THERMAL EXPANSION AND PHASE INVERSION OF RARE-EARTH OXIDES By...
Office of Scientific and Technical Information (OSTI)
are sufficient and binders are not required. 3 4. Measurements can be made on each crystalline phase in samples con- taining multiple components. Thermal expansion data are...
Weakly first-order phase transitions: the epsilon expansion vs. numerical simulations
Peter Arnold; Stephen R. Sharpe; Laurence G. Yaffe; Yan Zhang
1996-10-31
Some phase transitions of cosmological interest may be weakly first-order and cannot be analyzed by a simple perturbative expansion around mean field theory. We propose a simple two-scalar model--the cubic anisotropy model--as a foil for theoretical techniques to study such transitions, and we review its similarities and dissimilarities to the electroweak phase transition in the early universe. We present numerical Monte Carlo results for various discontinuities across very weakly first-order transitions in this model and, as an example, compare them to epsilon-expansion results. For this purpose, we have computed through next-to-next-to-leading order in epsilon.
R. Combescot; C. Mora
2004-10-26
We explore, in three spatial dimensions, the transition from the normal state to the Fulde-Ferrel-Larkin-Ovchinnikov superfluid phases. We restrict ourselves to the case of the 'planar' phase, where the order parameter depends only on a single spatial coordinate. We first show that, in the case of the simple Fulde-Ferrell phase, singularities occur at zero temperature in the free energy which prevents, at low temperature, a reliable use of an expansion in powers of the order parameter. We then introduce in the quasiclassical equations a Fourier expansion for the order parameter and the Green's functions, and we show that it converges quite rapidly to the exact solution. We finally implement numerically this method and find results in excellent agreement with the earlier work of Matsuo \\emph{et al}. In particular when the temperature is lowered from the tricritical point, the transition switches from first to second order. In the case of the first order transition, the spatial dependence of the order parameter at the transition is found to be always very nearly a pure cosine, although the maximum of its modulus may be comparable to the one of the uniform BCS phase.
19 10 1 (2003. 5) e-mail : {sniper, yang}@cs.yonsei.ac.kr
Yang, Sung-Bong
] . , . , , . . , . . . . MAUT (Multi-Attribute Utility Theoretic negotiation for electronic commerce) [1] . (Pareto solution)[4] 3 . #12; 19 10 1 (2003. 5) 2 MAUT [1] . . f
Patterns of shrub expansion in Alaskan arctic river corridors suggest phase transition
Naito, Adam T; Cairns, David M
2015-01-01
of tall shrubs. Given current understanding of the local-scale implications for hydrol- ogy, surface energy balances, and carbon and nutrient cycling as a result of enhanced shrub cover, the comple- tion of this phase transition will alter tundra ecosystem... in Alaskan arctic river corridors suggest phase transition Adam T. Naito & David M. Cairns Department of Geography, Texas A&M University, 810 Eller O&M Building, Mailstop 3147 TAMU, College Station, Texas 77843-3147 Keywords Alaska, Arctic, landscape analysis...
Akihiro Shimizu; Koji Aoki; Kazuhiko Sakakibara; Ikuo Ichinose; Tetsuo Matsui
2010-07-24
In the present paper, we study a system of doped antiferromagnet in three dimensions at finite temperatures by using the t-J model, a canonical model of strongly-correlated electrons. We employ the slave-fermion representation of electrons in which an electron is described as a composite of a charged spinless holon and a chargeless spinon. We introduce two kinds of U(1) gauge fields on links as auxiliary fields, one describing resonating valence bonds of antiferromagnetic nearest-neighbor spin pairs and the other for nearest-neighbor hopping amplitudes of holons and spinons in the ferromagnetic channel. In order to perform numerical study of the system, we integrate out the fermionic holon field by using the hopping expansion in powers of the hopping amplitude, which is legitimate for the region in and near the insulating phase. The resultant effective model is described in terms of bosonic spinons and the two U(1) gauge fields, and a collective field for hole pairs. We study this model by means of Monte-Carlo simulations, calculating the specific heat, spin correlation functions, and instanton densities. We obtain a phase diagram in the hole concentration-temperature plane, which is in good agreement with that observed recently for clean and homogeneous underdoped samples.
Sudipto Roy
2015-11-06
The present study is based on a generalized form of Brans-Dicke (BD) theory where, the dimensionless BD parameter is regarded as a function of the scalar field, which is reciprocal of the gravitational constant. The field equations have been solved by incorporating an empirical function f(t) in the expression representing the conservation of matter. This function f(t) has been chosen to account for a conversion of matter (both dark and baryonic) into some other form, possibly dark energy, which is known to be responsible for the accelerated expansion of universe. The requirement of a signature flip of the deceleration parameter (q), which is evident from other studies, sets the boundary conditions to be satisfied by the function f(t), leading to the formulation of its time dependence. A simple empirical relation was initially assumed to represent the time dependence of f(t), and the constants in this expression have been determined from these boundary conditions. The BD parameter has been found to have a negative value throughout the range of study. The dependence of BD parameter upon the scalar field has been depicted graphically. A smooth transition of the universe, from a decelerated to an accelerated phase of expansion, is found to occur due to a conversion of matter into dark energy. The gravitational constant is found to be increasing with time.
Accelerated Expansion: Theory and Observations
David Polarski
2001-09-20
The present paradigm in cosmology is the usual Big-Bang Cosmology in which two stages of accelerated expansion are incorporated: the inflationary phase in the very early universe which produces the classical inhomogeneities observed in the universe, and a second stage of acceleration at the present time as the latest Supernovae observations seem to imply. Both stages could be produced by a scalar field and observations will strongly constrain the microscopic lagrangian of any proposed model.
Loop expansion in Yang-Mills thermodynamics
Ralf Hofmann
2009-11-05
We argue that a selfconsistent spatial coarse-graining, which involves interacting (anti)calorons of unit topological charge modulus, implies that real-time loop expansions of thermodynamical quantities in the deconfining phase of SU(2) and SU(3) Yang-Mills thermodynamics are, modulo 1PI resummations, determined by a finite number of connected bubble diagrams.
Nuclear expansion with excitation
J. N. De; S. K. Samaddar; X. Vinas; M. Centelles
2006-05-16
The expansion of an isolated hot spherical nucleus with excitation energy and its caloric curve are studied in a thermodynamic model with the SkM* force as the nuclear effective two-body interaction. The calculated results are shown to compare well with the recent experimental data from energetic nuclear collisions. The fluctuations in temperature and density are also studied. They are seen to build up very rapidly beyond an excitation energy of 9 MeV/u. Volume-conserving quadrupole deformation in addition to expansion indicates, however, nuclear disassembly above an excitation energy of 4 MeV/u
Guzek, J.C.; Lujan, R.A.
1984-01-01
Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.
Load regulating expansion fixture
Wagner, L.M.; Strum, M.J.
1998-12-15
A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.
Load regulating expansion fixture
Wagner, Lawrence M. (San Jose, CA); Strum, Michael J. (San Jose, CA)
1998-01-01
A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.
Pallaver, Carl B. (Woodridge, IL); Morgan, Michael W. (Palos Park, IL)
1978-01-01
A cryogenic expansion engine includes intake and exhaust poppet valves each controlled by a cam having adjustable dwell, the valve seats for the valves being threaded inserts in the valve block. Each cam includes a cam base and a ring-shaped cam insert disposed at an exterior corner of the cam base, the cam base and cam insert being generally circular but including an enlarged cam dwell, the circumferential configuration of the cam base and cam dwell being identical, the cam insert being rotatable with respect to the cam base. GI CONTRACTUAL ORIGIN OF THE INVENTION The invention described herein was made in the course of, or under, a contract with the UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION.
Hydrodynamic noise and Bjorken expansion
J. I. Kapusta; B. Müller; M. Stephanov
2012-11-14
Using the Bjorken expansion model we study the effect of intrinsic hydrodynamic noise on the correlations observed in heavy-ion collisions.
FERC approves Northwest pipeline expansion
Not Available
1992-06-15
Northwest Pipeline Co., Salt Lake City, Utah, received a final permit from the Federal Energy Regulatory Commission for a $373.4 million main gas line expansion. This paper reports that it plans to begin construction of the 443 MMcfd expansion in mid-July after obtaining further federal, state, and local permits. The expanded system is to be fully operational by second quarter 1993. When the expansion is complete, total Northwest system mileage will be 3,936 miles and system capacity about 2.49 bcfd.
Roy, Sudipto
2015-01-01
The present study is based on a generalized form of Brans-Dicke (BD) theory where, the dimensionless BD parameter is regarded as a function of the scalar field, which is reciprocal of the gravitational constant. The field equations have been solved by incorporating an empirical function f(t) in the expression representing the conservation of matter. This function f(t) has been chosen to account for a conversion of matter (both dark and baryonic) into some other form, possibly dark energy, which is known to be responsible for the accelerated expansion of universe. The requirement of a signature flip of the deceleration parameter (q), which is evident from other studies, sets the boundary conditions to be satisfied by the function f(t), leading to the formulation of its time dependence. A simple empirical relation was initially assumed to represent the time dependence of f(t), and the constants in this expression have been determined from these boundary conditions. The BD parameter has been found to have a nega...
