco) to evaluate the commercial viability - technical, economic, and environmental - of producing 80 million SCF/day of substitute natural gas (SNG) from peat. Minnegasco's project team for this study consisted of Dravo Engineers and Constructors (for design, engineering and economics of peat harvesting, dewatering and gasification systems); Ertec, Inc. (for environmental and socioeconomic analyses); Institute of Gas Technology (for gasification process information, and technical and engineering support) and Deloitte Haskins and Sells (for management structural support.) This final report presents the work conducted under Task 9.2 (Risk Assessment) by the Institute of Gas Technology (IGT), the developer of the PEATGAS process selected for the study. At this time, there is little technical doubt that the PEATGAS gasifier can indeed operate. In order to assess the risks associated with the peat gasification facility, it was subdivided according to the following risk areas; (1) peat harvesting; (2) peat dewatering; (3) peat gasification; and (4) environmental. In summary, the risks associated with the peat gasification facility are manageable. Even under the extreme risk of no peat availability, the gasification facility can be operated with lignite at a slightly higher SNG price. 1 figure, 5 tables.

  10. The effect of CO? on the flammability limits of low-BTU gas of the type obtained from Texas lignite

    E-Print Network [OSTI]

    Gaines, William Russell

    1983-01-01T23:59:59.000Z

    , geothermal energy, heavy oil, oil shale, and coal waiting to be utilized (Penner and Icerman, 1981). Of these, coal is abundant and has had an immediate and significant effect on the energy situation. In response to energy problems of the decade...

  11. Some 54 MMbpd needed in Free World by 2000

    SciTech Connect (OSTI)

    Not Available

    1982-02-15T23:59:59.000Z

    Although Tenneco has decreased its previous year's forecast of US primary-energy demand in 2000 by 3%, the latest prediction - 99 quadrillion Btu - is by no means the lowest possible, because the effect of the 1979-80 oil price jumps remains unclear. By 2000, US natural gas production will fall to about 12 trillion CF/yr, or even less if price controls are not relaxed. Supplemental gas-supply projects could offset this decline if they gain prompt regulatory approval, although gas's share of total US energy supply would still drop and the difference would have to be made up by other fuels. In 2000, much of the US gas supply will come from (1) supplemental sources (40%), (2) Alaskan gas and Canadian and Mexican imports (18%), and (3) LNG imports (7%). SNG from coal will contribute some, but not enough to compensate for the Lower 48 production decrease. Such new technologies as geopressured methane will not supply substantial amounts of gas by 2000.

  12. World gas supply and demand: 1980-2020. Based on a study by the International Gas Union Force II

    SciTech Connect (OSTI)

    Fish, L.W.; Kalisch, R.B.; Wingenroth, J.L.; Kirk, S.R.; Meeder, J.F.

    1982-01-01T23:59:59.000Z

    If world oil prices and economic growth rates rise moderately (2%/yr) as assumed by the International Gas Union's Task Force II, world natural gas demand could increase from 1980's level of 52 quadrillion Btu to 74 quads by 1990 and 90 quads by 2000. Gas demand growth rates will peak at 4.5%/yr during 1980-85, then fall to 3.3%/yr in 1985-90, 2%/yr in the 1990s, and 1% after 2000, although the rates will differ substantially for various countries, regions, and sectors. World gas production (53 quads in 1980) could reach 90-120 quads by 2000 and 92-100 by 2020. The North American/European share of world production, however, will decline from 55% in 1980 to 37% by 1990 and to 27% in 2000. Although North America's conventional production in 2020 will be only 60% of its current level, the expected growth in unconventional output should push overall production up 12%. The world reserves/production ratio, now at 45 years, will drop to 31 years by 2000 and 29 by 2020; the respective world reserves estimates are 2621 and 2350 trillion CF.

  13. US gas line contract carriage on the rise

    SciTech Connect (OSTI)

    Not Available

    1992-05-18T23:59:59.000Z

    This paper reports that the Interstate Natural Gas Association of America reports contract carriage moved 84% of the gas delivered to U.S. markets in 1991, up from 79% the previous year. Carriage for market transportation for distributors, end users, and marketers totaled 15.2 quadrillion BTU, a 13% increase from the 13.4 quads reported at the end of 1990. Ingaa the growth in carriage volumes has slowed. This year's 13% increase is lower than the 28% growth in carriage volumes from 1988 to 1989 and the 72% from 1986 to 1987. Total natural gas delivered to market was 18 quads in 1991, an increase of 5% from the 1990 level of 17.1 quads. Pipeline sales accounted for only 16% of the gas delivered to market in 1991. They dropped 0.8 quads, or 22%, from 1990 levels. Ingaa the while the market relies heavily on carriage throughout the year, reliance on carriage is somewhat heavier as has been the case since 1986 during the off peak season in April-September.

  14. U.S. Department of Energy’s Industrial Technologies Program and Its Impacts

    SciTech Connect (OSTI)

    Weakley, Steven A.; Brown, Scott A.

    2011-05-20T23:59:59.000Z

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo-gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2010). From 1976-2009, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 10.0 quadrillion Btu, with a net cost savings of $61.82 billion.

  15. U.S. Department of Energy’s Industrial Technology Program and Its Impacts

    SciTech Connect (OSTI)

    Weakley, Steven A.; Roop, Joseph M.

    2010-05-15T23:59:59.000Z

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2009). From 1976-2008, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 9.27 quadrillion Btu, with a net cost savings of $63.91 billion.

  16. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B Winter13

  17. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B Winter134

  18. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B Winter1343

  19. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B Winter13434

  20. STATE OF CALIFORNIA SPACE CONDITIONING SYSTEMS, DUCTS AND FANS

    E-Print Network [OSTI]

    , crawl- space, etc.) Duct R-value Heating Load (Btu/hr) Heating Capacity (Btu/hr) Equip Type (package Load (Btu/hr) Cooling Capacity (Btu/hr) 1. If project is new construction, see Footnotes to Standards

  1. Healthcare Energy Efficiency Research and Development

    E-Print Network [OSTI]

    Lanzisera,, Judy Lai, Steven M.

    2012-01-01T23:59:59.000Z

    c. Hourly kBtu vs. outdoor temp. BTU meter, chiller, coolingpumps electrical power One BTU meter, each chiller input viavia VFD's Chiller Plant BTU Meter $ 4000, Chillers, Towers

  2. 2.1E BDL Summary

    E-Print Network [OSTI]

    Winkelmann, F.C.

    2010-01-01T23:59:59.000Z

    TOWERAIR) ' OPEN-CENT-COND-PWR(0.3;0.0 to 1.0 Btu/Btu) •changed i n 2.1E OPEN-REC-COND-PWR(0.03;0.0 to 1.0Btu/Btu) HERM-CENT-COND-PWR(0.3;0.0 to 1.0 Btu/Btu) •

  3. Uninterruptible Power Supplies Designed to meet or exceed the safety standards established by UL, CSA, CE and VDE. The Alpha CFR UPS is one of the safest, most reliable and versatile Uninterruptible Power Systems

    E-Print Network [OSTI]

    Berns, Hans-Gerd

    % Load 88% 90% 90% 90% 90% 90% Typical Heat Output - Line Mode 209 BTU/h 284 BTU/h 427 BTU/h 427 BTU/h 398 BTU/h 636 BTU/h Mechanical Width (in \\ mm) 8.5 \\ 216 8.5 \\ 216 8.5 \\ 216 8.5 \\ 216 8.5 \\ 216 8

  4. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will improve the energy efficiency of several common household appliances." The 13 SEER central air conditioner standard is predicted to save the nation 4.2 quads (quadrillion...

  5. Extreme Scale Computing, Co-design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Extreme Scale (ACES) partnership to design and develop the supercomputer Cielo (Spanish for "sky"), which was built by Cray Inc. Cielo can perform more than one quadrillion...

  6. U.S. Energy Information Administration (EIA) - Pub

    Gasoline and Diesel Fuel Update (EIA)

    Transportation sector energy demand Transportation sector energy consumption declines in the Reference case Transportation sector energy consumption declines from 26.7 quadrillion...

  7. Manufacturing fuel-switching capability, 1988

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  8. EVA PLANNING ASSUMPTIONS LRV TRAVERSE ASSESSMENT

    E-Print Network [OSTI]

    Rathbun, Julie A.

    VALUE. #12;ASSUMPTIONS {CONT) e METABOLIC RATES · LM OVERHEAD 1050 BTU/HR · ALSEP 1050 BTU/HR · STATION 950 BTU/HR · RIDING 550 BTU/HR #12;ACTIVITY 'METABOLIC .COMPARISON 15 ACTUAL VERSUS 16 PLANNING AVERAGE METABOLIC RATE (BTU I HR) ACTIVITY 15 ACTUAL 16 PLANNING CDR LMP LM OVERHEAD 1246 1060 '1050

  9. Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    v i i where, h = molar enthalpy, Btu/mol (J/mol), M = molarEnergy Used at Shower Water Heater average 5169 BTU ( 5.454MJ ) 4335 BTU ( 4.573 MJ ) 4151 BTU ( 4.379 MJ ) 4192 BTU (

  10. Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns: Audit Report of Two Cement Plants in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2013-01-01T23:59:59.000Z

    conversion: 1 kwh = 10,500 Btu for power production Averageelectricity and at 10,500 Btu/kwh or 2,646 kcal/kHz energyHCs Unit Nm3/hr Nm3/hr cfh Btu/scf MM Btu/hr GJ/hr Btu/scf

  11. PROCEEDINGS OF 1976 SUMMER WORKSHOP ON AN ENERGY EXTENSION SERVICE

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    KWH X 10 3 Occup, Unaee. BTU x10 6 Qceup. Unoec. Oecuj2.H20 gal H 0 occ. -yr. x (155-60) OF x x + 40,000 BTU/occ. /yr. BTU 493,000 BTU/occ. /yr. 8,000,000 BTU/yr. 100

  12. ~A four carbon alcohol. It has double the amount of carbon of ethanol, which equates to a substantial increase in harvestable energy (Btu's).

