Powered by Deep Web Technologies
Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Benewah County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Benewah County, Idaho ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number 5 Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE 169...

2

Bannock County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bannock County, Idaho ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number 6 Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE 169...

3

Bear Lake County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bear Lake County, Idaho ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number 6 Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE...

4

Beckham County, Oklahoma ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleBeckham...

5

Adams County, Mississippi ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAdamsC...

6

Adams County, Washington ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAdamsC...

7

Appomattox County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAppomat...

8

Amite County, Mississippi ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAmiteC...

9

Amador County, California ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAmador...

10

Allegany County, Maryland ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAllegan...

11

Alleghany County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAllegha...

12

Arkansas County, Arkansas ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleArkansa...

13

Antelope County, Nebraska ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAntelop...

14

Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAcadia...

15

Adams County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAdamsC...

16

Adams County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAdamsC...

17

Allen Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAllenP...

18

Angelina County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAngelin...

19

Baldwin County, Alabama ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleBaldwin...

20

Anderson County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAnderso...

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Atoka County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAtokaC...

22

Autauga County, Alabama ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAutauga...

23

Audubon County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAudubon...

24

Adair County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAdairC...

25

Barrow County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleBarrow...

26

ASHRAE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ASHRAE ASHRAE Technology for a Better Environment 1791 Tullie Circle, NE  Atlanta, GA 30329-2305 USA  Tel 404.636.8400  Fax 404.321.5478  http://www.ashrae.org Lynn G. Bellenger, P.E., FASHRAE Reply to: PATHFINDER ENGINEERS & ARCHITECTS LLP President 134 South Fitzhugh Street Rochester, NY 14608-2268  585-325-6004 ext. 105 Fax: 585-325-6005 lbellenger@pathfinder-ea.com November 1, 2010 Michael Li U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 1000 Independence Avenue, SW Room 8H033 Washington, DC 20585 Regarding "Smart Grid RFI: Addressing Policy and Logistical Challenges" Dear Mr. Li: As a leader in developing and maintaining premier consensus-based energy standards for

27

2005 ASHRAE. 291 The recent ASHRAE project, "Updating the ASHRAE/  

E-Print Network (OSTI)

©2005 ASHRAE. 291 ABSTRACT The recent ASHRAE project, "Updating the ASHRAE/ ACCA Residential rate and ground (slab and basement) losses. INTRODUCTION The research project, "Updating the ASHRAE principles as described by Pedersen et al. (1997, 1998) and ASHRAE (2001). RHB is documented by Barnaby et al

28

308 2005 ASHRAE. The recent ASHRAE project, "Updating the ASHRAE/  

E-Print Network (OSTI)

308 ©2005 ASHRAE. ABSTRACT The recent ASHRAE project, "Updating the ASHRAE/ ACCA Residential cooling load, RHB applies the general approach of the ASHRAE heat balance (HB) method, based on room 95 application, devel- oped by modification and extension of the ASHRAE Loads Toolkit. The paper

29

ASHRAE and residential ventilation  

E-Print Network (OSTI)

conditioning Engineers. 2001. ASHRAE, Indoor Air QualityABOUT/IAQ_papr01.htm ASHRAE. Standard 62.2-2003:Ventilation Requirements. ASHRAE Journal, pp. 51- 55, June

Sherman, Max H.

2003-01-01T23:59:59.000Z

30

ASHRAE Research PROGRAM OVERVIEW  

E-Print Network (OSTI)

ASHRAE Research PROGRAM OVERVIEW November 8, 2011 Michael R. Vaughn, P.E. Manager, Research and Technical Services MORTS@ashrae.net #12;What we will cover · Introduction to ASHRAE Research · ASHRAE's Strategic Plan for Research · Research and Objectives related to Heat Pumps · GSHP System at ASHRAE HQ

Oak Ridge National Laboratory

31

Project Brief: ASHRAE, Inc.  

Science Conference Proceedings (OSTI)

... RECIPIENT: ASHRAE, Inc., Atlanta, GA. Project duration: 3 Years; Total NIST Funding: $1,500,000. ... Jodi Dunlop, 678-539-1140 jdunlop@ashrae.org. ...

2010-10-05T23:59:59.000Z

32

ASHRAE Building EQ  

SciTech Connect

This ASHRAE Journal article provides an overview of the evolution of ASHRAE Standard 90.1 from its inception in 1975 to the current year. Key milestones in the life of the standard are highlighted and the article presents a closer look at recent versions of the standard.

Jarnagin, Ronald E.

2009-12-01T23:59:59.000Z

33

ASHRAE Installs New Officers, Directors DENVER ASHRAE has installed  

E-Print Network (OSTI)

ASHRAE Installs New Officers, Directors DENVER ­ ASHRAE has installed new officers and directors for 2013-14 at its Annual Meeting held here June 22-26. The ASHRAE Presidential Address is viewable on You is William P. "Bill" Bahnfleth, Ph.D., P.E., Fellow ASHRAE, ASME Fellow, a professor of Architectural

Maroncelli, Mark

34

ASHRAE Standard 152 Spreadsheet | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ASHRAE Standard 152 Spreadsheet ASHRAE Standard 152 Spreadsheet ASHRAE Standard 152 quantifies the delivery efficiency of duct systems, based on factors including location,...

35

2004 ASHRAE. 829 This paper presents an overview of the conduction trans-  

E-Print Network (OSTI)

©2004 ASHRAE. 829 ABSTRACT This paper presents an overview of the conduction trans- fer function attention is given to the methods included in the ASHRAE Loads Toolkit. The toolkit contains the source code for ASHRAE's new load calculation methods, the heat balance method (HBM) and the radiant time series method

36

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

intheASHRAEHandbookofFundamentals. (WhilewecouldReferences ASHRAE Handbook of Fundamentals, Ch 27,

Sherman, Max

2008-01-01T23:59:59.000Z

37

Comparison of ASHRAE Standard 90.1, 189.1 and IECC Codes for Large Office Buildings in Texas  

E-Print Network (OSTI)

Six energy codes were compared in terms of annual site and source energy consumption. This comparison includes ASHRAE Standard 90.1-1989, ASHRAE Standard 90.1-1999, ASHRAE Standard 90.1-2007, ASHRAE Standard 90.1-2010, IECC 2009 and ASHRAE 189.1-2009. The analysis was performed for three Texas counties: Harris (climate zone 2A), Tarrant (climate zone 3A) and Potter (climate zone 4B). Both annual site and source energy consumption were compared. ASHRAE Standard 90.1-1989 was considered as the base case. ASHRAE Standard 90.1-1989 was considered as the base-case. When considering site energy consumption, ASHRAE Standard 90.1-1999 provides an improvement of 16.7%-18.6%. ASHRAE Standard 90.1-2004 provides an improvement of 22.3%-32.6%, ASHRAE Standard 90.1-2007 provides an improvement of 28.1%-33.9%, IECC 2009 provides an improvement of 27.4%-35.3%, ASHRAE Standard 90.1-2010 provides an improvement of 42.1%-47.7%, and ASHRAE 189.1- 2009 provides an improvement of 46.9%-54.9% above the ASHRAE Standard 90.1-1989 base-case. When considering source energy consumption, ASHRAE Standard 90.1-1999 provides an improvement of 14.5%- 15.0%, ASHRAE Standard 90.1-2004 provides an improvement of 21.6%- 27.2%, ASHRAE Standard 90.1-2007 provides an improvement of 23.5%-28.4%, and IECC 2009 provides an improvement of 23.4%-30.5%. ASHRAE Standard 90.1-2010 provides an improvement of 41.8%-45.7% and ASHRAE 189.1-2009 provides an improvement of 44.5%-51.8% above the ASHRAE Standard 90.1-1989 base-case.

Mukhopadhyay, J.; Baltazar, J.C.; Kim, H.; Haberl, J.

2011-01-01T23:59:59.000Z

38

ASHRAE and residential ventilation  

SciTech Connect

In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

Sherman, Max H.

2003-10-01T23:59:59.000Z

39

346 2010 ASHRAE This paper is based on findings resulting from ASHRAE Research Project RP-1299.  

E-Print Network (OSTI)

346 ©2010 ASHRAE This paper is based on findings resulting from ASHRAE Research Project RP-1299 (Minimum Efficiency Reporting Value, as defined by ASHRAE Standard 52.2-2007) typically have a greaterD Atila Novoselac, PhD Student Member ASHRAE Member ASHRAE Member ASHRAE Brent Stephens is a graduate

Siegel, Jeffrey

40

ASHRAE's Living Laboratory  

SciTech Connect

ASHRAE recently remodeled its headquarters building in Atlanta with the intention of making the building a LEED Gold building. As part of that renovation the building was enhanced with additional sensors and monitoring equipment to allow it to serve as a Living Laboratory for use by members and the general public to study the detailed energy use and performance of buildings. This article provides an overview of the Living Laboratory and its capabilities.

Jarnagin, Ronald E.; Brambley, Michael R.

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION  

E-Print Network (OSTI)

May 1999 LBNL - 42975 ASHRAE'S RESIDENTIAL VENTILATION STANDARD: EXEGESIS OF PROPOSED STANDARD 62 Berkeley National Laboratory Berkeley, CA 94720 April 1999 In January 1999 ASHRAE's Standard Project, approved ASHRAE's first complete standard on residential ventilation for public review

42

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

AssessingIndoorAirQuality,ASHRAETrans. 97(2),pp896?IndoorAirQuality ASHRAETrans. pp93?101Vol. 111(I)Energy Characteristics, ASHRAE Transactions,Vol.103(

Sherman, Max

2008-01-01T23:59:59.000Z

43

LBNL-54331 1 ASHRAE'S FIRST RESIDENTIAL  

E-Print Network (OSTI)

LBNL-54331 1 ASHRAE'S FIRST RESIDENTIAL VENTILATION STANDARD1 M. H. Sherman2 , Ph.D. Fellow ASHRAE ABSTRACT ASHRAE has recently published its first residential ventilation standard, Standard 62 in the report. ASHRAE is continuing to develop and enhance these efforts by using a continuous maintenance

44

Anderson County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Anderson County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, South Carolina ASHRAE Standard ASHRAE 169-2006...

45

Androscoggin County, Maine ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Androscoggin County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Androscoggin County, Maine ASHRAE Standard ASHRAE 169-2006 Climate...

46

Allegan County, Michigan ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Allegan County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Allegan County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

47

Becker County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Becker County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Becker County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone...

48

Bennington County, Vermont ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bennington County, Vermont ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bennington County, Vermont ASHRAE Standard ASHRAE 169-2006 Climate...

49

Anchorage Borough, Alaska ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Anchorage Borough, Alaska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anchorage Borough, Alaska ASHRAE Standard ASHRAE 169-2006 Climate Zone...

50

Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Abbeville County, South Carolina ASHRAE Standard ASHRAE 169-2006...

51

Benton County, Tennessee ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Tennessee ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Tennessee ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

52

Baltimore County, Maryland ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Baltimore County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baltimore County, Maryland ASHRAE Standard ASHRAE 169-2006 Climate...

53

Barnwell County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Barnwell County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barnwell County, South Carolina ASHRAE Standard ASHRAE 169-2006...

54

Berkshire County, Massachusetts ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Berkshire County, Massachusetts ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkshire County, Massachusetts ASHRAE Standard ASHRAE 169-2006...

55

Aleutians East Borough, Alaska ASHRAE 169-2006 Climate Zone ...  

Open Energy Info (EERE)

Aleutians East Borough, Alaska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aleutians East Borough, Alaska ASHRAE Standard ASHRAE 169-2006...

56

Arapahoe County, Colorado ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Arapahoe County, Colorado ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Arapahoe County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate Zone...

57

Alexander County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alexander County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alexander County, North Carolina ASHRAE Standard ASHRAE 169-2006...

58

Albemarle County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Albemarle County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Albemarle County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate...

59

Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alfalfa County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone...

60

Berks County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Berks County, Pennsylvania ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berks County, Pennsylvania ASHRAE Standard ASHRAE 169-2006 Climate...

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Bayfield County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bayfield County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bayfield County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate...

62

Augusta County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Augusta County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Augusta County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

63

Alamance County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alamance County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alamance County, North Carolina ASHRAE Standard ASHRAE 169-2006...

64

Archuleta County, Colorado ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Archuleta County, Colorado ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Archuleta County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate...

65

Benton County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

66

Beauregard Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Beauregard Parish, Louisiana ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beauregard Parish, Louisiana ASHRAE Standard ASHRAE 169-2006 Climate...

67

Allendale County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Allendale County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Allendale County, South Carolina ASHRAE Standard ASHRAE 169-2006...

68

Barron County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Barron County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barron County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

69

Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baltimore City County, Maryland ASHRAE Standard ASHRAE 169-2006...

70

Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkeley County, South Carolina ASHRAE Standard ASHRAE 169-2006...

71

Bedford County, Tennessee ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bedford County, Tennessee ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bedford County, Tennessee ASHRAE Standard ASHRAE 169-2006 Climate Zone...

72

Bedford City County, Virginia ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Bedford City County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bedford City County, Virginia ASHRAE Standard ASHRAE 169-2006...

73

Audrain County, Missouri ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Audrain County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Audrain County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone...

74

Anderson County, Kentucky ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Anderson County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

75

Adams County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Pennsylvania ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Pennsylvania ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

76

Ballard County, Kentucky ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Ballard County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ballard County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

77

Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alleghany County, North Carolina ASHRAE Standard ASHRAE 169-2006...

78

Barbour County, West Virginia ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Barbour County, West Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barbour County, West Virginia ASHRAE Standard ASHRAE 169-2006...

79

Avoyelles Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Avoyelles Parish, Louisiana ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Avoyelles Parish, Louisiana ASHRAE Standard ASHRAE 169-2006 Climate...

80

Beltrami County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Beltrami County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beltrami County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate...

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Ashland County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Ashland County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashland County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

82

Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Belknap County, New Hampshire ASHRAE Standard ASHRAE 169-2006...

83

Accomack County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Accomack County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Accomack County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

84

Bertie County, North Carolina ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Bertie County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bertie County, North Carolina ASHRAE Standard ASHRAE 169-2006...

85

Arlington County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Arlington County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Arlington County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate...

86

Benton County, Washington ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Washington ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Washington ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

87

Asotin County, Washington ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Asotin County, Washington ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Asotin County, Washington ASHRAE Standard ASHRAE 169-2006 Climate Zone...

88

Bamberg County, South Carolina ASHRAE 169-2006 Climate Zone ...  

Open Energy Info (EERE)

Bamberg County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bamberg County, South Carolina ASHRAE Standard ASHRAE 169-2006...

89

Property:ASHRAE 169 Standard | Open Energy Information  

Open Energy Info (EERE)

Standard Standard Jump to: navigation, search This is a property of type Page. Pages using the property "ASHRAE 169 Standard" Showing 25 pages using this property. (previous 25) (next 25) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 + Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 + Accomack County, Virginia ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 + Ada County, Idaho ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 + Adair County, Iowa ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 + Adair County, Kentucky ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 + Adair County, Missouri ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 +

90

2005 ASHRAE. 109 Groundwater heat pump systems using standing column  

E-Print Network (OSTI)

©2005 ASHRAE. 109 ABSTRACT Groundwater heat pump systems using standing column wells Carl D. Orio Carl N. Johnson, PhD, PE Simon J. Rees, PhD Member ASHRAE Member ASHRAE Member ASHRAE A. Chiasson, PhD, PE Zheng Deng, PhD Jeffrey D. Spitler, PhD, PE Member ASHRAE Student Member ASHRAE Fellow

91

Ventilation Based on ASHRAE 62.2  

E-Print Network (OSTI)

Indoor Ventilation Based on ASHRAE 62.2 Arnold Schwarzenegger Governor California Energy Commission Ventilation (ASHRAE 62.2) Minimum Best Practices Guide - Exhaust-Only Ventilation Introduction: The California Energy Commission has created the following guide to provide assistance in complying with ANSI/ASHRAE

92

Historischer Kalender fr das Jahr 2006 01.01. 1881 125. Geburtstag von Adolf Sarter, Eisenbahnrecht  

E-Print Network (OSTI)

Chemie (LA Ba GymGe) Deutsch (LA Ba GymGe) 1,6 2 -/L 4 2,7 D/- 2,0 0 -/L Englisch (LA Ba GymGe) 1,5 2 -/L,4 -/L 2,3 0 -/L Chinesisch (Bachelor/Begleitfach) Deutsch als Zweit- und Fremdsprache (Bachelor

Bartels, Soeren

93

Comparison Between Predicted Duct Effectiveness from Proposed ASHRAE  

E-Print Network (OSTI)

LBNL-50008 Comparison Between Predicted Duct Effectiveness from Proposed ASHRAE Standard 152P of California. #12;1 LBNL-50008 Comparison Between Predicted Duct Effectiveness from Proposed ASHRAE Standard. McWilliams Iain S. Walker, Ph.D. ASHRAE Student Member ASHRAE Member ABSTRACT The proposed ASHRAE

94

72 ASHRAE Journal ashrae.org Fe b r u a r y 2 0 1 2 STANDARDS AND CODES  

E-Print Network (OSTI)

72 ASHRAE Journal ashrae.org Fe b r u a r y 2 0 1 2 STANDARDS AND CODES Led by ENERGY STAR Distribution5% = ~400 hrs/yr Percentage of Year 8,760 Hours This article was published in ASHRAE Journal, February 2012. Copyright 2012 ASHRAE. Reprinted here by permission from ASHRAE at http

Edwards, Paul N.

95

ASHRAE 169-2006 | Open Energy Information  

Open Energy Info (EERE)

for Building Design Standards created by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org) Retrieved from "http:en.openei.orgw...

96

ASHRAE Transactions: Research 107 Commercial buildings and institutions are generally  

E-Print Network (OSTI)

ASHRAE Transactions: Research 107 ABSTRACT Commercial buildings and institutions are generally. Chiasson Jeffrey D. Spitler, Ph.D., P.E. Student Member ASHRAE Member ASHRAE Simon J. Rees, Ph.D. Marvin D. Smith, P.E. Member ASHRAE Andrew D. Chiasson is a research assistant, Jeffrey D. Spitler is a professor

97

Property:ASHRAE 169 Climate Zone Subtype | Open Energy Information  

Open Energy Info (EERE)

ASHRAE 169 Climate Zone Subtype ASHRAE 169 Climate Zone Subtype Jump to: navigation, search This is a property of type Page. Pages using the property "ASHRAE 169 Climate Zone Subtype" Showing 25 pages using this property. (previous 25) (next 25) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Accomack County, Virginia ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Ada County, Idaho ASHRAE 169-2006 Climate Zone + Climate Zone Subtype B + Adair County, Iowa ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Adair County, Kentucky ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Adair County, Missouri ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A +

98

Property:ASHRAE 169 Start Date | Open Energy Information  

Open Energy Info (EERE)

This is a property of type Date. This is a property of type Date. Pages using the property "ASHRAE 169 Start Date" Showing 25 pages using this property. (previous 25) (next 25) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone + 1 January 2006 + Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone + 1 January 2006 + Accomack County, Virginia ASHRAE 169-2006 Climate Zone + 1 January 2006 + Ada County, Idaho ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adair County, Iowa ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adair County, Kentucky ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adair County, Missouri ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adams County, Colorado ASHRAE 169-2006 Climate Zone + 1 January 2006 +

99

ASHRAE Cleanroom Benchmarking Paper - REVISED  

NLE Websites -- All DOE Office Websites (Extended Search)

8E 8E Cleanroom Energy Efficiency: Metrics and Benchmarking Paul Mathew, William Tschudi, Dale Sartor Lawrence Berkeley National Laboratory James Beasley International SEMATECH Manufacturing Initiative October 2010 Published in ASHRAE Journal, v. 53, issue 10 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

100

Climate, comfort, & natural ventilation: a new adaptive comfort standard for ASHRAE standard 55  

E-Print Network (OSTI)

Guidelines for Comfort. ASHRAE Journal, vol 42, no. 8,Comfort in Office Buildings, ASHRAE Transactions, Vol. 94,System in Office Buildings. ASHRAE Transactions, Vol 104 (

Brager, G. S.; de Dear, R.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55  

E-Print Network (OSTI)

and calculation according to ASHRAE Standard 55 U.S. Greenand calculation according to ASHRAE Standard 55and calculation according to ASHRAE Standard 55 Stefano

Schiavon, Stefano; Hoyt, Tyler; Piccioli, Alberto

2013-01-01T23:59:59.000Z

102

Adams County, Wisconsin ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

103

Draft or breeze? preferences for air movement in office buildings and schools from the ASHRAE database  

E-Print Network (OSTI)

Control, and Occupant Comfort. ASHRAE Transactions 110 (2):and schools from the ASHRAE database Tyler Hoyt * , Huihave been extracted from the ASHRAE database of indoor

Hoyt, Tyler; Zhang, Hui Ph.D; Arens, Edward

2009-01-01T23:59:59.000Z

104

Climate Change, Energy Efficiency, and IEQ: Challenges and Opportunities for ASHRAE  

E-Print Network (OSTI)

HVAC on student performance. ASHRAE Journal 2006. 48: p. 22-and Opportunities for ASHRAE William Fisk Environmentaland Opportunities for ASHRAE William Fisk Sr. Scientist,

Fisk, William J.

2009-01-01T23:59:59.000Z

105

A better way to predict comfort: the new ASHRAE standard 55-2004  

E-Print Network (OSTI)

and draft discomfort. ASHRAE Project 843-TRP, Tech- nicalcom- fort and preference. ASHRAE Transactions 104(1a):145tribution (UFAD) Design Guide. Atlanta: ASHRAE. August 2004

Olesen, B. W.; Brager, G. S.

2004-01-01T23:59:59.000Z

106

Baraga County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baraga County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baraga County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

107

Berrien County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Berrien County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berrien County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

108

Barbour County, Alabama ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Barbour County, Alabama ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barbour County, Alabama ASHRAE Standard ASHRAE 169-2006 Climate Zone...

109

Banner County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Banner County, Nebraska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Banner County, Nebraska ASHRAE Standard ASHRAE 169-2006 Climate Zone...

110

Aleutians West Census Area, Alaska ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Aleutians West Census Area, Alaska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aleutians West Census Area, Alaska ASHRAE Standard ASHRAE...

111

Amelia County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Amelia County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Amelia County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

112

Andrew County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Andrew County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Andrew County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone...

113

Aroostook County, Maine ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Aroostook County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aroostook County, Maine ASHRAE Standard ASHRAE 169-2006 Climate Zone...

114

Baldwin County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baldwin County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baldwin County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

115

Alpena County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alpena County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alpena County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

116

Alcona County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alcona County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alcona County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

117

Armstrong County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Armstrong County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Armstrong County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone...

118

Atchison County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Atchison County, Kansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Atchison County, Kansas ASHRAE Standard ASHRAE 169-2006 Climate Zone...

119

Addison County, Vermont ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Addison County, Vermont ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Addison County, Vermont ASHRAE Standard ASHRAE 169-2006 Climate Zone...

120

Antrim County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Antrim County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Antrim County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Anoka County, Minnesota ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Anoka County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anoka County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone...

122

Alachua County, Florida ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alachua County, Florida ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alachua County, Florida ASHRAE Standard ASHRAE 169-2006 Climate Zone...

123

Barton County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Barton County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barton County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone...

124

Beaver County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Beaver County, Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beaver County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone...

125

ASHRAE Climate Zones | Open Energy Information  

Open Energy Info (EERE)

ASHRAE Climate Zones Jump to: navigation, search Subtype A Subtype B Subtype C Climate Zone Number 1 Zone 1A Zone 1B NA Climate Zone Number 2 Zone 2A Zone 2B NA Climate Zone...

126

ASHRAE's New Performance Measurement Protocols for Commercial Buildings  

E-Print Network (OSTI)

ASHRAE, CIBSE and USGBC are developing a standardized, consistent set of protocols to facilitate the comparison of the measured performance of buildings, especially those claimed to be green, sustainable, and/or high performance. Such protocols are needed because claims of high performance cannot be credible without such standardized protocols being applied consistently in the U.S. as well as internationally. The protocols will identify what is to be measured, how it is to be measured (instrumentation and spatial resolution), and how often it is to be measured. They will address both the use and reporting of the measured data, as well as appropriate benchmarks for each of the following characteristics: Energy Use (site, and source), Indoor Environmental Quality (IEQ)-Thermal Comfort, IEQ-Indoor Air Quality, IEQ-Lighting/ Daylighting Quality, IEQ-Acoustics and Water Use. The primary users of the protocols document will be building owners and facility managers, rating and labeling system developers, government officials, as well as architects and design engineers. To date, a scoping document has been developed, an extensive literature review has been performed (available on ASHRAEs web site), and a committee formed to write the protocols, which are intended for publication in January 2009.