Accelerated expansion of the universe à la the Stueckelberg mechanism
Akarsu, Özgür; Ar?k, Metin; Kat?rc?, Nihan; Kavuk, Mehmet E-mail: metin.arik@boun.edu.tr E-mail: mehmet.kavuk@boun.edu.tr
2014-07-01
We investigate a cosmological model in which the Stueckelberg fields are non-minimally coupled to the scalar curvature in a gauge invariant manner. We present not only a solution that can be considered in the context of the late time acceleration of the universe but also a solution compatible with the inflationary cosmology. Distinct behaviors of the scalar and vector fields together with the real valued mass gained by the Stueckelberg mechanism lead the universe to go through the two different accelerated expansion phases with a decelerated expansion phase between them. On the other hand, in the solutions we present, if the mass is null then the universe is either static or exhibits a simple power law expansion due to the vector field potential.
Resonance Expansions and Rayleigh Waves
We consider the general framework of the “black box scattering” introduced ... for the first time an expansion of the type (1) for trapping systems (having “almost real” resonances) in the black box ...... M. Zworski, private communication, 1992. 14.
Caloric Curves and Nuclear Expansion
J. B. Natowitz; K. Hagel; Y. Ma; M. Murray; L. Qin; S. Shlomo; R. Wada; J. Wang
2002-08-08
Nuclear caloric curves have been analyzed using an expanding Fermi gas hypothesis to extract average nuclear densities. In this approach the observed flattening of the caloric curves reflects progressively increasing expansion with increasing excitation energy. This expansion results in a corresponding decrease in the density and Fermi energy of the excited system. For nuclei of medium to heavy mass apparent densities ~ 0.4 rho_0 are reached at the higher excitation energies.
Cosmic Growth History and Expansion History
Linder, Eric V.
2009-01-01
LBNL- 58260 Cosmic Growth History andExpansion History Eric V. Linder Physics Division, LawrenceCalifornia. Cosmic Growth History and Expansion History Eric
Østgaard, Nikolai
GLOBAL SCALE ELECTRON PRECIPITATION DURING SUBSTORM EXPANSIONS N. Østgaard, J. Stadsnes, J. Bjordal of the patterns of electron precipitation through imaging of the atmospheric X-ray bremsstrahlung and the auroral energy (multi-keV) electron precipitation. During the substorm expansion phase, clear time delays occur
Uniform semiclassical expansions for the direct part of Franck-Condon transitions
B. Huepper; B. Eckhardt
1997-10-13
Semiclassical expansions for traces involving Greens functions have two contributions, one from the periodic or recurrent orbits of the classical system and one from the phase space volume, i.e. the paths of infinitesimal length. Quantitative calculations require the control of both terms. Here, we discuss the contribution from paths of zero length with an emphasis on the application to Franck-Condon transitions. The expansion in the energy representation is asymptotic and a critical parameter is identified. In the time domain, a series expansion of the logarithm of the propagator gives very good results. The expansions are illustrated for transitions onto a linear potential and onto a harmonic oscillator.
Relativistic effects on plasma expansion
Benkhelifa, El-Amine; Djebli, Mourad, E-mail: mdjebli@usthb.dz [USTHB, Faculty of Physics, Theoretical Physics Laboratory, B.P. 32 Bab-Ezzouar, 16079 Algiers (Algeria)
2014-07-15
The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.
Series expansions and sudden singularities
John D. Barrow; S. Cotsakis; A. Tsokaros
2013-01-28
We construct solutions of the Friedmann equations near a sudden singularity using generalized series expansions for the scale factor, the density, and the pressure of the fluid content. In this way, we are able to arrive at a solution with a sudden singularity containing two free constants, as required for a general solution of the cosmological equations.
Production expansion continues to accelerate
Not Available
1992-08-01
This paper reports that Saudi Arabian Oil Co. (Saudi Aramco) is continuing its accelerated Crude Oil Expansion Program initiated in 1989 that aims at achieving a 10 million bpd productive capacity by 1995. In addition to major engineering, construction and renovation work related to production expansion, Saudi Aramco drilling and workover operations have been markedly expanded. Since January 1991, rig activity has doubled. As an indication of aging of Saudi production, projects include modernizing current injection water treatment facilities, installing a new seawater injection plant on the Persian Gulf, installing dewatering facilities in a number of locations and installing a pilot gas lift project. In addition, equipment orders indicate the new discoveries south of Riyadh may also need the assistance of water injection from inception of production.
Accelerated expansion without dark energy
Dominik J. Schwarz
2002-10-03
The fact that the LambdaCDM model fits the observations does not necessarily imply the physical existence of `dark energy'. Dropping the assumption that cold dark matter (CDM) is a perfect fluid opens the possibility to fit the data without dark energy. For imperfect CDM, negative bulk pressure is favoured by thermodynamical arguments and might drive the cosmic acceleration. The coincidence between the onset of accelerated expansion and the epoch of structure formation at large scales might suggest that the two phenomena are linked. A specific example is considered in which effective (anti-frictional) forces, which may be due to dissipative processes during the formation of inhomogeneities, give rise to accelerated expansion of a CDM universe.
Capacity Expansion with Independent Decision Makers
Grossmann, Ignacio E.
) Maximize: Income New plants Maintenance Expansion Production Transportation = 1 1 to minimize their cost · All producers try to maximize their profit Need to model the conflicting interests, operation, and distribution Problem Statement Maximize net present value (): · Determine expansion plan
Strangeness Production in Nuclear Matter and Expansion Dynamics
V. D. Toneev; E. G. Nikonov; B. Friman; W. Noerenberg; K. Redlich
2003-08-07
Thermodynamical properties of hot and dense nuclear matter are analyzed and compared for different equation of state (EoS). It is argued that the softest point of the equation of state and the strangeness separation on the phase boundary can manifest themselves in observables. The influence of the EoS and the order of the phase transition on the expansion dynamics of nuclear matter and strangeness excitation function is analyzed. It is shown that bulk properties of strangeness production in A-A collisions depend only weakly on the particular form of the EoS. The predictions of different models are related with experimental data on strangeness production.
Heuberger, Clemens
THE ALTERNATING GREEDY EXPANSION AND APPLICATIONS TO COMPUTING DIGIT EXPANSIONS FROM LEFT-TO-RIGHT curve. We give two algorithms to compute such a minimal joint expansion from left to right. To this aim and algorithms. In the second part, we apply it to give an algorithm for computing a joint expansion of d
Crossroads Expansion | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation EU-UNDPCross-Laminated Timber PanelsExpansion
High thermal expansion, sealing glass
Brow, Richard K. (Albuquerque, NM); Kovacic, Larry (Albuquerque, NM)
1993-01-01
A glass composition for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na.sub.2 O, between about 10 and about 25 mole percent K.sub.2 O, between about 5 and about 15 mole percent Al.sub.2 O.sub.3, between about 35 and about 50 mole percent P.sub.2 O.sub.5 and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe.sub.2 O.sub.3 and between 0 and about 10 mole percent B.sub.2 O.sub.3, has a thermal expansion coefficient in a range of between about 160 and 210.times.10-7/.degree.C. and a dissolution rate in a range of between about 2.times.10.sup.- 7 and 2.times.10.sup.-9 g/cm.sup.2 -min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.
High thermal expansion, sealing glass
Brow, R.K.; Kovacic, L.
1993-11-16
A glass composition is described for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na[sub 2]O, between about 10 and about 25 mole percent K[sub 2]O, between about 5 and about 15 mole percent Al[sub 2]O[sub 3], between about 35 and about 50 mole percent P[sub 2]O[sub 5] and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe[sub 2]O[sub 3] and between 0 and about 10 mole percent B[sub 2]O[sub 3], has a thermal expansion coefficient in a range of between about 160 and 210[times]10[sup [minus]7]/C and a dissolution rate in a range of between about 2[times]10[sup [minus]7] and 2[times]10[sup [minus]9]g/cm[sup 2]-min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.
Moore, William
2015-07-01
A Phase I cultural resources survey for a proposed wastewater treatment plant expansion project (8.5 acres) in the corporate limits of Brenham, Texas was performed by Brazos Valley Research Associates in August 2002. The presence of one abandoned...
Viscosity of the QGP from a virial expansion
Mattiello, S.
2012-06-15
In this work we calculate the shear viscosity {eta} in the quark-gluon plasma within a virial expansion approach with particular interest in the ratio of {eta} to the entropy density s, i.e. {eta}/s. We derive a realistic equation of state using a virial expansion approach which allows us to include the interactions between the partons in the deconfined phase. From the interaction we directly extract the effective coupling {alpha}{sub V} for the determination of {eta}. Our results for {eta}/s show a minimum near to T{sub c} very close with the lowest bound and, furthermore, in line with the experimental point from RHIC as well as with the lattice calculations.
Theoretical model for plasma expansion generated by hypervelocity impact
Ju, Yuanyuan; Zhang, Qingming Zhang, Dongjiang; Long, Renrong; Chen, Li; Huang, Fenglei; Gong, Zizheng
2014-09-15
The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4?mm on LY12 aluminum target thickness of 23?mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3?km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T{sub e}, n{sub e})???v{sub p}{sup 3}. Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data.