    E-Print Network [OSTI]

    Toohey, Darin W.

    when consumed in an internal combustion engine yields no SOX, NOX or carbon monoxide all environmentally harmful byproducts of combustion. CO2 is the combustion byproduct of butanol, and is considered our nation's dependence on foreign oil, protect our fuel generation grid from sudden disruption while

  13. Healthcare Energy Efficiency Research and Development

    E-Print Network [OSTI]

    Lanzisera,, Judy Lai, Steven M.

    2012-01-01T23:59:59.000Z

    of panels. Steam boiler efficiency Electrical includedto BTU equivalents. Boiler efficiency can be monitored as aGenerators Heating water boiler efficiency kBtu out/ kBtu in

  14. Introduction to Benchmarking: Starting a Benchmarking Plan

    Broader source: Energy.gov (indexed) [DOE]

    plant Btu per pound of product Manufacturer Btu per pound of product processed Refinery Btu per number of beds occupied Hotel or hospital Kilowatt-hours per square foot...

  15. Conversion Factor Table http://vertex42.com/edu/kinematics.html Copyright 2005 Jon Wittwer Multiply by To Get

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    .696 psia bar 0.9869 atm, std bar 1x105 Pa Btu 778.169 ft·lbf Btu 1055.056 J Btu 5.40395 psia·ft3 Btu 2.928x10-4 kWh Btu 1x10-5 therm Btu / hr 1.055056 kJ / hr Btu / hr 0.216 ft·lbf / sec Btu / hr 3.929x10-4 hp Btu / hr 0.2931 W Btu / lbm 2.326* kJ / kg Btu / lbm 25,037 ft2 / s2 Btu / lbm·R 4.1868 kJ / kg

  16. TWOZONE USERS MANUAL. 2d ed

    E-Print Network [OSTI]

    Gadgil, A.J.

    2008-01-01T23:59:59.000Z

    Op) effective lumped heat capacity of house, (Btu/Op). Wein the neighborhood of 3000 Btu/Op for a typical house ofeconomic parameters (such as: Btu's saved per discounted

  17. Energy Management A Program of Energy Conservation for the Community College Facility

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    General Glossary I II Btu (British thermal unit). The amountabove a fixed data point (in Btu/lb), including sensible andsquare centimeter, or 3.69 Btu/per square foot. LA TENT HEA

  18. Heat transfer pathways in underfloor air distribution (UFAD) systems

    E-Print Network [OSTI]

    Bauman, F.; Jin, H.; Webster, T.

    2006-01-01T23:59:59.000Z

    coefficient, W/(m 2 ?K) (Btu/[h?ft 2 ?°F]) downwardcoefficient, W/(m 2 ?K) (Btu/[h?ft 2 ?° F]) forcedcoefficient, W/(m 2 ?K) (Btu/[h?ft 2 ?°F]) slab thermal

  19. ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Efficiency** Process Process BTU/Ton of MSW Input* RDSF1 - Col. 2; Col. 4 = Col. 3/11.4 Million BTU/per ton of MSWfor RDSF and 9.1 Million BTU/ton for direct combustion and

  20. ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1

    E-Print Network [OSTI]

    Carroll, William L.

    2011-01-01T23:59:59.000Z

    BLAST DOE-2 (SWF) Annual Cooling Requirements (10 6 Btu)Btu) I'" I NBSLD III DOE-2 (SW'F) DOE-2 (CW'F) DOE-2 (CWF)Heating (1 Annual Total Btu) City Jan HINNEAPOLIS NBSLD

  1. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    gge) (kg H 2 ) (million Btu) tons) Electricity (kWh) GaseousH 2 ) Thermal (million Btu) Biomass (dry tons) Electricity (2 (MtH 2 ). Thermal (million Btu, TBtu): One million British

  2. TWOZONE USERS MANUAL

    E-Print Network [OSTI]

    Gadgil, Ashok J.

    2008-01-01T23:59:59.000Z

    OF) effective lumped heat capacity of house, (Btu/OF). Wein the neighborhood of 3000 Btu/OF for a typical house ofC (effective) is 3200 BTU/o F. (Typically A moderately

  3. Quantifying the Effect of the Principal-Agent Problem on US Residential Energy Use

    E-Print Network [OSTI]

    Murtishaw, Scott; Sathaye, Jayant

    2006-01-01T23:59:59.000Z

    energy – 9,860 trillion Btu (9,840 PJ) b Residential totalenergy – 17, 600 trillion Btu (17,100 PJ) In addition tototaled over 3,400 trillion Btu, equal to 35% of the site

  4. Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology

    E-Print Network [OSTI]

    Sanchez, Marla

    2010-01-01T23:59:59.000Z

    $/MBtu) Electric Heat Rate (Btu/kWh) kWh = kilowatthour; TWh= terawatthour; MBtu = Million Btu; MtC = Metric tons ofon heavy load. Idle Rate (Btu/h) Table 6-9. Energy Star

  5. TWOZONE USERS MANUAL

    E-Print Network [OSTI]

    Gadgil, Ashok J.

    2010-01-01T23:59:59.000Z

    OF) effective lumped heat capacity of house, (Btu/OF). Wein the neighborhood of 3000 Btu/OF for a typical house ofC (effective) is 3200 BTU/o F. (Typically A moderately

  6. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01T23:59:59.000Z

    gge) (kg H 2 ) (million Btu) tons) Electricity (kWh) GaseousH 2 ) Thermal (million Btu) Biomass (dry tons) Electricity (2 (MtH 2 ). Thermal (million Btu, TBtu): One million British

  7. Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization

    E-Print Network [OSTI]

    Akbari, H.

    2008-01-01T23:59:59.000Z

    by ERC, is 448.3 trillion Btu (TBtu). The total CaliforniaBecause the cost of an electrical Btu is roughly 4 timesthat of a source fuel Btu, industrial categories that use

  8. Automated Continuous Commissioning of Commercial Buildings

    E-Print Network [OSTI]

    Bailey, Trevor

    2013-01-01T23:59:59.000Z

    69 Figure 30 Locations for chilled water BTU meter for69 Figure 31 Locations for hot water BTU meter forgood enough. Cooling energy X BTU meter should also output

  9. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    Building Heating Loads (Trillion BTU/yr) Total BuildingCooling Loads (Trillion BTU/yr) Non. Wind Infilt SHGC Wind.Energy Consumption (Trillion BTU/yr) Area, Window Window

  10. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    Year 2025 Annual Energy~ 10 Btu Heat Electricity Fuels orBalance Distributed Cases (trillion Btu) A ! -feat >350! lPfor California Industry (10 12 Btu): Scenario B Process Heat

  11. MEASURING ENERGY CONSERVATION WITH UTILITY BILLS

    E-Print Network [OSTI]

    Deckel, Walter

    2013-01-01T23:59:59.000Z

    in British Thermal Units, BTU, for these comparisons. Themade by noting that there are 100,000 BTU's in one therm andthat there are 3413 BTU's in one kilowatt hour. It should be

  12. Self-benchmarking Guide for Laboratory Buildings: Metrics, Benchmarks, Actions

    E-Print Network [OSTI]

    Mathew, Paul

    2010-01-01T23:59:59.000Z

    Site Energy Intensity (BTU/sf-yr). A Performance BenchmarkAnnual natural gas energy use (Million BTU) dE3: Annual fueloil energy use (Million BTU) dE4: Annual other fuel energy

  13. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    producing 258 million Btu annually. Over a lifetimewill produce about 2.58 billion Btu. REFERENCES Case, C.W. ,will provide 8.9 million Btu of energy :::nnual or about of

  14. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    Input fuel quantities (in BTU) which account for thermalOutput energy (in BTU). Includes biomass, accounted asMWE) COIL FIRED peWER PLINT-lew BTU 1800 MWEI ~UlFUA O~IOE

  15. 2013 BUILDING ENERGY EFFICIENCY STANDARDS CALIFORNIA CODE OF REGULATIONS

    E-Print Network [OSTI]

    of the product in Btu/h. If the unit's capacity is less than 7000 Btu/h, use 7000 Btu/h in the calculation. If the unit's capacity is greater than 15,000 Btu/h, use 15,000 Btu/h in the calculation. b Replacement units and with mechanical cooling capacity at AHRI conditions of greater than or equal to 54,000 Btu/hr, shall include

  16. A Post-Occupancy Monitored Evaluation of the Dimmable Lighting, Automated Shading, and Underfloor Air Distribution System in The New York Times Building

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    energy use comparison EUI, kBtu/Gsf Lighting Heating Coolinguse comparison Annual EUI, kBtu/sf-yr Lighting Heating

  17. c37a.xls

    Gasoline and Diesel Fuel Update (EIA)

    2 per Building (million Btu) per Square Foot (thousand Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All Buildings...