Haberl, J.; Davies, H.; Owens, B.; Hunn, B.

2008-10-01T23:59:59.000Z

127

Property:ASHRAE 169 Climate Zone Number | Open Energy Information  

Open Energy Info (EERE)

Number Number Jump to: navigation, search This is a property of type Page. Pages using the property "ASHRAE 169 Climate Zone Number" Showing 25 pages using this property. (previous 25) (next 25) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 + Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone + Climate Zone Number 2 + Accomack County, Virginia ASHRAE 169-2006 Climate Zone + Climate Zone Number 4 + Ada County, Idaho ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Iowa ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Kentucky ASHRAE 169-2006 Climate Zone + Climate Zone Number 4 + Adair County, Missouri ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 +

128

18 ASHRAEJournal ashrae.org S e p t e m b e r 2 0 1 0 By Brian A. Fricke, Ph.D., Member ASHRAE; and Bryan R. Becker, Ph.D., P.E., Fellow ASHRAE  

E-Print Network (OSTI)

18 ASHRAEJournal ashrae.org S e p t e m b e r 2 0 1 0 By Brian A. Fricke, Ph.D., Member ASHRAE; and Bryan R. Becker, Ph.D., P.E., Fellow ASHRAE T he continual operation of supermarket refrigeration in the 2011 ASHRAE Transactions. This article was published in ASHRAE Journal, September 2010. Copyright 2010

Oak Ridge National Laboratory

129

2004 ASHRAE. 3 Standing column wells can be used as highly efficient  

E-Print Network (OSTI)

©2004 ASHRAE. 3 ABSTRACT Standing column wells can be used as highly efficient ground heat Performance Simon J. Rees, Ph.D. Jeffrey D. Spitler, Ph.D., P.E. Zheng Deng Member ASHRAE Member ASHRAE Student Member ASHRAE Carl D. Orio Carl N. Johnson, Ph.D. Member ASHRAE Member ASHRAE Simon J. Rees

130

The following article was published in ASHRAE Journal -  

E-Print Network (OSTI)

This paper may not be copied and/or distributed electronically or in paper form without permission of ASHRAE

June American Society; Fred Bauman; Tom Webster

2002-01-01T23:59:59.000Z

131

LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation  

E-Print Network (OSTI)

LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation Max Sherman Energy Performance of Buildings Group IED/EETD Lawrence Berkeley Laboratory1 MHSherman@lbl.gov ASHRAE, the American of heating, ventilating, air-conditioning and refrigeration (HVAC&R). ASHRAE has recently released a new

132

10 ASHRAE Journal November 2004 Re: High-Performance Buildings  

E-Print Network (OSTI)

10 ASHRAE Journal November 2004 Re: High-Performance Buildings In their recent article, "High energy-per- formance for a green academic building." ASHRAE Transac- tions, 108 promoting their own buildings. But the public requires and ASHRAE should demand more. John Scofield, Ph

Scofield, John H.

133

Energy Implications of Meeting ASHRAE 62.2  

E-Print Network (OSTI)

Energy Implications of Meeting ASHRAE 62.2 Iain S. Walker and Max H. Sherman Environmental Energy Laboratory is an equal opportunity employer. #12;1 Energy Implications of Meeting ASHRAE Standard 62.2 ABSTRACT The first and only nation-wide standard for residential ventilation in the United States is ASHRAE

134

ASHRAE 2000 Annual Meeting, June 24-28, 2000, Minneapolis, MN, and published in ASHRAE Transactions, 106(2) 2000.  

E-Print Network (OSTI)

LBNL-44422 Mo-420 ASHRAE 2000 Annual Meeting, June 24-28, 2000, Minneapolis, MN, and published in ASHRAE Transactions, 106(2) 2000. This work was supported by the Assistant Secretary for Energy-factors of predominantly planar, vertical windows has been made by both ASHRAE and NFRC, and as increasing consensus has

135

A HISTORY OF ASHRAE STANDARDS 152P.  

Science Conference Proceedings (OSTI)

The American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) has been developing a standard test method for evaluating the efficiency of ducts and other types of thermal distribution systems in single-family residential buildings. This report presents an overview of the structure, function, and historical development of this test method.

ANDREWS,J.W.

2003-10-31T23:59:59.000Z

136

The following paper was published in ASHRAE Transactions Vol. #107, Part 2, Page nos. 527-537. 2001 American  

E-Print Network (OSTI)

The following paper was published in ASHRAE Transactions Vol. #107, Part 2, Page nos. 527 is by permission of ASHRAE, and is presented for educational purposes only. ASHRAE does not endorse or recommend form without permission of ASHRAE. Contact ASHRAE at www.ashrae.org. #12;LBNL-47073 TA-444 ASHRAE

137

Status of Revisions to ASHRAE Standard 62  

E-Print Network (OSTI)

The American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE) Standard 62- 1989 "Ventilation for Acceptable Indoor air Quality", adopted in 1989, is widely used by HVAC engineers to determine ventilation rates for various occupancies. This standard has also been cited in court to help demonstrate compliance with state-of the- art indoor environmental design. In August 1996, ASHRAE released for public review Standard 62-1989R, the highly controversial proposed revisions to the Standard 62- 1989. Over 8,000 comments were received on the proposed revision. Due to the significant number of concerns expressed by ASHRAE members as well as others, ASHRAE withdrew the proposed new standard and placed the current standard in "continuous maintenance." As part of the continuous maintenance process ASHRAE is transforming the current Standard 62- 1989 from a design standard to code ready document. Furthermore, two code documents will be produced4ne for low-rise residential buildings and another for other types of occupancy. Finally, two new documents, a user's manual and an IAQ guideline, will be written concurrent with the code documents. The guideline document is intended to provide state-of-the-art guidance to designers while good IAQ practices not appropriate for codification will be incorporated into the guideline. It is likely that many of the provision in Standard 62-1989R will survive in some manner in one or more of the new documents to be produced. This paper will detail some of the more significant changes that were proposed in Standard 62-1989R and review the current state of standard development.

Gallo, F. M.

1998-01-01T23:59:59.000Z

138

7 September 2004 John Learned at Pylos ANITA and ASHRAANITA and ASHRA  

E-Print Network (OSTI)

7 September 2004 John Learned at Pylos ANITA and ASHRAANITA and ASHRA New Players inNew Players ASHRA: IntroductionASHRA: Introduction ((AAllll--skysky SSurveyurvey HHighigh--RResolutionesolution AAir hemisphere 48M-pixels #12;7 September 2004 John Learned at Pylos Virgo cluster ASHRA: 1ASHRA: 1 arc minutearc

Learned, John

139

26 ASHRAE Transactions: Research Cooling-dominated commercial and institutional build-  

E-Print Network (OSTI)

26 ASHRAE Transactions: Research ABSTRACT Cooling-dominated commercial and institutional build Simulation Approach Mahadevan Ramamoorthy Hui Jin Student Member ASHRAE Student Member ASHRAE Andrew D. Chiasson Jeffrey D. Spitler, Ph.D., P.E. Associate Member ASHRAE Member ASHRAE Mahadevan Ramamoorthy

140

30 ASHRAEJournal ashrae.org May2007 High-Performance Schools  

E-Print Network (OSTI)

30 ASHRAEJournal ashrae.org May2007 High-Performance Schools John Fischer is director of research By John Fischer, Member ASHRAE; Kirk Mescher, P.E., Member ASHRAE; Ben Elkin, P.E., Member ASHRAE; Stephen operatedtocomplywithASHRAE'sventilation,energyandthermal comfortstandards1,2,3whileremainingenergyefficientandcostef

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ASHRAE Transactions: Research 3 A steady-state simulation model for a water-to-water  

E-Print Network (OSTI)

ASHRAE Transactions: Research 3 ABSTRACT A steady-state simulation model for a water Jeffrey D. Spitler, Ph.D., P.E. Student Member ASHRAE Member ASHRAE Hui Jin is a graduate student-Conditioning Engineers, Inc. (www.ashrae.org). Published in ASHRAE Transactions 2002, Vol 108, P

142

Infiltration in ASHRAE's Residential Ventilation Standards  

Science Conference Proceedings (OSTI)

The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural means. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago. The vast majority of homes in the United States and indeed the world are ventilated through natural means such as infiltration caused by air leakage. Newer homes in the western world are tight and require mechanical ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate norunder-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much mechanical ventilation is considered necessary to provide acceptable indoor air quality, but that standard is weak on how infiltration can contribute towards meeting the total requirement. In the past ASHRAE Standard 136 was used to do this, but new theoretical approaches and expanded weather data have made that standard out of date. This article will describe how to properly treat infiltration as an equivalent ventilation approach and then use new data and these new approaches to demonstrate how these calculations might be done both in general and to update Standard 136.

Sherman, Max

2008-10-01T23:59:59.000Z

143

Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55  

E-Print Network (OSTI)

G.S. Brager, R.J. de Dear, ASHRAE Journal 42 (10) (2000) 21M. Fountain, T. Doherty, ASHRAE Transactions 94 (2) (M.E. Fountain, C. Huizenga, ASHRAE Journal 38 (9) (1996) 39

de Dear, Richard; Brager, Gail

2002-01-01T23:59:59.000Z

144

Bay County, Florida ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bay County, Florida ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bay County, Florida ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

145

Barton County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Barton County, Kansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barton County, Kansas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

146

Bergen County, New Jersey ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bergen County, New Jersey ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bergen County, New Jersey ASHRAE Standard ASHRAE 169-2006 Climate Zone...

147

Benton County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Arkansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Arkansas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

148

Allen County, Indiana ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Indiana ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Allen County, Indiana ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

149

Benton County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

150

Adams County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Adams County, Colorado ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

151

Baylor County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baylor County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baylor County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

152

Adams County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Nebraska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Nebraska ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

153

Appanoose County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Appanoose County, Iowa ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Appanoose County, Iowa ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

154

Aransas County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Aransas County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aransas County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

155

Benson County, North Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Benson County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benson County, North Dakota ASHRAE Standard ASHRAE 169-2006 Climate...

156

Banks County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Banks County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Banks County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

157

Athens County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Athens County, Ohio ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Athens County, Ohio ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

158

Aiken County, South Carolina ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Aiken County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aiken County, South Carolina ASHRAE Standard ASHRAE 169-2006 Climate...

159

Bacon County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bacon County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bacon County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

160

Adair County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Iowa ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adair County, Iowa ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number 5...

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Austin County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Austin County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Austin County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

162

Atascosa County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Atascosa County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Atascosa County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

163

Adair County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adair County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

164

Atlantic County, New Jersey ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Atlantic County, New Jersey ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Atlantic County, New Jersey ASHRAE Standard ASHRAE 169-2006 Climate...

165

Beaver County, Utah ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Beaver County, Utah ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beaver County, Utah ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

166

Bastrop County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bastrop County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bastrop County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

167

Alger County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alger County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alger County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

168

Baker County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baker County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baker County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

169

Bath County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bath County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bath County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

170

Adams County, Illinois ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Illinois ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Illinois ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

171

Allen County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Allen County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

172

Bell County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bell County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bell County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

173

Baker County, Florida ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baker County, Florida ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baker County, Florida ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

174

Benton County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Iowa ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Iowa ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number...

175

Ashe County, North Carolina ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Ashe County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashe County, North Carolina ASHRAE Standard ASHRAE 169-2006 Climate...

176

Albany County, New York ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Albany County, New York ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Albany County, New York ASHRAE Standard ASHRAE 169-2006 Climate Zone...

177

Barry County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Barry County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barry County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

178

Ada County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Idaho ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ada County, Idaho ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number 5...

179

ASHRAE Standard 90.1-2004 Quantitative Analysis Worksheet | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

used in support of the U.S. Department of Energy's determination regarding whether ASHRAE Standard 90.1-2004 will improve energy efficiency in commercial buildings. This...

180

ASHRAE Standard 90.1-2004 -- Lighting and Power Requirements...  

NLE Websites -- All DOE Office Websites (Extended Search)

This course provides an overview of the lighting and power requirements of ASHRAE Standard 90.1-2004. Estimated Length: 50 minutes Presenters: Eric Richman, Pacific...

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ASHRAE Standard 90.1-2007 -- Building Envelope Requirements ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Requirements This course provides an overview of the building envelope requirements of ASHRAE Standard 90.1-2007. Estimated Length: 1 hour, 4 minutes Presenters: John Hogan, City...

182

ASHRAE draft regarding Smart Grid RFI: Addressing Policy and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy and Logistical Challenges The American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc. (ASHRAE), founded in 1894, is an international...

183

Alameda County, California ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Edit History Facebook icon Twitter icon Alameda County, California ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alameda County,...

184

Beaufort County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

History Facebook icon Twitter icon Beaufort County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beaufort County, North...

185

Aitkin County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Aitkin County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aitkin County, Minnesota...

186

Adams County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Adams County, Ohio ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Ohio ASHRAE...

187

Passive-Solar-Heating Analysis: a new ASHRAE manual  

SciTech Connect

The forthcoming ASHRAE book, Passive Solar Heating Analysis, is described. ASHRAE approval procedures are discussed. An overview of the contents is given. The development of the solar load ratio correlations is described, and the applicability of the analysis method is discussed.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

188

Residential HVAC Indoor Air Quality(ASHRAE 62.2)  

E-Print Network (OSTI)

Residential HVAC && Indoor Air Quality(ASHRAE 62.2) Tav Commins #12;Contact Information · Energy construction, Additions /Alterations · Nonresidential and Residential #12;Residential HVAC && Indoor Air Quality(ASHRAE 62.2) ·HVAC EfficiencyHVAC Efficiency ·Quality Installation (HERS Measures) S li b HERS R t

189

96 ASHRAE Transactions: Research Current duct design methods for variable air volume  

E-Print Network (OSTI)

96 ASHRAE Transactions: Research ABSTRACT Current duct design methods for variable air volume (VAV in the 1997 ASHRAE Handbook--Fundamentals (ASHRAE 1997): equal friction, static regain, and the T Systems Taecheol Kim Jeffrey D. Spitler, Ph.D., P.E. Ronald D. Delahoussaye, Ph.D. Member ASHRAE Taecheol

190

ANSI/ASHRAE/IES Standard 90.1-2010 Final Determination Quantitative Analysis  

SciTech Connect

The U.S. Department of Energy (DOE) conducted a final quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2010 (ASHRAE Standard 90.1-2010, Standard 90.1-2010, or 2010 edition) would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2007(ASHRAE Standard 90.1-2007, Standard 90.1-2007, or 2007 edition). The final analysis considered each of the 109 addenda to ASHRAE Standard 90.1-2007 that were included in ASHRAE Standard 90.1-2010. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were reviewed by DOE, and their combined impact on a suite of 16 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE's final determination. However, out of the 109 addenda, 34 were preliminarily determined to have a measureable and quantifiable impact. A suite of 240 computer energy simulations for building prototypes complying with ASHRAE 90.1-2007 was developed. These prototypes were then modified in accordance with these 34 addenda to create a second suite of corresponding building simulations reflecting the same buildings compliant with Standard 90.1-2010. The building simulations were conducted using the DOE EnergyPlus building simulation software. The resulting energy use from the complete suite of 480 simulation runs was then converted to energy use intensity (EUI, or energy use per unit floor area) metrics (Site EUI, Primary EUI, and energy cost intensity [ECI]) results for each simulation. For each edition of the standard, these EUIs were then aggregated to a national basis for each prototype using weighting factors based on construction floor area developed for each of the 15 U.S. climate zones using commercial construction data. When compared, the resulting weighted EUIs indicated that each of the 16 building prototypes used less energy under Standard 90.1-2010 than under Standard 90.1-2007 on a national basis when considering site energy, primary energy, or energy cost. The EUIs were also aggregated across building types to a national commercial building basis using the same weighting data. On a national basis, the final quantitative analysis estimated a floor-space-weighted national average reduction in new building energy consumption of 18.2 percent for source energy and 18.5 percent when considering site energy. An 18.2 percent savings in energy cost, based on national average commercial energy costs for electricity and natural gas, was also estimated.

Halverson, Mark A.; Rosenberg, Michael I.; Liu, Bing

2011-10-31T23:59:59.000Z

191

ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2  

E-Print Network (OSTI)

In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation for public review. The standard is an attempt by the Society to address concerns over indoor air quality in dwellings and to set minimum standards that would allow for energy efficiency measures to be evaluated. The standard has requirements for whole-house ventilation, local exhaust ventilation, and source control. In addition to code-intended requirements, the standard also contains guidance information for the designer and/or user of the standard. This report summarizes the draft standard and attempts to address questions and concerns that those potentially affected by the standard might have. This report may also be of use to those considering public review comments on the draft standard.

Sherman, M.

2000-01-01T23:59:59.000Z

192

Presented at the ASHRAE 2003 Annual Meeting, June 28 July 2, 2003, in Kansas City, MO, and published in ASHRAE Transactions 109, part 2: 733-739  

E-Print Network (OSTI)

LBNL-50219 Presented at the ASHRAE 2003 Annual Meeting, June 28 ­ July 2, 2003, in Kansas City, MO, and published in ASHRAE Transactions 109, part 2: 733-739 The research reported here was funded, in part

193

Property:ASHRAE 169 End Date | Open Energy Information  

Open Energy Info (EERE)

property of type Date. Retrieved from "http:en.openei.orgwindex.php?titleProperty:ASHRAE169EndDate&oldid21585" What links here Related changes Special pages Printable...

194

Property:ASHRAE 169 Climate Zone | Open Energy Information  

Open Energy Info (EERE)

Property Edit with form History Facebook icon Twitter icon Property:ASHRAE 169 Climate Zone Jump to: navigation, search This is a property of type Page. Retrieved from "http:...

195

National Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007  

NLE Websites -- All DOE Office Websites (Extended Search)

2972 2972 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 National Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007 BA Thornton SA Loper V Mendon MA Halverson EE Richman MI Rosenberg M Myer DB Elliott November 2013 PNNL-22972 National Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007 BA Thornton SA Loper V Mendon MA Halverson EE Richman MI Rosenberg M Myer DB Elliott November 2013 Prepared for The U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 iii Executive Summary Pacific Northwest National Laboratory (PNNL) prepared this analysis for the U.S. Department of

196

ASHRAE/NIST Refrigerants Conference International concerns about the impact of refrigerants on climate change drive the  

E-Print Network (OSTI)

ASHRAE/NIST Refrigerants Conference International concerns about the impact of refrigerants conference between ASHRAE and NIST. Supporting Organizations: NOTE: Registration closes Oct. 18 and includes conference proceedings, daily lunch and dinner Monday evening. ASHRAE Members: $425 Non

Fernández-Juricic, Esteban

197

Achieving the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard  

NLE Websites -- All DOE Office Websites (Extended Search)

the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard 90.1-2010 This report documents the progress indicator (PI) process and analysis that Pacific Northwest National Laboratory (PNNL) developed to evaluate the potential energy savings from the application of ASHRAE Standard 90.1-2010 to building design and construction compared to the application of ASHRAE Standard 90.1-2004. The report describes PNNL's EnergyPlus simulation framework, and the building prototype simulation models. The combined upgrades from ASHRAE Standard 90.1 -2004 to ASHRAE Standard 90.1-2010 are described, and consist of a total of 153 approved addenda (44 addenda to ASHRAE Standard 90.1-2007 and 109 addenda to ASHRAE Standard 90.1-2010). PNNL reviewed and considered all 153 addenda for quantitative analysis in

198

ANSI/ASHRAE/IESNA Standard 90.1-2007 Final Qualitative Determination...  

NLE Websites -- All DOE Office Websites (Extended Search)

Qualitative Determination A final qualitative analysis of all addenda to ASHRAE Standard 90.1-2004 that were included in ASHRAE Standard 90.1-2007 was conducted. All 44 addenda...

199

ANSI/ASHRAE/IES Standard 90.1-2010 Final Determination Quantitative  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 Final Determination Quantitative 2010 Final Determination Quantitative Analysis The U.S. Department of Energy (DOE) conducted a final quantitative analysis to assess whether buildings constructed according to the requirements of ASHRAE Standard 90.1-2010 would result in energy savings compared with buildings constructed to ASHRAE Standard 90.1- 2007. The final analysis considered each of the 109 addenda to ASHRAE Standard 90.1-2007 that were included in ASHRAE Standard 90.1- 2010. All 109 addenda processed by ASHRAE in the creation of ASHRAE Standard 90.1-2010 from ASHRAE Standard 90.1-2007 were reviewed by DOE, and their combined impact on a suite of 16 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for

200

Climate, comfort, & natural ventilation: a new adaptive comfort standard for ASHRAE standard 55  

E-Print Network (OSTI)

ASHRAE began funding a series of field studies of thermal comfort in office buildings in four different climate zones.

Brager, G. S.; de Dear, R.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55  

E-Print Network (OSTI)

ASHRAE began funding a series of field studies of thermal comfort in office buildings spread across four different climate zones.

de Dear, Richard; Brager, Gail

2002-01-01T23:59:59.000Z

202

514 ASHRAE Transactions: Symposia Design cooling load calculation methods are, by the  

E-Print Network (OSTI)

514 ASHRAE Transactions: Symposia ABSTRACT Design cooling load calculation methods are test. In the tests proposed here, the ASHRAE heat balance method is used as a reference model. Details of confidence in load calculation methods and the computer implementations that they use. ASHRAE has a long

203

2009 ASHRAE 199 The issue of filter bypass has long been a topic of much  

E-Print Network (OSTI)

©2009 ASHRAE 199 ABSTRACT The issue of filter bypass has long been a topic of much interest on filtration efficiency. In this research, an ASHRAE 52.2 compliant test loop was used to study bypass, a test apparatus designed to ASHRAE Standard 52.2-2007 was used. This standard provides a methodology

Siegel, Jeffrey

204

ASHRAE Transactions 103(1) (1997). Solar Heat Gain Coefficient of Complex Fenestrations  

E-Print Network (OSTI)

LBNL-39248 DA-359 ASHRAE Transactions 103(1) (1997). Solar Heat Gain Coefficient of Complex, the most recent edition of the ASHRAE Handbook lists a table characterizing a venetian blind with a single shading coefficient number (ASHRAE 1993) for 0º azimuth and 35º incident angle, (the latter corresponding

205

ASHRAE Transactions: Symposia 1107 The interest in both modular simulation and alternative  

E-Print Network (OSTI)

ASHRAE Transactions: Symposia 1107 ABSTRACT The interest in both modular simulation and alternative Building Energy Simulation Program Richard K. Strand, Ph.D. Daniel E. Fisher, Ph.D., P.E. Member ASHRAE Member ASHRAE Richard J. Liesen, Ph.D. Curtis O. Pedersen, Ph.D. Associate Member

206

Guidelines for TCs on Content for the 2005 ASHRAE HandbookCD+  

E-Print Network (OSTI)

Guidelines for TCs on Content for the 2005 ASHRAE HandbookCD+ Vision for Product: Provide and supplemental tools and features developed or obtained by ASHRAE Technical Committees. Content: · PDF files. · Supplemental material, possibly including that from previously published print volumes. · Links to other ASHRAE

Massachusetts at Amherst, University of

207

ASHRAE Transactions: Research 105 Current duct design methods for variable air volume  

E-Print Network (OSTI)

ASHRAE Transactions: Research 105 ABSTRACT Current duct design methods for variable air volume (VAV for different design conditions are sought using a duct fitting database program as described in ASHRAE (1993 Jeffrey D. Spitler, Ph.D., P.E. Ronald D. Delahoussaye, Ph.D. Member ASHRAE Taecheol Kim is a Ph

208

Labs21 Laboratory Modeling Guidelines using ASHRAE 90.1-1999  

E-Print Network (OSTI)

fpm pressure drop from ASHRAE DFDB @ 1500 fpm 500 fpm Coil - Steam 0.18 w.g. per ASHRAE DFDB at 800 fpm 1-rowcoil 0.38 w.g. per ASHRAE DFDB at 800 fpm 2-row coil 0.20

2008-01-01T23:59:59.000Z

209

Indoor sound criteria according to the American Society of Heating, Refrigerating and Air?Conditioning Engineers (ASHRAE)An introduction  

Science Conference Proceedings (OSTI)

ASHRAE TC?2.6 Sound and Vibration Controltechnical committee has been activity involved with development

2005-01-01T23:59:59.000Z

210

Category:ASHRAE Climate Zones | Open Energy Information  

Open Energy Info (EERE)

ASHRAE Climate Zones ASHRAE Climate Zones Jump to: navigation, search Climate Zones defined in the ASHRAE 169-2006 standards. Pages in category "ASHRAE Climate Zones" The following 30 pages are in this category, out of 30 total. C Climate Zone 1A Climate Zone 1B Climate Zone 2A Climate Zone 2B Climate Zone 3A Climate Zone 3B Climate Zone 3C Climate Zone 4A Climate Zone 4B Climate Zone 4C C cont. Climate Zone 5A Climate Zone 5B Climate Zone 5C Climate Zone 6A Climate Zone 6B Climate Zone 7A Climate Zone 7B Climate Zone 8A Climate Zone 8B Climate Zone Number 1 C cont. Climate Zone Number 2 Climate Zone Number 3 Climate Zone Number 4 Climate Zone Number 5 Climate Zone Number 6 Climate Zone Number 7 Climate Zone Number 8 Climate Zone Subtype A Climate Zone Subtype B Climate Zone Subtype C Retrieved from

211

ASHRAE Standard 62-1989: Energy, Cost, and Program Implications.  