Reversible expansion of gallium-stabilized (delta)-plutonium
Wolfer, W G; Oudot, B; Baclet, N
2006-02-27
It is shown that the transient expansion of plutonium-gallium alloys observed both in the lattice parameter as well as in the dimension of a sample held at ambient temperature can be explained by assuming incipient precipitation of Pu{sub 3}Ga. However, this ordered {zeta}-phase is also subject to radiation-induced disordering. As a result, the gallium-stabilized {delta}-phase, being metastable at ambient temperature, is driven towards thermodynamic equilibrium by radiation-enhanced diffusion of gallium and at the same time reverted back to its metastable state by radiation-induced disordering. A steady state is reached in which only a modest fraction of the gallium present is arranged in ordered {zeta}-phase regions.
Energy Infrastructure Events and Expansions Infrastructure Security...
Broader source: Energy.gov (indexed) [DOE]
in-Review: 2010 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. Department of...
Energy Department Authorizes Sabine Pass Liquefaction's Expansion...
Office of Environmental Management (EM)
Expansion Project (Sabine Pass) to export domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States. The...
Delayed Linear Expansion of Two Ultra-low Expansion Dental Stones
Oppedisano, Michael
2013-12-20
The purpose of this study was to measure the linear setting expansion of two ultra-low expansion dental stones used in definitive cast/ prosthesis fabrication which claim to have very low to no setting expansion. Five specimens of each material...
Thermal Expansion and Diffusion Coefficients of Carbon
Wei, Chenyu
Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites Chenyu Wei* NASA of carbon nanotube-polyethylene composites. Additions of carbon nanotubes to a polymer matrix are found for polymer-nanotube interface are used to investigate the thermal expansion and diffusion characteristics
Multipole Expansion Model in Gravitational Lensing
T. Fukuyama; Y. Kakigi; T. Okamura
1997-01-31
Non-transparent models of multipole expansion model and two point-mass model are analyzed from the catastrophe theory. Singularity behaviours of $2^n$-pole moments are discussed. We apply these models to triple quasar PG1115+080 and compare with the typical transparent model, softened power law spheroids. Multipole expansion model gives the best fit among them.
Multipole expansion method for supernova neutrino oscillations
Duan, Huaiyu; Shalgar, Shashank, E-mail: duan@unm.edu, E-mail: shashankshalgar@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)
2014-10-01
We demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.
Investigating Visual Feedforward for Target Expansion Techniques
. Three design axes characterize the concept of atomic feedforward mechanism, an elementary unit that can expansion technique. Focusing on feedforward mechanisms, we introduce a design space that allows us the concept of atomic feedforward mechanism along three design axes. We then describe a target expansion
On Perturbation theory improved by Strong coupling expansion
Masazumi Honda
2014-10-13
In theoretical physics, we sometimes have two perturbative expansions of physical quantity around different two points in parameter space. In terms of the two perturbative expansions, we introduce a new type of smooth interpolating function consistent with the both expansions, which includes the standard Pad\\'e approximant and fractional power of polynomial method constructed by Sen as special cases. We point out that we can construct enormous number of such interpolating functions in principle while the "best" approximation for the exact answer of the physical quantity should be unique among the interpolating functions. We propose a criterion to determine the "best" interpolating function, which is applicable except some situations even if we do not know the exact answer. It turns out that our criterion works for various examples including specific heat in two-dimensional Ising model, average plaquette in four-dimensional SU(3) pure Yang-Mills theory on lattice and free energy in c=1 string theory at self-dual radius. We also mention possible applications of the interpolating functions to system with phase transition.
Calculations of Surface Thermal-Expansion
KENNER, VE; Allen, Roland E.
1973-01-01
expansion. At high temperatures, the results for the surface thermal expansion are in agreement with the prediction of an approximate model which we gave earlier, +surface/abu)k ?(3/4) & ur ) su f / (0 )b lk At lOW temperatureS, a,???e/ab?,k paSSeS thr... influence the shifts in the Bragg peaks which are observed experimentally, as has been found to be the case in other attempts to measure surface thermal expansion. A nonkinematical calculation of temperature effects in low-energy-electron diffraction from...
Concentric ring flywheel without expansion separators
Kuklo, T.C.
1999-08-24
A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion. 3 figs.
Low expansion superalloy with improved toughness
Smith, D.F.; Stein, L.I.; Hwang, I.S.
1995-06-20
A high strength, low coefficient of thermal expansion superalloy exhibiting improved toughness over a broad temperature range down to about 4 K is disclosed. The composition is adapted for use with wrought superconducting sheathing.
An effective theory of accelerated expansion
Raul Jimenez; P. Talavera; Licia Verde
2012-11-16
We work out an effective theory of accelerated expansion to describe general phenomena of inflation and acceleration (dark energy) in the Universe. Our aim is to determine from theoretical grounds, in a physically-motivated and model independent way, which and how many (free) parameters are needed to broadly capture the physics of a theory describing cosmic acceleration. Our goal is to make as much as possible transparent the physical interpretation of the parameters describing the expansion. We show that, at leading order, there are five independent parameters, of which one can be constrained via general relativity tests. The other four parameters need to be determined by observing and measuring the cosmic expansion rate only, H(z). Therefore we suggest that future cosmology surveys focus on obtaining an accurate as possible measurement of $H(z)$ to constrain the nature of accelerated expansion (dark energy and/or inflation).
Habitable piers : an alternative for urban expansion
Lin, Chin Yuan, M. Arch. Massachusetts Institute of Technology
1990-01-01
This thesis is an investigation into an alternative way of urban expansion for a seaside community. This thesis proposes a habitable urban environment on the water by creating for an exchange between the built urban landscape ...
Glendenning, N.K.
2011-01-01
the expansion phase at densities below nuclear density, (1an expansion to a freezeout density equal to the nuclearexpansion stage as a function of 1/p where the density is measured in units of the nuclear
Brain choline concentration: early quantitative marker of ischemia and infarct expansion?
Karaszewski, B.; Thomas, R.G.R.; Chappell, F.M.; Armitage, P.A.; Carpenter, T.K.; Lymer, G.K.S.; Dennis, M.S.; Marshall, I.; Wardlaw, J.M.
–28) there were 108 infarct "non-expansion” voxels and 113 infarct "expansion” voxels (of which 80 were “complete expansion” and 33 “partial expansion” voxels). Brain choline concentration increased for each change in expansion category from "non-expansion", via...
Index calculation by means of harmonic expansion
Imamura, Yosuke
2015-01-01
We review derivation of superconformal indices by means of supersymmetric localization and spherical harmonic expansion for 3d N=2, 4d N=1, and 6d N=(1,0) supersymmetric gauge theories. We demonstrate calculation of indices for vector multiplets in each dimensions by analysing energy eigenmodes in S^pxR. For the 6d index we consider the perturbative contribution only. We put focus on technical details of harmonic expansion rather than physical applications.
Index calculation by means of harmonic expansion
Yosuke Imamura
2015-10-28
We review derivation of superconformal indices by means of supersymmetric localization and spherical harmonic expansion for 3d N=2, 4d N=1, and 6d N=(1,0) supersymmetric gauge theories. We demonstrate calculation of indices for vector multiplets in each dimensions by analysing energy eigenmodes in S^pxR. For the 6d index we consider the perturbative contribution only. We put focus on technical details of harmonic expansion rather than physical applications.
Optimized delta expansion for relativistic nuclear models
G. Krein; R. S. Marques de Carvalho; D. P. Menezes; M. Nielsen; M. B. Pinto
1997-09-24
The optimized $\\delta$-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. This technique is discussed in the $\\lambda \\phi^4$ model and then implemented in the Walecka model for the equation of state of nuclear matter. The results obtained with the $\\delta$ expansion are compared with those obtained with the traditional mean field, relativistic Hartree and Hartree-Fock approximations.
Miniscrew Assisted Slow Expansion of Mature Sutures
Pulver, Ross
2014-04-28
hemorrhage, gingival recession, root resorption, injury to the branches of the maxillary nerve, infection, pain, devitalization of teeth and altered 15 pulpal blood flow, periodontal breakdown, sinus infection, alar base flaring, extrusion of teeth... monkeys, at 2 weeks post expansion and 3 months post expansion.45 These authors concluded that there was ‘no doubt’ that the maxillary suture had been split, that the bony defect created in this area was filled with bone, and that it eventually returned...
Heat Flow Database Expansion for NGDS Data Development, Collection...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance (SMU) Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance (SMU)...
Eigenfunction Expansion of the Space-Time Dependent Neutron Survival...
Office of Scientific and Technical Information (OSTI)
Eigenfunction Expansion of the Space-Time Dependent Neutron Survival Probability. Citation Details In-Document Search Title: Eigenfunction Expansion of the Space-Time Dependent...
Year-in-Review: 2012 Energy Infrastructure Events and Expansions...
2 Energy Infrastructure Events and Expansions (July 2013) Year-in-Review: 2012 Energy Infrastructure Events and Expansions (July 2013) The Year-in-Review (YIR): 2012 Energy...
High Efficiency Full Expansion (FEx) Engine for Automotive Application...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Full Expansion (FEx) Engine for Automotive Applications High Efficiency Full Expansion (FEx) Engine for Automotive Applications Large increases in engine thermal efficiency result...
Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...
Office of Environmental Management (EM)
Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 -...