  18. Federal Energy Management Program FY14 Budget At-a-Glance

    Energy Savers [EERE]

    UESCs (utility energy service contracts)from the FY 20112012 baseline. Achieve lifecycle Btu Savings of 57 trillion Btu from FY 2014 program activities. The program's...

  19. P9>P4> P5> P7>P6> J9 J10J6J5 J7 J8

    E-Print Network [OSTI]

    McDonald, Kirk

    Inflow= 53.5 Btu/s Total Energy Outflow= 53.5 Btu/s Maximum Pressure is 51.6 atm at Junction 1 Inlet

  20. Life-cycle cost and payback period analysis for commercial unitary air conditioners

    E-Print Network [OSTI]

    Rosenquist, Greg; Coughlin, Katie; Dale, Larry; McMahon, James; Meyers, Steve

    2004-01-01T23:59:59.000Z

    Baseline Efficient Air Conditioners . . . . . . 28 AverageEfficient Air Conditioners . . . . . . . . . . . . . . . . .Btu/h Commercial Air Conditioners . . . . . . . . . . . . .

  1. Costs of Generating Electrical Energy 1.0 Overview

    E-Print Network [OSTI]

    McCalley, James D.

    , 1992 through 2008 Period Coal [1] Petroleum [2] Natural Gas [3] All Fossil Fuels Receipts (Billion BTU) Average Cost Avg. Sulfur Percent by Weight Receipts (billion BTU) Average Cost Avg. Sulfur Percent by Weight Receipts (Billion BTUs) Average Cost (cents/ 10 6 Btu) Average Cost (cents/ 10 6 Btu) ($ per 10 6

  2. SOME ANALYTIC MODELS OF PASSIVE SOLAR BUILDING PERFORMANCE: A THEORETICAL APPROACH TO THE DESIGN OF ENERGY-CONSERVING BUILDINGS

    E-Print Network [OSTI]

    Goldstein, David Baird

    2011-01-01T23:59:59.000Z

    X) * Assumes ASHRAE materials properties K = .54 Btu h Btu p1bs Btu 144 -3)C = .156 of-lb. ft P °F- ft-hr F-ft -hr Fig.Insulation is R - 8: ft 2 -hr-oF Btu Dr tAssumes p = 144 Ib/

  3. FEMP Designated Product Assessment for Commercial Gas Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    rating of at least 4000 Btu per hour per gallon of storedpackaged boiler that has an input rating from 300,000 Btu/hrto 12,500,000 Btu/hr (and at least 4,000 Btu/hr per gallon

  4. Natural Gas Variability In California: Environmental Impacts And Device Performance Combustion Modeling of Pollutant Emissions From a Residential Cooking Range

    E-Print Network [OSTI]

    Tonse, S. R.

    2012-01-01T23:59:59.000Z

    2102 K 2.727e-02 KJ/s 9.298e+01 Heat release Btu/hour 1.500e+04 Btu/hour/in 2 V=0.75m/s =2 Peak TKJ/s 6.630e+01 Heat release Btu/hour 1.069e+04 Btu/hour/in 2

  5. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    6/yr Operating Cost $/ton ˘/10 6 Btu Selling Price 12% DCF$/ton ˘/10 6 Btu Production (Million Tons Per Year)ash, 3.38% sulfur, 12,821 Btu/lb **15,900 Btu/lb, 1% sulfur.

  6. Distributed Energy Systems in California's Future: A Preliminary Report Volume 2

    E-Print Network [OSTI]

    Balderston, F.

    2010-01-01T23:59:59.000Z

    kWh/m 2 , corresponds to a heat loss about 12 Btu/hr-sq.ft.cooling demand is about 18 Btu/hr-sq. ft. Similarly, TheseTOTALS Notes: 2 mUlinn BTU (')W'Jr,) of 8 r:J Ilion BTU (U"

  7. Performance Criteria for Residential Zero Energy Windows

    E-Print Network [OSTI]

    Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

    2006-01-01T23:59:59.000Z

    CA) MEC Zone MEC Pkg # Glz % Btu/h-ft2-F Fenestration U-factor W/m2-K (h-ft2-F)/Btu Ceiling R-value (m2-K)/W (h-ft2-F)/Btu Wall R-value (m2-K)/W (h-ft2-F)/Btu Floor

  8. INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING

    E-Print Network [OSTI]

    Vilmer, Christian

    2013-01-01T23:59:59.000Z

    constant: TBM • 6.8 min 279. Btu/hr-°F) Switch Differential:0.44 °C (0.79 °F) 504, Btu/hr-°F) Coefficient c(: FurnaceR l/R 1/R 128 WJ°C ( 243. Btu/hr-°F) • 1640 WJ°C (3111. Btu/

  9. Qh Qwh Qrh+:= Qwh 2.07 10

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Qh Qwh Qrh+:= Qwh 2.07 10 8 Ă? BTU= Qrh 1.314 10 8 Ă? BTU= Qh 3.384 10 8 Ă? BTU= Qh 3.384 10 3 Ă? Therm Qrc+:= Qwc 2.228 10 7 Ă? BTU= Qrc 1.414 10 7 Ă? BTU= Qc 3.641 10 7 Ă? BTU= Qc 364.123 Therm= Qc 1.067 10 and Cooling Degree-Days for Rockford Area: HDD 6970 R day:= CDD 750 R day:= Therm 10 5 BTU:= a 270 ft:= b 150

  10. Problem 6-7: The reference cycle from Problem 6-6 with a condenser pressure of 1.0 psia has the states p1 = 1000 psia

    E-Print Network [OSTI]

    the states p1 = 1000 psia h1 = 1192.4 BTU/lbm s1 = 1.3903 BTU/lbm-o R = s2 p2 = 1.0 psia T2 = 101.70 o F 2 = 0.6815 h2 = 775.8 BTU/lbm h3 = hf = 69.74 BTU/lbm h4 = 72.7 BTU/lbm and the transfers w12 = 416.6 BTU/lbm q23 = -706.1 w34 = -3.0 q41 = 1119.7 with the results wnet = 413.6 BTU/lbm = qnet th = 413

  11. Title Goes Here In This PositionMillersville University

    E-Print Network [OSTI]

    Hardy, Christopher R.

    Electricity consumption is responsible for 66% of emissions 0 5,000 10,000 15,000 20,000 25,000 Scope 1 Consumption: 61,734 BTU/GSF UD's Electric Consumption: 59,396 BTU/GSF 0 50,000 100,000 150,000 200,000 250 Consumption & Tech. Rating Total BTU/GSF Fossil Consumption: 29,362 BTU/GSF Electric Consumption: 77,495 BTU

  12. Elizabeth City State University Dr. Linda Hayden

    E-Print Network [OSTI]

    Cores C) 35KW F) ~37,000 BTU's G) (5) IEC309 (60 amp) H) 208V (3 phase)C) ~35KW E) 180 amps (connector) D) 208V (3 Phase) E) 500lbs H) 208V (3 phase) I) ~3000lbs J) 120,000 BTU's E) ~500lbs #12;A) 320, 000 BTU/HRA) 320, 000 BTU/HR B) 1 Ton = 12,000 BTU/hr C) 26 Ton CRAC requirement (really a 30 ton CRAC

  13. Introducing Mira, Argonne's Next-Generation Supercomputer

    SciTech Connect (OSTI)

    None

    2013-03-19T23:59:59.000Z

    Mira, the new petascale IBM Blue Gene/Q system installed at the ALCF, will usher in a new era of scientific supercomputing. An engineering marvel, the 10-petaflops machine is capable of carrying out 10 quadrillion calculations per second.

  14. Internet of Systems (IoS) - Economic Re-equilibration Catalyzed by Internet of Things (IoT)

    E-Print Network [OSTI]

    Datta, Shoumen

    2014-01-01T23:59:59.000Z

    How will the tapestry of humanity and the ethos of civilization evolve when billions of devices and trillions of sensors with quadrillion end points can connect events in our daily lives to the world around us and monitor ...

  15. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect (OSTI)

    Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

    2006-04-01T23:59:59.000Z

    United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and reuse this energy. As shown in Table E-1, non-CO2 GHG emissions from U.S. industry were identified as having 2180 peta joules (PJ) or 2 Quads (quadrillion Btu) of residual chemical fuel value. Since landfills are not traditionally considered industrial organizations, the industry component of these emissions had a value of 1480 PJ or 1.4 Quads. This represents approximately 4.3% of the total energy used in the United States Industry.

  16. The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector

    SciTech Connect (OSTI)

    Greene, D.L.