SciTech Connect

ASHRAE Standard 62-1989 (Standard 62-89) Ventilation for Acceptable Indoor Air Quality'' is the new heating, ventilating, and air-conditioning (HVAC) industry consensus for ventilation air in commercial buildings. Bonneville Power Administration (Bonneville) references ASHRAE Standard 62-81 (the predecessor to Standard 62-89) in their current environmental documents for required ventilation rates. Through its use, it had become evident to Bonneville that Standard 62-81 needed interpretation. Now that the revised Standard (Standard 62-89) is available, its usefulness needs to be evaluated. Based on current information and public comment, the American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) revised Standard 62-1981 to Standard 62-89. Bonneville's study estimated the energy and cost implications of ASHRAE Standard 62-89 using simulations based on DOE-2.1D, a computer simulation program which estimates building use hourly as a function of building characteristics and climatic location. Ten types of prototypical commercial buildings used by Bonneville for load forecasting purposes were examined: Large and Small Office, Large and Small Retail, Restaurant, Warehouse, Hospital, Hotel, School, and Grocery. These building characterizations are based on survey and energy metering data and represent average or typical construction and operation practices and mechanical system types. Prototypical building ventilation rates were varied in five steps to estimate the impacts of outside air on building energy use. 11 refs., 14 tabs.

Steele, Tim R.; Brown, Marilyn A.

1990-10-15T23:59:59.000Z

212

ASHRAE Standard 62-1989: Energy, Cost, and Program Implications.  

SciTech Connect

ASHRAE Standard 62-1989 (Standard 62-89) Ventilation for Acceptable Indoor Air Quality'' is the new heating, ventilating, and air-conditioning (HVAC) industry consensus for ventilation air in commercial buildings. Bonneville Power Administration (Bonneville) references ASHRAE Standard 62-81 (the predecessor to Standard 62-89) in their current environmental documents for required ventilation rates. Through its use, it had become evident to Bonneville that Standard 62-81 needed interpretation. Now that the revised Standard (Standard 62-89) is available, its usefulness needs to be evaluated. Based on current information and public comment, the American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) revised Standard 62-1981 to Standard 62-89. Bonneville's study estimated the energy and cost implications of ASHRAE Standard 62-89 using simulations based on DOE-2.1D, a computer simulation program which estimates building use hourly as a function of building characteristics and climatic location. Ten types of prototypical commercial buildings used by Bonneville for load forecasting purposes were examined: Large and Small Office, Large and Small Retail, Restaurant, Warehouse, Hospital, Hotel, School, and Grocery. These building characterizations are based on survey and energy metering data and represent average or typical construction and operation practices and mechanical system types. Prototypical building ventilation rates were varied in five steps to estimate the impacts of outside air on building energy use. 11 refs., 14 tabs.

Steele, Tim R.; Brown, Marilyn A.

1990-10-15T23:59:59.000Z

213

Development of DOE-2 Based Simulation Models for the Code-Compliant Commercial Construction Based on the ASHRAE Standard 90.1  

E-Print Network (OSTI)

In 2001, the Texas State Senate passed Senate Bill 5 to reduce ozone levels by encouraging the reduction of emissions of NOx that were not regulated by the Texas Natural Resource Conservation Commission. These include point sources (power plants), area sources (such as residential emissions), road mobile sources, and non-road mobile sources. For the building energy sector, the Texas State Legislature adopted the 2000 International Energy Conservation Code, as modified by the 2001 Supplement, as the states building energy code. The 2000/2001 IECC is a comprehensive energy conservation code that establishes a standard for the insulation levels, glazing, cooling and heating system efficiencies through the use of prescriptive and performance-based provisions. This paper provides a detailed description of the procedures that were developed to calculate the electricity and natural gas savings in new office construction that is being built in compliance with Chapter 8 of the 2000/2001 International Energy Conservation Code. Since most of the commercial portion of the 2000/2001 International Energy Conservation Code refers to ASHRAE Standard 90.1-1999 as the current code requirement for commercial construction, the simulation models based on the ASHRAE Standard 90.1, with general commercial configurations, are created to quantify the electricity and gas savings. Then, simulation models are modified to accommodate the different scenarios of construction and HVAC equipment based on three different codes (i.e., ASHRAE Standard 90.1-1989 (pre-code), 1999 (code-compliant), and 2004 (new-code)). The pre-code designation is meant to represent the commercial construction characteristics before the passage of Texas Emission Reduction Plan (TERP) in September 2001. In the simulations, pre-code, code-complaint and new code represent the commercial constructions in compliance with ASHRAE Standard 90.1-1989, ASHRAE Standard 90.1-1999, and ASHRAE Standard 90.1-2004, respectively. This paper includes an explanation of the simulation models developed for the different versions of ASHRAE Standard 90.1, as mentioned above, which are used for investigating the electricity and gas energy savings.

Kim, S.; Haberl, J.; Liu, Z.

2009-11-01T23:59:59.000Z

214

ASHRAE Standard 90.1-2004 -- Building Envelope Requirements | Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Envelope Requirements Building Envelope Requirements This course provides an overview of the building envelope requirements of ASHRAE Standard 90.1-2004. Estimated Length: 60 minutes Presenters: John Hogan, City of Seattle Original Webcast Date: Thursday, June 14, 2007 - 13:00 CEUs Offered: 1.0 AIA/CES LU (HSW); .10 CEUs towards ICC renewal certification. Course Type: Video Downloads: Presentation Slides Video Watch on YouTube Visit the BECP Online Training Center for instructions on how to obtain a certificate of completion. Building Type: Commercial Focus: Compliance Code Version: ASHRAE Standard 90.1-2004 Target Audience: Architect/Designer Builder Code Official Contractor Engineer State Official Contacts Web Site Policies U.S. Department of Energy USA.gov Last Updated: Wednesday, July 18, 2012 - 16:04

215

Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140  

SciTech Connect

Ideally, whole-building energy simulation programs model all aspects of a building that influence energy use and thermal and visual comfort for the occupants. An essential component of the development of such computer simulation models is a rigorous program of validation and testing. This paper describes a methodology to evaluate the accuracy of whole-building energy simulation programs. The methodology is also used to identify and diagnose differences in simulation predictions that may be caused by algorithmic differences, modeling limitations, coding errors, or input errors. The methodology has been adopted by ANSI/ASHRAE Standard 140, Method of Test for the Evaluation of Building Energy Analysis Computer Programs (ASHRAE 2001a, 2004). A summary of the method is included in the 2005 ASHRAE Handbook--Fundamentals (ASHRAE 2005). This paper describes the ASHRAE Standard 140 method of test and its methodological basis. Also discussed are possible future enhancements to ASHRAE Standard 140 and related research recommendations.

Judkoff, R.; Neymark, J.

2006-01-01T23:59:59.000Z

216

ANSI/ASHRAE/IESNA Standard 90.1-2007 Preliminary Qualitative Determination  

Science Conference Proceedings (OSTI)

A preliminary qualitative analysis of all addenda to ANSI/ASHRAE/IESNA Standard 90.1-2004 that were included in ANSI/ASHRAE/IESNA Standard 90.1-2007 was conducted. All 44 addenda processed by ASHRAE in the creation of Standard 90.1-2007 from Standard 90.1-2004 were evaluated by DOE for their impact on energy efficiency. DOE preliminarily determined whether that addenda would have a positive, neutral, or negative impact on overall building efficiency.

Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

2010-05-25T23:59:59.000Z

217

Comparison between predicted duct effectiveness from proposed ASHRAE Standard 152P and measured field data for residential forced air cooling systems  

E-Print Network (OSTI)

for Forced Air Systems in Proposed ASHRAE Standard 152P.ASHRAE Transactions, 104(1B), 1360-1375. Walker I, ShermanDuct Effectiveness from Proposed ASHRAE Standard 152P and

Siegel, Jeffrey A.; McWilliams, Jennifer A.; Walker, Iain S.

2002-01-01T23:59:59.000Z

218

ASHRAE Standard 90.1-2007 -- Mechanical and Service Water Heating...  

NLE Websites -- All DOE Office Websites (Extended Search)

provides an overview of the mechanical and service water heating requirements of ASHRAE Standard 90.1-2007. Estimated Length: 1 hour, 32 minutes Presenters: Mark Hydeman,...

219

ANSI/ASHRAE/IESNA Standard 90.1-2007 Final Determination Quantitative...  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis to assess whether buildings constructed according to the requirements of the ASHRAE Standard 90.1-2007 would result in energy savings compared with buildings constructed...

220

ANSI/ASHRAE/IESNA Standard 90.1-2007 | Building Energy Codes...  

NLE Websites -- All DOE Office Websites (Extended Search)

training purposes. The available presentation slides focus on the requirements of ASHRAE Standard 90.1-2007. Presenters: Course materials originally published by the DOE...

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ASHRAE Standard 90.1-2004 -- Mechanical and Service Water Heating...  

NLE Websites -- All DOE Office Websites (Extended Search)

provides an overview of the mechanical and service water heating requirements of ASHRAE Standard 90.1-2004. Estimated Length: 1 hour, 35 minutes Presenters: Mark Hydeman,...

222

Arthur County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Arthur County, Nebraska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Arthur County, Nebraska...

223

Bee County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Search Page Edit History Facebook icon Twitter icon Bee County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bee County, Texas...

224

Ashley County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Ashley County, Arkansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashley County, Arkansas...

225

Bates County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Bates County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bates County, Missouri...

226

Belmont County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Belmont County, Ohio ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Belmont County, Ohio...

227

Barnes County, North Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Edit History Facebook icon Twitter icon Barnes County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barnes County, North...

228

Adams County, North Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Edit History Facebook icon Twitter icon Adams County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, North...

229

Labs21 Laboratory Modeling Guidelines using ASHRAE 90.1-1999  

E-Print Network (OSTI)

based on limiting water intake. Intake Louvers Intake DamperIntake Sound Attenuator 0.03 w.g. per ASHRAE DFDB @ 500 fpm Preheat Coil Hot Water &

2008-01-01T23:59:59.000Z

230

Trends in Data Center Design - ASHRAE Leads the Way to Large Energy Savings (Presentation)  

SciTech Connect

Energy savings strategies for data centers are described, including best practices, ASHRAE standards, and examples of successful strategies for incorporating energy savings.

Van Geet, O.

2013-06-01T23:59:59.000Z

231

Achieving the 30% Goal: Energy and Cost Savings Analysis of ASHRAE...  

NLE Websites -- All DOE Office Websites (Extended Search)

Development Adoption Compliance Regulations Resource Center Achieving the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard 90.1-2010 This report documents the...

232

Bennett County, South Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Page Edit History Share this page on Facebook icon Twitter icon Bennett County, South Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone...

233

Presented at the 1998 ASHRAE Winter Meeting, January 17-21, 1998, San Francisco, CA, and published in the proceedings.  

E-Print Network (OSTI)

LBNL-40690 DA-408 Presented at the 1998 ASHRAE Winter Meeting, January 17-21, 1998, San Francisco tests under standard American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE

234

Wei Liu, Student Member ASHRAE, is graduate research assistant. Zhengwei Long, PhD, is lecturer. Qingyan Chen, PhD, Fellow ASHRAE, is Changjiang Chair Professor and Vicent P. Reilly  

E-Print Network (OSTI)

Wei Liu, Student Member ASHRAE, is graduate research assistant. Zhengwei Long, PhD, is lecturer. Qingyan Chen, PhD, Fellow ASHRAE, is Changjiang Chair Professor and Vicent P. Reilly Professor loss coefficients used in their calculations (Shao et al. 1995). ASHRAE Standard 120 provides

Chen, Qingyan "Yan"

235

ANSI/ASHRAE/IESNA Standard 90.1-2010 Preliminary Determination Quantitative Analysis  

SciTech Connect

The United States (U.S.) Department of Energy (DOE) conducted a preliminary quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2010 (ASHRAE Standard 90.1-2010, Standard 90.1-2010, or 2010 edition) would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2007(ASHRAE Standard 90.1-2007, Standard 90.1-2007, or 2007 edition). The preliminary analysis considered each of the 109 addenda to ASHRAE Standard 90.1-2007 that were included in ASHRAE Standard 90.1-2010. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were reviewed by DOE, and their combined impact on a suite of 16 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOEs preliminary determination. However, out of the 109 addenda, 34 were preliminarily determined to have measureable and quantifiable impact.

Halverson, Mark A.; Liu, Bing; Rosenberg, Michael I.

2010-11-01T23:59:59.000Z

236

A critical review of the ASHRAE solar radiation model  

Science Conference Proceedings (OSTI)

Inconsistencies are shown to exist in the presentation and formulation of the ASHRAE solar radiation model. To remove them, it is proposed: 1. To include in the Fundamentals Handbook the clearness number in the expressions for the direct and, in particular, the sky diffuse irradiation under cloudless conditions, and 2. To rewrite the expressions for cloud sky conditions so that they reduce to the cloudless formulation when the cloud cover is zero and they do not give rise to negative values of the sky diffuse irradiation as is presently the case under certain conditions.

Galanis, N.; Chatigny, R.

1986-01-01T23:59:59.000Z

237

To be published in ASHRAE Transactions, Vol. 106, Part II 2000 LBNL-44479 SELECTING WHOLE-HOUSE  

E-Print Network (OSTI)

To be published in ASHRAE Transactions, Vol. 106, Part II 2000 LBNL-44479 SELECTING WHOLE-HOUSE VENTILATION STRATEGIES TO MEET PROPOSED ASHRAE STANDARD 62.2: ENERGY COST CONSIDERATIONS* Craig P. Wray Nance University of California Berkeley, CA 94720 April 2000 ASHRAE Standard 62.2P is being proposed to address

238

Presented at the ASHRAE Winter Meeting, Atlanta, GA, February 1721, 1996, and to be published in the Proceedings  

E-Print Network (OSTI)

LBL-37037 UC-1600 Presented at the ASHRAE Winter Meeting, Atlanta, GA, February 17­21, 1996 Berkeley National Laboratory is an equal opportunity employer. #12;LBL-37037 Mo-345 Presented atthe ASHRAE University of California Berkeley, CA 94720 September 1995 This research was jointly supported by ASHRAE

239

ANSI/ASHRAE/IES Standard 90.1- 2010 Final Qualitative Determination |  

NLE Websites -- All DOE Office Websites (Extended Search)

IES Standard 90.1- 2010 Final Qualitative Determination IES Standard 90.1- 2010 Final Qualitative Determination A final qualitative analysis of all addenda to ASHRAE Standard 90.1-2007 that were included in ASHRAE Standard 90.1-2010 was conducted. All 109 addenda processed by ASHRAE in the creation of ASHRAE Standard 90.1-2010 from ASHRAE Standard 90.1-2007 were evaluated by the U.S. Department of Energy (DOE) for their impact on energy efficiency. DOE determined whether each addendum would have a positive, neutral, or negative impact on overall building efficiency. Publication Date: Wednesday, October 19, 2011 BECP_FinalQualitativeAnalysisReport901-2010Determiniation_Oct2011_v00.pdf Document Details Last Name: Halverson Initials: M Affiliation: PNNL Document Number: PNNL-20883 Focus: Code Development Building Type:

240

Overview of the Requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 |  

NLE Websites -- All DOE Office Websites (Extended Search)

the Requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 the Requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 Session 2 of a seven-part webcast series presented by the Department of Energy's (DOE's) Federal Energy Management Program to help federal agencies comply with the requirements of ASHRAE Standard 90.1-2004. The Overview of the Requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 webcast is a re-broadcast of three webcasts-originally broadcast by DOE's Building Energy Codes Program in 2007. This training provides an overview of the building envelope, mechanical and service water heating, and lighting requirements in ASHRAE Standard 90.1-2004. Estimated Length: 4 hours Presenters: John Hogan, City of Seattle; Eric Richman, PNNL; Mark Hydeman, Taylor Engineering LLC. Original Webcast Date: Thursday, August 21, 2008 - 13:00

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140; Preprint  

Science Conference Proceedings (OSTI)

Ideally, whole-building energy simulation programs model all aspects of a building that influence energy use and thermal and visual comfort for the occupants. An essential component of the development of such computer simulation models is a rigorous program of validation and testing. This paper describes a methodology to evaluate the accuracy of whole-building energy simulation programs. The methodology is also used to identify and diagnose differences in simulation predictions that may be caused by algorithmic differences, modeling limitations, coding errors, or input errors. The methodology has been adopted by ANSI/ASHRAE Standard 140 (ANSI/ASHRAE 2001, 2004), Method of Test for the Evaluation of Building Energy Analysis Computer Programs. A summary of the method is included in the ASHRAE Handbook of Fundamentals (ASHRAE 2005). This paper describes the ANSI/ASHRAE Standard 140 method of test and its methodological basis. Also discussed are possible future enhancements to Standard 140 and related research recommendations.

Judkoff, R.; Neymark, J.

2006-07-01T23:59:59.000Z

242

Analysis of Daylighting Requirements within ASHRAE Standard 90.1  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL), under the Building Energy Codes Program (BECP) funded by U.S. Department of Energy (DOE), provides support to the ASHRAE/IES/IESNA Standard 90.1(Standard 90.1) Standing Standards Project Committee (SSPC 90.1) and its subcommittees. In an effort to provide the ASHRAE SSPC 90.1 with data that will improve the daylighting and fenestration requirements in the Standard, PNNL collaborated with Heschong Mahone Group (HMG), now part of TRC Solutions. Combining EnergyPlus, a whole-building energy simulation software developed by DOE, with Radiance, a highly accurate illumination modeling software (Ward 1994), the daylighting requirements within Standard 90.1 were analyzed in greater detail. The initial scope of the study was to evaluate the impact of the fraction of window area compared to exterior wall area (window-to-wall ratio (WWR)) on energy consumption when daylighting controls are implemented. This scope was expanded to study the impact of fenestration visible transmittance (VT), electric lighting controls and daylighted area on building energy consumption.

Athalye, Rahul A.; Xie, YuLong; Liu, Bing; Rosenberg, Michael I.

2013-08-01T23:59:59.000Z

243

Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energys (DOEs) Building Energy Codes Program (BECP). DOEs BECP supports upgrading building energy codes and standards, and the states adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components, initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.

Thornton, Brian A.; Halverson, Mark A.; Myer, Michael; Cho, Hee Jin; Loper, Susan A.; Richman, Eric E.; Elliott, Douglas B.; Mendon, Vrushali V.; Rosenberg, Michael I.

2013-06-18T23:59:59.000Z

244

National Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energys (DOEs) Building Energy Codes Program (BECP). DOEs BECP supports upgrading building energy codes and standards, and the states adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components, initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.

Thornton, Brian; Halverson, Mark A.; Myer, Michael; Loper, Susan A.; Richman, Eric E.; Elliott, Douglas B.; Mendon, Vrushali V.; Rosenberg, Michael I.

2013-11-30T23:59:59.000Z

245

Comparison of the Energy Efficiency Prescribed by ASHRAE/ANSI/IESNA  

NLE Websites -- All DOE Office Websites (Extended Search)

the Energy Efficiency Prescribed by ASHRAE/ANSI/IESNA the Energy Efficiency Prescribed by ASHRAE/ANSI/IESNA Standard 90.1-1999 and ASHRAE/ANSI/IESNA Standard 90.1-2004 This document presents the qualitative comparison of the U.S. Department of Energy's (DOE's) formal determination of energy savings of ASHRAE Standard 90.1-2004. The term "qualitative" is used in the sense of identifying whether or not changes have a positive, negative, or neutral impact on energy efficiency of the standard, with no attempt made to quantify that impact. A companion document will present the quantitative comparison of DOE's determination. Publication Date: Friday, December 1, 2006 determinations_com_dif04.pdf Document Details Last Name: Halverson Initials: M Affiliation: PNNL Document Number: PNNL-17722 Focus: Code Development

246

ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings Speaker(s): Steve Taylor Date: April 20, 2000 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact:...

247

Impact of ASHRAE standard 189.1-2009 on building energy efficiency and performance.  

E-Print Network (OSTI)

??The purpose of this report is to provide an introduction to the new ASHRAE Standard 189.1-2009, Standard for the Design of High-Performance Green Buildings. The (more)

Blush, Aaron

2010-01-01T23:59:59.000Z

248

Beadle County, South Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Data Page Edit History Share this page on Facebook icon Twitter icon Beadle County, South Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone...

249

Aurora County, South Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Data Page Edit History Share this page on Facebook icon Twitter icon Aurora County, South Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone...

250

Analysis of Energy Saving Impacts of ASHRAE 90.1-2004 for New York  

Science Conference Proceedings (OSTI)

The New York State Energy Research and Development Authority (NYSERDA) and New York State Department of State (DOS) requested the help of DOEs Building Energy Codes Program (BECP) in estimating the annual building energy savings and cost impacts of adopting ANSI/ASHRAE/IESNA Standard 90.1-2004 (ASHRAE 2004) requirements. This report summarizes the analysis methodology and results of energy simulation in response to that request.

Gowri, Krishnan; Halverson, Mark A.; Richman, Eric E.

2007-08-03T23:59:59.000Z

251

2009 ASHRAE. THIS PREPRINT MAY NOT BE DISTRIBUTED IN PAPER OR DIGITAL FORM IN WHOLE OR IN PART. IT IS FOR DISCUSSION PURPOSES ONLY AT THE 2009 ASHRAE WINTER CONFERENCE. The archival version of this paper along with comments and author responses will be pu  

E-Print Network (OSTI)

2009 ASHRAE. THIS PREPRINT MAY NOT BE DISTRIBUTED IN PAPER OR DIGITAL FORM IN WHOLE OR IN PART. IT IS FOR DISCUSSION PURPOSES ONLY AT THE 2009 ASHRAE WINTER CONFERENCE. The archival version of this paper along with comments and author responses will be published in ASHRAE Transactions, Volume 115, Part 1. ASHRAE must

Pennycook, Steve

252

2005 ASHRAE. THIS PREPRINT MAY NOT BE DISTRIBUTED IN PAPER OR DIGITAL FORM IN WHOLE OR IN PART. IT IS FOR DISCUSSION PURPOSES ONLY AT THE 2005 ASHRAE WINTER MEETING. The archival version of this paper along with comments and author responses will be publi  

E-Print Network (OSTI)

©2005 ASHRAE. THIS PREPRINT MAY NOT BE DISTRIBUTED IN PAPER OR DIGITAL FORM IN WHOLE OR IN PART. IT IS FOR DISCUSSION PURPOSES ONLY AT THE 2005 ASHRAE WINTER MEETING. The archival version of this paper along with comments and author responses will be published in ASHRAE Transactions, Volume 111, Part 1. ASHRAE must

253

2003 ASHRAE. THIS PREPRINT MAY NOT BE DISTRIBUTED IN PAPER OR DIGITAL FORM IN WHOLE OR IN PART. IT IS FOR DISCUSSION PURPOSES ONLY AT THE 2003 ASHRAE ANNUAL MEETING. The archival version of this paper along with comments and author responses will be publi  

E-Print Network (OSTI)

2003 ASHRAE. THIS PREPRINT MAY NOT BE DISTRIBUTED IN PAPER OR DIGITAL FORM IN WHOLE OR IN PART. IT IS FOR DISCUSSION PURPOSES ONLY AT THE 2003 ASHRAE ANNUAL MEETING. The archival version of this paper along with comments and author responses will be published in ASHRAE Transactions, Volume 109, Part 2. ASHRAE must

254

ANSI/ASHRAE/IESNA Standard 90.1-2007 Final Determination Quantitative Analysis  

SciTech Connect

The United States (U.S.) Department of Energy (DOE) conducted a final quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2004. The final analysis considered each of the 44 addenda to ANSI/ASHRAE/IESNA Standard 90.1-2004 that were included in ANSI/ASHRAE/IESNA Standard 90.1-2007. All 44 addenda processed by ASHRAE in the creation of Standard 90.1-2007 from Standard 90.1-2004 were reviewed by DOE, and their combined impact on a suite of 15 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOEs final determination. However, out of the 44 addenda, 9 were preliminarily determined to have measureable and quantifiable impact.

Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

2011-05-01T23:59:59.000Z

255

Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003  

E-Print Network (OSTI)

Vol 22, No 6. pg 10-11. 2003. ASHRAE 62.2 Recommended for6, 7, 10, 33, 37. ANSI/ASHRAE. 1988 (RA 94). Standard 119Inc. , Atlanta GA. ANSI/ASHRAE. 1993 (RA 2001). Standard

Roberson, J.

2004-01-01T23:59:59.000Z

256

Appliance Standards Update and Review of Certification, Compliance and Enforcement Powerpoint Presentation for ASHRAE Conference, January 31, 2011  

Energy.gov (U.S. Department of Energy (DOE))

This document is Appliance Standards Update and Review of Certification, Compliance and Enforcement Powerpoint Presentation for ASHRAE Conference, January 31, 2011

257

Nitrous oxide as a substitute for sulfur hexafluoride in the ANSI/ASHRAE 110 Method of hood performance evaluation.  

E-Print Network (OSTI)

??The ANSI/ASHRAE 110 Method is the standard test for laboratory hood containment performance. Sulfur hexafluoride is specified as the gas most suitable for this test (more)

Guffey, Eric J. (Eric Jemison)

2011-01-01T23:59:59.000Z

258

Achieving the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard 90.1-2010  

Science Conference Proceedings (OSTI)

This Technical Support Document presents the energy and cost savings analysis that PNNL conducted to measure the potential energy savings of 90.1-2010 relative to 90.1-2004. PNNL conducted this analysis with inputs from many other contributors and source of information. In particular, guidance and direction was provided by the Simulation Working Group under the auspices of the SSPC90.1. This report documents the approach and methodologies that PNNL developed to evaluate the energy saving achieved from use of ASHRAE/IES Standard 90.1-2010. Specifically, this report provides PNNLs Progress Indicator process and methodology, EnergyPlus simulation framework, prototype model descriptions. This report covers the combined upgrades from 90.1-2004 to 90.1-2010, resulting in a total of 153 addenda. PNNL has reviewed and considered all 153 addenda for quantitative analysis in the Progress Indicator process. 53 of those are included in the quantitative analysis. This report provides information on the categorization of all of the addenda, a summary of the content, and deeper explanation of the impact and modeling of 53 identified addenda with quantitative savings.

Thornton, Brian A.; Rosenberg, Michael I.; Richman, Eric E.; Wang, Weimin; Xie, YuLong; Zhang, Jian; Cho, Heejin; Mendon, Vrushali V.; Athalye, Rahul A.; Liu, Bing

2011-05-24T23:59:59.000Z

259

To be presented at the 2007 ASHRAE Winter Meeting, January 27-31, 2007, Dallas, TX. Measured energy performance a US-China demonstration  

E-Print Network (OSTI)

LBNL-60978 To be presented at the 2007 ASHRAE Winter Meeting, January 27-31, 2007, Dallas, TX efficient than ASHRAE 90.1- 1999. The utility data from the first year's operation match well the analysis

260

Proceedings of the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior Envelopes of Buildings VII, Clearwater Beach, Florida, December 7-11, 1998  

E-Print Network (OSTI)

LBNL-41694 BS-384 Proceedings of the ASHRAE/DOE/BTECC Conference, Thermal Performance. Sullivan L. Beltran E.S. Lee M. Rubin, Ph.D. S. E. Selkowitz Member ASHRAE ABSTRACT INTRODUCTION Research

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Presented at the ASHRAE Winter Meeting, Atlanta, GA, February 17-21, 1996, and published in the Proceedings. Calorimetric Measurements of Inward-Flowing Fraction  

E-Print Network (OSTI)

LBL-37038 Mo-346 Presented at the ASHRAE Winter Meeting, Atlanta, GA, February 17-21, 1996 was jointly supported by ASHRAE, as Research Project 548-RP under Agreement No. BG 87-127 with the U

262

ANSI/ASHRAE/IES Standard 90.1-2010 Final Qualitative Determination  

SciTech Connect

A final qualitative analysis of all addenda to American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (Standard 90.1-2007 or 2007 edition) that were included in ANSI/ASHRAE/IESNA Standard 90.1-2010 (Standard 90.1-2010 or 2010 edition) was conducted. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were evaluated by DOE for their impact on energy efficiency. DOE determined whether each addendum would have a positive, neutral, or negative impact on overall building efficiency.

Halverson, Mark A.; Rosenberg, Michael I.; Williamson, Jennifer L.; Richman, Eric E.; Liu, Bing

2011-10-31T23:59:59.000Z

263

ANSI/ASHRAE/IESNA Standard 90.1-2007 Final Qualitative Determination  

Science Conference Proceedings (OSTI)

A final qualitative analysis of all addenda to American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2004 that were included in ANSI/ASHRAE/IESNA Standard 90.1-2007 was conducted. All 44 addenda processed by ASHRAE in the creation of Standard 90.1-2007 from Standard 90.1-2004 were evaluated by the U.S. Department of Energy (DOE) for their impact on energy efficiency. DOE preliminarily determined whether that addenda would have a positive, neutral, or negative impact on overall building efficiency. Table S.1 shows the number of positive and negative changes for each section of Standard 90.1.

Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

2011-01-01T23:59:59.000Z

264

ANSI/ASHRAE/IESNA Standard 90.1-2010 Preliminary Qualitative Determination  

Science Conference Proceedings (OSTI)

A preliminary qualitative analysis of all addenda to American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (Standard 90.1-2007 or 2007 edition) that were included in ANSI/ASHRAE/IESNA Standard 90.1-2010 (Standard 90.1-2010 or 2010 edition) was conducted. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were evaluated by DOE for their impact on energy efficiency. DOE preliminarily determined whether that addenda would have a positive, neutral, or negative impact on overall building efficiency.

Halverson, Mark A.; Williamson, Jennifer L.; Liu, Bing; Rosenberg, Michael I.; Richman, Eric E.

2010-11-01T23:59:59.000Z

265

ASHRAE $1000 Scholarship Application (02/26/2013) The Utah Chapter of the American Society of Heating, Refrigerating and Air Conditioning  

E-Print Network (OSTI)

ASHRAE $1000 Scholarship Application (02/26/2013) The Utah Chapter of the American Society this application package, signed by your academic advisor (cover letter), to the Utah ASHRAE Student Activities, 2013. The Utah ASHRAE chapter Board of Governors will review the applications and select two or three

van den Berg, Jur

266

ASHRAE Transactions, Vol. 107 (2) 2001 This work was supported by Hydro Aluminum and the Assistant Secretary for Energy Efficiency and Renewable  

E-Print Network (OSTI)

LBNL-46825 TA-442 ASHRAE Transactions, Vol. 107 (2) 2001 This work was supported by Hydro Aluminum Contract No. DE-AC03-76SF00098. Reprinted by permission from ASHRAE Transactions Vol. 107, Part 2, pp 538 IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 2001, V. 107, Pt. 2. Not to be reprinted

267

Development of an ASHRAE 152-2004 Duct Model for the Single-Family Residential House  

E-Print Network (OSTI)

This paper presents the results of the development of the duct model based on ASHRAE standard 152-2004 (ASHRAE, 2004) using the DOE-2.1e building energy simulation program. To accomplish this, FUNCTION commands for DOE-2 were used to develop the duct model and provide the improved predictions of the duct heat loss or gain from the unconditioned space as well as supply or return duct leakage. After applying the duct model to the DOE-2 base-case simulation model, simulation results were compared with the measurement from the case-study house for verification.

Kim, S.; Haberl, J.

2008-12-01T23:59:59.000Z

268

Evaluation of ANSI/ASHRAE/USGBC/IES Standard 189.1-2009  

Science Conference Proceedings (OSTI)

The National Renewable Energy Laboratory (NREL) evaluated ANSI/ASHRAE/USGBC/IES Standard 189.1-2009, 'The Standard for High-Performance Green Buildings Except Low-Rise Residential Buildings'. NREL performed this evaluation by examining the results of predictions for site energy use from a comprehensive set of EnergyPlus models. NREL has conducted an 'order-of-magnitude' analysis in this study to identify the likely overall impact of adopting Standard 189.1-2009 over ANSI/ASHRAE/IESNA Standard 90.1-2007.

Long, N.; Bonnema, E.; Field, K.; Torcellini, P.

2010-07-01T23:59:59.000Z

269

AN AMMONIA-WATER ABSORPTION-HIAT-PUMP CYCLE Donald Kuhlenschmidt, Member ASHRAE  

E-Print Network (OSTI)

. Merrick, Member ASHRAE ABSTRACT The scate-of-art in ammonia-water absorption cooling has been applied. Reversible absorption cycles for heating and cooling are possible but with additional cost and complexity concentration change making possible the use of a solution-cooled absorber wherin some heat of absorption can

Oak Ridge National Laboratory

270

Comparison of the Energy Efficiency Prescribed by ASHRAE/ANSI/IESNA Standard 90.1-1999 and ASHRAE/ANSI/IESNA Standard 90.1-2004  

SciTech Connect

This document presents the qualitative comparison of DOEs formal determination of energy savings of ANSI/ASHRAE/IESNA Standard 90.1-2004. The term qualitative is used in the sense of identifying whether or not changes have a positive, negative, or neutral impact on energy efficiency of the standard, with no attempt made to quantify that impact. A companion document will present the quantitative comparison of DOEs determination. The quantitative comparison will be based on whole building simulation of selected building prototypes in selected climates. This document presents a comparison of the energy efficiency requirements in ANSI/ASHRAE/IESNA 90.1-1999 (herein referred to as Standard 90.1-1999) and ANSI/ASHRAE/IESNA 90.1-2004 (herein referred to as Standard 90.1-2004). The comparison was done through a thorough review of all addenda to Standard 90.1-1999 that were included in the published ANSI/ASHRAE/IESNA Standard 90.1-2001 (herein referred to as Standard 90.1-2001) and also all addenda to Standard 90.1-2001 that were included in the published Standard 90.1-2004. A summary table showing the impact of each addendum is provided. Each addendum to both Standards 90.1-1999 and 90.1-2001 was evaluated as to its impact on the energy efficiency requirements of the standard (greater efficiency, lesser efficiency) and as to significance. The final section of this document summarizes the impacts of the various addenda and proposes which addenda should be included in the companion quantitative portion of DOEs determination. Addenda are referred to with the nomenclature addendum 90.1-xxz, where xx is either 99 for 1999 or 01 for 2001, and z is the ASHRAE letter designation for the addendum. Addenda names are shown in bold face in text. DOE has chosen not to prepare a separate evaluation of Standard 90.1-2001 as that standard does not appear to improve energy efficiency in commercial buildings. What this means for the determination of energy savings for Standard 90.1-2004 is that the baseline standard for comparison is Standard 90.1-1999 and all addenda to both Standards 90.1-1999 and 90.1-2001 must be considered to determine the overall change in efficiency between Standard 90.1-1999 and Standard 90.1-2004.

Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

2006-12-01T23:59:59.000Z

271

Update and Overview of the U.S. Department of Energy's Rulemakings for ASHRAE 90.1 Equipment Presentation, dated June 26, 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program eere.energy.gov BUILDING TECHNOLOGIES PROGRAM Update and Overview of DOE Rulemakings for ASHRAE 90.1 Equipment Ashley Armstrong Department of Energy Energy Efficiency & Renewable Energy 6/26/2011 Introduction and Background 1 Introduction and Background Status of Current DOE ASHRAE 90.1 Equipment Rulemaking 2 Update and Overview for Individual ASHRAE 90.1 Equipment Types 3 2 | Building Technologies Program eere.energy.gov Introduction and Background * The "ASHRAE Trigger": - EPCA directs DOE to review its minimum standards for certain commercial and industrial equipment whenever ASHRAE Standard 90.1 is amended with respect to such equipment. (42 USC 6313(a)(6)(A)) - The "ASHRAE Trigger" requires DOE review when ASHRAE

272

Nitrous oxide as a substitute for sulfur hexafluoride in the ANSI/ASHRAE 110 Method of hood performance evaluation  

E-Print Network (OSTI)

The ANSI/ASHRAE 110 Method is the standard test for laboratory hood containment performance. Sulfur hexafluoride is specified as the gas most suitable for this test and is most commonly used. Sulfur hexafluoride use has ...

Guffey, Eric J. (Eric Jemison)

2011-01-01T23:59:59.000Z

273

The Best Way to Meet ASHRAE 62.2 in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BEST WAY TO MEET BEST WAY TO MEET ASHRAE 62.2 IN MULTIFAMILY BUILDINGS Iain Walker (LBNL) Building America Meeting 2013 ASHRAE 62.2 - 2013  Replaced previous 62-89 to be specifically for low-rise (under four story) residential  Under continuous revision  Current version is 2013  Has new section 8 for multi- family  A building = a unit  Applies to all units Local Exhaust  Local exhaust fans must be installed in bathrooms and kitchens  Must exhaust to outside  Bathrooms  50 CFM on-demand, or  20 CFM continuous.  Kitchen  100 CFM on-demand, or  5 ACH continuous, based on kitchen volume. Exception for existing units  Increase whole unit ventilation if lacking kitchen and bathroom exhausts  Missing exhausts are a "deficit"

274

ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings Speaker(s): Steve Taylor Date: April 20, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Steve Taylor, the principal of Taylor Engineering, will be providing an overview of the envelope, lighting, and HVAC requirements of Standard 90.1. Mr. Taylor is a registered mechanical engineer specializing in HVAC system design, control system design, indoor air quality engineering, computerized building energy analysis, and HVAC system commissioning. He graduated from Stanford University with a BS in Physics and a MS in Mechanical Engineering and has over 20 years of commercial HVAC system design and construction experience. He was the primary author of the HVAC

275

ASHRAE Standard 90.1-2007 -- Mechanical and Service Water Heating  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanical and Service Water Heating Mechanical and Service Water Heating Requirements This course provides an overview of the mechanical and service water heating requirements of ASHRAE Standard 90.1-2007. Estimated Length: 1 hour, 32 minutes Presenters: Mark Hydeman, Taylor Engineering Original Webcast Date: Thursday, February 28, 2008 - 13:00 CEUs Offered: 1.5 AIA/CES LU (HSW); .15 CEUs towards ICC renewal certification. Course Type: Video Downloads: Presentation Slides Video Watch on YouTube Visit the BECP Online Training Center for instructions on how to obtain a certificate of completion. Building Type: Commercial Focus: Compliance Code Version: ASHRAE Standard 90.1-2007 Target Audience: Architect/Designer Builder Code Official Contractor Engineer State Official Contacts Web Site Policies U.S. Department of Energy

276

ASHRAE Standard 90.1-1999 Quantitative Analysis Worksheet | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

1999 Quantitative Analysis Worksheet 1999 Quantitative Analysis Worksheet This worksheet aggregates the results of building energy simulations used in support of the U.S. Department of Energy's determination regarding whether ASHRAE Standard 90.1-1999 will improve energy efficiency in commercial buildings. This determination is required by Section 304 of the Energy Conservation and Production Act. Publication Date: Monday, January 30, 2006 BECP_90_1SavingsAnalysis(050101update).xls 90_1savingsanalysis.zip Document Details Focus: Regulatory Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999 Document type: Analysis Determination Target Audience: Federal Official State Official Contacts Web Site Policies U.S. Department of Energy USA.gov Last Updated: Tuesday, December 10, 2013 - 13:20

277

ASHRAE Standard 90.1-2007 -- Lighting and Power Requirements | Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting and Power Requirements Lighting and Power Requirements This course provides an overview of the lighting and power requirements of ASHRAE Standard 90.1-2007. Estimated Length: 60 minutes Presenters: Eric Richman, Pacific Northwest National Laboratory Original Webcast Date: Thursday, January 10, 2008 - 13:00 CEUs Offered: 1.0 AIA/CES LU (HSW); .10 CEUs towards ICC renewal certification. Course Type: Video Downloads: Presentation Slides Video Watch on YouTube Visit the BECP Online Training Center for instructions on how to obtain a certificate of completion. Building Type: Commercial Focus: Compliance Code Version: ASHRAE Standard 90.1-2007 Target Audience: Architect/Designer Builder Code Official Contractor Engineer State Official Contacts Web Site Policies U.S. Department of Energy USA.gov

278

Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140; Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Validation and Testing: Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140 Preprint R. Judkoff National Renewable Energy Laboratory J. Neymark J. Neymark & Associates Presented at the ASHRAE 2006 Annual Meeting Quebec City, Canada June 24-29, 2006 Conference Paper NREL/CP-550-40360 July 2006 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

279

ANSI/ASHRAE/IES Standard 90.1-2010 | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

IES Standard 90.1-2010 IES Standard 90.1-2010 The materials for this course may be used for in-person training purposes. The presentation slides focus on the envelope; heating, ventilation, and air conditioning; power and lighting; and scope and application requirements of ASHRAE Standard 90.1-2010. Presenters: Course materials originally published by the DOE Building Energy Codes Program, April, 2011. Course Type: Training Materials In-person Downloads: Presentation Slides -- Scope and Application Presentation Slides -- Envelope Presentation Slides -- HVAC Presentation Slides -- Power and Lighting Building Type: Commercial Focus: Compliance Code Version: ASHRAE Standard 90.1-2010 Target Audience: Architect/Designer Builder Code Official Contractor Engineer State Official Contacts Web Site Policies

280

Microsoft Word - ASHRAE_Water Heater Paper_2010-11-24_Final_LBNL_.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers Presented at: 2011 ASHRAE Winter Conference, Las Vegas, Nevada January 2011 Alex B. Lekov, Victor H. Franco, Steve Meyers, Lisa Thompson, and Virginie Letschert Lawrence Berkeley National Laboratory Environmental Energy Technologies Division One Cyclotron Road Berkeley, CA 94720 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY 2 Disclaimer This document was prepared as an account of work sponsored by the United States

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Presented at the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior Envelopes of Buildings VII, Clearwater Beach, Florida, December 7-11, 1998, and published in the Proceedings.  

E-Print Network (OSTI)

LBNL-41352 TA-421 Presented at the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior, Christian Köhler, Howdy Goudey, Daniel Türler, and Dariush Arasteh P.E., ASHRAE member Windows Griffith, Christian Köhler, Howdy Goudey, Daniel Türler, and Dariush Arasteh P.E., ASHRAE member ABSTRACT

282

Sources  

NLE Websites -- All DOE Office Websites (Extended Search)

SOURCES Microsoft Corporation. "Gasohol," Microsoft Encarta Online Encyclopedia 2001, http:encarta.msn.com. U.S. Department of Transportation, Federal Highway Administration, A...

283

Labs21 Laboratory Modeling Guidelines using ASHRAE 90.1-1999  

SciTech Connect

The following is a guideline for energy modeling of laboratory spaces in a building in accordance with the Energy Cost Budget method described in ASHRAE 90.1-1999 Energy Standard for Buildings Except Low-Rise Residential Buildings. For the purposes of this document, a laboratory is defined as any space requiring once through ventilation systems (recirculation of air to other spaces in a building is not allowed). To accomplish this, ventilation systems in laboratories typically provide 100% outside air to the occupied space. The guideline is structured similarly to the ASHRAE 90.1-99 standard. Only those sections being clarified or modified are discussed in the guideline; all other sections should be followed as defined in the standard. Specifically, those sections that are affected include the following: (1) 6.3.3.1 - Fan Power Limitation (modification); (2) 6.3.7.2 - Fume Hoods (modification); (3) 11.3.11 - Schedules (modification); (4) 11.4.3 - HVAC Systems (clarification); (5) 11.4.3 (h) Budget Supply-Air-to-Room Air Temperature Difference (modification); (6) 11.4.3(i) - Fan system efficiency (modification); and (7) Table 11.4.3A - Budget System Descriptions (modification). For energy efficiency measures that are not explicitly addressed by the standard, we recommend application of Section 11.5, Exceptional Calculation Methods. This guideline does not cover the details of such calculation methods.

Reilly, Susan; Walsh, Michael; Graham, Carl; Maor, Itzhak; Mathew, Paul; Porter, Fred; Sartor, Dale; Van Geet, Otto

2005-10-01T23:59:59.000Z

284

THIS PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 2003, V. 109, Pt. 1. Not to be reprinted in whole or in part without written permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, I  

E-Print Network (OSTI)

THIS PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 2003, V. 109(s) and do not necessarily reflect the views of ASHRAE. Written questions and comments regarding this paper should be received at ASHRAE no later than February 7, 2003. ABSTRACT The proposed ASHRAE Standard 152P

Siegel, Jeffrey

285

Michigan State Code Adoption Analysis: Cost-Effectiveness of Lighting Requirements - ASHRAE/IESNA 90.1-2004  

SciTech Connect

This report documents PNNL's analysis of the potential energy effect and cost-effectiveness of the lighting requirements in ASHRAE/IESNA 90.1-2004 if this energy code is adopted in the state of Michigan, instead of the current standard.

Richman, Eric E.

2006-09-29T23:59:59.000Z

286

Methodology for Rating a Building's Overall Performance based on the ASHRAE/CIBSE/USGBC Performance Measurement Protocols for Commercial Buildings  

E-Print Network (OSTI)

This study developed and applied a field test to evaluate the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Chartered Institute of Building Services Engineers (CIBSE)/United States Green Building Council (USGBC) Performance Measurement Protocols (PMP) for Commercial Buildings in a case-study office building in central Texas. As the first integrated protocol on building performance measurement, the ASHRAE PMP accomplished its goal of providing the standardized protocols for measuring and comparing the overall performance of a building, including energy, water, thermal comfort, Indoor Air Quality (IAQ), lighting, and acoustics. However, several areas for improvement were identified such as conflicting results from different procedures or benchmarks provided in the ASHRAE PMP; limited guidelines for performing the measurements; lack of detailed modeling techniques, graphical indices, and clear benchmarks; and some practical issues (i.e., high cost requirements and time-intensive procedures). All these observations are listed as the forty issues, including thirteen for energy, five for water, and twenty-two for Indoor Environmental Quality (IEQ). Recommendations were developed for each issue identified. For the selected high-priority issues, twelve new or modified approaches were proposed and then evaluated against the existing procedures in the ASHRAE PMP. Of these twelve new or modified approaches, the following are the most significant developments: a more accurate monthly energy use regression model including occupancy; a monthly water use regression model for a weather-normalized comparison of measured water performance; a method how to use a vertical temperature profile to evaluate room air circulation; a method how to use LCeq LAeq difference as a low-cost alternative to estimate low frequency noise annoyance; a statistical decomposition method of time-varying distribution of indices; and a real-time wireless IEQ monitoring system for the continuous IEQ measurements. The application of the forty recommendations and the twelve new or modified approaches developed in this study to the ASHRAE PMP is expected to improve the applicability of the ASHRAE PMP, which aligns the overall purpose of this study. Finally, this study developed a new single figure-of-merit rating system based on the ASHRAE PMP procedures. The developed rating system is expected to improve the usability of the protocols.

Kim, Hyojin 1981-

2012-12-01T23:59:59.000Z

287

Analysis of IECC (2003, 2006, 2009) and ASHRAE 90.1-2007 Commercial Energy Code Requirements for Mesa, AZ.  