A meaningful expansion around detailed balance
Matteo Colangeli; Christian Maes; Bram Wynants
2011-01-18
We consider Markovian dynamics modeling open mesoscopic systems which are driven away from detailed balance by a nonconservative force. A systematic expansion is obtained of the stationary distribution around an equilibrium reference, in orders of the nonequilibrium forcing. The first order around equilibrium has been known since the work of McLennan (1959), and involves the transient irreversible entropy flux. The expansion generalizes the McLennan formula to higher orders, complementing the entropy flux with the dynamical activity. The latter is more kinetic than thermodynamic and is a possible realization of Landauer's insight (1975) that, for nonequilibrium, the relative occupation of states also depends on the noise along possible escape routes. In that way nonlinear response around equilibrium can be meaningfully discussed in terms of two main quantities only, the entropy flux and the dynamical activity. The expansion makes mathematical sense as shown in the simplest cases from exponential ergodicity.
Apparatus and method for measuring the expansion properties of a cement composition
Spangle, Lloyd B. (Claremore, OK)
1983-01-01
An apparatus is disclosed which is useful for measuring the expansion properties of semi-solid materials which expand to a solid phase, upon curing, such as cement compositions. The apparatus includes a sleeve, preferably cylindrical, which has a vertical slit on one side, to allow the sleeve to expand. Mounted on the outside of the sleeve are several sets of pins, consisting of two pins each. The two pins in each set are located on opposite sides of the slit. In the test procedure, the sleeve is filled with wet cement, which is then cured to a solid. As the cement cures it causes the sleeve to expand. The actual expansion of the sleeve represents an expansion factor for the cement. This factor is calculated by measuring the distance across the pins of each set, when the sleeve is empty, and again after the cured cement expands the sleeve.
Resonant state expansion of the resolvent
Berggren, T.; Lind, P. )
1993-02-01
An analytic method of generating resonant state expansions from the standard completeness relation of nonrelativistic quantum mechanics is described and shown to reproduce the generalized completeness relations, earlier derived, involving resonant states. The method is then applied to the expansion of the resolvent (the complete Green's function), the symmetry properties of which [ital seem] to be destroyed if a conventional application of the completeness relations is made. These forms of expansions have a continuum term which contains symmetry-restoring contributions and can therefore never vanish identically, nor can it be neglected. The symmetry-conserving form of the expansion has a set of discrete terms which are identical in form to those of the Mittag-Leffler series for the resolvent. In addition, it contains a continuum contribution which in some cases vanishes identically, but in general does not. We illustrate these findings with numerical applictions in which the potential (a square well) is chosen so as to permit analytic evaluation of practically all functions and quantities involved.
Taylor Expansion Diagrams: A Canonical Representation for
Kalla, Priyank
Taylor series expansion that allows one to model word-level signals as algebraic symbols. This power systems has made it essential to address verification issues at early stages of the design cycle representations. TEDs are applicable to modeling, symbolic simulation, and equivalence verification of dataflow
Polymer Expansions for Cycle LDPC Codes
Nicolas Macris; Marc Vuffray
2012-02-13
We prove that the Bethe expression for the conditional input-output entropy of cycle LDPC codes on binary symmetric channels above the MAP threshold is exact in the large block length limit. The analysis relies on methods from statistical physics. The finite size corrections to the Bethe expression are expressed through a polymer expansion which is controlled thanks to expander and counting arguments.
Sparseness and Expansion in Sensory Representations
. In addition, the low dimensionality of the input layer generates overlaps between the induced representations., 2003), and the electrosensory system of electric fish (Chacron et al., 2011). The ubiquity of this phenomenon suggests that sparse and expansive transformations entail a fundamental computational advantage
Natural Gas Pipeline and System Expansions
Reports and Publications (EIA)
1997-01-01
This special report examines recent expansions to the North American natural gas pipeline network and the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It includes those projects in Canada and Mexico that tie in with U.S. markets or projects.
Climate Science: Tropical Expansion by Ocean Swing
Lu, Jian
2014-04-01
The tropical belt has become wider over the past decades, but climate models fall short of capturing the full rate of the expansion. The latest analysis of the climate simulations suggests that a long-term swing of the Pacific Decadal Oscillation is the main missing cause.
Polytope expansion of Lie characters and applications
Walton, Mark A., E-mail: walton@uleth.ca [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada)
2013-12-15
The weight systems of finite-dimensional representations of complex, simple Lie algebras exhibit patterns beyond Weyl-group symmetry. These patterns occur because weight systems can be decomposed into lattice polytopes in a natural way. Since lattice polytopes are relatively simple, this decomposition is useful, in addition to being more economical than the decomposition into single weights. An expansion of characters into polytope sums follows from the polytope decomposition of weight systems. We study this polytope expansion here. A new, general formula is given for the polytope sums involved. The combinatorics of the polytope expansion are analyzed; we point out that they are reduced from those of the Weyl character formula (described by the Kostant partition function) in an optimal way. We also show that the weight multiplicities can be found easily from the polytope multiplicities, indicating explicitly the equivalence of the two descriptions. Finally, we demonstrate the utility of the polytope expansion by showing how polytope multiplicities can be used in the calculation of tensor product decompositions, and subalgebra branching rules.
216-B-3 expansion ponds closure plan
Not Available
1994-10-01
This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.
Low thermal expansion seal ring support
Dewis, David W. (San Diego, CA); Glezer, Boris (Del Mar, CA)
2000-01-01
Today, the trend is to increase the temperature of operation of gas turbine engines. To cool the components with compressor discharge air, robs air which could otherwise be used for combustion and creates a less efficient gas turbine engine. The present low thermal expansion sealing ring support system reduces the quantity of cooling air required while maintaining life and longevity of the components. Additionally, the low thermal expansion sealing ring reduces the clearance "C","C'" demanded between the interface between the sealing surface and the tip of the plurality of turbine blades. The sealing ring is supported by a plurality of support members in a manner in which the sealing ring and the plurality of support members independently expand and contract relative to each other and to other gas turbine engine components.
Locally-smeared operator product expansions
Monahan, Christopher; Orginos, Kostantinos
2014-12-01
We propose a "locally-smeared Operator Product Expansion" (sOPE) to decompose non-local operators in terms of a basis of locally-smeared operators. The sOPE formally connects nonperturbative matrix elements of smeared degrees of freedom, determined numerically using the gradient flow, to non-local operators in the continuum. The nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale prevents a simple connection to the standard operator product expansion and therefore requires the construction of a two-scale formalism. We demonstrate the feasibility of our approach using the example of real scalar field theory.
Frostless heat pump having thermal expansion valves
Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN)
2002-10-22
A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.
Math Appendices A.1 Taylor expansion
Schofield, Jeremy
Appendix A Math Appendices A.1 Taylor expansion · Expand function f(x + a) from small a around) = j=0 xj j j! , f(x + a) = exp a d dx f(x). 89 #12;90 APPENDIX A. MATH APPENDICES A.2 Series - x2 = - dx x2 - x2 p(x) #12;92 APPENDIX A. MATH APPENDICES A.3.3 Gaussian distributions 1
Expansion and Collapse in the Cosmic Web
Michael Rauch; George D. Becker; Matteo Viel; Wallace L. W. Sargent; Alain Smette; Robert A. Simcoe; Thomas A. Barlow; Martin G. Haehnelt
2005-09-09
We study the kinematics of the gaseous cosmic web at high redshift with Lyman alpha forest absorption in multiple QSO sightlines. Using a simple analytic model and a cosmological hydrodynamic simulation we constrain the underlying three-dimensional distribution of velocities from the observed line-of-sight distribution of velocity shear across the plane of the sky. The distribution is found to be in good agreement with the intergalactic medium (IGM) undergoing large scale motions dominated by the Hubble flow. Modeling the Lyman alpha clouds analytically and with a hydrodynamics simulation, the average expansion velocity of the gaseous structures causing the Lyman alpha forest in the lower redshift (z = 2) sample appears about 20 percent lower than the local Hubble expansion velocity. We interpret this as tentative evidence for some clouds undergoing gravitational collapse. However, the distribution of velocities is highly skewed, and the majority of clouds at redshifts from 2 to 3.8 expand typically about 5 - 20 percent faster than the Hubble flow. This behavior is explained if most absorbers in the column density range typically detectable are expanding filaments that stretch and drain into more massive nodes. We find no evidence for the observed distribution of velocity shear being significantly influenced by processes other than Hubble expansion and gravitational instability, like galactic winds. To avoid overly disturbing the IGM, winds may be old and/or limp by the time we observe them in the Lyman alpha forest, or they may occupy only an insignificant volume fraction of the IGM. (abridged)
Frequency dependent thermal expansion in binary viscoelasticcomposites
Berryman, James G.
2007-12-01
The effective thermal expansion coefficient beta* of abinary viscoelastic composite is shown to be frequency dependent even ifthe thermal expansion coefficients beta A and beta B of both constituentsare themselves frequency independent. Exact calculations for binaryviscoelastic systems show that beta* is related to constituent valuesbeta A, beta B, volume fractions, and bulk moduli KA, KB, as well as tothe overall bulk modulus K* of the composite system. Then, beta* isdetermined for isotropic systems by first bounding (or measuring) K* andtherefore beta*. For anisotropic systems with hexagonal symmetry, theprincipal values of the thermal expansion beta*perp and beta*para can bedetermined exactly when the constituents form a layered system. In allthe examples studied, it is shown explicitly that the eigenvectors of thethermoviscoelastic system possess non-negative dissipation -- despite thecomplicated analytical behavior of the frequency dependent thermalexpansivities themselves. Methods presented have a variety ofapplications from fluid-fluid mixtures to fluid-solid suspensions, andfrom fluid-saturated porous media to viscoelastic solid-solidcomposites.