    1997-07-01T23:59:59.000Z

    The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

  17. Cornell's (LSC) project began providing 16,000 tons of cooling (1 ton of cooling = 12,000 Btu/hr, or approximately one large residential window air conditioner) to Cornell University's Ithaca

    E-Print Network [OSTI]

    Keinan, Alon

    window air conditioner) to Cornell University's Ithaca campus in July of 2000. This project has almost completely replaced mechanical refrigeration for the Cornell district cooling system with the following benefits: · Greater LSC has replaced

  18. Special Problem for Chapter 4: Compare the Lower Heating Values of different fuel gases per Standard Cubic Foot, recalling that

    E-Print Network [OSTI]

    2 + 3.76N2) - 1H2Ovapor + 1.88N2 0 = 1 lbmolH2 O lbmolfuel � 18.016 lbmH2 O lbmolH2 O µ -5774.6 BTU lbmH2 0 ¶ + Qout 0 = -104040 BTU/lbmolfuel + Qout Qout = 104040 BTU/lbmolfuel = 51607 BTU/lbmfuel = 266 BTU/ft3 fuel [274 BTU/SCF] For 16.043 lbm of Methane CH4 + 2 (O2 + 3.76N2) - 2H2O + CO2 + 7.52N2

  19. Control of Stochastic Processes 048913 Winter 2006 Supplement: DP for the LQ problem

    E-Print Network [OSTI]

    Shwartz, Adam

    T Qtx + uT Rtu + Eu x Vt+1(x1) (0.2) = min u xT Qtx + uT Rtu + Eu x Vt+1(Atx + Btu + Ctwt) (0.3) Theorem(x) equals = min u xT Qtx + uT Rtu + Eu x [Vt+1(Atx + Btu + Ctwt)] = min u xT Qtx + uT Rtu + Eu x (Atx + Btu + Ctwt)T Kt+1(Atx + Btu + Ctwt) + + t + 1 = min u xT Qtx + uT Rtu + Eu x (Atx + Btu)T Kt+1(Atx + Btu) +2

  20. 7-84E The claim of an inventor about the operation of a heat engine is to be evaluated. Assumptions The heat engine operates steadily.

    E-Print Network [OSTI]

    Bahrami, Majid

    efficiency would be 0.45 R1000 R550 11maxth, H L T T K 550 R 1000 R HE HQ 15,000 Btu/h 5 hp When the first law is applied to the engine above, Btu/h720,27Btu/h000,15 hp1 Btu/h2544.5 )hp5(net ¸¸ ¹ · ¨¨ © § LH QWQ The actual thermal efficiency of the proposed heat engine is then 459.0 hp1 Btu/h2544.5 Btu/h27

  1. Small Space Heater Basics | Department of Energy

    Energy Savers [EERE]

    10,000 Btu to 40,000 Btu per hour. Common fuels used for this purpose are electricity, propane, natural gas, and kerosene. Although most space heaters rely on convection (the...

  2. Hospital Energy Benchmarking Guidance - Version 1.0

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    with filter loading. Boiler efficiencies: - kBtu out / kBtuhospital Heating water boiler efficiency: Base on availableout / kBtu in Steam boiler efficiency: Base on available

  3. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01T23:59:59.000Z

    4 Figure 1-3 World energy consumption (in British Thermal5 Figure 1-4 World energy consumption (in Btu) according toforms and (b) world energy consumption (in Btu) according to

  4. U.S. Energy Information Administration (EIA) - Topics

    Gasoline and Diesel Fuel Update (EIA)

    changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009,...

  5. 2.1E Supplement

    E-Print Network [OSTI]

    Winkelmann, F.C.

    2010-01-01T23:59:59.000Z

    125 (HPDefE) is the heat pump defrost energy. SYSTEMS A i runit (Btu/hr) HPDefE heat pump defrost energy (Btu) A.32HEAT PUMP ENHANCEMENTS Expanded Supplemental-heat-source and Defrost

  6. Air Emission Regulations for the Prevention, Abatement, and Control...

    Broader source: Energy.gov (indexed) [DOE]

    BTU per hour heat. For installations equal or greater than 10 million BTU per hour heat input shall not exceed the rate of E 0.8808 * I-0.1667 where E is the emission rate...

  7. MASS AND DENSITY 1 kg = 2.2046 lb 1 lb = 0.4536 kg

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    .m = 0.73756 ft.lbf 1 ft.lbf = 1.35582 J 1 kJ = 737.56 ft.lbf 1 Btu = 778.17 ft.lbf 1 kJ = 0.9478 Btu 1 Btu = 1.0551 kJ 1 kJ/kg = 0.42992 Btu/lb 1 Btu/lb = 2.326 kJ/kg 1 kcal = 4.1868 kJ ENERGY TRANSFER RATE 1 W = 1 J/s = 3.413 Btu/h 1 Btu/h = 0.293 W 1kW = 1.341 hp 1 hp =2545 Btu/h 1 hp = 550 ft.lbf/s 1

  8. Moran & Shapiro, 5th Edition Oct. 27 to Nov. 3, 2004

    E-Print Network [OSTI]

    and adiabatic calculation s1 = 1.9263 BTU/lbm-o R from Table A-4E s2s = s1 = 1.9263 BTU/lbm-o R Interpolating

  9. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01T23:59:59.000Z

    because diesel fuel contains 11% more BTUs per gallon thangenerators, in gallons-diesel fuel per million BTU of

  10. IMPLICATIONS OF INTERNATIONAL COMPARISONS OF ENERGY USE: THE SWEDISH/AMERICAN CASE REVIEWED

    E-Print Network [OSTI]

    Schipper, Lee

    2013-01-01T23:59:59.000Z

    Small customers Large customers Heavy oil l Gas (˘/:HH Btu):systems run on cheap heavy oil. Moreover, oil- Additionally,

  11. since the invention of the absorption cooling process. stage. These prototypes met the target specifications The literature is filled with many potential combi-before it was found necessary to rejecthe pair, mainly

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    are given on a net heat ether formula . CH2OC2H5 input basis that is equivalent to a combustion system /// /Heat input. Btu/h 54000 54000 Refrigeration effect. Btu/h 35 700 25100 20 1 ///// /I E Heat output. Btu - - --- -- Weak liquid flow. Ibs/h 925 1029 o0 50 00 15 2002 250 300350400 Heat input. Btu/h 60550 59850 e7

  12. EECBG Direct Equipment Purchase Air Conditioner Guide Equipment Type

    E-Print Network [OSTI]

    EECBG Direct Equipment Purchase Air Conditioner Guide Equipment Type Size Category (Btu/h) Size.ahridirectory.org/ceedirectory/pages/ac/cee/defaultSearch.aspx 12,000 Btu/h = 1 ton Less than 65,000 Btu/h Air Conditioners, Air Cooled Air Conditioners, Water completed by the California Energy Commission at a rate of 12,000 Btu/h per ton of air conditioning Source

  13. Understanding Sequestration as a Means of Carbon Management Howard Herzog

    E-Print Network [OSTI]

    IN&OUT'ACC CO2'POPx GDP POP x BTU GDP x CO2 BTU 1 (1) (2) Understanding Sequestration as a Means and is a measure of fuel combustion and cement production (5.5 standard of living, BTU/GDP is energy Gt to as "deforestation" (1.6 GtC/yr). By energy intensity, and CO2/BTU is the amount of 1994, the fossil fuel

  14. Practice Problems Moran & Shapiro, 5th Edition

    E-Print Network [OSTI]

    F 1.6766 1.6576 to obtain h1 = 1433.2 BTU/lbm s1 = 1.6458 BTU/lbm-o R We always start by calculating the adiabatic and reversible (=isentropic) 1 #12;reference case (turb = 100%) first s2s = s1 = 1.6458 BTU/lbm-o R p2 = 3 psia = sg = 1.8861 BTU/lbm-o R s2s

  15. M. Bahrami ENSC388 Tutorial #1 1 ENSC 388 Week #2, Tutorial #1 Dimensions and Units

    E-Print Network [OSTI]

    Bahrami, Majid

    .0140 . Problem 2: A car goes with average velocity of 100 km/h. Find kinetic energy of the car in [Btu] and [J everything the question is asking for) Find: KE: kinetic energy of the car in [Btu] and [J] Step 2: Prepare (Eq2) Note: 2 1][1][1 s ft sluglbf Btu ftlbf Btu ftlbfKE 465 .778 1 ].[361400 (Eq3) Part

  16. Vapor Power Systems MAE 4263 Final Exam

    E-Print Network [OSTI]

    of formation on pages 162 and 163 114:23 ( 941:4) BTU/lbmolfuel = 9 18:016 ( 5774:6) + 8 44:011 ( 3846:7) + Qout = 114:23 ( 785:1) (9 18:016 ( 5774:6) + 8 44:011 ( 3846:7)) 114:23 Qout = 2:183 106 BTU/lbmolfuel = 19112 BTU/lbmfuel Answer (40 points): LHV= 19100 BTU/lbmfuel [19268 for gasi...ed fuel] 3. Atomic

  17. Heat Transfer Derivation of differential equations for heat transfer conduction

    E-Print Network [OSTI]

    Veress, Alexander

    ) or kW *h or Btu. U is the change in stored energy, in units of kW *h (kWh) or Btu. qx is the heat conducted (heat flux) into the control volume at surface edge x, in units of kW/m2 or Btu/(h-ft2). qx volume is positive), in kW/m3 or Btu/(h-ft3) (a heat sink, heat drawn out of the volume, is negative

  18. The Role of the Flexicoking Process in Heavy Oil Processing 

    E-Print Network [OSTI]

    Taylor, R. I.

    1980-01-01T23:59:59.000Z

    a clean product slate composed of low Btu gas, high Btu gas, LPG, naphtha, distillate and gas oil. The low Btu gas falls within the definition of an "Alternate Fuel" under current legislation (PL 95-620). Originally developed for refinery bottoms...

