Sample records for 2003-5 expansion phase

  1. Phase structure of 2-dimensional topological insulators by lattice strong coupling expansion

    E-Print Network [OSTI]

    Yasufumi Araki; Taro Kimura

    2013-03-06T23:59:59.000Z

    The phase structure of 2-dimensional topological insulators under a sufficiently strong electron-electron interaction is investigated. The effective theory is constructed by extending the idea of the Kane-Mele model on the graphenelike honeycomb lattice, in terms of U(1) lattice gauge theory (quantum electrodynamics, QED). We analyze the phase structure by the techniques of strong coupling expansion of lattice gauge theory. As a result, we find that the topological phase structure of the system is modified by the electron-electron interaction. There evolves a new phase with the antiferromagnetism not parallel to the direction pointed by the spin-orbit coupling, in between the conventional and the topological insulator phases. We also discuss the physical implication of the new phase structure found here, in analogy to the parity-broken phase in lattice quantum chromodynamics (QCD), known as "Aoki phase".

  2. Phase structure of topological insulators by lattice strong-coupling expansion

    E-Print Network [OSTI]

    Araki, Yasufumi; Sekine, Akihiko; Nomura, Kentaro; Nakano, Takashi Z

    2013-01-01T23:59:59.000Z

    The effect of the strong electron correlation on the topological phase structure of 2-dimensional (2D) and 3D topological insulators is investigated, in terms of lattice gauge theory. The effective model for noninteracting system is constructed similarly to the lattice fermions with the Wilson term, corresponding to the spin-orbit coupling. Introducing the electron-electron interaction as the coupling to the gauge field, we analyze the behavior of emergent orders by the strong coupling expansion methods. We show that there appears a new phase with the in-plane antiferromagnetic order in the 2D topological insulator, which is similar to the so-called "Aoki phase" in lattice QCD with Wilson fermions. In the 3D case, on the other hand, there does not appear such a new phase, and the electron correlation results in the shift of the phase boundary between the topological phase and the normal phase.

  3. id phase can emerge from the analysis of the expansion of the gas.

    E-Print Network [OSTI]

    Stephens, David W.

    can emerge from the analysis of the expansion of the gas. Is it possible to probe directly the emer been realized with Bose-Einstein condensed gases, probing directly the quantization of circulation (16). Repeating such an experiment in a Fermi gas should provide a stringent test of superfluidity. References

  4. Energy density and volume expansion in solid-liquid phase change, for energy applications.

    E-Print Network [OSTI]

    Pan, Ruijun

    2013-01-01T23:59:59.000Z

    ?? Phase change materials (PCMs) have long been studied as thermal energy storage media. However, the Swedish company, Exencotech AB, reaching beyond this usual scope… (more)

  5. Indian Policy and Westward Expansion

    E-Print Network [OSTI]

    Malin, James Claude

    1921-11-01T23:59:59.000Z

    and the in vestigation of his activity on that committee led to a study of Indian policy in the Trans-Mississippi Valley and its relation to the westward movement. This latter problem, begun as a phase of Atchison's career in the Senate, de veloped into one... policy and its relation to westward expansion now furnish a frame-work upon which the history of the Trans-Mississippi Valley before the Civil War may be written. The period is given a unity otherwise impossible and a foundation is laid upon which...

  6. Loop expansion in Yang-Mills thermodynamics

    E-Print Network [OSTI]

    Ralf Hofmann

    2009-11-05T23:59:59.000Z

    We argue that a selfconsistent spatial coarse-graining, which involves interacting (anti)calorons of unit topological charge modulus, implies that real-time loop expansions of thermodynamical quantities in the deconfining phase of SU(2) and SU(3) Yang-Mills thermodynamics are, modulo 1PI resummations, determined by a finite number of connected bubble diagrams.

  7. Static gas expansion cooler

    DOE Patents [OSTI]

    Guzek, J.C.; Lujan, R.A.

    1984-01-01T23:59:59.000Z

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  8. China petrochemical expansion progressing

    SciTech Connect (OSTI)

    Not Available

    1991-08-05T23:59:59.000Z

    This paper reports on China's petrochemical expansion surge which is picking up speed. A worldscale petrochemical complex is emerging at Shanghai with an eye to expanding China's petrochemical exports, possibly through joint ventures with foreign companies, China Features reported. In other action, Beijing and Henan province have approved plans for a $1.2 billion chemical fibers complex at the proposed Luoyang refinery, China Daily reported.

  9. AIAA 20030185 Aerodynamically Controlled Expansion

    E-Print Network [OSTI]

    Texas at Arlington, University of

    undesirable over-expansion in generalized supersonic nozzle flows. Nomenclature A cross-sectional area fgAIAA 2003­0185 Aerodynamically Controlled Expansion Nozzle for STOVL Aircraft D.A. Terrier Lockheed Controlled Expansion Nozzle for STOVL Aircraft Douglas A. Terrier* Lockheed Martin Aeronautics Company, Fort

  10. Load regulating expansion fixture

    DOE Patents [OSTI]

    Wagner, L.M.; Strum, M.J.

    1998-12-15T23:59:59.000Z

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

  11. Load regulating expansion fixture

    DOE Patents [OSTI]

    Wagner, Lawrence M. (San Jose, CA); Strum, Michael J. (San Jose, CA)

    1998-01-01T23:59:59.000Z

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

  12. Warp Drive With Zero Expansion

    E-Print Network [OSTI]

    Jose Natario

    2002-03-13T23:59:59.000Z

    It is commonly believed that Alcubierre's warp drive works by contracting space in front of the warp bubble and expanding space behind it. We show that this expansion/contraction is but a marginal consequence of the choice made by Alcubierre, and explicitly construct a similar spacetime where no contraction/expansion occurs. Global and optical properties of warp drive spacetimes are also discussed.

  13. SAGEWASP. Optimal Electric Utility Expansion

    SciTech Connect (OSTI)

    Clark, P.D.II; Ullrich, C.J. [Lakeland Electric and Water, FL (United States)

    1989-10-10T23:59:59.000Z

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansion configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.

  14. Residential construction on expansive soils

    E-Print Network [OSTI]

    Phipps, James Frederick

    1993-01-01T23:59:59.000Z

    Residences founded on expansive soils experience billions of dollars each year in damage caused by the heaving and shrinking of the foundation soils. It is thought that stiffening the foundation, while increasing the cost of the home, will save...

  15. Phenomenological theories of ferroelectric phase transitions

    E-Print Network [OSTI]

    Cao, Wenwu

    Phenomenological theories of ferroelectric phase transitions W. Cao parameter in the free energy expansion, phenomenological theory can also describe inhomogeneous structures appear-Phenomenological parent and product phases. phenomenological theories in multidimensions for describ-Phenomenological

  16. Critical point anomalies include expansion shock waves

    SciTech Connect (OSTI)

    Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2014-02-15T23:59:59.000Z

    From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

  17. Calculate thermal-expansion coefficients

    SciTech Connect (OSTI)

    Yaws, C.L. [Lamar Univ., Beaumont, TX (United States)

    1995-08-01T23:59:59.000Z

    To properly design and use process equipment, an engineer needs a sound knowledge of physical and thermodynamic property data. A lack of such knowledge can lead to design or operating mistakes that can be dangerous, costly or even fatal. One useful type of property data is the thermal-expansion coefficient. This article presents equations and tables to find the thermal-expansion coefficients of many liquids that contain carbon. These data are useful in process-engineering applications, including the design of relief systems which are crucial to safeguarding process equipment. Data are provided for approximately 350 compounds. A computer software program, which contains the thermophysical property data for all of the compounds discussed in this article, is available for $43 prepaid from the author (Carl L. Yaws, Box 10053, Lamar University, beaumont, TX 77710; Tel. 409-880-8787; fax 409-880-8404). The program is in ASCII format, which can be accessed by most other types of computer software.

  18. Glass ceramics for sealing to high-thermal-expansion metals

    SciTech Connect (OSTI)

    Wilder, Jr., J. A.

    1980-10-01T23:59:59.000Z

    Glass ceramics were studied, formulated in the Na/sub 2/O CaO.P/sub 2/O/sub 5/, Na/sub 2/O.BaOP/sub 2/O/sub 5/, Na/sub 2/O.Al/sub 2/O/sub 3/.P/sub 2/O/sub 5/, and Li/sub 2/O.BaO.P/sub 2/O/sub 5/ systems to establish their suitability for sealing to high thermal expansion metals, e.g. aluminum, copper, and 300 series stainless steels. Glass ceramics in Na/sub 2/O.CaO.P/sub 2/O/sub 5/ and Na/sub 2/O.BaO.P/sub 2/O/sub 5/ systems have coefficients of thermal expansion in the range 140 x 10/sup -1/ per /sup 0/C less than or equal to ..cap alpha.. less than or equal to 225 x 10/sup -7/ per /sup 0/C and fracture toughness values generally greater than those of phosphate glasses; they are suitable for fabricating seals to high thermal expansion metals. Crystal phases include NaPo/sub 3/, (NaPO/sub 3/)/sub 3/, NaBa(PO/sub 3/)/sub 3/, and NaCa(PO/sub 3/)/sub 3/. Glass ceramics formed in the Na/sub 2/O.Al/sub 2/O/sub 3/.P/sub 2/O/sub 5/ systems have coefficients of thermal expansion greater than 240 x 10/sup -7/ per /sup 0/C, but they have extensive microcracking. Due to their low thermal expansion values (..cap alpha.. less than or equal to 120 x 10/sup -7/ per /sup 0/C), glass ceramics in the Li/sub 2/O.BaO.P/sub 2/O/sub 5/ system are unsuitable for sealing to high thermal expansion metals.

  19. Substorm expansion phase: Observations from Geotail, Polar and IMAGE network

    E-Print Network [OSTI]

    California at Berkeley, University of

    is not at the center of the sheet anymore, detects an ion velocity directed earthward but essentially field aligned Plasma Sheet (CPS) and Plasma Sheet Boundary Layer (PSBL) and on the relation between this transport

  20. Measurement of the thermal expansion coefficients of ferroelectric crystals by a moire interferometer

    E-Print Network [OSTI]

    Arie, Ady

    reserved. Keywords: Moire´ interferometry; Ferroelectric; Thermal expansion 1. Introduction Lithium niobate-phase-matched interactions [4­6]. Design of such devices requires accurate knowledge of the relevant physi- cal parameters properties, as the thermo-optic coefficients [7]. Further- more, in quasi-phase-match nonlinear processes

  1. Gyrification from constrained cortical expansion

    E-Print Network [OSTI]

    Tuomas Tallinen; Jun Young Chung; John S. Biggins; L. Mahadevan

    2015-03-12T23:59:59.000Z

    The exterior of the mammalian brain - the cerebral cortex - has a conserved layered structure whose thickness varies little across species. However, selection pressures over evolutionary time scales have led to cortices that have a large surface area to volume ratio in some organisms, with the result that the brain is strongly convoluted into sulci and gyri. Here we show that the gyrification can arise as a nonlinear consequence of a simple mechanical instability driven by tangential expansion of the gray matter constrained by the white matter. A physical mimic of the process using a layered swelling gel captures the essence of the mechanism, and numerical simulations of the brain treated as a soft solid lead to the formation of cusped sulci and smooth gyri similar to those in the brain. The resulting gyrification patterns are a function of relative cortical expansion and relative thickness (compared with brain size), and are consistent with observations of a wide range of brains, ranging from smooth to highly convoluted. Furthermore, this dependence on two simple geometric parameters that characterize the brain also allows us to qualitatively explain how variations in these parameters lead to anatomical anomalies in such situations as polymicrogyria, pachygyria, and lissencephalia.

  2. Abductive Reasoning, Belief Expansion and Nonmonotonic Consequence \\Lambda

    E-Print Network [OSTI]

    Pagnucco, Maurice

    Abductive Reasoning, Belief Expansion and Nonmonotonic Consequence \\Lambda Maurice Pagnucco Abhaya operator known as abductive expansion which adds abductive inference to the belief expansion process. They develop rationality postulates for abductive belief expansion and provide a construction in terms

  3. Accelerated expansion from cosmological holography

    E-Print Network [OSTI]

    van Putten, Maurice H P M

    2015-01-01T23:59:59.000Z

    It is shown that holographic cosmology implies an evolving Hubble radius $c^{-1}\\dot{R}_H = -1 + 3\\Omega_m$ in the presence of a dimensionless matter density $\\Omega_m$ scaled to the closure density $3H^2/8\\pi G$, where $c$ denotes the velocity of light and $H$ and $G$ denote the Hubble parameter and Newton's constant. It reveals a dynamical dark energy and a sixfold increase in gravitational attraction to matter on the scale of the Hubble acceleration. It reproduces the transition redshift $z_t\\simeq 0.4$ to the present epoch of accelerated expansion and is consistent with $(q_0,(dq/dz)_0)$ of the deceleration parameter $q(z)=q_0+(dq/dz)_0z$ observed in Type Ia supernovae.

  4. Theoretical model for plasma expansion generated by hypervelocity impact

    SciTech Connect (OSTI)

    Ju, Yuanyuan; Zhang, Qingming, E-mail: qmzhang@bit.edu.cn; Zhang, Dongjiang; Long, Renrong; Chen, Li; Huang, Fenglei [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Gong, Zizheng [National Key Laboratory of Science and Technology on Reliability and Environment Engineering, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094 (China)

    2014-09-15T23:59:59.000Z

    The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4?mm on LY12 aluminum target thickness of 23?mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3?km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T{sub e}, n{sub e})???v{sub p}{sup 3}. Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data.

  5. Cosmic Growth History and Expansion History

    E-Print Network [OSTI]

    Linder, Eric V.

    2009-01-01T23:59:59.000Z

    of the expansion history dark energy equation of state,and growth history constraints on the dark energy equationand growth history constraints on the dark energy equation

  6. Generation capacity expansion in restructured energy markets.

    E-Print Network [OSTI]

    Nanduri, Vishnuteja

    2009-01-01T23:59:59.000Z

    ??With a significant number of states in the U.S. and countries around the world trading electricity in restructured markets, a sizeable proportion of capacity expansion… (more)

  7. Energy Infrastructure Events and Expansions Infrastructure Security...

    Broader source: Energy.gov (indexed) [DOE]

    Year-in-Review: 2010 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S....

  8. Delayed Linear Expansion of Two Ultra-low Expansion Dental Stones

    E-Print Network [OSTI]

    Oppedisano, Michael

    2013-12-20T23:59:59.000Z

    The purpose of this study was to measure the linear setting expansion of two ultra-low expansion dental stones used in definitive cast/ prosthesis fabrication which claim to have very low to no setting expansion. Five specimens of each material...

  9. Matched asymptotic expansions in financial engineering

    E-Print Network [OSTI]

    Howison, Sam

    Matched asymptotic expansions in financial engineering Sam Howison OCIAM and Nomura Centre of the approach in `plain vanilla' option valuation, in valuation using a fast mean-reverting-stochastic expansions applied directly to stochastic processes of diffusion type is also proposed. Keywords: option

  10. Multipole Expansion Model in Gravitational Lensing

    E-Print Network [OSTI]

    T. Fukuyama; Y. Kakigi; T. Okamura

    1997-01-31T23:59:59.000Z

    Non-transparent models of multipole expansion model and two point-mass model are analyzed from the catastrophe theory. Singularity behaviours of $2^n$-pole moments are discussed. We apply these models to triple quasar PG1115+080 and compare with the typical transparent model, softened power law spheroids. Multipole expansion model gives the best fit among them.

  11. On Perturbation theory improved by Strong coupling expansion

    E-Print Network [OSTI]

    Masazumi Honda

    2014-10-13T23:59:59.000Z

    In theoretical physics, we sometimes have two perturbative expansions of physical quantity around different two points in parameter space. In terms of the two perturbative expansions, we introduce a new type of smooth interpolating function consistent with the both expansions, which includes the standard Pad\\'e approximant and fractional power of polynomial method constructed by Sen as special cases. We point out that we can construct enormous number of such interpolating functions in principle while the "best" approximation for the exact answer of the physical quantity should be unique among the interpolating functions. We propose a criterion to determine the "best" interpolating function, which is applicable except some situations even if we do not know the exact answer. It turns out that our criterion works for various examples including specific heat in two-dimensional Ising model, average plaquette in four-dimensional SU(3) pure Yang-Mills theory on lattice and free energy in c=1 string theory at self-dual radius. We also mention possible applications of the interpolating functions to system with phase transition.

  12. Design Under Uncertainty Employing Stochastic Expansion Methods

    E-Print Network [OSTI]

    Non-intrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) meth- ods and ability to produce functional representations of stochastic variability. PCE estimates coefficients with both techniques for general probabilistic analysis problems. Once PCE or SC representations have been

  13. Low expansion superalloy with improved toughness

    DOE Patents [OSTI]

    Smith, D.F.; Stein, L.I.; Hwang, I.S.

    1995-06-20T23:59:59.000Z

    A high strength, low coefficient of thermal expansion superalloy exhibiting improved toughness over a broad temperature range down to about 4 K is disclosed. The composition is adapted for use with wrought superconducting sheathing.

  14. Major Business Expansion Bond Program (Maine)

    Broader source: Energy.gov [DOE]

    The Major Business Expansion Bond Program provides long-term, credit-enhanced financing up to $25,000,000 at taxable bond rates for businesses creating or retaining at least 50 jobs; up to $10,000...

  15. Brain choline concentration: early quantitative marker of ischemia and infarct expansion

    E-Print Network [OSTI]

    Karaszewski, B.; Thomas, R.G.R.; Chappell, F.M.; Armitage, P.A.; Carpenter, T.K.; Lymer, G.K.S.; Dennis, M.S.; Marshall, I.; Wardlaw, J.M.

    –28) there were 108 infarct "non-expansion” voxels and 113 infarct "expansion” voxels (of which 80 were “complete expansion” and 33 “partial expansion” voxels). Brain choline concentration increased for each change in expansion category from "non-expansion", via...

  16. Design of a Continuous Supersonic Expansion Discharge Source for the Acquisition of a Rotationally-Cold

    E-Print Network [OSTI]

    McCall, Benjamin J.

    Design of a Continuous Supersonic Expansion Discharge Source for the Acquisition of a Rotationally-Cold. However, even when the walls of these discharge cells are cryogenically cooled, the ion temperatures ionization techniques are needed. In order to produce cold gas-phase ions for spectroscopy, many groups have

  17. Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...

    Office of Environmental Management (EM)

    Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 -...

  18. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

  19. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

  20. Heat Flow Database Expansion for NGDS Data Development, Collection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance (SMU) Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance (SMU)...

  1. Effects of restraint on expansion due to delayed ettringite formation

    SciTech Connect (OSTI)

    Bouzabata, Hassina [Universite de Toulouse, UPS, INSA, LMDC (Laboratoire Materiaux et Durabilite des Constructions), 135, avenue de Rangueil, F-31 077 Toulouse Cedex 04 (France); Laboratoire Materiaux et Durabilite des Constructions, Department of Civil Engineering, University of Constantine (Algeria); Multon, Stephane, E-mail: multon@insa-toulouse.fr [Universite de Toulouse, UPS, INSA, LMDC (Laboratoire Materiaux et Durabilite des Constructions), 135, avenue de Rangueil, F-31 077 Toulouse Cedex 04 (France); Sellier, Alain [Universite de Toulouse, UPS, INSA, LMDC (Laboratoire Materiaux et Durabilite des Constructions), 135, avenue de Rangueil, F-31 077 Toulouse Cedex 04 (France); Houari, Hacene [Laboratoire Materiaux et Durabilite des Constructions, Department of Civil Engineering, University of Constantine (Algeria)

    2012-07-15T23:59:59.000Z

    Delayed ettringite formation (DEF) is a chemical reaction that causes expansion in civil engineering structures. The safety level of such damaged structures has to be reassessed. To do this, the mechanical conditions acting on DEF expansions have to be analysed and, in particular, the variation of strength with expansion and the effect of restraint on the DEF expansion. This paper highlights several points: DEF expansion is isotropic in stress-free conditions, compressive stresses decrease DEF expansion in the direction subjected to restraint and lead to cracks parallel to the restraint, and expansion measured in the stress-free direction of restrained specimens is not modified. Thus restraint causes a decrease of the volumetric expansion and DEF expansion under restraint is anisotropic. Moreover, the paper examines the correlation between DEF expansion and concrete damage, providing data that can be used for the quantification of the effect of stresses on DEF induced expansion.

  2. METRIC PROPERTIES AND EXCEPTIONAL SETS OF THE OPPENHEIM EXPANSIONS

    E-Print Network [OSTI]

    Fan, Ai-Hua

    METRIC PROPERTIES AND EXCEPTIONAL SETS OF THE OPPENHEIM EXPANSIONS OVER THE FIELD OF LAURENT SERIES in a large class of Oppenheim expansions of Laurent series, including Luroth, Engel, Sylvester expansions properties fail to hold. Key Words and Phrases Oppenheim expansions, Laurent series, #12;nite #12;eld

  3. Climate Science: Tropical Expansion by Ocean Swing

    SciTech Connect (OSTI)

    Lu, Jian

    2014-04-01T23:59:59.000Z

    The tropical belt has become wider over the past decades, but climate models fall short of capturing the full rate of the expansion. The latest analysis of the climate simulations suggests that a long-term swing of the Pacific Decadal Oscillation is the main missing cause.

  4. Polymer Expansions for Cycle LDPC Codes

    E-Print Network [OSTI]

    Nicolas Macris; Marc Vuffray

    2012-02-13T23:59:59.000Z

    We prove that the Bethe expression for the conditional input-output entropy of cycle LDPC codes on binary symmetric channels above the MAP threshold is exact in the large block length limit. The analysis relies on methods from statistical physics. The finite size corrections to the Bethe expression are expressed through a polymer expansion which is controlled thanks to expander and counting arguments.

  5. Expansion of a Fermi gas interacting with a Bose-Einstein condensate

    E-Print Network [OSTI]

    F. Ferlaino; E. de Mirandes; G. Roati; G. Modugno; M. Inguscio

    2003-12-10T23:59:59.000Z

    We study the expansion of an atomic Fermi gas interacting attractively with a Bose-Einstein condensate. We find that the interspecies interaction affects dramatically both the expansion of the Fermi gas and the spatial distribution of the cloud in trap. We observe indeed a slower evolution of the radial-to-axial aspect ratio which reveals the importance of the mutual attraction between the two samples during the first phase of the expansion. For large atom numbers, we also observe a bimodal momentum distribution of the Fermi gas, which reflects directly the distribution of the mixture in trap. This effect allows us to extract information on the dynamics of the system at the collapse.

  6. 216-B-3 expansion ponds closure plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.

  7. Frostless heat pump having thermal expansion valves

    DOE Patents [OSTI]

    Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN)

    2002-10-22T23:59:59.000Z

    A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.

  8. Locally-smeared operator product expansions

    SciTech Connect (OSTI)

    Monahan, Christopher; Orginos, Kostantinos

    2014-12-01T23:59:59.000Z

    We propose a "locally-smeared Operator Product Expansion" (sOPE) to decompose non-local operators in terms of a basis of locally-smeared operators. The sOPE formally connects nonperturbative matrix elements of smeared degrees of freedom, determined numerically using the gradient flow, to non-local operators in the continuum. The nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale prevents a simple connection to the standard operator product expansion and therefore requires the construction of a two-scale formalism. We demonstrate the feasibility of our approach using the example of real scalar field theory.

  9. Tests for the Expansion of the Universe

    E-Print Network [OSTI]

    Lopez-Corredoira, Martin

    2015-01-01T23:59:59.000Z

    Almost all cosmologists accept nowadays that the redshift of the galaxies is due to the expansion of the Universe (cosmological redshift), plus some Doppler effect of peculiar motions, but can we be sure of this fact by means of some other independent cosmological test? Here I will review some recent tests: CMBR temperature versus redshift, time dilation, the Hubble diagram, the Tolman or surface brightness test, the angular size test, the UV surface brightness limit and the Alcock--Paczy\\'nski test. Some tests favour expansion and others favour a static Universe. Almost all the cosmological tests are susceptible to the evolution of galaxies and/or other effects. Tolman or angular size tests need to assume very strong evolution of galaxy sizes to fit the data with the standard cosmology, whereas the Alcock--Paczynski test, an evaluation of the ratio of observed angular size to radial/redshift size, is independent of it.

  10. Low thermal expansion seal ring support

    DOE Patents [OSTI]

    Dewis, David W. (San Diego, CA); Glezer, Boris (Del Mar, CA)

    2000-01-01T23:59:59.000Z

    Today, the trend is to increase the temperature of operation of gas turbine engines. To cool the components with compressor discharge air, robs air which could otherwise be used for combustion and creates a less efficient gas turbine engine. The present low thermal expansion sealing ring support system reduces the quantity of cooling air required while maintaining life and longevity of the components. Additionally, the low thermal expansion sealing ring reduces the clearance "C","C'" demanded between the interface between the sealing surface and the tip of the plurality of turbine blades. The sealing ring is supported by a plurality of support members in a manner in which the sealing ring and the plurality of support members independently expand and contract relative to each other and to other gas turbine engine components.

  11. Shock compression and expansion in central collisions

    SciTech Connect (OSTI)

    Danielewicz, P. [Univ. of Washington, Seattle, WA (United States). Institute for Nuclear Theory]|[Michigan State Univ., East Lansing, MI (United States)

    1995-01-01T23:59:59.000Z

    Physics of central symmetric reactions of heavy nuclei, in the beam energy range from few tens of MeV to a couple of GeV per nucleon, is discussed. Within transport simulations, it is shown that shock fronts perpendicular to the beam axis form in the head-on reactions. The fronts propagate into projectile and target and they separate hot compressed matter from normal matter. With an increase of the impact parameter, the angle of inclination of fronts relative to the beam axis decreases, and in-between the fronts a weak tangential discontinuity develops. Hot matter exposed to the vacuum in directions perpendicular to the shock motion (and parallel to fronts), starts to expand sideways, early within reactions. Expansion in the direction of shock motion follows, after the shocks traverse nuclei, but due to the delay does not acquire same strength. Expansion affects angular distributions and mean-energy components, and further shapes of spectra and mean energies of different particles emitted into any one direction, and also particle yields. Both the anisotropy in the expansion and a collective motion associated with the weak discontinuity, affect the magnitude of sideward flow within reaction plane. Differences in mean particle energy components in and out of the reaction plane in semicentral collisions, depend sensitively on the relative magnitude of shock speed in normal matter and speed of sound in hot matter. The missing energy, considered in the past in association with low measured pion-multiplicity in central reactions, may be identified with the energy of collective expansion.

  12. Expansion and Collapse in the Cosmic Web

    E-Print Network [OSTI]

    Michael Rauch; George D. Becker; Matteo Viel; Wallace L. W. Sargent; Alain Smette; Robert A. Simcoe; Thomas A. Barlow; Martin G. Haehnelt

    2005-09-09T23:59:59.000Z

    We study the kinematics of the gaseous cosmic web at high redshift with Lyman alpha forest absorption in multiple QSO sightlines. Using a simple analytic model and a cosmological hydrodynamic simulation we constrain the underlying three-dimensional distribution of velocities from the observed line-of-sight distribution of velocity shear across the plane of the sky. The distribution is found to be in good agreement with the intergalactic medium (IGM) undergoing large scale motions dominated by the Hubble flow. Modeling the Lyman alpha clouds analytically and with a hydrodynamics simulation, the average expansion velocity of the gaseous structures causing the Lyman alpha forest in the lower redshift (z = 2) sample appears about 20 percent lower than the local Hubble expansion velocity. We interpret this as tentative evidence for some clouds undergoing gravitational collapse. However, the distribution of velocities is highly skewed, and the majority of clouds at redshifts from 2 to 3.8 expand typically about 5 - 20 percent faster than the Hubble flow. This behavior is explained if most absorbers in the column density range typically detectable are expanding filaments that stretch and drain into more massive nodes. We find no evidence for the observed distribution of velocity shear being significantly influenced by processes other than Hubble expansion and gravitational instability, like galactic winds. To avoid overly disturbing the IGM, winds may be old and/or limp by the time we observe them in the Lyman alpha forest, or they may occupy only an insignificant volume fraction of the IGM. (abridged)

  13. Earth pressures and deformations in civil infrastructure in expansive soils

    E-Print Network [OSTI]

    Hong, Gyeong Taek

    2008-10-10T23:59:59.000Z

    This dissertation includes the three major parts of the study: volume change, and lateral earth pressure due to suction change in expansive clay soils, and design of civil infrastructure drilled pier, retaining wall and pavement in expansive soils...

  14. Statement from Energy Secretary Samuel W. Bodman on the Expansion...

    Broader source: Energy.gov (indexed) [DOE]

    the Expansion of the Strategic Petroleum Reserve to 1.5 Billion Statement from Energy Secretary Samuel W. Bodman on the Expansion of the Strategic Petroleum Reserve to 1.5 Billion...

  15. An Expansion in the Exponent for Compound Binomial Approximations

    E-Print Network [OSTI]

    Roos, Bero

    distributions. One paper in this direction was published by Bikelis [5], who proposed an expansion, which identic

  16. Dynamical effects in the Coulomb expansion following nuclear fragmentation

    SciTech Connect (OSTI)

    Chung, K.C.; Donangelo, R.; Schechter, H.

    1987-09-01T23:59:59.000Z

    The effects of the Coulomb expansion on the fragment kinetic energy spectrum for a fragmentating hot nuclear system is investigated. In particular, /sup 12/C-fragment spectra are calculated and compared with those predicted by the uniform expansion approximation. The results indicate that the energy spectra of fragments are quite sensitive to the details of the Coulomb expansion treatment.

  17. A test of Taylor- and modified Taylor-expansion

    E-Print Network [OSTI]

    Max Wilfling; Christof Gattringer

    2014-04-08T23:59:59.000Z

    We compare Taylor expansion and a modified variant of Taylor expansion, which incorporates features of the fugacity series, for expansions in the chemical potential around a zero-density lattice field theory. As a first test we apply both series to the cases of free fermions and free bosons. Convergence and other properties are analyzed.

  18. Grid cell firing patterns signal environmental novelty by expansion

    E-Print Network [OSTI]

    Burgess, Neil

    Grid cell firing patterns signal environmental novelty by expansion Caswell Barrya,b,c,1 , Lin Lin novelty causes the spatial firing patterns of grid cells to expand in scale and reduce in regularity firing fields remapped and showed a smaller, temporary expansion. Grid expansion provides a potential

  19. Exploring Small-Scale Meat Processing Expansions in Iowa

    E-Print Network [OSTI]

    Debinski, Diane M.

    Exploring Small-Scale Meat Processing Expansions in Iowa A Technical Report Submitted@iastate.edu #12;2Exploring Small-Scale Meat Processing Expansions in Iowa April 2011 Overview of Findings Iowa;3Exploring Small-Scale Meat Processing Expansions in Iowa April 2011 Introduction Iowa is a national leader

  20. Matching of asymptotic expansions for the wave propagation in media

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Matching of asymptotic expansions for the wave propagation in media with thin slot S-SAM Matching of asymptotic expansions for the wave propagation in media with thin slot ­ p.1/38 inria-00528070 of asymptotic expansions for the wave propagation in media with thin slot ­ p.2/38 inria-00528070,version1-21Oct

  1. Matching of asymptotic expansions for the wave propagation in media

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Matching of asymptotic expansions for the wave propagation in media with thin slot S-SAM Matching of asymptotic expansions for the wave propagation in media with thin slot ­ p.1/29 inria-00528072 The wavelength The width of the slot ¡ Matching of asymptotic expansions for the wave propagation in media

  2. Cluster virial expansion for the equation of state of partially ionized hydrogen plasma

    SciTech Connect (OSTI)

    Omarbakiyeva, Y. A. [Institute of Physics, University of Rostock, D-18051 Rostock (Germany); IETP, Al-Farabi Kazakh National University, 96a, Tole bi St., Almaty 050012 (Kazakhstan); Fortmann, C. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States); Ramazanov, T. S. [IETP, Al-Farabi Kazakh National University, 96a, Tole bi St., Almaty 050012 (Kazakhstan); Roepke, G. [Institute of Physics, University of Rostock, D-18051 Rostock (Germany)

    2010-08-15T23:59:59.000Z

    We study the contribution of electron-atom interaction to the equation of state for partially ionized hydrogen plasma using the cluster-virial expansion. We use the Beth-Uhlenbeck approach to calculate the second virial coefficient for the electron-atom (bound cluster) pair from the corresponding scattering phase shifts and binding energies. Experimental scattering cross-sections as well as phase shifts calculated on the basis of different pseudopotential models are used as an input for the Beth-Uhlenbeck formula. By including Pauli blocking and screening in the phase shift calculation, we generalize the cluster-virial expansion in order to cover also near solid density plasmas. We present results for the electron-atom contribution to the virial expansion and the corresponding equation of state, i.e. pressure, composition, and chemical potential as a function of density and temperature. These results are compared with semiempirical approaches to the thermodynamics of partially ionized plasmas. Avoiding any ill-founded input quantities, the Beth-Uhlenbeck second virial coefficient for the electron-atom interaction represents a benchmark for other, semiempirical approaches.

  3. Lattice-structures and constructs with designed thermal expansion coefficients

    SciTech Connect (OSTI)

    Spadaccini, Christopher; Hopkins, Jonathan

    2014-10-28T23:59:59.000Z

    A thermal expansion-managed lattice structure having a plurality of unit cells each having flexure bearing-mounted tabs supported on a base and actuated by thermal expansion of an actuator having a thermal expansion coefficient greater than the base and arranged so that the tab is inwardly displaced into a base cavity. The flexure bearing-mounted tabs are connected to other flexure-bearing-mounted tabs of adjacent unit cells so that the adjacent unit cells are spaced from each other to accommodate thermal expansion of individual unit cells while maintaining a desired bulk thermal expansion coefficient of the lattice structure as a whole.

  4. Accelerating cycle expansions by dynamical conjugacy

    E-Print Network [OSTI]

    Ang Gao; Jianbo Xie; Yueheng Lan

    2011-06-06T23:59:59.000Z

    Periodic orbit theory provides two important functions---the dynamical zeta function and the spectral determinant for the calculation of dynamical averages in a nonlinear system. Their cycle expansions converge rapidly when the system is uniformly hyperbolic but greatly slowed down in the presence of non-hyperbolicity. We find that the slow convergence can be associated with singularities in the natural measure. A properly designed coordinate transformation may remove these singularities and results in a dynamically conjugate system where fast convergence is restored. The technique is successfully demonstrated on several examples of one-dimensional maps and some remaining challenges are discussed.

  5. Stability of Anisotropic Cylinder with Zero Expansion

    E-Print Network [OSTI]

    M. Sharif; M. Azam

    2013-05-24T23:59:59.000Z

    We study the dynamical instability of anisotropic collapsing cylinder with the expansion-free condition, which generates vacuum cavity within fluid distribution. The perturbation scheme is applied to distinguish Newtonian, post-Newtonian and post-post Newtonian terms, which are used for constructing dynamical equation at Newtonian and post-Newtonian regimes. We analyze the role of pressure anisotropy and energy density inhomogeneity on the stability of collapsing cylinder. It turns out that stability of the cylinder depends upon these physical properties of the fluid, not on the stiffness of the fluid.

  6. Calculations of Surface Thermal-Expansion

    E-Print Network [OSTI]

    KENNER, VE; Allen, Roland E.

    1973-01-01T23:59:59.000Z

    , the quasiharmon- ic approximation (plus the Lennard-Jones potential) predicts values of e???which are too large. " The monic approximation (plus the Lennard- Jones poten- 0 20 40 TEMPERATURE T 60 FIG. 9. Surface thermal expansion for Xe. tial) thus tend... to cancel, so that our results are more accurate than those obtained in more rigorous calcu- lations based on the quasihar monic approximation. The bulk results shown in Figs. 1-6 were ob- tained for a slab having a (111)surface orientation...

  7. Is Hubble's Expansion due to Dark Energy

    E-Print Network [OSTI]

    R. C. Gupta; Anirudh Pradhan

    2010-10-19T23:59:59.000Z

    {\\it The universe is expanding} is known (through Galaxy observations) since 1929 through Hubble's discovery ($V = H D$). Recently in 1999, it is found (through Supernovae observations) that the universe is not simply expanding but is accelerating too. We, however, hardly know only $4\\%$ of the universe. The Wilkinson Microwave Anisotropy Probe (WMAP) satellite observational data suggest $73\\%$ content of the universe in the form of dark-energy, $23\\%$ in the form of non-baryonic dark-matter and the rest $4\\%$ in the form of the usual baryonic matter. The acceleration of the universe is ascribed to this dark-energy with bizarre properties (repulsive-gravity). The question is that whether Hubble's expansion is just due to the shock of big-bang & inflation or it is due to the repulsive-gravity of dark-energy? Now, it is believed to be due to dark-energy, say, by re-introducing the once-discarded cosmological-constant $\\Lambda$. In the present paper, it is shown that `the formula for acceleration due to dark-energy' is (almost) exactly of same-form as `the acceleration formula from the Hubble's law'. Hence, it is concluded that: yes, `indeed it is the dark-energy responsible for the Hubble's expansion too, in-addition to the current on-going acceleration of the universe'.

  8. Double acting stirling engine phase control

    DOE Patents [OSTI]

    Berchowitz, David M. (Scotia, NY)

    1983-01-01T23:59:59.000Z

    A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

  9. Thermal expansion recovery microscopy: Practical design considerations

    SciTech Connect (OSTI)

    Mingolo, N., E-mail: nmingol@fi.uba.ar; Martínez, O. E. [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)] [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)

    2014-01-15T23:59:59.000Z

    A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.

  10. OMV studies ethylene expansion in Germany

    SciTech Connect (OSTI)

    NONE

    1996-10-23T23:59:59.000Z

    OMV(Vienna) is evaluating plans to debottleneck its ethylene plant at Burghausen from 310,000 m.t./year to at least 400,000 m.t./year. Senior v.p. Jochen Berger says OMV is studying the limits to which the cracker can be expanded. {open_quotes}We`re pretty sure we can go to 400,000 m.t./year, but in two months we`ll have a better idea,{close_quotes} says Berger. The expansion will also depend on the future requirements of downstream operations at the Burghausen site, which include OMV plastics subsidiary PCD`s high-density polyethylene and polypropylene units and the vinyl chloride monomer and polyvinyl chloride units operated by Hoechst-Wacker joint venture Vinnolit.

  11. EMPIRE ULTIMATE EXPANSION: RESONANCES AND COVARIANCES.

    SciTech Connect (OSTI)

    HERMAN,M.; MUGHABGHAB, S.F.; OBLOZINSKY, P.; ROCHMAN, D.; PIGNI, M.T.; KAWANO, T.; CAPOTE, R.; ZERKIN, V.; TRKOV, A.; SIN, M.; CARSON, B.V.; WIENKE, H. CHO, Y.-S.

    2007-04-22T23:59:59.000Z

    The EMPIRE code system is being extended to cover the resolved and unresolved resonance region employing proven methodology used for the production of new evaluations in the recent Atlas of Neutron Resonances. Another directions of Empire expansion are uncertainties and correlations among them. These include covariances for cross sections as well as for model parameters. In this presentation we concentrate on the KALMAN method that has been applied in EMPIRE to the fast neutron range as well as to the resonance region. We also summarize role of the EMPIRE code in the ENDF/B-VII.0 development. Finally, large scale calculations and their impact on nuclear model parameters are discussed along with the exciting perspectives offered by the parallel supercomputing.

  12. Systematic expansion for infrared oscillator basis extrapolations

    E-Print Network [OSTI]

    R. J. Furnstahl; S. N. More; T. Papenbrock

    2014-03-20T23:59:59.000Z

    Recent work has demonstrated that the infrared effects of harmonic oscillator basis truncations are well approximated by imposing a partial-wave Dirichlet boundary condition at a properly identified radius L. This led to formulas for extrapolating the corresponding energy E_L and other observables to infinite L and thus infinite basis size. Here we reconsider the energy for a two-body system with a Dirichlet boundary condition at L to identify and test a consistent and systematic expansion for E_L that depends only on observables. We also generalize the energy extrapolation formula to nonzero angular momentum, and apply it to the deuteron. Formulas given previously for extrapolating the radius are derived in detail.

  13. PHOTOSPHERIC RADIUS EXPANSION IN SUPERBURST PRECURSORS FROM NEUTRON STARS

    SciTech Connect (OSTI)

    Keek, L., E-mail: keek@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Department of Physics and Astronomy, and Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States)

    2012-09-10T23:59:59.000Z

    Thermonuclear runaway burning of carbon is in rare cases observed from accreting neutron stars as day-long X-ray flares called superbursts. In the few cases where the onset is observed, superbursts exhibit a short precursor burst at the start. In each instance, however, the data are of insufficient quality for spectral analysis of the precursor. Using data from the propane anti-coincidence detector of the Proportional Counter Array instrument on the Rossi X-ray Timing Explorer, we perform the first detailed time-resolved spectroscopy of precursors. For a superburst from 4U 1820-30 we demonstrate the presence of photospheric radius expansion. We find the precursor to be 1.4-2 times more energetic than other short bursts from this source, indicating that the burning of accreted helium is insufficient to explain the full precursor. Shock heating would be able to account for the shortfall in energy. We argue that this precursor is a strong indication that the superburst starts as a detonation, and that a shock induces the precursor. Furthermore, we employ our technique to study the superexpansion phase of the same superburst in greater detail.

  14. Exact Stochastic Unraveling of an Optical Coherence Dynamics by Cumulant Expansion

    E-Print Network [OSTI]

    Jan Olsina; Tobias Kramer; Christoph Kreisbeck; Tomas Mancal

    2014-08-25T23:59:59.000Z

    A numerically exact Monte Carlo scheme for calculation of open quantum system dynamics is proposed and implemented. The method consists of a Monte-Carlo summation of a perturbation expansion in terms of trajectories in Liouville phase-space with respect to the coupling between the excited states of the molecule. The trajectories are weighted by a complex decoherence factor based on the second-order cumulant expansion of the environmental evolution. The method can be used with an arbitrary environment characterized by a general correlation function and arbitrary coupling strength. It is formally exact for harmonic environments, and it can be used with arbitrary temperature. Time evolution of an optically excited Frenkel exciton dimer representing a molecular exciton interacting with a charge transfer state is calculated by the proposed method. We calculate the evolution of the optical coherence elements of the density matrix and linear absorption spectrum, and compare them with the predictions of standard simulation methods.

  15. Notes on the delta-expansion approach to the 2D Ising susceptibility scaling

    E-Print Network [OSTI]

    Hirofumi Yamada

    2014-09-10T23:59:59.000Z

    We study the scaling of the magnetic susceptibility in the square Ising model based upon the delta-expansion in the high temperature phase. The susceptibility chi is expressed in terms of the mass M and expanded in powers of 1/M. The dilation around M=0 by the delta expansion and the parametric extension of the ratio of derivatives of chi, chi^{(ell+1)}/chi^{(ell)} is used as a test function for the estimation of the critical exponent gamma with no bias from information of the critical temperature. Estimation is done with the help of the principle of minimum sensitivity and detailed analysis revealed that ell=0,1 cases provide us accurate estimation results. Critical exponent of the sub-leading scaling term is also estimated.

  16. Load Expansion of Stoichiometric HCCI Using Spark Assist and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Stoichiometric HCCI Using Spark Assist and Hydraulic Valve Actuation Load Expansion of Stoichiometric HCCI Using Spark Assist and Hydraulic Valve Actuation Presentation given at...

  17. FOA aimed at growing expansive database of Renewable Energy and...

    Open Energy Info (EERE)

    FOA aimed at growing expansive database of Renewable Energy and Energy Efficiency Incentives and Policies Home > Groups > Utility Rate Graham7781's picture Submitted by...

  18. accelerated cosmic expansion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an accelerated expansion (cosmological constant, quintessence) introduce a component of dark energy besides standard'' cold dark matter (CDM) we resort to a phenomenological...

  19. Load Expansion with Diesel/Gasoline RCCI for Improved Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

  20. Adiabatic expansion, early x-ray data and the central engine in GRBs

    E-Print Network [OSTI]

    R. Barniol Duran; P. Kumar

    2009-03-02T23:59:59.000Z

    The Swift satellite early x-ray data shows a very steep decay in most of the Gamma-Ray Bursts light curves. This decay is either produced by the rapidly declining continuation of the central engine activity or by some left-over radiation starting right after the central engine shuts off. The latter scenario consists of the emission from an "ember" that cools via adiabatic expansion and, if the jet angle is larger than the inverse of the source Lorentz factor, the large angle emission. In this work, we calculate the temporal and spectral properties of the emission from such a cooling ember, providing a new treatment for the micro-physics of the adiabatic expansion. We use the adiabatic invariance of p_{\\perp}^2/B (p_{\\perp} is the component of the electrons' momentum normal to the magnetic field, B) to calculate the electrons' Lorentz factor during the adiabatic expansion; the electron momentum becomes more and more aligned with the local magnetic field as the expansion develops. We compare the theoretical expectations of the adiabatic expansion (and the large angle emission) with the current observations of the early x-ray data and find that only about 20% of our sample of 107 bursts is potentially consistent with this model. This leads us to believe that, for most bursts, the central engine does not turn off completely during the steep decay of the x-ray light curve; therefore, this phase is produced by the continued rapidly declining activity of the central engine.