Year-in-Review: 2011 Energy Infrastructure Events and Expansions...
1 Energy Infrastructure Events and Expansions (April 2012) Year-in-Review: 2011 Energy Infrastructure Events and Expansions (April 2012) The 2011 Year-in-Review (YIR) provides a...
Earth pressures and deformations in civil infrastructure in expansive soils
Hong, Gyeong Taek
2008-10-10
. The volume change model in expansive clay has been refined to reinforce realistic characteristics of swelling and shrinkage behavior of expansive clay soils. Refinements include more realistic design soil suction versus depth profiles and improved...
Expansion-loop enclosure resolves subsea line problems
Rich, S.K.; Alleyne, A.G.
1998-08-03
Recent design and construction of a Gulf of Mexico subsea pipeline illustrate the use of buried, enclosed expansion loops to resolve problems from expansion and upheaval buckling. Buried, subsea pipelines operating at high temperatures and pressures experience extreme compressive loads caused by the axial restraint of the soil. The high axial forces combined with imperfections in the seabed may overstress the pipeline or result in upheaval buckling. Typically, expansion loops, or doglegs, are installed to protect the pipeline risers from expansion and to alleviate axial forces. Buried expansion loops, however, are rendered virtually ineffective by the lateral restraint of the soil. Alternative methods to reduce expansion may increase the potential of upheaval buckling or overstressing the pipeline. Therefore, system design must consider expansion and upheaval buckling together. Discussed here are methods of prevention and control of expansion and upheaval buckling, evaluating the impact on the overall system.
Finite Volume Cumulant Expansion in QCD-Colorless Plasma
Ladrem, M; Al-Full, Z; Cherif, S
2015-01-01
Due to the finite size effects, the localisation of the phase transition in finite systems and the determination of its order, become an extremely difficult task, even in the simplest known cases. In order to identify and locate the finite volume transition point $T_{0}(V)$ of the QCD deconfinement phase transition to a Colorless QGP, we have developed a new approach using the finite size cumulant expansion of the order parameter and the $L_{mn}$-method. The first six cumulants $C_{1,2,3,4,5,6}$ with the corresponding under-normalized ratios(skewness $\\Sigma$, kurtosis $\\kappa$ ,pentosis $\\Pi_{\\pm}$ and hexosis $\\mathcal{H}_{1,2,3}$) and three unnormalized combinations of them ($\\mathcal{O}={\\mathcal{\\sigma }^{2} \\mathcal{\\kappa } }{\\mathbf{\\Sigma }^{-1} }$, $\\mathcal{U} ={\\mathcal{\\sigma }^{-2} \\mathbf{\\Sigma }^{-1} }$, $\\mathcal{N} = \\mathcal{\\sigma }^{2} \\mathcal{\\kappa }$) are calculated and studied as functions of $(T,V)$. A new approach, unifying in a clear and consistent way the definitions of cumulant...
Expansion/De-expansion Tool to Quantify the Accuracy of Prostate Contours
Chung, Eugene; Stenmark, Matthew H.; Evans, Cheryl; Narayana, Vrinda; McLaughlin, Patrick W.
2012-05-01
Purpose: Accurate delineation of the prostate gland on computed tomography (CT) remains a persistent challenge and continues to introduce geometric uncertainty into the planning and delivery of external beam radiotherapy. We, therefore, developed an expansion/de-expansion tool to quantify the contour errors and determine the location of the deviations. Methods and Materials: A planning CT scan and magnetic resonance imaging scan were prospectively acquired for 10 patients with prostate cancer. The prostate glands were contoured by 3 independent observers using the CT data sets with instructions to contour the prostate without underestimation but to minimize overestimation. The standard prostate for each patient was defined using magnetic resonance imaging and CT on multiple planes. After registration of the CT and magnetic resonance imaging data sets, the CT-defined prostates were scored for accuracy. The contours were defined as ideal if they were within a 2.5-mm expansion of the standard without underestimation, acceptable if they were within a 5.0-mm expansion and a 2.5-mm de-expansion, and unacceptable if they extended >5.0 mm or underestimated the prostate by >2.5 mm. Results: A total of 636 CT slices were individually analyzed, with the vast majority scored as ideal or acceptable. However, none of the 30 prostate contour sets had all the contours scored as ideal or acceptable. For all 3 observers, the unacceptable contours were more likely from underestimation than overestimation of the prostate. The errors were more common at the base and apex than the mid-gland. Conclusions: The expansion/de-expansion tool allows for directed feedback on the location of contour deviations, as well as the determination of over- or underestimation of the prostate. This metric might help improve the accuracy of prostate contours.
"Phase freezeout" in isentropically expanding matter
Iosilevskiy, Igor
2014-01-01
Features of isentropic expansion of warm dense matter (WDM) created by intense energy fluxes (strong shock compression or instant isochoric heating by laser or heavy ions) are under discussion in situation when ($i$) -- thermodynamic trajectory of such expansion crosses binodal of liquid-gas phase transition, and ($ii$) -- expansion within the two-phase region is going along equilibrium branch (not metastable one) of the two-phase mixture isentrope. It is known in the plane case that because of break in the expansion isentrope at binodal point (in $P-V$ plane) i.e. jump of sound velocity in this point, there appears extended zone ("boiling layer") of uniformity in expanding material with constant thermodynamic and kinematic parameters. It corresponds just to the state on this binodal of boiling liquid. The point is that because of self-similarity of such expansion (in plane case) this boiling layer contains finite and fixed part of whole expanding material. This property makes it possible (at least formally) ...
Use Data-depend Function Build Message Expansion Function
International Association for Cryptologic Research (IACR)
Use Data-depend Function Build Message Expansion Function ZiJie Xu and Ke Xu xuzijiewz use these functions build a message expansion function. In the message expansion function differences, and any message modification will affect at least 8 data-depend function parameter. Key Word
Double acting stirling engine phase control
Berchowitz, David M.
1983-01-01
A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.
Sevostianov, Igor
On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity Igor Sevostianov Department of Mechanical and Aerospace Engineering, New: Composite material Thermal expansion Cross-property Microstructure Thermal conductivity a b s t r a c
Lattice-structures and constructs with designed thermal expansion coefficients
Spadaccini, Christopher; Hopkins, Jonathan
2014-10-28
A thermal expansion-managed lattice structure having a plurality of unit cells each having flexure bearing-mounted tabs supported on a base and actuated by thermal expansion of an actuator having a thermal expansion coefficient greater than the base and arranged so that the tab is inwardly displaced into a base cavity. The flexure bearing-mounted tabs are connected to other flexure-bearing-mounted tabs of adjacent unit cells so that the adjacent unit cells are spaced from each other to accommodate thermal expansion of individual unit cells while maintaining a desired bulk thermal expansion coefficient of the lattice structure as a whole.
Diamond Shamrock nears completion of major expansions
True, W.R.
1993-05-24
With completion later this year of a second refined products line into Colorado, Diamond Shamrock Inc., San Antonio, will have added more than 600 miles of product and crude-oil pipeline on its system and expanded charge and production capacities at its two state-of-the-art refineries, all within 30 months. The projects aim at improving the company's ability to serve markets in the U.S. Southwest and increasing capacities and flexibility at its two refineries. The paper describes these projects under the following headings: new products service; another new line; and refineries, crude pipelines; Three Rivers expansion and Supplies for McKee.
Probing nuclear expansion dynamics with $?^-/?^+$-spectra
S. Teis; W. Cassing; M. Effenberger; A. Hombach; U. Mosel; Gy. Wolf
1997-01-28
We study the dynamics of charged pions in the nuclear medium via the ratio of differential $\\pi^-$- and $\\pi^+$-spectra in a coupled-channel BUU (CBUU) approach. The relative energy shift of the charged pions is found to correlate with the pion freeze-out time in nucleus-nucleus collisions as well as with the impact parameter of the heavy-ion reaction. Furthermore, the long-range Coulomb force provides a 'clock' for the expansion of the hot nuclear system. Detailed comparisons with experimental data for $Au + Au$ at 1 GeV/A and $Ni + Ni$ at 2.0 GeV/A are presented.