Science Conference Proceedings (OSTI)

This report summarizes code requirements and energy savings of commercial buildings in Climate Zone 2B built to the 2009 IECC and ASHRAE Standard 90.1-2007 when compared to the 2003 IECC and the 2006 IECC. In general, the 2009 IECC and ASHRAE Standard 90.1-2007 have higher insulation requirements for exterior walls, roof, and windows and have higher efficiency requirements for HVAC equipment. HVAC equipment efficiency requirements are governed by National Appliance Conversion Act of 1987 (NAECA), and are applicable irrespective of the IECC version adopted. The energy analysis results show that commercial buildings meeting the 2009 IECC requirements save 4.4% to 9.5% site energy and 4.1% to 9.9% energy cost when compared to the 2006 IECC; and save 10.6% to 29.4% site energy and 10.3% to 29.3% energy cost when compared to the 2003 IECC. Similar analysis comparing ASHRAE Standard 90.1-2007 requirements to the 2006 IECC shows that the energy savings are in the 4.0% to 10.7% for multi-family and retail buildings, but less than 2% for office buildings. Further comparison of ASHRAE Standard 90.1-2007 requirements to the 2003 IECC show site energy savings in the range of 7.7% to 30.6% and energy cost savings range from 7.9% to 30.3%. Both the 2009 IECC and ASHRAE Standard 90.1-2007 have the potential to save energy by comparable levels for most building types.

Huang, Yunzhi; Gowri, Krishnan

2011-02-28T23:59:59.000Z

288

New Peak Moisture Design Data in the 1997 ASHRAE Handbook of Fundamentals  

E-Print Network (OSTI)

Chapter 26 of the 1997 edition of the Handbook of Fundamentals published by ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers) contains climatic design data that has been completely revised, recalculated and expanded. Designers of air conditioning systems for hot and humid climates will be pleased to note that, for the first time, the chapter contains values for peak moisture conditions. This is in sharp contrast to older editions, which contained only the average moisture during periods of peak dry bulb temperatures. The new data show that using earlier, temperature-based data for humidity design underestimates the true peak moisture loads by 30 to 50% depending on the humidity control level in the space. This paper explains the new data elements and suggests some of its potential implications for engineers designing air conditioning systems for hot and humid climates.

Harriman, L.

1998-01-01T23:59:59.000Z

289

Update and Overview of the U.S. Department of Energy's Rulemakings for ASHRAE 90.1 Equipment Presentation, dated June 26, 2011  

Energy.gov (U.S. Department of Energy (DOE))

This document is the U.S. Department of Energys presentation titled Update and Overview of the U.S. Department of Energy's Rulemakings for ASHRAE 90.1 Equipment?, date 6/26/2011.

290

Application of an ASHRAE 152-2004 Duct Model for Simulating Code-Compliant 2000/2001 IECC Residences  

E-Print Network (OSTI)

This paper presents the results of the application of the duct model based on ASHRAE 152-2004 - Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems (ASHRAE 2004) to the code compliant 2001 International Energy Conservation Code (IECC)1 (ICC 1999, 2001) using DOE-2.1e building energy simulation program2. Code compliant DOE-2 simulation model was developed based on IECC and the duct model (Kim and Haberl 20083) was applied to the IECC-code compliant model. Then, the efficiency analyses of the IECC-compliant simulation model were performed on: 1) duct properties, and 2) the different locations of HVAC system and ductwork including the attic space and conditioned space based on the different climate zones.

Haberl, J.S.; Kim, S.

2010-01-01T23:59:59.000Z

291

Development of a Web-Based Code-Compliant ASHRAE 90.1-1999 Commercial Simulation for Texas  

E-Print Network (OSTI)

This paper describes the development of a web-based, code-compliant ASHRAE Standard 90.1-1999 commercial simulation for Texas. Included in the paper is a description of the software and database platform used in the web application and how this software is attached to the DOE-2 legacy software running on a cluster of servers. This tool will be used by commercial builders in Texas to check code compliance of new commercial construction for specific building types.

Haberl, J.; Culp, C.; Yazdani, B.

2009-07-01T23:59:59.000Z

292

Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003  

E-Print Network (OSTI)

Determining Air Leakage Rate by Fan Pressurization. Americanof Building Envelopes by the Fan Pressurization Method.Dominated by Strong Exhaust Fan. ASHRAE Transactions. Vol

Roberson, J.

2004-01-01T23:59:59.000Z

293

Development of the design climatic data for the 1997 ASHRAE Handbook -- Fundamentals  

SciTech Connect

This paper describes the process used to revise the design weather data tables in the 1997 ASHRAE Handbook--Fundamentals. Design conditions were determined for 509 US, 134 Canadian, 339 European, 293 Asian, and 169 other worldwide locations. Thirty-three years of hourly weather data were used for approximately half of the US and all of the Canadian locations. Twelve years of data were used for the other locations. The data went through quality checking and short-term linear interpolation filling processes. Months that had sufficient data were then used in the analysis. The data were analyzed to produce annual frequency-of-occurrence design dry-bulb (DB), wet-bulb (WB), and dew-point (DP) temperatures with mean coincident values at the design conditions. A comparison with the previous design values indicated that the new dry-bulb and wet-bulb design conditions are slightly less extreme than the values previously published. However, the new design dew-point values indicate the potential for significantly more extreme dehumidification design conditions than would be found by using the old extreme dry-bulb temperature with mean coincident wet-bulb temperature. Software was also developed so users could extract the design values, cumulative frequencies, and DB/DP, DB/WB, DB/H, and DB/WS coincident matrices for 1444 locations from a CD-ROM.

Colliver, D.G.; Burks, T.F.; Gates, R.S.; Zhang, H.

2000-07-01T23:59:59.000Z

294

Austin's Adoption of ASHRAE S.P. #41 into the Local Energy Code  

E-Print Network (OSTI)

The City of Austin amended the local Energy Code in December 1984 to incorporate the principal recommendations of ASHRAE Standard Project #41. Revisions to the Code were recommended by a special Task Force appointed by the City Council; Task Force members represented major elements of the construction industry and local community. The Code revisions were reviewed and supported by numerous local City boards and commissions after nearly a year's work by the Task Force. Principal changes effecting commercial construction involved deleting OTTV criteria and adding three new criteria: 1. Wall heating criteria 2. Wall cooling criteria 3. Peak cooling criteria The new envelope criteria makes adjustments for building geometry, orientation, shading, insulation, lighting power and controls. A performance index encourages good design by increased awareness of what factors make a difference, The new lighting code methodology is based upon specified watts per square foot for different tasks and gives credit for ceiling height and room size. Cooling equipment efficiencies were increased by 5 to 15%. Pipe and tank insulation Levels were raised and a variety of minor control modifications were added. This paper discusses the code changes related to commercial building envelopes and lighting s-system.

Hart, M. N.; Holder, L.M.

1985-01-01T23:59:59.000Z

295

Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-2001 as the Commercial Building Energy Code in Tennessee  

SciTech Connect

ASHRAE Standard 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings (hereafter referred to as ASHRAE 90.1-2001 or 90.1-2001) was developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The State of Tennessee is considering adopting ASHRAE 90.1-2001 as its commercial building energy code. In an effort to evaluate whether or not this is an appropriate code for the state, the potential benefits and costs of adopting this standard are considered in this report. Both qualitative and quantitative benefits and costs are assessed. Energy and economic impacts are estimated using the Building Loads Analysis and System Thermodynamics (BLAST) simulations combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits. Tennessee currently has ASHRAE Standard 90A-1980 as the statewide voluntary/recommended commercial energy standard; however, it is up to the local jurisdiction to adopt this code. Because 90A-1980 is the recommended standard, many of the requirements of ASHRAE 90A-1980 were used as a baseline for simulations.

Cort, Katherine A.; Winiarski, David W.; Belzer, David B.; Richman, Eric E.

2004-09-30T23:59:59.000Z

296

Twenty Years On!: Updating the IEA BESTEST Building Thermal Fabric Test Cases for ASHRAE Standard 140: Preprint  

SciTech Connect

ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs applies the IEA BESTEST building thermal fabric test cases and example simulation results originally published in 1995. These software accuracy test cases and their example simulation results, which comprise the first test suite adapted for the initial 2001 version of Standard 140, are approaching their 20th anniversary. In response to the evolution of the state of the art in building thermal fabric modeling since the test cases and example simulation results were developed, work is commencing to update the normative test specification and the informative example results.

Judkoff, R.; Neymark, J.

2013-07-01T23:59:59.000Z

297

THIS PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 2003, V. 109, Pt. 1. Not to be reprinted in whole or in part without written permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, I  

E-Print Network (OSTI)

THIS PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 2003, V. 109(s) and do not necessarily reflect the views of ASHRAE. Written questions and comments regarding this paper should be received at ASHRAE no later than February 7, 2003. ABSTRACT Aspartofa

298

THIS PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 2003, V. 109, Pt. 1. Not to be reprinted in whole or in part without written permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, I  

E-Print Network (OSTI)

THIS PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 2003, V. 109(s) and do not necessarily reflect the views of ASHRAE. Written questions and comments regarding this paper should be received at ASHRAE no later than February 7, 2003. ABSTRACT Flow boiling in small passages

Kandlikar, Satish

299

Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-1999 as a Commercial Building Energy Code in Michigan  

SciTech Connect

The state of Michigan is considering adpoting ASHRAE 90.1-1999 as its commercial building energy code. In an effort to evaluate whether or not this is an appropraite code for the state, the potential benefits and costs of adopting this standard are considered. Both qualitative and quantitative benefits are assessed. The energy simulation and economic results suggest that adopting ASHRAE 90.1-1999 would provide postitive net benefits to the state relative to the building and design requirements currently in place.

Cort, Katherine A.; Belzer, David B.; Halverson, Mark A.; Richman, Eric E.; Winiarski, David W.

2002-09-30T23:59:59.000Z

300

Weighting Factors for the Commercial Building Prototypes Used in the Development of ANSI/ASHRAE/IESNA Standard 90.1-2010  

SciTech Connect

Detailed construction data from the McGraw Hill Construction Database was used to develop construction weights by climate zones for use with DOE Benchmark Buildings and for the ASHRAE Standard 90.1-2010 development. These construction weights were applied to energy savings estimates from simulation of the benchmark buildings to establish weighted national energy savings.

Jarnagin, Ronald E.; Bandyopadhyay, Gopal K.

2010-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ASHRAE's Proposed Guideline 14P for Measurement of Energy and Demand Savings: How to Determine What Was Really Saved by the Retrofit  

E-Print Network (OSTI)

ASHRAE has recently completed the development of Guideline 14 to fill a need for a standard set of energy (and demand) savings calculation procedures. Guideline 14 is intended to be a guideline that provides a minimum acceptable level of performance in the measurement of energy and demand savings from energy management projects applied to residential, commercial or industrial buildings. Such measurements can serve as the basis for commercial transactions between Energy Service Companies (ESCOs) and their customers, or other energy conservation providers that rely on energy savings as the basis for repayment of the costs of the retrofit. When applied properly, ASHRAE Guideline 14 is expected to provide adequate assurance for the payment of services by allowing for well specified measurement methods that provide reasonably accurate savings calculations. ASHRAE Guideline 14 may also be used by governments to calculate pollution reductions from energy efficiency activities. Since Guideline 14 is intended to be applied to an individual building, or a few buildings served by a utility meter, large scale utility energy conservation programs, such as those involving statistical sampling, are not addressed by the current version of Guideline 14. Furthermore, metering standards and procedures for calculating savings from modifications to major industrial process loads are also not covered. This paper presents an overview of the measurement methods contained in ASHRAE Guideline 14 , including a discussion about how they were developed, and their intended relationship with other national protocols for measuring savings from energy conservation programs, such as the USDOE's International Performance Measurement and Verification Protocols (IPMVP).

Haberl, J. S.; Reeves, G.; Gillespie, K.; Claridge, D. E.; Cowan, J.; Culp, C.; Frazell, W.; Heinemeier, K.; Kromer, S.; Kummer, J.; Mazzucchi, R.; Reddy, A.; Schiller, S.; Sud, I.; Wolpert, J.; Wutka, T.

2001-01-01T23:59:59.000Z

302

MODELING OF STANDING COLUMN WELLS IN GROUND SOURCE HEAT PUMP SYSTEMS  

E-Print Network (OSTI)

thanks go to Rob, absolutely for everything. This work was partially supported by the ASHRAE RP-1119, and partially supported by an ASHRAE Grant-in-Aid scholarship. ASHRAE's support is gratefully acknowledged. #12

303

The Application and Verification of ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems) to DOE-2-1e Simulation Program  

E-Print Network (OSTI)

This report describes the application and verification of duct model on DOE 2.1e version 119 using ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems). It begins with a concept of duct model which is developed by ASHRAE and shows the application and the verification of the duct model to DOE 2.1e version 119 simulation program.

Kim, S.; Haberl, J. S.

2008-06-01T23:59:59.000Z

304

Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-1999 as a Commercial Building Energy Code in Illinois Jurisdictions  

SciTech Connect

ASHRAE Standard 90.1-1999 was developed in an effort to set minimum requirements for energy efficienty design and construction of new commercial buildings. This report assesses the benefits and costs of adopting this standard as the building energy code in Illinois. Energy and economic impacts are estimated using BLAST combined with a Life-Cycle Cost approach to assess corresponding economic costs and benefits.

Belzer, David B.; Cort, Katherine A.; Winiarski, David W.; Richman, Eric E.; Friedrich, Michele

2002-05-01T23:59:59.000Z

305

Assessment of Energy Use and Comfort in Buildings Utilizing Mixed-Mode Controls with Radiant Cooling  

E-Print Network (OSTI)

E. (2005). "ASHRAE Handbook- Fundamentals." American SocietyE. (2005). "ASHRAE Handbook-Fundamentals." American Societyin the ASHRAE Handbook of Fundamentals (and similar sources)

Borgeson, Samuel Dalton

2010-01-01T23:59:59.000Z

306

Step 6. Get Help When You Need It | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

from several sources. BECP Helpdesk ICC Technical Opinions and Interpretations ASHRAE Standards Interpretations: ASHRAE Standard 90.1-2007 Interpretation ASHRAE Standard...

307

J u l y , 1 9 9 7 A S H R A E J o u r n a l 19 The following article was published in ASHRAE Journal, July1997. Copyright 1997 American Society of Heating, Refrigerating and Air-Conditioning Engineers,  

E-Print Network (OSTI)

J u l y , 1 9 9 7 A S H R A E J o u r n a l 19 The following article was published in ASHRAE/or distributed electronically or in paper form without permission of ASHRAE. A S H RAE JOURNAL Most traditional By Gary S. Settles, Ph.D. Member ASHRAE he patterns of airflow are central to almost everything associated

Settles, Gary S.

308

Thermal efficiency standards and codes. Volume 2. Relationships of ASHRAE standards and external factors to energy efficient building practices in new homes  

Science Conference Proceedings (OSTI)

Available data on 1976 and 1979 new home construction practices were used to develop measures of average building practice for each of the 48 contiguous states. Four possible views of the function and purpose of building energy standards and codes were posited and used to guide the search for relationships between building practice and building energy codes and standards implemented by the states. It was found that the average thermal efficiency of new single family homes improved from 1976 to 1979 in each of the 48 states. It was observed that by 1979 the average thermal efficiency of new homes in each of the 48 states exceeded American Society of Heating, Refrigerating and Air Conditioning Engineers Standard 90-75 (ASHRAE 90). However, in all states, there were substantial numbers of new homes which did not meet the Standard. By January 1, 1979, 23 states had some type of applicable building energy code or standard in effect; 11 of these had state-wide mandatory codes. All codes and standards were either identical to or very similar to the ASHRAE Standard 90-75 in their building shell requirements. A search for statistical evidence of a relationship between state building code activities and building practice was performed. Three marginally significant relationships were found by analysis of variance; however, these relationships were not significant in regression equations with socio-economic variables present. The conclusion here is that the effects of state building code actions on building practices were not detectable by the statistical methods used.

McCold, L.N.; Collins, N.E.; Zuschneid, P.B.; Hofstra, R.B.

1984-02-01T23:59:59.000Z

309

Development of a Toolkit for Calculating Linear, Change-Point Linear and Multiple-Linear Inverse Building Energy Analysis Models, ASHRAE Research Project 1050-RP, Final Report  

E-Print Network (OSTI)

This report summarizes the results of ASHRAE Research Project 1050: Development of a Toolkit for Calculating Linear, Change-Point Linear and Multiple Linear Inverse Building Energy Analysis Models. The Inverse Modeling Toolkit (WIT) is a FORTRAN 90 application for developing regression models of building energy use. IMT can identify single and multi-variable least-squares regression models. It can also identify variable-base degree-day and single and multi-variable change-point models, which have been shown to be especially useful for modeling building energy use. This report includes background information about IMT and the models, instructions for its installation and operation, and the results of accuracy and robustness testing.

Kissock, J. K.; Haberl, J. S.; Claridge, D. E.

2002-11-01T23:59:59.000Z

310

Electric co-heating in the ASHRAE standard method of test for thermal distribution efficiency: Test results on two New York State homes  

SciTech Connect

Electric co-heating tests on two single-family homes with forced-air heating systems were carried out in March 1995. The goal of these tests was to evaluate procedures being considered for incorporation in a Standard Method of Test for thermal distribution system efficiency now being developed by ASHRAE. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the building equipment that produces this thermal energy to the spaces in which it is used. Furthering the project goal, the first objective of the tests was to evaluate electric co-heating as a means of measuring system efficiency. The second objective was to investigate procedures for obtaining the distribution efficiency, using system efficiency as a base. Distribution efficiencies of 0.63 and 0.70 were obtained for the two houses.

Andrews, J.W.; Krajewski, R.F.; Strasser, J.J.

1995-10-01T23:59:59.000Z

311

Compilation of Diversity Factors and Schedules for Energy and Cooling Load Calculations, ASHRAE Research Project 1093, Preliminary Report, Literature Review and Database Search  

E-Print Network (OSTI)

In this report, the first report for the ASHRAE 1093-RP project, we present: (1) our extended literature search of methods used to derive load shapes and diversity factors in the U.S. and Europe, (2) a survey of available databases of monitored commercial end-use electrical data in the U.S. and Europe, and (3) a review of classification schemes of the commercial building stock listed in national standards and codes, and reported by researchers and utility projects. The findings in this preliminary report will help us in performing the next steps of the project where we will identify and test appropriate daytyping methods on relevant monitored data sets of lighting and equipment (and other surrogates for occupancy) to develop a library of diversity factors and schedules for use in energy and cooling load simulations. The goal of this project is to compile a library of schedules and diversity factors for energy and cooling load calculations in various types of indoor office environments in the U.S. and Europe. Two sets of diversity factors, one for peak cooling load calculations and one for energy calculations will be developed.

Abushakra, B.; Haberl, J. S.; Claridge, D. E.

1999-05-01T23:59:59.000Z

312

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University  

E-Print Network (OSTI)

for Residential Ground Source Heat Pump Systems In the United States. ASHRAE Transactions. 118(1):1039-1048 ©ASHRAE, www.ashrae.org. Reprinted by permission from ASHRAE Transactions, Vol. 118 Part 1, 2012. This material may not be copied or distributed in either paper or digital form without ASHRAE's permission. #12

313

ONE-PAGE SUMMARY Qingyan "Yan" Chen, Ph.D.  

E-Print Network (OSTI)

of direct cooling ground source heat pump systems. Proceedings of CIBSE/ASHRAE Conference, Edinburgh

Chen, Qingyan "Yan"

315

Sources - CECM  

E-Print Network (OSTI)

help annotate Contents Next: References Up: RamanujanModular Equations, Previous: Ramanujan's sum. Sources. [Annotate] [Shownotes]. References [7]...

316

Ion source  

DOE Patents (OSTI)

A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

1984-01-01T23:59:59.000Z

317

Competitive Sourcing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMPETITIVE SOURCING COMPETITIVE SOURCING ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ Report on Competitive Sourcing Results Fiscal Year 2006 May 2007 Executive Office of the President Office of Management and Budget TABLE OF CONTENTS Executive Summary ...................................................................................... 1 Introduction................................................................................................. 4 I. The big picture ......................................................................................... 4 II. How public-private competition was used in FY 2006 .................................... 6 A. Anticipated benefits from competition in FY 2006

318

NEUTRON SOURCES  

DOE Patents (OSTI)

A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

Richmond, J.L.; Wells, C.E.

1963-01-15T23:59:59.000Z

319

Competitive Sourcing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competitive Sourcing Competitive Sourcing The Department of Energy's (DOE) Competitive Sourcing program is a management initiative aimed at improving DOE's performance and reducing the Department's operational costs. The program is governed by Office of Management and Budget (OMB) Circular A- 76, Performance of Commercial Activities, dated May 29, 2003. The commercial activities selected for review and competition include functions performed by government employees that are readily available in the private sector, and where the potential for efficiencies, regardless of the winning provider, are highly likely. The candidate functions are chosen from the Department's annual Federal Activities Inventory Reform (FAIR) Act Inventory and subjected to a feasibility review to determine if a prudent business case can be made to enter

320

Neutron source  

DOE Patents (OSTI)

A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

Cason, J.L. Jr.; Shaw, C.B.

1975-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ION SOURCE  

DOE Patents (OSTI)

The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

Leland, W.T.

1960-01-01T23:59:59.000Z

322

RADIATION SOURCES  

DOE Patents (OSTI)

A novel long-lived source of gamma radiation especially suitable for calibration purposes is described. The source of gamma radiation is denoted mock iodine131, which comprises a naixture of barium-133 and cesium-137. The barium and cesium are present in a barium-cesium ratio of approximately 5.7/1 to 14/1, uniformly dispersed in an ion exchange resin and a filter surrounding the resin comprised of a material of atomic number below approximately 51, and substantially 0.7 to 0.9 millimeter thick.

Brucer, M.H.

1958-04-15T23:59:59.000Z

323

NEUTRON SOURCE  

DOE Patents (OSTI)

A neutron source of the antimony--beryllium type is presented. The source is comprised of a solid mass of beryllium having a cylindrical recess extending therein and a cylinder containing antimony-124 slidably disposed within the cylindrical recess. The antimony cylinder is encased in aluminum. A berylliunn plug is removably inserted in the open end of the cylindrical recess to completely enclose the antimony cylinder in bsryllium. The plug and antimony cylinder are each provided with a stud on their upper ends to facilitate handling remotely.

Reardon, W.A.; Lennox, D.H.; Nobles, R.G.

1959-01-13T23:59:59.000Z

324

COMPETITIVE SOURCING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMPETITIVE SOURCING COMPETITIVE SOURCING EXECUTIVE STEERING GROUP MEETING PROCEEDINGS June 17, 2002 8:30 am - 11:00 am Room 5E-069 ATTENDEES John Gordon Robert Card Bruce Carnes Kathy Peery Brendan Danaher, AFGE Tony Lane Karen Evans Bill Sylvester Claudia Cross Brian Costlow Laurie Smith Helen Sherman Frank Bessera Rosalie Jordan Dennis O'Brien Mark Hively Robin Mudd Steven Apicella AGENDA 8:30 a.m. - 8:35 a.m. Opening Remarks 8:35a.m. - 8:55 a.m. Executive Steering Group roles and responsibilities, A-76 status, and talking points Team Briefings 8:55 a.m. - 9:20 a.m. Information Technology Study 9:20 a.m. - 9:45 a.m. Financial Services Study

325

ION SOURCE  

DOE Patents (OSTI)

An ion source is described and comprises an arc discharge parallel to the direction of and inside of a magnetic field. an accelerating electrode surrounding substantially all of the discharge except for ion exit apertures, and means for establishing an electric field between that electrode and the arc discharge. the electric field being oriented at an acute angle to the magnetic field. Ions are drawn through the exit apertures in the accelrating electrcde in a direction substantially divergent to the direction of the magnetic field and so will travel in a spiral orbit along the magnetic field such that the ions will not strike the source at any point in their orbit within the magnetic field.

Blue, C.W.; Luce, J.S.

1960-07-19T23:59:59.000Z

326

COMPETITIVE SOURCING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EXECUTIVE STEERING GROUP Meeting Proceedings October 30, 2002 Room 6E-069, 10:30 - 12:00 Agenda Opening Remarks Bruce Carnes Competitive Sourcing Update Denny O'Brien Team Briefings Team Leads ESG Discussion/Wrap up Bruce Carnes Attendees Bruce Carnes, Acting Chair MaryAnn Shebek Robert Card Prentis Cook Ambassador Brooks Tony Lane Kyle McSlarrow Karen Evans Suzanne Brennan, NTEU Claudia Cross Brian Costlow Helen Sherman Frank Bessera Laurie Morman Denny O'Brien Travis McCrory Bill Pearce Jeff Dowl Mark Hively Steven Apicella Robin Mudd Bruce Carnes chaired the meeting and began with welcoming NTEU to the meeting. In regard to the OMB's Balanced Scorecard, the Department has achieved a Green on progress and we are close to achieving a yellow on status.

327

Radiation source  

DOE Patents (OSTI)

A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.