  1. Effect of irradiation on thermal expansion of SiC{sub f}/SiC composites

    SciTech Connect (OSTI)

    Senor, D.J. [Pacific Northwest Lab., Richland, WA (United States); Trimble, D.J. [Westinghouse Hanford Co., Richland, WA (United States); Woods, J.J. [Lockheed Martin, Schenectady, NY (United States)

    1996-06-01T23:59:59.000Z

    Linear thermal expansion was measured on five different SiC-fiber-reinforced/SiC-matrix (SiC{sub f}/SiC) composite types in the unirradiated and irradiated conditions. Two matrices were studied in combination with Nicalon CG reinforcement and a 150 nm PyC fiber/matrix interface: chemical vapor infiltrated (CVI) SiC and liquid-phase polymer impregnated precursor (PIP) SiC. Composites of PIP SiC with Tyranno and HPZ fiber reinforcement and a 150 nm PyC interface were also tested, as were PIP SiC composites with Nicalon CG reinforcement and a 150 nm BN fiber/matrix interface. The irradiation was conducted in the Experimental Breeder Reactor-II at a nominal temperature of 1,000 C to doses of either 33 or 43 dpa-SiC. Irradiation caused complete fiber/matrix debonding in the CVI SiC composites due to a dimensional stability mismatch between fiber and matrix, while the PIP SiC composites partially retained their fiber/matrix interface after irradiation. However, the thermal expansion of all the materials tested was found to be primarily dependent on the matrix and independent of either the fiber or the fiber/matrix interface. Further, irradiation had no significant effect on thermal expansion for either the CVI SiC or PIP SiC composites. In general, the thermal expansion of the CVI SiC composites exceeded that of the PIP SiC composites, particularly at elevated temperatures, but the expansion of both matrix types was less than chemical vapor deposited (CVD) {beta}-SiC at all temperatures.

  2. Clearwater Subbasin Assessment 116 November 2003 5 Vegetative Resources

    E-Print Network [OSTI]

    montane slopes where precipitation patterns allow the formation of grand fir forests, or along river habitats available. Wetlands occur as small ponds filled by spring runoff, wet meadows, springs and seeps

  3. ALUMINUM--2003 5.1 By Patricia A. Plunkert

    E-Print Network [OSTI]

    , about 1.5 million metric tons per year (Mt/yr) of domestic primary aluminum smelting capacity, including idled potlines at operating smelters, equivalent to about 35% of total capacity, was closed. Aluminum and the container and packaging industries remained the leading markets for aluminum products in Canada

  4. Development of low-expansion ceramics with strength retention to elevated temperatures. Final report

    SciTech Connect (OSTI)

    Hirschfeld, D.A.; Brown, J.J. Jr. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1994-09-01T23:59:59.000Z

    The development of advanced engines has resulted in the need for new ceramic compositions which exhibit thermo-mechanical properties suitable for the engine environment, e.g., low thermal expansion, stability to 1,200 C, and thermal shock resistance. To meet these goals, a two phase research program was instituted. In the first phase, new oxide ceramics were identified in the AlPO{sub 4}-{beta}-eucryptite, {beta}-cristobalite, mullite and zircon systems. This research focused on screening and property characterization of ceramics in the four systems. The most promising compositions in the AlPO{sub 4}-{beta}-eucryptite and zircon systems were then further evaluated and developed in the second phase with the goal of being ready for prototype testing in actual engines. Of the compositions, calcium magnesium zirconium phosphate (zircon system) exhibits the most desirable properties and is presently being developed for commercialization.

  5. Horizon surface gravity as 2d geodesic expansion

    E-Print Network [OSTI]

    Ted Jacobson; Renaud Parentani

    2008-08-13T23:59:59.000Z

    The surface gravity of any Killing horizon, in any spacetime dimension, can be interpreted as a local, two-dimensional expansion rate seen by freely falling observers when they cross the horizon. Any two-dimensional congruence of geodesics invariant under the Killing flow can be used to define this expansion, provided that the observers have unit Killing energy.

  6. POSITIVITY CASES, ESTIMATES AND ASYMPTOTIC EXPANSIONS FOR CONDENSER CAPACITIES.

    E-Print Network [OSTI]

    Boyer, Edmond

    POSITIVITY CASES, ESTIMATES AND ASYMPTOTIC EXPANSIONS FOR CONDENSER CAPACITIES. ALAIN BONNAF´E Abstract. We study positivity cases, estimates and asymptotic expansions of condenser p the internal part of the condenser has a non-empty interior. The study of the point and its approximation

  7. The effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics

    E-Print Network [OSTI]

    Li, Jiangyu

    The effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics JiangYu Li an estimate on the effective pyroelectric and thermal expansion coefficients of fer- roelectric ceramics, and thermal-medical diagnostics (Cross, 1993). A ceramic made of pyroelectric grains does not necessarily

  8. ON PROVING FUTURE STABILITY OF COSMOLOGICAL SOLUTIONS WITH ACCELERATED EXPANSION

    E-Print Network [OSTI]

    Ringström, Hans

    ON PROVING FUTURE STABILITY OF COSMOLOGICAL SOLUTIONS WITH ACCELERATED EXPANSION HANS RINGSTR at an accelerated rate. As a consequence, it is of interest to prove that cosmological solutions to Ein- stein's equations with accelerated expansion are future stable. That is the topic of the present contribution

  9. Supersymmetric inversion of effective-range expansions

    E-Print Network [OSTI]

    Bikashkali Midya; Jérémie Evrard; Sylvain Abramowicz; O. L. Ramírez Suárez; Jean-Marc Sparenberg

    2015-01-16T23:59:59.000Z

    A complete and consistent inversion technique is proposed to derive an accurate interaction potential from an effective-range function for a given partial wave in the neutral case. First, the effective-range function is Taylor or Pad\\'e expanded, which allows high precision fitting of the experimental scattering phase shifts with a minimal number of parameters on a large energy range. Second, the corresponding poles of the scattering matrix are extracted in the complex wave-number plane. Third, the interaction potential is constructed with supersymmetric transformations of the radial Schr\\"odinger equation. As an illustration, the method is applied to the experimental phase shifts of the neutron-proton elastic scattering in the $^1S_0$ and $^1D_2$ channels on the $[0-350]$ MeV laboratory energy interval.

  10. Supersymmetric inversion of effective-range expansions

    E-Print Network [OSTI]

    Midya, Bikashkali; Abramowicz, Sylvain; Suárez, O L Ramírez; Sparenberg, Jean-Marc

    2015-01-01T23:59:59.000Z

    A complete and consistent inversion technique is proposed to derive an accurate interaction potential from an effective-range function for a given partial wave in the neutral case. First, the effective-range function is Taylor or Pad\\'e expanded, which allows high precision fitting of the experimental scattering phase shifts with a minimal number of parameters on a large energy range. Second, the corresponding poles of the scattering matrix are extracted in the complex wave-number plane. Third, the interaction potential is constructed with supersymmetric transformations of the radial Schr\\"odinger equation. As an illustration, the method is applied to the experimental phase shifts of the neutron-proton elastic scattering in the $^1S_0$ and $^1D_2$ channels on the $[0-350]$ MeV laboratory energy interval.

  11. Local gravitational physics of the Hubble expansion

    E-Print Network [OSTI]

    Sergei Kopeikin

    2015-01-21T23:59:59.000Z

    We study physical consequences of the Hubble expansion of FLRW manifold on measurement of space, time and light propagation in the local inertial frame. We analyse the solar system radar ranging and Doppler tracking experiments, and time synchronization. FLRW manifold is covered by global coordinates (t,y^i), where t is the cosmic time coinciding with the proper time of the Hubble observers. We introduce local inertial coordinates x^a=(x^0,x^i) in the vicinity of a world line of a Hubble observer with the help of a special conformal transformation. The local inertial metric is Minkowski flat and is materialized by the congruence of time-like geodesics of static observers being at rest with respect to the local spatial coordinates x^i. We consider geodesic motion of test particles and notice that the local coordinate time x^0=x^0(t) taken as a parameter along the world line of particle, is a function of the Hubble's observer time t. This function changes smoothly from x^0=t for a particle at rest (observer's clock), to x^0=t+1/2 Ht^2 for photons, where H is the Hubble constant. Thus, motion of a test particle is non-uniform when its world line is parametrized by time t. NASA JPL Orbit Determination Program presumes that motion of light (after the Shapiro delay is excluded) is uniform with respect to the time t but it does not comply with the non-uniform motion of light on cosmological manifold. For this reason, the motion of light in the solar system analysed with the Orbit Determination Program appears as having a systematic blue shift of frequency, of radio waves circulating in the Earth-spacecraft radio link. The magnitude of the anomalous blue shift of frequency is proportional to the Hubble constant H that may open an access to the measurement of this fundamental cosmological parameter in the solar system radiowave experiments.

  12. First-principles study on negative thermal expansion of PbTiO{sub 3}

    SciTech Connect (OSTI)

    Wang, Fangfang; Chen, Jun; Xing, Xianran, E-mail: xing@ustb.edu.cn [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)] [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Xie, Ying; Fu, Honggang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)] [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)

    2013-11-25T23:59:59.000Z

    It is well known that perovskite-type PbTiO{sub 3} behaves negative thermal expansion in a wide temperature range from room temperature to Curie temperature (763?K). The present study reports the first-principles study of the anisotropic thermal expansion of PbTiO{sub 3}, in the framework of the density-functional theory and the density-functional perturbation theory. The curve of temperature dependence of the unit cell volume is presented from 20 to 520?K through the calculation of the minimum of total free energy at each temperature point. The negative thermal expansion of PbTiO{sub 3} is calculated without empirical parameters. Furthermore, the distinctive thermodynamic act of PbTiO{sub 3} from expanding to contracting at tetragonal phase is reproduced. The ab-initio calculations reveal that this unique appearance depends on the phonon vibration. The dynamical contributions of various atoms are also calculated to account for the disparate role of Pb-O and Ti-O bond.

  13. Alpha phase precipitation from phase-separated beta phase in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alpha phase precipitation from phase-separated beta phase in a model Ti-Mo-Al alloy studied by direct coupling of transmission Alpha phase precipitation from phase-separated beta...

  14. Strong Coupling Expansion in a Correlated Three-Dimensional Topological Insulator

    E-Print Network [OSTI]

    Akihiko Sekine; Takashi Z. Nakano; Yasufumi Araki; Kentaro Nomura

    2013-04-11T23:59:59.000Z

    Motivated by recent studies which show that topological phases may emerge in strongly correlated electron systems, we theoretically study the strong electron correlation effect in a three-dimensional topological insulator, which effective Hamiltonian can be described by the Wilson fermions. We adopt 1/r long-range Coulomb interaction as the interaction between the bulk electrons. Based on the U(1) lattice gauge theory, the strong coupling expansion is applied by assuming that the effective interaction is strong. It is shown that the effect of the Coulomb interaction is equivalent to the renormalization of the bare mass of the Wilson fermions, and that as a result, the topological insulator phase survives in the strong coupling limit.

  15. Eikonal Approximation in AdS/CFT: Resumming the Gravitational Loop Expansion

    E-Print Network [OSTI]

    Lorenzo Cornalba; Miguel S. Costa; Joao Penedones

    2007-12-06T23:59:59.000Z

    We derive an eikonal approximation to high energy interactions in Anti-de Sitter spacetime, by generalizing a position space derivation of the eikonal amplitude in flat space. We are able to resum, in terms of a generalized phase shift, ladder and cross ladder graphs associated to the exchange of a spin j field, to all orders in the coupling constant. Using the AdS/CFT correspondence, the resulting amplitude determines the behavior of the dual conformal field theory four point function for small values of the cross ratios, in a Lorentzian regime. Finally we show that the phase shift is dominated by graviton exchange and computes, in the dual CFT, the anomalous dimension of the double trace primary operators O_1 \\partial ... \\partial O_2 of large dimension and spin, corresponding to the relative motion of the two interacting particles. The results are valid at strong t'Hooft coupling and are exact in the 1/N expansion.

  16. On equivalence of high temperature series expansion and coupling parameter series expansion in thermodynamic perturbation theory of fluids

    SciTech Connect (OSTI)

    Sai Venkata Ramana, A., E-mail: asaivenk@barc.gov.in [Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-04-21T23:59:59.000Z

    The coupling parameter series expansion and the high temperature series expansion in the thermodynamic perturbation theory of fluids are shown to be equivalent if the interaction potential is pairwise additive. As a consequence, for the class of fluids with the potential having a hardcore repulsion, if the hard-sphere fluid is chosen as reference system, the terms of coupling parameter series expansion for radial distribution function, direct correlation function, and Helmholtz free energy follow a scaling law with temperature. The scaling law is confirmed by application to square-well fluids.

  17. Value of Options in Airport Expansion - Example of AICM

    E-Print Network [OSTI]

    Morgado, Frederico

    Investments decisions for airport capacity expansion are usually taken, either when demand exceeds the current capacity and the airport is working under congestion, or when current demand is expected to overcome current ...

  18. Expansion Joint Concepts for High Temperature Insulation Systems

    E-Print Network [OSTI]

    Harrison, M. R.

    1980-01-01T23:59:59.000Z

    EXPANSION JOINT CONCEPTS FOR HIGH TEMPERATURE INSULATION SYSTEMS Michael R. Harrison Johns-Manville Sales Corporation ";.,' Denver, Colorado ABSTRACT As high temperature steam and process piping expands with heat, joints beg in to open...

  19. Ion emission and expansion in laser-produced tin plasma

    E-Print Network [OSTI]

    Burdt, Russell Allen

    2011-01-01T23:59:59.000Z

    scale length laser-produced tin plasmas, PhD dissertation,and Expansion in Laser-Produced Tin Plasma A dissertationof a CO 2 laser pulse with tin-based plasma for an extreme

  20. Expansion of the Volpentest Hazardous Materials Management and...

    Broader source: Energy.gov (indexed) [DOE]

    federal, state, and private lands. A total of 60,254 acres (24,384 hectares) within the Hanford Site burned, including areas in and around the HAMMER expansion. Fire suppression...

  1. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon

    E-Print Network [OSTI]

    Camara, Gilberto

    Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon Douglas C ranching or new deforestation has not been quantified and has major implications for future deforestation dynamics, carbon fluxes, forest fragmentation, and other ecosystem services. We combine deforestation maps

  2. Pressure recovery in a radiused sudden expansion Barton L. Smith

    E-Print Network [OSTI]

    Smith, Barton L.

    Pressure recovery in a radiused sudden expansion Barton L. Smith Abstract Experiments on a steady were motivated by a similar study for oscillatory flow in the same geometry. Smith and Swift (2003

  3. How are Feynman graphs resumed by the Loop Vertex Expansion?

    E-Print Network [OSTI]

    Vincent Rivasseau; Zhituo Wang

    2010-06-23T23:59:59.000Z

    The purpose of this short letter is to clarify which set of pieces of Feynman graphs are resummed in a Loop Vertex Expansion, and to formulate a conjecture on the $\\phi^4$ theory in non-integer dimension.

  4. Train track expansions of measured foliations February 16, 2003

    E-Print Network [OSTI]

    Mosher, Lee

    Train track expansions of measured foliations Lee Mosher February 16, 2003 Contents 1 Introduction foliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Train tracks and train track's classification of mapping classes . . . . . . . . . . . . . . 47 3 Train tracks 49 3.1 Pretracks

  5. Train track expansions of measured foliations December 28, 2003

    E-Print Network [OSTI]

    Mosher, Lee

    Train track expansions of measured foliations Lee Mosher December 28, 2003 Contents 1 Introduction foliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Train tracks and train track's classification of mapping classes . . . . . . . . . . . . . . 53 3 Train tracks 55 3.1 Pretracks

  6. Cryogenic Thermal Expansion of Y-12 Graphite Fuel Elements

    SciTech Connect (OSTI)

    Eash, D. T.

    2013-07-08T23:59:59.000Z

    Thermal expansion measurements betwccn 20°K and 300°K were made on segments of three uranium-loaded Y-12 uncoated graphite fuel elements. The thermal expansion of these fuel elements over this temperature range is represented by the equation: {Delta}L/L = -39.42 x 10{sup -5} + 1.10 x 10{sup -7} T + 6.47 x 10{sup -9} T{sup 2} - 8.30 x 10{sup -12} T{sup 3}.

  7. A new approach to gravitational clustering: a path-integral formalism and large-N expansions

    E-Print Network [OSTI]

    P. Valageas

    2004-07-01T23:59:59.000Z

    We show that the formation of large-scale structures through gravitational instability in the expanding universe can be fully described through a path-integral formalism. We derive the action S[f] which gives the statistical weight associated with any phase-space distribution function f(x,p,t). This action S describes both the average over the Gaussian initial conditions and the Vlasov-Poisson dynamics. Next, applying a standard method borrowed from field theory we generalize our problem to an N-field system and we look for an expansion over powers of 1/N. We describe three such methods and we derive the corresponding equations of motion at the lowest non-trivial order for the case of gravitational clustering. This yields a set of non-linear equations for the mean $\\fb$ and the two-point correlation G of the phase-space distribution f, as well as for the response function R. These systematic schemes match the usual perturbative expansion on quasi-linear scales but should also be able to handle the non-linear regime. Our approach can also be extended to non-Gaussian initial conditions and may serve as a basis for other tools borrowed from field theory.

  8. The Political History of Hydraulic Fracturing’s Expansion Across the West

    E-Print Network [OSTI]

    Forbis, Robert E.

    2014-01-01T23:59:59.000Z

    Political History of Hydraulic Fracturing’s Expansion AcrossPolitical History of Hydraulic Fracturing’s Expansion Acrosss use of the hydraulic fracturing development process.

  9. Coherent Phase Argument for Inflation

    E-Print Network [OSTI]

    Scott Dodelson

    2003-09-05T23:59:59.000Z

    Cosmologists have developed a phenomenally successful picture of structure in the universe based on the idea that the universe expanded exponentially in its earliest moments. There are three pieces of evidence for this exponential expansion -- {\\it inflation} -- from observations of anisotropies in the cosmic microwave background. First, the shape of the primordial spectrum is very similar to that predicted by generic inflation models. Second, the angular scale at which the first acoustic peak appears is consistent with the flat universe predicted by inflation. Here I describe the third piece of evidence, perhaps the most convincing of all: the phase coherence needed to account for the clear peak/trough structure observed by the WMAP satellite and its predecessors. I also discuss alternatives to inflation that have been proposed recently and explain how they produce coherent phases.

  10. Hypersonic expansion of the Fokker--Planck equation

    SciTech Connect (OSTI)

    Fernandez-Feria, R.

    1989-02-01T23:59:59.000Z

    A systematic study of the hypersonic limit of a heavy species diluted in a much lighter gas is made via the Fokker--Planck equation governing its velocity distribution function. In particular, two different hypersonic expansions of the Fokker--Planck equation are considered, differing from each other in the momentum equation of the heavy gas used as the basis of the expansion: in the first of them, the pressure tensor is neglected in that equation while, in the second expansion, the pressure tensor term is retained. The expansions are valid when the light gas Mach number is O(1) or larger and the difference between the mean velocities of light and heavy components is small compared to the light gas thermal speed. They can be applied away from regions where the spatial gradient of the distribution function is very large, but it is not restricted with respect to the temporal derivative of the distribution function. The hydrodynamic equations corresponding to the lowest order of both expansions constitute two different hypersonic closures of the moment equations. For the subsequent orders in the expansions, closed sets of moment equations (hydrodynamic equations) are given. Special emphasis is made on the order of magnitude of the errors of the lowest-order hydrodynamic quantities. It is shown that if the heat flux vanishes initially, these errors are smaller than one might have expected from the ordinary scaling of the hypersonic closure. Also it is found that the normal solution of both expansions is a Gaussian distribution at the lowest order.

  11. Low-Temperature Phase Diagrams of Quantum Lattice Systems. II. Convergent Perturbation Expansions and

    E-Print Network [OSTI]

    Rey-Bellet, Luc

    the perturbation tV lifts the degeneracy of the groundstate energy of H0. The purpose of the unitary conjugation. The Hamiltonians of such systems have the form H = H0 + tV, where H0 is a classical Hamiltonian, V is a quantum

  12. LowTemperature Phase Diagrams of Quantum Lattice Systems. II. Convergent Perturbation Expansions and

    E-Print Network [OSTI]

    finite order ? 1 in t) and to understand how the perturbation tV lifts the degeneracy of the groundstate or bosonic lattice gases. The Hamiltonians of such systems have the form H = H 0 + tV; where H 0

  13. Sustainability Fact Sheet for Reser Stadium Expansion (Phase1) Oregon State University, Corvallis, Oregon

    E-Print Network [OSTI]

    Escher, Christine

    efficiency motors are used for HVAC equipment. A high efficiency condensing type boiler is used as the first of high efficiency and standard irrigation technology was used in conjunction with a centrally controlled phosphorus in storm water runoff. · The Energy Star compliant white roof, with high emissivity and high

  14. TEMPERATURE DEPENDENT CREEP EXPANSION OF Ti-6Al-4V LOW DENSITY CORE SANDWICH STRUCTURES

    E-Print Network [OSTI]

    Wadley, Haydn

    by their high manufacturing costs. Interest has therefore developed in an entrapped gas expansion process entrapped gas expansion processing the driving force governing the re-expansion step is the internal pore of the expansion itself (an increase in void volume lowers the gas pressure) or because of gas lost through

  15. Perturbation Expansion for Option Pricing with Stochastic Volatility

    E-Print Network [OSTI]

    Petr Jizba; Hagen Kleinert; Patrick Haener

    2007-08-22T23:59:59.000Z

    We fit the volatility fluctuations of the S&P 500 index well by a Chi distribution, and the distribution of log-returns by a corresponding superposition of Gaussian distributions. The Fourier transform of this is, remarkably, of the Tsallis type. An option pricing formula is derived from the same superposition of Black-Scholes expressions. An explicit analytic formula is deduced from a perturbation expansion around a Black-Scholes formula with the mean volatility. The expansion has two parts. The first takes into account the non-Gaussian character of the stock-fluctuations and is organized by powers of the excess kurtosis, the second is contract based, and is organized by the moments of moneyness of the option. With this expansion we show that for the Dow Jones Euro Stoxx 50 option data, a Delta-hedging strategy is close to being optimal.

  16. Self-similar expansion of a warm dense plasma

    SciTech Connect (OSTI)

    Djebli, Mourad [USTHB, Faculty of Physics, Theoretical Physics Laboratory, B.P. 32 Bab-Ezzouar, 16079 Algiers (Algeria)] [USTHB, Faculty of Physics, Theoretical Physics Laboratory, B.P. 32 Bab-Ezzouar, 16079 Algiers (Algeria); Moslem, Waleed M. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt)] [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt)

    2013-07-15T23:59:59.000Z

    The properties of an expanding plasma composed of degenerate electron fluid and non-degenerate ions are studied. For our purposes, we use fluid equations for ions together with the electron momentum equation that include quantum forces (e.g., the quantum statistical pressure, forces due to the electron-exchange and electron correlations effects) and the quasi-neutrality condition. The governing equation is written in a tractable form by using a self-similar transformation. Numerical results for typical beryllium plasma parameters revealed that, during the expansion, the ion acoustic speed decreases for both isothermal and adiabatic ion pressure. When compared with classical hydrodynamic plasma expansion model, the electrons and ions are found to initially escape faster in vacuum creating thus an intense electric field that accelerates most of the particles into the vacuum ahead of the plasma expansion. The relevancy of the present model to beryllium plasma produced by a femto-second laser is highlighted.

  17. Overlapping Community Detection Using Neighborhood-Inflated Seed Expansion

    E-Print Network [OSTI]

    Whang, Joyce Jiyoung; Dhillon, Inderjit S

    2015-01-01T23:59:59.000Z

    Community detection is an important task in network analysis. A community (also referred to as a cluster) is a set of cohesive vertices that have more connections inside the set than outside. In many social and information networks, these communities naturally overlap. For instance, in a social network, each vertex in a graph corresponds to an individual who usually participates in multiple communities. In this paper, we propose an efficient overlapping community detection algorithm using a seed expansion approach. The key idea of our algorithm is to find good seeds, and then greedily expand these seeds based on a community metric. Within this seed expansion method, we investigate the problem of how to determine good seed nodes in a graph. In particular, we develop new seeding strategies for a personalized PageRank clustering scheme that optimizes the conductance community score. Experimental results show that our seed expansion algorithm outperforms other state-of-the-art overlapping community detection meth...

  18. Generating expansion model incorporating compact DC power flow equations

    SciTech Connect (OSTI)

    Nderitu, D.G.; Sparrow, F.T.; Yu, Z. [Purdue Inst. for Interdisciplinary Engineering Studies, West Lafayette, IN (United States)

    1998-12-31T23:59:59.000Z

    This paper presents a compact method of incorporating the spatial dimension into the generation expansion problem. Compact DC power flow equations are used to provide real-power flow coordination equations. Using these equations the marginal contribution of a generator to th total system loss is formulated as a function of that generator`s output. Incorporating these flow equations directly into the MIP formulation of the generator expansion problem results in a model that captures a generator`s true net marginal cost, one that includes both the cost of generation and the cost of transport. This method contrasts with other methods that iterate between a generator expansion model and an optimal power flow model. The proposed model is very compact and has very good convergence performance. A case study with data from Kenya is used to provide a practical application to the model.

  19. Non-minimal Kinetic coupling to gravity and accelerated expansion

    E-Print Network [OSTI]

    L. N. Granda

    2009-11-19T23:59:59.000Z

    We study a scalar field with kinetic term coupled to itself and to the curvature, as a source of dark energy, and analyze the role of this new coupling in the accelerated expansion at large times. In the case of scalar field dominance, the scalar field and potential giving rise to power-law expansion are found in some cases, and a dynamical equation of state is calculated for a given solution of the field equations. A behavior very close to that of the cosmological constant was found.

  20. Relic gravitational waves and the cosmic accelerated expansion

    E-Print Network [OSTI]

    German Izquierdo

    2006-01-10T23:59:59.000Z

    The possibility of reconstructing the whole history of the scale factor of the Universe from the power spectrum of relic gravitational waves (RGWs) makes the study of these waves quite interesting. First, we explore the impact of a hypothetical era -right after reheating- dominated by mini black holes and radiation that may lower the spectrum several orders of magnitude. Next, we calculate the power spectrum of the RGWs taking into account the present stage of accelerated expansion and an hypothetical second dust era. Finally, we study the generalized second law of gravitational thermodynamics applied to the present era of accelerated expansion of the Universe.

  1. Thermal expansion normalization for large steam turbines in service

    SciTech Connect (OSTI)

    Avrutsky, G.D.; Savenkova, I.A.; Don, E.A.; Lyudomirsky, B.N.; Berezin, M.G. [All-Russia Thermal Engineering Research Inst., Moscow (Russian Federation)

    1999-11-01T23:59:59.000Z

    Some large steam turbines encounter some problems with their thermal expansion. This shows itself in the broken (leap-like) movement of the bearing pedestals while the turbine is being heated or cooled in the course of transients. This also results in distortion of the casings, torsion of the foundation frame crossbars, increased vibration, damage of the bearings and couplings, etc. The thermal expansion freedom problems hamper the turbine`s start-ups since the relative rotor expansions attain their limits. The main causes why the turbine loses the thermal expansion freedom are the increased friction on the sliding surfaces between the bearing pedestals and foundation frame, increased transversal load on the turbine from the steam-lines connected to the cylinders, poor transition of the axial thrust between the cylinders, and insufficient rigidity of the foundation crossbars. Under consideration are a set of diagnostic, design, and technological measures to reveal the specific causes of the problems and to eliminate them. Among the most widespread and effective countermeasures are the placing of special fluoroplastometallic bands under the bearing pedestals and electrochemical facing of the keys` surfaces, adjustment of the support-and-suspension system and tightening of the foundation frame.

  2. ORIGINAL PAPER Range expansion and prey use of American mink

    E-Print Network [OSTI]

    Boyer, Edmond

    ORIGINAL PAPER Range expansion and prey use of American mink in Argentinean Patagonia: dilemmas of American mink as an introduced species in Patagonia and elsewhere, together with our own survey, we discuss the implications of this invasion for biodiversity conservation in Argentinean Patagonia and the associated

  3. SOME CLASSICAL EXPANSIONS FOR KNOP-SAHI AND MACDONALD POLYNOMIALS

    E-Print Network [OSTI]

    Morse, Jennifer

    SOME CLASSICAL EXPANSIONS FOR KNOP-SAHI AND MACDONALD* *t gives the non-symmetric Macdonald polynomial Eff(x; q, t). Macdonald shows that fo* *r any* * symmetrization of Effyields the Macdonald polynomial P~(x; q, t). In the original papers a* *ll

  4. YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF

    E-Print Network [OSTI]

    YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF AN EXISTING FACILITY INITIAL STUDY-11-601) to expand an existing biofuels production facility (Yokayo Biofuels, Inc.) located at 350 Orr: THE PROPOSED PROJECT: Yokayo Biofuels, Inc. is an existing biofuels facility located at 350 Orr Springs Road

  5. Beta-conjugates of real algebraic numbers as Puiseux expansions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Beta-conjugates of real algebraic numbers as Puiseux expansions Jean-Louis Verger-Gaugry Abstract. The beta-conjugates of a base of numeration > 1, being a Parry number, were introduced by Boyd, in the context of the R´enyi-Parry dynamics of numeration system and the beta-transformation. These beta

  6. Technology Transfer Expansion Planned UTCA is conducting a major project

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Technology Transfer Expansion Planned UTCA is conducting a major project to evaluate and extend its technology transfer activities (UTCA project 03217). Steven Jones and David Eckhoff of UAB are working to expand the current technology transfer program to showcase the successes of the UTCA projects. Samples

  7. Simplified expansions for radiation from a baffled circular piston

    E-Print Network [OSTI]

    Mast, T. Douglas

    Simplified expansions for radiation from a baffled circular piston T. Douglas Mast Department from a baffled circular piston continues be an active area of investigation, both as a canonical computations of piston fields in lossless and attenuative fluid media. For the region r a, where

  8. Right tail expansion of Tracy-Widom beta laws

    E-Print Network [OSTI]

    Gaëtan Borot; Céline Nadal

    2011-11-11T23:59:59.000Z

    Using loop equations, we compute the large deviation function of the maximum eigenvalue to the right of the spectrum in the Gaussian beta matrix ensembles, to all orders in 1/N. We then give a physical derivation of the all order asymptotic expansion of the right tail Tracy-Widom beta laws, for all positive beta, by studying the double scaling limit.

  9. Apparatus and process for the separation of gases using supersonic expansion and oblique wave compression

    DOE Patents [OSTI]

    VanOsdol, John G.

    2014-07-08T23:59:59.000Z

    The disclosure provides an apparatus and method for gas separation through the supersonic expansion and subsequent deceleration of a gaseous stream. The gaseous constituent changes phase from the gaseous state by desublimation or condensation during the acceleration producing a collectible constituent, and an oblique shock diffuser decelerates the gaseous stream to a subsonic velocity while maintain the collectible constituent in the non-gaseous state. Following deceleration, the carrier gas and the collectible constituent at the subsonic velocity are separated by a separation means, such as a centrifugal, electrostatic, or impingement separator. In an embodiment, the gaseous stream issues from a combustion process and is comprised of N.sub.2 and CO.sub.2.

  10. Effective Polyakov-loop theory for pure Yang-Mills from strong coupling expansion

    E-Print Network [OSTI]

    Jens Langelage; Stefano Lottini; Owe Philipsen

    2010-10-30T23:59:59.000Z

    Lattice Yang-Mills theories at finite temperature can be mapped onto effective 3d spin systems, thus facilitating their numerical investigation. Using strong-coupling expansions we derive effective actions for Polyakov loops in the $SU(2)$ and $SU(3)$ cases and investigate the effect of higher order corrections. Once a formulation is obtained which allows for Monte Carlo analysis, the nature of the phase transition in both classes of models is investigated numerically, and the results are then used to predict -- with an accuracy within a few percent -- the deconfinement point in the original 4d Yang-Mills pure gauge theories, for a series of values of $N_\\tau$ at once.

  11. Strong-coupling expansions for the topologically inhomogeneous Bose-Hubbard model

    SciTech Connect (OSTI)

    Buonsante, P.; Penna, V.; Vezzani, A. [Dipartimento di Fisica, Politecnico di Torino and INFM, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Dipartimento di Fisica, Universita degli Studi di Parma and INFM, Parco Area delle Scienze 7/a, I-43100 Parma (Italy)

    2004-11-01T23:59:59.000Z

    We consider a Bose-Hubbard model with an arbitrary hopping term and provide the boundary of the insulating phase thereof in terms of third-order strong coupling perturbative expansions for the ground state energy. In the general case two previously unreported terms occur, arising from triangular loops and hopping inhomogeneities, respectively. Quite interestingly the latter involves the entire spectrum of the hopping matrix rather than its maximal eigenpair, like the remaining perturbative terms. We also show that hopping inhomogeneities produce a first order correction in the local density of bosons. Our results apply to ultracold bosons trapped in confining potentials with arbitrary topology, including the realistic case of optical superlattices with uneven hopping amplitudes. Significant examples are provided. Furthermore, our results can be extended to magnetically tuned transitions in Josephson junction arrays.

  12. THE EXPANSION OF ACTIVE REGIONS INTO THE EXTENDED SOLAR CORONA

    SciTech Connect (OSTI)

    Morgan, Huw; Jeska, Lauren; Leonard, Drew, E-mail: hmorgan@aber.ac.uk [Sefydliad Mathemateg a Ffiseg, Prifysgol Aberystwyth, Ceredigion SY23 3BZ (United Kingdom)

    2013-06-01T23:59:59.000Z

    Advanced image processing of Large Angle and Spectrometric Coronagraph Experiment (LASCO) C2 observations reveals the expansion of the active region closed field into the extended corona. The nested closed-loop systems are large, with an apparent latitudinal extent of 50 Degree-Sign , and expanding to heights of at least 12 R{sub Sun }. The expansion speeds are {approx}10 km s{sup -1} in the AIA/SDO field of view, below {approx}20 km s{sup -1} at 2.3 R{sub Sun }, and accelerate linearly to {approx}60 km s{sup -1} at 5 R{sub Sun }. They appear with a frequency of one every {approx}3 hr over a time period of around three days. They are not coronal mass ejections (CMEs) since their gradual expansion is continuous and steady. They are also faint, with an upper limit of 3% of the brightness of background streamers. Extreme ultraviolet images reveal continuous birth and expansion of hot, bright loops from a new active region at the base of the system. The LASCO images show that the loops span a radial fan-like system of streamers, suggesting that they are not propagating within the main coronal streamer structure. The expanding loops brighten at low heights a few hours prior to a CME eruption, and the expansion process is temporarily halted as the closed field system is swept away. Closed magnetic structures from some active regions are not isolated from the extended corona and solar wind, but can expand to large heights in the form of quiescent expanding loops.

  13. Transmission investment and expansion planning in a restructured electricity market

    E-Print Network [OSTI]

    Leung, Ka-Cheong

    such as phase shifting transformers (PST), high-voltage direct-current (HVDC) lines, and other power

  14. West Elk Mine expansion and degasification plans approved

    SciTech Connect (OSTI)

    NONE

    2008-04-01T23:59:59.000Z

    West Elk Mine recently applied for and received approval for an expansion of its mining and methane drainage operation sin Gunnison County, Colorado. The deliberation over this planned expansion among several federal agencies and other groups received considerable local press coverage. One of the key issues focused on the fate of the additional; methane that would be emitted from the mine's degasification system. This article summarizes this process, which highlights the numerous barriers that still affect many coal mine methane (CMM) project opportunities is the United states. As the debate over climate change legislation moves forward in the US Congress and awareness of greenhouse gas emissions increases around the country, lawmakers, regulators, and non-governmental organizations will continue to focus more attention on CMM reduction opportunities,.

  15. Meter Expansion Plan Existing Multi-Space Meter

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    Meter Expansion Plan 11 35 9 7 10 20 12 11 12 46 23 15 15 60 23 Existing Multi-Space Meter Split Regulations 136 New Multi-Space Meter Visitor Only New Multi-Space Meter Split Regulations KEY 97 Updated 7/8/13 11 5 #12;HAVE.HAVE. UNION DR. 1 2 3 4 5 New Multi-space Meter After: 5 Meter Spaces Regulations

  16. An engineering geology analysis of home foundations on expansive clays

    E-Print Network [OSTI]

    Castleberry, Joe Patterson

    2012-06-07T23:59:59.000Z

    temperature associated with the wetting of dry kaolinite 113 Thermal and isothermal di f f us ivity values versus soil water content in accord with the theory of Philip and de Vries 113 APPENDIX C C-1 Probable general form of the rela- tionship between... limited treatment from three disciplines. The soils engineer has developed a broad understanding of expansive soils based on practical experience, but has only recently becun to apply classical soil mechanics theory to this area. Within the tield...

  17. Dynamics of charged fluids and 1/L perturbation expansions

    E-Print Network [OSTI]

    Miloslav Znojil; Uwe Guenther

    2007-04-19T23:59:59.000Z

    Some features of the calculation of fluid dynamo systems in magnetohydrodynamics are studied. In the coupled set of the ordinary linear differential equations for the spherically symmetric $\\alpha^2-$dynamos, the problem represented by the presence of the mixed (Robin) boundary conditions is addressed and a new treatment for it is proposed. The perturbation formalism of large$-\\ell$ expansions is shown applicable and its main technical steps are outlined.

  18. Procedures to predict vertical differential soil movement for expansive soils

    E-Print Network [OSTI]

    Naiser, Donald David

    1997-01-01T23:59:59.000Z

    OF TABLES Table Page 1. Soil profile considered in all sample calculations, 2. Gardner's coefficient. 3. Measured suction profile values. 4. Summary of vertical differential soil movements for Appendix C. . . . 50 . . . 54 70 . . . . 74 LIST... OF FIGURES Figure 1. United States map of expansive soils after Wiggins. 2. Center lift distortion mode Page 3. Edge lift distortion mode. 4. The structure of kaolinite (a) atomic structure (b) symbolic structure. . . 5. The structure of serpentine (a...

  19. Inhomogeneous High Frequency Expansion-Free Gravitational Waves

    E-Print Network [OSTI]

    C. Barrabes; P. A. Hogan

    2007-06-18T23:59:59.000Z

    We describe a natural inhomogeneous generalization of high frequency plane gravitational waves. The waves are high frequency waves of the Kundt type whose null propagation direction in space-time has vanishing expansion, twist and shear but is not covariantly constant. The introduction of a cosmological constant is discussed in some detail and a comparison is made with high frequency gravity waves having wave fronts homeomorphic to 2-spheres.

  20. Cylinder kernel expansion of Casimir energy with a Robin boundary

    E-Print Network [OSTI]

    Liu, Zhonghai

    2006-10-30T23:59:59.000Z

    : : : : : : : : : : : : : : : 7 A. How to construct the Green function for a single bound- ary condition . . . . . . . . . . . . . . . . . . . . . . . . . 7 B. How to construct the Green function for a slab . . . . . . . 10 III CASIMIR ENERGY OF A SLAB WITH DIRICHLET OR NEUMANN....B.G. Casimir published his famous paper [2] in 1948. The Casimir energy can be de?ned directly as the sum of half-frequencies that is interpreted via 3 ?-function regularization [8]. The Green function formalism [9], multiple scattering expansion [10] and heat...

  1. ARM - Lesson Plans: Expansion of Population and Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Related InformationAcid Rain Outreach HomeExpansion of

  2. Wigner-Kirkwood expansion for semi-infinite quantum fluids

    E-Print Network [OSTI]

    L. Samaj; B. Jancovici

    2007-01-31T23:59:59.000Z

    For infinite (bulk) quantum fluids of particles interacting via pairwise sufficiently smooth interactions, the Wigner-Kirkwood formalism provides a semiclassical expansion of the Boltzmann density in configuration space in even powers of the thermal de Broglie wavelength $\\lambda$. This result permits one to generate an analogous $\\lambda$-expansion for the bulk free energy and many-body densities. The present paper brings a technically nontrivial generalization of the Wigner-Kirkwood technique to semi-infinite quantum fluids, constrained by a plane hard wall impenetrable to particles. In contrast to the bulk case, the resulting Boltzmann density involves also position-dependent terms of type $\\exp(-2x^2/\\lambda^2)$ ($x$ denotes the distance from the wall boundary) which are non-analytic in $\\lambda$. Under some condition, the analyticity in $\\lambda$ is restored by integrating the Boltzmann density over configuration space; however, in contrast to the bulk free energy, the semiclassical expansion of the surface part of the free energy (surface tension) contains odd powers of $\\lambda$, too. Explicit expressions for the leading quantum corrections in the presence of the boundary are given for the one-body and two-body densities. As model systems for explicit calculations, we use Coulomb fluids, in particular the one-component plasma defined in the $\

  3. Influence of structure formation on the cosmic expansion

    SciTech Connect (OSTI)

    Clarkson, Chris; Ananda, Kishore; Larena, Julien [Cosmology and Gravity Group, Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa)

    2009-10-15T23:59:59.000Z

    We investigate the effect that the average backreaction of structure formation has on the dynamics of the cosmological expansion, within the concordance model. Our approach in the Poisson gauge is fully consistent up to second order in a perturbative expansion about a flat Friedmann background, including a cosmological constant. We discuss the key length scales which are inherent in any averaging procedure of this kind. We identify an intrinsic homogeneity scale that arises from the averaging procedure, beyond which a residual offset remains in the expansion rate and deceleration parameter. In the case of the deceleration parameter, this can lead to a quite large increase in the value, and may therefore have important ramifications for dark energy measurements, even if the underlying nature of dark energy is a cosmological constant. We give the intrinsic variance that affects the value of the effective Hubble rate and deceleration parameter. These considerations serve to add extra intrinsic errors to our determination of the cosmological parameters, and, in particular, may render attempts to measure the Hubble constant to percent precision overly optimistic.

  4. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTI...

    Broader source: Energy.gov (indexed) [DOE]

    FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 11-161-LNG - ORDER 3357 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE...

  5. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTIO...

    Broader source: Energy.gov (indexed) [DOE]

    EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-160-LNG - ORDER 2913 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-160-LNG - ORDER...

  6. SEMI-ANNUAL REPORTS - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION...

    Broader source: Energy.gov (indexed) [DOE]

    - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-161-LNG - ORDER 3282 SEMI-ANNUAL REPORTS - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT....

  7. The expansion of woody riparian vegetation, and subsequent stream restoration, influences the metabolism of prairie

    E-Print Network [OSTI]

    Dodds, Walter

    The expansion of woody riparian vegetation, and subsequent stream restoration, influences, the restoration allowed recovery of some features of open-canopy prairie streams. Woody expansion apparently. Keywords: macroalgae, microalgae, primary production, restoration, streams Introduction North American

  8. Non minimally coupled condensate cosmologies: a phase space analysis

    E-Print Network [OSTI]

    Sante Carloni; Stefano Vignolo; Roberto Cianci

    2014-03-11T23:59:59.000Z

    We present an analysis of the phase space of cosmological models based on a non minimal coupling between the geometry and a fermionic condensate. We obtain that the strong constraint coming from the Dirac equations allows a detailed design of the cosmology of these models and at the same time guarantees an evolution towards a state indistinguishable from General Relativistic cosmological models. In this light, we show how the use of some specific potentials is able to reproduce naturally two de Sitter phases separated by a power law expansion which could be an interesting model for the unification of an inflationary phase and a dark energy era.

  9. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    DOE Patents [OSTI]

    Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

    2006-03-07T23:59:59.000Z

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  10. Incomplete beta-function expansions of the solutions to the confluent Heun equation

    E-Print Network [OSTI]

    Artur Ishkhanyan

    2009-09-09T23:59:59.000Z

    Several expansions of the solutions to the confluent Heun equation in terms of incomplete Beta functions are constructed. A new type of expansion involving certain combinations of the incomplete Beta functions as expansion functions is introduced. The necessary and sufficient conditions when the derived expansions are terminated, thus generating closed-form solutions, are discussed. It is shown that termination of a Beta-function series solution always leads to a solution that is necessarily an elementary function.