Expansivity and Roquette Groups Alex Monnard
ThÃ©venaz, Jacques
T of G such that IndG NG(T) Inf NG(T) NG(T)/T Def NG(T) NG(T)/T ResG NG(T)(L) = L. This theorem proves) A subgroup T of a finite group G is called expansive in G if, for every g NG(T), the NG(T)-core of the subgroup g T NG(T) T contains properly T, where we note g T for gTg-1 . (iii) A finite group G is said
Stateline Expansion Wind Farm | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage EditStamford,EnergyFarmStateline Expansion
Flat Ridge 2 Expansion | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flats 100k.pdf Jump to:WindP.pdfFireFirstFlag Expansion
Intrepid Expansion Wind Farm | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanian CentreHoldingsFundTruckarea, IdahoExpansion
Ocotillo Wind I Expansion | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork ElectricName01988)I Expansion Jump to:
Cluster expansion modeling and Monte Carlo simulation of alnico 5–7 permanent magnets
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai -Zhuang; Ho, Kai -Ming
2015-03-05
The concerns about the supply and resource of rare earth (RE) metals have generated a lot of interests in searching for high performance RE-free permanent magnets. Alnico alloys are traditional non-RE permanent magnets and have received much attention recently due their good performance at high temperature. In this paper, we develop an accurate and efficient cluster expansion energy model for alnico 5–7. Monte Carlo simulations using the cluster expansion method are performed to investigate the structure of alnico 5–7 at atomistic and nano scales. The alnico 5–7 master alloy is found to decompose into FeCo-rich and NiAl-rich phases at lowmore »temperature. The boundary between these two phases is quite sharp (~2 nm) for a wide range of temperature. The compositions of the main constituents in these two phases become higher when the temperature gets lower. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al on ?-site and Ni and Co on ?-site. The degree of order of the NiAl-rich phase is much higher than that of the FeCo-rich phase. In addition, a small magnetic moment is also observed in NiAl-rich phase but the moment reduces as the temperature is lowered, implying that the magnetic properties of alnico 5–7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase. Furthermore, the results from our Monte Carlo simulations are consistent with available experimental results.« less
Knuth, Eldon L.; Miller, David R.; Even, Uzi
2014-12-09
Data extracted from time-of-flight (TOF) measurements made on steady-state He free jets at Göttingen already in 1986 and for pulsed Ne free jets investigated recently at Tel Aviv have been added to an earlier plot of terminal condensed-phase mass fraction x{sub 2?} as a function of the dimensionless scaling parameter ?. ? characterizes the source (fluid species, temperature, pressure and throat diameter); values of x{sub 2?} are extracted from TOF measurements using conservation of energy in the free-jet expansion. For nozzles consisting of an orifice in a thin plate; the extracted data yield 22 data points which are correlated satisfactorily by a single curve. The Ne free jets were expanded from a conical nozzle with a 20° half angle; the three extracted data points stand together but apart from the aforementioned curve, indicating that the presence of the conical wall influences significantly the expansion and hence the condensation. The 22 data points for the expansions via an orifice consist of 15 measurements with expansions from the gas-phase side of the binodal curve which crossed the binodal curve downstream from the sonic point and 7 measurements with expansions of the gas-phase product of the flashing which occurred after an expansion from the liquid-phase side of the binodal curve crossed the binodal curve upstream from the sonic point. The association of these 22 points with a single curve supports the alternating-phase model for flows with flashing upstream from the sonic point proposed earlier. In order to assess the role of the spinodal curve in such expansions, the spinodal curves for He and Ne were computed using general multi-parameter Helmholtz-free-energy equation-of-state formulations. Then, for the several sets of source-chamber conditions used in the free-jet measurements, thermodynamic states at key locations in the free-jet expansions (binodal curve, sonic point and spinodal curve) were evaluated, with the expansion presumed to be metastable from the binodal curve to the spinodal curve. TOF distributions with more than two peaks (interpreted earlier as superimposed alternating-state TOF distributions) indicated flashing of the metastable flow downstream from the binodal curve but upstream from the sonic point. This relatively early flashing is due apparently to destabilizing interactions with the walls of the source. If the expansion crosses the binodal curve downstream from the nozzle, the metastable fluid does not interact with surfaces and flashing might be delayed until the expansion reaches the spinodal curve. It is concluded that, if the expansion crosses the binodal curve before reaching the sonic point, the resulting metastable fluid downstream from the binodal curve interacts with the adjacent surfaces and flashes into liquid and vapor phases which expand alternately through the nozzle; the two associated alternating TOF distributions are superposed by the chopping process so that the result has the appearance of a single distribution with three peaks.
Transmission network expansion planning with simulation optimization
Bent, Russell W [Los Alamos National Laboratory; Berscheid, Alan [Los Alamos National Laboratory; Toole, G. Loren [Los Alamos National Laboratory
2010-01-01
Within the electric power literatW''e the transmi ssion expansion planning problem (TNEP) refers to the problem of how to upgrade an electric power network to meet future demands. As this problem is a complex, non-linear, and non-convex optimization problem, researchers have traditionally focused on approximate models. Often, their approaches are tightly coupled to the approximation choice. Until recently, these approximations have produced results that are straight-forward to adapt to the more complex (real) problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (i.e. large amounts of limited control, renewable generation) that necessitates new optimization techniques. In this paper, we propose a generalization of the powerful Limited Discrepancy Search (LDS) that encapsulates the complexity in a black box that may be queJied for information about the quality of a proposed expansion. This allows the development of a new optimization algOlitlun that is independent of the underlying power model.
Notes on Mayer Expansions and Matrix Models
Jean-Emile Bourgine
2014-02-03
Mayer cluster expansion is an important tool in statistical physics to evaluate grand canonical partition functions. It has recently been applied to the Nekrasov instanton partition function of $\\mathcal{N}=2$ 4d gauge theories. The associated canonical model involves coupled integrations that take the form of a generalized matrix model. It can be studied with the standard techniques of matrix models, in particular collective field theory and loop equations. In the first part of these notes, we explain how the results of collective field theory can be derived from the cluster expansion. The equalities between free energies at first orders is explained by the discrete Laplace transform relating canonical and grand canonical models. In a second part, we study the canonical loop equations and associate them to similar relations on the grand canonical side. It leads to relate the multi-point densities, fundamental objects of the matrix model, to the generating functions of multi-rooted clusters. Finally, a method is proposed to derive loop equations directly on the grand canonical model.
Is Hubble's Expansion due to Dark Energy
R. C. Gupta; Anirudh Pradhan
2010-10-19
{\\it The universe is expanding} is known (through Galaxy observations) since 1929 through Hubble's discovery ($V = H D$). Recently in 1999, it is found (through Supernovae observations) that the universe is not simply expanding but is accelerating too. We, however, hardly know only $4\\%$ of the universe. The Wilkinson Microwave Anisotropy Probe (WMAP) satellite observational data suggest $73\\%$ content of the universe in the form of dark-energy, $23\\%$ in the form of non-baryonic dark-matter and the rest $4\\%$ in the form of the usual baryonic matter. The acceleration of the universe is ascribed to this dark-energy with bizarre properties (repulsive-gravity). The question is that whether Hubble's expansion is just due to the shock of big-bang & inflation or it is due to the repulsive-gravity of dark-energy? Now, it is believed to be due to dark-energy, say, by re-introducing the once-discarded cosmological-constant $\\Lambda$. In the present paper, it is shown that `the formula for acceleration due to dark-energy' is (almost) exactly of same-form as `the acceleration formula from the Hubble's law'. Hence, it is concluded that: yes, `indeed it is the dark-energy responsible for the Hubble's expansion too, in-addition to the current on-going acceleration of the universe'.
Transcritical CO2 refrigeration cycle with ejector-expansion device Daqing Li, Eckhard A. Groll*
Bahrami, Majid
for the transcritical CO2 cycle. A vortex tube expansion device and an expansion work output device were proposed to recover the expansion losses. The maximum increase in COP using a vortex tube or expansion work output
Finite Volume Cumulant Expansion in QCD-Colorless Plasma
M. Ladrem; M. A. A. Ahmed; Z. Al-Full; S. Cherif
2015-09-03
Due to the finite size effects, the localisation of the phase transition in finite systems and the determination of its order, become an extremely difficult task, even in the simplest known cases. In order to identify and locate the finite volume transition point $T_{0}(V)$ of the QCD deconfinement phase transition to a Colorless QGP, we have developed a new approach using the finite size cumulant expansion of the order parameter and the $L_{mn}$-method. The first six cumulants $C_{1,2,3,4,5,6}$ with the corresponding under-normalized ratios(skewness $\\Sigma$, kurtosis $\\kappa$ ,pentosis $\\Pi_{\\pm}$ and hexosis $\\mathcal{H}_{1,2,3}$) and three unnormalized combinations of them ($\\mathcal{O}={\\mathcal{\\sigma }^{2} \\mathcal{\\kappa } }{\\mathbf{\\Sigma }^{-1} }$, $\\mathcal{U} ={\\mathcal{\\sigma }^{-2} \\mathbf{\\Sigma }^{-1} }$, $\\mathcal{N} = \\mathcal{\\sigma }^{2} \\mathcal{\\kappa }$) are calculated and studied as functions of $(T,V)$. A new approach, unifying in a clear and consistent way the definitions of cumulant ratios, is proposed. A numerical FSS analysis of the obtained results has allowed us to locate accurately the finite volume transition point. The extracted transition temperature value $T_{0}(V)$ agrees with that expected $T_{0}^{N}(V)$ from the order parameter and the thermal susceptibility $\\chi _{T}\\left( T,V\\right)$, according to the standard procedure of localization to within about $2\\%$. In addition to this, a very good correlation factor is obtained proving the validity of our cumulants method. The agreement of our results with those obtained by means of other models is remarkable.
PHOTOSPHERIC RADIUS EXPANSION IN SUPERBURST PRECURSORS FROM NEUTRON STARS
Keek, L.