  19. The World Energy situation andThe World Energy situation and the Role of Renewable Energy Sources and

    E-Print Network [OSTI]

    Abdou, Mohamed

    is generated by fossil fuels ­ CO2 emission is increasing at an alarming rate Oil supplies are dwindling (electricity ~ $1 trillion / yr)­ World energy market ~ $3 trillion / yr (electricity ~ $1 trillion / yr,028 Btu 1 short ton of coal = 20,169,000 Btu 1 kilowatthour of electricity = 3,412 Btu 8 #12;Energy Use

  20. Energy performance of underfloor air distribution systems part IV: underfloor plenum testing and modeling

    E-Print Network [OSTI]

    Bauman, Fred; Jin, Hui

    2007-01-01T23:59:59.000Z

    of a bare panel is 1.359 Btu-in/hr-ft 2 -°F (0.196 W/m-K)with carpet tiles is 1.002 Btu-in/hr-ft 2 -°F (0.144 W/m-K).with thermal conductivity of 0.54 Btu/hr-ft-°F (0.93 W/m-K).

  1. Highly Insulating Glazing Systems using Non-Structural Center Glazing Layers

    E-Print Network [OSTI]

    Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    low as 0.57 W/m 2 -K (0.10 Btu/h-ft 2 -°F). Such units havevalues Btu/h-ft 2 -°F), windows relatedA 0.57 W/m 2 -K (0.10 Btu/h-ft 2 -°F) window is targeted as

  2. COMPARISON OF PROPORTIONAL AND ON/OFF SOLAR COLLECTOR LOOP CONTROL STRATEGIES USING A DYNAMIC COLLECTOR MODEL

    E-Print Network [OSTI]

    Schiller, Steven R.

    2013-01-01T23:59:59.000Z

    high gain: insolation = 2292 BTU/ft 2 -da~ 7224 watt-hrs/m -low gain: insolation= 1146 BTU/ft 2-dat 3612 watt-hrs/m -day°F (46.1°C) capacitance= 0.7 BTU/ft 2-°F {14.3 kJ;m 2- 0 c)

  3. Energy Data Sourcebook for the U.S. Residential Sector

    E-Print Network [OSTI]

    Wenzel, T.P.

    2010-01-01T23:59:59.000Z

    10 with: area in ft uvalue in Btu/hr-F-ft slope in F-day/yrperimeter in ft, uvalue in Btu/hr-F-ft slope in F-day/yrheater w/fan RM AFUE Btu/hr Gas RM 74 AFUE >42000

  4. STAFF PAPER THERMAL EFFICIENCY OF GASFIRED

    E-Print Network [OSTI]

    ..................................................................... 6 List of Tables Page Table 1: California Natural GasFired Heat Rates for 2001 ­ 2010 (Btu 5: Heat Rates for California's Natural GasFired Power Plants (Btu/kWh) ...................... 8 per kilowatt hour (Btu/kWh) from 2001 to 2010. Table 1: California Natural Gas-Fired Heat Rates

  5. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    lb process heat: 1. 23 X 10 4 BTU electricity 5500 BTUe CaC1scf sludge 18.61b water 161b Btu/scf WASTE PROCESSING sewer~l9ZZ X 10 DEELAIQB BTU/yr) I MATERIALS TRANSPORTATION 3.

  6. Experimental Evaluation of Installed Cooking Exhaust Fan Performance

    E-Print Network [OSTI]

    Singer, Brett C.

    2011-01-01T23:59:59.000Z

    High High Fan (cfm) Burner Fire Btu/hr A- 50 Fan/Plume EffLow Fan (cfm) Burner Fire Btu/hr Fan/Plume Eff Figure  3.  Med Fan (cfm) Burner Fire Btu/hr Fan/Plume Eff Figure  7.  

  7. PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I

    E-Print Network [OSTI]

    Case, C.W.

    2011-01-01T23:59:59.000Z

    usable energy of 14.2 million Btu per year, giving an annualMWh/year or 83.6 million Btu/year. Because the evaporativeper unit of 5.02 million Btu or natural gas of 1.5 MWh of

  8. Energy performance of air distribution systems part II: room air stratification full scale testing

    E-Print Network [OSTI]

    Webster, Tom; Lukaschek, Wolfgang; Dickeroff, Darryl; Bauman, Fred

    2007-01-01T23:59:59.000Z

    wall: Door @ South wall: [Btu*h -1 *ft -2 *°F -1 ] [W(m˛K)]plenum top: SA plenum bottom: [Btu*h -1 *°F -1 ] [W °K -1 ]and U-value of 2.8 W/(m˛K) (0.5 Btu/(hft˛°F)). However, this

  9. THERMAL PERFORMANCE OF MANAGED WINDOW SYSTEMS

    E-Print Network [OSTI]

    Selkowitz, S. E.

    2011-01-01T23:59:59.000Z

    plus .35 m2 K/W (2 hr ft 2 F/Btu) for single-glazing, and52 m2 -K/W (2 hr-ft 2 - F/Btu) for double-glazing, assumingthan .85 m -K/W (5 hr-ftL-F/Btu) diminish rapidly and would

  10. 2.1E Sample Run Book

    E-Print Network [OSTI]

    Winkelmann, F.C.

    2010-01-01T23:59:59.000Z

    O. HOUSE- 1 CO_'VEC EXT RACTN BTU/HR O. O. O. O. O. O. O. O.TEMP P SUNSP- 1 EXTRACTN RATE BTU/HR O. O. O. O. O. O. O. O.O. gYS-1 TOT C1,O COIL I_IR BTU/HR O. O. O. O. O. O. O. O.

  11. SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY

    E-Print Network [OSTI]

    Figueroa, C.

    2012-01-01T23:59:59.000Z

    Cost Estimates for a Medium BTU Gasification Plant Using A4.6 D /Dt / D Sus 0.7 (=) Btu/H 2 hr °F h ~ _3_,.5. ,..-thennal conductivity (=) Btu-ft/ ft2 hroF l)_ "' p particle

  12. 2.1E BDL Summary

    E-Print Network [OSTI]

    Winkelmann, F.C.

    2010-01-01T23:59:59.000Z

    COND)(—;0.0 to 30.0 Btu-ft/hr-ft -°F) and • DENSITY(DENS)(—;HEAT(S-H)(—;0.0 to 5.0 Btu/lb-°F) or just RESISTANCE insteadRES)(—;0.0 to 40.0 hr-ft -°F/Btu) Note: for materials data

  13. Review Problem 1-6: Find the speci...c volume v of steam at p = 5000 psia and T = 1000 o

    E-Print Network [OSTI]

    the enthalpies and speci...c volumes from Table C-1 (pages 792­793) h1 = hf (T1) + (p1 ps) vf hf (T1) = 140:1 BTU/lbm T2;3 = Tsat (p2;3) = 56:05o F BTU/lbm h3 = hf (p2;3) = 104:7 BTU

  14. DOE-1 BDL SUMMARY. DOE-1 GROUP.

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    CON)(-;0.0 to 30.0 Btu-ft/hr-ft 2-°F) I DENSITY(DE)(-;0.0 toHEAT(SPH)(-;0.0 to 5.0 Btu/lb-°F) or Ill{ RESISTANCE (O. 0 to 40.0 hr-ft 2-°F /Btu) T 206 of 210 are used by the

  15. THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS

    E-Print Network [OSTI]

    Selkowitz, Stephen E.

    2011-01-01T23:59:59.000Z

    of .16 m2·K/W (.91 hr·ft2.oF/Btu) for the combined thermalvalue of 6.25 ~;m2.K (1 .1 Btu/hr·ft ·°F) might be reduced3.4- 4.5 w;m2·K (.6- .8 Btu/hr'ft ·°F). Some techniques for

  16. Gas Water Heater Energy Losses

    E-Print Network [OSTI]

    Biermayer, Peter

    2012-01-01T23:59:59.000Z

    hr) 2. Pilot Input Rate (Btu/hr) 3. Excess Air (%) 4. Off-atm) 14. Higher Heating Value (Btu/SCF) 1028.0 15. SpecificProtection Tubes R (hr*ft2*F/Btu)? Fitting Emissivity SCREEN

  17. Room air stratification in combined chilled ceiling and displacement ventilation systems.

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2012-01-01T23:59:59.000Z

    0 and 73 W/m 2 [0-23.1 Btu/(h ft 2 )](based on radiant panelbetween 0 and 28 W/m 2 [0-8.9 Btu/(h ft 2 )] (based on roomand 76 W/m 2 (97.8 and 239.7 Btu/(h ft 2 )), DV airflow rate

  18. Dampers for Natural Draft Heaters: Technical Report

    E-Print Network [OSTI]

    Lutz, James D.

    2009-01-01T23:59:59.000Z

    No.11: 4474?4497. 7.0 Glossary BTU DOE EF GAMA GPM PRTD REloss coefficient was 10.619 (BTU/hr-şF). After the dampercoefficient was 9.135 (BTU/hr-şF). The recovery efficiency

  19. TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS

    E-Print Network [OSTI]

    Selkowitz, S.

    2011-01-01T23:59:59.000Z

    AND OPTICAL PERFORMANCE [Btu/ft -hr- OF] XBL 785-8986A isbalance thermal losses is .9 Btu/ft 2 -hr- o F on a clearto an equivalent U-value of 1.9 Btu/ft 2-hr- o F due to

  20. THE MOBILE WINDOW THERMAL TEST FACILITY (MoWiTT)

    E-Print Network [OSTI]

    Klems, J. H.