  11. A study of the mechanism of laser welding defects in low thermal expansion superalloy GH909

    SciTech Connect (OSTI)

    Yan, Fei; Wang, Chunming, E-mail: yanxiangfei225@163.com; Wang, Yajun; Hu, Xiyuan; Wang, Tianjiao; Li, Jianmin; Li, Guozhu

    2013-04-15T23:59:59.000Z

    In this paper, we describe experimental laser welding of low-thermal-expansion superalloy GH909. The main welding defects of GH909 by laser in the weld are liquation cracks and porosities, including hydrogen and carbon monoxide porosity. The forming mechanism of laser welding defects was investigated. This investigation was conducted using an optical microscope, scanning electron microscope, energy diffraction spectrum, X-ray diffractometer and other methodologies. The results demonstrated that porosities appearing in the central weld were related to incomplete removal of oxide film on the surface of the welding samples. The porosities produced by these bubbles were formed as a result of residual hydrogen or oxygenium in the weld. These elements failed to escape from the weld since laser welding has both a rapid welding speed and cooling rate. The emerging crack in the heat affected zone is a liquation crack and extends along the grain boundary as a result of composition segregation. Laves–Ni{sub 2}Ti phase with low melting point is a harmful phase, and the stress causes grain boundaries to liquefy, migrate and even crack. Removing the oxides on the surface of the samples before welding and carefully controlling technological parameters can reduce welding defects and improve formation of the GH909 alloy weld. - Highlights: ? It is a new process for the forming of GH909 alloy via laser welding. ? The forming mechanism of laser welding defects in GH909 has been studied. ? It may be a means to improve the efficiency of aircraft engine production.

  12. TECHNICAL EVALUATION REPORT TUBA CITY FINAL PHASE I GROUND-WATER COMPLIANCE ACTION PLAN

    E-Print Network [OSTI]

    unknown authors

    2000-01-01T23:59:59.000Z

    remediation at the site, and is expected to last approximately 3 years. Phase I includes installation of additional recovery wells and Phase II will include expansion of remediation capacity and monitoring to ensure the aquifer restoration standards are met. Phases I and II of ground-water remediation are expected to last approximately 12 years. DESCRIPTION OF THE REQUEST: The U.S. Department of Energy (DOE) has requested concurrence from the U.S. Nuclear

  13. Options Study - Phase II

    SciTech Connect (OSTI)

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2010-09-01T23:59:59.000Z

    The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to identify any nuclear fuel cycle technology or option that may result in a significant beneficial impact to the issues as compared to the current U.S. approach of once-through use of nuclear fuel in LWRs or similar reactors followed by direct disposal of UNF. This approach was taken because incremental differences may be difficult to clearly identify and justify due to the large uncertainties that can be associated with the specific causes of the issues. Phase II of this Options Study continued the review of nuclear fuel cycle options that was initiated and documented during Phase I, concentrating on reviewing and summarizing the potential of integrated nuclear fuel cycles. However, based on the reviews of previous studies and available data, it was not always possible to clearly determine sufficiently large differences between the various fuel cycle and technology options for some of the issues or evaluation measures, for example, in cases where only incremental differences with respect to the issues might be achieved regardless of the fuel cycle option or technologies being considered, or where differences were insufficient to clearly rise above the uncertainties.

  14. Chiral dynamics in the low-temperature phase of QCD

    E-Print Network [OSTI]

    Bastian B. Brandt; Anthony Francis; Harvey B. Meyer; Daniel Robaina

    2014-06-21T23:59:59.000Z

    We investigate the low-temperature phase of QCD and the crossover region with two light flavors of quarks. The chiral expansion around the point $(T,m=0)$ in the temperature vs. quark-mass plane indicates that a sharp real-time excitation exists with the quantum numbers of the pion. An exact sum rule is derived for the thermal modification of the spectral function associated with the axial charge density; the (dominant) pion pole contribution obeys the sum rule. We determine the two parameters of the pion dispersion relation using lattice QCD simulations and test the applicability of the chiral expansion. The time-dependent correlators are also analyzed using the Maximum Entropy Method, yielding consistent results. Finally, we test the predictions of the chiral expansion around the point $(T=0,m=0)$ for the temperature dependence of static observables.

  15. Ceramic materials with low thermal conductivity and low coefficients of thermal expansion

    DOE Patents [OSTI]

    Brown, Jesse (Christiansburg, VA); Hirschfeld, Deidre (Elliston, VA); Liu, Dean-Mo (Blacksburg, VA); Yang, Yaping (Blacksburg, VA); Li, Tingkai (Blacksburg, VA); Swanson, Robert E. (Blacksburg, VA); Van Aken, Steven (Blacksburg, VA); Kim, Jin-Min (Seoul, KR)

    1992-01-01T23:59:59.000Z

    Compositions having the general formula (Ca.sub.x Mg.sub.1-x)Zr.sub.4 (PO.sub.4).sub.6 where x is between 0.5 and 0.99 are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850.degree. C. for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200.degree. C. to 1350.degree. C. to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used.

  16. Ceramic materials with low thermal conductivity and low coefficients of thermal expansion

    DOE Patents [OSTI]

    Brown, J.; Hirschfeld, D.; Liu, D.M.; Yang, Y.; Li, T.; Swanson, R.E.; Van Aken, S.; Kim, J.M.

    1992-04-07T23:59:59.000Z

    Compositions, having the general formula (Ca[sub x]Mg[sub 1[minus]x])Zr[sub 4](PO[sub 4])[sub 6] where x is between 0.5 and 0.99, are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850 C for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200 C to 1350 C to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used. 7 figs.

  17. THE INTER-ERUPTION TIMESCALE OF CLASSICAL NOVAE FROM EXPANSION OF THE Z CAMELOPARDALIS SHELL

    SciTech Connect (OSTI)

    Shara, Michael M.; Mizusawa, Trisha; Zurek, David [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (United States); Martin, Christopher D.; Neill, James D. [Department of Physics, Math and Astronomy, California Institute of Technology, 1200 East California Boulevard, Mail Code 405-47, Pasadena, CA 91125 (United States); Seibert, Mark [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2012-09-10T23:59:59.000Z

    The dwarf nova Z Camelopardalis is surrounded by the largest known classical nova shell. This shell demonstrates that at least some dwarf novae must have undergone classical nova eruptions in the past, and that at least some classical novae become dwarf novae long after their nova thermonuclear outbursts. The current size of the shell, its known distance, and the largest observed nova ejection velocity set a lower limit to the time since Z Cam's last outburst of 220 years. The radius of the brightest part of Z Cam's shell is currently {approx}880 arcsec. No expansion of the radius of the brightest part of the ejecta was detected, with an upper limit of {<=}0.17 arcsec yr{sup -1}. This suggests that the last Z Cam eruption occurred {>=}5000 years ago. However, including the important effect of deceleration as the ejecta sweeps up interstellar matter in its snowplow phase reduces the lower limit to 1300 years. This is the first strong test of the prediction of nova thermonuclear runaway theory that the interoutburst times of classical novae are longer than 1000 years. The intriguing suggestion that Z Cam was a bright nova, recorded by Chinese imperial astrologers in October-November 77 B.C.E., is consistent with our measurements. If Z Cam was indeed the nova of 77 B.C.E. we predict that its ejecta are currently expanding at 85 km s{sup -1}, or 0.11 arcsec yr{sup -1}. Detection and measurement of this rate of expansion should be possible in just a few years.

  18. Century Expansion (4Q07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse,CER.png El CER es unaExpansion

  19. Ghabezloo: Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste Micromechanics analysis of thermal expansion and thermal

    E-Print Network [OSTI]

    Boyer, Edmond

    pore fluid is anomalously higher than the one of pure bulk water. The micromechanics model water-to-cement ratios. It permits also to calculate the pore volume thermal expansion coefficient expansion and thermal pressurization of a hardened cement paste, Cement and Concrete Research, DOI 10.1016/j

  20. Expansion joint for guideway for magnetic levitation transportation system

    DOE Patents [OSTI]

    Rossing, Thomas D. (DeKalb, IL)

    1993-01-01T23:59:59.000Z

    An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The sidewalls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging sidewalls so that the cuts have a substantially dove-tail shape.

  1. Lattice thermal expansion for normal tetrahedral compound semiconductors

    SciTech Connect (OSTI)

    Omar, M.S. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq)]. E-mail: dr_m_s_omar@yahoo.com

    2007-02-15T23:59:59.000Z

    The cubic root of the deviation of the lattice thermal expansion from that of the expected value of diamond for group IV semiconductors, binary compounds of III-V and II-VI, as well as several ternary compounds from groups I-III-VI{sub 2}, II-IV-V{sub 2} and I-IV{sub 2}V{sub 3} semiconductors versus their bonding length are given straight lines. Their slopes were found to be 0.0256, 0.0210, 0.0170, 0.0259, 0.0196, and 0.02840 for the groups above, respectively. Depending on the valence electrons of the elements forming these groups, a formula was found to correlate all the values of the slopes mentioned above to that of group IV. This new formula which depends on the melting point and the bonding length as well as the number of valence electrons for the elements forming the compounds, will gives best calculated values for lattice thermal expansion for all compounds forming the groups mentioned above. An empirical relation is also found between the mean ionicity of the compounds forming the groups and their slopes mentioned above and that gave the mean ionicity for the compound CuGe{sub 2}P{sub 3} in the range of 0.442.

  2. Multipole expansions and Fock symmetry of the Hydrogen atom

    E-Print Network [OSTI]

    A. V. Meremianin; J-M. Rost

    2006-06-27T23:59:59.000Z

    The main difficulty in utilizing the O(4) symmetry of the Hydrogen atom in practical calculations is the dependence of the Fock stereographic projection on energy. This is due to the fact that the wave functions of the states with different energies are proportional to the hyperspherical harmonics (HSH) corresponding to different points on the hypersphere. Thus, the calculation of the matrix elements reduces to the problem of re-expanding HSH in terms of HSH depending on different points on the hypersphere. We solve this problem by applying the technique of multipole expansions for four-dimensional HSH. As a result, we obtain the multipole expansions whose coefficients are the matrix elements of the boost operator taken between hydrogen wave functions (i.e. hydrogen form-factors). The explicit expressions for those coefficients are derived. It is shown that the hydrogen matrix elements can be presented as derivatives of an elementary function. Such an operator representation is convenient for the derivation of recurrency relations connecting matrix elements between states corresponding to different values of the quantum numbers $n$ and $l$.

  3. Expansion joint for guideway for magnetic levitation transportation system

    DOE Patents [OSTI]

    Rossing, T.D.

    1993-02-09T23:59:59.000Z

    An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The side walls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging side walls so that the cuts have a substantially dove-tail shape.

  4. Conversion of batch to molten glass, I: Volume expansion

    SciTech Connect (OSTI)

    Henager, Samuel H.; Hrma, Pavel R.; Swearingen, Kevin J.; Schweiger, Michael J.; Marcial, Jose; Tegrotenhuis, Nathan E.

    2011-02-01T23:59:59.000Z

    Batches designed to simulate nuclear high-level waste glass were compressed into pellets that were heated at a rate of 5°C/min and photographed to obtain the profile area as a function of temperature. Three types of batches were prepared with different nitrate-carbonate ratios. To determine the impact of the heat supply by an exothermic reaction and the batch expansion, the nitrated batches were prepared with varying addition of sucrose. To obtain the impact of the grain size of the quartz component, the mixed nitrate-carbonate batches were prepared with silica particles ranging in size from 5 µm to 195 µm. One batch containing only carbonates was also tested. Sucrose addition had little effect on the batch expansion, while the size of silica was very influential. The 5-?m grains had a strongest effect, causing the generation of both primary and secondary foam, whereas only secondary foam was produced in batches with grains of 45 µm and larger. The retention of gases evolved as the batch melts creates primary foam. Gases evolved from oxidation-reduction reactions once the batch has melted produce secondary foam. We suggest that the viscosity of the melt and the amount of gas evolved are the main influences on foam production. As more gas is produced in the melt and as the glass becomes less viscous, the bubbles of gas coalesce into larger and larger cavities, until the glass can no longer contain the bubbles and they burst, causing the foam to collapse.

  5. The lattice QCD phase diagram in and away from the strong coupling limit

    E-Print Network [OSTI]

    Philippe de Forcrand; Jens Langelage; Owe Philipsen; Wolfgang Unger

    2014-06-17T23:59:59.000Z

    We study lattice QCD with four flavors of staggered quarks. In the limit of infinite gauge coupling, "dual" variables can be introduced, which render the finite-density sign problem mild and allow a full determination of the $\\mu-T$ phase diagram by Monte Carlo simulations, also in the chiral limit. However, the continuum limit coincides with the weak coupling limit. We propose a strong-coupling expansion approach towards the continuum limit. We show first results, including the phase diagram and its chiral critical point, from this expansion truncated to next-to-leading order.

  6. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    SciTech Connect (OSTI)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01T23:59:59.000Z

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  7. Synthesis of solid solution Er{sub 2-x}Ce{sub x}W{sub 3}O{sub 12} and studies of their thermal expansion behavior.

    SciTech Connect (OSTI)

    Wu, M. M.; Cheng, Y. Z.; Peng, J.; Xiao, X. L.; Chen, D. F.; Kiyanagi, R.; Fieramosca, J. S.; Short, S.; Jorgensen, J.; Hu, Z. B.; Graduate Univ. Chinese Academy of Sciences; China Inst. of Atomic Energy

    2007-01-30T23:59:59.000Z

    The syntheses and structures of Er{sub 2-x}Ce{sub x}W{sub 3}O{sub 12} were studied. It was found that pure phases could form only for 0.0 {le} x {le} 0.4 and 1.5 {le} x {le} 2.0. Compounds with 0 {le} x {le} 0.4 have the hydrated orthorhombic structure at room temperature and transform to unhydrated orthorhombic one above 135 C whereas samples with 1.5 {le} x {le} 2.0 crystallize in monoclinic structure. Thermal expansion properties of Er{sub 2-x}Ce{sub x}W{sub 3}O{sub 12} were studied with high temperature X-ray powder diffraction. Samples with 0 {le} x {le} 0.4 exhibit negative thermal expansion in temperature range of 200-800 C and higher cerium content leads to more negative thermal expansion coefficient. However, compounds with 1.5 {le} x {le} 2.0 show positive thermal expansion owing to the edge-sharing polyhedra.

  8. Dark Energy, Expansion History of the Universe, and SNAP

    E-Print Network [OSTI]

    Eric V. Linder

    2003-02-03T23:59:59.000Z

    This talk presents a pedagogical discussion of how precision distance-redshift observations can map out the recent expansion history of the universe, including the present acceleration and the transition to matter dominated deceleration. The proposed Supernova/Acceleration Probe (SNAP) will carry out observations determining the components and equations of state of the energy density, providing insights into the cosmological model, the nature of the accelerating dark energy, and potentially clues to fundamental high energy physics theories and gravitation. This includes the ability to distinguish between various dynamical scalar field models for the dark energy, as well as higher dimension and alternate gravity theories. A new, advantageous parametrization for the study of dark energy to high redshift is also presented.

  9. Growth of Cosmic Structure: Probing Dark Energy Beyond Expansion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huterer D.; May M.; Kirkby, D.; Bean, R.; Connolly, A.; Dawson, K; Dodelson, S.; Evrard, A.; Jain, B.; Jarvis, M.; Linder, E.; Mandelbaum, R.; Raccanelli, A.; Reid, B; Rozo, E.; Schmidt, F.; Sehgal, N.; Slosar, A.; Van Engelen, A.; Wu, H-Y.; Zhao, G.

    2015-03-01T23:59:59.000Z

    The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansion such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe.

  10. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOE Patents [OSTI]

    Limaye, Santosh Y. (1440 Sandpiper Cir. #38, Salt Lake City, UT 84117)

    1996-01-01T23:59:59.000Z

    Three families of ceramic compositions having the given formula: .phi..sub.1+X Zr.sub.4 P.sub.6-2X Si.sub.2X O.sub.24, .phi..sub.1+X Zr.sub.4-2X Y.sub.2X P.sub.6 O.sub.24 and .phi..sub.1+X Zr.sub.4-X Y.sub.X P.sub.6-2X Si.sub.X O.sub.24 wherein .phi. is either Strontium or Barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures.

  11. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOE Patents [OSTI]

    Limaye, S.Y.

    1996-01-30T23:59:59.000Z

    Three families of ceramic compositions having the given formula: {phi}{sub 1+X}Zr{sub 4}P{sub 6{minus}2X}Si{sub 2X}O{sub 24}, {phi}{sub 1+X}Zr{sub 4{minus}2X}Y{sub 2X}P{sub 6}O{sub 24} and {phi}{sub 1+X}Zr{sub 4{minus}X}Y{sub X}P{sub 6{minus}2X}Si{sub X}O{sub 24} wherein {phi} is either strontium or barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures. 7 figs.

  12. Low Temperature Thermal Expansion of G-10 Plastic and Mylar

    SciTech Connect (OSTI)

    Bell, D.; /Fermilab

    1993-05-24T23:59:59.000Z

    This engineering note is a summary of test information and conclusions from the thermal expansion tests conducted at D-O during the fall of 1992. Each test was conducted separately but using the same basic procedure and equipment. While information on material properties at room temperature and above for these products is quite well doccumented, the companies producing these products had no available data about the thermal properties of these materials at cryogenic temperatures. This lack of readily available information prompted these tests to determine the accuracy of using the elevated temperature data for lower temperatures also. The results of each test were written up separately as stand alone short reports for immediate use in the design stages of the V.L.P.C. cryostat cassette. Both short reports are gathered here for convenient reference.

  13. HAZARDS OF THERMAL EXPANSION FOR RADIOLOGICAL CONTAINER ENGULFED IN FIRE

    SciTech Connect (OSTI)

    Donna Post Guillen

    2013-05-01T23:59:59.000Z

    Fire accidents pose a serious threat to nuclear facilities. It is imperative that transport casks or shielded containers designed to transport/contain radiological materials have the ability to withstand a hypothetical fire. A numerical simulation was performed for a shielded container constructed of stainless steel and lead engulfed in a hypothetical fire as outlined by 10 CFR §71.73. The purpose of this analysis was to determine the thermal response of the container during and after the fire. The thermal model shows that after 30 minutes of fire, the stainless steel will maintain its integrity and not melt. However, the lead shielding will melt since its temperature exceeds the melting point. Due to the method of construction of the container under consideration, ample void space must be provided to allow for thermal expansion of the lead upon heating and melting, so as to not overstress the weldment.

  14. Infra-red divergences in the large-N expansion

    E-Print Network [OSTI]

    Bortolo Matteo Mognetti

    2007-03-20T23:59:59.000Z

    We investigate a vectorial O(N) model with a generic nearest-neighbor interaction W(\\bsigma_i\\cdot \\bsigma_j) (depending on {\\cal N} tunable parameters), a Yukawa (and Gross Neveu) model with N_f fermions at finite temperature and the vectorial \\phi^6 model, in the large N (N_f) limit. All this models exhibit a Mean Field critical point for N=\\infinity. When 1/N fluctuations are included, infra red divergences appear near the critical point. In the framework of a generalized 1/N expansion we show that these divergences are related to a universal crossover mechanism between the Mean Field universality class (N=\\infinity) and the nonclassical one for N<\\infinity. For the generic nearest-neighbor interaction multicritical points are also investigated.

  15. Dynamic Time Expansion and Compression Using Nonlinear Waveguides

    DOE Patents [OSTI]

    Findikoglu, Alp T.; Hahn, Sangkoo F.; Jia, Quanxi

    2004-06-22T23:59:59.000Z

    Dynamic time expansion or compression of a small amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.

  16. Construction of operator product expansion coefficients via consistency conditions

    E-Print Network [OSTI]

    Jan Holland

    2009-06-30T23:59:59.000Z

    In this thesis an iterative scheme for the construction of operator product expansion (OPE) coefficients is applied to determine low order coefficients in perturbation theory for a specific toy model. We use the approach to quantum field theory proposed by S. Hollands [arXiv:0802.2198], which is centered around the OPE and a number of axioms on the corresponding OPE coefficients. This framework is reviewed in the first part of the thesis. In the second part we apply an algorithm for the perturbative construction of OPE coefficients to a toy model: Euclidean $\\varphi^6$-theory in 3-dimensions. Using a recently found formulation in terms of vertex operators and a diagrammatic notation in terms of trees [arXiv:0906.5313v1], coefficients up to second order are constructed, some general features of coefficients at arbitrary order are presented and an exemplary comparison to the corresponding customary method of computation is given.

  17. Ultracold plasma expansion as a function of charge neutrality

    SciTech Connect (OSTI)

    Witte, Craig; Roberts, Jacob L. [Colorado State University, Fort Collins, Colorado 80523 (United States)

    2014-10-15T23:59:59.000Z

    Ultracold plasmas (UCPs) are created under conditions of near but not perfect neutrality. In the limit of zero electron temperature, electron screening results in non-neutrality manifesting itself as an interior region of the UCP with both electrons and ions and an exterior region composed primarily of ions. The interior region is the region of the most scientific interest for 2-component ultracold plasma physics. This work presents a theoretical model through which the time evolution of non-neutral UCPs is calculated. Despite Debye screening lengths much smaller than the characteristic plasma spatial size, model calculations predict that the expansion rate and the electron temperature of the UCP interior is sensitive to the neutrality of the UCP. The predicted UCP dependence on neutrality has implications for the correct measurement of several UCP properties, such as electron temperature, and a proper understanding of evaporative cooling of the electrons in the UCP.

  18. Winding expansion techniques for lattice QCD with chemical potential

    E-Print Network [OSTI]

    Julia Danzer; Christof Gattringer

    2008-09-16T23:59:59.000Z

    We analytically derive a decomposition of the lattice fermion determinant for Wilson's Dirac operator with chemical potential into winding sectors, i.e., factors with a fixed number of quarks. Dividing the lattice into four domains, the determinant is factorized into terms which can be classified with respect to the winding number of the closed loops they consist of. The individual factors are expressed in terms of subdeterminants and propagators on the domains of the lattice. We numerically analyze properties of the factorization formula and discuss two applications for the determination of canonical partition functions with a fixed quark number: A speedup for the Fourier transformation technique through a dimensional reduction, and a power series expansion.

  19. Thermodynamics of the pion gas using the O(N) model in 1/N expansion

    E-Print Network [OSTI]

    Tomas Brauner

    2008-12-02T23:59:59.000Z

    We investigate the thermodynamics of a pion gas within the O(N) model in the 1/N expansion. Using the auxiliary field technique, we compute the effective potential up to the next-to-leading order (NLO) and show that it can be renormalized in a temperature-independent manner. The crucial step for the consistency of the calculation turns out to be the elimination of the auxiliary field prior to renormalization. Subsequently, we solve the NLO gap equation for the chiral condensate as a function of temperature both in the chiral limit and with explicit symmetry breaking. We propose a simple semi-analytic estimate of the NLO correction to the condensate and compare it to the exact numerical solution. Finally, we show that in the chiral limit the chiral symmetry is restored at finite temperature by a second-order phase transition, and determine the critical scaling of the order parameter. We study the dependence of the critical temperature on the renormalized coupling and find that in contrast to the weak-coupling limit, at strong coupling the critical temperature increases at NLO.

  20. Phase II beam lines at the National Synchrotron Light Source

    SciTech Connect (OSTI)

    Thomlinson, W.

    1984-06-01T23:59:59.000Z

    The expansion of the National Synchrotron Light Source has been funded by the US Department of Energy. The Phase II program consists of both increased conventional facilities and six new beam lines. In this paper, an overview of the six beam lines which will be constructed during Phase II is presented. For five of the lines special radiation sources are necessary and the designs of four of the devices are complete. The relevant parameters of the insertion devices under construction and development are presented.

  1. Simultaneous constraint and phase conversion processing of oxide superconductors

    DOE Patents [OSTI]

    Li, Qi (Marlborough, MA); Thompson, Elliott D. (Coventry, RI); Riley, Jr., Gilbert N. (Marlborough, MA); Hellstrom, Eric E. (Madison, WI); Larbalestier, David C. (Madison, WI); DeMoranville, Kenneth L. (Jefferson, MA); Parrell, Jeffrey A. (Roselle Park, NJ); Reeves, Jodi L. (Madison, WI)

    2003-04-29T23:59:59.000Z

    A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.

  2. E-Print Network 3.0 - anisotropic thermal expansion Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Conductivity Summary: sensors, actuators, logic circuits, and organic optoelectronic devices. The high thermal expansion... and the dielectric constant 9 of these...

  3. E-Print Network 3.0 - article volume expansion Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies and Information Sciences 52 Anisotropic thermal expansion in silicates: A density functional study of -eucryptite and related materials Summary: that the...

  4. Retreat of the state and the market: liberalisation and education expansion in Sudan under the NCP.

    E-Print Network [OSTI]

    Mann, Laura Elizabeth

    2012-01-01T23:59:59.000Z

    ??This thesis is an analysis of two concurrent processes - the liberalisation of the economy and the expansion of the tertiary education system - by… (more)

  5. Microsoft Word - CX-SnoKingSubstationExpansionFY12_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Michael Marleau Project Manager - TEP-TPP-1 Proposed Action: Sno-King Substation Expansion Categorical...

  6. Beam energy dependence of the expansion dynamics in relativistic heavy ion collisions: Indications for the critical end point?

    E-Print Network [OSTI]

    Roy A. Lacey

    2014-08-06T23:59:59.000Z

    The flow harmonic $v_{n}$ and the emission source radii $R_{\\text{out}}$, $R_{\\text{side}}$ and $R_{\\text{long}}$ are studied for a broad range of centrality selections and beam collision energies in Au+Au ($\\sqrt{s_{NN}}= 7.7 - 200$ GeV) and Pb+Pb ($\\sqrt{s_{NN}}= 2.76$ TeV) collisions at RHIC and the LHC respectively. They validate the acoustic scaling patterns expected for hydrodynamic-like expansion over the entire range of beam energies studied. The combined data sets allow estimates for the \\sqsn\\ dependence of the mean expansion speed $\\left$, emission duration $\\left$ and the viscous coefficients $\\left$ that encode the magnitude of the specific shear viscosity $\\left$. The estimates indicate initial-state model independent values of $\\left$ which are larger for the plasma produced at 2.76 TeV (LHC) compared to that produced at 200 GeV (RHIC) ($\\left_{\\text{LHC}}=2.2\\pm 0.2$ and $\\left_{\\text{RHIC}}=1.3\\pm 0.2$). They also show a non-monotonic \\sqsn\\ dependence for $\\left$, $\\left$ and $\\left$, with minima for $\\left$ and $\\left$, and a complimentary maximum for $\\left$. These dependencies signal a significant change in reaction dynamics in a narrow span of $\\sqrt{s_{NN}}$, which may be linked to reaction trajectories close to the critical end point (CEP) in the phase diagram for nuclear matter.

  7. Mechanical and Thermal Prototype Testing for a Rotatable Collimator for the LHC Phase II Collimation Upgrade

    SciTech Connect (OSTI)

    Smith, Jeffrey Claiborne; Doyle, Eric; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas Walter; /SLAC; ,

    2010-08-26T23:59:59.000Z

    The Phase II upgrade to the LHC collimation system calls for complementing the robust Phase I graphite collimators with high Z, low impedance Phase II collimators. The design for the collimation upgrade has not been finalized. One option is to use metallic rotatable collimators and testing of this design will be discussed here. The Phase II collimators must be robust in various operating conditions and accident scenarios. A prototype collimator jaw has been tested for both mechanical and thermal compliance with the design goals. Thermal expansion bench-top tests are compared to ANSYS simulation results.

  8. Liquid Phase Heating Systems

    E-Print Network [OSTI]

    Mordt, E. H.

    1979-01-01T23:59:59.000Z

    saturation pressure is ju'st under 278 psig. To this, pump head, pump NPSH and static head due to elevated piping must l be added to arrive at total pressure in a steam cushioned HTW system. Nitrogen cushioned systems are more common, and expansion...

  9. Predictions of the Pt8Ti Phase in Unexpected Systems Richard H. Taylor,,

    E-Print Network [OSTI]

    Curtarolo, Stefano

    Predictions of the Pt8Ti Phase in Unexpected Systems Richard H. Taylor,, Stefano CurtaroloVot 76100, Israel Received March 5, 2010; E-mail: gus.hart@gmail.com; stefano@duke.edu Abstract: The binary in the Rh-W system. A cluster-expansion-based Monte Carlo model reveals a relatively high order

  10. $1/d$ Expansion for $k$-Core Percolation

    E-Print Network [OSTI]

    A. B. Harris; J. M. Schwarz

    2005-05-12T23:59:59.000Z

    The physics of $k$-core percolation pertains to those systems whose constituents require a minimum number of $k$ connections to each other in order to participate in any clustering phenomenon. Examples of such a phenomenon range from orientational ordering in solid ortho-para ${\\rm H}_2$ mixtures to the onset of rigidity in bar-joint networks to dynamical arrest in glass-forming liquids. Unlike ordinary ($k=1$) and biconnected ($k=2$) percolation, the mean field $k\\ge3$-core percolation transition is both continuous and discontinuous, i.e. there is a jump in the order parameter accompanied with a diverging length scale. To determine whether or not this hybrid transition survives in finite dimensions, we present a $1/d$ expansion for $k$-core percolation on the $d$-dimensional hypercubic lattice. We show that to order $1/d^3$ the singularity in the order parameter and in the susceptibility occur at the same value of the occupation probability. This result suggests that the unusual hybrid nature of the mean field $k$-core transition survives in high dimensions.

  11. Energy Prices and the Expansion of World Trade

    E-Print Network [OSTI]

    Benjamin Bridgman

    2008-01-01T23:59:59.000Z

    The oil shocks of the 1970s coincided with a number of economic disturbances. However, it has been difficult to develop models where oil shocks have a quantitatively important impact on the economy. In this paper, I show that the disturbances in transportation caused by the oil shocks can significantly affect the economy. I argue that changes in energy prices were responsible for a worldwide slowdown in the growth of trade and may help explain the apparent change in the price-trade elasticity. While tariffs have fallen steadily since 1970, trade growth slowed in the mid-1970s and has grown rapidly since the mid-1980s. In a standard trade model, this pattern implies that the price-import elasticity increased sharply in the mid-1980s. In this paper, I argue that the oil crises of the 1970s led to higher transportation costs. In 1986 energy prices fell to their pre-crisis level, reducing transportation costs and by extension trade barriers. I present a trade model with an energy using transportation sector. In model simulations, I show that total trade costs (transportation cost plus tariffs) are constant from 1974 to 1982. Once transportation costs are accounted for, the price-import elasticity no longer needs to radically change. I also show that trade expansion since 1960 is 50 percent higher in a standard trade model that includes a transportation sector compared to one that does not.

  12. Project Fever - Fostering Electric Vehicle Expansion in the Rockies

    SciTech Connect (OSTI)

    Swalnick, Natalia

    2013-06-30T23:59:59.000Z

    Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.

  13. West Foster Creek Expansion Project 2007 HEP Report.

    SciTech Connect (OSTI)

    Ashley, Paul R.

    2008-02-01T23:59:59.000Z

    During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus), western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.

  14. Hubble expansion & Structure Formation in Time Varying Vacuum Models

    E-Print Network [OSTI]

    S. Basilakos; M. Plionis; J. Sola

    2009-09-22T23:59:59.000Z

    We investigate the properties of the FLRW flat cosmological models in which the vacuum energy density evolves with time, $\\Lambda(t)$. Using different versions of the $\\Lambda(t)$ model, namely quantum field vacuum, power series vacuum and power law vacuum, we find that the main cosmological functions such as the scale factor of the universe, the Hubble expansion rate $H$ and the energy densities are defined analytically. Performing a joint likelihood analysis of the recent supernovae type Ia data, the Cosmic Microwave Background (CMB) shift parameter and the Baryonic Acoustic Oscillations (BAOs) traced by the Sloan Digital Sky Survey (SDSS) galaxies, we put tight constraints on the main cosmological parameters of the $\\Lambda(t)$ scenarios. Furthermore, we study the linear matter fluctuation field and the growth rate of clustering of the above vacuum models. Finally, we derived the theoretically predicted dark-matter halo mass function and the corresponding distribution of cluster-size halos for all the models studied. Their expected redshift distribution indicates that it will be difficult to distinguish the closely resembling models (constant vacuum, quantum field and power-law vacuum), using realistic future X-ray surveys of cluster abundances. However, cluster surveys based on the Sunayev-Zeldovich detection method give some hope to distinguish the closely resembling models at high redshifts.

  15. Relativistic plasma expansion with Maxwell-Juettner distribution

    SciTech Connect (OSTI)

    Huang, Yongsheng; Wang, Naiyan; Tang, Xiuzhang; Shi, Yijin [China Institute of Atomic Energy, Beijing 102413 (China)] [China Institute of Atomic Energy, Beijing 102413 (China)

    2013-11-15T23:59:59.000Z

    A self-similar analytical solution is proposed to describe the relativistic ion acceleration with the local Maxwell-Juettner relativistic distribution electrons. It is an alternative to the existing static model [M. Passoni and M. Lontano, Phys. Rev. Lett. 101, 115001 (2008)], which exploits a limited solution for the acceleration potential. With our model, the potential is finite naturally and has an upper limitation proportional to the square root of the electron temperature. The divergent potential in the non-relativistic case is the linear items of the Taylor expansion of that obtained relativistic one here. The energy distribution of ions and the dependence of the ion momentum on the acceleration time are obtained analytically. Maximum ion energy has an upper limitation decided by the finite potential difference. In the ultra-relativistic region, the ion energy at the ion front is proportional to t{sup 4/5} and the energy of the ions behind the ion front is proportional to t{sup 2/3} since the field there is shielded by the ions beyond them and the field at the ion front is the most intense.

  16. Economic Costs and Benefits of the Trans Mountain Expansion Project (TMX)

    E-Print Network [OSTI]

    Economic Costs and Benefits of the Trans Mountain Expansion Project (TMX) for BC and Metro.thegoodman.com November 10, 2014 #12;SCHOOL OF PUBLIC POLICY Economic Costs and Benefits of the Trans Mountain Expansion Project (TMX) for BC and Metro Vancouver ii Table of Contents 1 Executive Summary

  17. Final Independent External Peer Review Report for the Savannah Harbor Expansion Project

    E-Print Network [OSTI]

    US Army Corps of Engineers

    for the Savannah Harbor Expansion Project General Reevaluation Report EXECUTIVE SUMMARY Savannah Harbor is a deep and 600 feet wide from deep water in the ocean (River Mile 11.4B) to the channel between the jettiesFinal Independent External Peer Review Report for the Savannah Harbor Expansion Project General

  18. Beta-expansions for cubic Pisot numbers Fr ed erique Bassino

    E-Print Network [OSTI]

    Bassino, Frédérique

    Beta-expansions for cubic Pisot numbers Fr#19;ed#19;erique Bassino I.G.M., Universit#19;e de Marne of fa 2 N j a beta-shift. This dynamical system is characterized by the beta a simple beta-number. We #12;rst compute the beta-expansion of 1 for any cubic Pisot number. Next we show

  19. SOLVING GENERATION EXPANSION PLANNING PROBLEMS WITH ENVIRONMENTAL CONSTRAINTS BY A BUNDLE METHOD

    E-Print Network [OSTI]

    Solodov, Mikhail V.

    for the construction of new power plants, while ensuring economic and reliable supply to the future electricity demandSOLVING GENERATION EXPANSION PLANNING PROBLEMS WITH ENVIRONMENTAL CONSTRAINTS BY A BUNDLE METHOD discuss the energy generation expansion planning with environmental constraints, formulated as a nonsmooth

  20. Definition, Expansion and Screening of Architectures for Planetary Exploration Class Nuclear Electric Propulsion and Power Systems

    E-Print Network [OSTI]

    Nuclear Electric Propulsion and Power Systems By Bryan K. Smith Submitted to the System Design, expansion and screening of Nuclear Electric Propulsion and Power concepts capable of achieving planetaryDefinition, Expansion and Screening of Architectures for Planetary Exploration Class Nuclear

  1. Internal structure and expansion dynamics of laser ablation plumes into ambient gases

    E-Print Network [OSTI]

    Harilal, S. S.

    Internal structure and expansion dynamics of laser ablation plumes into ambient gases S. S. Harilal 13 December 2002 The effect of ambient gas on the expansion dynamics of the plasma generated by laser together with time resolved emission diagnostics, a triple structure of the plume was observed

  2. Anterior-to-posterior wave of buccal expansion in suction feeding fishes is critical

    E-Print Network [OSTI]

    Wainwright, Peter C.

    fluid dynamic model to demonstrate that the inclusion of an anterior-to-posterior wave of buccal constrained conditions, whereas models that do not allow this wave of expansion inevitably predict peakAnterior-to-posterior wave of buccal expansion in suction feeding fishes is critical for optimizing

  3. Relation between thermal expansion and interstitial formation energy in pure Fe and Cr

    E-Print Network [OSTI]

    Relation between thermal expansion and interstitial formation energy in pure Fe and Cr Janne potentials give lower interstitial formation energy, but predict too small thermal expansion. We also show University, Uppsala, Sweden Abstract By fitting a potential of modified Finnis­Sinclair type to the thermal

  4. Longevity of the quark-gluon plasma and the mixed phase from intensity interferometry of high energy photons

    E-Print Network [OSTI]

    Dinesh K. Srivastava; Charles Gale

    1993-11-10T23:59:59.000Z

    Two-photon intensity interferometry is shown to provide an accurate measurement of lifetime of quark-gluon plasma created in ultra-relativistic heavy ion collisions via the difference of outward and sidewardcorrelation radii. Under the assumption of a longitudinal, boost invariant expansion of the plasma, we obtain analytical expressions for the correlations from the quark-gluon plasma phase. A $3+1$ dimensional expansion of the plasma along with a first order phase transition to hadrons is next considered, and, leads to a source with two characteristic lifetimes, one for the quark-gluon plasma phase, and the other for the longer lived mixed phase. This may even help us to {\\em experimentally} determine the order of the phase transition.

  5. THERMAL EXPANSION AND PHASE INVERSION OF RARE-EARTH OXIDES By Stephan Stecura and William J. Campbell

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an overarchingInformation science.govInformation*

  6. Chiral dynamics in the low-temperature phase of QCD

    E-Print Network [OSTI]

    Bastian B. Brandt; Anthony Francis; Harvey B. Meyer; Daniel Robaina

    2014-10-22T23:59:59.000Z

    We investigate the low-temperature phase of QCD and the crossover region with two light flavors of quarks. The chiral expansion around the point $(T, m_q = 0)$ in the temperature vs. quark-mass plane indicates that a sharp real-time excitation exists with the quantum numbers of the pion. We determine its dispersion relation and test the applicability of the chiral expansion. The time-dependent correlators are also analyzed using the Maximum Entropy Method (MEM), yielding consistent results. Finally, we test the predictions of ordinary chiral perturbation theory around the point $(T = 0, m_q = 0)$ for the temperature dependence of static observables. Around the crossover temperature, we find that all quantities considered depend only mildly on the quark mass in the considered range 8MeV $\\leq \\bar{m}^{\\bar{\\text{MS}}} \\leq$ 15MeV.

  7. Expansion analyses of strategic petroleum reserve in Bayou Choctaw : revised locations.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Park, Byoung Yoon

    2010-11-01T23:59:59.000Z

    This report summarizes a series of three-dimensional simulations for the Bayou Choctaw Strategic Petroleum Reserve. The U.S. Department of Energy plans to leach two new caverns and convert one of the existing caverns within the Bayou Choctaw salt dome to expand its petroleum reserve storage capacity. An existing finite element mesh from previous analyses is modified by changing the locations of two caverns. The structural integrity of the three expansion caverns and the interaction between all the caverns in the dome are investigated. The impacts of the expansion on underground creep closure, surface subsidence, infrastructure, and well integrity are quantified. Two scenarios were used for the duration and timing of workover conditions where wellhead pressures are temporarily reduced to atmospheric pressure. The three expansion caverns are predicted to be structurally stable against tensile failure for both scenarios. Dilatant failure is not expected within the vicinity of the expansion caverns. Damage to surface structures is not predicted and there is not a marked increase in surface strains due to the presence of the three expansion caverns. The wells into the caverns should not undergo yield. The results show that from a structural viewpoint, the locations of the two newly proposed expansion caverns are acceptable, and all three expansion caverns can be safely constructed and operated.

  8. Investigation of a suppression of asymmetric cell kinetics (SACK) approach for ex vivo expansion of human hematopoietic stem cells

    E-Print Network [OSTI]

    Taghizadeh, Rouzbeh R

    2006-01-01T23:59:59.000Z

    Ex vivo expansion of hematopoietic stem cells (HSCs) is a long-standing challenge faced by both researchers and clinicians. To date, no robust, efficient method for the pure, ex vivo expansion of human HSCs has been ...

  9. Quantum field theory in the presence of a medium: Green's function expansions

    SciTech Connect (OSTI)

    Kheirandish, Fardin [Department of Physics, Islamic Azad University, Shahreza-Branch, Shahreza (Iran, Islamic Republic of); Salimi, Shahriar [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2011-12-15T23:59:59.000Z

    Starting from a Lagrangian and using functional-integration techniques, series expansions of Green's function of a real scalar field and electromagnetic field, in the presence of a medium, are obtained. The parameter of expansion in these series is the susceptibility function of the medium. Relativistic and nonrelativistic Langevin-type equations are derived. Series expansions for Lifshitz energy in finite temperature and for an arbitrary matter distribution are derived. Covariant formulations for both scalar and electromagnetic fields are introduced. Two illustrative examples are given.

  10. Edgeworth Expansion of the Largest Eigenvalue Distribution Function of GUE and LUE

    E-Print Network [OSTI]

    Leonard N. Choup

    2006-05-31T23:59:59.000Z

    We derive expansions of the Hermite and Laguerre kernels at the edge of the spectrum of the finite n Gaussian Unitary Ensemble (GUEn) and the finite n Laguerre Unitary Ensem- ble (LUEn), respectively. Using these large n kernel expansions, we prove an Edgeworth type theorem for the largest eigenvalue distribution function of GUEn and LUEn. In our Edgeworth expansion, the correction terms are expressed in terms of the same Painleve II function appearing in the leading term, i.e. in the Tracy-Widom distribution. We conclude with a brief discussion of the universality of these results.

  11. Highly Anisotropic Thermal Expansion in Molecular Films of Dicarboxylic Fatty Acids

    SciTech Connect (OSTI)

    Tamam L.; Ocko B.; Kraack, H.; Sloutskin, E.; Deutsch, M.

    2012-05-25T23:59:59.000Z

    Angstrom-resolution x-ray measurements reveal the existence of two-dimensional (2D) crystalline order in molecularly thin films of surface-parallel-oriented fatty diacid molecules supported on a liquid mercury surface. The thermal expansion coefficients along the two unit cell vectors are found to differ 17-fold. The high anisotropy of the 2D thermal expansion and the crystalline coherence length are traced to the different bonding in the two directions: van der Waals normal to, and covalent plus hydrogen bonding along the molecular backbone axis. Similarities with, and differences from, negative thermal expansion materials are discussed.

  12. Phase transitions in K-doped MoO{sub 2}

    SciTech Connect (OSTI)

    Alves, L. M. S., E-mail: leandro-fisico@hotmail.com; Lima, B. S. de; Santos, C. A. M. dos [Departamento de Engenharia de Materiais, Escola de Engenharia de Lorena-USP, Lorena, São Paulo 12602-810 (Brazil); Rebello, A.; Masunaga, S. H.; Neumeier, J. J. [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, Montana 59717-3840 (United States); Leão, J. B. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Dr. MS 6102, Gaithersburg, Maryland 20899-6102 (United States)

    2014-05-28T23:59:59.000Z

    K{sub 0.05}MoO{sub 2} has been studied by x-ray and neutron diffractometry, electrical resistivity, magnetization, heat capacity, and thermal expansion measurements. The compound displays two phase transitions, a first-order phase transition near room temperature and a second-order transition near 54?K. Below the transition at 54?K, a weak magnetic anomaly is observed and the electrical resistivity is well described by a power-law temperature dependence with exponent near 0.5. The phase transitions in the K-doped MoO{sub 2} compound have been discussed for the first time using neutron diffraction, high resolution thermal expansion, and heat capacity measurements as a function of temperature.