Thode, Lester E. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

328

High-performance facades design strategies and applications in North America and Northern Europe  

E-Print Network (OSTI)

Berkeley. 4. ASHRAE Handbook Fundamentals. (2009). ASHRAE.including the ASHRAE Handbook of Fundamentals (ASHRAE, 2009)

Zelenay, Krystyna; Perepelitza, Mark; Lehrer, David

2011-01-01T23:59:59.000Z

329

Evaluation of Various Turbulence Models in Predicting Airflow and1 Turbulence in Enclosed Environments by CFD: Part-1:2  

E-Print Network (OSTI)

Qingyan Chen* 5 Member ASHRAE Student Member ASHRAE Member ASHRAE Fellow ASHRAE6 7 Air distributions

Chen, Qingyan "Yan"

330

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

Engineers,Atlanta,GA. (1993) ASTM,StandardE1827?96,StandardTestMethodsforDeterminingAirtightnessofDoor, ASTM Book of Standards, American Society of

Sherman, Max

2008-01-01T23:59:59.000Z

331

Geothermal System Overview ASHRAE Headquarters Building  

E-Print Network (OSTI)

and a corridor zone on floor 1 · Heating / cooling area for VRF ­ 18,226 sq. ft. ­ All zones on floor 1 (minus: 288.6 kBtu/hr · All zones on floor 2 and a corridor zone on floor 1 · Loads for VRF system ­ Heating,000.0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Geo HP vs VRF 2010 System Power (kWh) Geo HP VRF #12

Oak Ridge National Laboratory

332

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

Related to Residential Ventilation Requirements. Rudd, A. 2005. Review of Residential Ventilationand Matson N.E. , Residential Ventilation and Energy

Sherman, Max

2008-01-01T23:59:59.000Z

333

Source Selection | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Source Selection Source Selection Source SelectionSource Selection Boards Source Evaluation Board (SEB) Monthly Status Reporting Requirement (pdf) Source Evaluation Board (SEB)...

334

Update on maintenance and service costs of commercial building ground-source heat pump systems  

Science Conference Proceedings (OSTI)

An earlier paper showed that commercial ground-source heat pump systems have significantly lower service and maintenance costs than alternative HVAC systems. This paper expands on those results by adding 13 more buildings to the original 25 sites and by comparing the results to the latest ASHRAE survey of HVAC maintenance costs. Data from the 38 sites are presented here including total (scheduled and unscheduled) maintenance costs in cents per square foot per year for base cost, in-house, and contractor-provided maintenance. Because some of the new sites had maintenance costs that were much higher than the industry norm, the resulting data are not normally distributed. Analysis (O'Hara Hines 1998) indicated that a log-normal distribution is a better fit; thus, the data are analyzed and presented here as log-normal. The log-mean annual total maintenance costs for the most recent year of the survey ranged from 6.07 cents per square foot to 8.37 cents per square foot for base cost and contractor-provided maintenance, respectively.

Cane, D.; Garnet, J.M.

2000-07-01T23:59:59.000Z

335

Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California  

E-Print Network (OSTI)

Length Design for Ground Source Heat Pumps. InternationalClosed-Loop/Ground-Source Heat Pump Systems Installationon Closed-Loop Ground-Source Heat Pump Systems. ASHRAE

Warner, J.L.

2009-01-01T23:59:59.000Z

336

Calibrated Neutron Sources  

Science Conference Proceedings (OSTI)

... NIST designed a compliant source. ... needed for new purposes and as old sources decay ... The figure shows a reprentative energy spectrum from such ...

2013-07-30T23:59:59.000Z

337

Electrolytes for power sources  

DOE Patents (OSTI)

Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.

Doddapaneni, Narayan (Albuquerque, NM); Ingersoll, David (Albuquerque, NM)

1995-01-01T23:59:59.000Z

338

Electrolytes for power sources  

DOE Patents (OSTI)

Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

Doddapaneni, N.; Ingersoll, D.

1995-01-03T23:59:59.000Z

339

Source Selection Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Source Selection Guide Source Selection Guide Source Selection Guide More Documents & Publications Source Selection Guide Source Selection Guide Source Selection...

340

Source Tree Composition  

E-Print Network (OSTI)

Dividing software systems in components improves software reusability as well as software maintainability. Components live at several levels, we concentrate on the implementation level where components are formed by source files, divided over directory structures. Such source code components are usually strongly coupled in the directory structure of a software system. Their compilation is usually controlled by a single global build process. This entangling of source trees and build processes often makes reuse of source code components in different software systems difficult. It also makes software systems inflexible because integration of additional source code components in source trees and build processes is difficult. This paper's subject is to increase software reuse by decreasing coupling of source code components. It is achieved by automized assembly of software systems from reusable source code components and involves integration of source trees, build processes, and configuration processes. Application domains include generative programming, product-line architectures, and commercial off-the-shelf (COTS) software engineering.

Merijn De Jonge

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Next Generation Light Source  

Next Generation Light Source Super Thin Light Bulb, Energy Efficient, Long Life, Dimmable, and Uniform Illumination High Entry Barrier 71 ...

342

Sources of Thermodynamic Data  

Science Conference Proceedings (OSTI)

...The thermodynamic data summarized in Table 2 are collected from a variety of sources. The certainty with which

343

DC source assemblies  

SciTech Connect

Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

Campbell, Jeremy B; Newson, Steve

2013-02-26T23:59:59.000Z

344

Ion Sources - Cyclotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Sources Sources The 88-Inch Cyclotron is fed by three Electron Cyclotron Resonance (ECR) high-charge-state ion sources, the ECR, the AECR, and VENUS, currently the most powerful ECR ion source in the world. Built to answer the demand for intense heavy ion beams, these high performance ion sources enable the 88-Inch Cyclotron to accelerate beams of ions from hydrogen to uranium. The ECR ion sources allow the efficient use of rare isotopes of stable elements, either from natural or enriched sources. A variety of metallic ion beams are routinely produced in our low temperature oven (up to 600°C) and our high temperature oven (up to 2100°C). Furthermore, the ability to produce "cocktails" (mixtures of beams) for the Berkeley Accelerator Space Effects (BASE) Facility adds tremendously to the flexibility of the 88-Inch Cyclotron.

345

Spallation Neutron Source, SNS  

NLE Websites -- All DOE Office Websites (Extended Search)

Spallation Neutron Source Spallation Neutron Source Providing the most intense pulsed neutron beams in the world... Accumulator Ring Commissioning Latest Step for Spallation Neutron Source The Spallation Neutron Source, located at Oak Ridge National Laboratory, has passed another milestone on the way to completion this year--the commissioning of the proton accumulator ring. Brookhaven led the design and construction of the accumulator ring, which will allow an order of magnitude more beam power than any other facility in the world. The Spallation Neutron Source (SNS) is an accelerator-based neutron source being built in Oak Ridge, Tennessee, by the U.S. Department of Energy. The figure on the right shows a schematic of the accumulator ring and transport beam lines that are being designed and built by Brookhaven

346

Source and replica calculations  

Science Conference Proceedings (OSTI)

The starting point of the Hiroshima-Nagasaki Dose Reevaluation Program is the energy and directional distributions of the prompt neutron and gamma-ray radiation emitted from the exploding bombs. A brief introduction to the neutron source calculations is presented. The development of our current understanding of the source problem is outlined. It is recommended that adjoint calculations be used to modify source spectra to resolve the neutron discrepancy problem.

Whalen, P.P.

1994-02-01T23:59:59.000Z

347

Dynamic radioactive particle source  

SciTech Connect

A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

2012-06-26T23:59:59.000Z

348

Locating Sources of Data  

Science Conference Proceedings (OSTI)

Table 4   Guides and directories to sources of materials data and information...1993 The CD-ROM Directory 1993, TFPL Publishing, Washington, DC, 1993.

349

AnthroSources  

Science Conference Proceedings (OSTI)

... placed into the HANIM format (www.hanim.org) and existing animation sequences are applied. The original source of the animations comes from ...

350

Sources of Corrosion Information  

Science Conference Proceedings (OSTI)

Table 3   Sources of corrosion information...Sci.chem.electrochem Newsgroup www.groups.google.com/groups?group=sci.chem..electrochem/...

351

Brochures | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) The Advanced Photon Source: Lighting the Way to a Better Tomorrow aps brochure The APS helps...

352

Publications | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

compendium of information on results from research at the APS. It is the official source for listing APS-related journal articles, conference proceedings and papers,...

353

Divisions | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Chart Argonne Research Divisions APS Research Divisions In May 2002, The Advanced Photon Source was reorganized into three divisions: the Accelerator Systems Division...

354

Improved ion source  

DOE Patents (OSTI)

A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

Leung, K.N.; Ehlers, K.W.

1982-05-04T23:59:59.000Z

355

Radiation Source Replacement Workshop  

Science Conference Proceedings (OSTI)

This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

2010-12-01T23:59:59.000Z

356

PORTABLE SOURCE OF RADIOACTIVITY  

DOE Patents (OSTI)

A portable source for radiogiaphy or radiotherapy is described. It consists of a Tl/sup 170/ or Co/sup 60/ source mounted in a rotatable tungsten alloy plug. The plug rotates within a brass body to positions of safety or exposure. Provision is made for reloading and carrying the device safely. (T.R.H.)

Goertz, R.C.; Ferguson, K.R.; Rylander, E.W.; Safranski, L.M.

1959-06-16T23:59:59.000Z

357

Chemical Plume Source Localization  

Science Conference Proceedings (OSTI)

This paper addresses the problem of estimating a likelihood map for the location of the source of a chemical plume using an autonomous vehicle as a sensor probe in a fluid flow. The fluid flow is assumed to have a high Reynolds number. Therefore, the ... Keywords: Autonomous vehicles, Bayesian inference methods, chemical plume tracing, online mapping, online planning, plume source localization

Shuo Pang; J. A. Farrell

2006-10-01T23:59:59.000Z

358

Humidity in Attics -- Sources and Control Methods  

Science Conference Proceedings (OSTI)

Guidelines for the control of moisture in attics are in a state of flux. The 1981 ASHRAE Handbook of Fundamentals gives only ''Past Practice'', and notes that such practice might not be currently valid. Furthermore, in the past it was assumed that the attic was an inert structure on which moisture would either condense or pass through unaffected. Results are presented which show that the attic is in a constant state of flux, absorbing and releasing moisture. A mathematical model for predicting the moisture content of attic wood members is presented. The model is used to predict hour-by-hour attic air humidity ratio, and seasonal wood moisture content. Results are compared with measured data. The application of the model to the re-calculation of attic ventilation standards is discussed, both with respect to condensation and wood rot.

Cleary, Peter

1984-07-01T23:59:59.000Z

359

source | OpenEI  

Open Energy Info (EERE)

source source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 17, and contains only the reference case. The dataset uses quadrillion Btu. The data is broken down into marketed renewable energy, residential, commercial, industrial, transportation and electric power. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Renewable Energy Consumption Residential sector source transportation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Consumption by Sector and Source- Reference Case (xls, 105 KiB) Quality Metrics Level of Review Peer Reviewed Comment

360

Photonic crystal light source  

DOE Patents (OSTI)

A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Bur, James A. (Corrales, NM)

2004-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Neutron sources and applications  

Science Conference Proceedings (OSTI)

Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-01-01T23:59:59.000Z

362

Microfabricated diffusion source  

DOE Patents (OSTI)

A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.

Oborny, Michael C. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM); Manginell, Ronald P. (Albuquerque, NM)

2008-07-15T23:59:59.000Z

363

Infiltration as Ventilation: Weather-Induced Dilution  

E-Print Network (OSTI)

........................................................................................................................5 ASHRAE Standards ............................................................................................................................... 21 Implications for ASHRAE Standards

364

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Assessment Environmental Assessment Proposed Upgrade and Improvement of the National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York This Environmental Assessment addresses the proposed action by the U.S. Department of Energy to upgrade the facilities of the National Synchrotron Light Source Complex, namely the National Synchrotron Light Source (NSLS), the Accelerator Test Facility and the Source Development Laboratory. The environmental effects of a No-Action Alternative as well as a Proposed Action are evaluated in the Environmental Assessment. The “NSLS Environmental Assessment Fact Sheet” link below leads to a one-page summary of the Environmental Assessment. The “NSLS Environmental Assessment” link below leads to the whole 41-page

365

Alternative fuel information sources  

DOE Green Energy (OSTI)

This short document contains a list of more than 200 US sources of information (Name, address, phone number, and sometimes contact) related to the use of alternative fuels in automobiles and trucks. Electric-powered cars are also included.

Not Available

1994-06-01T23:59:59.000Z

366

Sources of Error  

Science Conference Proceedings (OSTI)

...Sources of error in damage tolerance analysis can be classified as: Uncertainty and assumptions in data input Uncertainty due to assumptions about flaws Interpretations of, and assumptions in, stress history Inaccuracies in stress intensity Computer...

367

Source Remediation vs. Plume  

E-Print Network (OSTI)

This summary paper reviews just some of the extensive scientific literature from the past 20 years on the various aspects of contaminant source remediation and plume management. Some of the major findings of the numerous research projects are presented.

Management Critical Factors; G. Teutsch; H. Rgner; D. Zamfirescu; M. Finkel; M. Bittens

2001-01-01T23:59:59.000Z

368

About | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

the APS Welcome to the Advanced Photon Source Here you will find an introduction and tour of the facility, as well as information about the organizations and opportunities at...

369

Specific Sources of Data  

Science Conference Proceedings (OSTI)

Table 5   Sources of materials data...ASM International, 1989, 1224 pp (C) NIST High Temperature Superconductors Database, Ceramics Division, National Institute of Standards and Technology, Gaithersburg,

370

Bayesian Radiation Source Localization  

Science Conference Proceedings (OSTI)

Locating illicit radiological sources using gamma ray or neutron detection is a key challenge for both homeland security and nuclear nonproliferation. Localization methods using an array of detectors or a sequence of observations in time and space must provide rapid results while accounting for a dynamic attenuating environment. In the presence of significant attenuation and scatter, more extensive numerical transport calculations in place of the standard analytical approximations may be required to achieve accurate results. Numerical adjoints based on deterministic transport codes provide relatively efficient detector response calculations needed to determine the most likely location of a true source. Probabilistic representations account for uncertainty in the source location resulting from uncertainties in detector responses, the approximations that are used, and the potential for nonunique solutions. A Bayesian approach improves on previous likelihood methods for source localization by allowing the incorporation of all available information to help constrain solutions.

Jarman, Kenneth D.; Miller, Erin A.; Wittman, Richard S.; Gesh, Christopher J.

2011-07-01T23:59:59.000Z

371

Spallation Neutron Source  

NLE Websites -- All DOE Office Websites (Extended Search)

D/gim D/gim Spallation Neutron Source SNS is an accelerator-based neutron source. This one-of-a-kind facility pro- vides the most intense pulsed neutron beams in the world. When ramped up to its full beam power of 1.4 MW, SNS will be eight times more powerful than today's best facility. It will give researchers more detailed snapshots of the smallest samples of physical and biological materials than ever before

372

Field emission electron source  

DOE Patents (OSTI)

A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

Zettl, Alexander Karlwalter (Kensington, CA); Cohen, Marvin Lou (Berkeley, CA)

2000-01-01T23:59:59.000Z

373

Magnetron sputtering source  

DOE Patents (OSTI)

A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal.

Makowiecki, Daniel M. (Livermore, WA); McKernan, Mark A. (Livermore, CA); Grabner, R. Fred (Brentwood, CA); Ramsey, Philip B. (Livermore, CA)

1994-01-01T23:59:59.000Z

374

Magnetron sputtering source  

DOE Patents (OSTI)

A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal. 12 figs.

Makowiecki, D.M.; McKernan, M.A.; Grabner, R.F.; Ramsey, P.B.

1994-08-02T23:59:59.000Z

375

HIGH VOLTAGE ION SOURCE  

DOE Patents (OSTI)

A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

Luce, J.S.

1960-04-19T23:59:59.000Z

376

thermal_resistance_measurements  

Science Conference Proceedings (OSTI)

... "The NBS Line-Heat-Source Guarded Hot Plate for Thick Materials",FJ Powell and BG Rennex, Proceedings ASHRAE/DOE Conference - II, Atlanta ...

2013-12-16T23:59:59.000Z

377

Evaluation of Various Turbulence Models in Predicting Airflow and1 Turbulence in Enclosed Environments by CFD: Part-2: Comparison2  

E-Print Network (OSTI)

Zhiqiang Zhai Qingyan Chen* 5 Student Member ASHRAE Member ASHRAE Member ASHRAE Fellow ASHRAE6 7 Numerous

Chen, Qingyan "Yan"

378

Inter-sourcing: alternative IT sourcing solutions using student interns  

Science Conference Proceedings (OSTI)

Information Technology (IT) sourcing decisions are motivated by cost savings, skills acquisition, and staffing flexibility. The research in progress introduces a new alternative in sourcing, inter-sourcing. This practice incorporates the benefits of ... Keywords: inter-sourcing, it education, it internships, it sourcing

Mari W. Buche

2013-05-01T23:59:59.000Z

379

Impacts of Mixing on Acceptable Indoor Air Quality in Homes  

E-Print Network (OSTI)

2009. ASHRAE Handbook of Fundamentals, Ventilation andleakage. The ASHRAE Handbook of fundamentals (ASHRAE 2009),

Sherman, Max H.

2010-01-01T23:59:59.000Z

380

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network (OSTI)

2009. ASHRAE Handbook of Fundamentals, Ventilation andleakage. The ASHRAE Handbook of fundamentals (ASHRAE 2009),

Sherman, Max

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Heat Source Lire,  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Lire, Source Lire, (liayrICS-25 ) tooling Tulles (Ai 1,06:1) - 11 (31.118 Module Stack Thermoelectric Module:, (14) ltcal L/Mr r a it i lli tisli Block Mounting Interface MMRTG Design Housing (At 2219) Fin (At Go63) Thermal Insulation (Min-K & Microtherm) Space Radioisotope Power Systems Multi-Mission Radioisotope Thermoelectric Generator January 2008 What is a Multi-Mission Radioisotope Thermoelectric Generator? Space exploration missions require safe, reliable, long-lived power systems to provide electricity and heat to spacecraft and their science instruments. A uniquely capable source of power is the radioisotope thermoelectric generator (RTG) - essentially a nuclear battery that reliably converts heat into electricity. The Department of Energy and NASA are developing

382

Source Selection Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Source Selection Source Selection Overview This chapter provides guidance to the acquisition team on conducting source selection in accordance with Part 15 of the Federal Acquisition Regulation (FAR). Background The mid 1990's was a time of significant change in many areas of procurement, particularly in the introduction of new tools and processes that help the procurement professional better meet the needs of demanding customers. The passage of the Federal Acquisition Streamlining Act in 1994 and the Federal Acquisition Reform Act in 1995 , coupled with Government-wide and Department of Energy (DOE) contract reform efforts not only changed traditional procurement processes but also changed the role of the procurement professional. No longer are procurement

383

ISG8-RF Sources  

NLE Websites -- All DOE Office Websites (Extended Search)

RF Sources - (WG3) RF Sources - (WG3) Orange Rm Yong Ho Chin, Christopher Nantista, and Sami G. Tantawi Parallel Sessions: Working Groups: WG1: Parameters, Design, Instrumentation and Tuning WG2: Damping Rings and ATF WG3: RF Sources WG4:Structures WG5: Ground Motion; Site Requirements and Investigations Monday Morning 9:00-10:30 Plenary Coffee Break 11:00-12:00 Planning Session. Monday Afternoon 13:30-15:30 High Gradient Issues (Joint with working group 4) Coffee Break 16:00-16:30 The 8-Pack Project -- D. Atkinson 16:30-17:30 High Gradient Issues and Discussions Continued. Tuesday Morning 9:30-10:30 Klystrons 9:30-10:00 Status of PPM Klystron Development for JLC -- Y. H. Chin 10:00-10:30 Design of 150MW Multi-Beam Klystron -- S. Matsumoto Coffee Break 11:00-11:30 Klystron Development at SLAC -- G. Caryotakis

384

Dual source heat pump  

DOE Patents (OSTI)

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

385

Photon Source Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Source Parameters Photon Source Parameters Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety of polarization modes, including circular, elliptical, horizontal, and vertical. These modes can be chosen by appropriate phasing of the magnet rows. The brightness and flux curves below are shown for horizontal and circular polarization. Curves for elliptical and vertical polarization are similar to the horizontal polarization curve, but the minimum photon energy is higher.

386

Source Emissions and Transport  

NLE Websites -- All DOE Office Websites (Extended Search)

electron micrograph image, Lara Gundel with instrumentation electron micrograph image, Lara Gundel with instrumentation Source Emissions and Transport Investigators conduct research here to characterize and better understand the sources of airborne volatile, semi-volatile and particulate organic pollutants in the indoor environment. This research includes studies of the physical and chemical processes that govern indoor air pollutant concentrations and exposures. The motivation is to contribute to the reduction of potential human health effects. Contacts Randy Maddalena RLMaddalena@lbl.gov (510) 486-4924 Mark Mendell MJMendell@lbl.gov (510) 486-5762 Links Pollutant Sources, Dynamics and Chemistry Group Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy Technologies Environmental Impacts

387

INEEL Source Water Assessment  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 mi2 and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEELs drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Surveys Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agencys Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a thick vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEELs Source Water Assessment. Of the INEELs 12 public water systems, three systems rated as low susceptibility (EBR-I, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect the INEELs public water systems yet not too conservative to inhibit the INEEL from carrying out its missions.

Sehlke, Gerald

2003-03-01T23:59:59.000Z

388

FABRICATION OF NEUTRON SOURCES  

DOE Patents (OSTI)

A method is presented for preparing a neutron source from polonium-210 and substances, such as beryllium and boron, characterized by emission of neutrons upon exposure to alpha particles from the polonium. According to the invention, a source is prepared by placing powdered beryllium and a platinum foil electroplated with polonium-2;.0 in a beryllium container. The container is sealed and then heated by induction to a temperature of 450 to 1100 deg C to volatilize the polonium off the foil into the powder. The heating step is terminated upon detection of a maximum in the neutron flux level.

Birden, J.H.

1959-04-21T23:59:59.000Z

389

Identifying PM10 Sources and Estimating Source Contributions...  

NLE Websites -- All DOE Office Websites (Extended Search)

of ammonium nitric, secondary aerosol of ammonium sulfate, and incinerator and fuel oil burning sources. The source mass profiles derived by the PMF model well describe the...

390

COMBUSTION SOURCES OF NITROGEN COMPOUNDS  

E-Print Network (OSTI)

Rasmussen, R.A. (1976). Combustion as a source of nitrousx control for stationary combustion sources. Prog. Energy,CA, March 3-4, 1977 COMBUSTION SOURCES OF NITROGEN COMPOUNDS

Brown, Nancy J.

2011-01-01T23:59:59.000Z

391

Selective ion source  

DOE Patents (OSTI)

A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

Leung, Ka-Ngo (Hercules, CA)

1996-01-01T23:59:59.000Z

392

Strategic Sourcing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Sourcing Strategic Sourcing Strategic Sourcing Energy Wide Strategic Sourcing (EWSS) DOE leadership has recognized that benefits could be achieved at the federal level through an organized, systematic and collaborative approach to acquiring commonly used goods and services. The DOE strategic sourcing program builds upon historical accomplishments as well as establishes a more cohesive and disciplined program, consistent with OMB's direction, for the conduct of DOE future strategic sourcing efforts. The DOE and NNSA Senior Procurement Executives have created a strategic sourcing capability and organizational components to identify federal strategic sourcing opportunities and coordinate strategic thinking. To date, this program has identified a number of opportunities; particularly in the areas of

393

WIPP Opportunities - Procurement - Sources Sought  

NLE Websites -- All DOE Office Websites (Extended Search)

Procurement Sources Sought This page displays a listing Sources Sought. If you are interested in submitting an outline, please contact the cognizant buyer to find out more. Please...

394

Book sources | Open Energy Information  

Open Energy Info (EERE)

Community Linked Data Special page Share this page on Facebook icon Twitter icon Book sources Jump to: navigation, search Search for book sources ISBN: Go Retrieved from...

395

Book sources | Open Energy Information  

Open Energy Info (EERE)

Community Linked Data Special page Share this page on Facebook icon Twitter icon Book sources Jump to: navigation, search Search for book sources ISBN: 9781603580304 Go...

396

Energy Sources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sources Energy Sources Renewable Energy Learn more about Solar, Water, Biomass, Geothermal and Wind Energy. Read more Nuclear Learn more about how we use Nuclear Energy. Read more...