    2011-01-01T23:59:59.000Z

    facilitieso For a 2 K/W (10 BTU- 1 ft 2 hr F) is reasonable;or 0005 W m- 2 K- l (0.01 BTU hr- 1 ft- 2 ). For a commonthis becomes 0.05 W/K (0.1 BTU hr- 1 F- 1 ). (approximately

  1. Cooling load calculations for radiant systems: are they the same traditional methods?

    E-Print Network [OSTI]

    Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    FEATURE A Radiant Air Radiant Air COOLING RATE (BTU/H· FT2 ) COOLING RATE (BTU/H· FT 2 ) B HOUR HOUR FIGURE 2total internal heat gain (4.8 Btu/h·ft 2 [15 W/m 2 ]) during

  2. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    of 0.62 W/(m 2 ·K) (0.11 Btu/h·ft 2 · o F). The windows areof 1.67 W/(m 2 ·K) (0.29 Btu/h·ft 2 · o F) and a SHGC ofof 0.57 W/(m 2 ·K) (0.10 Btu/h·ft 2 · o F ). The cooling

  3. 2.1E Supplement

    E-Print Network [OSTI]

    Winkelmann, F.C.

    2010-01-01T23:59:59.000Z

    F 1 2 .1E- 8 1 / 3 EXT-FUEL-BTU/HR s - PLANT-ASSIGNMENT . 28 1 / 3 ZIE- 8 1 / 3 PROCESS-CHW-BTU/HR PROCESS-CHW-POWERPROCESS-CHW-SCH PROCESS-HW-BTU/HR s - PLANT-ASSIGNMENT s -

  4. REDUCTION OF PHASE RESIDUALS TO TIME UNITS Larry R. D'Addario

    E-Print Network [OSTI]

    Groppi, Christopher

    , the predicted uplink delay was * *bTu, and at the time of downlink reception the predicted downlink delay transmission, and downlink rece* *ption, respectively, as: ug(t)= sin[!u(t + bTu)] (1) us(t)= sin[!u(t + bTu- Tu)] (2

  5. Energy, Appliances and Utilities Energy&Environment * EnergySTAR * Toyota PRIUS Myths, Facts, and Hype ...

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    below) Typical furnace: 1 therm/hr = 100000 BTU/hr = 29.3 kW(h) heating power Typical A/C unit: 3.5 ton therm = 100000 BTU = 29.307 kWhr 1 tonR = 12000 BTU/hr = 3.516 kW(c) cooling rate 1 SEER = (1 BTU)/Whr(e) = 1000 BTU/kWhr = 0.293 kWhr(c)/kWhr(e), i.e., (cooling)/(electrical) ratio What is SEER? How does

  6. Vapor Power Systems Third MAE 4263 Test

    E-Print Network [OSTI]

    .27 BTU/lbm at compressor inlet h2 = 252.84 BTU/lbm at compressor outlet h3 = 732.33 BTU/lbm at turbine inlet h4 = 373.95 BTU/lbm at turbine outlet What is the efficiency of the gas turbine? SOLUTION: th and h200 = h4 T400 = T2 and h400 = h2 |qHX | = (h200 - h2) = |h400 - h4| = 121.11 BTU/lbm th $ wnet q

  7. MAE 3223 Thermodynamics II. Solutions for Special Problems on Exergy, the Availability of work, Chapter 7

    E-Print Network [OSTI]

    ) - To (s1 - so)] + Vel2 1 2gc + g gc (z1 - zo) ¸ = ( [(168.07 - 48.09) - 539.67 (0.2940 - 0.09332)] BTU lbm + h 32.17 ft sec2 ¯ ¯ ¯ lbf-sec2 32.174 lbm-ft ¯ ¯ ¯ 5000 ft i BTU 778.17 lbf-ft ) = {[119.98 - 108.30] - [6.45]} BTU lbm = {[11.68] + [6.42]} BTU lbm = 18.10 BTU lbm = 14090 lbf-ft lbm Therefore 65

  8. Simulations of Design Modifications in Military Health Facilities

    E-Print Network [OSTI]

    Kiss, Christopher William

    2012-07-16T23:59:59.000Z

    the military population. Civilian medical 0 1 2 3 4 5 6 7 8 9 10 50+ 40-49 30-39 20-29 1-19 N u m b e r o f Faci litie s Age (years) 6 leadership, such as former Assistant Secretaries of Defense for Health Affairs, Dr. W... --------------------------------------------------------------------------------------------------------------------------------- ENGLISH MULTIPLIED BY GIVES METRIC MULTIPLIED BY GIVES ENGLISH 1 1.000000 1.000000 2 1.000000 1.000000 3 BTU 0.293000 WH 3.412969 BTU 4 BTU/HR 0.293000 WATT 3.412969 BTU/HR 5 BTU/LB-F 4183.830078 J/KG-K 0.000239 BTU/LB-F 6 BTU/HR-SQFT-F 5.678260 W/M2-K 0...

  9. LIFE vs. LWR: End of the Fuel Cycle

    SciTech Connect (OSTI)

    Farmer, J C; Blink, J A; Shaw, H F

    2008-10-02T23:59:59.000Z

    The worldwide energy consumption in 2003 was 421 quadrillion Btu (Quads), and included 162 quads for oil, 99 quads for natural gas, 100 quads for coal, 27 quads for nuclear energy, and 33 quads for renewable sources. The projected worldwide energy consumption for 2030 is 722 quads, corresponding to an increase of 71% over the consumption in 2003. The projected consumption for 2030 includes 239 quads for oil, 190 quads for natural gas, 196 quads for coal, 35 quads for nuclear energy, and 62 quads for renewable sources [International Energy Outlook, DOE/EIA-0484, Table D1 (2006) p. 133]. The current fleet of light water reactors (LRWs) provides about 20% of current U.S. electricity, and about 16% of current world electricity. The demand for electricity is expected to grow steeply in this century, as the developing world increases its standard of living. With the increasing price for oil and gasoline within the United States, as well as fear that our CO2 production may be driving intolerable global warming, there is growing pressure to move away from oil, natural gas, and coal towards nuclear energy. Although there is a clear need for nuclear energy, issues facing waste disposal have not been adequately dealt with, either domestically or internationally. Better technological approaches, with better public acceptance, are needed. Nuclear power has been criticized on both safety and waste disposal bases. The safety issues are based on the potential for plant damage and environmental effects due to either nuclear criticality excursions or loss of cooling. Redundant safety systems are used to reduce the probability and consequences of these risks for LWRs. LIFE engines are inherently subcritical, reducing the need for systems to control the fission reactivity. LIFE engines also have a fuel type that tolerates much higher temperatures than LWR fuel, and has two safety systems to remove decay heat in the event of loss of coolant or loss of coolant flow. These features of LIFE are expected to result in a more straightforward licensing process and are also expected to improve the public perception of risk from nuclear power generation, transportation of nuclear materials, and nuclear waste disposal. Waste disposal is an ongoing issue for LWRs. The conventional (once-through) LWR fuel cycle treats unburned fuel as waste, and results in the current fleet of LWRs producing about twice as much waste in their 60 years of operation as is legally permitted to be disposed of in Yucca Mountain. Advanced LWR fuel cycles would recycle the unused fuel, such that each GWe-yr of electricity generation would produce only a small waste volume compared to the conventional fuel cycle. However, the advanced LWR fuel cycle requires chemical reprocessing plants for the fuel, multiple handling of radioactive materials, and an extensive transportation network for the fuel and waste. In contrast, the LIFE engine requires only one fueling for the plant lifetime, has no chemical reprocessing, and has a single shipment of a small amount of waste per GWe-yr of electricity generation. Public perception of the nuclear option will be improved by the reduction, for LIFE engines, of the number of shipments of radioactive material per GWe-yr and the need to build multiple repositories. In addition, LIFE fuel requires neither enrichment nor reprocessing, eliminating the two most significant pathways to proliferation from commercial nuclear fuel to weapons programs.

  10. Advanced Energy Efficient Roof System

    SciTech Connect (OSTI)

    Jane Davidson

    2008-09-30T23:59:59.000Z

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of the study. The market potential is enhanced through construction activity levels in target marke

  11. Introduction to the University of Delaware Energy Institute

    E-Print Network [OSTI]

    Firestone, Jeremy

    the world will need 3 times its current level of energy production. On the supply side alone and solutions, from solar and wind power to electric vehicles, to biofuels, to state and national efforts! World Energy consumption is roughly 400 quadrillion BTUs per year. The US, with 5% of the world

  12. Supercomputers Crack Sixty-Trillionth Binary Digit of Pi-Squared

    Broader source: Energy.gov [DOE]

    The calculation would have taken a single computer processor unit (CPU) 1,500 years to calculate -- but it took just a few months using the "BlueGene/P" supercomputer, which is designed to run continuously at one quadrillion calculations per second.