  13. Uranium hexafluoride liquid thermal expansion, elusive eutectic with hydrogen fluoride, and very first production using chlorine trifluoride

    SciTech Connect (OSTI)

    Rutledge, G.P. [Central Environmental, Inc., Anchorage, AK (United States)

    1991-12-31T23:59:59.000Z

    Three unusual incidents and case histories involving uranium hexafluoride in the enrichment facilities of the USA in the late 1940`s and early 1950`s are presented. The history of the measurements of the thermal expansion of liquids containing fluorine atoms within the molecule is reviewed with special emphasis upon uranium hexafluoride. A comparison is made between fluorinated esters, fluorocarbons, and uranium hexafluoride. The quantitative relationship between the thermal expansion coefficient, a, of liquids and the critical temperature, T{sub c} is presented. Uranium hexafluoride has an a that is very high in a temperature range that is used by laboratory and production workers - much higher than any other liquid measured. This physical property of UF{sub 6} has resulted in accidents involving filling the UF{sub 6} containers too full and then heating with a resulting rupture of the container. Such an incident at a uranium gaseous diffusion plant is presented. Production workers seldom {open_quotes}see{close_quotes} uranium hexafluoride. The movement of UF{sub 6} from one container to another is usually trailed by weight, not sight. Even laboratory scientists seldom {open_quotes}see{close_quotes} solid or liquid UF{sub 6} and this can be a problem at times. This inability to {open_quotes}see{close_quotes} the UF{sub 6}-HF mixtures in the 61.2{degrees}C to 101{degrees}C temperature range caused a delay in the understanding of the phase diagram of UF{sub 6}-HF which has a liquid - liquid immiscible region that made the eutectic composition somewhat elusive. Transparent fluorothene tubes solved the problem both for the UF{sub 6}-HF phase diagram as well as the UF{sub 6}-HF-CIF{sub 3} phase diagram with a miscibility gap starting at 53{degrees}C. The historical background leading to the first use of CIF{sub 3} to produce UF{sub 6} in both the laboratory and plant at K-25 is presented.

  14. Quark propagator in the Nambu-Jona-Lasinio model in a self-consistent 1/N{sub c} expansion

    SciTech Connect (OSTI)

    Mueller, D.; Buballa, M.; Wambach, J. [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2010-05-01T23:59:59.000Z

    The quark propagator is calculated in the Nambu-Jona-Lasinio model in a self-consistent 1/N{sub c}-expansion at next-to-leading order. The calculations are carried out iteratively in Euclidean space. The chiral quark condensate and its dependence on temperature and chemical potential is calculated directly and compared with the mean-field results. In the chiral limit, we find a second-order phase transition at finite temperature and zero chemical potential, in agreement with universality arguments. At zero temperature and finite chemical potential, the phase transition is first order. In comparison with the mean-field results, the critical temperature and chemical potential are slightly reduced. We determine spectral functions from the Euclidean propagators by employing the maximum-entropy method. Thereby quark and meson masses are estimated and decay channels identified. For testing this method, we also apply it to evaluate perturbative spectral functions, which can be calculated directly in Minkowski space. In most cases we find that the maximum-entropy method is able to reproduce the rough features of the spectral functions, but not the details.

  15. Vacancies in ordered and disordered binary alloys treated with the cluster expansion A. Van der Ven and G. Ceder

    E-Print Network [OSTI]

    Ceder, Gerbrand

    Vacancies in ordered and disordered binary alloys treated with the cluster expansion A. Van der Ven far neglected the presence of vacancies. Here, we invoke a local cluster expansion as a perturbation to the standard binary cluster expansion to model the equilibrium vacancy concentration in a binary alloy

  16. Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefactio...

    Broader source: Energy.gov (indexed) [DOE]

    Application of Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction 3, LLC to Transfer Control of Long-term Authorization to Export...

  17. Comment on ``Success of collinear expansion in the calculation of induced gluon emission''

    E-Print Network [OSTI]

    P. Aurenche; B. G. Zakharov; H. Zaraket

    2008-06-01T23:59:59.000Z

    We show that the arguments against our recent paper on the failure of the collinear expansion in the calculation of the induced gluon emission raised by X.N. Wang are either incorrect or irrelevant.

  18. E-Print Network 3.0 - apparent area expansivity Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    << < 1 2 3 4 5 > >> 1 Measurement of rate of expansion in the perception of radial motion Jeff D. Wurfel a,b,*, Jose F. Barraza d Summary: in a circular area of 5 when the...

  19. White food-type sorghum in direct-expansion extrusion applications

    E-Print Network [OSTI]

    Acosta Sanchez, David

    2004-09-30T23:59:59.000Z

    distribution similar to corn meal produced extrudates with higher expansion, lower bulk density and similar texture. In addition, sorghum extrudates were rated equal to corn meal extrudates by a taste panel for appearance, flavor, texture and overall...

  20. SAVANNAH HARBOR EXPANSION PROJECT CHATHAM COUNTY, GEORGIA AND JASPER COUNTY, SOUTH CAROLINA

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SAVANNAH HARBOR EXPANSION PROJECT CHATHAM COUNTY, GEORGIA AND JASPER COUNTY, SOUTH CAROLINA 22 (Kings Island Turning Basin at Stations 98+500 to 100+500) 5 feet deeper (to an authorized navigation #12

  1. Decays of excited baryons in the large Nc expansion of QCD

    SciTech Connect (OSTI)

    Jose Goity; Norberto Scoccola

    2006-05-06T23:59:59.000Z

    We present the analysis of the decay widths of excited baryons in the framework of the 1/Nc expansion of QCD. These studies are performed up to order 1/Nc and include both positive and negative parity excited baryons.

  2. WKB-expansion of the HarishChandra-Itzykson-Zuber integral for arbitrary beta

    E-Print Network [OSTI]

    S. Hikami; E. Brezin

    2006-04-18T23:59:59.000Z

    This article is devoted to the asymptotic expansion of the generalized Harish Chandra-Itzykson-Zuber matrix integral for non-unitary symmetries characterized by a parameter beta(as usual beta =1,2 and 4 correspond to the orthogonal, unitary and symplectic group integrals). A WKB-expansion for f is derived from the heat kernel differential equation, for general values of k and beta. From an expansion in terms of zonal polynomials, one obtain an expansion in powers of the tau's for beta=1, and generalizations are considered for general beta. A duality relation, and a transformation of products of pairs of symmetric functions into tau polynomials, is used to obtain the expression for f(tau ij) for general beta.

  3. Impact of unit commitment constraints on generation expansion planning with renewables

    E-Print Network [OSTI]

    Palmintier, Bryan Stephen

    Growing use of renewables pushes thermal generators against operating constraints - e.g. ramping, minimum output, and operating reserves - that are traditionally ignored in expansion planning models. We show how including ...

  4. Pressurized heat treatment of glass-ceramic to control thermal expansion

    DOE Patents [OSTI]

    Kramer, Daniel P. (Dayton, OH)

    1985-01-01T23:59:59.000Z

    A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.

  5. Merging quadratic programming with kernel smoothing for automated cluster expansions of complex lattice Hamiltonians

    E-Print Network [OSTI]

    Okan, Osman Burak

    2008-01-01T23:59:59.000Z

    We present a general outline for automating cluster expansions of configurational energetics in systems with crystallographic order and well defined space group symmetry. The method presented herein combines constrained ...

  6. Detection and Quantification of Expansive Clay Minerals in Geologically-Diverse Texas Aggregate Fines

    E-Print Network [OSTI]

    Russell, George 1983-

    2012-11-28T23:59:59.000Z

    and asphalt concretes. The Texas Department of Transportation (TXDOT) and Texas A&M Transportation Institute (TTI) evaluated the methylene blue adsorption test for its potential to identify and estimate quantities of expansive clays in aggregate stockpiles...

  7. The Appell hypergeometric expansions of the solutions of the general Heun equation

    E-Print Network [OSTI]

    A. M. Ishkhanyan

    2014-05-12T23:59:59.000Z

    Starting from the equation obeyed by the derivative, we construct several expansions of the solutions of the general Heun equation in terms of the Appell generalized hypergeometric functions of two variables of the fist kind. Several cases when the expansions reduce to ones written in terms of simpler mathematical functions such as the incomplete Beta function or the Gauss hypergeometric function are identified. The conditions for deriving finite-sum solutions via termination of the series are discussed. In general, the coefficients of the expansions obey four-term recurrence relations; however, there exist certain sets of the parameters for which the recurrence relations involve only two terms, though not successive. The coefficients of the expansions are then explicitly calculated and the general solution of the Heun equation is constructed in terms of the Gauss hypergeometric functions.

  8. arbitrary power-law expansion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are also presented. Burin Gumjudpai 2007-08-27 3 The power-law expansion universe and dark energy evolution Astrophysics (arXiv) Summary: In order to depict the transition from...

  9. Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes

    E-Print Network [OSTI]

    Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes Karin is an example of invasive harmful microalgae (Neilan et al., 2003). Another presumably invasive species

  10. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-161-LNG Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 11-161-LNG On November 15, 2013, the Office of Fossil Energy of the Department of Energy (DOEFE)...

  11. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0-161-LNG Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 10-161-LNG On May 17, 2013, the Office of Fossil Energy of the Department of Energy (DOEFE) issued...

  12. Modeling the effects of Refrigerant Charging on Air Conditioner Performance Characteristics For Three Expansion Devices

    E-Print Network [OSTI]

    Farzad, Mohsen

    An experimental and analytical study concerned with the off-design refrigerant charging of air conditioners is presented. A series of experiments were conducted to characterize the effects of refrigerant charge and type of expansion device...

  13. Incorporating endogenous demand dynamics into long-term capacity expansion power system models for Developing countries

    E-Print Network [OSTI]

    Jordan, Rhonda LeNai

    2013-01-01T23:59:59.000Z

    This research develops a novel approach to long-term power system capacity expansion planning for developing countries by incorporating endogenous demand dynamics resulting from social processes of technology adoption. ...

  14. Calculation of the Green's function from high- and low-density series expansions for disordered transport

    E-Print Network [OSTI]

    Calef, Daniel F.; Friesner, Richard; Korzeniewski, Gregory; Laird, Brian Bostian; Silbey, Robert

    1984-05-01T23:59:59.000Z

    We investigate density expansions for the configurationally averaged Green's function for a random walk on a (site) disordered lattice. Two-point Padé summation techniques are used in conjunction with scaling arguments to examine behavior near...

  15. The Smectic $A$-$C$ Phase Transition in Biaxial Disordered Environments

    E-Print Network [OSTI]

    Leiming Chen; John Toner

    2011-12-07T23:59:59.000Z

    We study the smectic $A$-$C$ phase transition in biaxial disordered environments, e.g. fully anisotropic aerogel. We find that both the $A$ and $C$ phases belong to the universality class of the "XY Bragg glass", and therefore have quasi-long-ranged translational smectic order. The phase transition itself belongs to a new universality class, which we study using an $\\epsilon=7/2-d$ expansion. We find a stable fixed point, which implies a continuous transition, the critical exponents of which we calculate.

  16. Gymnastics in Phase Space

    SciTech Connect (OSTI)

    Chao, Alexander Wu; /SLAC

    2012-03-01T23:59:59.000Z

    As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this list are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.

  17. Stabilising the Blue Phases

    E-Print Network [OSTI]

    G. P. Alexander; J. M. Yeomans

    2006-09-22T23:59:59.000Z

    We present an investigation of the phase diagram of cholesteric liquid crystals within the framework of Landau - de Gennes theory. The free energy is modified to incorporate all three Frank elastic constants and to allow for a temperature dependent pitch in the cholesteric phase. It is found that the region of stability of the cubic blue phases depends significantly on the value of the elastic constants, being reduced when the bend elastic constant is larger than splay and when twist is smaller than the other two. Most dramatically we find a large increase in the region of stability of blue phase I, and a qualitative change in the phase diagram, in a system where the cholesteric phase displays helix inversion.

  18. Green's Function expansion of scalar and vector fields in the presence of a medium

    E-Print Network [OSTI]

    Fardin Kheirandish; Shahriar Salimi

    2010-10-17T23:59:59.000Z

    Based on a canonical approach and functional-integration techniques, a series expansion of Green's function of a scalar field, in the presence of a medium, is obtained. A series expansion for Lifshitz-energy, in finite-temperature, in terms of the susceptibility of the medium is derived and the whole formalism is generalized to the case of electromagnetic field in the presence of some dielectrics. A covariant formulation of the problem is presented.

  19. Utilization of flange design and vessel shell properties to eliminate use of metallic expansion joints

    SciTech Connect (OSTI)

    Mitchell, D.W.

    1982-01-01T23:59:59.000Z

    This paper presents the techniques that were utilized to verify that expansion joints could be eliminated from the critical 20 inch Raw Gas Cooler piping from the Gasifiers in a coal gasification project. It details the parameters that were considered in the analysis showing particular attention to determining shell flexibilites and preventing flange leakages. The expansion joints were unnecessary, with much of the credit coming from the flexibility in the shell and by proper selection of gasket material.

  20. Automation of the Laguerre Expansion Technique for Analysis of Time-resolved Fluorescence Spectroscopy Data

    E-Print Network [OSTI]

    Dabir, Aditi Sandeep

    2010-07-14T23:59:59.000Z

    AUTOMATION OF THE LAGUERRE EXPANSION TECHNIQUE FOR ANALYSIS OF TIME-RESOLVED FLUORESCENCE SPECTROSCOPY DATA A Thesis by ADITI SANDEEP DABIR Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2009 Major Subject: Biomedical Engineering AUTOMATION OF THE LAGUERRE EXPANSION TECHNIQUE FOR ANALYSIS OF TIME-RESOLVED FLUORESCENCE SPECTROSCOPY DATA A Thesis...

  1. Ramanujan's Harmonic Number Expansion into Negative Powers of a Triangular Number

    E-Print Network [OSTI]

    Mark B. Villarino

    2007-07-28T23:59:59.000Z

    An algebraic transformation of the DeTemple-Wang half-integer approximation to the harmonic series produces the general formula and error estimate for the Ramanujan expansion for the nth harmonic number into negative powers of the nth triangular number. We also discuss the history of the Ramanujan expansion for the nth harmonic number as well as sharp estimates of its accuracy, with complete proofs, and we compare it with other approximative formulas.

  2. Crystal phase identification

    DOE Patents [OSTI]

    Michael, Joseph R. (Albuquerque, NM); Goehner, Raymond P. (Albuquerque, NM); Schlienger, Max E. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A method and apparatus for determining the crystalline phase and crystalline characteristics of a sample. This invention provides a method and apparatus for unambiguously identifying and determining the crystalline phase and crystalline characteristics of a sample by using an electron beam generator, such as a scanning electron microscope, to obtain a backscattered electron Kikuchi pattern of a sample, and extracting crystallographic and composition data that is matched to database information to provide a quick and automatic method to identify crystalline phases.

  3. Effective field theory, three-loop perturbative expansion, and their experimental implications in graphene many-body effects

    E-Print Network [OSTI]

    Edwin Barnes; E. H. Hwang; R. E. Throckmorton; S. Das Sarma

    2014-06-30T23:59:59.000Z

    Many-body electron-electron interaction effects are theoretically considered in monolayer graphene from a continuum effective field-theoretic perspective by going beyond the standard leading-order perturbative renormalization group (RG) analysis. Given that the bare fine structure constant in graphene is of order unity, which is neither small to justify a perturbative expansion nor large enough for strong-coupling theories to be applicable, the problem is a difficult one, with some similarity to 2+1-dimensional strong-coupling quantum electrodynamics (QED). In this work, we take a systematic and comprehensive analytical approach, working primarily at the Dirac point (intrinsic graphene), by going up to three loops in the diagrammatic expansion to both ascertain the validity of perturbation theory and to estimate quantitatively higher-order renormalization effects. While no direct signatures for non-Fermi liquid behavior at the Dirac point have yet been observed experimentally, there is ample evidence for the interaction-induced renormalization of the graphene velocity as the carrier density approaches zero. We provide a critical comparison between theory and experiment, using both bare- and screened-interaction (RPA) calculations. We find that while the one-loop RG analysis gives reasonable agreement with the experimental data, especially when screening and finite-density effects are included through the RPA, the two-loop analysis reveals a strong-coupling critical point in suspended graphene, signifying either a quantum phase transition or a breakdown of the weak-coupling RG approach. We show that the latter is more likely by adapting Dyson's argument for the breakdown of perturbative QED to the case of graphene. We propose future experiments and theoretical directions to make further progress on this important and difficult problem.

  4. Phase 1 -- 4

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements" " " "Phase Two - Initial Project Development" "Replace Std Task 2-1","DO RFP Development - On Site Consultation","FEMP Services will provide technical consultation...

  5. Degenerate Metric Phase Boundaries

    E-Print Network [OSTI]

    Ingemar Bengtsson; Ted Jacobson

    1999-01-23T23:59:59.000Z

    The structure of boundaries between degenerate and nondegenerate solutions of Ashtekar's canonical reformulation of Einstein's equations is studied. Several examples are given of such "phase boundaries" in which the metric is degenerate on one side of a null hypersurface and non-degenerate on the other side. These include portions of flat space, Schwarzschild, and plane wave solutions joined to degenerate regions. In the last case, the wave collides with a planar phase boundary and continues on with the same curvature but degenerate triad, while the phase boundary continues in the opposite direction. We conjecture that degenerate phase boundaries are always null.

  6. Flexoelectric blue phases

    E-Print Network [OSTI]

    G P Alexander; J M Yeomans

    2007-07-01T23:59:59.000Z

    We describe the occurence and properties of liquid crystal phases showing two dimensional splay and bend distortions which are stabilised by flexoelectric interactions. These phases are characterised by regions of locally double splayed order separated by topological defects and are thus highly analogous to the blue phases of cholesteric liquid crystals. We present a mean field analysis based upon the Landau--de Gennes Q-tensor theory and construct a phase diagram for flexoelectric structures using analytic and numerical results. We stress the similarities and discrepancies between the cholesteric and flexoelectric cases.

  7. Thermodynamically Stable Blue Phases

    E-Print Network [OSTI]

    F. Castles; S. M. Morris; E. M. Terentjev; H. J. Coles

    2011-01-28T23:59:59.000Z

    We show theoretically that flexoelectricity stabilizes blue phases in chiral liquid crystals. Induced internal polarization reduces the elastic energy cost of splay and bend deformations surrounding singular lines in the director field. The energy of regions of double twist is unchanged. This in turn reduces the free energy of the blue phase with respect to that of the chiral nematic phase, leading to stability over a wider temperature range. The theory explains the discovery of large temperature range blue phases in highly flexoelectric "bimesogenic" and "bent-core" materials, and predicts how this range may be increased further.

  8. Uncertainty Quantification in CO{sub 2} Sequestration Using Surrogate Models from Polynomial Chaos Expansion

    SciTech Connect (OSTI)

    Zhang, Yan; Sahinidis, Nikolaos V.

    2013-04-06T23:59:59.000Z

    In this paper, surrogate models are iteratively built using polynomial chaos expansion (PCE) and detailed numerical simulations of a carbon sequestration system. Output variables from a numerical simulator are approximated as polynomial functions of uncertain parameters. Once generated, PCE representations can be used in place of the numerical simulator and often decrease simulation times by several orders of magnitude. However, PCE models are expensive to derive unless the number of terms in the expansion is moderate, which requires a relatively small number of uncertain variables and a low degree of expansion. To cope with this limitation, instead of using a classical full expansion at each step of an iterative PCE construction method, we introduce a mixed-integer programming (MIP) formulation to identify the best subset of basis terms in the expansion. This approach makes it possible to keep the number of terms small in the expansion. Monte Carlo (MC) simulation is then performed by substituting the values of the uncertain parameters into the closed-form polynomial functions. Based on the results of MC simulation, the uncertainties of injecting CO{sub 2} underground are quantified for a saline aquifer. Moreover, based on the PCE model, we formulate an optimization problem to determine the optimal CO{sub 2} injection rate so as to maximize the gas saturation (residual trapping) during injection, and thereby minimize the chance of leakage.

  9. TWRS privatization phase 1 monitoring wells engineering study

    SciTech Connect (OSTI)

    Williams, B.A.; Newcomer, D.R.

    1998-04-01T23:59:59.000Z

    This engineering study provides an evaluation of existing wells and boreholes (wells) within the proposed location for the Tank Waste Remediation System (TWRS) Privatization Phase 1 demonstration site. Phase 1 is part of the TWRS program that was established to manage, retrieve, treat, immobilize, and dispose of high-level waste stored in underground tanks at the Hanford Site. This evaluation is to determine which wells will remain active within the demonstration site based on regulatory, programmatic, or other beneficial use requirements. An initial evaluation of wells within the demonstration site was conducted in 1996. However, changes in construction plans and expansion of the demonstration site necessitated a reevaluation and reclassification of the wells that are within the expanded site. Impacted wells include many of those previously evaluated as well as additional wells identified in or near the expansion areas. Thirty-three wells exist within and immediately adjacent to the identified boundary of the proposed demonstration site. The wells identified for decommissioning will be abandoned according to the well decommissioning plan. Future well requirements within the site include replacement wells for those wells impacted by construction activities, replacements for Resource Conservation and Recovery Act of 1976 (RCRA) wells going dry, and a new characterization well installed to support a TWRS Phase 2 site assessment.

  10. Characterization of plasma expansion dynamics in a high power diode with a carbon-fiber-aluminum cathode

    SciTech Connect (OSTI)

    Ju, J.-C., E-mail: jujinchuan@126.com [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Laboratoire de Physique des Gaz et des Plasmas, CNRS-Université Paris-Sud, Orsay 91405 (France); Liu, L.; Cai, D. [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-06-09T23:59:59.000Z

    Thermal plasma expansion is characterised during the operation of a high power diode with an explosive emission carbon-fiber-aluminum cathode driven by a 250?kV, 150?ns accelerating pulse. It is found that a quasi-stationary state of plasma expansion is obtained during the main part of the accelerating pulse and the whole plasma expansion exhibits an “U”-shape velocity evolution. A theoretical model describing the dynamics of plasma expansion is developed, which indicates that the plasma expansion velocity is determined by equilibrium between the diode current density and plasma thermal electron current density.

  11. Respiratory effort correction strategies to improve the reproducibility of lung expansion measurements

    SciTech Connect (OSTI)

    Du, Kaifang; Reinhardt, Joseph M. [Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa 52242 (United States)] [Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa 52242 (United States); Christensen, Gary E. [Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, Iowa 52242 (United States)] [Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, Iowa 52242 (United States); Ding, Kai [Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland 21231 (United States)] [Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland 21231 (United States); Bayouth, John E. [Department of Human Oncology, University of Wisconsin - Madison, Madison, Wisconsin 53792 (United States)] [Department of Human Oncology, University of Wisconsin - Madison, Madison, Wisconsin 53792 (United States)

    2013-12-15T23:59:59.000Z

    Purpose: Four-dimensional computed tomography (4DCT) can be used to make measurements of pulmonary function longitudinally. The sensitivity of such measurements to identify change depends on measurement uncertainty. Previously, intrasubject reproducibility of Jacobian-based measures of lung tissue expansion was studied in two repeat prior-RT 4DCT human acquisitions. Difference in respiratory effort such as breathing amplitude and frequency may affect longitudinal function assessment. In this study, the authors present normalization schemes that correct ventilation images for variations in respiratory effort and assess the reproducibility improvement after effort correction.Methods: Repeat 4DCT image data acquired within a short time interval from 24 patients prior to radiation therapy (RT) were used for this analysis. Using a tissue volume preserving deformable image registration algorithm, Jacobian ventilation maps in two scanning sessions were computed and compared on the same coordinate for reproducibility analysis. In addition to computing the ventilation maps from end expiration to end inspiration, the authors investigated the effort normalization strategies using other intermediated inspiration phases upon the principles of equivalent tidal volume (ETV) and equivalent lung volume (ELV). Scatter plots and mean square error of the repeat ventilation maps and the Jacobian ratio map were generated for four conditions: no effort correction, global normalization, ETV, and ELV. In addition, gamma pass rate was calculated from a modified gamma index evaluation between two ventilation maps, using acceptance criterions of 2 mm distance-to-agreement and 5% ventilation difference.Results: The pattern of regional pulmonary ventilation changes as lung volume changes. All effort correction strategies improved reproducibility when changes in respiratory effort were greater than 150 cc (p < 0.005 with regard to the gamma pass rate). Improvement of reproducibility was correlated with respiratory effort difference (R = 0.744 for ELV in the cohort with tidal volume difference greater than 100 cc). In general for all subjects, global normalization, ETV and ELV significantly improved reproducibility compared to no effort correction (p = 0.009, 0.002, 0.005 respectively). When tidal volume difference was small (less than 100 cc), none of the three effort correction strategies improved reproducibility significantly (p = 0.52, 0.46, 0.46 respectively). For the cohort (N = 13) with tidal volume difference greater than 100 cc, the average gamma pass rate improves from 57.3% before correction to 66.3% after global normalization, and 76.3% after ELV. ELV was found to be significantly better than global normalization (p = 0.04 for all subjects, and p = 0.003 for the cohort with tidal volume difference greater than 100 cc).Conclusions: All effort correction strategies improve the reproducibility of the authors' pulmonary ventilation measures, and the improvement of reproducibility is highly correlated with the changes in respiratory effort. ELV gives better results as effort difference increase, followed by ETV, then global. However, based on the spatial and temporal heterogeneity in the lung expansion rate, a single scaling factor (e.g., global normalization) appears to be less accurate to correct the ventilation map when changes in respiratory effort are large.

  12. UPVG phase 2 report

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Utility PhotoVoltaic Group (UPVG), supported by member dues and a grant from the US Department of Energy, has as its mission the acceleration of the use of cost-effective small-scale and emerging large-scale applications of photovoltaics for the benefit of electric utilities and their customers. Formed in October, 1992, with the support of the American Public Power Association, Edison Electric Institute, and the National Rural Electric Cooperative Association, the UPVG currently has 90 members from all sectors of the electric utility industry. The UPVG`s efforts as conceived were divided into four phases: Phase 0--program plan; Phase 1--organization and strategy development; Phase 2--creating market assurance; and Phase 3--higher volume purchases. The Phase 0 effort developed the program plan and was completed early in 1993. The Phase 1 goal was to develop the necessary background information and analysis to lead to a decision as to which strategies could be undertaken by utilities to promote greater understanding of PV markets and achieve increased volumes of PV purchases. This report provides the details of the UPVG`s Phase 2 efforts to initiate TEAM-UP, its multiyear, 50-MW hardware initiative.

  13. Effect of MgO Additive on Volumetric Expansion of Self-Degradable Cements

    SciTech Connect (OSTI)

    Sugama T.; Warren, J.; Butcher, T.

    2011-09-30T23:59:59.000Z

    We identified hard-burned magnesium oxide (MgO) as a suitable expansive additive for improving the plugging performance of self-degradable, temporary sodium silicate-activated slag/Class C fly ash (SSASC) blend cement sealers into rock fractures in Enhanced Geothermal Systems (EGSs). MgO extended the volumetric expansion of sealers during their exposure to a hydrothermal environment at 200 C under pressures, ranging from 300 to 1500 psi. A great expansion ratc of 19.3% was observed by adding 3.0 wt% MgO under 300 psi pressure, thus promising to plug thoroughly inner fracture. When the pressure was increased from 300 psi to 1500 psi, the expansion rate of cement markedly reduced, corresponding to the formaLion of crack-free specimens and the improvement of compressive strength. However, with 3.0 wt% MgO, the specimens still engendered the generation of numerous visual cracks, although they were prepared under a high pressure of 1500 psi. The effective content of MgO in minimizing and eliminating the generation of cracks was 2.0 wt%, which provided a moderate expansion of {ge} 0.5%. The compressive strength of 2.0 wt% MgO specimens made under a pressure of 300 psi rose {approx} 1.7-fold to 4816 psi with an increasing pressure to 1500 psi. The in-situ growth of brucite crystal formed by the hydrothermal hydration of MgO was responsive for such an expansion of the SSASC cement; meanwhile. two crystalline hydrothermal reaction products, 1.1 nm tobermorite and calcium silicate hydrated, contributed to the development of the sealer's compressive strength. Thus, the increasing pressure seems to suppress and control a growth rate of brucite crystal in response to a lower extension of expansion. Furthermore, all MgO-conlaining SSASC sealers possessed the water-catalyzed self-degradable properties.

  14. Dirty, Skewed, and Backwards: The Smectic $A$-$C$ Phase Transition in Aerogel

    E-Print Network [OSTI]

    Leiming Chen; John Toner

    2004-07-28T23:59:59.000Z

    We study the smectic AC transition in anisotropic and uniaxial disordered environments, e.g., aerogel with an external field. We find very strange behavior of translational correlations: the low-temperature, lower-symmetry Smectic C phase is itless translationally ordered than the it high-temperature, higher-symmetry Smectic A phase, with short-ranged and algebraic translational correlations, respectively. Specifically, the A and C phase belong to the quasi-long-ranged translationally ordered " XY Bragg glass '' and short-ranged translationally ordered " m=1 Bragg glass '' phase, respectively. The AC phase transition itself belongs to a new universality class, whose fixed points and exponents we find in a d=5-epsilon expansion.

  15. Newberry Volcano EGS Demonstration - Phase I Results

    SciTech Connect (OSTI)

    William L. Osborn, Susan Petty, Trenton T. Cladouhos, Joe Iovenitti, Laura Nofziger, Owen Callahan, Douglas S. Perry and Paul L. Stern

    2011-10-23T23:59:59.000Z

    Phase I of the Newberry Volcano Enhanced Geothermal System (EGS) Demonstration included permitting, community outreach, seismic hazards analysis, initial microseismic array deployment and calibration, final MSA design, site characterization, and stimulation planning. The multi-disciplinary Phase I site characterization supports stimulation planning and regulatory permitting, as well as addressing public concerns including water usage and induced seismicity. A review of the project'Ã?Â?Ã?Â?s water usage plan by an independent hydrology consultant found no expected impacts to local stakeholders, and recommended additional monitoring procedures. The IEA Protocol for Induced Seismicity Associated with Enhanced Geothermal Systems was applied to assess site conditions, properly inform stakeholders, and develop a comprehensive mitigation plan. Analysis of precision LiDAR elevation maps has concluded that there is no evidence of recent faulting near the target well. A borehole televiewer image log of the well bore revealed over three hundred fractures and predicted stress orientations. No natural, background seismicity has been identified in a review of historic data, or in more than seven months of seismic data recorded on an array of seven seismometers operating around the target well. A seismic hazards and induced seismicity risk assessment by an independent consultant concluded that the Demonstration would contribute no additional risk to residents of the nearest town of La Pine, Oregon. In Phase II of the demonstration, an existing deep hot well, NWG 55-29, will be stimulated using hydroshearing techniques to create an EGS reservoir. The Newberry Volcano EGS Demonstration is allowing geothermal industry and academic experts to develop, validate and enhance geoscience and engineering techniques, and other procedures essential to the expansion of EGS throughout the country. Successful development will demonstrate to the American public that EGS can play a significant role in reducing foreign energy dependence, and provide clean, renewable, baseload geothermal power generation in the State of Oregon.

  16. Heat Kernel Asymptotic Expansion on Unbounded Domains with Polynomially Confining Potentials

    E-Print Network [OSTI]

    Guglielmo Fucci

    2014-05-14T23:59:59.000Z

    In this paper we analyze the small-t asymptotic expansion of the trace of the heat kernel associated with a Laplace operator endowed with a spherically symmetric polynomially confining potential on the unbounded, d-dimensional Euclidean space. To conduct this study, the trace of the heat kernel is expressed in terms of its partially resummed form which is then represented as a Mellin-Barnes integral. A suitable contour deformation then provides, through the use of Cauchy's residue theorem, closed formulas for the coefficients of the asymptotic expansion. The general expression for the asymptotic expansion, valid for any dimension and any polynomially confining potential, is then specialized to two particular cases: the general quartic and sestic oscillator potentials.

  17. Edgeworth Expansion of the Largest Eigenvalue Distribution Function of GUE Revisited

    E-Print Network [OSTI]

    Leonard N. Choup

    2007-11-27T23:59:59.000Z

    We derive expansions of the resolvent Rn(x;y;t)=(Qn(x;t)Pn(y;t)-Qn(y;t)Pn(x;t))/(x-y) of the Hermite kernel Kn at the edge of the spectrum of the finite n Gaussian Unitary Ensemble (GUEn) and the finite n expansion of Qn(x;t) and Pn(x;t). Using these large n expansions, we give another proof of the derivation of an Edgeworth type theorem for the largest eigenvalue distribution function of GUEn. We conclude with a brief discussion on the derivation of the probability distribution function of the corresponding largest eigenvalue in the Gaussian Orthogonal Ensemble (GOEn) and Gaussian Symplectic Ensembles (GSEn).

  18. Boundary Circles of Mixed Phase Space, Hamiltonian Systems

    E-Print Network [OSTI]

    Or Alus; Shmuel Fishman; James D. Meiss

    2014-10-28T23:59:59.000Z

    The phase space of an area-preserving map typically contains infinitely many elliptic islands embedded in a chaotic sea. Orbits near the boundary of a chaotic region have been observed to stick for long times, strongly influencing their transport properties. The boundary is composed of invariant circles, called "Boundary circles." We investigate the distribution of rotation numbers of boundary circles for the Henon quadratic map and show that the probability of occurrence of small elements of their continued fraction expansions is larger than would be expected for a number chosen at random. However, large elements occur with probabilities distributed proportionally to the random case. These results have implications for models of transport in mixed phase space.

  19. High Temperature Expansion Due to Compression Test for the Determination of a Cladding Material Failure Criterion under RIA Loading Conditions

    SciTech Connect (OSTI)

    Le Saux, M.; Poussard, C.; Averty, X.; Sainte Catherine, C.; Carassou, S. [CEA-Saclay, DEN/DMN/SEMI, 91191 Gif-Sur-Yvette (France); Besson, J. [Centre des Materiaux, Mines Paris, CNRS UMR 7633, BP 87, 91003 Evry (France)

    2007-07-01T23:59:59.000Z

    This paper is mainly dedicated to the development of an out-of-pile test reproducing the thermo-mechanical loading conditions encountered during the first stage of a Reactivity Initiated Accidents (RIA) transient, dominated by Pellet Clad Mechanical Interaction (PCMI). In particular, the strain-controlled clad loading under high strain rate associated with temperatures up to 600 deg. C expected during the PCMI phase is simulated by an Expansion Due to Compression (EDC) test achievable at high temperature. The use of appropriate materials for the inner pellet made it possible to achieve the tests from 20 deg. C up to 900 deg. C. The interpretation of the test data is supported by Finite Element Analysis (FEA) including parameters tuned using an inverse method coupling FEA and tests results. A deformation model, identified upon the PROMETRA (Transient Mechanical Properties) experimental database and describing the anisotropic viscoplastic behavior of Cold-Worked Stress Relieved Zircaloy-4 cladding alloys under typical RIA loading conditions, is exploited. The combined analysis of experimental results and finite element simulations provides a deeper understanding of the deformation mode (near pure hoop tension) that arises during the tests. The failure mode appears to be representative of that obtained on tubes during the PCMI stage of RIA experiments. An appropriate device is currently developed in order to reach a bi-axiality of the loading path closer to that expected during the PCMI stage (between plane-strain and equal-biaxial tension). (authors)

  20. Thermal expansion and lattice dynamics of RB66 compounds at low temperatures

    SciTech Connect (OSTI)

    Novikov, V V [Petrovsky Bryansk State University; Avdashchenko, D V [Petrovsky Bryansk State University; Mitroshenkov, N V [Petrovsky Bryansk State University; Matovnikov, A V [Petrovsky Bryansk State University; Budko, Serguei L [Ames Laboratory

    2014-10-01T23:59:59.000Z

    Thermal characteristics of the phonon and magnon subsystems of icosahedral borides RB66 (R = Gd, Tb, Dy, Ho, Eu, or Lu) have been studied based on the obtained experimental data on the thermal expansion of the borides and the earlier results on their heat capacity in the range of 2–300 K. The contribution to the expansion of borides containing paramagnetic R 3+ ions, which is characteristic of transition to the spin-glass state, has been revealed. The phonon spectrum moments of RB66 compounds and the Grüneisen parameters have been calculated.

  1. Thermal expansion of multiwall carbon nanotube reinforced nanocrystalline silver matrix composite

    SciTech Connect (OSTI)

    Sharma, Manjula, E-mail: manjula.physics@gmail.com; Sharma, Vimal [Department of Physics, NIT Hamirpur - 177005, HP (India); Pal, Hemant [Department of Physics, NIT Hamirpur - 177005, HP, India and Department of Physics, Govt. College Chamba - 176310, HP (India)

    2014-04-24T23:59:59.000Z

    Multiwall carbon nanotube reinforced silver matrix composite was fabricated by novel molecular level mixing method, which involves nucleation of Ag ions inside carbon nanotube dispersion at the molecular level. As a result the carbon nanotubes get embedded within the powder rather than on the surfaces. Micro structural characterization by X- ray diffraction and scanning electron microscopy reveals that the nanotubes are homogeneously dispersed and anchored within the matrix. The thermal expansion of the composite with the multiwall nanotube content (0, 1.5 vol%) were investigated and it is found that coefficient of thermal expansion decreases with the addition of multiwall nanotube content and reduce to about 63% to that of pure Ag.

  2. OPEC production: Capital limitations, environmental movements may interfere with expansion plans

    SciTech Connect (OSTI)

    Ismail, I.A.H. (Organization of the Petroleum Exporting Countries, Vienna (Austria))

    1994-05-09T23:59:59.000Z

    Obtaining capital is a critical element in the production expansion plans of OPEC member countries. Another issue that may impact the plans is the environmental taxes that may reduce the call on OPEC oil by 5 million b/d in 2000 and about 16 million b/d in the year 2010. This concluding part of a two-part series discusses the expansion possibilities of non-Middle East OPEC members, OPEC's capital requirements, and environmental concerns. Non-Middle East OPEC includes Algeria, Gabon, Indonesia, Libya, Nigeria, and Venezuela.

  3. The Thermal Expansion, Elastic and Fracture Properties of Porous Cordierite at Elevated Temperatures

    SciTech Connect (OSTI)

    Shyam, Amit [ORNL; Lara-Curzio, Edgar [ORNL; Pandey, Amit [ORNL; Watkins, Thomas R [ORNL; More, Karren [Oak Ridge National Laboratory (ORNL)

    2012-01-01T23:59:59.000Z

    The properties that determine the thermal shock resistance in materials are reported for porous cordierite, a leading candidate material for the fabrication of diesel particulate filters. Fracture toughness and slow crack growth tests were performed on test specimens obtained from the walls of diesel particulate filter monolithic substrates using the double-torsion test method at temperatures between 20 C and 900 C. The thermal expansion and elastic properties were characterized between 20 C and 1000 C. The role of the microstructure of porous cordierite in determining its unusual thermal expansion and elevated temperature Young's modulus and fracture toughness are discussed.

  4. Microscale fluid flow induced by thermoviscous expansion along a traveling wave

    E-Print Network [OSTI]

    Franz M. Weinert; Jonas A. Kraus; Thomas Franosch; Dieter Braun

    2008-04-02T23:59:59.000Z

    The thermal expansion of a fluid combined with a temperature-dependent viscosity introduces nonlinearities in the Navier-Stokes equations unrelated to the convective momentum current. The couplings generate the possibility for net fluid flow at the microscale controlled by external heating. This novel thermo-mechanical effect is investigated for a thin fluid chamber by a numerical solution of the Navier-Stokes equations and analytically by a perturbation expansion. A demonstration experiment confirms the basic mechanism and quantitatively validates our theoretical analysis.

  5. High-energy asymptotic expansion of the Green function for one-dimensional Fokker-Planck and Schrödinger equations

    E-Print Network [OSTI]

    Toru Miyazawa

    2011-12-26T23:59:59.000Z

    A new formalism is presented for high-energy analysis of the Green function for Fokker-Planck and Schr\\"odinger equations in one dimension. Formulas for the asymptotic expansion in powers of the inverse wave number are derived, and conditions for the validity of the expansion are studied through the analysis of the remainder term. The short-time expansion of the Green function is also discussed.

  6. Combustion 2000: Phase II

    SciTech Connect (OSTI)

    Unknown

    1999-11-01T23:59:59.000Z

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard); coal providing {ge} 65% of heat input; all solid wastes benign; and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This Phase, Phase 2, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase 3. As part of a descoping initiative, the Phase 3 program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase 2 Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4,and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: Task 2.1 HITAF Combustors; Task 2.2 HITAF Air Heaters; and Task 6 HIPPS Commercial Plant Design Update.

  7. A framework to improve enterprise-wide implementations : the case of the Veterans Health Administration Telehealth Expansion

    E-Print Network [OSTI]

    Andren, Julie C

    2013-01-01T23:59:59.000Z

    This research applies an implementation framework derived from enterprise systems thinking to the Veterans Health Administration (VHA) Telehealth Expansion in order to characterize and evaluate the implementation methods ...

  8. Final Report: AST-0613577 "Experimental study of magnetic bubble expansion as a model for extragalactic radio lobes"

    SciTech Connect (OSTI)

    Lynn, Alan [University of New Mexico

    2011-02-18T23:59:59.000Z

    Final report for project "Experimental study of magnetic bubble expansion as a model for extragalactic radio lobes" supported by NSF/DOE Joint Program in Basic Plasma Science.

  9. Making the Right Moves: Guiding Alpha-Expansion using Local Primal-Dual Gaps

    E-Print Network [OSTI]

    Rajamani, Sriram K.

    Making the Right Moves: Guiding Alpha-Expansion using Local Primal-Dual Gaps Dhruv Batra Toyota@microsoft.com Abstract This paper presents a new adaptive graph-cut based move-making algorithm for energy minimization-space to search over. At each step, it tries to greedily find the move-space that will lead to biggest de- crease

  10. Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems

    E-Print Network [OSTI]

    Chorin, Alexandre J.

    expensive, especially in high-dimensional problems. Polynomial chaos expansions (PCE) and generalized PCE,14,20,29]) which can be used to reduce the cost of Bayesian inverse problems [2,16­18,21]. The PCE leads), the surrogate posterior can be very different from the posterior and PCE-based sampling is either inaccurate

  11. The Spatial Expansion and Ecological Footprint of Fisheries (1950 to Present)

    E-Print Network [OSTI]

    Pauly, Daniel

    /longitude ocean grid system and trace the change in their status over the 56-year time period. This result highlights the global scale expansion in marine fisheries, from the coastal waters off North Atlantic population of flatfish and other bottom fish they were targeting, and they had to move offshore, gradually

  12. ccsd00003019, Expansion of a lithium gas in the BEC-BCS

    E-Print Network [OSTI]

    ccsd­00003019, version 1 ­ 7 Oct 2004 Expansion of a lithium gas in the BEC-BCS crossover J. Zhang of the cloud in the BEC-BCS crossover region is measured. Finally we discuss the properties of p-wave Feshbach. Strongly interacting fermionic systems occur in a variety of physical processes, ranging from nuclear

  13. U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets

    E-Print Network [OSTI]

    Noble, James S.

    May 2012 U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets FAPRI-MU Report #02 for agricultural and biofuel markets.1 That baseline assumes current biofuel policy, including provisions credit expired, as scheduled, at the end of 2011. The additional tax credit for cellulosic biofuel

  14. Transmission System Expansion Plans in View Point of Deterministic, Probabilistic and Security Reliability Criteria

    E-Print Network [OSTI]

    Transmission System Expansion Plans in View Point of Deterministic, Probabilistic and Security control system as well as reasonable strength of grid originally. Because investment for power system the stability, and dynamic characteristics of the new system. A main reason of the separated work process

  15. Supplementary information : Probing thermal expansion of graphene and modal dispersion at

    E-Print Network [OSTI]

    Deshmukh, Mandar M.