397

Energy Sources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Energy Sources Energy Sources Renewable Energy Learn more about Solar, Water, Biomass, Geothermal and Wind Energy. Read more Nuclear Learn more about how we...

398

Photon Source Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Source Parameters Print Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety of polarization modes, including circular, elliptical, horizontal, and vertical. These modes can be chosen by appropriate phasing of the magnet rows. The brightness and flux curves below are shown for horizontal and circular polarization. Curves for elliptical and vertical polarization are similar to the horizontal polarization curve, but the minimum photon energy is higher.

399

Overview | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

APS Overview: APS Overview: Introduction APS Systems Map LINAC Booster Synchrotron Storage Ring Insertion Devices Experiment Hall LOMs & Beamlines Overview of the APS The Advanced Photon Source (APS) at the U.S. Department of Energy's Argonne National Laboratory provides this nation's (in fact, this hemisphere's) brightest storage ring-generated x-ray beams for research in almost all scientific disciplines. Photo: Aerial Photo of APS Aerial photo of the Advanced Photon Source These x-rays allow scientists to pursue new knowledge about the structure and function of materials in the center of the Earth and in outer space, and all points in between. The knowledge gained from this research can impact the evolution of combustion engines and microcircuits, aid in the development of new pharmaceuticals, and pioneer nanotechnologies whose

400

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Report 2001 Report 2001 National Synchrotron Light Source For the period October 1, 2000 through September 30, 2001 Introduction Science Highlights Year in Review Operations Publications Abstracts Nancye Wright & Lydia Rogers The National Synchrotron Light Source Department is supported by the Office of Basic Energy Sciences United States Department of Energy Washington, D.C. Brookhaven National Laboratory Brookhaven Science Associates, Inc. Upton, New York 11973 Under Contract No. DE-AC02-98CH10886 Mary Anne Corwin Steven N. Ehrlich & Lisa M. Miller Managing Editor Science Editors Production Assistants Cover images (clockwise from top left) 1. from Science Highlight by K.R. Rajashankar, M.R. Chance, S.K. Burley, J. Jiang, S.C. Almo, A. Bresnick, T. Dodatko, R. Huang, G. He,

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Tomography Interest Group Contact: Robert Winarski, Center for Nanoscale Materials winarski@anl.gov Contact: Francesco De Carlo, Advanced Photon Source decarlo@aps.anl.gov The tomography special interest group of the Advanced Photon Source (APS) at Argonne National Laboratory has been created to promote awareness of the tomography facilities at the APS and to foster communications between the various research groups. Through this group, we believe we can build a strong user community for tomography. The following beamlines have active tomography research programs: 2-BM-B (XOR) http://www.aps.anl.gov/Xray_Science_Division/Xray_Microscopy_and_Imaging/Science_and_Research/Techniques/Tomography/index.html Information about the beamline: http://beam.aps.anl.gov/pls/apsweb/beamline_display_pkg.display_beamline?p_beamline_num_c=31

402

Posters | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Your Cart (0 Posters) Your Cart (0 Posters) Your cart is empty. checkout Subtotal: $0.00 update empty Posters Order a printed APS poster! 11 in. x 17 in. prints will be mailed in the order requests are received. 36 in. x 36 in. posters will be sent to school addresses once all orders are processed. The Advanced Photon Source Is The Advanced Photon Source Is Qty: 1 add to cart Technologies from Materials Science Technologies from Materials Science Qty: 1 add to cart Materials Under Extreme Pressure Materials Under Extreme Pressure Qty: 1 add to cart Biological Macromolecules in Action Biological Macromolecules in Action Qty: 1 add to cart Journey to the Center of the Earth Journey to the Center of the Earth Qty: 1 add to cart Earthshaking Monitor Earthshaking Monitor Qty: 1 add to cart Imaging with X-rays

403

Photon Source Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Source Parameters Print Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety of polarization modes, including circular, elliptical, horizontal, and vertical. These modes can be chosen by appropriate phasing of the magnet rows. The brightness and flux curves below are shown for horizontal and circular polarization. Curves for elliptical and vertical polarization are similar to the horizontal polarization curve, but the minimum photon energy is higher.

404

Photon Source Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Source Parameters Print Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety of polarization modes, including circular, elliptical, horizontal, and vertical. These modes can be chosen by appropriate phasing of the magnet rows. The brightness and flux curves below are shown for horizontal and circular polarization. Curves for elliptical and vertical polarization are similar to the horizontal polarization curve, but the minimum photon energy is higher.

405

Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home Group Members Accelerator Magnets Insertion Devices Facilities Presentations & Publications Internal Magnetic Devices Group The primary mission of the Magnetic Devices (MD) Group is to design, build, and maintain Insertion Devices (IDs) that are reliable and transparent to the electron beam at the Advanced Photon Source (APS). The majority of IDs at the APS are conventional planar hybrid undulators, but an essential part of the mission is to develop novel IDs, such as short-period superconducting undulators and long-period electromagnetic undulators. The capabilities of APS IDs are matched to users' experimental needs. The mission also includes magnetic tuning of the IDs to ensure their near-ideal performance as x-ray sources and calculations to predict the radiation

406

Photon Source Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Source Parameters Print Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety of polarization modes, including circular, elliptical, horizontal, and vertical. These modes can be chosen by appropriate phasing of the magnet rows. The brightness and flux curves below are shown for horizontal and circular polarization. Curves for elliptical and vertical polarization are similar to the horizontal polarization curve, but the minimum photon energy is higher.

407

Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Advanced Photon Source 0 Advanced Photon Source A U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences national synchrotron x-ray research facility Search Button About Welcome Overview Visiting the APS Mission & Goals Find People Organization Charts Committees Job Openings User Information Prospective Users New Users Current Users APS User Portal Macromolecular Crystallographers Administrators Find a Beamline Apply for Beam Time Contacts Calendars Community Scientific Access Site Access Training Science & Education Science & Research Highlights Conferences Seminars Publications Annual Reports APS Upgrade Courses and Schools Graduate Programs Scientific Software Media Center Calendar of Events APS News User News Argonne/APS Press Releases Argonne/APS Feature Stories Argonne/APS In The News

408

Evaluated teletherapy source library  

DOE Patents (OSTI)

The Evaluated Teletherapy Source Library (ETSL) is a system of hardware and software that provides for maintenance of a library of useful phase space descriptions (PSDs) of teletherapy sources used in radiation therapy for cancer treatment. The PSDs are designed to be used by PEREGRINE, the all-particle Monte Carlo dose calculation system. ETSL also stores other relevant information such as monitor unit factors (MUFs) for use with the PSDs, results of PEREGRINE calculations using the PSDs, clinical calibration measurements, and geometry descriptions sufficient for calculational purposes. Not all of this information is directly needed by PEREGRINE. It also is capable of acting as a repository for the Monte Carlo simulation history files from which the generic PSDs are derived.

Cox, Lawrence J. (Los Alamos, NM); Schach Von Wittenau, Alexis E. (Livermore, CA)

2000-01-01T23:59:59.000Z

409

Filtered cathodic arc source  

DOE Patents (OSTI)

Disclosed is a continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45{degrees} to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

Falabella, S.; Sanders, D.M.

1992-12-31T23:59:59.000Z

410

Calibrated vapor generator source  

DOE Patents (OSTI)

A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

Davies, John P. (Idaho Falls, ID); Larson, Ronald A. (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Hall, Harold J. (Idaho Falls, ID); Stoddard, Billy D. (Idaho Falls, ID); Davis, Sean G. (Idaho Falls, ID); Kaser, Timothy G. (Idaho Falls, ID); Conrad, Frank J. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

411

Calibrated vapor generator source  

DOE Patents (OSTI)

A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

1995-09-26T23:59:59.000Z

412

Filtered cathodic arc source  

DOE Patents (OSTI)

A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

Falabella, S.; Sanders, D.M.

1994-01-18T23:59:59.000Z

413

Open Source Physics  

E-Print Network (OSTI)

Open Source Physics (Brown, 2012; Christian, 2010; Esquembre, 2012; Hwang, 2010) empowers teachers and students to create and use these free tools with the associated intellectual property rights given to customise (Wee & Mak, 2009) the computer models/tools to suit their teaching and learning needs. Open Source Physics (OSP) focuses on design of computer models, such as Easy Java Simulations (EJS) and the use of video modeling and analysis (Tracker). They allow students to investigate, explore and analyse data which is either real or simulated. The OSP approach helps users overcome barriers in creating, using and scaling up meaningful ICT use in education. In Singapore, teachers and students have created or customised existing computer models to design and re-purpose EJS models to suit their context and learning needs. Tracker tools allow students to analyse different aspects of a physics phenomena to deepen their understanding of abstract physics concepts. Using Tracker, students record the motion of ob...

Wee, Loo Kang

2013-01-01T23:59:59.000Z

414

Voltage controlled current source  

DOE Patents (OSTI)

A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

Casne, Gregory M. (Pittsburgh, PA)

1992-01-01T23:59:59.000Z

415

Comparisons with Other sources  

U.S. Energy Information Administration (EIA) Indexed Site

Estimates Compared with Other sources Estimates Compared with Other sources The following seven graphs were prepared to give a sense of the variation and confidence level of the EIA-914 estimates. Each graph shows the reported sample production (the starting point for making an estimate), the EIA-914 estimates, State reported data, HPDI reported data, and Lippman Consulting data for comparison. State data are obtained directly from the States usually via a State agency web site as a monthly total. HPDI is a commercial data vender. They acquire data from all the States and provide it to EIA in a single format and query system at the well or lease level. EIA then sums this data to the operator level and State level. HPDI data typically lag the State data by 1 or 2 months.

416

High current ion source  

DOE Patents (OSTI)

An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); MacGill, Robert A. (645 Kern St., Richmond, CA 94805); Galvin, James E. (2 Commodore Dr. #276, Emeryville, CA 94608)

1990-01-01T23:59:59.000Z

417

Compact superradiant Cerenkov source  

Science Conference Proceedings (OSTI)

An economical, coherent, and widely tunable source does not exist spanning the far-infrared electromagnetic spectral range of 50-1000 {mu}m in wavelength. The Cerenkov free-electron laser (CFEL) is a promising candidate. This report describes an experimental investigation of a compact CFEL driven by a high-quality low-energy electron beam. Cerenkov emission and strong gain but remarkably low output coupling were observed.

Owens, I.J.; Brownell, J.H. [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755-3528 (United States)

2005-05-15T23:59:59.000Z

418

FABRICATION OF NEUTRON SOURCES  

DOE Patents (OSTI)

A method is presented for preparing a more efficient neutron source comprising inserting in a container a quantity of Po-210, inserting B powder coated with either Ag, Pt, or Ni. The container is sealed and then slowly heated to about 450 C to volatilize the Po and effect combination of the coated powder with the Po. The neutron flux emitted by the unit is moritored and the heating step is terminated when the flux reaches a maximum or selected level.

Birden, J.H.

1959-01-20T23:59:59.000Z

419

Negative ion source  

DOE Patents (OSTI)

A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

Delmore, James E. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

420

Open-Source GIS  

SciTech Connect

The components making up an Open Source GIS are explained in this chapter. A map server (Sect. 30.1) can broadly be defined as a software platform for dynamically generating spatially referenced digital map products. The University of Minnesota MapServer (UMN Map Server) is one such system. Its basic features are visualization, overlay, and query. Section 30.2 names and explains many of the geospatial open source libraries, such as GDAL and OGR. The other libraries are FDO, JTS, GEOS, JCS, MetaCRS, and GPSBabel. The application examples include derived GIS-software and data format conversions. Quantum GIS, its origin and its applications explained in detail in Sect. 30.3. The features include a rich GUI, attribute tables, vector symbols, labeling, editing functions, projections, georeferencing, GPS support, analysis, and Web Map Server functionality. Future developments will address mobile applications, 3-D, and multithreading. The origins of PostgreSQL are outlined and PostGIS discussed in detail in Sect. 30.4. It extends PostgreSQL by implementing the Simple Feature standard. Section 30.5 details the most important open source licenses such as the GPL, the LGPL, the MIT License, and the BSD License, as well as the role of the Creative Commons.

Vatsavai, Raju [ORNL; Burk, Thomas E [University of Minnesota; Lime, Steve [Minnesota Department of Natural Resources

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Improved negative ion source  

DOE Patents (OSTI)

A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reaccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200 to 500/sup 0/C for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

Delmore, J.E.

1984-05-01T23:59:59.000Z

422

Sources of tritium  

SciTech Connect

A review of tritium sources is presented. The tritium production and release rates are discussed for light water reactors (LWRs), heavy water reactors (HWRs), high temperature gas cooled reactors (HTGRs), liquid metal fast breeder reactors (LMFBRs), and molten salt breeder reactors (MSBRs). In addition, release rates are discussed for tritium production facilities, fuel reprocessing plants, weapons detonations, and fusion reactors. A discussion of the chemical form of the release is included. The energy producing facilities are ranked in order of increasing tritium production and release. The ranking is: HTGRs, LWRs, LMFBRs, MSBRs, and HWRs. The majority of tritium has been released in the form of tritiated water.

Phillips, J.E.; Easterly, C.E.

1980-12-01T23:59:59.000Z

423

SOURCE TERMS IN THE TRANSIENT SEEPAGE EQUATION  

E-Print Network (OSTI)

Equation; Pore Pressure Generation; Sources; Source Terms)In this paper, sources involving the generation of mass areincludes source terms for both fluid mass generation and

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

424

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

All Documents listed below are part of the Photon Sciences Directorate and All Documents listed below are part of the Photon Sciences Directorate and will be updated as needed. Photon Sciences ESH Standard Operating Procedures (SOPs) SOP No. Standard Operating Procedure for: LS-ES-0002 Procedure for Acid Etching of Silicon and Germanium Crystals LS-ESH-0004 NSLS Operations Group Chemical Spill and Gas Release Response LS-ESH-0010 VUV Injection Shutter LOTO LS-ESH-0012 LINAC LOTO LS-ESH-0013 Controlled Access to the VUV Ring LS-ESH-0014 Radiation Safety Interlocks at the National Synchrotron Light Source LS-ESH-0019 Beam Line Configuration Control Checklist Requirements LS-ESH-0020 Biosafety Requirements at the NSLS LS-ESH-0021 Biosafety Level 2 work at the NSLS/ A Technical Basis LS-ESH-0022 Beam Line Configuration Control Checklist Requirements

425

Welcome | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome Welcome Aerial view of APS Aerial view of the APS Welcome to the Advanced Photon Source (APS) at Argonne National Laboratory. Whether you are a current or potential scientific user of our unique facility or are simply interested in learning more about the APS, we are delighted that you are visiting our website. The APS is funded by the Office of Science, Office of Basic Energy Sciences in the U.S. Department of Energy. We operate a National User Facility that is open to everyone who has a need for extremely brilliant x-ray photon beams. The APS is one of the most technologically complex machines in the world. This premier national research facility provides the brightest x-ray beams in the Western Hemisphere to more than 5,000 (and growing) scientists from

426

Thulium-170 heat source  

DOE Patents (OSTI)

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

427

Multiple source heat pump  

DOE Patents (OSTI)

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

428

Thulium-170 heat source  

SciTech Connect

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

1990-09-06T23:59:59.000Z

429

ILC Positron source simualtion  

NLE Websites -- All DOE Office Websites (Extended Search)

(DOE Review 2007) (DOE Review 2007) Wanming Liu, Haitao Wang, Sergey Antipov, Wei Gai, Kwang-Je Kim HEP, ANL 04/27/2007 Where we are making contribution * Undulator radiation modeling * Adiabatic Matching Device modeling * Keep alive source simulation * Thermal dynamic study on windows * Eddy current simulation * Laser compton scheme positron production simulation for KEK/CLIC Where we are making contributions Outline Undulator and e+ yield OMD/AMD modeling and designing Thermal dynamic of target chamber window Energy deposition profile of target Collaboration with KEK/CLIC Comparison of positron yield from different undulators High K Devices Low K Devices BCD UK I UK II UK III Cornell I Cornell II Cornell III Period (mm) 10.0 11.5 11.0 10.5 10.0 12.0 7 0.3 0.46 28 ~0.54 Yield(Low Pol, 500m drift) ~2.13

430

Interferometry using undulator sources  

Science Conference Proceedings (OSTI)

Optical systems for extreme ultraviolet (EUV) lithography need to use optical components with subnanometer surface figure error tolerances to achieve diffraction-limited performance [M.D. Himel, in {ital Soft} {ital X}-{ital Ray} {ital Projection} {ital Lithography}, A.M. Hawryluk and R.H. Stulen, eds. (OSA, Washington, D.C., 1993), {bold 18}, 1089, and D. Attwood {ital et} {ital al}., Appl. Opt. {bold 32}, 7022 (1993)]. Also, multilayer-coated optics require at-wavelength wavefront measurement to characterize phase effects that cannot be measured by conventional optical interferometry. Furthermore, EUV optical systems will additionally require final testing and alignment at the operational wavelength for adjustment and reduction of the cumulative optical surface errors. Therefore, at-wavelength interferometric measurement of EUV optics will be the necessary metrology tool for the successful development of optics for EUV lithography. An EUV point diffraction interferometer (PDI) has been developed at the Center for X-Ray Optics (CXRO) and has been already in operation for a year [K. Goldberg {ital et} {ital al}., in {ital Extreme} {ital Ultra} {ital Lithography}, D.T. Attwood and F. Zernike, eds. (OSA, Washington, D.C., 1994), K. Goldberg {ital et} {ital al}., Proc. SPIE {bold 2437}, to be published, and K. Goldberg {ital et} {ital al}., J. Vac. Sci. Technol. B {bold 13}, 2923 (1995)] using an undulator radiation source and coherent optics beamline at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. An overview of the PDI interferometer and some EUV wavefront measurements obtained with this instrument will be presented. In addition, future developments planned for EUV interferometry at CXRO towards the measurement of actual EUV lithography optics will be shown. {copyright} {ital 1996 American Institute of Physics.}

Beguiristain, R.; Goldberg, K.A.; Tejnil, E.; Bokor, J.; Medecki, H.; Attwood, D.T.; Jackson, K. [Center for X-ray Optics, Lawrence Berkeley Laboratory, 1 Cyclotron Rd., MS 2-400, Berkeley, CA 94720 (United States)

1996-09-01T23:59:59.000Z

431

Radiological Source Registry and Tracking  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiological Source Registry and Tracking (RSRT) Radiological Source Registry and Tracking (RSRT) Home HSS Logo Radiological Source Registry and Tracking (RSRT) Department of Energy (DOE) Notice N 234.1 Reporting of Radioactive Sealed Sources has been superseded by DOE Order O 231.1B Environment, Safety and Health Reporting. O 231.1B identifies the requirements for centralized inventory and transaction reporting for radioactive sealed sources. Each DOE site/facility operator that owns, possesses, uses or maintains in custody those accountable radioactive sealed sources identified in Title 10 Code of Federal Regulation Part 835, Occupational Radiation Protection (10 CFR 835), Appendix E, and International Atomic Energy Agency (IAEA) Categories 1 and 2 radioactive sealed sources identified in Attachment 5, Appendix A of O 321.1B, will submit information to the DOE Radiological Source Registry and Tracking (RSRT) System.

432

Manhattan Project: Sources and Notes  

Office of Scientific and Technical Information (OSTI)

SOURCES AND NOTES SOURCES AND NOTES Resources > Sources Below are the collected specific notes for the text and images used on the pages of this web site. For a discussion of the most important works on the Manhattan Project, see the "Suggested Readings." For a general discussion of the use of sources in this web site, see "A Note on Sources." To scan the sources and notes for various categories, choose from the list below. To view the sources and notes for a specific web page, see the footnote at the bottom of each page (exceptions include this page and the home page; the sources and notes for the home page are the first ones listed below). Home Events 1890s-1939: Atomic Discoveries 1939-1942: Early Government Support 1942: Difficult Choices

433

CONTAM Libraries - Appendix C1: ASHRAE Table of ...  

Science Conference Proceedings (OSTI)

... VEKIDACA_RAV, Residential, Vents, kitchen tight gasket - best estimate, ELA4, 1 ... WHGS_RAV, Residential, Gas water heater - best estimate, ELA4, 20 ...

434

Comparison of the Energy Efficiency Prescribed by ASHRAE/ANSI...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Energy Efficiency Prescribed by ASHRAEANSIIESNA Standard 90.1-1999 and ASHRAEANSIIESNA Standard 90.1-2004 This document presents the qualitative comparison of the U.S....

435

Recommendations for Meeting ASHRAE Standard 62.2  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question What are the best ventilation techniques?"

436

Sources - CECM - Simon Fraser University  

E-Print Network (OSTI)

help annotate Contents Next: References Up: RamanujanModular Equations, Previous: Ramanujan's sum. Sources. [Annotate] [Shownotes]. References [7]...

437

Tracking of Moving Radioactive Sources  

Devices that detect the sources of unsecured nuclear materials are currently limited in their capabilities, ... City halls, public streets, hospitals ...

438

Advanced Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Next >> Next >> Visitors Access to the ALS Gate Access guest-house Guest House lab-shuttles Lab Shuttles maps-and-directions Maps and Directions Parking Safety Safety for Users safety-for-staff Safety for Staff In Case of Emergency Resources Acronyms Multimedia Employment staff-intranet Staff Intranet Site Map Contact Digg: ALSBerkeleyLab Facebook Page: 208064938929 Flickr: advancedlightsource Twitter: ALSBerkeleyLab YouTube: AdvancedLightSource January 2014 Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Recent Science Highlights Minding the Gap Makes for More Efficient Solar Cells Using novel materials to develop thin, flexible, and more efficient photovoltaic cells is one of the hottest topics in current materials research. A class of transition metals undergo a dramatic change that makes them ideal for solar energy applications.