2012-09-10
Thermonuclear runaway burning of carbon is in rare cases observed from accreting neutron stars as day-long X-ray flares called superbursts. In the few cases where the onset is observed, superbursts exhibit a short precursor burst at the start. In each instance, however, the data are of insufficient quality for spectral analysis of the precursor. Using data from the propane anti-coincidence detector of the Proportional Counter Array instrument on the Rossi X-ray Timing Explorer, we perform the first detailed time-resolved spectroscopy of precursors. For a superburst from 4U 1820-30 we demonstrate the presence of photospheric radius expansion. We find the precursor to be 1.4-2 times more energetic than other short bursts from this source, indicating that the burning of accreted helium is insufficient to explain the full precursor. Shock heating would be able to account for the shortfall in energy. We argue that this precursor is a strong indication that the superburst starts as a detonation, and that a shock induces the precursor. Furthermore, we employ our technique to study the superexpansion phase of the same superburst in greater detail.
Thermal expansion recovery microscopy: Practical design considerations
Mingolo, N. Martínez, O. E.
2014-01-15
A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.
Prolate spheroidal harmonic expansion of gravitational field
Fukushima, Toshio, E-mail: Toshio.Fukushima@nao.ac.jp [National Astronomical Observatory, Ohsawa, Mitaka, Tokyo 181-8588 (Japan)
2014-06-01
As a modification of the oblate spheroidal case, a recursive method is developed to compute the point value and a few low-order derivatives of the prolate spheroidal harmonics of the second kind, Q{sub nm} (y), namely the unnormalized associated Legendre function (ALF) of the second kind with its argument in the domain, 1 < y < ?. They are required in evaluating the prolate spheroidal harmonic expansion of the gravitational field in addition to the point value and the low-order derivatives of P-bar {sub nm}(t), the 4? fully normalized ALF of the first kind with its argument in the domain, |t| ? 1. The new method will be useful in the gravitational field computation of elongated celestial objects.
Convergence of derivative expansions in scalar field theory
Tim R. Morris; John F. Tighe
2001-02-06
The convergence of the derivative expansion of the exact renormalisation group is investigated via the computation of the beta function of massless scalar lambda phi^4 theory. The derivative expansion of the Polchinski flow equation converges at one loop for certain fast falling smooth cutoffs. Convergence of the derivative expansion of the Legendre flow equation is trivial at one loop, but also can occur at two loops and in particular converges for an exponential cutoff.
Reconstruction from Radon projections and orthogonal expansion on a ball
Yuan Xu
2007-05-14
The relation between Radon transform and orthogonal expansions of a function on the unit ball in $\\RR^d$ is exploited. A compact formula for the partial sums of the expansion is given in terms of the Radon transform, which leads to algorithms for image reconstruction from Radon data. The relation between orthogonal expansion and the singular value decomposition of the Radon transform is also exploited.
Development of low-expansion ceramics with strength retention to elevated temperatures. Final report
Hirschfeld, D.A.; Brown, J.J. Jr. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)
1994-09-01
The development of advanced engines has resulted in the need for new ceramic compositions which exhibit thermo-mechanical properties suitable for the engine environment, e.g., low thermal expansion, stability to 1,200 C, and thermal shock resistance. To meet these goals, a two phase research program was instituted. In the first phase, new oxide ceramics were identified in the AlPO{sub 4}-{beta}-eucryptite, {beta}-cristobalite, mullite and zircon systems. This research focused on screening and property characterization of ceramics in the four systems. The most promising compositions in the AlPO{sub 4}-{beta}-eucryptite and zircon systems were then further evaluated and developed in the second phase with the goal of being ready for prototype testing in actual engines. Of the compositions, calcium magnesium zirconium phosphate (zircon system) exhibits the most desirable properties and is presently being developed for commercialization.
Expansion and Improvement of Solar Water Heating Technology in...
Office Jump to: navigation, search Name: Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Place: Beijing, Beijing Municipality, China...
Load Expansion of Stoichiometric HCCI Using Spark Assist and...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
of Stoichiometric HCCI Using Spark Assist and Hydraulic Valve Actuation Load Expansion of Stoichiometric HCCI Using Spark Assist and Hydraulic Valve Actuation Presentation given at...
Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt015eswise2011p.pdf More Documents & Publications Expansion...
Load Expansion with Diesel/Gasoline RCCI for Improved Engine...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...
FOA aimed at growing expansive database of Renewable Energy and...
FOA aimed at growing expansive database of Renewable Energy and Energy Efficiency Incentives and Policies Home > Groups > Utility Rate Graham7781's picture Submitted by...
Heat Flow Database Expansion for NGDS Data Development, Collection...
Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Heat...
Non-Equilibrium Phase Transition in Rapidly Expanding Matter
I. N. Mishustin
1999-04-29
Non-equilibrium features of a first order phase transition from the quark-gluon plasma to a hadronic gas in relativistic heavy-ion collisions are discussed. It is demonstrated that strong collective expansion may lead to the fragmentation of the plasma phase into droplets surrounded by undersaturated hadronic gas. Subsequent hadronization of droplets will generate strong non-statistical fluctuations in the hadron rapidity distribution in individual events. The strongest fluctuations are expected in the vicinity of the phase transition threshold.
An Analysis of Reshuffled Handshaking Expansions Rajit Manohar
Manohar, Rajit
Hardware Process (CHP) nota tion. This specification is then transformed into a number of CHP programs handshaking expansions by converting them back to CHP programs. This permits us to analyze the correct ness of reshuffled handshaking expansions at the CHP level, thus simplifying the analysis. We introduce a new compo
Asymptotic Expansions of Defective Renewal Equations with Applications to Perturbed
Blanchet, Jose H.
Asymptotic Expansions of Defective Renewal Equations with Applications to Perturbed Risk Models. These expansions are applied to the analysis of Processor Sharing queues and perturbed risk models, and yield Introduction A defective renewal equation for a function ap (·) takes the form ap (t) = bp (t) + (1 - p) [0,t
Climate impacts of a large-scale biofuels expansion*
Climate impacts of a large-scale biofuels expansion* Willow Hallgren, C. Adam Schlosser, Erwan impacts of a large-scale biofuels expansion Willow Hallgren,1 C. Adam Schlosser,1 Erwan Monier,1 David March 2013. [1] A global biofuels program will potentially lead to intense pressures on land supply
Document Representation and Query Expansion Models for Blog Recommendation
Callan, Jamie
Document Representation and Query Expansion Models for Blog Recommendation Jaime Arguello document representation models and two query expansion models for the task of recommend- ing blogs to a user in response to a query. Blog relevance ranking differs from traditional document ranking in ad
ORIGINAL PAPER Economic development, urban expansion, and sustainable
Wei, Yehua Dennis
ORIGINAL PAPER Economic development, urban expansion, and sustainable development in Shanghai Wenze-Verlag 2012 Abstract Studies of urbanization effects in Chinese cities from the aspect of the coupled urban expansion and examined the dynamic relationship between economic growth and envi- ronment
Complete Mitochondrial Genomes Reveal Neolithic Expansion into Europe
Pääbo, Svante
Complete Mitochondrial Genomes Reveal Neolithic Expansion into Europe Qiaomei Fu1 *, Pavao Rudan2 in subsistence strategies during the Neolithic revolution in Europe. In order to test if a signal of population that the spread of agriculture in Europe involved the expansion of farming populations into Europe followed
OPEC production: Untapped reserves, world demand spur production expansion
Ismail, I.A.H. (Organization of the Petroleum Exporting Countries, Vienna (Austria))
1994-05-02
To meet projected world oil demand, almost all members of the Organization of Petroleum Exporting Countries (OPEC) have embarked on ambitious capacity expansion programs aimed at increasing oil production capabilities. These expansion programs are in both new and existing oil fields. In the latter case, the aim is either to maintain production or reduce the production decline rate. However, the recent price deterioration has led some major OPEC producers, such as Saudi Arabia and Iran, to revise downward their capacity plans. Capital required for capacity expansion is considerable. Therefore, because the primary source of funds will come from within each OPEC country, a reasonably stable and relatively high oil price is required to obtain enough revenue for investing in upstream projects. This first in a series of two articles discusses the present OPEC capacity and planned expansion in the Middle East. The concluding part will cover the expansion plans in the remaining OPEC countries, capital requirements, and environmental concerns.
Multipolar expansion of the electrostatic interaction between charged colloids at interfaces
A. Dominguez; D. Frydel; M. Oettel
2007-10-23
The general form of the electrostatic potential around an arbitrarily charged colloid at an interface between a dielectric and a screening phase (such as air and water, respectively) is analyzed in terms of a multipole expansion. The leading term is isotropic in the interfacial plane and varies with $d^{-3}$ where $d$ is the in--plane distance from the colloid. The electrostatic interaction potential between two arbitrarily charged colloids is likewise isotropic and $\\propto d^{-3}$, corresponding to the dipole--dipole interaction first found for point charges at water interfaces. Anisotropic interaction terms arise only for higher powers $d^{-n}$ with $n \\ge 4$.