    Supplementary information : Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene NEMS resonators Vibhor Singh1 , Shamashis Sengupta1 , Hari S. Solanki1 , Rohan Dhall1 spectroscopy of the suspended graphene devices We performed Raman spectroscopy to confirm the number of layers

  16. The Effects of CO2 Abatement Policies on Power System Expansion

    E-Print Network [OSTI]

    Victoria, University of

    The Effects of CO2 Abatement Policies on Power System Expansion by Conrad Fox B.Sc.E., Queens means, without the permission of the author. #12;ii The Effects of CO2 Abatement Policies on Power abatement policies. The model proposes a novel approach for incorporating investment in non- #12;iv

  17. Momentum-space Lippmann-Schwinger-Equation, Fourier-transform with Gauss-Expansion-Method

    E-Print Network [OSTI]

    Th. A. Rijken

    2014-09-19T23:59:59.000Z

    In these notes we construct the momentum-space potentials from configuration-space using for the Fourier-transformation the Gaussian-Expansion-Method (GEM). This has the advantage that the Fourier-Bessel integrals can be performed analytically, avoiding possible problems with the oscillations in the Bessel functions for large r, in particular for $p_f \

  18. Ecological and environmental footprint of 50 years of agricultural expansion in Argentina

    E-Print Network [OSTI]

    Nacional de San Luis, Universidad

    Ecological and environmental footprint of 50 years of agricultural expansion in Argentina E R N E Gestio´n Ambiental (GIGA), Av. Spinetto 785, 6300 Santa Rosa, La Pampa, Argentina, wINCITAP-CONICET, Ruta 35, km 335, 6300 Santa Rosa, La Pampa, Argentina, zUNLPam, Facultad de Ciencias Exactas y Naturales

  19. Weighted multibody expansions for computing stable structures of multiatom systems Veera Sundararaghavan* and Nicholas Zabaras

    E-Print Network [OSTI]

    Zabaras, Nicholas J.

    is an important step towards the design of materials with exceptional prop- erties. Identification of stable alloy Sundararaghavan* and Nicholas Zabaras Materials Process Design and Control Laboratory, Sibley School of Mechanical to the method of cluster expansion, WMBE focuses on positional degrees of freedom and, hence, explicitly handles

  20. Mining Linguistic Cues for Query Expansion: Applications to Drug Interaction Search

    E-Print Network [OSTI]

    Ramakrishnan, Naren

    Mining Linguistic Cues for Query Expansion: Applications to Drug Interaction Search Sheng Guo answers to this question, by mining the literature, are valuable for pharmaceuti- cal companies, both in designing combination therapies for complex diseases including cancers. We study this problem as one

  1. Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    satisfying some growth assumption and some properties detailed below. The discrete energy wn is linkedRenormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere Laurent B repelling points confined by an external field verifying the weak growth assumption of Hardy and Kuijlaars

  2. Beyond the Grave: Facebook as a site for the expansion of death and

    E-Print Network [OSTI]

    Hayes, Gillian R.

    Beyond the Grave: Facebook as a site for the expansion of death-mortem, social network sites, Facebook Abstract: Online identities survive the deaths of those they represent its launch, Facebook has permeated the daily lives of its users. More than just a space in which

  3. Ocean oxygen minima expansions and their biological impacts Lothar Stramma a,, Sunke Schmidtko a,b

    E-Print Network [OSTI]

    Levin, Lisa

    Ocean oxygen minima expansions and their biological impacts Lothar Stramma a,Ã?, Sunke Schmidtko a Keywords: Deoxygenation Oxygen minimum zones Ecosystem changes Hypoxia Tropical ocean Tropical Atlantic dissolved oxygen with global warming. In coastal regimes oxygen deficits represent acute ecosystem

  4. Coexistence of individual and social learners during range-expansion Joe Yuichiro Wakano

    E-Print Network [OSTI]

    Wakano, Joe Yuichiro

    experienced rapid population growth and range expansion during "out-of-Africa." Here we model the spatial in regions where the population density is low. Due to this attenuation effect, the invasion speed of social essentially implies constant population size. Predictions from such "static" models may only be of partial

  5. The orifice expansion correction for a 50 mm line size at various diameter ratios

    SciTech Connect (OSTI)

    Seidl, W. [Colorado Engineering Experiment Station, Inc., Nunn, CO (United States)

    1995-12-31T23:59:59.000Z

    The expansion coefficient or factor for a compressible flowmeter corrects for the change in pressure and density as the fluid is accelerated through the flowmeter. The expansion correction currently in use in the United States and also in other countries was developed over fifty years ago by Buckingham and Bean. More recent work reported by Kinghorn shows the equation currently in use to be in error. This paper describes the results of a test program to determine the expansion factors for flange-tapped sharp-edged orifices with diameter ratios between 0.242 and 0.726 in a nominal 50 mm (2 inch) line. Critical flow Venturis are used as the reference standards and dry air as the flowing fluid. The ratio of differential pressure to inlet static pressure is varied over a range of zero to about 0.2 at a constant Reynolds number. The expansion factor is determined form the apparent change in discharge coefficient at a constant Reynolds number.

  6. Nucleosynthesis in Fast Expansions of High-Entropy, Proton Rich Matter

    E-Print Network [OSTI]

    G. C. Jordan IV; B. S. Meyer

    2004-06-29T23:59:59.000Z

    We demonstrate that nucleosynthesis in rapid, high-entropy expansions of proton-rich matter from high temperature and density can result in a wider variety of abundance patterns than heretofore appreciated. In particular, such expansions can produce iron-group nuclides, p-process nuclei, or even heavy, neutron-rich isotopes. Such diversity arises because the nucleosynthesis enters a little explored regime in which the free nucleons are not in equilibrium with the abundant alpha particles. This allows nuclei significantly heavier than iron to form in t he presence of abundant free nucleons early in the expansion. As the temperature drops, nucleons increasingly assemble into alpha particles and heavier nuclei. If the assembly is efficient, the resulting depletion of free neutrons allows disintegrat ion flows to drive nuclei back down to iron and nickel. If this assembly is inefficient, then the large abundance of free nucleons prevents the disintegration flows and leaves a distribution of heavy nuclei after reaction freezeout. For cases in between, an intermediate abundance distribution, enriched in p-process isotopes, is frozen out. These last expansions may contribute to the solar system's supply of the p-process nuclides if mildly proton-rich, high-entropy matter is ejected from proto-neutron stars winds or other astrophysical sites. Also sign ificant is the fact that, because the nucleosynthesis is primary, the signature of this nucleosyn thesis may be evident in metal poor stars.

  7. Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies

    E-Print Network [OSTI]

    Boyer, Edmond

    Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies in central Xe+Sn reactions at Fermi energies. Performing a comparison between the predictions central collisions at Fermi energies. However, considering the same central event selection

  8. Ambient gas effects on the dynamics of laser-produced tin plume expansion

    E-Print Network [OSTI]

    Tillack, Mark

    Ambient gas effects on the dynamics of laser-produced tin plume expansion S. S. Harilal,a Beau O in the development of an extreme ultraviolet lithographic light source. An ambient gas that is transparent to 13.5 nm and deceleration of plume species, the addition of ambient gas leads to other events such as double peak formation

  9. Thermal Expansion Models of Viscous Fluids Based on Limits of Free Energy

    E-Print Network [OSTI]

    Aluffi, Paolo

    Thermal Expansion Models of Viscous Fluids Based on Limits of Free Energy S.E. Bechtel Department March 25, 2002 Abstract Many viscous uid ows are mechanically incompressible, yet thermally expand associated with sound waves. The Boussi- nesq model for laboratory-scale, buoyancy-driven thermal convection

  10. Detecting acute myocardial infarction in the 12-lead ECG using Hermite expansions

    E-Print Network [OSTI]

    Lunds Universitet,

    Detecting acute myocardial infarction in the 12-lead ECG using Hermite expansions and neural-lead ECG, together with patient history and biochemical markers, are usually used at the emergency to rely on the 12-lead ECG together with patient history. The 12-lead ECG has the advantage of always

  11. Silver Blaze Puzzle in 1/Nc Expansions of Cold and Dense QCD Matter

    E-Print Network [OSTI]

    Adi Armoni; Kenji Fukushima

    2014-03-10T23:59:59.000Z

    We consider quantum chromodynamics (QCD) with Nc colors and Nf quark flavors at finite quark chemical potential mu_q or isospin chemical potential mu_I. We specifically address the nature of the ``Silver Blaze'' behavior in the framework of 1/Nc expansion. Starting with the QCD partition function, we implement Veneziano's Nf/Nc expansion to identify the density onset. We find the baryon mass M_B and the pion mass m_pi appearing from different order of Veneziano's expansion. We argue that the confining properties are responsible for the Silver Blaze in the region of m_pi/2 < mu_q < M_B/Nc. We point out, however, that Veneziano's expansion brings about a puzzling subtlety along the same line as the baryon problem in finite-density quenched simulations. We emphasize that the large-Nc limit can allow for the physical ordering of M_B and m_pi thanks to the similarity to the quenched approximation, while the unphysical ghost quarks contaminate the baryon sector if Nc is finite. We also discuss the ``orientifold'' large-Nc limit that does not quench quark loops.

  12. Two-flavor QCD phases and condensates at finite isospin chemical potential

    E-Print Network [OSTI]

    Zhao Zhang; Yu-xin Liu

    2007-02-06T23:59:59.000Z

    We study the phase structure and condensates of two-flavor QCD at finite isospin chemical potential in the framework of a confining, Dyson-Schwinger equation model. We find that the pion superfluidity phase is favored at high enough isospin chemical potential. A new gauge invariant mixed quark-gluon condensate induced by isospin chemical potential is proposed based on Operator Product Expansion. We investigate the sign and magnitude of this new condensate and show that it's an important condensate in QCD sum rules at finite isospin density.

  13. A simple model of universe describing the early inflation and the late accelerated expansion in a symmetric manner

    SciTech Connect (OSTI)

    Chavanis, Pierre-Henri [Laboratoire de Physique Théorique (IRSAMC), CNRS and UPS, Université de Toulouse (France)] [Laboratoire de Physique Théorique (IRSAMC), CNRS and UPS, Université de Toulouse (France)

    2013-07-23T23:59:59.000Z

    We construct a simple model of universe which 'unifies' vacuum energy and radiation on the one hand, and matter and dark energy on the other hand in the spirit of a generalized Chaplygin gas model. Specifically, the phases of early inflation and late accelerated expansion are described by a generalized equation of state p/c{sup 2} = ??+k?{sup 1+1/n} having a linear component p = ??c{sup 2} and a polytropic component p = k?{sup 1+1/n}c{sup 2}. For ?= 1/3, n= 1 and k=?4/(3?{sub P}), where ?{sub P}= 5.1610{sup 99} g/m{sup 3} is the Planck density, this equation of state describes the transition between the vacuum energy era and the radiation era. For t? 0, the universe undergoes an inflationary expansion that brings it from the Planck size l{sub P}= 1.6210{sup ?35} m to a size a{sub 1}= 2.6110{sup ?6} m on a timescale of about 23.3 Planck times t{sub P}= 5.3910{sup ?44} s (early inflation). When t > t{sub 1}= 23.3t{sub P}, the universe decelerates and enters in the radiation era. We interpret the transition from the vacuum energy era to the radiation era as a second order phase transition where the Planck constant ? plays the role of finite size effects (the standard Big Bang theory is recovered for ?= 0). For ?= 0, n=?1 and k=??{sub ?}, where ?{sub ?}= 7.0210{sup ?24} g/m{sup 3} is the cosmological density, the equation of state p/c{sup 2} = ??+k?{sup 1+1/n} describes the transition from a decelerating universe dominated by pressureless matter (baryonic and dark matter) to an accelerating universe dominated by dark energy (late inflation). This transition takes place at a size a{sub 2}= 0.204l{sub ?}. corresponding to a time t{sub 2}= 0.203t{sub ?} where l{sub ?}= 4.38 10{sup 26} m is the cosmological length and t{sub ?}= 1.46 10{sup 18} s the cosmological time. The present universe turns out to be just at the transition between these two periods (t{sub 0}?t{sub 2}). Our model gives the same results as the standard ?CDM model for t?t{sub P} and completes it by incorporating a phase of early inflation for t < 23.3t{sub P} in a very natural manner. Furthermore, it reveals a nice 'symmetry' between the early and the late evolution of the universe. The early universe is modeled by a polytrope n=+ 1 and the late universe by a polytrope n=?1. Furthermore, the cosmological constant ? in the late universe plays a role similar to the Planck constant ? in the early universe. The mathematical formulae in the early and in the late universe are then strikingly symmetric. We interpret the cosmological constant as a fundamental constant of Nature describing the 'cosmophysics' just like the Planck constant describes the 'microphysics'. The Planck density and the cosmological density represent fundamental upper and lower bounds differing by 122 orders of magnitude. The cosmological constant 'problem' may be a false problem. Finally, we show that our model admits a scalar field interpretation based on a quintessence field or a tachyon field.

  14. Negative Thermal Expansion in ZrW{sub 2}O{sub 8}: Mechanisms, Rigid Unit Modes, and Neutron Total Scattering

    SciTech Connect (OSTI)

    Tucker, Matthew G. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Goodwin, Andrew L.; Dove, Martin T. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Keen, David A. [Physics Department, Oxford University, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Wells, Stephen A. [Biological Physics, Bateman Physical Sciences Building, Arizona State University, Tempe, Arizona 85287-1504 (United States); Evans, John S.O. [Department of Chemistry, University Science Laboratories, South Road, Durham DH1 3LE (United Kingdom)

    2005-12-16T23:59:59.000Z

    The local structure of the low-temperature ordered phase of the negative thermal expansion (NTE) material ZrW{sub 2}O{sub 8} has been investigated by reverse Monte Carlo (RMC) modeling of neutron total scattering data. We obtain, for the first time, quantitative measurements of the extent to which the WO{sub 4} and ZrO{sub 6} polyhedra move as rigid units, and we show that these values are consistent with the predictions of rigid unit mode theory. We suggest that rigid unit modes are associated with the NTE. Our results do not support a recent interpretation of x-ray-absorption fine structure spectroscopy data in terms of a larger rigid structural component involving the Zr-O-W linkage.

  15. Effects of compression and collective expansion on particle emission from central heavy-ion reactions

    SciTech Connect (OSTI)

    Danielewicz, P. (National Superconducting Cyclotron Laboratory and Department of Physics Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States))

    1995-02-01T23:59:59.000Z

    Conditions under which compression occurs and collective expansion develops in energetic symmetric reactions of heavy nuclei are analyzed, together with their effects on emitted light baryons and pions. Within transport simulations, it is shown that shock fronts perpendicular to beam axis form in head-on reactions. The fronts separate hot compressed matter from normal matter and propagate into the projectile and target. As the impact parameter increases, the angle of inclination of the fronts relative to beam axis decreases, and in between the fronts a weak tangential discontinuity develops. Hot matter exposed to the vacuum in directions perpendicular to shock motion (and parallel to fronts) starts to expand sideways early within the reactions. Expansion in the direction of shock motion follows after the shocks propagate through nuclei, but due to the delay does not acquire the same strength. Expansion affects angular distributions, mean-energy components, shapes of spectra, and mean energies of different particles emitted into any one direction and further particle yields. Both the anisotropy in the expansion and a collective motion associated with the weak discontinuity affect the magnitude of sideward flow within the reaction plane. Differences in mean particle energy components in and out of the reaction plane in semicentral collisions depend sensitively on the relative magnitude of shock speed in normal matter and speed of sound in hot matter. The missing energy, considered in the past in association with low measured pion multiplicity in central reactions, may be identified with the energy of collective expansion. Relations are established which govern approximately the behavior of density and entropy in the compressed region in reactions with beam energy and impact parameter.

  16. A two-dimensional, semi-analytic expansion method for nodal calculations

    SciTech Connect (OSTI)

    Palmtag, S.P. [Univ. of Missouri, Rolla, MO (United States). Dept. of Nuclear Engineering

    1995-08-01T23:59:59.000Z

    Most modern nodal methods used today are based upon the transverse integration procedure in which the multi-dimensional flux shape is integrated over the transverse directions in order to produce a set of coupled one-dimensional flux shapes. The one-dimensional flux shapes are then solved either analytically or by representing the flux shape by a finite polynomial expansion. While these methods have been verified for most light-water reactor applications, they have been found to have difficulty predicting the large thermal flux gradients near the interfaces of highly-enriched MOX fuel assemblies. A new method is presented here in which the neutron flux is represented by a non-seperable, two-dimensional, semi-analytic flux expansion. The main features of this method are (1) the leakage terms from the node are modeled explicitly and therefore, the transverse integration procedure is not used, (2) the corner point flux values for each node are directly edited from the solution method, and a corner-point interpolation is not needed in the flux reconstruction, (3) the thermal flux expansion contains hyperbolic terms representing analytic solutions to the thermal flux diffusion equation, and (4) the thermal flux expansion contains a thermal to fast flux ratio term which reduces the number of polynomial expansion functions needed to represent the thermal flux. This new nodal method has been incorporated into the computer code COLOR2G and has been used to solve a two-dimensional, two-group colorset problem containing uranium and highly-enriched MOX fuel assemblies. The results from this calculation are compared to the results found using a code based on the traditional transverse integration procedure.

  17. Phase change compositions

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1989-01-01T23:59:59.000Z

    Compositions containing crystalline, straight chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  18. Phase change compositions

    SciTech Connect (OSTI)

    Salyer, Ival O. (Dayton, OH); Griffen, Charles W. (Mason, OH)

    1986-01-01T23:59:59.000Z

    Compositions containing crystalline, long chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  19. Berry Phase Quantum Thermometer

    E-Print Network [OSTI]

    Martin-Martinez, E; Mann, R B; Fuentes, I

    2011-01-01T23:59:59.000Z

    We show how Berry phase can be used to construct an ultra-high precision quantum thermometer. An important advantage of our scheme is that there is no need for the thermometer to acquire thermal equilibrium with the sample. This reduces measurement times and avoids precision limitations.

  20. Berry Phase Quantum Thermometer

    E-Print Network [OSTI]

    E. Martin-Martinez; A. Dragan; R. B. Mann; I. Fuentes

    2013-05-28T23:59:59.000Z

    We show how Berry phase can be used to construct an ultra-high precision quantum thermometer. An important advantage of our scheme is that there is no need for the thermometer to acquire thermal equilibrium with the sample. This reduces measurement times and avoids precision limitations.

  1. Phase II Final Report

    SciTech Connect (OSTI)

    Schuknecht, Nate [Project Manager; White, David [Principle Investigator; Hoste, Graeme [Research Engineer

    2014-09-11T23:59:59.000Z

    The SkyTrough DSP will advance the state-of-the-art in parabolic troughs for utility applications, with a larger aperture, higher operating temperature, and lower cost. The goal of this project was to develop a parabolic trough collector that enables solar electricity generation in the 2020 marketplace for a 216MWe nameplate baseload power plant. This plant requires an LCOE of 9¢/kWhe, given a capacity factor of 75%, a fossil fuel limit of 15%, a fossil fuel cost of $6.75/MMBtu, $25.00/kWht thermal storage cost, and a domestic installation corresponding to Daggett, CA. The result of our optimization was a trough design of larger aperture and operating temperature than has been fielded in large, utility scale parabolic trough applications: 7.6m width x 150m SCA length (1,118m2 aperture), with four 90mm diameter × 4.7m receivers per mirror module and an operating temperature of 500°C. The results from physical modeling in the System Advisory Model indicate that, for a capacity factor of 75%: The LCOE will be 8.87¢/kWhe. SkyFuel examined the design of almost every parabolic trough component from a perspective of load and performance at aperture areas from 500 to 2,900m2. Aperture-dependent design was combined with fixed quotations for similar parts from the commercialized SkyTrough product, and established an installed cost of $130/m2 in 2020. This project was conducted in two phases. Phase I was a preliminary design, culminating in an optimum trough size and further improvement of an advanced polymeric reflective material. This phase was completed in October of 2011. Phase II has been the detailed engineering design and component testing, which culminated in the fabrication and testing of a single mirror module. Phase II is complete, and this document presents a summary of the comprehensive work.

  2. Abstract --The growth of non-conventional renewable energies involves a new challenge for optimal network expansion. A better

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    and implementation of policies to develop Non-Conventional Renewable Energies (NCRE), they can be seen as a mechanism for the harmonious development of the expansion network. From the economic viewpoint, NCREs usually are considered development or equipment repowering within a coordinated network expansion investment plan, both in AC

  3. Gravitational waves from the sound of a first order phase transition

    E-Print Network [OSTI]

    Mark Hindmarsh; Stephan J. Huber; Kari Rummukainen; David J. Weir

    2014-01-29T23:59:59.000Z

    We report on the first 3-dimensional numerical simulations of first-order phase transitions in the early universe to include the cosmic fluid as well as the scalar field order parameter. We calculate the gravitational wave (GW) spectrum resulting from the nucleation, expansion and collision of bubbles of the low-temperature phase, for phase transition strengths and bubble wall velocities covering many cases of interest. We find that the compression waves in the fluid continue to be a source of GWs long after the bubbles have merged, a new effect not taken properly into account in previous modelling of the GW source. For a wide range of models the main source of the GWs produced by a phase transition is therefore the sound the bubbles make.

  4. Theory of Polar Blue Phases

    E-Print Network [OSTI]

    Shaikh M. Shamid; David W. Allender; Jonathan V. Selinger

    2014-05-22T23:59:59.000Z

    In liquid crystals, if flexoelectric couplings between polar order and director gradients are strong enough, the uniform nematic phase can become unstable to formation of a modulated polar phase. Previous theories have predicted two types of modulation, twist-bend and splay-bend; the twist-bend phase has been found in recent experiments. Here, we investigate other types of modulation, using lattice simulations and Landau theory. In addition to twist-bend and splay-bend, we also find polar blue phases, with 2D or 3D modulations of both director and polar order. We compare polar blue phases with chiral blue phases, and discuss opportunities for observing them experimentally.

  5. Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-08-01T23:59:59.000Z

    An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

  6. Effects of Electromagnetic Field on The Collapse and Expansion of Anisotropic Gravitating Source

    E-Print Network [OSTI]

    G. Abbas

    2014-05-27T23:59:59.000Z

    This paper is devoted to study the effects of electromagnetic on the collapse and expansion of anisotropic gravitating source. For this purpose, we have evaluated the generating solutions of Einstein-Maxwell field equations with spherically symmetric anisotropic gravitating source. We found that a single function generates the various anisotropic solutions. In this case every generating function involves an arbitrary function of time which can be chosen to fit several astrophysical time profiles. Two physical phenomenon occur, one is gravitational collapse and other is the cosmological expanding solution. In both cases electromagnetic field effects the anisotropy of the model. For collapse the anisotropy is increased while for expansion it deceases from maximum value to finite positive value. In case of collaps there exits two horizons like in case of Reissner-Nordstr$\\ddot{o}$m metric.

  7. Capricious Cables: Understanding the Key Concepts in Transmission Expansion Planning and Its Models

    SciTech Connect (OSTI)

    Donohoo, P.; Milligan, M.

    2014-06-01T23:59:59.000Z

    The extra-high-voltage transmission network is the bulk transport network of the electric power system. To understand how the future power system may react to planning decisions today, wide-area transmission models are increasingly used to aid decision makers and stakeholders. The goal of this work is to illuminate these models for a broader audience that may include policy makers or relative newcomers to the field of transmission planning. This paper explains the basic transmission expansion planning model formulation. It highlights six of the major simplifications made in transmission expansion planning models and the resulting need to contextualize model results using knowledge from other models and knowledge not captured in the modeling process.

  8. Major PM expansion at Universal-Cyclops features new consolidation process

    SciTech Connect (OSTI)

    Not Available

    1981-12-01T23:59:59.000Z

    A major expansion of powder-metallurgy facilities at Bridgeville, PA., has been recently announced by Universal-Cyclops Speciality Steel Div., Cyclops Corp. Production capacity for high-temperature alloys initially will be increased to two million pounds. Included in the planned project will be expansion of vacuum-induction melting (VIM), gas atomization, screening, blending, degassing, and handling capabilities. Air-atmosphere sintering furnaces will be installed to consolidate powder preforms by Universal-Cyclops' patented CAP (Consolidation by Atmospheric Pressure) process. Production from the new facility will serve the aircraft gas-turbine market. After chemical activation, the powder is placed in glass molds which are then evacuated and sealed. The filled molds are placed in a refractory container, surrounded by sand, and the entire assembly is heated in conventional air atmosphere electric or gas-fired furnace to temperatures over 2000/degree/F.

  9. Crystal structure and thermal expansion of (Mg,Fe)SiO sub 3 perovskite

    SciTech Connect (OSTI)

    Parise, J.B.; Wang, Y.; Yenganeh-Haeri, A. (State Univ. of New York, Stony Brook (USA)); Cox, D.E. (Brookhaven National Lab., Upton, NY (USA)); Fei, Y. (Carnegie Institution of Washington, DC (USA))

    1990-11-01T23:59:59.000Z

    High-resolution x-ray diffraction data were collected from 10 to 433K on a homogeneous polycrystalline specimen of Mg{sub 0.9}Fe{sub 0.1}SiO{sub 3}-perovskite. Rietveld structural refinement and x-ray absorption fluorescence measurements demonstrate that Fe substitutes for Mg and not Si. The thermal expansion behavior is anisotropic, with the orthorhombic distortion becoming less with increasing temperature. The volumetric thermal expansion, which is dominated by the decrease in octahedral tilts, is 1.9 {times} 10{sup {minus}5} K{sup {minus}1} between 150 and 373K. No evidence of conversion to enstatite could be found up to 873 K.

  10. Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion

    SciTech Connect (OSTI)

    Wu, Jian; Wei, Wenfu; Li, Xingwen; Jia, Shenli; Qiu, Aici [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Shaanxi 710049 (China)] [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Shaanxi 710049 (China)

    2013-04-22T23:59:59.000Z

    We have investigated the dynamics of the nanosecond laser ablated plasma within and after the laser pulse irradiation using fast photography. A 1064 nm, 15 ns laser beam was focused onto a target made from various materials with an energy density in the order of J/mm{sup 2} in atmosphere. The plasma dynamics during the nanosecond laser pulse were observed, which could be divided into three stages: fast expansion, division into the primary plasma and the front plasma, and stagnation. After the laser terminated, a critical moment when the primary plasma expansion transited from the shock model to the drag model was resolved, and this phenomenon could be understood in terms of interactions between the primary and the front plasmas.

  11. Multi-leg One-loop Massive Amplitudes from Integrand Reduction via Laurent Expansion

    E-Print Network [OSTI]

    Hans van Deurzen; Gionata Luisoni; Pierpaolo Mastrolia; Edoardo Mirabella; Giovanni Ossola; Tiziano Peraro

    2014-11-18T23:59:59.000Z

    We present the application of a novel reduction technique for one-loop scattering amplitudes based on the combination of the integrand reduction and Laurent expansion. We describe the general features of its implementation in the computer code NINJA, and its interface to GoSam. We apply the new reduction to a series of selected processes involving massive particles, from six to eight legs.

  12. Direct-Expansion Air-Conditioning System Performance in Low Humidity Applications: A Case Study

    E-Print Network [OSTI]

    Khattar, M. K.; Keebaugh, D.

    1987-01-01T23:59:59.000Z

    DIRECT-EXPANSION AIR-CONDITIONING SYSTEM PERFORMANCE IN LOW HUMIDITY APPLICATIONS: A CASE STUDY MUKESH K. KHATTAR, P.E. DENNIS KEEBAUGH, P.E. Senior Systems Engineer Senior Research Engineer Florida Solar Energy Center Shenandoah Solar Center... warehouse. The flat gravel roof is exposed to sun. The 16' ceiling is insulated with two inch spray foam. Entrance to the warehouse is through sealed and insulated doors located on the west partition wall. The air -conditioning sys tem on this leased...

  13. Expansion schemes for gravitational clustering: computing two-point and three-point functions

    E-Print Network [OSTI]

    P. Valageas

    2008-10-24T23:59:59.000Z

    We describe various expansion schemes that can be used to study gravitational clustering. Obtained from the equations of motion or their path-integral formulation, they provide several perturbative expansions that are organized in different fashion or involve different partial resummations. We focus on the two-point and three-point correlation functions, but these methods also apply to all higher-order correlation and response functions. We present the general formalism, which holds for the gravitational dynamics as well as for similar models, such as the Zeldovich dynamics, that obey similar hydrodynamical equations of motion with a quadratic nonlinearity. We give our explicit analytical results up to one-loop order for the simpler Zeldovich dynamics. For the gravitational dynamics, we compare our one-loop numerical results with numerical simulations. We check that the standard perturbation theory is recovered from the path integral by expanding over Feynman's diagrams. However, the latter expansion is organized in a different fashion and it contains some UV divergences that cancel out as we sum all diagrams of a given order. Resummation schemes modify the scaling of tree and one-loop diagrams, which exhibit the same scaling over the linear power spectrum (contrary to the standard expansion). However, they do not significantly improve over standard perturbation theory for the bispectrum, unless one uses accurate two-point functions (e.g. a fit to the nonlinear power spectrum from simulations). Extending the range of validity to smaller scales, to reach the range described by phenomenological models, seems to require at least two-loop diagrams.

  14. The Magnus expansion and the in-medium similarity renormalization group

    SciTech Connect (OSTI)

    Morris, T. D.; Bogner, S. K. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48844 (United States)

    2014-10-15T23:59:59.000Z

    We present a variant of the in-medium similarity renormalization group(IMSRG) based on the Magnus expansion. In this new variant, the unitary transformation of the IMSRG is constructed explicitly, which allows for the transformation of observables quickly and easily. Additionally, the stiffness of equations encountered by the traditional solution of the IMSRG can be alleviated greatly. We present results and comparisons for the 3d electron gas.

  15. Towards a proof of the equivalence between FRW background expansion and statistical isotropy

    E-Print Network [OSTI]

    Rodriguez, Yeinzon; Nieto, Carlos M

    2015-01-01T23:59:59.000Z

    We will expose in this paper our advances towards a proof of the equivalence between FRW background expansion, during some period of time that contains primordial inflation, and the statistical isotropy of the primordial curvature perturbation $\\zeta$ at the end of this period of time. Our motivation rests on the growing interest in the existence of a preferred direction in the Universe hinted by the continuous presence of anomalies in the CMB data.

  16. An Interacting Dark Energy Model for the Expansion History of the Universe

    E-Print Network [OSTI]

    Micheal S. Berger; Hamed Shojaei

    2006-08-16T23:59:59.000Z

    We explore a model of interacting dark energy where the dark energy density is related by the holographic principle to the Hubble parameter, and the decay of the dark energy into matter occurs at a rate comparable to the current value of the Hubble parameter. We find this gives a good fit to the observational data supporting an accelerating Universe, and the model represents a possible alternative interpretation of the expansion history of the Universe.

  17. EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluate the potential environmental impacts of expansion or continued use of existing sand and gravel pits located on the Hanford Site (Pits F, H, N, 6, 9, 18, 21, 23, 24, 30, and 34) and establishing one new borrow area source in the 100 Area for ongoing construction activities and fill material following remediation activities. The scope of this EA does not include borrow sources for silt-loam material.

  18. Transmission Expansion in Argentina 5: The Regional Electricity Forum of Buenos Aires Province

    E-Print Network [OSTI]

    Littlechild, Stephen C; Ponzano, Eduardo A

    ’. In Argentina (and most of Latin America and Spain), this generally includes making rules for a given sector within the framework set by a law and the related decrees issued by the head of the executive branch (the president at federal level, the governors... of renewable energy, 2) acting as the public sector counterpart of private organisations such as FREBA, in this case approving the transmission expansion plan, 3) compiling statistics, 4) issuing technical authorisations to build new facilities within...

  19. Effects of carbon dioxide enrichment on the expansion and size of kudzu (pueraria lobata) leaves

    SciTech Connect (OSTI)

    Sasek, T.W.; Strain, B.R.

    1989-01-01T23:59:59.000Z

    Seedlings of kudzu were grown at 350, 675, or 1000 ..mu..l/L CO/sub 2/ in controlled-environment chambers. At elevated CO/sub 2/ in controlled-environment chambers. At elevated CO/sub 2/ concentrations, maximum leaf expansion rates were approximately 40% greater, leaves were fully expanded several days sooner, fully expanded leaves were larger at each leaf position, and leaf production rates were increased 12%. Peak starch accumulation was much greater in plants grown at elevated CO/sub 2/ concentrations. Total xylem water potentials were higher (less negative) at full hydration, and osmotic potentials were decreased (more negative) by CO/sub 2/ enrichment. At 1000 ..mu..l/L CO/sub 2/, leaf trigger pressure was twice that at 350 ..mu..l/L CO/sub 2/. Results suggest that leaf expansion rates and leaf expansivity may have been increased due to higher trigger pressure at the higher CO/sub 2/ concentrations. The potential for successful seedling establishment may be enhanced as the atmospheric CO/sub 2/ concentration continues to rise, increasing kudzu invasiveness.

  20. ISW effect as probe of features in the expansion history of the Universe

    SciTech Connect (OSTI)

    Das, Santanu; Souradeep, Tarun [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India); Shafieloo, Arman, E-mail: santanud@iucaa.ernet.in, E-mail: arman@apctp.org, E-mail: tarun@iucaa.ernet.in [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of)

    2013-10-01T23:59:59.000Z

    In this paper, using and implementing a new line of sight CMB code, called CMBAns [1], that allows us to modify H(z) for any given feature at any redshift we study the effect of changes in the expansion history of the Universe on the CMB power spectrum. Motivated by the detailed analytical calculations of the effects of the changes in H(z) on ISW plateau and CMB low multipoles, we study two phenomenological parametric form of the expansion history using WMAP data and through MCMC analysis. Our MCMC analysis shows that the standard ?CDM cosmological model is consistent with the CMB data allowing the expansion history of the Universe vary around this model at different redshifts. However, our analysis also shows that a decaying dark energy model proposed in [2] has in fact a marginally better fit than the standard cosmological constant model to CMB data. Concordance of our studies here with the previous analysis showing that Baryon Acoustic Oscillation (BAO) and supernovae data (SN Ia) also prefer mildly this decaying dark energy model to ?CDM, makes this finding interesting and worth further investigation.

  1. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    SciTech Connect (OSTI)

    Omar, M.S., E-mail: dr_m_s_omar@yahoo.com [Department of Physics, College of Science, University of Salahaddin-Erbil, Arbil, Kurdistan (Iraq)

    2012-11-15T23:59:59.000Z

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ? A model for a size dependent mean bonding length is derived. ? The size dependent melting point of nanoparticles is modified. ? The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 ?{sup 3} for bulk to 57 ?{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup ?6} K{sup ?1} for a bulk crystal down to a minimum value of 0.1 × 10{sup ?6} K{sup ?1} for a 6 nm diameter nanoparticle.

  2. X-ray Fading and Expansion in the "Miniature Supernova Remnant" of GK Persei

    E-Print Network [OSTI]

    Takei, D; Yamaguchi, H; Slane, P; Uchiyama, Y; Katsuda, S

    2015-01-01T23:59:59.000Z

    We report on a second epoch of Chandra X-ray imaging spectroscopy of the spatially-resolved old nova remnant GK Persei. An ACIS-S3 observation of 97.4 ks was conducted in November 2013 after a lapse of 13.8 years from the last visit in 2000. The X-ray emitting nebula appeared more faint and patchy compared with the first epoch. The flux decline was particularly evident in fainter regions and the mean decline was 30-40 % in the 0.5-1.2 keV energy band. A typical expansion of the brightest part of the remnant was 1.9 arcsec, which corresponds to an expansion rate of 0.14 arcsec yr^{-1}. The soft X-ray spectra extracted from both the 2000 and 2013 data can be explained by a non-equilibrium ionization collisional plasma model convolved with interstellar absorption, though do not allow us to constrain the origin of the flux evolution. The plasma temperature has not significantly evolved since the 2000 epoch and we conclude that the fading of the X-ray emission is due largely to expansion. This implies that recent ...

  3. Infinite Randomness Expansion and Amplification with a Constant Number of Devices

    E-Print Network [OSTI]

    Matthew Coudron; Henry Yuen

    2014-04-01T23:59:59.000Z

    We present a device-independent randomness expansion protocol, involving only a constant number of non-signaling quantum devices, that achieves \\emph{infinite expansion}: starting with $m$ bits of uniform private randomness, the protocol can produce an unbounded amount of certified randomness that is $\\exp(-\\Omega(m^{1/3}))$-close to uniform and secure against a quantum adversary. The only parameters which depend on the size of the input are the soundness of the protocol and the security of the output (both are inverse exponential in $m$). This settles a long-standing open problem in the area of randomness expansion and device-independence. The analysis of our protocols involves overcoming fundamental challenges in the study of \\emph{adaptive} device-independent protocols. Our primary technical contribution is the design and analysis of device-independent protocols which are \\emph{Input Secure}; that is, their output is guaranteed to be secure against a quantum eavesdropper, \\emph{even if the input randomness was generated by that same eavesdropper}! The notion of Input Security may be of independent interest to other areas such as device-independent quantum key distribution.

  4. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    SciTech Connect (OSTI)

    Mills, Andrew D.; Phadke, Amol A.; Wiser, Ryan H.

    2010-06-10T23:59:59.000Z

    The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this paper we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33percent of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33percent RE target across nearly all scenarios analyzed (38-65percent). Solar energy is almost always the second largest source (14-41percent). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Further, we find that even with total transmission expenditures of $17-34 billion these costs still represent just 10-19percent of the total delivered cost of renewable energy.

  5. A model for accelerated expansion of the universe from $\\mathcal{N}=1$ Supergravity

    E-Print Network [OSTI]

    Landim, Ricardo C G

    2015-01-01T23:59:59.000Z

    In this paper we present a model for accelerated expansion of the universe, both during inflation and the present stage of the expansion, from four dimensional $\\mathcal{N}=1$ supergravity. We evaluate the tensor-to-scalar ratio ($r\\approx 0.00034$), the scalar spectral index ($n_s\\approx 0.970$) and the running spetral index ($dn_s/dk\\approx -6\\times10^{-5}$), and we notice that these parameters are in agreement with Planck+WP+lensing data and with BICEP2/Keck and Planck joint analysis, at $95\\%$ CL. The number of e-folds is $50$ or higher. The reheating period has an associated temperature $T_R\\sim10^{12}$ Gev, which agrees with the one required by thermal leptogenesis. Regarding the scalar field as dark energy, the autonomous system for the scalar field in the presence of a barotropic fluid provides a stable fixed point that leads to a late-time accelerated expansion of the universe, with an equation of state that mimics the cosmological constant ($w_\\Phi\\approx -0.997$).

  6. Pro le-Guided Automatic Inline Expansion for C Programs Pohua P. Chang, Scott A. Mahlke, William Y. Chen and Wen-mei W. Hwu

    E-Print Network [OSTI]

    Hwu, Wen-mei W.

    Pro le-Guided Automatic Inline Expansion for C Programs Pohua P. Chang, Scott A. Mahlke, William Y study, Allen and Johnson identi ed inline expansion as an essential part of a vectorizing C compiler 5

  7. Derivation of a three-dimensional phase-field-crystal model for liquid crystals from density functional theory

    E-Print Network [OSTI]

    Raphael Wittkowski; Hartmut Löwen; Helmut R. Brand

    2010-07-09T23:59:59.000Z

    Using a generalized order parameter gradient expansion within density functional theory, we derive a phase-field-crystal model for liquid crystals composed by apolar particles in three spatial dimensions. Both the translational density and the orientational direction and ordering are included as order parameters. Different terms involving gradients in the order parameters in the resulting free energy functional are compared to the macroscopic Ginzburg-Landau approach as well as to the hydrodynamic description for liquid crystals. Our approach provides microscopic expressions for all prefactors in terms of the particle interactions. Our phase-field-crystal model generalizes the conventional phase-field-crystal model of spherical particles to orientational degrees of freedom and can be used as a starting point to explore phase transitions and interfaces for various liquid-crystalline phases.

  8. Five-dimensional visualization of phase transition in BiNiO{sub 3} under high pressure

    SciTech Connect (OSTI)

    Liu, Yijin, E-mail: liuyijin@slac.stanford.edu, E-mail: wyang@ciw.edu [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Wang, Junyue; Yang, Wenge, E-mail: liuyijin@slac.stanford.edu, E-mail: wyang@ciw.edu [Center of High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203 (China); High Pressure Synergetic Consortium, Geophysical Laboratory, Carnegie Institution of Washington, 9700 S Cass Avenue, Argonne, Illinois 60439 (United States); Azuma, Masaki [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503 (Japan); Mao, Wendy L. [Geological and Environmental Sciences, 450 Serra Mall, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Photon Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)

    2014-01-27T23:59:59.000Z

    Colossal negative thermal expansion was recently discovered in BiNiO{sub 3} associated with a low density to high density phase transition under high pressure. The varying proportion of co-existing phases plays a key role in the macroscopic behavior of this material. Here, we utilize a recently developed X-ray Absorption Near Edge Spectroscopy Tomography method and resolve the mixture of high/low pressure phases as a function of pressure at tens of nanometer resolution taking advantage of the charge transfer during the transition. This five-dimensional (X, Y, Z, energy, and pressure) visualization of the phase boundary provides a high resolution method to study the interface dynamics of high/low pressure phase.

  9. Multi-phasing CFD

    SciTech Connect (OSTI)

    Stosic, Zoran V. [Framatome ANP GmbH, P.O. Box 3220, 91050 Erlangen (Germany); Stevanovic, Vladimir D. [University of Belgrade, Kraljice Marije 16, 11000 Belgrade, Serbia and Montenegro (Yugoslavia)

    2002-07-01T23:59:59.000Z

    Computational fluid dynamics for multiphase flows is an emerging field. Due to the complexity and divergence of multiphase thermal and hydraulic problems, further development of multiphase flow modelling, closure laws and numerical methods is needed in order to achieve the general purpose and optimised CFD (Computational Fluid Dynamics) methods, which will be applicable to the wide variety of multiphase flow problems. In the paper, an original approach to the various aspects of multiphase CFD modelling is presented. It is based on the multi-fluid modelling approach, development of necessary closure laws and derivation of appropriate numerical methods for efficient governing equations solution. Velocity and pressure fields are solved with the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) type pressure-corrector method developed for the multiphase flow conditions. For the solution of scalar parameters transport equations both implicit and explicit methods are presented. The implicit method is suitable for steady state, slow transients and problems without the sharp fronts propagation. Explicit method is developed in order to predict scalar parameters fronts propagation, as well as phase interface tracking problems. The challenge towards the multiphase flow solution on both the macro and micro level is presented in order to perform multiphase CFD simulations and analyses of multiphase flows in complex geometry of nuclear power plant components, such as nuclear fuel rod bundles thermal-hydraulics. Presented methodology and obtained CFD results comprise micro-scale phenomena of phases' separation, interface tracking, heated surfaces dry-out and critical heat flux occurrence, as well as macro-scale transport and distributions of phase volumes. (authors)

  10. During Phase 3, WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommitteeDurable Fuel CellDurableMORE- WIPP

  11. Phase Change | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven AshbyDepartmentPersonnelAdams5 Entire .1226Phase Change

  12. NGNP PHASE I REVIEW

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps MoreWSRC-STI-2007-00250This NuclearDepartmentNGNP PHASE I REVIEW NEAC

  13. Particle creation in the oscillatory phase of inflaton

    E-Print Network [OSTI]

    P. K. Suresh

    2003-10-02T23:59:59.000Z

    A thermal squeezed state representation of inflaton is constructed for a flat Friedmann-Robertson-Walker background metric and the phenomenon of particle creation is examined during the oscillatory phase of inflaton, in the semiclassical theory of gravity. An approximate solution to the semiclassical Einstein equation is obtained in thermal squeezed state formalism by perturbatively and is found obey the same power-law expansion as that of classical Einstein equation. In addition to that the solution shows oscillatory in nature except on a particular condition. It is also noted that, the coherently oscillating nonclassical inflaton, in thermal squeezed vacuum state, thermal squeezed state and thermal coherent state, suffer particle production and the created particles exhibit oscillatory behavior. The present study can account for the post inflation particle creation due to thermal and quantum effects of inflaton in a flat FRW universe.

  14. Physics of Substorm Growth Phase, Onset, and Dipolarization

    SciTech Connect (OSTI)

    C.Z. Cheng

    2003-10-22T23:59:59.000Z

    A new scenario of substorm growth phase, onset, and depolarization during expansion phase and the corresponding physical processes are presented. During the growth phase, as a result of enhanced plasma convection, the plasma pressure and its gradient are continued to be enhanced over the quiet-time values in the plasma sheet. Toward the late growth phase, a strong cross-tail current sheet is formed in the near-Earth plasma sheet region, where a local magnetic well is formed, the plasma beta can reach a local maximum with value larger than 50 and the cross-tail current density can be enhanced to over 10nA/m{sup 2} as obtained from 3D quasi-static magnetospheric equilibrium solutions for the growth phase. The most unstable kinetic ballooning instabilities (KBI) are expected to be located in the tailward side of the strong cross-tail current sheet region. The field lines in the most unstable KBI region map to the transition region between the region-1 and region-2 currents in the ionosphere, which is consistent with the observed initial brightening location of the breakup arc in the intense proton precipitation region. The KBI explains the AMPTE/CCE observations that a low-frequency instability with a wave period of 50-75 seconds is excited about 2-3 minutes prior to substorm onset and grows exponentially to a large amplitude at the onset of current disruption (or current reduction). At the current disruption onset higher frequency instabilities are excited so that the plasma and electromagnetic field fluctuations form a strong turbulent state. Plasma transport takes place due to the strong turbulence to relax the ambient plasma pressure profile so that the plasma pressure and current density are reduced and the ambient magnetic field intensity increases by more than a factor of 2 in the high-beta(sub)eq region and the field line geometry recovers from tail-like to dipole-like dipolarization.