  13. Harvesting Energy from Wastewater Treatment

    E-Print Network [OSTI]

    -7% of electricity used in USA is for water &wastewater #12;Global Energy & Health Issues 1 Billion people lack the demand for fossil fuels and energy ­ US production of oil peaked 30 years ago ­ Global production of oil electricity generation: 13 quad 5% used for W&WW: 0.6 quad 97 quad [quadrillion BTUs]= 28,400 terawatt hours

  14. Life Cycle Assessment and Sustainability of Chemical Products 

    E-Print Network [OSTI]

    Sahnoune, A.

    2014-01-01T23:59:59.000Z

    Energy Technology Conference New Orleans, LA. May 20-23, 2014 Chemicals Manufacturing & Industry Energy Industry Other Quadrillion BTUs 1990 2015 2040 0 50 100 150 200 250 Industry energy demand increases ExxonMobil 2014 Outlook for Energy ESL-IE-14...

  15. The Outlook for Energy: A View to 2040

    E-Print Network [OSTI]

    Ferrari, Silvia

    Southeast Asia Latin America Fertility Rate* Children per Woman * Source: World Bank & United Nations OECD Biomass Other Renewables Oil Nuclear Quadrillion BTUs OECD Coal Gas ExxonMobil 2013 Outlook for Energy #12 Nuclear Other Renewables Source: Smil, Energy Transitions (1800-1960) #12;Conclusions ExxonMobil 2013

  16. PERFORMANCE OF AN EXPERIMENTAL SOLAR-DRIVEN ABSORPTION AIR CONDITIONER--ANNUAL REPORT JULY 1975-SEPT. 1976

    E-Print Network [OSTI]

    Dao, K.

    2010-01-01T23:59:59.000Z

    U. THW . In T HW out TSS Q UW (Btu/hr) LiT m U IllWS (Ibs/OF) (OF) (OF) (OF) (OF) (Btu/hr ft2.F 20A 20C 19A lIS 17BU Run number m HW (1bs/hr) (Btu/hr- ft2_F) mS == ! z(nlWS+

  17. AN ANALYSIS OF ENERGY USE ON COMMUNITY COLLEGE CAMPUSES

    E-Print Network [OSTI]

    York, C.M.

    2010-01-01T23:59:59.000Z

    of Base Load,A A= 1.98 xl0 Ul Q) BTU/sq. ft. month bO Q) r-r-l u 4-l $-I Q) il ;:l z o Base Load,A BTU/sq.ft. month) b.Performance,B B Ul Q) 14.0 BTU/sq. ft. HDD bO Q) r-l r-l U

  18. ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, E.L.

    2011-01-01T23:59:59.000Z

    droplets containi natural gas combustion nuclei. The "] \\~as5. The premixed natural gas combustion particles produced areleased during combustion of natural gas. g C/Btu Comments

  19. PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I

    E-Print Network [OSTI]

    Case, C.W.

    2011-01-01T23:59:59.000Z

    welded together like sewer pipe. Biogas production from theintends to convert the biogas into electricity. The wasteproduce 7.6 million Btu of biogas annually. This estimate

  20. Annual Energy Outlook 2011: With Projections to 2035

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1 Table G1. Heat Rates Fuel Units Approximate Heat Content Coal 1 Production . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.933 Consumption . . . . ....

  1. ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Recovery Direct Combustion Pyrolysis (Oil) Note: Col. 3 =Oil) Source Separation *Million BTU/ton MSW **Direct Combustionto Elec (Oil) Source Separation(2) *D.C. Direct Combustion

  2. Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431

    E-Print Network [OSTI]

    Brown, Richard; Alliance to Save Energy; ICF Incorporated; ERG Incorporated; U.S. Environmental Protection Agency

    2008-01-01T23:59:59.000Z

    absorption chiller. High-temperature hot water near or above17,000 Btu of high-temperature hot water or low-pressure

  3. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    E-Print Network [OSTI]

    McKone, Thomas E.

    2011-01-01T23:59:59.000Z

    Cogen Cogen Natural Gas Landfill Gas Tulare Tulare Woodwasteas agricultural and wood waste, landfill gas, and mlmicipalscf digester gas, or Btu/ scf landfill gas. HVs are given in

  4. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,1876.378052,1886.589233,1896.617065,1906.307617,1915.627686,1924.664062,1933.551636 " Energy Intensity" " (million Btu per household)" " Delivered Energy Consumption",95.73735809,...

  5. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    36 Reference case Energy Information Administration Annual Energy Outlook 2012 6 Table A3. Energy prices by sector and source (2010 dollars per million Btu, unless otherwise...

  6. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,96.27132416,97.48834229,98.7328186,100.0090332,101.3084106,102.6172562,103.9295502 " Energy Consumption Intensity" " (thousand Btu per square foot)" " Delivered Energy...

  7. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,96.26745605,97.52584839,98.82666779,100.167244,101.5404816,102.9384232,104.3544464 " Energy Consumption Intensity" " (thousand Btu per square foot)" " Delivered Energy...

  8. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,1876.765991,1887.016235,1897.062622,1906.736938,1916.007446,1924.966064,1933.756714 " Energy Intensity" " (million Btu per household)" " Delivered Energy Consumption",95.73736572,...

  9. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Total Building Energy Consumption (Trillion BTU/yr) Area,

  10. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

  11. A Post-Occupancy Monitored Evaluation of the Dimmable Lighting, Automated Shading, and Underfloor Air Distribution System in The New York Times Building

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    15 4.1. LightingEvaluation of the Dimmable Lighting, Automated Shading, andcomparison EUI, kBtu/Gsf Lighting Heating Cooling Pumps/C

  12. Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431

    E-Print Network [OSTI]

    Brown, Richard; Alliance to Save Energy; ICF Incorporated; ERG Incorporated; U.S. Environmental Protection Agency

    2008-01-01T23:59:59.000Z

    Btu CAGR CEMS CEO CFO CIO CHP CO alternating current Annualin combined heat and power (CHP) systems, which use wasteheat to provide cooling. CHP systems can produce attractive

  13. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    heat-pump heating, both of which have 1.5 ton (18,000 Btu/hr) cooling capacities and are marketed for PV

  14. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    application (coal gasification, coal combustion followed byversions of advanced gasification processes show promise ofFixed-Bed Low-Btu Coal Gasification Systems for Retrofitting

  15. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Percentage Btu Region map map showing electricity regions The chart above compares coal consumption in March 2014 and March 2015 by region and shows that coal consumption for...

  16. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    74. Any coal application (coal gasification, coal combustionFixed-Bed Low-Btu Coal Gasification Systems for RetrofittingPower Plants Employing Coal Gasification," Bergman, P. D. ,

  17. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    Btu) District Heat Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  18. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    Major Fuel Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  19. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    Electricity Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  20. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    Btu) Natural Gas Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  1. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    (trillion Btu) Fuel Oil Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  2. --No Title--

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    International Energy Statistics - Units Close Window Energy Equivalent Conversions Million Btu (British thermal units) Giga (109) Joules TOE (Metric Tons of Oil Equivalent) TCE...

  3. Jan 26, 2005 MAE 4263 Vapor Power Systems

    E-Print Network [OSTI]

    = 2460o R and T2 = 1460o R, leading to Wout = 1000 lbm hr (627:54 353:02) BTU lbm = 274520 BTU hr KW-hr 3412:141BTU = 80:434 KW Since h for a dilute gas can be tabulated as a function of temperature, we 10 5 T2 2:93 3 10 9 T3 = 0:219 1460 + 3:42 2 10 5 14602 2:93 3 10 9 14603 BTU lbm resulting

  4. Problem 6-6: The ideal Rankine cycle uses saturated steam, so it can't be at 1000 o F, since the critical

    E-Print Network [OSTI]

    , and the thermodynamic cycle calculation for the steam is p1 = 1000 psia T1 = Tsat = 544:75 o F h1 = hg = 1192:4 BTU/lbm s1 = sg = 1:3903 BTU/lbm- o R s2 = s1 = 1:3903 BTU/lbm- o R p2 = 1 psia T2 = Tsat = 101:70 o F 2 = 1:3903 0:1327 1:8453 = 0:6815 = 68% h2 = 69:74 + 0:6815 1036:0 = 775:8 BTU/lbm w1!2 = 1192:4 775:8 = 416

  5. Update of Horizontal Borehole Study

    E-Print Network [OSTI]

    .2 0.3 0.4 1 2 3 4 No Grout Rb(hr·ft·°F)/Btu Rb(hr·ft·°F)/Btu #12;Borehole #1 ­ Average Depth 11 Dimensionless Temperature Time (hr) Summer 2010 Fall 2012 #12;0 0.5 1 1.5 2 6 8 10 12 k (Btu/hr-ft-F) Average Depth (ft) Summer 2010 Fall 2012 Ground Thermal Conductivity With Depth #12;Rb(hr·ft·°F)/Btu

  6. Problem 8-3: Brayton Cycle in Figure 8-13 (page 324) operating at p1,4 = 14.696 psia

    E-Print Network [OSTI]

    (no regenerator) using Standard Air Table I-1 (pages 809f) h1 = h(T1) = 124.27 BTU/lbm; pr1 = 1.2187 pr2 = 8 Ă? 1.2187 = 9.7496 ; T2s = 928 o R; h2s = 223.08 BTU/lbm h3 = h(T3) = 571.19 BTU/lbm; pr3 258 by extreme extrapolation pr4 = 258 Ă· 8 = 32.25 ; T4s = 1298 o R; h4s = 316.55 BTU/lbm w12s = h1 - h2s = -98