439

Data:1b63a97d-771e-48f9-9b06-62964f9fb11e | Open Energy Information  

Open Energy Info (EERE)

a97d-771e-48f9-9b06-62964f9fb11e a97d-771e-48f9-9b06-62964f9fb11e No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: A & N Electric Coop Effective date: 2006/01/01 End date if known: Rate name: Commercial Service - Retail Access - Schedule B-U-RA Multi-Phase Sector: Commercial Description: Availability: Available to customers otherwise taking bundled service under Schedule B-U, subject to the established Terms and Conditions of the Cooperative. Source or reference: http://www.anec.com/yourbill/rate_pdfs/B_U_RA.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):

440

Data:69faa889-9b63-400b-9041-e5e053df40d5 | Open Energy Information  

Open Energy Info (EERE)

9faa889-9b63-400b-9041-e5e053df40d5 9faa889-9b63-400b-9041-e5e053df40d5 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Public Serv Comm of Yazoo City Effective date: 2006/01/01 End date if known: Rate name: Residential Rate Schedules - All Electric Sector: Residential Description: Source or reference: Ilinois State University Rate binder # 10 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Data:Fbead1d0-0e7c-4523-80c6-28101b723953 | Open Energy Information  

Open Energy Info (EERE)

Fbead1d0-0e7c-4523-80c6-28101b723953 Fbead1d0-0e7c-4523-80c6-28101b723953 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Borough of New Wilmington, Pennsylvania (Utility Company) Effective date: 2006/01/01 End date if known: Rate name: Residential Service Sector: Residential Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

442

Data:6d1a60e5-2a6e-4bed-ae1c-d2dd0ab04be9 | Open Energy Information  

Open Energy Info (EERE)

0e5-2a6e-4bed-ae1c-d2dd0ab04be9 0e5-2a6e-4bed-ae1c-d2dd0ab04be9 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Excelsior Electric Member Corp Effective date: 2006/01/01 End date if known: Rate name: Seasonal Agricultural Service- Three Phase Sector: Commercial Description: Applicable to seasonal agricultural consumers for all seasonal uses including crop drying and tobacco barns, subject to the established rules and regulations of the Cooperative. Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh)

443

Data:Cd466113-9c10-4baa-906e-b2d0831230be | Open Energy Information  

Open Energy Info (EERE)

13-9c10-4baa-906e-b2d0831230be 13-9c10-4baa-906e-b2d0831230be No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Orrville, Ohio (Utility Company) Effective date: 2006/01/01 End date if known: Rate name: 175 Watt Mercury Vapor Lamp Unmetered Sector: Lighting Description: Source or reference: http://www.orrutilities.com/electric/rates.shtml Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

444

Data:B4a20f57-ff5f-4407-b7b1-37ed943d1045 | Open Energy Information  

Open Energy Info (EERE)

7-ff5f-4407-b7b1-37ed943d1045 7-ff5f-4407-b7b1-37ed943d1045 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Orrville, Ohio (Utility Company) Effective date: 2006/01/01 End date if known: Rate name: 150 Watt High Pressure Sodium Lamp Metered Sector: Lighting Description: Source or reference: http://www.orrutilities.com/electric/rates.shtml Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

445

Data:58a7d943-570a-4554-a104-9e2c3f91c7aa | Open Energy Information  

Open Energy Info (EERE)

Data Data Edit with form History Facebook icon Twitter icon » Data:58a7d943-570a-4554-a104-9e2c3f91c7aa No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Cobb Electric Membership Corp Effective date: 2006/01/01 End date if known: Rate name: Outdoor Lighting Overhead Service HPS 1000 W FL Pole Contribution Paid Sector: Lighting Description: Pole Contributions Wood 30' $246.00 Wood 35' $297.00 Wood 40' $382.00 Wood 45' $424.00 Source or reference: https://www.cobbemc.com/~/media/Files/CEMC/PDFs/2012%20PDF/233%20Lighting%20Rates%202012.pdf Source Parent: Comments Applicability

446

Data:1b491431-6ebe-4f6c-a2fc-38b5ac0fa42c | Open Energy Information  

Open Energy Info (EERE)

31-6ebe-4f6c-a2fc-38b5ac0fa42c 31-6ebe-4f6c-a2fc-38b5ac0fa42c No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Borough of New Wilmington, Pennsylvania (Utility Company) Effective date: 2006/01/01 End date if known: Rate name: Large General Service Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous

447

Data:A65b294d-ef33-4e22-9246-9b152b0ef245 | Open Energy Information  

Open Energy Info (EERE)

d-ef33-4e22-9246-9b152b0ef245 d-ef33-4e22-9246-9b152b0ef245 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: A & N Electric Coop Effective date: 2006/01/01 End date if known: Rate name: Commercial Service - Retail Access - Schedule B-U-RA Single Phase Sector: Commercial Description: Availability: Available to customers otherwise taking bundled service under Schedule B-U, subject to the established Terms and Conditions of the Cooperative. Source or reference: http://www.anec.com/yourbill/rate_pdfs/B_U_RA.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months):

448

Data:4805f055-765d-4e0e-a149-c36f8873fe78 | Open Energy Information  

Open Energy Info (EERE)

765d-4e0e-a149-c36f8873fe78 765d-4e0e-a149-c36f8873fe78 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Public Serv Comm of Yazoo City Effective date: 2006/01/01 End date if known: Rate name: Residential Rate Schedules - Electric Sector: Residential Description: Source or reference: Ilinois State University Rate binder # 10 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

449

Data:0cdfef33-e268-453f-81e2-c355a23a86ca | Open Energy Information  

Open Energy Info (EERE)

cdfef33-e268-453f-81e2-c355a23a86ca cdfef33-e268-453f-81e2-c355a23a86ca No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Borough of New Wilmington, Pennsylvania (Utility Company) Effective date: 2006/01/01 End date if known: Rate name: Small General Service (No Demand Meter) Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

450

Data:E1ee5261-6f42-46c9-81aa-98662cbcd704 | Open Energy Information  

Open Energy Info (EERE)

261-6f42-46c9-81aa-98662cbcd704 261-6f42-46c9-81aa-98662cbcd704 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Borough of New Wilmington, Pennsylvania (Utility Company) Effective date: 2006/01/01 End date if known: Rate name: Commercial Service Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous

451

Light Sources Directorate Strategic Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Sources Directorate Light Sources Directorate Strategic Plan December 2009 Light Sources Directorate Strategic Plan December 2009 ii | Vision and Mission Light Sources Directorate Strategic Plan The VISION of the Light Sources Directorate is: to be a provider of choice for world-class photon science and facilities that deliver outstanding scientific productivity and impact, and to be recognized as a leader in developing innovative techniques and ap- plications of photon science Our MISSION is defined by the set of activities that are required to realize this vision: to advance scientific knowledge and to solve critical problems through the design, construction, operation, and use of premier photon science facilities | Table of Contents Light Sources Directorate Strategic Plan

452

Constricted glow discharge plasma source  

SciTech Connect

A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

Anders, Andre (Albany, CA); Anders, Simone (Albany, CA); Dickinson, Michael (San Leandro, CA); Rubin, Michael (Berkeley, CA); Newman, Nathan (Winnetka, IL)

2000-01-01T23:59:59.000Z

453

Optically pumped polarized ion sources  

SciTech Connect

Polarization transfer collisions between protons, atomic hydrogen, or deuterium and optically pumped alkali-metal vapour are implemented in the high current optically pumped polarized ion source (OPPIS) and the laser driven source (LDS) of nuclear polarized atoms for target applications. The OPPIS technique overcomes the limitations on intensity of the conventional atomic beam source technique and meets the requirements of the new generation of polarization experiments at multi-GeV accelerators and colliders. 17 refs., 3 figs.

Zelenski, A.N.

1995-12-31T23:59:59.000Z

454

ARC SNUBBERS NEUTRAL BEAM SOURCES  

E-Print Network (OSTI)

transformer cores near the source and route all of the powertransformer that transiently separates the energy in the capacitances of the power

Baker, W.R.

2011-01-01T23:59:59.000Z

455

Tsunami Information Sources: Part 3  

E-Print Network (OSTI)

A Landslide in the Upper Aleutian Forearc,' by G.J. Fryer,of the Source of the 1946 Aleutian 'Tsunami' Earthquake,"

Wiegel, Robert L.

2006-01-01T23:59:59.000Z

456

Relative risks of energy sources  

Science Conference Proceedings (OSTI)

This paper compares the risks associated with various energy sources in an attempt to demonstrate the relative safety of nuclear energy. (JEF)

Haire, M.J.

1990-01-01T23:59:59.000Z

457

Video Library | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Archives APS Brochure Annual Reports Posters Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) Now Playing: The Advanced Photon Source More videos:...

458

Video Library | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Video Library Related Links: APS Colloquium APS Podcasts APS Today More videos: Introduction to the APS Physics of the Blues Now Playing: Building the Advanced Photon Source This...

459

CAT Communicator | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Division XSD Groups Industry Argonne Home Advanced Photon Source News Archives CAT Communicator CAT Communicator was a newsletter intended to provide APS information to...

460

Organization Chart | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Source (APS) organization comprises three divisions and one project office. Accelerator Systems Division (ASD) ASD provides engineering and physics support for the APS, and...

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Media Center | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

impact on nearly every aspect of our lives. Annual Reports Articles on Advanced Photon Source research and engineering highlights that are written for the interested...

462

Document Central | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

of Operations Manual APS QA Plan (obsolescence memo) APS Publications: APS Database APS Technical Publications Light Source Notes Technical Bulletins Safety Committee...

463

Information Technology | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Photon Source Information Technology Support Search APS ... Search Button About User Information News & Events Science & Education Beamlines Divisions Argonne Home >...

464

User Information | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

User Information The Advanced Photon Source provides a variety of guides, resources, and information for prospective, new, and current users. In this section: For Prospective Users...

465

The status of the spallation neutron source ion source  

SciTech Connect

The ion source for the spallation neutron source (SNS) is a radio-frequency, multicusp source designed to deliver 45 mA of H2 to the SNS accelerator with a pulse length of 1 ms and repetition rate of 60 Hz. A total of three ion sources have been fabricated and commissioned at Lawrence Berkeley National Laboratory and subsequently delivered to the SNS at the Oak Ridge National Laboratory. The ion sources are currently being rotated between operation on the SNS accelerator, where they are involved in ongoing efforts to commission the SNS LINAC, and the hot spare stand (HSS), where high-current tests are in progress. Commissioning work involves operating the source in a low duty-factor mode (pulse width {approx}200 ms and repetition rate {approx}5 Hz) for extended periods of time while the high-current tests involve source operation at full duty-factor of 6 percent (1 ms/60 Hz). This report discusses routine performance of the source employed in the commissioning role as well as the initial results o f high-current tests performed on the HSS.

Welton, R.F.; Stockli, M.P.; Murray, S.N.; Keller, R.

2003-09-11T23:59:59.000Z

466

Selecting quality sources: Bridging the gap between the perception and use of information sources  

Science Conference Proceedings (OSTI)

This study investigated undergraduates?? source selection behaviour: what sources they use frequently, what criteria they consider important for source selection, how they perceive different sources, and whether their source selection behaviour ... Keywords: information literacy education, source evaluation criteria, source perception, source selection, source use, undergraduates

Kyung-Sun Kim; Sei-Ching Joanna Sin

2011-04-01T23:59:59.000Z

467

Alternative Energy Sources Myths and Realities  

E-Print Network (OSTI)

Alternative Energy Sources Nonrenewable Renewable Oil sands,themselves. Summary Oil is a unique energy source that hasfor oil, which is the limitation many alternative sources

Youngquist, Walter

1998-01-01T23:59:59.000Z

468

4th Generation ECR Ion Sources  

E-Print Network (OSTI)

the 1980s. Second generation sources, which operate betweengenerations. First generation ECR sources operate between 5Two superconducting 3 rd generation ECR sources, VENUS and

Lyneis, Claude M.

2010-01-01T23:59:59.000Z

469

An Upgrade for the Advanced Light Source  

E-Print Network (OSTI)

of an optimized third generation source not only translatesfirst third-generation synchrotron light sources, the ALS,of a third-generation synchrotron light source translates

2004-01-01T23:59:59.000Z

470

Alternative Energy Sources Myths and Realities  

E-Print Network (OSTI)

Alternative Energy Sources - Myths and Realities Walterneed to think about alternative energy sources; the worlddepletion of oil? Alternative energy sources can be divided

Youngquist, Walter

1998-01-01T23:59:59.000Z

471

Hollow electrode plasma excitation source  

DOE Patents (OSTI)

A plasma source incorporates a furnace as a hollow anode, while a coaxial cathode is disposed therewithin. The source is located in a housing provided with an ionizable gas such that a glow discharge is produced between anode and cathode. Radiation or ionic emission from the glow discharge characterizes a sample placed within the furnace and heated to elevated temperatures. 5 figs.

Ballou, N.E.

1992-04-14T23:59:59.000Z

472

Hollow electrode plasma excitation source  

DOE Patents (OSTI)

A plasma source incorporates a furnace as a hollow anode, while a coaxial cathode is disposed therewithin. The source is located in a housing provided with an ionizable gas such that a glow discharge is produced between anode and cathode. Radiation or ionic emission from the glow discharge characterizes a sample placed within the furnace and heated to elevated temperatures.

Ballou, Nathan E. (West Richland, WA)

1992-01-01T23:59:59.000Z

473

Fourth Generation Light Source Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

The Workshop on Scientific Opportunities for Fourth Generation Light The Workshop on Scientific Opportunities for Fourth Generation Light Sources October 27 to 29, 1997 at the Advanced Photon Source at Argonne National Laboratory. This workshop is being co-hosted by APS, NSLS, SSRL and TJNAF. FGLSlogo This workshop will explore the phenomenology of interactions with ultra-high-power, -brilliance, and -coherence light sources in the DUV, soft x-ray, and x-ray regimes, as well as the scientific opportunities they provide. The workshop will begin with tutorials on the generation and properties of these sources and identify issues in their use in experimentation. Also included will be an overview of current efforts to develop these sources and a review of the scientific opportunities defined by previous research and workshops. These background talks will be followed

474

Multi-source solar simulator using single light source  

DOE Patents (OSTI)

Methods, techniques and apparatus are described for adjusting the spectral irradiance characteristics of a light source. The invention is applicable to any light source and has many areas of utility. One example is for simulating solar light for use in testing efficiency of photovoltaic cells. Solar light at any point in the world can be simulated. Also, light having any desired wavelength (or combination of desired wavelengths) can be obtained from a single light source using the techniques and apparatus of the invention. 4 figs.

Emery, K.A.; Osterwald, C.R.

1989-08-17T23:59:59.000Z

475

Advanced Photon Source Industrial Liaison Office | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Liaison Office Industrial Liaison Office registration page New to Synchrotron Radiation New to the APS Already a User Advanced Photon Source Industrial Liaison Office APS Welcome to the Advanced Photon Source Welcome to the Advanced Photon Source (APS) at Argonne National Laboratory. We are one of five synchrotron radiation light sources operated as national user facilities by the U.S. Department of Energy's Office of Science. The APS is open to everyone who can utilize extremely bright x-ray photon beams for high-value research. This premier national research facility provides these x-ray beams to more than 5,000 scientists from all 50 United States, the District of Columbia, Puerto Rico, and several foreign countries. These scientists come to the APS from industry, universities,

476

Advanced Light Source Activity Report 2002  

E-Print Network (OSTI)

ALS and the Advanced Photon Source (APS). The LDLR crystals,Director for the Advanced Photon Source (APS), and Steven

Duque editor, Theresa; Greiner editor, Annette; Moxon editor, Elizabeth; Robinson editor, Arthur; Tamura editor, Lori

2003-01-01T23:59:59.000Z

477

International Data on Radiological Sources  

SciTech Connect

ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. The database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.

Martha Finck; Margaret Goldberg

2010-07-01T23:59:59.000Z

478

Diversity employment and recruitment sources  

SciTech Connect

Effective human resources management has been identified as one of four critical success factors in the Department of Energy Strategic Plan. The Plan states relative to this factor: ``The Department seeks greater alignment of resources with agency priorities and increased diversification of the workforce, including gender, ethnicity, age, and skills. This diversification will bring new thinking and perspectives that heretofore have not had a voice in departmental decision-making.`` This Guide has been developed as a key tool to assist Department of Energy management and administrative staff in achieving Goal 2 of this critical success factor, which is to ``Ensure a diverse and talented workforce.`` There are numerous sources from which to recruit minorities, women and persons with disabilities. Applying creativity and proactive effort, using traditional and non-traditional approaches, and reaching out to various professional, academic and social communities will increase the reservoir of qualified candidates from which to make selections. In addition, outreach initiatives will undoubtedly yield further benefits such as a richer cultural understanding and diversity awareness. The resource listings presented in this Guide are offered to encourage active participation in the diversity recruitment process. This Guide contains resource listings by state for organizations in the following categories: (1) African American Recruitment Sources; (2) Asian American/Pacific Islander Recruitment Sources; (3) Hispanic Recruitment Sources; (4) Native American/Alaskan Native Recruitment Sources; (5) Persons with Disabilities Recruitment Sources; and (6) Women Recruitment Sources.

Not Available

1994-08-01T23:59:59.000Z

479

APS Upgrade | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop on new science opportunities provided by a multi-bend achromat lattice at the APS APS-U MBA Lattice Workshop Registration is now closed. Please contact Diane Wilkinson ext. 7810 or a member of the Workshop Organizing Committee for changes or modifications to your registration. Submit Comments, Suggestions, and Ideas for MBA Lattice Workshop October 21-22 Advanced Photon Source Argonne National Lab The Advanced Photon Source Upgrade is focused on delivering a powerful, versatile facility for science using high-brightness, high-energy X-rays. At APS, and around the light source community, scientists have been developing storage ring designs that push closer to the ultimate diffraction limit for X-ray sources. A recent report by the Basic Energy Sciences Advisory Committee, which advises the Director of the U.S.

480

Navy Heat Source Safety Tests  

SciTech Connect

The purpose of these tests was to validate the integrity of the Navy Heat Source after imposing conditions which might, in the extreme, be encountered singly or serially so that safety would be assured.

Anderson, C. G.; Cartmill, W. B.

1975-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "2006-01-01 source ashrae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Next Generation Light Source Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the...

482

Lesson 2: Energy Sources Overview  

E-Print Network (OSTI)

Lesson 2: Energy Sources #12;Overview · Most geologic disasters involve the release of large amounts of energy either quickly or slowly. To understand these processes, we need to know where the energy released was derived from. #12

Chen, Po

483

APS Upgrade | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop on new science opportunities provided by a multi-bend achromat lattice at the APS October 21-22 Advanced Photon Source Argonne National Lab To prepare for the workshop...

484

Quantum fields as gravitational sources  

E-Print Network (OSTI)

The practice of setting quantum fields as sources for classical general relativity is examined. Several conceptual problems are identified which invalidate apparently innocuous equations. Alternative ways to links classical general relativity with quantum theory using Bohm's theory are proposed.

Mark J Hadley

2008-08-13T23:59:59.000Z

485

H- radio frequency source development at the Spallation Neutron Source  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent {approx}38 mA peak current in the linac and an availability of {approx}90%. H{sup -} beam pulses ({approx}1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, {approx}60 kW) of a copper antenna that has been encased with a thickness of {approx}0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of {approx}99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of {approx}75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance/installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to {approx}100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

Welton, Robert F [ORNL; Pennisi, Terry R [ORNL; Roseberry, Ron T [ORNL; Stockli, Martin P [ORNL

2012-01-01T23:59:59.000Z

486

rf improvements for Spallation Neutron Source H ion source  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering 38 mA H beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride AlN plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier. 2010 American Institute of Physics.

Kang, Yoon W [ORNL; Fuja, Raymond E [ORNL; Goulding, Richard Howell [ORNL; Hardek, Thomas W [ORNL; Lee, Sung-Woo [ORNL; McCarthy, Mike [ORNL; Piller, Chip [ORNL; Shin, Ki [ORNL; Stockli, Martin P [ORNL; Welton, Robert F [ORNL

2010-01-01T23:59:59.000Z

487

Multilevel cascade voltage source inverter with seperate DC sources  

SciTech Connect

A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

Peng, Fang Zheng (Oak Ridge, TN); Lai, Jih-Sheng (Knoxville, TN)

1997-01-01T23:59:59.000Z

488

Multilevel cascade voltage source inverter with seperate DC sources  

DOE Patents (OSTI)

A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

Peng, Fang Zheng (Knoxville, TN); Lai, Jih-Sheng (Blacksburg, VA)

2002-01-01T23:59:59.000Z

489

Multilevel cascade voltage source inverter with separate DC sources  

DOE Patents (OSTI)

A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations. 15 figs.

Peng, F.Z.; Lai, J.S.

1997-06-24T23:59:59.000Z

490

Research on fusion neutron sources  

SciTech Connect

The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. 'Fusion for Neutrons' (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

Gryaznevich, M. P. [Tokamak Solutions UK, Culham Science Centre, Abingdon, OXON, OX133DB (United Kingdom)

2012-06-19T23:59:59.000Z

491

Video Library | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Media Center: Media Center: Calendar of Events APS News User News Article Archives APS Brochure Annual Reports Posters Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) Featured Videos: Introduction to the Advanced Photon Source The Advanced Photon Source An introduction and overview of the technology that produces the brightest x-ray beams in the Western Hemisphere, and the research carried out by scientists using those x-rays. Timelapse of the APS construction Building the APS A timelapse video from 1990-1995 that shows the Advanced Photon Source rising from an empty field to become the site of a national synchrotron x-ray research facility. Physics of the Blues Physics of the Blues In looking at commonalities between music and science, former PSC Director

492

Energy Sources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Sources Energy Sources Energy Sources December 12, 2013 AEMC Summit Slideshow: Innovation in the Manufacturing Sector Learn how advanced technologies are helping manufacturers reduce waste, increase productivity and become leaders in the clean energy economy. October 16, 2013 West Penn Power SEF Commercial Loan Program The West Penn Power Sustainable Energy Fund (WPPSEF) promotes the use of renewable energy and clean energy among commercial, industrial, institutional and residential customers in the West Penn market region. Eligible technologies include solar, wind, low-impact hydro, and sustainable biomass such as closed-loop biomass and biomass gasification, as well as energy efficiency. October 16, 2013 UES - Renewable Energy Credit Purchase Program '''''Note: The Arizona Corporation Commission (ACC) is in the process of

493

E Source | Open Energy Information  

Open Energy Info (EERE)

Source Source Jump to: navigation, search Name E Source Address 1965 North 57th Court Place Boulder, CO Zip 80301 Product Research firm Year founded 1986 Number of employees 51-200 Phone number 303.345.9000 Website [www.esource.com www.esource.com ] Coordinates 40.01895°, -105.2207964° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.01895,"lon":-105.2207964,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

494

SNS | Spallation Neutron Source | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

SNS SNS Instruments Working with SNS Contact Us User Program Manager Laura Morris Edwards 865.574.2966 Spallation Neutron Source Home | User Facilities | SNS SNS | Spallation Neutron Source SHARE SNS is an accelerator-based neutron source in Oak Ridge, Tennessee, USA. This one-of-a-kind facility provides the most intense pulsed neutron beams in the world for scientific research and industrial development. The 80-acre SNS site is located on Chestnut Ridge and is part of Oak Ridge National Laboratory. Although most people don't know it, neutron scattering research has a lot to do with our everyday lives. For example, things like medicine, food, electronics, and cars and airplanes have all been improved by neutron scattering research. Neutron research also helps scientists improve materials used in a

495

Blind Source Separation Techniques for  

E-Print Network (OSTI)

Blind Source Separation techniques, based both on Independent Component Analysis and on second order statistics, are presented and compared for extracting partially hidden texts and textures in document images. Barely perceivable features may occur, for instance, in ancient documents previously erased and then re-written (palimpsests), or for transparency or seeping of ink from the reverse side, or from watermarks in the paper. Detecting these features can be of great importance to scholars and historians. In our approach, the document is modeled as the superposition of a number of source patterns, and a simplified linear mixture model is introduced for describing the relationship between these sources and multispectral views of the document itself. The problem of detecting the patterns that are barely perceivable in the visible color image is thus formulated as the one of separating the various patterns in the mixtures. Some examples from an extensive experimentation with real ancient documents are shown and commented.

Detecting Hidden Texts; Anna Tonazzini; Emanuele Salerno; Matteo Mochi; Luigi Bedini

2004-01-01T23:59:59.000Z

496

Miniature x-ray source  

DOE Patents (OSTI)

A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)

2000-01-01T23:59:59.000Z

497

Miniature x-ray source  

DOE Patents (OSTI)

A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

Trebes, James E. (Livermore, CA); Stone, Gary F. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA); Chornenky, Victor I. (Minnetonka, MN)

2002-01-01T23:59:59.000Z

498

Low-pressure ion source  

DOE Patents (OSTI)

A low pressure ion source for a neutron source comprises a filament cathode and an anode ring. Approximately 150V is applied between the cathode and the anode. Other electrodes, including a heat shield, a reflector and an aperture plate with a focus electrode, are placed at intermediate potentials. Electrons from the filament drawn out by the plasma and eventually removed by the anode are contained in a magnetic field created by a magnet ring. Ions are formed by electron impact with deuterium or tritium and are extracted at the aperture in the focus electrode. The ion source will typically generate a 200 mA beam through a 1.25 cm/sup 2/ aperture for an arc current of 10A. For deuterium gas, the ion beam is over 50 percent D/sup +/ with less than 1% impurity. The current density profile across the aperture will typically be uniform to within 20%.

Bacon, F.M.; Brainard, J.P.; O' Hagan, J.B.; Walko, R.J.

1982-10-27T23:59:59.000Z

499

Compact portable electric power sources  

DOE Green Energy (OSTI)

This report provides an overview of recent advances in portable electric power source (PEPS) technology and an assessment of emerging PEPS technologies that may meet US Special Operations Command`s (SOCOM) needs in the next 1--2- and 3--5-year time frames. The assessment was performed through a literature search and interviews with experts in various laboratories and companies. Nineteen PEPS technologies were reviewed and characterized as (1) PEPSs that meet SOCOM requirements; (2) PEPSs that could fulfill requirements for special field conditions and locations; (3) potentially high-payoff sources that require additional R and D; and (4) sources unlikely to meet present SOCOM requirements. 6 figs., 10 tabs.

Fry, D.N.; Holcomb, D.E.; Munro, J.K.; Oakes, L.C.; Matson, M.J.

1997-02-01T23:59:59.000Z

500

Sensor/source electrometer circuit  

DOE Patents (OSTI)

A multiple decade electrometer circuit is claimed which can measure low input currents or act as a current source and is comprised of a microprocessor controlled digital to analog converters to derive individual decades. A plurality of decades are created by multiple D-A voltage sources which generate electrometer currents through scaled resistors. After a first series of decades of current are successively produced, the converters are 10 cycled to generate current through new resistors scaled to produce another series decades of current. In this manner, the electrometer circuit generates or senses a plurality of decades of current without significant scale change.

Hughes, W.J.

1991-12-31T23:59:59.000Z