  15. Characteristic initial data and smoothness of Scri. II. Asymptotic expansions and construction of conformally smooth data sets

    E-Print Network [OSTI]

    Tim-Torben Paetz

    2014-03-14T23:59:59.000Z

    We derive necessary-and-sufficient conditions on characteristic initial data for Friedrich's conformal field equations in $3+1$ dimensions to have no logarithmic terms in an asymptotic expansion at null infinity.

  16. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01T23:59:59.000Z

    Colorado: National Renewable Energy Laboratory. http://Colorado: National Renewable Energy Laboratory. NREL/SR-550-Finn, J. 2009. Western Renewable Energy Zones, Phase 1: QRA

  17. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    E-Print Network [OSTI]

    Mills, Andrew D

    2011-01-01T23:59:59.000Z

    Colorado: National Renewable Energy Laboratory. NREL/SR-Decisions in the Western Renewable Energy Zone Initiative.Finn, J. 2009. Western Renewable Energy Zones, Phase 1: QRA

  18. Commensurate phases, incommensurate phases and the devil’s staircase

    E-Print Network [OSTI]

    Per Bak

    Modulated structures with periods which are incommensurable (or high-order com-mensurable) with the basic lattice are quite common in condensed-matter physics. The structure may be another lattice, a periodic lattice distortion, a helical or sinusoidal magnetic structure, or a charge density wave in one, two or three dimensions. This review surveys recent theories on the transition between commensurate (C) and incommensurate (I) phases, and on the properties of the ‘incommensurate ’ phase. The predictions of theories will be compared with experiments. The CI transition is usually described in terms of wall, or soliton, formation. The nature of the transition and the structure of the I phase are quite different in two and three dimensions. In three dimensions the I phase seems to consist of an infinity of high-order locked C phases, which may or may not be separated by an infinity of truly incommensurate phases. This behaviour is known as the ‘devil’s staircase’. In two dimensions the incommensurate phase (at T # 0) is a ‘floating ’ phase without complete long-range order, and it does not ‘lock-in ’ at high-order commensurate phases. Phase diagrams are determined by the stability of two types of ‘topological ’ defects: walls, which destabilise the C phase with respect to I phases, and dislocations or vortices which generate paramagnetic or fluid phases. A consequence of this competition is that for sufficiently low order of commensurability the C and I phases are separated by a fluid phase. The properties of modulated systems can be studied by iterating certain area-preserving two-dimensional maps. Very recent studies indicate that, in addition to C and I phases, there are chaotic structures which are at least metastable. The chaotic regimes separate C and I phases and may be described as randomly pinned solitons. The relevance of the chaotic regimes to adsorbed monolayers, pinning of charge density waves, Peierls transitions and spin glasses is briefly discussed. This review was received in July 1981.

  19. Radiological Release Accident Investigation Report - Phase 1...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Release Accident Investigation Report - Phase 1 Radiation Report Radiological Release Accident Investigation Report - Phase 1 Radiation Report Phase 1 of this accident...

  20. Phase-mixing of Langmuir oscillations in cold electron-positron-ion plasmas

    SciTech Connect (OSTI)

    Maity, Chandan [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2014-07-15T23:59:59.000Z

    Space-time evolution of Langmuir oscillations in a cold homogeneous electron-positron-ion plasma has been analyzed by employing a straightforward perturbation expansion method, showing phase-mixing and, thus, wave-breaking of excited oscillations at arbitrary amplitudes. Within an assumption of infinitely massive ions, an approximate phase-mixing time is found to scale as ?{sub pe}t{sub mix}?[(6/?{sup 2})((2??){sup 5/2}/(1??))]{sup 1/3}, where “?” and “?” (= n{sub 0i}/n{sub 0e}) are the amplitude of perturbation and the ratio of equilibrium ion density to equilibrium electron density, respectively, and ?{sub pe}??(4?n{sub 0e}e{sup 2}/m) is the electron plasma frequency. The results presented on phase-mixing of Langmuir modes in multispecies plasmas are expected to be relevant to laboratory and astrophysical environments.

  1. Isentropic expansion of copper plasma in Mbar pressure range at “Luch” laser facility

    SciTech Connect (OSTI)

    Bel'kov, S. A.; Derkach, V. N.; Garanin, S. G.; Mitrofanov, E. I.; Voronich, I. N. [Russian Federal Nuclear Center – VNIIEF, Sarov (Russian Federation); Fortov, V. E.; Levashov, P. R.; Minakov, D. V. [Joint Institute for High Temperatures, Moscow, Russia and Moscow Institute of Physics and Technology (State University), Dolgoprudny (Russian Federation)

    2014-01-21T23:59:59.000Z

    We present experimental results on thermodynamic properties of dense copper plasma in Mbar pressure range. The laser facility “Luch” with laser intensity 10{sup 14}?W/cm{sup 2} is used to compress copper up to ?8?Mbar by a strong shock wave; subsequent expansion of copper plasma into Al, Ti, Sn allows us to obtain release isentropes of copper by the impedance–matching method. A theoretical analysis and quantum simulations show that in our experiments strongly coupled quantum plasma is generated.

  2. Aspects of excited baryon phenomenology in the 1/N{sub c} expansion of QCD

    SciTech Connect (OSTI)

    Gonzalez de Urreta, E. J. [Physics Department, Centro Atomico Constituyentes, CNEA, Argentina, CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Scoccola, Norberto N. [Physics Department, Centro Atomico Constituyentes, CNEA, Argentina, CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Universidad Favaloro, Solis 453, 1078 Buenos Aires (Argentina)

    2010-11-12T23:59:59.000Z

    We report on the application of the 1/N{sub c} expansion of QCD to the description of the properties of non-strange excited baryons belonging to the [70, 1{sup -}]-plet. In particular, we present the results of an improved determination of the corresponding mixing angles obtained by performing a simultaneous fit of masses and strong decay widths. We find {theta}{sub 1} 0.47{+-}0.06 and {theta}{sub 3} = 2.74{+-}0.07. These values are within the range of those determined in previous non-global analyses but have smaller uncertainties.

  3. Partial decay widths of negative parity baryons in the 1/N{sub c} expansion

    SciTech Connect (OSTI)

    Gonzalez de Urreta, E. J. [Physics Department, Centro Atomico Constituyentes, CNEA, Argentina, CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Scoccola, N. N. [Physics Department, Centro Atomico Constituyentes, CNEA, Argentina, CONICET, Rivadavia 1917, 1033 Buenos Aires, Argentina. and Universidad Favaloro, Solis 453, 1078 Buenos Aires (Argentina); Jayalath, C. P. [Department of Physics, Hampton University, Hampton, VA 23668 (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States) and Department of Physics, Peradeniya University, Peradeniya (20400) (Sri Lanka); Goity, J. L. [Department of Physics, Hampton University, Hampton, VA 23668 (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

    2013-03-25T23:59:59.000Z

    The partial decay widths of lowest lying negative parity baryons belonging to the 70-plet of SU(6) are analyzed in the framework of the 1/N{sub c} expansion. The channels considered are those with single pseudoscalar meson emission. The analysis is carried out to sub-leading order in 1/N{sub c} and to first order in SU(3) symmetry breaking. Conclusions about the magnitude of SU(3) breaking effects along with predictions for some unknown or poorly determined partial decay widths of known resonances are given.

  4. Partial Decay Widths of Negative Parity Baryons in the 1/N{sub c} Expansion

    SciTech Connect (OSTI)

    Gonzalez de Urreta, Emiliano [CNEA, Buenos Aires; Scoccola, Norberto [CNEA, Buenos Aires; Jayalath, Chandala [JLAB, Hampton U.; Goity, Jose [JLAB, Hampton U.

    2013-04-01T23:59:59.000Z

    The partial decay widths of lowest lying negative parity baryons belonging to the 70-plet of SU(6) are analyzed in the framework of the 1/N{sub c} expansion. The channels considered are those with single pseudoscalar meson emission. The analysis is carried out to sub-leading order in 1/N{sub c} and to first order in SU(3) symmetry breaking. Conclusions about the magnitude of SU(3) breaking effects along with predictions for some unknown or poorly determined partial decay widths of known resonances are given.

  5. Negative parity baryon decays in the 1/N{sub c} expansion

    SciTech Connect (OSTI)

    Jayalath, C. [Department of Physics, Hampton University, Hampton, Virginia 23668 (United States); Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Department of Physics, Peradeniya University, Peradeniya 20400 (Sri Lanka); Goity, J. L. [Department of Physics, Hampton University, Hampton, Virginia 23668 (United States); Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Gonzalez de Urreta, E. [Department of Theoretical Physics, Comision Nacional de Energia Atomica, 1429 Buenos Aires (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Scoccola, N. N. [Department of Theoretical Physics, Comision Nacional de Energia Atomica, 1429 Buenos Aires (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Universidad Favaloro, Solis 453, 1078 Buenos Aires (Argentina)

    2011-10-01T23:59:59.000Z

    The partial decay widths of lowest lying negative parity baryons belonging to the 70-plet of SU(6) are analyzed in the framework of the 1/N{sub c} expansion. The channels considered are those with single pseudoscalar meson emission. The analysis is carried out to sub-leading order in 1/N{sub c} and to first order in SU(3) symmetry breaking. Conclusions about the magnitude of SU(3) breaking effects along with predictions for some unknown or poorly determined partial decay widths of known resonances are obtained.

  6. Surface nanostructuring by ion-induced localized plasma expansion in zinc oxide

    SciTech Connect (OSTI)

    El-Said, A. S., E-mail: elsaid@kfupm.edu.sa, E-mail: a.s.el-said@hzdr.de [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden (Germany); Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Centre for Theoretical Physics, British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt); Djebli, M. [Theoretical Physics Laboratory, Faculty of Physics USTHB, B.P. 32 Bab Ezzour, 16079 Algiers (Algeria)

    2014-06-09T23:59:59.000Z

    Creation of hillock-like nanostructures on the surface of zinc oxide single crystals by irradiation with slow highly charged ions is reported. At constant kinetic energy, the nanostructures were only observed after irradiation with ions of potential energies above a threshold between 19.1?keV and 23.3?keV. The size of the nanostructures increases as a function of potential energy. A plasma expansion approach is used to explain the nanostructures creation. The calculations showed that the surface nanostructures became taller with the increase of ionic temperature. The influence of charged cluster formation and the relevance of their polarity are discussed.

  7. New Dirac Delta function based methods with applications to perturbative expansions in quantum field theory

    E-Print Network [OSTI]

    Achim Kempf; David M. Jackson; Alejandro H. Morales

    2014-09-23T23:59:59.000Z

    We derive new all-purpose methods that involve the Dirac Delta distribution. Some of the new methods use derivatives in the argument of the Dirac Delta. We highlight potential avenues for applications to quantum field theory and we also exhibit a connection to the problem of blurring/deblurring in signal processing. We find that blurring, which can be thought of as a result of multi-path evolution, is, in Euclidean quantum field theory without spontaneous symmetry breaking, the strong coupling dual of the usual small coupling expansion in terms of the sum over Feynman graphs.

  8. Formation of surface nano-structures by plasma expansion induced by highly charged ions

    SciTech Connect (OSTI)

    Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt) and International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); El-Said, A. S. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nuclear and Radiation Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt) and Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 128, 01328 Dresden (Germany)

    2012-12-15T23:59:59.000Z

    Slow highly charged ions (HCIs) create surface nano-structures (nano-hillocks) on the quartz surface. The formation of hillocks was only possible by surpassing a potential energy threshold. By using the plasma expansion approach with suitable hydrodynamic equations, the creation mechanism of the nano-hillocks induced by HCIs is explained. Numerical analysis reveal that within the nanoscale created plasma region, the increase of the temperature causes an increase of the self-similar solution validity domain, and consequently the surface nano-hillocks become taller. Furthermore, the presence of the negative (positive) nano-dust particles would lead to increase (decrease) the nano-hillocks height.

  9. Pseudostate expansions in a simplified model of electron-hydrogen scattering

    SciTech Connect (OSTI)

    Oza, D.H.; Callaway, J.

    1983-06-01T23:59:59.000Z

    A simplified model of electron-hydrogen scattering is considered in which all terms involving nonzero angular momenta are neglected. Elastic scattering and excitation cross sections for the 2s and 3s states are calculated for this model with the use of close-coupling expansion with four different pseudostate bases. Pseudothreshold structure is observed and removed. It is found that, after removal of this structure, the results agree quite well with each other and with exact results for this model which were given previously by Poet.

  10. Defects in Four-Dimensional Continua: A Paradigm for the Expansion of the Universe?

    E-Print Network [OSTI]

    A. Tartaglia

    2008-08-24T23:59:59.000Z

    The presence of defects in material continua is known to produce internal permanent strained states. Extending the theory of defects to four dimensions and allowing for the appropriate signature, it is possible to apply these concepts to space-time. In this case a defect would induce a non-trivial metric tensor, which can be interpreted as a gravitational field. The image of a defect in space-time can be applied to the description of the Big Bang. A review of the four-dimensional generalisation of defects and an application to the expansion of the universe will be presented.

  11. Boltzmann expansion in a radiofrequency conical helicon thruster operating in xenon and argon

    SciTech Connect (OSTI)

    Charles, C.; Boswell, R. [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)] [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Takahashi, K. [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia) [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Department of Electrical Engineering, Tohoku University, Sendai 980-9579 (Japan)

    2013-06-03T23:59:59.000Z

    A low pressure ({approx}0.5 mTorr in xenon and {approx}1 mTorr in argon) Boltzmann expansion is experimentally observed on axis within a magnetized (60 to 180 G) radiofrequency (13.56 MHz) conical helicon thruster for input powers up to 900 W using plasma parameters measured with a Langmuir probe. The axial forces, respectively, resulting from the electron and magnetic field pressures are directly measured using a thrust balance for constant maximum plasma pressure and show a higher fuel efficiency for argon compared to xenon.

  12. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No.

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNG Expansion, L.P. and FLNG Liquefaction,

  13. Expansion and Change on the U.S. Natural Gas Pipeline Network 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion and Change on the U.S. Natural Gas

  14. Large-order shifted 1/N expansions through the asymptotic iteration method

    E-Print Network [OSTI]

    T. Barakat

    2007-08-16T23:59:59.000Z

    The perturbation technique within the framework of the asymptotic iteration method is used to obtain large-order shifted 1/N expansions, where N is the number of spatial dimensions. This method is contrary to the usual Rayleigh-Schr\\"{o}dinger perturbation theory, no matrix elements need to be calculated. The method is applied to the Schr\\"{o}dinger equation and the non-polynomial potential $V(r)=r^2+\\frac{b r^2}{(1+cr^2)}$ in three dimensions is discussed as an illustrative example.

  15. Phase-resolved far-ultraviolet HST spectroscopy of the peculiar magnetic white dwarf RE J0317-853

    E-Print Network [OSTI]

    M. R. Burleigh; S. Jordan; W. Schweizer

    1998-10-07T23:59:59.000Z

    We present phase resolved FUV HST FOS spectra of the rapidly rotating, highly magnetic white dwarf RE J0317-853. Using these data, we construct a new model for the magnetic field morphology across the stellar surface. From an expansion into spherical harmonics, we find the range of magnetic field strengths present is 180-800MG. For the first time we could identify an absorption feature present at certain phases at 1160A as a ``forbidden'' 1s_0 -> 2s_0 component, due to the combined presence of an electric and magnetic field.

  16. Numerical study of expansion tube problems: toward the simulation of cavitation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    .11.019 #12;diminution of the speed of sound in the mixture), large density ratio be- tween the liquid-phase flow models. This method makes no attempt to track the liquid and vapour interface. As most two for inviscid high-speed cavitating applications and two-phase Riemann problems [2, 3, 4, 5]. For thermal- 2 hal

  17. The Noncommutative Anandan's Quantum Phase

    E-Print Network [OSTI]

    E. Passos; L. R. Ribeiro; C. Furtado; J. R. Nascimento

    2007-06-18T23:59:59.000Z

    In this work we study the noncommutative nonrelativistic quantum dynamics of a neutral particle, that possesses permanent magnetic and electric dipole momenta, in the presence of an electric and magnetic fields. We use the Foldy-Wouthuysen transformation of the Dirac spinor with a non-minimal coupling to obtain the nonrelativistic limit. In this limit, we will study the noncommutative quantum dynamics and obtain the noncommutative Anandan's geometric phase. We analyze the situation where magnetic dipole moment of the particle is zero and we obtain the noncommutative version of the He-McKellar-Wilkens effect. We demonstrate that this phase in the noncommutative case is a geometric dispersive phase. We also investigate this geometric phase considering the noncommutativity in the phase space and the Anandan's phase is obtained.

  18. The Noncommutative Anandan's Quantum Phase

    E-Print Network [OSTI]

    Passos, E; Nascimento, J R; Ribeiro, L R

    2006-01-01T23:59:59.000Z

    In this work we study the noncommutative nonrelativistic quantum dynamics of a neutral particle, that possesses permanent magnetic and electric dipole momenta, in the presence of an electric and magnetic fields. We use the Foldy-Wouthuysen transformation of the Dirac spinor with a non-minimal coupling to obtain the nonrelativistic limit. In this limit, we will study the noncommutative quantum dynamics and obtain the noncommutative Anandan's geometric phase. We analyze the situation where magnetic dipole moment of the particle is zero and we obtain the noncommutative version of the He-McKellar-Wilkens effect. We demonstrate that this phase in the noncommutative case is a geometric dispersive phase. We also investigate this geometric phase considering the noncommutativity in the phase space and the Anandan's phase is obtained.

  19. Identifying the Bose glass phase

    E-Print Network [OSTI]

    R. Pugatch; N. Bar-gill; N. Katz; E. Rowen; N. Davidson

    2006-07-28T23:59:59.000Z

    Introducing disorder into the Bose-Hubbard model at integer fillings leads to a Bose glass phase, along with the Mott insulator and superfluid phases. We suggest a new order parameter: the determinant of the one body density matrix, which is nonzero only within the Mott-insulator phase. Alongside the superfluid fraction, it is then possible to distinguish the three phases. The Bose glass phase is the only phase which has vanishing determinant and superfluid fraction. The vanishing of the determinant in the Bose glass phase occurs due to the partial fragmentation of the condensate into localized fragments, each with zero superfluid response, which implies the presence of unoccupied sites and hence the presence of lines of zeros in the one body density matrix. In the superfluid phase, the determinant vanish for another reason - due to the macroscopic occupation of a single particle state. Finally, we suggest the enhancement of the three body decay rate in the Bose glass phase, as an experimental indicator for the presence of localized fragments.

  20. Entanglement Entropy of Gapped Phases and Topological Order in Three dimensions

    E-Print Network [OSTI]

    Tarun Grover; Ari M. Turner; Ashvin Vishwanath

    2011-08-19T23:59:59.000Z

    We discuss entanglement entropy of gapped ground states in different dimensions, obtained on partitioning space into two regions. For trivial phases without topological order, we argue that the entanglement entropy may be obtained by integrating an `entropy density' over the partition boundary that admits a gradient expansion in the curvature of the boundary. This constrains the expansion of entanglement entropy as a function of system size, and points to an even-odd dependence on dimensionality. For example, in contrast to the familiar result in two dimensions, a size independent constant contribution to the entanglement entropy can appear for trivial phases in any odd spatial dimension. We then discuss phases with topological entanglement entropy (TEE) that cannot be obtained by adding local contributions. We find that in three dimensions there is just one type of TEE, as in two dimensions, that depends linearly on the number of connected components of the boundary (the `zeroth Betti number'). In D > 3 dimensions, new types of TEE appear which depend on the higher Betti numbers of the boundary manifold. We construct generalized toric code models that exhibit these TEEs and discuss ways to extract TEE in D >=3.

  1. Expansion and Growth of Structure Observables in a Macroscopic Gravity Averaged Universe

    E-Print Network [OSTI]

    Wijenayake, Tharake

    2015-01-01T23:59:59.000Z

    We investigate the effect of averaging inhomogeneities on expansion and large-scale structure growth observables using the exact and covariant framework of Macroscopic Gravity (MG). It is well-known that applying the Einstein's equations and spatial averaging do not commute and lead to the averaging problem. For the MG formalism applied to the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, this gives an extra dynamical term encapsulated as an averaging density parameter denoted $\\Omega_A$. An exact isotropic cosmological solution of MG for the flat FLRW metric is already known in the literature, we derive here an anisotropic exact solution. Using the isotropic solution, we compare the expansion history to current data of distances to supernovae, Baryon Acoustic Oscillations, CMB last scattering surface, and Hubble constant measurements, and find $-0.05 \\le \\Omega_A \\le 0.07$ (at the 95% CL). For the flat metric case this reduces to $-0.03 \\le \\Omega_A \\le 0.05$. We also find that the inclusion of this ter...

  2. Uncorrelated Measurements of the Cosmic Expansion History and Dark Energy from Supernovae

    E-Print Network [OSTI]

    Yun Wang; Max Tegmark

    2005-05-13T23:59:59.000Z

    We present a method for measuring the cosmic expansion history H(z) in uncorrelated redshift bins, and apply it to current and simulated type Ia supernova data assuming spatial flatness. If the matter density parameter Omega_m can be accurately measured from other data, then the dark energy density history X(z)=rho_X(z)/rho_X(0) can trivially be derived from this expansion history H(z). In contrast to customary ``black box'' parameter fitting, our method is transparent and easy to interpret: the measurement of H(z)^{-1} in a redshift bin is simply a linear combination of the measured comoving distances for supernovae in that bin, making it obvious how systematic errors propagate from input to output. We find the Riess et al. (2004) ``gold'' sample to be consistent with the ``vanilla'' concordance model where the dark energy is a cosmological constant. We compare two mission concepts for the NASA/DOE Joint Dark Energy Mission (JDEM), the Joint Efficient Dark-energy Investigation (JEDI), and the Supernova Accelaration Probe (SNAP), using simulated data including the effect of weak lensing (based on numerical simulations) and a systematic bias from K-corrections. Estimating H(z) in seven uncorrelated redshift bins, we find that both provide dramatic improvements over current data: JEDI can measure H(z) to about 10% accuracy and SNAP to 30-40% accuracy.

  3. A Born-Oppenheimer Expansion in a Neighborhood of a Renner-Teller Intersection

    E-Print Network [OSTI]

    Mark S. Herman

    2009-01-22T23:59:59.000Z

    We perform a rigorous mathematical analysis of the bending modes of a linear triatomic molecule that exhibits the Renner-Teller effect. Assuming the potentials are smooth, we prove that the wave functions and energy levels have asymptotic expansions in powers of epsilon, where epsilon^4 is the ratio of an electron mass to the mass of a nucleus. To prove the validity of the expansion, we must prove various properties of the leading order equations and their solutions. The leading order eigenvalue problem is analyzed in terms of a parameter b, which is equivalent to the parameter originally used by Renner. For 0 < b < 1, we prove self-adjointness of the leading order Hamiltonian, that it has purely discrete spectrum, and that its eigenfunctions and their derivatives decay exponentially. Perturbation theory and finite difference calculations suggest that the ground bending vibrational state is involved in a level crossing near b = 0.925. We also discuss the degeneracy of the eigenvalues. Because of the crossing, the ground state is degenerate for 0 < b < 0.925 and non-degenerate for 0.925 < b < 1.

  4. Interplay between MacDonald and Hall-Littlewood expansions of extended torus superpolynomials

    E-Print Network [OSTI]

    A. Mironov; A. Morozov; Sh. Shakirov; A. Sleptsov

    2012-02-17T23:59:59.000Z

    In arXiv:1106.4305 extended superpolynomials were introduced for the torus links T[m,mk+r], which are functions on the entire space of time variables and, at expense of reducing the topological invariance, possess additional algebraic properties, resembling those of the matrix model partition functions and the KP/Toda tau-functions. Not surprisingly, being a suitable extension it actually allows one to calculate the superpolynomials. These functions are defined as expansions into MacDonald polynomials, and their dependence on k is entirely captured by the action of the cut-and-join operator, like in the HOMFLY case. We suggest a simple description of the coefficients in these character expansions, by expanding the initial (at k=0) conditions for the k-evolution into the new auxiliary basis, this time provided by the Hall-Littlewood polynomials, which, hence, play a role in the description of the dual m-evolution. For illustration we list manifest expressions for a few first series, mk\\pm 1, mk\\pm 2, mk\\pm 3, mk\\pm 4. Actually all formulas were explicitly tested up to m=17 strands in the braid.

  5. Comoving to expansion Newtonian potential of galaxies and clusters instead of dark matter

    E-Print Network [OSTI]

    Zahid Zakir

    2014-08-04T23:59:59.000Z

    Stretching of the Newtonian potential (NP) at early epochs is investigated and it is shown that observed effects, usually ascribed to a dark matter, can by explained by such stretching only. Increasing by time radius of the gravitationally-bound region (GBR) and conservation of gravitational energy lead to a new scenario in which values of NP in expanding volume are maintained, while in physical volume are stretched. Really, the energy conservation in expanding volume requires for NP values to be comoving to the expanding shells. In addition, the radius of gravitationally-bound region increases by time due to decreasing of expansion velocity and different shells around galaxy cease expansion at different times. Thus, as far a shell placed from galaxy, as longer it was expanded and thickened, while potential difference on its boundaries remained unchanged. This shifts the values of NP around galaxy proportional to the distance r and, as the result, the gravitational acceleration, from NP's $1/r^2$ dependence, turned to 1/r dependence, as for centrifugal acceleration. This fact naturally explains the known empirical facts, such as flatness of rotation curves and velocity-mass relationships for galaxies and velocity dispersion in clusters.

  6. Real time cosmology - A direct measure of the expansion rate of the Universe

    E-Print Network [OSTI]

    Klöckner, H -R; Martins, C; Raccanelli, A; Champion, D; Roy, A; Lobanov, A; Wagner, J; Keller, R

    2015-01-01T23:59:59.000Z

    In recent years cosmology has undergone a revolution, with precise measurements of the microwave background radiation, large galaxy redshift surveys, and the discovery of the recent accelerated expansion of the Universe using observations of distant supernovae. In this light, the SKA enables us to do an ultimate test in cosmology by measuring the expansion rate of the Universe in real time. This can be done by a rather simple experiment of observing the neutral hydrogen (HI) signal of galaxies at two different epochs. The signal will encounter a change in frequency imprinted as the Universe expands over time and thus monitoring the drift in frequencies will provide a real time measure of the cosmic acceleration. Over a period of 12 years one would expected a frequency shift of the order of 0.1 Hz assuming a standard Lambda-CDM cosmology. Based on the sensitivity estimates of the SKA and the number counts of the expected HI galaxies, it is shown that the number counts are sufficiently high to compensate for th...

  7. Edge effects in graphene nanostructures: I. From multiple reflection expansion to density of states

    E-Print Network [OSTI]

    J. Wurm; K. Richter; I. Adagideli

    2011-08-06T23:59:59.000Z

    We study the influence of different edge types on the electronic density of states of graphene nanostructures. To this end we develop an exact expansion for the single particle Green's function of ballistic graphene structures in terms of multiple reflections from the system boundary, that allows for a natural treatment of edge effects. We first apply this formalism to calculate the average density of states of graphene billiards. While the leading term in the corresponding Weyl expansion is proportional to the billiard area, we find that the contribution that usually scales with the total length of the system boundary differs significantly from what one finds in semiconductor-based, Schr\\"odinger type billiards: The latter term vanishes for armchair and infinite mass edges and is proportional to the zigzag edge length, highlighting the prominent role of zigzag edges in graphene. We then compute analytical expressions for the density of states oscillations and energy levels within a trajectory based semiclassical approach. We derive a Dirac version of Gutzwiller's trace formula for classically chaotic graphene billiards and further obtain semiclassical trace formulae for the density of states oscillations in regular graphene cavities. We find that edge dependent interference of pseudospins in graphene crucially affects the quantum spectrum.

  8. Performance characteristics of a turbo expander substituted for expansion valve on air-conditioner

    SciTech Connect (OSTI)

    Cho, Soo-Yong [Department of Mechanical and Aerospace Engineering (ReCAPT), Gyeongsang National University, 900 Gajoa-dong, Jinju 660-701 (Korea); Cho, Chong-Hyun [School of Mechanical and Aerospace Engineering, Gyeongsang National University, 900 Gajoa-dong, Jinju 660-701 (Korea); Kim, Chaesil [Department of Mechanical Engineering, Changwon National University, 9 Sarim-dong, Changwon 641-773 (Korea)

    2008-09-15T23:59:59.000Z

    An experimental study is conducted on a small turbo expander which could be applied to the expansion process in place of expansion valves in refrigerator or air-conditioner to improve the cycle efficiency by recovering energy from the throttling process. The operating gas is HFC134a and the maximum cooling capacity of experiment apparatus is 32.7 kW. Four different turbo expanders are tested to find the performance characteristics of the turbo expander when they operate at a low partial admission rate. The partial admission rate is 1.70% or 2.37, and expanders are operated in the supersonic flow. In the experiment, pressure and temperature are measured at 10 different locations in the experimental apparatus. In addition to these measurements, output power at the turbo expander is measured through a generator installed on a rotor shaft with the rotational speed. Performance data of the turbo expander are obtained at many part load operations by adjusting the output power of the generator. A maximum of 15.8% total-to-static efficiency is obtained when the pressure ratio and the partial admission ratio are 2.37 and 1.70%, respectively. Experimental results show that the optimal velocity ratio decreases when the pressure ratio is decreased, and peak efficiencies, which are obtained at locally maximized efficiency depending on the operating condition, vary linearly against the subcooling temperature or the pressure ratio. (author)

  9. On the modular structure of the genus-one Type II superstring low energy expansion

    E-Print Network [OSTI]

    Eric D'Hoker; Michael B. Green; Pierre Vanhove

    2015-02-24T23:59:59.000Z

    The analytic contribution to the low energy expansion of Type II string amplitudes at genus-one is a power series in space-time derivatives with coefficients that are determined by integrals of modular functions over the complex structure modulus of the world-sheet torus. These modular functions are associated with world-sheet vacuum Feynman diagrams and given by multiple sums over the discrete momenta on the torus. In this paper we exhibit exact differential and algebraic relations for a certain infinite class of such modular functions by showing that they satisfy Laplace eigenvalue equations with inhomogeneous terms that are polynomial in non-holomorphic Eisenstein series. Furthermore, we argue that the set of modular functions that contribute to the coefficients of interactions up to order D**10 R*4 are linear sums of functions in this class and quadratic polynomials in Eisenstein series and odd Riemann zeta values. Integration over the complex structure results in coefficients of the low energy expansion that are rational numbers multiplying monomials in odd Riemann zeta values.

  10. Lateral Expansion of the Bridges of Cygnus A and other Powerful Radio Sources

    E-Print Network [OSTI]

    Greg F. Wellman; Ruth A. Daly

    1995-07-25T23:59:59.000Z

    Measurements of the width of the radio bridge at several locations along the bridge for each of four powerful extended radio sources are presented. Adopting a few simple assumptions, these measurements may be used to predict the radio surface brightness as a function of position across the radio bridge. The predicted and observed surface brightnesses across the bridges are compared and found to agree fairly well. The results are consistent with a simple picture in which the radio power and size of the radio lobe at the forward edge of the radio bridge are roughly time-independent for a given source, and the expansion of the bridge in the lateral direction is adiabatic. There is no indication that reacceleration or energy transport is important in the bridges of these sources. The rate of lateral expansion of the bridge just behind the radio lobe and hotspot in terms of the rate of forward propagation is compared with that predicted, and found to be in good agreement with the predicted value.

  11. Investigation of ultrafast photothermal surface expansion and diffusivity in GaAs via laser-induced dynamic gratings

    SciTech Connect (OSTI)

    Pennington, D.M.

    1992-04-01T23:59:59.000Z

    This thesis details the first direct ultrafast measurements of the dynamic thermal expansion of a surface and the temperature dependent surface thermal diffusivity using a two-color reflection transient grating technique. Studies were performed on p-type, n-type, and undoped GaAs(100) samples over a wide range of temperatures. By utilizing a 90 fs ultraviolet probe with visible excitation beams, the effects of interband saturation and carrier dynamics become negligible; thus lattice expansion due to heating and subsequent contraction caused by cooling provided the dominant influence on the probe. At room temperature a rise due to thermal expansion was observed, corresponding to a maximum net displacement of {approximately} 1 {Angstrom} at 32 ps. The diffracted signal was composed of two components, thermal expansion of the surface and heat flow away from the surface, thus allowing a determination of the rate of expansion as well as the surface thermal diffusivity, D{sub S}. By varying the fringe spacing of the grating, this technique has the potential to separate the signal contributions to the expansion of the lattice in the perpendicular and parallel directions. In the data presented here a large fringe spacing was used, thus the dominant contribution to the rising edge of the signal was expansion perpendicular to the surface. Comparison of he results with a straightforward thermal model yields good agreement over a range of temperatures (20--300{degrees}K). Values for D{sub S} in GaAs were measured and found to be in reasonable agreement with bulk values above 50{degrees}K. Below 50{degrees}K, D{sub S} were determined to be up to an order of magnitude slower than the bulk diffusivity due to increased phonon boundary scattering. The applicability and advantages of the TG technique for studying photothermal and photoacoustic phenomena are discussed.

  12. Two-phase, two-component Stirling engine with controlled evaporation

    SciTech Connect (OSTI)

    West, C.D.

    1982-12-01T23:59:59.000Z

    In a Stirling-like engine, the specific power can be greatly increased by the use of a two-component, two-phase working fluid. Theory and experiments have indicated that a two- to threefold increase is easily attainable. This report shows that by controlling the rate at which the liquid is evaporated into the expansion cylinder, still larger increases may be achieved under quite reasonable operating conditions. Successful application of this principle would make it practicable to operate engines with moderate hot-end temperatures and perhaps even with the very low temperatures available from simple nontracking solar collectors.

  13. PHASE CHANGE LIQUIDS

    SciTech Connect (OSTI)

    Susan S. Sorini; John F. Schabron

    2006-03-01T23:59:59.000Z

    Work is being performed to develop a new shipping system for frozen environmental samples (or other materials) that uses an optimal phase change liquid (PCL) formulation and an insulated shipping container with an on-board digital temperature data logger to provide a history of the temperature profile within the container during shipment. In previous work, several PCL formulations with temperatures of fusion ranging from approximately -14 to -20 C were prepared and evaluated. Both temperature of fusion and heat of fusion of the formulations were measured, and an optimal PCL formulation was selected. The PCL was frozen in plastic bags and tested for its temperature profile in a cooler using a digital temperature data logger. This testing showed that the PCL formulation can maintain freezer temperatures (< -7 to -20 C) for an extended period, such as the time for shipping samples by overnight courier. The results of the experiments described in this report provide significant information for use in developing an integrated freezer system that uses a PCL formulation to maintain freezer temperatures in coolers for shipping environmental samples to the laboratory. Experimental results show the importance of the type of cooler used in the system and that use of an insulating material within the cooler improves the performance of the freezer system. A new optimal PCL formulation for use in the system has been determined. The new formulation has been shown to maintain temperatures at < -7 to -20 C for 47 hours in an insulated cooler system containing soil samples. These results are very promising for developing the new technology.

  14. Three phase downhole separator process

    DOE Patents [OSTI]

    Cognata, Louis John (Baytown, TX)

    2008-06-24T23:59:59.000Z

    Three Phase Downhole Separator Process (TPDSP) is a process which results in the separation of all three phases, (1) oil, (2) gas, and (3) water, at the downhole location in the well bore, water disposal injection downhole, and oil and gas production uphole.

  15. The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations

    SciTech Connect (OSTI)

    Kirby, Brendan J [ORNL

    2006-07-01T23:59:59.000Z

    Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.

  16. Theory and tests of two-phase turbines

    SciTech Connect (OSTI)

    Elliot, D.G.

    1982-03-15T23:59:59.000Z

    Two-phase turbines open the possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation turbine engines, and engine bottoming cycles. A theoretical model for two-phase impulse turbines was developed. Apparatus was constructed for testing one- and two-stage turbines (using speed decrease from stage to stage). Turbines were tested with water-and-nitrogen mixtures and Refrigerant 22. Nozzle efficiencies were 0.78 (measured) and 0.72 (theoretical) for water-and-nitrogen mixtures at a water/nitrogen mixture ratio of 68, by mass; and 0.89 (measured) and 0.84 (theoretical) for Refrigerant 22 expanding from 0.02 quality to 0.28 quality. Blade efficiencies (shaft power before windage and bearing loss divided by nozzle jet power) were 0.63 (measured) and 0.71 (theoretical) for water-and-nitrogen mixtures and 0.62 (measured) and 0.63 (theoretical) for Refrigerant 22 with a single-stage turbine, and 0.70 (measured) and 0.85 (theoretical) for water-and-nitrogen mixtures with a two-stage turbine.

  17. Early-Phase Spectra of "Hypernova" SN 2002ap

    E-Print Network [OSTI]

    K. Kinugasa; H. Kawakita; K. Ayani; T. Kawabata; H. Yamaoka; J. S. Deng; P. A. Mazzali; K. Maeda; K. Nomoto

    2002-08-29T23:59:59.000Z

    The spectral evolution of the peculiar SN Ic 2002ap during the first 40 days is presented. The spectra display very broad absorption features, which are typical of "hypernovae". The maximum expansion velocity measured on the earliest spectra exceeds 3 times 10^4 km s^{-1}. The spectrum of SN 2002ap at the epoch of maximum brightness resembles that of SN 1997ef more than that of SN 1998bw. The spectral evolution of SN 2002ap proceeds at about 1.5 times the rate of SN 1997ef. The parameterized supernova spectrum synthesis code SYNOW was used to perform line identification and deduce velocity information from the early-phase spectra, which are heavily affected by line blending. The photospheric velocity, as deduced from the fitting results and from the blueshift of the \\ion{Si}{2} lambda 6355 absorption minimum, is lower than in previously studied hypernovae. At advanced epochs, the \\ion{Si}{2} lambda 6355 absorption minimum becomes difficult to distinguish. This may be caused by the growth of [\\ion{O}{1}] lambda lambda 6300, 6364 emission. Together with the rapid spectral evolution, this suggests that SN 2002ap should enter the nebular phase sooner than previously studied hypernovae.

  18. Energy Budget of Cosmological First-order Phase Transitions

    E-Print Network [OSTI]

    Jose R. Espinosa; Thomas Konstandin; Jose M. No; Geraldine Servant

    2010-04-23T23:59:59.000Z

    The study of the hydrodynamics of bubble growth in first-order phase transitions is very relevant for electroweak baryogenesis, as the baryon asymmetry depends sensitively on the bubble wall velocity, and also for predicting the size of the gravity wave signal resulting from bubble collisions, which depends on both the bubble wall velocity and the plasma fluid velocity. We perform such study in different bubble expansion regimes, namely deflagrations, detonations, hybrids (steady states) and runaway solutions (accelerating wall), without relying on a specific particle physics model. We compute the efficiency of the transfer of vacuum energy to the bubble wall and the plasma in all regimes. We clarify the condition determining the runaway regime and stress that in most models of strong first-order phase transitions this will modify expectations for the gravity wave signal. Indeed, in this case, most of the kinetic energy is concentrated in the wall and almost no turbulent fluid motions are expected since the surrounding fluid is kept mostly at rest.

  19. Seismic Safety Margins Research Program, Phase I. Project II: seismic input. Compilation, assessment and expansion of the strong earthquake ground motion data base

    SciTech Connect (OSTI)

    Crouse, C B; Hileman, J A; Turner, B E; Martin, G R

    1980-04-01T23:59:59.000Z

    A catalog has been prepared which contains information for: (1) world-wide, ground-motion accelerograms, (2) the accelerograph sites where these records were obtained, and (3) the seismological parameters of the causative earthquakes. The catalog is limited to data for those accelerograms which have been digitized and published. In addition, the quality and completeness of these data are assessed. This catalog is unique because it is the only publication which contains comprehensive information on the recording conditions of all known digitized accelerograms. However, information for many accelerograms is missing. Although some literature may have been overlooked, most of the missing data has not been published. Nevertheless, the catalog provides a convenient reference and useful tool for earthquake engineering research and applications.

  20. Assemblies and methods for mitigating effects of reactor pressure vessel expansion

    DOE Patents [OSTI]

    Challberg, Roy C. (Livermore, CA); Gou, Perng-Fei (Saratoga, CA); Chu, Cherk Lam (San Jose, CA); Oliver, Robert P. (Topsham, ME)

    1999-01-01T23:59:59.000Z

    Support assemblies for allowing RPV radial expansion while simultaneously limiting horizontal, vertical, and azimuthal movement of the RPV within a nuclear reactor are described. In one embodiment, the support assembly includes a support block and a guide block. The support block includes a first portion and a second portion, and the first portion is rigidly coupled to the RPV adjacent the first portion. The guide block is rigidly coupled to a reactor pressure vessel support structure and includes a channel sized to receive the second portion of the support block. The second portion of the support block is positioned in the guide block channel to movably couple the guide block to the support block.

  1. Cosmic expansion and growth histories in Galileon scalar-tensor models of dark energy

    E-Print Network [OSTI]

    Tsutomu Kobayashi

    2010-05-29T23:59:59.000Z

    We study models of late-time cosmic acceleration in terms of scalar-tensor theories generalized to include a certain class of non-linear derivative interaction of the scalar field. The non-linear effect suppress the scalar-mediated force at short distances to pass solar-system tests of gravity. It is found that the expansion history until today is almost indistinguishable from that of the $\\Lambda$CDM model or some (phantom) dark energy models, but the fate of the universe depends clearly on the model parameter. The growth index of matter density perturbations is computed to show that its past asymptotic value is given by 9/16, while the value today is as small as 0.4.

  2. Assemblies and methods for mitigating effects of reactor pressure vessel expansion

    DOE Patents [OSTI]

    Challberg, R.C.; Gou, P.F.; Chu, C.L.; Oliver, R.P.

    1999-07-27T23:59:59.000Z

    Support assemblies for allowing RPV radial expansion while simultaneously limiting horizontal, vertical, and azimuthal movement of the RPV within a nuclear reactor are described. In one embodiment, the support assembly includes a support block and a guide block. The support block includes a first portion and a second portion, and the first portion is rigidly coupled to the RPV adjacent the first portion. The guide block is rigidly coupled to a reactor pressure vessel support structure and includes a channel sized to receive the second portion of the support block. The second portion of the support block is positioned in the guide block channel to movably couple the guide block to the support block. 6 figs.

  3. The expansion of a collisionless plasma into a plasma of lower density

    SciTech Connect (OSTI)

    Perego, M.; Gunzburger, M. D. [Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306 (United States)] [Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306 (United States); Howell, P. D.; Ockendon, J. R.; Allen, J. E. [OCIAM, Mathematical Institute, Oxford University, 24-29 St Giles, OX1 3LB Oxford (United Kingdom)] [OCIAM, Mathematical Institute, Oxford University, 24-29 St Giles, OX1 3LB Oxford (United Kingdom)

    2013-05-15T23:59:59.000Z

    This paper considers the asymptotic and numerical solution of a simple model for the expansion of a collisionless plasma into a plasma of lower density. The dependence on the density ratio of qualitative and quantitative features of solutions of the well-known cold-ion model is explored. In the cold-ion limit, we find that a singularity develops in the ion density in finite time unless the density ratio is zero or close to unity. The classical cold-ion model may cease to be valid when such a singularity occurs and we then regularize the model by the finite ion-temperature Vlasov-Poisson system. Numerical evidence suggests the emergence of a multi-modal velocity distribution.

  4. Dynamical Instability and Expansion-free Condition in $f(R,T)$ Gravity

    E-Print Network [OSTI]

    Noureen, Ifra

    2015-01-01T23:59:59.000Z

    Dynamical analysis of spherically symmetric collapsing star surrounding in locally anisotropic environment with expansion-free condition is presented in $f(R,T)$ gravity, where $R$ corresponds to Ricci scalar and $T$ stands for the trace of energy momentum tensor. The modified field equations and evolution equations are reconstructed in the framework of $f(R,T)$ gravty. In order to acquire the collapse equation we implement the perturbation on all matter variables and dark source components comprising the viable $f(R,T)$ model. The instability range is described in Newtonian and post-Newtonian eras by constraining the adiabatic index $\\Gamma$ to maintain viability of considered model and stable stellar configuration.