  7. Energy measurement utilizing on-line chromatograph

    SciTech Connect (OSTI)

    Kizer, P.E. [Applied Automation, Inc./Hartmann and Braun, Houston, TX (United States)

    1995-12-01T23:59:59.000Z

    Most gas contracts today have at least a BTU specification and many use MMBTU (million BTU) rather than gas volume for custody transfer measurement. Gas chromatography is today being chosen more and more because the calculations of the gas volumes in modem electronic flow meters requires not only BTU{sub 5} information, but specific gravity, Mol % CO{sub 2} and Mol % N{sub 2}. The new AGA-8 supercompressibility equations also require a complete hydrocarbon analysis. What then, is a BTU? BTU is the acronym for British Thermal Unit. One BTU is the quantity of heat required to raise the temperature of one pound of water from 58.5{degrees}F to 59.5{degrees}F (about 1055.056 joules (SI))3. The higher the BTU content, the more energy can be obtained from burning the gas. It just doesn`t take as many cubic feet of gas to heat the home hot water tank if the gas is 1090 BTU instead of 940 BTU per SCF. The BTU, then, is a prime indicator of natural gas quality. An MMBTU{sup 2} is calculated by: BTU/CF * MMCF = MMBTU What is it worth to keep track of the natural gas BTU? If we postulate 1000 BTU/CF as fairly average for natural gas, and {+-} 5% error between doing a lab determination of the heating value on a spot sample of the gas and an on- line (nearly continuous) monitor of the heating value, this results in a {+-} 50 BTU difference. On a station that has 50 MMCF per day at $2.50 per MCF or MMBTU, this is $125,000.00 worth of gas per day. Five percent of this is $6,250.00 per day. If a process chromatograph, $50,000 installed cost, is used to determine the energy content a pay out of less than 10 days is obtained on a 50 MMCF/day station. Most major interconnects have on- line BTU measurement of some sort today.

  8. Estimation of Optimal Brachytherapy Utilization Rate in the Treatment of Malignancies of the Uterine Corpus by a Review of Clinical Practice Guidelines and the Primary Evidence

    SciTech Connect (OSTI)

    Thompson, Stephen R. [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney, NSW (Australia); Department of Radiation Oncology, Prince of Wales Hospital, Sydney, NSW (Australia); University of New South Wales, Sydney, NSW (Australia)], E-mail: stephen.thompson@sesiahs.health.nsw.gov.au; Delaney, Geoff [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney, NSW (Australia); University of New South Wales, Sydney, NSW (Australia); Gabriel, Gabriel S.; Jacob, Susannah; Das, Prabir [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney, NSW (Australia); Barton, Michael [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney, NSW (Australia); University of New South Wales, Sydney, NSW (Australia)

    2008-11-01T23:59:59.000Z

    Purpose: Brachytherapy (BT) is an important treatment technique for uterine corpus malignancies. We modeled the optimal proportion of these cases that should be treated with BT-the optimal rate of brachytherapy utilization (BTU). We compared this optimal BTU rate with the actual BTU rate. Methods and Materials: Evidence-based guidelines and the primary evidence were used to construct a decision tree for BTU for malignancies of the uterine corpus. Searches of the literature to ascertain the proportion of patients who fulfilled the criteria for BT were conducted. The robustness of the model was tested by sensitivity analyses and peer review. A retrospective Patterns of Care Study of BT in New South Wales for 2003 was conducted, and the actual BTU for uterine corpus malignancies was determined. The actual BTU in other geographic areas was calculated from published reports. The differences between the optimal and actual rates of BTU were assessed. Results: The optimal uterine corpus BTU rate was estimated to be 40% (range, 36-49%). In New South Wales in 2003, the actual BTU rate was only 14% of the 545 patients with uterine corpus cancer. The actual BTU rate in 2001 was 11% in the Surveillance, Epidemiology, and End Results areas and 30% in Sweden. Conclusion: The results of this study have shown that BT for uterine corpus malignancies is underused in New South Wales and in the Surveillance, Epidemiology, and End Results areas. Our model of optimal BTU can be used as a quality assurance tool, providing an evidence-based benchmark against which can be measured actual patterns of practice. It can also be used to assist in determining the adequacy of BT resource allocation.

  9. Coke Gasification - A Solution to Excess Coke Capacity and High Energy Costs 

    E-Print Network [OSTI]

    Patel, S. S.

    1982-01-01T23:59:59.000Z

    effectively to produce medium-Btu (300 Btu/scf) gas which, in turn, can fuel the refinery furnaces to replace natural gas. Coke gasification should prove economical with natural gas price decontrol and the average price projected to rise to over $14.0 per...

  10. Building Name: ____________________________________________ Address: __________________________________________ Completed by: ___________________________________________ Date: ______________ File Number: ___________________

    E-Print Network [OSTI]

    s Rated Btu input Condition s Combustion air: is there at least one square inch free area per 2,000 Btu input? s Fuel or combustion odors Cooling Tower s Clean? no leaks or overflow? Slime or algae growth? s Waste oil and refrigerant properly stored and disposed of? #12;Building Name

  11. Auswin G. Thomasa and Leigh Tesfatsiona,b {agthomas, tesfatsi}@iastate.edu

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    distinct concepts: ISO up/down management of demand Automated demand dispatch Bottom-up retail customer Temperature (oF) Solar Heat Flow Rate (kBTU h) Internal Heat Flow Rate (kBTU h) Relative Humidity (%) 13 #12;Wholesale Prices Passed Thru to Households Retail prices charged to retail energy customers on day D given

  12. Waste Heat Recovery – Submerged Arc Furnaces (SAF) 

    E-Print Network [OSTI]

    O'Brien, T.

    2008-01-01T23:59:59.000Z

    designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btu’s required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified...

  13. Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations

    E-Print Network [OSTI]

    Konopacki, S.J.

    2010-01-01T23:59:59.000Z

    A C EUIs (cooling, ventilation, and gas heating). The annualCooling kWh/ft Ventilation kWh/ft Heating kBtu/ft CoolingMiscellaneous DOE-2 Ventilation kWh/ft Heating kBtu/ft EDA

  14. How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    Water Heaters With Input Ratings Above 75,000 Btu per Hour, Circulating and Instantaneous” [ANSI Z21.10.3a] American National StandardsWater Heaters With Input Ratings Above 75,000 Btu Per Hour, Circulating and Instantaneous” [ANSI Z21.10.3a] American National Standards

  15. Assembly and Testing of an On-Farm Manure to Energy Conversion BMP for Animal Waste Pollution Control 

    E-Print Network [OSTI]

    Engler, Cady; Capereda, Sergio; Mukhtar, Saqib

    2010-01-01T23:59:59.000Z

    of dairy manure on a dry basis was found to be 15.93 + 0.26 MJ/kg (6,863 + 112 Btu/lb), typical of most agricultural biomass. The heating value was around 14.09 MJ/kg (6,070 Btu/lb), on an “as received” basis (around 13% moisture). • The heating value...

  16. Coke Gasification - A Solution to Excess Coke Capacity and High Energy Costs

    E-Print Network [OSTI]

    Patel, S. S.

    1982-01-01T23:59:59.000Z

    effectively to produce medium-Btu (300 Btu/scf) gas which, in turn, can fuel the refinery furnaces to replace natural gas. Coke gasification should prove economical with natural gas price decontrol and the average price projected to rise to over $14.0 per...

  17. Where are your BTUs? Watt are you doing about it?

    E-Print Network [OSTI]

    Subramanian, Venkat

    (1015 BTUs) EIA AER 2007 #12;YOUR BTU Consumption Rate USA P C it E C tiUSA Per Capita Energy Consumption 6.2% Drop EIA AER 2007 #12;More People, More Energy 350 USA Population Growth 1949-2007 250 300 #12;OUR BTU Consumption Rate USA E C tiUSA Energy Consumption EIA AER 2007 #12;You vs Your

  18. Oxygen Enriched Combustion System Performance Study 

    E-Print Network [OSTI]

    Chen, S. L.; Kwan, Y.; Abele, A. R.; Silver, L. S.; Kobayashi, H.

    1987-01-01T23:59:59.000Z

    , and then to verify the performance of selected systems in research furnaces. Tests of several commercial burner designs have been conducted at scales of 1 x 10^6 Btu/hr and 10 x 10^6 Btu/hr. The burners represent both conventional air fired designs and oxygen...

  19. Reducing PM Concentrations in Simulated High Temperature Gas Streams

    E-Print Network [OSTI]

    Luehrs, Daniel R

    2014-08-07T23:59:59.000Z

    the reaction temperatures and capture the energy in the biomass. CGT has an approximant 16,300 kJ/kg (7,000 Btu/lb) of energy. The resulting synthetic gas (syngas) can have an energy content as high as 7,450 kJ/m^(3) (200 Btu/dscf) and can be fed directly...

  20. PERFORMANCE OF AN EXPERIMENTAL SOLAR-DRIVEN ABSORPTION AIR CONDITIONER--ANNUAL REPORT JULY 1975-SEPT. 1976

    E-Print Network [OSTI]

    Dao, K.

    2010-01-01T23:59:59.000Z

    rates were calibrated The heat inputs to the generator (qG)of chilled water, lbs/hr heat input from hot water, Btu/hrof Run 20e. Q cw P T heat input from chilled water, Btu/hr