  5. X-ray radiographic expansion measurements of isochorically heated thin wire targets

    SciTech Connect (OSTI)

    Hochhaus, D. C. [ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany) [ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany); Goethe-Universität, 60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main (Germany); Aurand, B. [ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany) [ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany); Johannes Gutenberg-Universität, 55099 Mainz (Germany); Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main (Germany); Basko, M. [ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany) [ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany); Alikhanov Institute for Theoretical and Experimental Physics, 117218 Moscow (Russian Federation); Ecker, B. [Johannes Gutenberg-Universität, 55099 Mainz (Germany) [Johannes Gutenberg-Universität, 55099 Mainz (Germany); Helmholtz-Institut Jena, 07743 Jena (Germany); Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main (Germany); Kühl, T. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany) [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Johannes Gutenberg-Universität, 55099 Mainz (Germany); Helmholtz-Institut Jena, 07743 Jena (Germany); ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany); Ma, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Rosmej, F. [UPMC, UMR7605, LULI, case 128, 4 Place Jussieu, 75252 Paris Cedex 05 (France) [UPMC, UMR7605, LULI, case 128, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Ecole Polytechnique, LULI, PAPD, Route de Saclay, 91128 Palaiseau Cedex (France); Zielbauer, B. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany) [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Jena, 07743 Jena (Germany); Neumayer, P. [ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany) [ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main (Germany)

    2013-06-15T23:59:59.000Z

    Solid density matter at temperatures ranging from 150 eV to <5 eV has been created by irradiating thin wire targets with high-energy laser pulses at intensities ?10{sup 18}W/cm{sup 2}. Energy deposition and transport of the laser-produced fast electrons are inferred from spatially resolved K{sub ?}-spectroscopy. Time resolved x-ray radiography is employed to image the target mass density up to solid density and proves isochoric heating. The subsequent hydrodynamic evolution of the target is observed for up to 3 ns and is compared to radiation-hydrodynamic simulations. At distances of several hundred micrometers from the laser interaction region, where temperatures of 5–20 eV and small temperature gradients are found, the hydrodynamic evolution of the wire is a near axially symmetric isentropic expansion, and good agreement between simulations and radiography data confirms heating of the wire over hundreds of micrometers.

  6. Approximate semi-analytical solutions for the steady-state expansion of a contactor plasma

    E-Print Network [OSTI]

    Camporeale, E; MacDonald, E A

    2015-01-01T23:59:59.000Z

    We study the steady-state expansion of a collisionless, electrostatic, quasi-neutral plasma plume into vacuum, with a fluid model. We analyze approximate semi-analytical solutions, that can be used in lieu of much more expensive numerical solutions. In particular, we focus on the earlier studies presented in Parks and Katz (1979), Korsun and Tverdokhlebova (1997), and Ashkenazy and Fruchtman (2001). By calculating the error with respect to the numerical solution, we can judge the range of validity for each solution. Moreover, we introduce a generalization of earlier models that has a wider range of applicability, in terms of plasma injection profiles. We conclude by showing a straightforward way to extend the discussed solutions to the case of a plasma plume injected with non-null azimuthal velocity.

  7. Review of Jamaica Public Service Company, Ltd. least-cost expansion plan.

    SciTech Connect (OSTI)

    Koritarov, V.; Buehring, W.; Cirillo, R.; Decision and Information Sciences

    2008-02-28T23:59:59.000Z

    Argonne National Laboratory has been asked to review the least-cost expansion plan (LCEP) of the Jamaica Public Service Company, Ltd. (JPSCo). The material that has been initially provided to Argonne included: (1) An electronic copy of the data and results from JPSCo's running the WASP electric system expansion planning model, (2) Approximately 20 pages of a document 'JPSCo Generation Expansion Plan', marked 'DRAFT 002', date unknown, and (3) The report 'JPSCo Least Cost Generation Expansion Plans, (1999-2009)', January 1999. It was noticed that the 20 pages from the 'DRAFT 002' document were different from the January 1999 report. An explanation was provided to Argonne that the excerpt was from an earlier draft and that the review should focus on the January 1999 report. Further, the electronic copy of the WASP case did not correspond to either the January 1999 report or to the 20-page excerpt. Again, the reason for these discrepancies was that the WASP case provided to Argonne was an earlier case and not the final one that was presented in the report. Based on the review of the available material, Argonne experts have prepared and submitted to the National Investment Bank of Jamaica (NIBJ) a preliminary draft report containing the initial findings, comments, questions and observations. As many of the comments and questions raised in the preliminary review needed to be discussed with the appropriate staff of JPSCo and other Jamaican experts, a 3-day mission to Jamaica was carried out by one Argonne expert (V. Koritarov) in the period July 20-23, 1999. Besides JPSCo experts, the discussions and the review of the LCEP during the mission included several experts from NIBJ, Ministry of Energy, and the Petroleum Corporation of Jamaica. Mr. Koritarov also worked with the JPSCo technical staff to reconstruct the WASP base case that was used as a basis for the January 1999 report. The first step was to verify that the results obtained after the resimulation of this case were identical to those presented in the January 1999 report. Then, in the next step, the Argonne expert and JPSCo team reviewed this case in detail and performed certain modifications and improvements of data where necessary. These modifications and data adjustments resulted in a new base case that served as a basis for further review and for the sensitivity analyses. Several sensitivity analyses were performed together with JPSCo experts and the results were discussed with the JPSCo management and other Jamaican experts at the end of the mission. Additional sensitivity analyses, as well as the cases for high and low load forecasts, were conducted by Mr. Koritarov after returning from Jamaica. The main findings of the review and issues that have been discussed with the Jamaican team can be summarized.

  8. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOE Patents [OSTI]

    Erickson, D.C.

    1985-06-04T23:59:59.000Z

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power. 1 fig.

  9. Single-enzyme kinetics with branched pathways: exact theory and series expansion

    E-Print Network [OSTI]

    Ashok Garai; Debashish Chowdhury

    2014-12-10T23:59:59.000Z

    The progress of the successive rounds of catalytic conversion of substrates into product(s) by a single enzyme is characterized by the distribution of turnover times. Establishing the most general form of dependence of this distribution on the substrate concentration [S] is one of the fundamental challenges in single molecule enzymology. The distribution of the times of dwell of a molecular motor at the successive positions on its track is an analogous quantity. We derive approximate series expansions for the [ATP]-dependence of the first two moments of the dwell time distributions of motors that catalyze hydrolysis of ATP to draw input energy. Comparison between our results for motors with branched pathways and the corresponding expressions reported earlier for linear enzymatic pathways provides deep insight into the effects of the branches. Such insight is likely to help in discovering the most general form of [S]-dependence of these fundamental distributions.

  10. Semi-device-independent randomness expansion with partially free random sources

    E-Print Network [OSTI]

    Yu-Qian Zhou; Hong-Wei Li; Yu-Kun Wang; Dan-Dan Li; Fei Gao; Qiao-Yan Wen

    2015-03-30T23:59:59.000Z

    By proposing device-independent protocols, S. Pironio et al. [Nature 464, 1021-1024 (2010)] and R. Colbeck et al. [Nature Physics 8, 450-453 (2012)] proved that new randomness can be generated by using perfectly free random sources or partially free ones as seed. Subsequently, Li et al. [Phys. Rev. A 84, 034301 (2011)] studied this topic in the framework of semi-device-independent and proved that new randomness can be obtained from perfectly free random sources. Here we discuss whether and how partially free random sources bring us new randomness in semi-device-independent scenario. We propose a semi-device-independent randomness expansion protocol with partially free random sources, and obtain the condition that the partially free random sources should satisfy to generate new randomness. In the process of analysis, we acquire a new 2-dimensional quantum witness. Furthermore, we get the analytic relationship between the generated randomness and the 2-dimensional quantum witness violation.

  11. Method for fabricating an ultra-low expansion mask blank having a crystalline silicon layer

    DOE Patents [OSTI]

    Cardinale, Gregory F. (Oakland, CA)

    2002-01-01T23:59:59.000Z

    A method for fabricating masks for extreme ultraviolet lithography (EUVL) using Ultra-Low Expansion (ULE) substrates and crystalline silicon. ULE substrates are required for the necessary thermal management in EUVL mask blanks, and defect detection and classification have been obtained using crystalline silicon substrate materials. Thus, this method provides the advantages for both the ULE substrate and the crystalline silicon in an Extreme Ultra-Violet (EUV) mask blank. The method is carried out by bonding a crystalline silicon wafer or member to a ULE wafer or substrate and thinning the silicon to produce a 5-10 .mu.m thick crystalline silicon layer on the surface of the ULE substrate. The thinning of the crystalline silicon may be carried out, for example, by chemical mechanical polishing and if necessary or desired, oxidizing the silicon followed by etching to the desired thickness of the silicon.

  12. Predicting Pattern Tooling and Casting Dimensions for Investment Casting, Phase III

    SciTech Connect (OSTI)

    Sabau, Adrian S [ORNL

    2008-04-01T23:59:59.000Z

    Efforts during Phase III focused mainly on the shell-alloy systems. A high melting point alloy, 17-4PH stainless steel, was considered. The experimental part of the program was conducted at ORNL and commercial foundries, where wax patterns were injected, molds were invested, and alloys were poured. Shell molds made of fused-silica and alumino-silicates were considered. A literature review was conducted on thermophysical and thermomechanical properties alumino-silicates. Material property data, which were not available from material suppliers, was obtained. For all the properties of 17-4PH stainless steel, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. Thus, some material properties were evaluated using ProCAST, based on CompuTherm database. A comparison between the predicted material property data and measured property data was made. It was found that most material properties were accurately predicted only over several temperature ranges. No experimental data for plastic modulus were found. Thus, several assumptions were made and ProCAST recommendations were followed in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted during heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution on heating and cooling. Numerical simulations were performed using ProCAST for the investment casting of 17-4PH stainless steel parts in fused silica molds using the thermal expansion obtained on heating and another one with thermal expansion obtained on cooling. Since the fused silica shells had the lowest thermal expansion properties in the industry, the dewaxing phase, including the coupling between wax-shell systems, was neglected. The shell mold was considered to be a pure elastic material. The alloy dimensions were obtained from numerical simulations. For 17-4PH stainless steel parts, the alloy shrinkage factors were over-predicted, as compared with experimental data. Additional R&D focus was placed on obtaining material property data for filled waxes, waxes that are common in the industry. For the first time in the investment casting industry, the thermo-mechanical properties of unfilled and filled waxes were measured. Test specimens of three waxes were injected at commercial foundries. Rheometry measurement of filled waxes was conducted at ORNL. The analysis of the rheometry data to obtain viscoelastic properties was not completed due to the reduction in the budget of the project (approximately 50% funds were received).

  13. Exploring Cosmological Expansion Parametrizations with the Gold SnIa Dataset

    E-Print Network [OSTI]

    R. Lazkoz; S. Nesseris; L. Perivolaropoulos

    2005-11-10T23:59:59.000Z

    We use the SnIa Gold dataset to compare LCDM with 10 representative parametrizations of the recent Hubble expansion history $H(z)$. For the comparison we use two statistical tests; the usual $\\chi_{min}^2$ which is insensitive to the parametrization number of parameters, and a statistic we call the p-test which depends on both the value of $\\chi_{min}^2$ and the number $n$ of the parametrization parameters. The p-test measures the confidence level to which the parameter values corresponding to LCDM are excluded from the viewpoint of the parametrization tested. For example, for a linear equation of state parametrization $w(z)=w_0 + w_1 z$ the LCDM parameter values ($w_0=-1$, $w_1=0$) are excluded at 75% confidence level. We use a flat prior and $\\Omega_{0m}=0.3$. All parametrizations tested are consistent with the Gold dataset at their best fit. According to both statistical tests, the worst fits among the 10 parametrizations, correspond to the Chaplygin gas, the brane world and the Cardassian parametrizations. The best fit is achieved by oscillating parametrizations which can exclude the parameter values corresponding to LCDM at 85% confidence level. Even though this level of significance does not provide a statistically significant exclusion of LCDM (it is less than $2\\sigma$) and does not by itself constitute conclusive evidence for oscillations in the cosmological expansion, when combined with similar independent recent evidence for oscillations coming from the CMB and matter power spectra it becomes an issue worth of further investigation.

  14. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion

    SciTech Connect (OSTI)

    Coleman, J.J.; Rounsley, S.D.; Rodriguez-Carres, M.; Kuo, A.; Wasmann, C.c.; Grimwood, J.; Schmutz, J.; Taga, M.; White, G.J.; Zhuo, S.; Schwartz, D.C.; Freitag, M.; Ma, L.-J.; Danchin, E.G.J.; Henrissat, B.; Cutinho, P.M.; Nelson, D.R.; Straney, D.; Napoli, C.A.; Baker, B.M.; Gribskov, M.; Rep, M.; Kroken, S.; Molnar, I.; Rensing, C.; Kennell, J.C.; Zamora, J.; Farman, M.L.; Selker, E.U.; Salamov, A.; Shapiro, H.; Pangilinan, J.; Lindquist, E.; Lamers, C.; Grigoriev, I.V.; Geiser, D.M.; Covert, S.F.; Temporini, S.; VanEtten, H.D.

    2009-04-20T23:59:59.000Z

    The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani), is a member of a group of .50 species known as the"Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on .100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI). Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique genes on supernumerary chromosomes might account for individual isolates having different environmental niches.

  15. Hubble expansion and structure formation in the "running FLRW model" of the cosmic evolution

    E-Print Network [OSTI]

    Javier Grande; Joan Sola; Spyros Basilakos; Manolis Plionis

    2011-08-07T23:59:59.000Z

    A new class of FLRW cosmological models with time-evolving fundamental parameters should emerge naturally from a description of the expansion of the universe based on the first principles of quantum field theory and string theory. Within this general paradigm, one expects that both the gravitational Newton's coupling, G, and the cosmological term, Lambda, should not be strictly constant but appear rather as smooth functions of the Hubble rate. This scenario ("running FLRW model") predicts, in a natural way, the existence of dynamical dark energy without invoking the participation of extraneous scalar fields. In this paper, we perform a detailed study of these models in the light of the latest cosmological data, which serves to illustrate the phenomenological viability of the new dark energy paradigm as a serious alternative to the traditional scalar field approaches. By performing a joint likelihood analysis of the recent SNIa data, the CMB shift parameter, and the BAOs traced by the Sloan Digital Sky Survey, we put tight constraints on the main cosmological parameters. Furthermore, we derive the theoretically predicted dark-matter halo mass function and the corresponding redshift distribution of cluster-size halos for the "running" models studied. Despite the fact that these models closely reproduce the standard LCDM Hubble expansion, their normalization of the perturbation's power-spectrum varies, imposing, in many cases, a significantly different cluster-size halo redshift distribution. This fact indicates that it should be relatively easy to distinguish between the "running" models and the LCDM cosmology using realistic future X-ray and Sunyaev-Zeldovich cluster surveys.

  16. Liquid-phase compositions from vapor-phase analyses

    SciTech Connect (OSTI)

    Davis, W. Jr. (Oak Ridge Gaseous Diffusion Plant, TN (USA)); Cochran, H.D. (Oak Ridge National Lab., TN (USA))

    1990-02-01T23:59:59.000Z

    Arsenic normally is not considered to be a contaminant. However, because arsenic was found in many cylinders of UF{sub 6}, including in corrosion products, a study was performed of the distribution of the two arsenic fluorides, AsF{sub 3} and AsF{sub 5}, between liquid and vapor phases. The results of the study pertain to condensation or vaporization of liquid UF{sub 6}. This study includes use of various experimental data plus many extrapolations necessitated by the meagerness of the experimental data. The results of this study provide additional support for the vapor-liquid equilibrium model of J.M. Prausnitz and his coworkers as a means of describing the distribution of various impurities between vapor and liquid phases of UF{sub 6}. Thus, it is concluded that AsF{sub 3} will tend to concentrate in the liquid phase but that the concentration of AsF{sub 5} in the vapor phase will exceed its liquid-phase concentration by a factor of about 7.5, which is in agreement with experimental data. Because the weight of the liquid phase in a condensation operation may be in the range of thousands of times that of the vapor phase, most of any AsF{sub 5} will be in the liquid phase in spite of this separation factor of 7.5. It may also be concluded that any arsenic fluorides fed into a uranium isotope separation plant will either travel with other low-molecular-weight gases or react with materials present in the plant. 25 refs., 3 figs., 6 tabs.

  17. Phase space quantum mechanics - Direct

    SciTech Connect (OSTI)

    Nasiri, S.; Sobouti, Y.; Taati, F. [Institute for Advanced Studies in Basic Sciences, Zanjan, 45195-1159 (Iran, Islamic Republic of) and Department of Physics, Zanjan University, Zanjan (Iran); Institute for Advanced Studies in Basic Sciences, Zanjan, 45195-1159 (Iran, Islamic Republic of); Institute for Advanced Studies in Basic Sciences, Zanjan, 45195-1159 (Iran, Islamic Republic of) and Department of Physics, University of Kurdistan, D-78457 Sanadaj (Iran)

    2006-09-15T23:59:59.000Z

    Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.

  18. Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis

    SciTech Connect (OSTI)

    Sullivan, P.; Eurek, K.; Margolis, R.

    2014-07-01T23:59:59.000Z

    Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

  19. Generalization of the Brodsky-Lepage-Mackenzie optimization within the $\\{?\\}$-expansion and the Principle of Maximal Conformality

    E-Print Network [OSTI]

    A. L. Kataev; S. V. Mikhailov

    2015-01-11T23:59:59.000Z

    We discuss generalizations of the BLM optimization procedure for renormalization group invariant quantities. In this respect, we discuss in detail the features and construction of the $\\{\\beta\\}$--expansion representation instead of the standard perturbative series with regards to the Adler $D$-function and Bjorken polarized sum rules obtained in order of ${\\cal O}(\\alpha_s^4)$. Based on the $\\{\\beta\\}$--expansion we analyse different schemes of optimization, including the corrected Principle of Maximal Conformality, numerically illustrating their results. We suggest our scheme for the series optimization and apply it to both the above quantities.

  20. Chemical expansion of La0.8Sr0.2Fe0.7Ga0.3O3-Olivier Valentina

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1/26 Chemical expansion of La0.8Sr0.2Fe0.7Ga0.3O3- Olivier Valentina , Francis Millotb , Ã?ric: This paper deals with the chemical expansion measurements and modelling of La0.8Sr0.2Fe0.7Ga0.3O3 for lanthanum ferrite oxides, chemical expansion depends linearly on the Fe4+ concentration rather than

  1. Phase projection using three satellites

    E-Print Network [OSTI]

    Yeung, Michael C. (Michael Chi-Hang)

    2007-01-01T23:59:59.000Z

    This study seeks to investigate various techniques used in Interferometric Synthetic Aperture Radar (InSAR) during the phase unwrapping process and the noise filtering step. In particular, as intuition would follow, we ...

  2. Agenda Phase 2 Industry Day

    Broader source: Energy.gov (indexed) [DOE]

    JCTD Deputy Transition Manager, NAVFAC EXWC 11:00 - 11:15 Ft. Carson Sustainability and Net Zero Plan and Successes Hal Alguire, Director DPW 11:15 - 11:30 Phase 3, Future plans...

  3. Precision digital pulse phase generator

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-10-08T23:59:59.000Z

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.

  4. Gas-phase chemical dynamics

    SciTech Connect (OSTI)

    Weston, R.E. Jr.; Sears, T.J.; Preses, J.M. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01T23:59:59.000Z

    Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

  5. Precision digital pulse phase generator

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.

  6. Annu. Rev. Biomed. Eng. 2003. 5:11945 doi: 10.1146/annurev.bioeng.5.040202.121611

    E-Print Network [OSTI]

    Thompson, Paul

    by Annual Reviews. All rights reserved TEMPORAL DYNAMICS OF BRAIN ANATOMY Arthur W. Toga and Paul M, California 90095-1769; email: toga@loni.ucla.edu Key Words brain mapping, 4-D atlas, probabilistic atlas, computational anatomy s Abstract The brain changes profoundly in structure and function during develop- ment

  7. ETA CARINAE ACROSS THE 2003.5 MINIMUM: ANALYSIS IN THE VISIBLE AND NEAR-INFRARED SPECTRAL REGION

    SciTech Connect (OSTI)

    Nielsen, K. E.; Kober, G. Vieira [Catholic University of America, Washington, DC 20064 (United States); Weis, K.; Bomans, D. J. [Astronomisches Institut, Ruhr-Universitaet Bochum, Universitaetsstrasse 150, D-44780 Bochum (Germany); Gull, T. R. [Astrophysics Science Division, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Stahl, O. [ZAH, Landessternwarte Heidelberg-Koenigstuhl, D-69117 Heidelberg (Germany)], E-mail: krister.nielsen@nasa.gov

    2009-04-15T23:59:59.000Z

    We present an analysis of the visible through near-infrared spectrum of Eta Carinae ({eta} Car) and its ejecta obtained during the '{eta} Car Campaign with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT)'. This is a part of larger effort to present a complete {eta} Car spectrum, and extends the previously presented analyses with the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) in the UV (1240-3159 A) to 10,430 A. The spectrum in the mid- and near-UV is characterized by the ejecta absorption. At longer wavelengths, stellar wind features from the central source and narrow-emission lines from the Weigelt condensations dominate the spectrum. However, narrow absorption lines from the circumstellar shells are present. This paper provides a description of the spectrum between 3060 and 10,430 A, including line identifications of the ejecta absorption spectrum, the emission spectrum from the Weigelt condensations and the P Cygni stellar wind features. The high spectral resolving power of VLT/UVES enables equivalent width measurements of atomic and molecular absorption lines for elements with no transitions at the shorter wavelengths. However, the ground-based seeing and contributions of nebular-scattered radiation prevent direct comparison of measured equivalent widths in the VLT/UVES and HST/STIS spectra. Fortunately, HST/STIS and VLT/UVES have a small overlap in wavelength coverage which allows us to compare and adjust for the difference in scattered radiation entering the instruments' apertures. This paper provides a complete online VLT/UVES spectrum with line identifications and a spectral comparison between HST/STIS and VLT/UVES between 3060 and 3160 A.

  8. Cancrinite: Crystal Structure, Phase Transitions, and Dehydration Behavior with Temperature

    SciTech Connect (OSTI)

    Hassan,I.; Antao, S.; Parise, J.

    2006-01-01T23:59:59.000Z

    The structural behavior of a cancrinite, Na{sub 5.96}Ca{sub 1.52}[Al{sub 6}Si{sub 6}O{sub 24}](CO{sub 3}){sub 1.57}{center_dot}1.75H{sub 2}O, was determined by using in situ synchrotron X-ray powder diffraction data [{lambda} = 0.91806(5) {angstrom}] at room pressure and from 25 to 982 {sup o}C. The sample was heated at a rate of about 9.5 {sup o}C/min, and X-ray traces were collected at about 15 {sup o}C intervals. The satellite reflections in cancrinite were lost at about 504 {sup o}C, where a phase transition occurs. All the unit-cell parameters for cancrinite also show a discontinuity at 504 {sup o}C. Initially, the [Ca{center_dot}CO{sub 3}] clusters and their vacancies are ordered in the channels, and this ordering is destroyed on heating to give rise to the phase transition. Cancrinite loses water continuously until about 625 {sup o}C; thereafter an anhydrous cancrinite phase exists. From 25 to 952 {sup o}C, a minimal amount of CO{sub 2} is lost from the structure. Over this temperature range, the average bridging angle, which is an indication of the degree of rotation of the tetrahedra, increases from 143.7(4) to 147.7(5){sup o}. Rotations of the tetrahedra are caused by expansion of the Na1-O2 bond lengths.

  9. Phase diagram of the CF{sub 4} monolayer and bilayer on graphite

    SciTech Connect (OSTI)

    Thomas, Petros; Hess, George B., E-mail: gbh@virginia.edu [Physics Department, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2014-05-21T23:59:59.000Z

    We report an experimental study of physisorbed monolayers and bilayers of CF{sub 4} on graphite using infrared reflection absorption spectroscopy supplemented by ellipsometry. The symmetric C–F stretch mode ?{sub 3} near 1283 cm{sup ?1} in the gas is strongly blue shifted in the film by dynamic dipole coupling. This blue shift provides a very sensitive measure of the inter-molecular spacing in the monolayer and, less directly, in the bilayer. We find that important corrections are necessary to the volumetric coverage scales used in previous heat capacity and x-ray diffraction studies of this system. This requires quantitative and some qualitative changes to the previously proposed phase diagram. We find evidence for a new phase transition in the middle of the hexagonal incommensurate region and construct new phase diagrams in both the variables coverage-temperature and chemical potential-temperature. We determine the compressibility and thermal expansion in the low-pressure hexagonal incommensurate phase and values for the entropy change in several phase transitions. Below about 55 K there is evidence of solution of up to 7% of an impurity, most likely CO, in our monolayer but not the bilayer film.

  10. Phase diagram of the Bose-Hubbard model with T{sub 3} symmetry

    SciTech Connect (OSTI)

    Rizzi, Matteo; Fazio, Rosario [NEST CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Cataudella, Vittorio [COHERENTIA CNR-INFM and Dipartimento di Fisica, Universita Federico II, 80126 Naples (Italy)

    2006-04-01T23:59:59.000Z

    We study the quantum phase transition between the insulating and the globally coherent superfluid phases in the Bose-Hubbard model with T{sub 3} structure, the 'dice lattice'. Even in the absence of any frustration the superfluid phase is characterized by modulation of the order parameter on the different sublattices of the T{sub 3} structure. The zero-temperature critical point as a function of magnetic field shows the characteristic 'butterfly' form. At full frustration the superfluid region is strongly suppressed. In addition, due to the existence of the Aharonov-Bohm cages at f=1/2, we find some evidence for the existence of an intermediate insulating phase characterized by a zero superfluid stiffness but finite compressibility. In this intermediate phase bosons are localized due to the external frustration and the topology of the T{sub 3} lattice. We name this new phase the Aharonov-Bohm insulator. In the presence of charge frustration the phase diagram acquires the typical lobe structure. The form and hierarchy of the Mott insulating states with fractional fillings are dictated by the particular topology of the T{sub 3} lattice. The results presented were obtained by a variety of analytical methods: mean-field and variational techniques to approach the phase boundary from the superconducting side and a strongly coupled expansion appropriate for the Mott insulating region. In addition we performed quantum Monte Carlo simulations of the corresponding (2+1)-dimensional XY model to corroborate the analytical calculations with a more accurate quantitative analysis. We finally discuss experimental realization of the T{sub 3} lattice both with optical lattices and with Josephson junction arrays.

  11. Observations of a mode transition in a hydrogen hollow cathode discharge using phase resolved optical emission spectroscopy

    SciTech Connect (OSTI)

    Dixon, Sam, E-mail: sam.dixon@anu.edu.au; Charles, Christine; Dedrick, James; Boswell, Rod [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Gans, Timo; O'Connell, Deborah [Department of Physics, York Plasma Institute, University of York, Heslington, York YO10 5DD (United Kingdom)

    2014-07-07T23:59:59.000Z

    Two distinct operational modes are observed in a radio frequency (rf) low pressure hydrogen hollow cathode discharge. The mode transition is characterised by a change in total light emission and differing expansion structures. An intensified CCD camera is used to make phase resolved images of Balmer ? emission from the discharge. The low emission mode is consistent with a typical ? discharge, and appears to be driven by secondary electrons ejected from the cathode surface. The bright mode displays characteristics common to an inductive discharge, including increased optical emission, power factor, and temperature of the H{sub 2} gas. The bright mode precipitates the formation of a stationary shock in the expansion, observed as a dark region adjacent to the source-chamber interface.

  12. Phase measurement system using a dithered clock

    DOE Patents [OSTI]

    Fairley, C.R.; Patterson, S.R.

    1991-05-28T23:59:59.000Z

    A phase measurement system is disclosed which measures the phase shift between two signals by dithering a clock signal and averaging a plurality of measurements of the phase differences between the two signals. 8 figures.

  13. Computational phase imaging based on intensity transport

    E-Print Network [OSTI]

    Waller, Laura A. (Laura Ann)

    2010-01-01T23:59:59.000Z

    Light is a wave, having both an amplitude and a phase. However, optical frequencies are too high to allow direct detection of phase; thus, our eyes and cameras see only real values - intensity. Phase carries important ...

  14. ccsd-00003019,version1-7Oct2004 Expansion of a lithium gas in the BEC-BCS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ccsd-00003019,version1-7Oct2004 Expansion of a lithium gas in the BEC-BCS crossover J. Zhanga,b , E of the cloud in the BEC-BCS crossover region is measured. Finally we discuss the properties of p-wave Feshbach. Strongly interacting fermionic systems occur in a variety of physical processes, ranging from nuclear

  15. The influence of high quantity of fly ash on reducing the expansion due to ASR in the presence of alkalis

    E-Print Network [OSTI]

    Mohidekar, Saleel D.

    2000-01-01T23:59:59.000Z

    A testing program was devised to study the role of high volume fly ash (HVFA) in reducing the expansion caused by alkali-silica reaction (ASR). A series of modified ASTM C 1260 tests were performed, where the replacement of cement by Class F fly ash...

  16. Travaux mathematiques, Volume 19 (2011), 125166, c Universite du Luxembourg Berezin-Toeplitz quantization and its kernel expansion

    E-Print Network [OSTI]

    Ma, Xiaonan - Institut de Mathématiques de Jussieu, Université Paris 7

    of these expansions. Contents 1 Introduction 126 2 Quantization of K¨ahler manifolds 126 2.1 Bergman projections . . . . . . . . . . . . 141 2.6 Algebra of Toeplitz operators, Berezin-Toeplitz star-product . . . 145 2.7 Quantization geometric data of the manifold and prequantum bundle they found extensive and deep applications in the study

  17. SF2I.7.pdf CLEO:2014 2014 OSA Emission and expansion features of ns and fs laser ablation

    E-Print Network [OSTI]

    Harilal, S. S.

    of an ambient leading to further excitation of plume species as well as enhancing excited molecular species and hydrodynamic expansion dynamics of ns and fs laser ablated metal plasmas in the presence of an ambient were studied. The structure and dynamics of both ns and fs plumes obtained from optical diagnostic

  18. Expansions of the solutions of the biconfluent Heun equation in terms of incomplete Beta and Gamma functions

    E-Print Network [OSTI]

    C. Leroy; Y. Pashayan-Leroy; A. M. Ishkhanyan

    2014-10-30T23:59:59.000Z

    We consider the equations obeyed by different functions which involve the first or the second derivatives of the biconfluent Heun function. A notable feature of these equations is that they have at least one more regular singularity, as compared with the biconfluent Heun equation. The position of this extra singularity is defined by the accessory parameter of the biconfluent Heun equation, and in general it may be located at any point of the extended complex z-plane. Starting from these equations, we construct two different expansions of the solutions of the biconfluent Heun equation in terms of incomplete Beta functions. The first series applies single Beta functions as expansion functions, while the second one involves a combination of two Beta functions. The coefficients of expansions obey four- and five-term recurrence relations, respectively. It is shown that the proposed technique is potent to produce series solutions in terms of other special functions. Two examples of such expansions in terms of the incomplete Gamma functions are presented.

  19. Allergic diseases are those that are mediated by the expansion of the T helper 2 cell (TH

    E-Print Network [OSTI]

    Cai, Long

    Allergic diseases are those that are mediated by the expansion of the T helper 2 cell (TH 2-cell for common environmental allergens1 . Although almost half of the urban population worldwide is atopic. Allergic reactions are symptomatic responses to a normally innocuous environmental antigen. Allergic

  20. And if there was no need of dark energy to explain the acceleration of the expansion of the universe?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    And if there was no need of dark energy to explain the acceleration of the expansion, only the hypothetical presence of dark energy is used in present theories. But, the dimensions the pressure p (calculated within the Friedmann model) and the force density is a simple derivation

  1. The application of expansion foam on liquefied natural gas (LNG) to suppress LNG vapor and LNG pool fire thermal radiation

    E-Print Network [OSTI]

    Suardin, Jaffee Arizon

    2009-05-15T23:59:59.000Z

    ............... 131 Figure 85. Un-mitigated continuous spill - hydrocarbon camera snapshots .................. 133 Figure 86. Foamglas hydrocarbon camera snapshots ..................................................... 134 Figure 87. Methane cloud characteristics... - no suppression and with expansion foam .. 134 Figure 88. Methane concentration profile in the 65m 2 pit during Foamglas?PFS application .................................................................................................... 136 Figure 89. Methane...

  2. A Traffic Density Analysis of Proposed Ferry Service Expansion in San Francisco Bay Using a Maritime Simulation Model

    E-Print Network [OSTI]

    van Dorp, Johan René

    a Maritime Simulation Model Jason R. W. Merrick* Department of Statistical Sciences and Operations Research and their increases caused by three alternative expansion plans. The output of the simulation model is a geographic of congestion on the waterway and the effect this will have on the safety of vessels in the area. A simulation

  3. Brain-Based Target Expansion Daniel Afergan, Tomoki Shibata, Samuel W. Hincks, Evan M. Peck, Beste F. Yuksel, Remco Chang,

    E-Print Network [OSTI]

    Jacob, Robert J.K.

    F. Yuksel, Remco Chang, Robert J.K. Jacob Tufts University Medford, MA USA {afergan,tshibata,shincks,epeck02,byukse01,remco,jacob}@cs.tufts.edu ABSTRACT The bubble cursor is a promising cursor expansion that copies are not made or distributed for profit or commercial advantage and that copies bear this notice

  4. Gas/solvent-induced transformation and expansion of a nonporous solid to 1:1 host guest form

    SciTech Connect (OSTI)

    Thallapally, Praveen K.; McGrail, B. Peter; Dalgarno, Scott J.; Atwood, Jerry L.

    2008-07-01T23:59:59.000Z

    Herein we report the gas (CO2, N2O and propane) and solvent (CS2 and acetone) induced transformation and expansion of guest free thermodynamic form of a p-tert-butylcalix [4]arene to 1:1 host guest form.

  5. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    SciTech Connect (OSTI)

    Mills, Andrew; Phadke, Amol; Wiser, Ryan

    2010-02-16T23:59:59.000Z

    Building transmission to reach renewable energy (RE) goals requires coordination among renewable developers, utilities and transmission owners, resource and transmission planners, state and federal regulators, and environmental organizations. The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this report we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33% of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Of the renewable resources in WREZ resource hubs, and under the assumptions described in this report, our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33% RE target across nearly all scenarios analyzed (38-65%). Solar energy is almost always the second largest source (14-41%). Solar exceeds wind by a small margin only when solar thermal energy is assumed to experience cost reductions relative to all other technologies. Biomass, geothermal, and hydropower are found to represent a smaller portion of the selected resources, largely due to the limited resource quantity of these resources identified within the WREZ-identified hubs (16-23% combined). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Uncertainties and policies that impact bus-bar costs are the most important to evaluate carefully, but factors that impact transmission costs and the relative market value of each renewable option can also be important. Under scenarios in which each load zone must meet 33% of its load with delivered renewable energy from the WREZ-identified resource hubs, the total transmission investment required to meet the 33% west-wide RE target is estimated at between $22 billion and $34 billion. Although a few of the new transmission lines are very long - over 800 miles - most are relatively short, with average transmission distances ranging from 230-315 miles, depending on the scenario. Needed transmission expenditure are found to decline to $17 billion if wide use of renewable energy credits is allowed; consideration of renewable resources outside of WREZ-identified hubs would further reduce this transmission cost estimate. Even with total transmission expenditures of $17-34 billion, however, these costs still represent just 10-19% of the total delivered cost of renewable energy.

  6. Inverse operator representations of quantum phase

    E-Print Network [OSTI]

    G. M. Saxena

    2008-03-14T23:59:59.000Z

    We define quantum phase in terms of inverses of annihilation and creation operators. We show that like Susskind - Glogower phase operators, the measured phase operators and the unitary phase operators can be defined in terms of the inverse operators. However, for the unitary phase operator the Hilbert space includes the negative energy states. The quantum phase in inverse operator representation may find the applications in the field of quantum optics particularly in the squeezed states.

  7. The massive fermion phase for the U(N) Chern-Simons gauge theory in D=3 at large N

    SciTech Connect (OSTI)

    Bardeen, William A. [Fermilab

    2014-10-01T23:59:59.000Z

    We explore the phase structure of fermions in the U(N) Chern-Simons Gauge theory in three dimensions using the large N limit where N is the number of colors and the fermions are taken to be in the fundamental representation of the U(N) gauge group. In the large N limit, the theory retains its classical conformal behavior and considerable attention has been paid to possible AdS/CFT dualities of the theory in the conformal phase. In this paper we present a solution for the massive phase of the fermion theory that is exact to the leading order of ‘t Hooft’s large N expansion. We present evidence for the spontaneous breaking of the exact scale symmetry and analyze the properties of the dilaton that appears as the Goldstone boson of scale symmetry breaking.

  8. Absence of Thermophoretic Flow in Relativistic Heavy-Ion Collisions as an Indicator for the Absence of a Mixed Phase

    E-Print Network [OSTI]

    Markus H. Thoma

    2002-04-30T23:59:59.000Z

    If a quark-gluon plasma is formed in relativistic heavy-ion collisions, there may or may not be a mixed phase of quarks, gluons and hadronic clusters when the critical temperature is reached in the expansion of the fireball. If there is a temperature gradient in the fireball, the hadronic clusters, embedded in the heat bath of quarks and gluons, are subjected to a thermophoretic force. It is shown that even for small temperature gradients and short lifetimes of the mixed phase, thermophoresis would lead to a flow essentially stronger than the observed one. The absence of this strong flow provides support for a rapid or sudden hadronization mechanism without a mixed phase.

  9. High-resolution thermal expansion measurements under helium-gas pressure

    SciTech Connect (OSTI)

    Manna, Rudra Sekhar; Wolf, Bernd; Souza, Mariano de; Lang, Michael [Physics Institute, Goethe University Frankfurt(M), SFB/TR49, D-60438 Frankfurt am Main (Germany)

    2012-08-15T23:59:59.000Z

    We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4 K Less-Than-Or-Slanted-Equal-To T Less-Than-Or-Slanted-Equal-To 300 K and hydrostatic pressure P Less-Than-Or-Slanted-Equal-To 250 MPa. Helium ({sup 4}He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P Asymptotically-Equal-To 0.1 MPa (ambient pressure) and 104 MPa on a single crystal of azurite, Cu{sub 3}(CO{sub 3}){sub 2}(OH){sub 2}, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system.

  10. Time asymmetric spacetimes near null and spatial infinity. I. Expansions of developments of conformally flat data

    E-Print Network [OSTI]

    J. A. Valiente Kroon

    2004-08-26T23:59:59.000Z

    The Conformal Einstein equations and the representation of spatial infinity as a cylinder introduced by Friedrich are used to analyse the behaviour of the gravitational field near null and spatial infinity for the development of data which are asymptotically Euclidean, conformally flat and time asymmetric. Our analysis allows for initial data whose second fundamental form is more general than the one given by the standard Bowen-York Ansatz. The Conformal Einstein equations imply upon evaluation on the cylinder at spatial infinity a hierarchy of transport equations which can be used to calculate in a recursive way asymptotic expansions for the gravitational field. It is found that the the solutions to these transport equations develop logarithmic divergences at certain critical sets where null infinity meets spatial infinity. Associated to these, there is a series of quantities expressible in terms of the initial data (obstructions), which if zero, preclude the appearance of some of the logarithmic divergences. The obstructions are, in general, time asymmetric. That is, the obstructions at the intersection of future null infinity with spatial infinity are different, and do not generically imply those obtained at the intersection of past null infinity with spatial infinity. The latter allows for the possibility of having spacetimes where future and past null infinity have different degrees of smoothness. Finally, it is shown that if both sets of obstructions vanish up to a certain order, then the initial data has to be asymptotically Schwarzschildean to some degree.

  11. Quantum field theory in curved spacetime, the operator product expansion, and dark energy

    E-Print Network [OSTI]

    S. Hollands; R. M. Wald

    2008-05-22T23:59:59.000Z

    To make sense of quantum field theory in an arbitrary (globally hyperbolic) curved spacetime, the theory must be formulated in a local and covariant manner in terms of locally measureable field observables. Since a generic curved spacetime does not possess symmetries or a unique notion of a vacuum state, the theory also must be formulated in a manner that does not require symmetries or a preferred notion of a ``vacuum state'' and ``particles''. We propose such a formulation of quantum field theory, wherein the operator product expansion (OPE) of the quantum fields is elevated to a fundamental status, and the quantum field theory is viewed as being defined by its OPE. Since the OPE coefficients may be better behaved than any quantities having to do with states, we suggest that it may be possible to perturbatively construct the OPE coefficients--and, thus, the quantum field theory. By contrast, ground/vacuum states--in spacetimes, such as Minkowski spacetime, where they may be defined--cannot vary analytically with the parameters of the theory. We argue that this implies that composite fields may acquire nonvanishing vacuum state expectation values due to nonperturbative effects. We speculate that this could account for the existence of a nonvanishing vacuum expectation value of the stress-energy tensor of a quantum field occurring at a scale much smaller than the natural scales of the theory.

  12. Expansion of the 5 DE Noviembre hydroelectric project, El Salvador, C.A.

    SciTech Connect (OSTI)

    Fuerte, E.G.; Mendoza, V. [Comision Ejecutiva Hidroelectrica del Rio Lempa, San Salvador (El Salvador); Wang, L.L. [Harza Engineering Co., Chicago, IL (United States)] [and others

    1995-12-31T23:59:59.000Z

    With an area of 21,050 square kilometers, the Republic of El Salvador is the smallest country in Central American. El Salvador, independent since 1821, is a democratic country with its President elected by popular vote for a five-year term. The population in El Salvador was estimated at 5.1 million in 1992. Over the period of 1984 to 1993, the peak load of the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) system, which serves about 98 percent of the country`s power needs, grew 6.5 percent per year. During the same period the energy generation increased at an annual rate of 6.8 percent. These growths were achieved in spite of the political turmoil and civil war that had gripped the country from 1980 to 1992. Since the end of the civil war, the country has witnessed significant economic recovery and growth. System demands will continue to increase at a rapid rate, due primarily to continued economic recovery and expansion resulting from establishment of the now political system. CEL generating facilities will be undergoing significant rehabilitation to correct the problems accumulated over the civil war period.

  13. Expansion of the Planet Detection Channels in Next-Generation Microlensing Surveys

    E-Print Network [OSTI]

    Cheongho Han

    2007-07-28T23:59:59.000Z

    We classify various types of planetary lensing signals and the channels of detecting them. We estimate the relative frequencies of planet detections through the individual channels with special emphasis on the new channels to be additionally provided by future lensing experiments that will survey wide fields continuously at high cadence by using very large-format imaging cameras. From this investigation, we find that the fraction of wide-separation planets that would be discovered through the new channels of detecting planetary signals as independent and repeating events would be substantial. We estimate that the fraction of planets detectable through the new channels would comprise ~15 -- 30% of all planets depending on the models of the planetary separation distribution and mass ratios of planets. Considering that a significant fraction of planets might exist in the form of free-floating planets, the frequency of planets to be detected through the new channel would be even higher. With the expansion of the channels of detecting planet, future lensing surveys will greatly expand the range of planets to be probed.

  14. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    SciTech Connect (OSTI)

    Dubey, P. K., E-mail: premkdubey@gmail.com; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar [Acoustics, Ultrasonics, Vibration Standards and Electronics Instrumentation Cell, CSIR–National Physical Laboratory, New Delhi 110012 (India)

    2014-05-15T23:59:59.000Z

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  15. The baryon vector current in the combined chiral and 1/Nc expansions

    SciTech Connect (OSTI)

    Flores-Mendieta, Ruben; Goity, Jose L [JLAB

    2014-12-01T23:59:59.000Z

    The baryon vector current is computed at one-loop order in large-Nc baryon chiral perturbation theory, where Nc is the number of colors. Loop graphs with octet and decuplet intermediate states are systematically incorporated into the analysis and the effects of the decuplet-octet mass difference and SU(3) flavor symmetry breaking are accounted for. There are large-Nc cancellations between different one-loop graphs as a consequence of the large-Nc spin-flavor symmetry of QCD baryons. The results are compared against the available experimental data through several fits in order to extract information about the unknown parameters. The large-Nc baryon chiral perturbation theory predictions are in very good agreement both with the expectations from the 1/Nc expansion and with the experimental data. The effect of SU(3) flavor symmetry breaking for the |Delta S|=1 vector current form factors f1(0) results in a reduction by a few percent with respect to the corresponding SU(3) symmetric values.

  16. PPN expansion and FRW scalar perturbations in n-DBI gravity

    E-Print Network [OSTI]

    Flávio S. Coelho; Carlos Herdeiro; Shinji Hirano; Yuki Sato

    2014-09-29T23:59:59.000Z

    n-DBI gravity explicitly breaks Lorentz invariance by the introduction of a unit time-like vector field, thereby giving rise to an extra (scalar) degree of freedom. We look for observational consequences of this mode in two setups. Firstly, we compute the parametrized post-Newtonian (PPN) expansion of the metric to first post-Newtonian order. Surprisingly, we find that the PPN parameters are exactly the same as in General Relativity (GR), and no preferred-frame effects are produced. In particular this means that n-DBI gravity is consistent with all GR solar system experimental tests. We discuss the origin of such degeneracy between n-DBI gravity and GR, and suggest it may also hold in higher post-Newtonian order. Secondly, we study gravitational scalar perturbations of a Friedmann-Robertson-Walker space-time with a cosmological constant $\\Lambda \\geq 0$. In the case of de Sitter space, we show that the scalar mode grows as the universe expands and, in contrast with a canonical scalar field coupled to GR, it does not freeze on super horizon scales.

  17. Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint

    SciTech Connect (OSTI)

    Cohen, S. M.; Macknick, J.; Averyt, K.; Meldrum, J.

    2014-05-01T23:59:59.000Z

    Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.

  18. Journal of Composite Materials, July 2006, Vol. 40 no. 13, 1163-1174 1163 Thermal Expansion of Aluminum/Fly Ash Cenosphere Composites Synthesized by

    E-Print Network [OSTI]

    Gupta, Nikhil

    Journal of Composite Materials, July 2006, Vol. 40 no. 13, 1163-1174 1163 Thermal Expansion of Aluminum/Fly Ash Cenosphere Composites Synthesized by Pressure Infiltration Technique P.K. Rohatgi1 , N of thermal expansions (CTEs) of commercially available pure aluminum and aluminum alloy composites containing

  19. Introduction Uniform Estimates for Transmission Problems 3D Multiscaled Asymptotic Expansion Numerical Simulations Skin-Effect Description in Electromagnetism with a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Numerical Simulations Skin-Effect Description in Electromagnetism with a Scaled Asymptotic Expansion Gabriel.08.2009 V. P´eron Skin-Effect Description in Electromagnetism with a Scaled Asymptotic Expansion 1 / 32 and Electromagnetism MONIQUE DAUGE, ERWAN FAOU, VICTOR P ´ERON (2009) Asymptotic Behavior at High Conductivity of Skin

  20. Phase Transformations in Confined Nanosystems

    SciTech Connect (OSTI)

    Shield, Jeffrey E. [Department of Mechanical & Materials Engineering] [Department of Mechanical & Materials Engineering; Belashchenko, Kirill [Department of Physics & Astronomy] [Department of Physics & Astronomy

    2014-04-29T23:59:59.000Z

    This project discovered that non-equilibrium structures, including chemically ordered structures not observed in bulk systems, form in isolated nanoscale systems. Further, a generalized model was developed that effectively explained the suppression of equilibrium phase transformations. This thermodynamic model considered the free energy decrease associated with the phase transformation was less than the increase in energy associated with the formation of an interphase interface, therefore inhibiting the phase transformation. A critical diameter exists where the system transitions to bulk behavior, and a generalized equation was formulated that successfully predicted this transition in the Fe-Au system. This provided and explains a new route to novel structures not possible in bulk systems. The structural characterization was accomplished using transmission electron microscopy in collaboration with Matthew Kramer of Ames Laboratory. The PI and graduate student visited Ames Laboratory several times a year to conduct the experiments.

  1. Geometric phase in Stückelberg interferometry

    E-Print Network [OSTI]

    Lih-King Lim; Jean-Noël Fuchs; Gilles Montambaux

    2014-12-18T23:59:59.000Z

    We study the time evolution of a two-dimensional quantum particle exhibiting an energy spectrum, made of two bands, with two Dirac cones, as e.g. in the band structure of a honeycomb lattice. A force is applied such that the particle experiences two Landau-Zener transitions in succession. The adiabatic evolution between the two transitions leads to St\\"uckelberg interferences, due to two possible trajectories in energy space. In addition to well-known dynamical and Stokes phases, the interference pattern reveals a geometric phase which depends on the chirality (winding number) and the mass sign associated to each Dirac cone, as well as on the type of trajectory (parallel or diagonal with respect to the two cones) in parameter space. This geometric phase reveals the coupling between the bands encoded in the structure of the wavefunctions.

  2. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    SciTech Connect (OSTI)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16T23:59:59.000Z

    Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

  3. Phase appearance or disappearance in two-phase flows

    E-Print Network [OSTI]

    Boyer, Edmond

    in a large variety of industrial or natural systems involving boiling or condensing fluids, reacting flows-phase flows. Such models have crucial importance in many industrial areas such as nuclear power plant safety considered. Numerical results are presented which demonstrate the efficiency of the proposed solutions. Key

  4. Protein phase feeding of poultry

    E-Print Network [OSTI]

    Vest, Larry Rufus

    1966-01-01T23:59:59.000Z

    PROTEIN PHASE FEEDING OF POULTRY A Thesis By Larry Rufus Vest Submitted to the Graduate College of the Texas AM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE January 1966 Major Subject Poultry... Science PROTEIN PHASE FEEDING OF POULTRY A Thesis Larry Rufus Vest Approved as to style and content by: man o o x tee par e em e e er January 1966 ACKNOWLEDGE MENTS Tbe author wishes to express his sincere gratitude and deep appreciation to Dr...

  5. The influence of strange quarks on QCD phase diagram and chemical freeze-out: Results from the hadron resonance gas model

    E-Print Network [OSTI]

    A. Tawfik

    2004-10-25T23:59:59.000Z

    We confront the lattice results on QCD phase diagram for two and three flavors with the hadron resonance gas model. Taking into account the truncations in the Taylor-expansion of energy density $\\epsilon$ done on the lattice at finite chemical potential $\\mu$, we find that the hadron resonance gas model under the condition of constant $\\epsilon$ describes very well the lattice phase diagram. We also calculate the chemical freeze-out curve according to the entropy density $s$. The $s$-values are taken from lattice QCD simulations with two and three flavors. We find that this condition is excellent in reproducing the experimentally estimated parameters of the chemical freeze-out.

  6. Phase Errors and the Capture Effect

    SciTech Connect (OSTI)

    Blair, J., and Machorro, E.

    2011-11-01T23:59:59.000Z

    This slide-show presents analysis of spectrograms and the phase error of filtered noise in a signal. When the filtered noise is smaller than the signal amplitude, the phase error can never exceed 90{deg}, so the average phase error over many cycles is zero: this is called the capture effect because the largest signal captures the phase and frequency determination.

  7. Linear phase distribution of acoustical vortices

    SciTech Connect (OSTI)

    Gao, Lu; Zheng, Haixiang [Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics Science and Technology, Nanjing Normal University, 1 Wenyuan Road, Xianlin District, Nanjing 210023 (China); Ma, Qingyu, E-mail: maqingyu@njnu.edu.cn [Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics Science and Technology, Nanjing Normal University, 1 Wenyuan Road, Xianlin District, Nanjing 210023 (China); Laboratory of Modern Acoustics of MOE, Nanjing University, Nanjing 210093 (China); Tu, Juan; Zhang, Dong [Laboratory of Modern Acoustics of MOE, Nanjing University, Nanjing 210093 (China)

    2014-07-14T23:59:59.000Z

    Linear phase distribution of phase-coded acoustical vortices was theoretically investigated based on the radiation theory of point source, and then confirmed by experimental measurements. With the proposed criterion of positive phase slope, the possibility of constructing linear circular phase distributions is demonstrated to be determined by source parameters. Improved phase linearity can be achieved at larger source number, lower frequency, smaller vortex radius, and/or longer axial distance. Good agreements are observed between numerical simulations and measurement results for circular phase distributions. The favorable results confirm the feasibility of precise phase control for acoustical vortices and suggest potential applications in particle manipulation.

  8. Representation of noncommutative phase space

    E-Print Network [OSTI]

    Kang Li; Jianhua Wang; Chiyi Chen

    2005-08-16T23:59:59.000Z

    The representations of the algebra of coordinates and momenta of noncommutative phase space are given. We study, as an example, the harmonic oscillator in noncommutative space of any dimension. Finally the map of Sch$\\ddot{o}$dinger equation from noncommutative space to commutative space is obtained.

  9. Phase and birefringence aberration correction

    DOE Patents [OSTI]

    Bowers, Mark (Modesto, CA); Hankla, Allen (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  10. Phase

    E-Print Network [OSTI]

    Shiro Saka; Esterification Biodiesel; Methanol Recovery

    -MeOH method; Saka process) for biodiesel fuel production. Even though the Saka process could produce high

  11. Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-03-01T23:59:59.000Z

    An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

  12. Constraints on Dark Energy from the Observed Expansion of our Cosmic Horizon

    E-Print Network [OSTI]

    Fulvio Melia

    2008-12-27T23:59:59.000Z

    Within the context of standard cosmology, an accelerating universe requires the presence of a third `dark' component of energy, beyond matter and radiation. The available data, however, are still deemed insufficient to distinguish between an evolving dark energy component and the simplest model of a time-independent cosmological constant. In this paper, we examine the cosmological expansion in terms of observer-dependent coordinates, in addition to the more conventional co-moving coordinates. This procedure explicitly reveals the role played by the radius R_h of our cosmic horizon in the interrogation of the data. (In Rindler's notation, R_h coincides with the `event horizon' in the case of de Sitter, but changes in time for other cosmologies that also contain matter and/or radiation.) With this approach, we show that the interpretation of dark energy as a cosmological constant is clearly disfavored by the observations. Within the framework of standard Friedman-Robertson-Walker cosmology, we derive an equation describing the evolution of R_h, and solve it using the WMAP and Type Ia supernova data. In particular, we consider the meaning of the observed equality (or near equality) R_h(t_0) ~ ct_0, where t_0 is the age of the Universe. This empirical result is far from trivial, for a cosmological constant would drive R_h(t) towards ct (where t is the cosmic time) only once--and that would have to occur right now. Though we are not here espousing any particular alternative model of dark energy, for comparison we also consider scenarios in which dark energy is given by scaling solutions, which simultaneously eliminate several conundrums in the standard model, including the `coincidence' and `flatness' problems, and account very well for the fact that R_h(t_0) ~ ct_0.

  13. Infrared Gupta-Bleuler Quantum Electrodynamics: Solvable Models And Perturbative Expansion

    E-Print Network [OSTI]

    Simone Zerella

    2014-11-10T23:59:59.000Z

    We study two Hamiltonian models, based on infrared approximations which render them solvable, in order to obtain an operator formulation of the soft-photon corrections to the scattering of a single electron, as given in Quantum Electrodynamics by the method of Feynman's diagrams. The first model is based on the same approximations of the Pauli-Fierz Hamiltonian, the second one stems from an expansion in powers of the four-momentum transfer, along the lines of Bloch and Nordsieck. For both models, the dynamics of the charge is accounted for by suitably chosen classical currents, interacting with the quantum e.m. potential. M\\"oller operators, preserving respectively the Hilbert scalar product, for the Coulomb-gauge formulation of the models, and an indefinite metric, for the formulation of the models in the Feynman-Gupta-Bleuler gauge, are obtained in the presence of an infrared cutoff, with the help of suitable renormalization counterterms. We show that the soft-photon corrections to the electron scattering under consideration are reproduced by suitable matrix elements of the M\\"oller operators pertaining to the model "of the Bloch-Nordsieck type", both in the FGB gauge and in the Coulomb gauge. Further, we prove that if one assumes that the charged particle is non relativistic and employs a dipole approximation, the resulting low-energy radiative corrections admit an operator formulation as well, in terms of the M\\"oller operators of the model "of Pauli-Fierz type", but lack the invariance property with respect to the gauge employed in their calculation. The reason why such a discrepancy occurs is finally traced back in full generality, also in connection with the Gupta-Bleuler formulation of non-relativistic models.

  14. fcc-hcp phase transformation in Co nanoparticles induced by swift heavy-ion irradiation

    SciTech Connect (OSTI)

    Sprouster, D. J.; Giulian, R.; Schnohr, C. S.; Araujo, L. L.; Kluth, P.; Byrne, A. P.; Foran, G. J.; Johannessen, B.; Ridgway, M. C. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Department of Physics, Faculty of Science, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Australian Nuclear Science and Technology Organization, Menai, New South Wales 2234 (Australia); Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia)

    2009-09-15T23:59:59.000Z

    We demonstrate a face-centered cubic (fcc) to hexagonally close-packed (hcp) phase transformation in spherical Co nanoparticles achieved via swift heavy-ion irradiation. Co nanoparticles of mean diameter 13.2 nm and fcc phase were first formed in amorphous SiO{sub 2} by ion implantation and thermal annealing and then irradiated at room temperature with 9-185 MeV Au ions. The crystallographic phase was identified with x-ray absorption spectroscopy and electron diffraction and quantified, as functions of the irradiation energy and fluence, with the former. The transformation was complete at low fluence prior to any change in nanoparticle shape or size and was governed by electronic stopping. A direct-impact mechanism was identified with the transformation interaction cross-section correlated with that of a molten ion track in amorphous SiO{sub 2}. We suggest the shear stress resulting from the rapid thermal expansion about an ion track in amorphous SiO{sub 2} was sufficient to initiate the fcc-to-hcp phase transformation in the Co nanoparticles.

  15. Alteration of gas phase ion polarizabilities upon hydration in high dielectric liquids

    E-Print Network [OSTI]

    Sahin Buyukdagli; Tapio Ala-Nissila

    2013-04-23T23:59:59.000Z

    We investigate the modification of gas phase ion polarizabilities upon solvation in polar solvents and ionic liquids. To this aim, we develop a classical electrostatic theory of charged liquids composed of solvent molecules modeled as finite size dipoles, and embedding polarizable ions that consist of Drude oscillators. In qualitative agreement with ab-initio calculations of polar solvents and ionic liquids, the hydration energy of a polarizable ion in both type of dielectric liquid is shown to favor the expansion of its electronic cloud. Namely, the ion carrying no dipole moment in the gas phase acquires a dipole moment in the liquid environment, but its electron cloud also reaches an enhanced rigidity. We find that the overall effect is an increase of the gas phase polarizability upon hydration. In the specific case of ionic liquids, it is shown that this hydration process is driven by a collective solvation mechanism where the dipole moment of a polarizable ion induced by its interaction with surrounding ions self-consistently adds to the polarization of the liquid, thereby amplifying the dielectric permittivity of the medium in a substantial way. We propose this self-consistent hydration as the underlying mechanism behind the high dielectric permittivities of ionic liquids composed of small charges with negligible gas phase dipole moment. Hydration being a correlation effect, the emerging picture indicates that electrostatic correlations cannot be neglected in polarizable liquids.

  16. Covariant phase space, constraints, gauge and the Peierls formula

    E-Print Network [OSTI]

    Igor Khavkine

    2014-02-07T23:59:59.000Z

    It is well known that both the symplectic structure and the Poisson brackets of classical field theory can be constructed directly from the Lagrangian in a covariant way, without passing through the non-covariant canonical Hamiltonian formalism. This is true even in the presence of constraints and gauge symmetries. These constructions go under the names of the covariant phase space formalism and the Peierls bracket. We review both of them, paying more careful attention, than usual, to the precise mathematical hypotheses that they require, illustrating them in examples. Also an extensive historical overview of the development of these constructions is provided. The novel aspect of our presentation is a significant expansion and generalization of an elegant and quite recent argument by Forger & Romero showing the equivalence between the resulting symplectic and Poisson structures without passing through the canonical Hamiltonian formalism as an intermediary. We generalize it to cover theories with constraints and gauge symmetries and formulate precise sufficient conditions under which the argument holds. These conditions include a local condition on the equations of motion that we call hyperbolizability, and some global conditions of cohomological nature. The details of our presentation may shed some light on subtle questions related to the Poisson structure of gauge theories and their quantization.

  17. Are Dark Matter and Dark Energy the Residue of the Expansion-Reaction to the Big Bang ?

    E-Print Network [OSTI]

    Harry I. Ringermacher; Lawrence R. Mead

    2006-10-16T23:59:59.000Z

    We derive the phenomenological Milgrom square-law acceleration, describing the apparent behavior of dark matter, as the reaction to the Big Bang from a model based on the Lorentz-Dirac equation of motion traditionally describing radiation reaction in electromagnetism but proven applicable to expansion reaction in cosmology. The model is applied within the Robertson-Walker hypersphere, and suggests that the Hubble expansion exactly cancels the classical reaction imparted to matter following the Big Bang, leaving behind a residue proportional to the square of the acceleration. The model further suggests that the energy density associated with the reaction acceleration is precisely the critical density for flattening the universe thus providing a potential explanation of dark energy as well. A test of this model is proposed.

  18. Phase slips and dissipation of Alfvenic intermediate shocks and solitons

    SciTech Connect (OSTI)

    Laveder, D.; Passot, T.; Sulem, P. L. [Universite de Nice-Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, B.P. 4229, 06304 Nice Cedex 4 (France)

    2012-09-15T23:59:59.000Z

    The time evolution of a rotational discontinuity, characterized by a change of the magnetic-field direction by an angle {Delta}{theta} such that {pi}<|{Delta}{theta}|<2{pi} and no amplitude variation, is considered in the framework of asymptotic models that, through reductive perturbative expansions, isolate the dynamics of parallel or quasi-parallel Alfven waves. In the presence of viscous and Ohmic dissipation, and for a zero or sufficiently weak dispersion (originating from the Hall effect), an intermediate shock rapidly forms, steepens and undergoes reconnection through a quasi gradient collapse, leading to a reduction of |{Delta}{theta}| by an amount of 2{pi}, which can be viewed as the breaking of a topological constraint. Afterwards, as |{Delta}{theta}|<{pi}, the intermediate shock broadens and slowly dissipates. In the case of a phase jump |{Delta}{theta}|>3{pi}, which corresponds to a wave train limited on both sides by uniform fields, a sequence of such reconnection processes takes place. Differently, in the presence of a strong enough dispersion, the rotational discontinuity evolves, depending on the sign of {Delta}{theta}, to a dark or bright soliton displaying a 2{pi} phase variation. The latter is then eliminated, directly by reconnection in the case of a dark soliton, or through a more complex process involving a quasi amplitude collapse in that of a bright soliton. Afterwards, the resulting structure is progressively damped. For a prescribed initial rotational discontinuity, both quasi gradient and amplitude collapses lead to a sizeable energy decay that in the collisional regime is independent of the diffusion coefficient {eta} but requires a time scaling like 1/{eta}. In the non-collisional regime where dissipation originates from Landau resonance, the amount of dissipated energy during the event is independent of the plasma {beta}, but the process becomes slower for smaller {beta}.

  19. hal-00123470,version1-9Jan2007 Expansion of a lithium gas in the BEC-BCS crossover

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    hal-00123470,version1-9Jan2007 Expansion of a lithium gas in the BEC-BCS crossover L. Tarruell1 , M an experimental study of the time of flight properties of a gas of ultra-cold fermions in the BEC-BCS crossover. Since interactions can be tuned by changing the value of the magnetic field, we are able to probe both

  20. Low-energy asymptotic expansion of the Green function for one-dimensional Fokker-Planck and Schrödinger equations

    E-Print Network [OSTI]

    Toru Miyazawa

    2011-12-26T23:59:59.000Z

    We consider Schr\\"odinger equations and Fokker-Planck equations in one dimension, and study the low-energy asymptotic behavior of the Green function using a new method. In this method, the coefficient of the expansion in powers of the wave number can be systematically calculated to arbitrary order, and the behavior of the remainder term can be analyzed on the basis of an expression in terms of transmission and reflection coefficients.

  1. Real-gas effects in the expansibility factor for subsonic differential-pressure flowmeters at high pressure

    SciTech Connect (OSTI)

    Finjord, J. (Rogaland U. Center (NO))

    1991-08-01T23:59:59.000Z

    Real-gas corrections in the expansibility factor are expressed by an equation of state (EOS). In this paper a virial EOS is introduced, with low-order virial coefficients calculated from a cubic EOS. The approach is composition-independent. EOS-dependent cancellations between real-gas effects are revealed. The current Intl. Organization for Standardization (ISO) standard is not always reliable for high-accuracy orifice measurements of gases with arbitrary composition.

  2. Quantum phases and dynamics of geometric phase in a quantum spin chain system under linear quench

    E-Print Network [OSTI]

    Sujit Sarkar; B. Basu

    2011-09-11T23:59:59.000Z

    We study the quantum phases of anisotropic XY spin chain system in presence and absence of adiabatic quench. A connection between geometric phase and criticality is established from the dynamical behaviour of the geometric phase for a quench induced quantum phase transition in a quantum spin chain. We predict XX criticality associated with a sequence of non-contractible geometric phases.

  3. Modeling Improvements for Air Source Heat Pumps using Different Expansion Devices at Varied Charge Levels Part II

    SciTech Connect (OSTI)

    Shen, Bo [ORNL

    2011-01-01T23:59:59.000Z

    This paper describes steady-state performance simulations performed on a 3-ton R-22 split heat pump in heating mode. In total, 150 steady-state points were simulated, which covers refrigerant charge levels from 70 % to 130% relative to the nominal value, the outdoor temperatures at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C), indoor air flow rates from 60% to 150% of the rated air flow rate, and two types of expansion devices (fixed orifice and thermostatic expansion valve). A charge tuning method, which is to calibrate the charge inventory model based on measurements at two operation conditions, was applied and shown to improve the system simulation accuracy significantly in an extensive range of charge levels. In addition, we discuss the effects of suction line accumulator in modeling a heat pump system using either a fixed orifice or thermal expansion valve. Last, we identify the issue of refrigerant mass flow mal-distribution at low charge levels and propose an improved modeling approach.

  4. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect (OSTI)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01T23:59:59.000Z

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  5. Optimizing a Modular Expansion of a Wastewater Treatment Plant Using Option Theory and Moment Matching Approximation Abstract

    E-Print Network [OSTI]

    Yuri Lawryshyn; Sebastian Jaimungal

    We consider a municipality faced with the question of how big to make their new wastewater treatment facility to meet the demand of 10 % expected growth in the number of new connections. Previously, we developed a real options framework for determining optimal plant size and showed that the model takes on the form of an Asian option. Furthermore, it was shown that if the connection rate growths are closely correlated with the market growth, then the penalty costs associated with having insufficient capacity to treat the wastewater can be effectively hedged, significantly reducing overall expected costs. In this study, we introduce an approximate analytical solution and optimize the plant size of a staged / modular expansion. Based on the given construction cost estimates, we show that a staged expansion has a minimal (expected) savings when connection growth rates are closely correlated to the market growth rates. However, as the correlation decreases to zero, or, alternatively, no attempt is made to hedge the penalty costs, a staged expansion has an expected savings of 20%.

  6. Thermophysical properties of coexistent phases of plutonium

    SciTech Connect (OSTI)

    Freibert, Franz J [Los Alamos National Laboratory; Mitchell, Jeremy N [Los Alamos National Laboratory; Saleh, Tarik A [Los Alamos National Laboratory; Schwartz, Dan S [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Plutonium is the element with the greatest number of allotropic phases. Thermally induced transformations between these phases are typically characterized by thermal hysteresis and incomplete phase reversion. With Ga substitutal in the lattice, low symmetry phases are replaced by a higher symmetry phase. However, the low temperature Martensitic phase transformation ({delta} {yields} {alpha}{prime}) in Ga stabilized {delta}-phase Pu is characterized by a region of thermal hysteresis which can reach 200 C in extent. These regions of thermal hysteresis offer a unique opportunity to study thermodynamics in inhomogeneous systems of coexistent phases. The results of thermophysical properties measured for samples of inhomogeneous unalloyed and Ga alloyed Pu will be discussed and compared with similar measurements of their single phase constituents.

  7. Fiber bundle phase conjugate mirror

    DOE Patents [OSTI]

    Ward, Benjamin G.

    2012-05-01T23:59:59.000Z

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  8. Is the beta phase maximal?

    SciTech Connect (OSTI)

    Ferrandis, Javier; Ferrandis, Javier

    2005-04-20T23:59:59.000Z

    indicates that 2|Vub / Vcb/ Vus| = (1-z) with z given by z = 0.19 +(-) 0.14. This fact implies that irrespective of the form of the quark Yukawa matrices, the measured value of the SM CP phase beta is approximately the maximum allowed by the measured absolute values of the CKM elements. This is beta = pi/6 - z/sqrt{3} for gamma = pi/3 + z/sqrt{3}, which implies alpha = pi/2. Alternatively, assuming that beta is exactly maximal and using the experimental measurement, sin(2beta) = 0.726+(-) 0.037, the phase gamma is predicted to be gamma = pi/2 - beta = 66.3 +(-) 1.7. The maximality of beta, if confirmed by the near-future experiments, may give us some clues as to the origin of CP violation.

  9. Light-driven phase shifter

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    A light-driven phase shifter is provided for modulating a transmission light beam. A gaseous medium such as argon is provided with electron energy states excited to populate a metastable state. A tunable dye laser is selected with a wavelength effective to deplete the metastable electron state and may be intensity modulated. The dye laser is directed through the gaseous medium to define a first optical path having an index of refraction determined by the gaseous medium having a depleted metastable electron state. A transmission laser beam is also directed through the gaseous medium to define a second optical path at least partially coincident with the first optical path. The intensity of the dye laser beam may then be varied to phase modulate the transmission laser beam.

  10. Agent review phase one report.

    SciTech Connect (OSTI)

    Zubelewicz, Alex Tadeusz; Davis, Christopher Edward; Bauer, Travis LaDell

    2009-12-01T23:59:59.000Z

    This report summarizes the findings for phase one of the agent review and discusses the review methods and results. The phase one review identified a short list of agent systems that would prove most useful in the service architecture of an information management, analysis, and retrieval system. Reviewers evaluated open-source and commercial multi-agent systems and scored them based upon viability, uniqueness, ease of development, ease of deployment, and ease of integration with other products. Based on these criteria, reviewers identified the ten most appropriate systems. The report also mentions several systems that reviewers deemed noteworthy for the ideas they implement, even if those systems are not the best choices for information management purposes.

  11. Load Expansion of Stoichiometric HCCI Using Spark Assist and Hydraulic Valve Actuation

    SciTech Connect (OSTI)

    Szybist, James P [ORNL; Nafziger, Eric J [ORNL

    2010-01-01T23:59:59.000Z

    A spark-assist homogeneous charge compression ignition (SA-HCCI) operating strategy is presented here that allows for stoichiometric combustion from 1000-3000 rpm, and at loads as high as 750 kPa net IMEP. A single cylinder gasoline engine equipped with direct fuel injection and fully variable hydraulic valve actuation (HVA) is used for this experimental study. The HVA system enables negative valve overlap (NVO) valve timing for hot internal EGR. Spark-assist stabilizes combustion over a wide range of engine speeds and loads, and allows for stoichiometric operation at all conditions. Characteristics of both spark-ignited combustion and HCCI are present, with combustion analysis showing a distinctive spark ignited phase of combustion, followed by a much more rapid HCCI combustion phase. At high load, the maximum pressure rise rate is controlled by a combination of spark timing and retarding the intake valve closing angle. The latter reduces the effective compression ratio, and therefore the compressive temperatures, allowing the high load limit of the operating range to be expanded. The SA-HCCI operating strategy exhibits improved thermal efficiency at most operating conditions, with fuel consumption improvements up to 9% realized at light engine loads. The SA-HCCI operating strategy presented here does not provide an efficiency advantage at all operating points compared to SI combustion; a decrease was observed at the highest speed and at loads above 500 kPa net IMEP. At light engine loads the majority of the heat release takes place during the HCCI phase of the heat release, and as such the NOx emissions are very low and are similar to levels observed in pure HCCI. At higher loads, a larger portion of the heat release takes place during the spark ignited phase of combustion, which produces NOx emissions that are much higher than is typically associated with HCCI, but still represent a decrease from conventional SI combustion. By limiting the fuel/air mixture to stoichiometric conditions, the higher NOx emissions do not represent an implementation barrier to this strategy because compatibility is maintained with very effective conventional 3-way catalysts.

  12. Phase comparator apparatus and method

    DOE Patents [OSTI]

    Coffield, F.E.

    1985-02-01T23:59:59.000Z

    This invention finds especially useful application for interferometer measurements made in plasma fusion devices (e.g., for measuring the line integral of electron density in the plasma). Such interferometers typically use very high intermediate frequencies (e.g., on the order of 10 to 70 MHz) and therefore the phase comparison circuitry should be a high speed circuit with a linear transfer characteristic so as to accurately differentiate between small fractions of interference fringes.

  13. Phase change material storage heater

    DOE Patents [OSTI]

    Goswami, D. Yogi (Gainesville, FL); Hsieh, Chung K. (Gainesville, FL); Jotshi, Chand K. (Gainesville, FL); Klausner, James F. (Gainesville, FL)

    1997-01-01T23:59:59.000Z

    A storage heater for storing heat and for heating a fluid, such as water, has an enclosure defining a chamber therein. The chamber has a lower portion and an upper portion with a heating element being disposed within the enclosure. A tube through which the fluid flows has an inlet and an outlet, both being disposed outside of the enclosure, and has a portion interconnecting the inlet and the outlet that passes through the enclosure. A densely packed bed of phase change material pellets is disposed within the enclosure and is surrounded by a viscous liquid, such as propylene glycol. The viscous liquid is in thermal communication with the heating element, the phase change material pellets, and the tube and transfers heat from the heating element to the pellets and from the pellets to the tube. The viscous fluid has a viscosity so that the frictional pressure drop of the fluid in contact with the phase change material pellets substantially reduces vertical thermal convection in the fluid. As the fluid flows through the tube heat is transferred from the viscous liquid to the fluid flowing through the tube, thereby heating the fluid.

  14. Confined Cubic Blue Phases under Shear

    E-Print Network [OSTI]

    O. Henrich; K. Stratford; D. Marenduzzo; P. V. Coveney; M. E. Cates

    2012-03-14T23:59:59.000Z

    We study the behaviour of confined cubic blue phases under shear flow via lattice Boltzmann simulations. We focus on the two experimentally observed phases, blue phase I and blue phase II. The disinclination network of blue phase II continuously breaks and reforms under shear, leading to an oscillatory stress response in time. The oscillations are only regular for very thin samples. For thicker samples, the shear leads to a "stick-slip" motion of part of the network along the vorticity direction. Blue phase I responds very differently: its defect network undergoes seemingly chaotic rearrangements under shear, irrespective of system size.

  15. Ponderomotive phase plate for transmission electron microscopes

    DOE Patents [OSTI]

    Reed, Bryan W. (Livermore, CA)

    2012-07-10T23:59:59.000Z

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  16. High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Uriarte, Maria

    High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon) 044029 (5pp) doi:10.1088/1748-9326/6/4/044029 High-yield oil palm expansion spares land at the expense by industrial-scale high-yield oil palm expansion in the Peruvian Amazon from 2000 to 2010, finding that 72

  17. Phase synchronization analysis by assessment of the phase difference gradient Martin Vejmelka

    E-Print Network [OSTI]

    Savicky, Petr

    of rhythms of self-sustained oscillatory systems. Typically when trying to identify phase synchronization of coupled self-sustained oscillatory systems, phase synchronization, given by a relation

  18. Science Learning+: Phase 1 projects Science Learning+

    E-Print Network [OSTI]

    Rambaut, Andrew

    Science Learning+: Phase 1 projects Science Learning+ Phase 1 projects 2 December 2014 #12..............................................................................................................4 Youth access and equity in informal science learning: developing a research and practice agenda..................................................................................................5 Enhancing informal learning through citizen science..............................................6

  19. FCH Optical Phase-Locked Loop

    E-Print Network [OSTI]

    Choi, Woo-Young

    ¦ î ¤ ü � ø Ð Ð ú ¸ � í ® FCH Optical Phase- Locked Loop� � û ³ è Optimization of Optica1 Phase

  20. CRAD, Engineering - Idaho Accelerated Retrieval Project Phase...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering - Idaho Accelerated Retrieval Project Phase II CRAD, Engineering - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2...

  1. CRAD, Management - Idaho Accelerated Retrieval Project Phase...

    Broader source: Energy.gov (indexed) [DOE]

    Management - Idaho Accelerated Retrieval Project Phase II CRAD, Management - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2...

  2. Studies of phase separable soluble polymers

    E-Print Network [OSTI]

    Furyk, Steven Michael

    2006-08-16T23:59:59.000Z

    (ethylene glycol) (PEG) oligomers were investigated as phase anchors for SCS palladacycle catalysts. The oligomeric PEG chains were sufficient to engender polar phase solubility in a heptane-DMA thermomorphic system. Microwave irradiation of these thermomorphic...

  3. JOM: Journal of the Minerals, Metals, and Materials Society, 2012, Vol. 62, Issue 10, pp. 1148-1157 Thermal expansion of carbon nanofiber reinforced multiscale polymer composites

    E-Print Network [OSTI]

    Gupta, Nikhil

    -1157 Thermal expansion of carbon nanofiber reinforced multiscale polymer composites Ronald Poveda, Sriniket. Keywords: Polymer matrix composite; nanocomposite; carbon nanofibers; thermal properties; coefficient materials. Therefore, understanding the trends observed in the CTE of composites with respect

  4. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, Barbara K. (Charleston, WV)

    1991-01-01T23:59:59.000Z

    Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  5. Subcritical Fluctuations at the Electroweak Phase Transition

    E-Print Network [OSTI]

    Rudnei O. Ramos

    1996-07-24T23:59:59.000Z

    We study the importance of thermal fluctuations during the electroweak phase transition. We evaluate in detail the equilibrium number density of large amplitude subcritical fluctuations and discuss the importance of phase mixing to the dynamics of the phase transition. Our results show that, for realistic Higgs masses, the phase transition can be completed by the percolation of the true vacuum, induced by the presence of subcritical fluctuations.

  6. Phase space path-integral formulation of the above-threshold ionization

    SciTech Connect (OSTI)

    Milosevic, D. B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina) [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Max-Born-Institut, Max-Born-Str. 2a, 12489 Berlin (Germany); Academy of Sciences and Arts of Bosnia and Herzegovina, Bistrik 7, 71000 Sarajevo (Bosnia and Herzegowina)

    2013-04-15T23:59:59.000Z

    Atoms and molecules submitted to a strong laser field can emit electrons of high energies in the above-threshold ionization (ATI) process. This process finds a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits [P. Salieres et al., Science 292, 902 (2001)]. However, the connection with the Feynman path-integral formalism is explained only by intuition and analogy and within the so-called strong-field approximation (SFA). Using the phase space path-integral formalism we have obtained an exact result for the momentum-space matrix element of the total time-evolution operator. Applying this result to the ATI we show that the SFA and the so-called improved SFA are, respectively, the zeroth- and the first-order terms of the expansion in powers of the laser-free effective interaction of the electron with the rest of the atom (molecule). We have also presented the second-order term of this expansion which is responsible for the ATI with double scattering of the ionized electron.

  7. Evidence for a Cosmological Phase Transition From the Dark Energy Scale

    E-Print Network [OSTI]

    James Lindesay

    2006-04-21T23:59:59.000Z

    A finite vacuum energy density implies the existence of a UV scale for gravitational modes. This gives a phenomenological scale to the dynamical equations governing the cosmological expansion that must satisfy constraints consistent with quantum measurability and spatial flatness. Examination of these constraints for the observed dark energy density establishes a time interval from the transition to the present, suggesting major modifications from the thermal equations of state far from Planck density scales. The assumption that a phase transition initiates the radiation dominated epoch is shown under several scenarios to produce fluctuations to the CMB of the order observed. Quantum measurability constraints (eg. uncertainly relations) define cosmological scales bounded by luminal expansion rates. It is shown that the dark energy can consistently be interpreted as being due to the vacuum energy of collective gravitational modes which manifest as the zero-point motions of coherent Planck scale mass units prior to the UV scale onset of gravitational quantum de-coherence for the cosmology.

  8. Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell

    SciTech Connect (OSTI)

    Garcia-Lechuga, M.; Siegel, J., E-mail: j.siegel@io.cfmac.csic.es; Hernandez-Rueda, J.; Solis, J. [Laser Processing Group, Instituto de Optica, Serrano 121, 28006 Madrid (Spain)

    2014-09-15T23:59:59.000Z

    Phase transition pathways of matter upon ablation with ultrashort laser pulses have been considered to be understood long-since for metals and semiconductors. We provide evidence that also certain dielectrics follow the same pathway, even at high pulse energies triggering optical breakdown. Employing femtosecond microscopy, we observe a characteristic ring pattern within the ablating region that dynamically changes for increasing time delays between pump and probe pulse. These transient Newton rings are related to optical interference of the probe beam reflected at the front surface of the ablating layer with the reflection at the interface of the non-ablating substrate. Analysis of the ring structure shows that the ablation mechanism is initiated by a rarefaction wave leading within a few tens of picoseconds to the formation of a transparent thin shell of reduced density and refractive index, featuring optically sharp interfaces. The shell expands and eventually detaches from the solid material at delays of the order of 100 ps.

  9. Resonance expansions for tensor-valued waves on asymptotically Kerr-de Sitter spaces

    E-Print Network [OSTI]

    Hintz, Peter

    2015-01-01T23:59:59.000Z

    In recent joint work with Vasy, we analyze the low energy behavior of differential form-valued waves on black hole spacetimes. In order to deduce asymptotics and decay from this, one in addition needs high energy estimates for the wave operator acting on sections of the form bundle. The present paper provides these on perturbations of Schwarzschild-de Sitter spaces in all spacetime dimensions $n\\geq 4$. In fact, we prove exponential decay, up to a finite-dimensional space of resonances, of waves valued in any finite rank subbundle of the tensor bundle, which in particular includes differential forms and symmetric tensors. As the main technical tool for working on vector bundles that do not have a natural positive definite inner product, we introduce pseudodifferential inner products, which are inner products depending on the position in phase space.

  10. Resonance expansions for tensor-valued waves on asymptotically Kerr-de Sitter spaces

    E-Print Network [OSTI]

    Peter Hintz

    2015-02-11T23:59:59.000Z

    In recent joint work with Vasy, we analyze the low energy behavior of differential form-valued waves on black hole spacetimes. In order to deduce asymptotics and decay from this, one in addition needs high energy estimates for the wave operator acting on sections of the form bundle. The present paper provides these on perturbations of Schwarzschild-de Sitter spaces in all spacetime dimensions $n\\geq 4$. In fact, we prove exponential decay, up to a finite-dimensional space of resonances, of waves valued in any finite rank subbundle of the tensor bundle, which in particular includes differential forms and symmetric tensors. As the main technical tool for working on vector bundles that do not have a natural positive definite inner product, we introduce pseudodifferential inner products, which are inner products depending on the position in phase space.

  11. Solid phase microextraction field kit

    DOE Patents [OSTI]

    Nunes, Peter J.; Andresen, Brian D.

    2005-08-16T23:59:59.000Z

    A field kit for the collection, isolation and concentration of trace amounts of high explosives (HE), biological weapons (BW) and chemical weapons (CW) residues in air, soil, vegetation, swipe, and liquid samples. The field kit includes a number of Solid Phase Microextraction (SPME) fiber and syringe assemblies in a hermetically sealed transportation container or tubes which includes a sampling port, a number of extra SPME fiber and syringe assemblies, the fiber and syringe assemblies including a protective cap for the fiber, and an extractor for the protective cap, along with other items including spare parts, protective glove, and an instruction manual, all located in an airtight container.

  12. SPIDERS Phase II Technical Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT.AwardsSPEER's Building EnergyPhase II

  13. THE QCD PHASE DIAGRAM AT FINITE DENSITY.

    SciTech Connect (OSTI)

    SCHMIDT, C.; FODOR, Z.; KATZ, S.

    2005-07-25T23:59:59.000Z

    We study the density of states method to explore the phase diagram of the chiral transition on the temperature and quark chemical potential plane. Four quark flavours are used in the analysis. Though the method is quite expensive small lattices show an indication for a triple-point connecting three different phases on the phase diagram.

  14. Special Relativity in Quantum Phase Space

    E-Print Network [OSTI]

    Daniela Dragoman

    2008-03-06T23:59:59.000Z

    A phase space treatment of special relativity of quantum systems is developed. In this approach a quantum particle remains localized if subject to inertial transformations, the localization occurring in a finite phase space area. Unlike non-relativistic transformations, relativistic transformations generally distort the phase space distribution function, being equivalent to aberrations in optics.

  15. Deformation and mechanical properties of the expansive cements produced by inter-grinding cement clinker and MgOs with various reactivities

    E-Print Network [OSTI]

    Mo, Liwu; Liu, Meng; Al-Tabbaa, Abir; Deng, Min

    2015-01-29T23:59:59.000Z

    additive in normal concrete, particularly in the concrete for hydraulic structures 54 under deep water, was limited. The ettringite-based expansive additive can produce rapid 55 expansion at early age, mainly within 14 days, which has been widely used [7... . Cem. 481 Concr. Compos., 26 (2004), pp. 677-685. 482 [3] P. Lura. Autogenous deformation and internal curing of concrete. PhD thesis, Delft 483 24 University of Technology, Delft: Delft University Press, 2003. 484 [4] B. Lothenbach, K. Scrivener...

  16. On the incorporation of cubic and hexagonal interfacial energy anisotropy in phase field models using higher order tensor terms

    E-Print Network [OSTI]

    E. S. Nani; M. P. Gururajan

    2014-04-13T23:59:59.000Z

    In this paper, we show how to incorporate cubic and hexagonal anisotropies in interfacial energies in phase field models; this incorporation is achieved by including upto sixth rank tensor terms in the free energy expansion, assuming that the free energy is only a function of coarse grained composition, its gradient, curvature and aberration. We derive the number of non-zero and independent components of these tensors. Further, by demanding that the resultant interfacial energy is positive definite for inclusion of each of the tensor terms individually, we identify the constraints imposed on the independent components of these tensors. The existing results in the invariant group theory literature can be used to simplify the process of construction of some (but not all) of the higher order tensors. Finally, we derive the relevant phase field evolution equations.

  17. Three phase AC motor controller

    DOE Patents [OSTI]

    Vuckovich, Michael (Elizabeth, PA); Wright, Maynard K. (Bethel Park, PA); Burkett, John P. (South Huntington Township, Westmoreland County, PA)

    1984-03-20T23:59:59.000Z

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  18. Magnetohydrodynamic kink waves in nonuniform solar flux tubes: phase mixing and energy cascade to small scales

    E-Print Network [OSTI]

    Soler, Roberto

    2015-01-01T23:59:59.000Z

    Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles for the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfv\\'en continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In ...

  19. Optimal Heisenberg-style bounds for the average performance of arbitrary phase estimates

    E-Print Network [OSTI]

    Dominic W. Berry; Michael J. W. Hall; Marcin Zwierz; Howard M. Wiseman

    2012-11-19T23:59:59.000Z

    The ultimate bound to the accuracy of phase estimates is often assumed to be given by the Heisenberg limit. Recent work seemed to indicate that this bound can be violated, yielding measurements with much higher accuracy than was previously expected. The Heisenberg limit can be restored as a rigorous bound to the accuracy provided one considers the accuracy averaged over the possible values of the unknown phase, as we have recently shown [Phys. Rev. A 85, 041802(R) (2012)]. Here we present an expanded proof of this result together with a number of additional results, including the proof of a previously conjectured stronger bound in the asymptotic limit. Other measures of the accuracy are examined, as well as other restrictions on the generator of the phase shifts. We provide expanded numerical results for the minimum error and asymptotic expansions. The significance of the results claiming violation of the Heisenberg limit is assessed, followed by a detailed discussion of the limitations of the Cramer-Rao bound.

  20. Design requirements document for the phase 1 privatization electrical power system

    SciTech Connect (OSTI)

    Singh, G.

    1997-10-31T23:59:59.000Z

    The electrical system for the Phase 1 privatization facilities will support the TWRS mission by providing the electrical power to the Phase 1 privatized facilities. This system will receive power from the Department of Energy-Richland Operations (RL) A4-8 230 kV transmission system powered from Bonneville Power Administration (BPA) Ashe and Midway 230 kV Substations. The existing RL 230 kV transmission line will be modified and looped 1021 into the new 230 kV substation bus. The new substation will be located in the vicinity of the privatized facilities, approximately 3.2 km (2 mi) south of the existing RL A4-8 230 kV transmission line. The substation will be capable of providing up to 40 MW of electrical power to support the Phase 1 privatization facilities and has space for accommodating future expansions. The substation will require at least two 230-13.8 kV transformers, 13.8 kV split bus switchgear, switchgear building, grounding transformers, instrument transformers, control and monitoring equipment, associated protection and isolation devices, lightning protection, yard lighting, cable and raceways, and infrastructure needed to provide desired availability and reliability. The power from the 13.8 kV switchgear located in the switchgear building will be delivered at the privatization facilities site boundaries. The 13.8 kV distribution system inside the privatization facilities site boundaries is the responsibility of the privatization contract.