Supersymmetric inversion of effective-range expansions
Bikashkali Midya; Jérémie Evrard; Sylvain Abramowicz; O. L. Ramírez Suárez; Jean-Marc Sparenberg
2015-05-26
A complete and consistent inversion technique is proposed to derive an accurate interaction potential from an effective-range function for a given partial wave in the neutral case. First, the effective-range function is Taylor or Pad\\'e expanded, which allows high precision fitting of the experimental scattering phase shifts with a minimal number of parameters on a large energy range. Second, the corresponding poles of the scattering matrix are extracted in the complex wave-number plane. Third, the interaction potential is constructed with supersymmetric transformations of the radial Schr\\"odinger equation. As an illustration, the method is applied to the experimental phase shifts of the neutron-proton elastic scattering in the $^1S_0$ and $^1D_2$ channels on the $[0-350]$ MeV laboratory energy interval.
Deuterium phase behavior in thin-film Pd
Munter, A.E.; Heuser, B.J.
1998-07-01
The absorption of deuterium from the gas phase into two Pd thin films 668 {Angstrom} and 1207 {Angstrom} thick was measured at room temperature with {ital in situ} neutron reflectometry. Room-temperature solubility isothermal curves, out-of-plane film expansion, and deuterium depth profiles were determined from fits to the neutron reflectivity data. The measurements demonstrate that the deuterium solubility behavior, both in solid solution and within the two-phase region, is strongly perturbed by the thin-film geometry, consistent with previous solubility measurements in the published literature. The phase behavior investigated here was observed to depend on film thickness and on deuterium cycling through the two-phase region. The 668-{Angstrom} film exhibited the greatest initial phase perturbation and most significant changes upon cycling. Upon repeated cycling, both films approach nearly identical deuterium isothermal solubility and out-of-plane expansion behaviors. The observed equilibrium out-of-plane expansion behavior was consistent with the films expanding under an in-plane clamping constraint imposed by the substrate. The effect of this substrate constraining force is to amplify the out-of-plane expansion beyond that expected in bulk Pd. Taken together, these measurements implicate the film/substrate interfacial clamping interaction as the origin of the perturbed hydrogen phase behavior in thin-film geometry. {copyright} {ital 1998} {ital The American Physical Society}
First-principles study on negative thermal expansion of PbTiO{sub 3}
Wang, Fangfang; Chen, Jun; Xing, Xianran; Xie, Ying; Fu, Honggang
2013-11-25
It is well known that perovskite-type PbTiO{sub 3} behaves negative thermal expansion in a wide temperature range from room temperature to Curie temperature (763?K). The present study reports the first-principles study of the anisotropic thermal expansion of PbTiO{sub 3}, in the framework of the density-functional theory and the density-functional perturbation theory. The curve of temperature dependence of the unit cell volume is presented from 20 to 520?K through the calculation of the minimum of total free energy at each temperature point. The negative thermal expansion of PbTiO{sub 3} is calculated without empirical parameters. Furthermore, the distinctive thermodynamic act of PbTiO{sub 3} from expanding to contracting at tetragonal phase is reproduced. The ab-initio calculations reveal that this unique appearance depends on the phonon vibration. The dynamical contributions of various atoms are also calculated to account for the disparate role of Pb-O and Ti-O bond.
Michael Creutz
1997-08-25
This is a set of notes on phase transitions and critical phenomena prepared to accompany my lectures for the RHIC '97 summer school, held at Brookhaven from July 6 to 16, 1997.
Local gravitational physics of the Hubble expansion
Sergei Kopeikin
2015-01-21
We study physical consequences of the Hubble expansion of FLRW manifold on measurement of space, time and light propagation in the local inertial frame. We analyse the solar system radar ranging and Doppler tracking experiments, and time synchronization. FLRW manifold is covered by global coordinates (t,y^i), where t is the cosmic time coinciding with the proper time of the Hubble observers. We introduce local inertial coordinates x^a=(x^0,x^i) in the vicinity of a world line of a Hubble observer with the help of a special conformal transformation. The local inertial metric is Minkowski flat and is materialized by the congruence of time-like geodesics of static observers being at rest with respect to the local spatial coordinates x^i. We consider geodesic motion of test particles and notice that the local coordinate time x^0=x^0(t) taken as a parameter along the world line of particle, is a function of the Hubble's observer time t. This function changes smoothly from x^0=t for a particle at rest (observer's clock), to x^0=t+1/2 Ht^2 for photons, where H is the Hubble constant. Thus, motion of a test particle is non-uniform when its world line is parametrized by time t. NASA JPL Orbit Determination Program presumes that motion of light (after the Shapiro delay is excluded) is uniform with respect to the time t but it does not comply with the non-uniform motion of light on cosmological manifold. For this reason, the motion of light in the solar system analysed with the Orbit Determination Program appears as having a systematic blue shift of frequency, of radio waves circulating in the Earth-spacecraft radio link. The magnitude of the anomalous blue shift of frequency is proportional to the Hubble constant H that may open an access to the measurement of this fundamental cosmological parameter in the solar system radiowave experiments.
The derivative expansion approach to the interaction between close surfaces
C. D. Fosco; F. C. Lombardo; F. D. Mazzitelli
2014-06-18
The derivative expansion approach to the calculation of the interaction between two surfaces, is a generalization of the proximity force approximation, a technique of widespread use in different areas of physics. The derivative expansion has so far been applied to seemingly unrelated problems in different areas; it is our principal aim here to present the approach in its full generality. To that end, we introduce an unified setting, which is independent of any particular application, provide a formal derivation of the derivative expansion in that general setting, and study some its properties. With a view on the possible application of the derivative expansion to other areas, like nuclear and colloidal physics, we also discuss the relation between the derivative expansion and some time-honoured uncontrolled approximations used in those contexts. By putting them under similar terms as the derivative expansion, we believe that the path is open to the calculation of next to leading order corrections also for those contexts. We also review some results obtained within the derivative expansion, by applying it to different concrete examples and highlighting some important points.
Expansion of a cold non-neutral plasma slab
Karimov, A. R.; Yu, M. Y.; Stenflo, L.
2014-12-15
Expansion of the ion and electron fronts of a cold non-neutral plasma slab with a quasi-neutral core bounded by layers containing only ions is investigated analytically and exact solutions are obtained. It is found that on average, the plasma expansion time scales linearly with the initial inverse ion plasma frequency as well as the degree of charge imbalance, and no expansion occurs if the cold plasma slab is stationary and overall neutral. However, in both cases, there can exist prominent oscillations on the electron front.
Nuclear Fusion Drives Present-Day Accelerated Cosmic Expansion
Ying, Leong
2010-09-30
The widely accepted model of our cosmos is that it began from a Big Bang event some 13.7 billion years ago from a single point source. From a twin universe perspective, the standard stellar model of nuclear fusion can account for the Dark Energy needed to explain the mechanism for our present-day accelerated expansion. The same theories can also be used to account for the rapid inflationary expansion at the earliest time of creation, and predict the future cosmic expansion rate.
Generalized entropies and the expansion law of the universe
Fatemeh Lalehgani Dezaki; Behrouz Mirza
2015-07-04
We suggest that using the first law of thermodynamics is a convenient method to obtain a correct form of the expansion law of the universe \\cite{T. Padmanabhan1}. We will, then, use this idea to obtain the expansion law for a Kodama observer. By using the expansion law for a Kodama observer, we can obtain the dynamic equation of the FRW universe for deformed Horava-Lifshitz gravity. The use of the first law of thermodynamics also leads to a new approach for obtaining the Friedmann equations for f(R) and scalar tensor gravities.
Sarrailh, P.; Garrigues, L.; Hagelaar, G. J. M.; Boeuf, J. P.; Sandolache, G.; Rowe, S.
2009-09-01
During the postarc dielectric recovery phase in a vacuum circuit breaker, a cathode sheath forms and expels the plasma from the electrode gap. The success or failure of current breaking depends on how efficiently the plasma is expelled from the electrode gap. The sheath expansion in the postarc phase can be compared to sheath expansion in plasma immersion ion implantation except that collisions between charged particles and atoms generated by electrode evaporation may become important in a vacuum circuit breaker. In this paper, we show that electrode evaporation plays a significant role in the dynamics of the sheath expansion in this context not only because charged particle transport is no longer collisionless but also because the neutral flow due to evaporation and temperature gradients may push the plasma toward one of the electrodes. Using a hybrid model of the nonequilibrium postarc plasma and cathode sheath coupled with a direct simulation Monte Carlo method to describe collisions between heavy species, we present a parametric study of the sheath and plasma dynamics and of the time needed for the sheath to expel the plasma from the gap for different values of plasma density and electrode temperatures at the beginning of the postarc phase. This work constitutes a preliminary step toward understanding and quantifying the risk of current breaking failure of a vacuum arc.
N-body Lyapunov expansion rates in one component strongly coupled plasmas
Ueshima, Y.; Nishihara, K.; Barnett, D.M.; Tajima, T.; Furukawa, H. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565 (Japan)
1996-05-01
Phase space Lyapunov expansion rates are measured for the first time for Coulomb many body systems with the use of a 3-{ital d} particle code. The time averaged Lyapunov exponents, {lambda}/{omega}{sub {ital p}}, are found to be proportional to {Gamma}{sup {minus}2/5} and the cubic root of the diffusion coefficient in the range of 1{lt}{Gamma}{lt}160, where {omega}{sub {ital p}} and {Gamma} are plasma frequency and ion coupling constant, respectively. A large jump of the averaged Lyapunov exponent is observed near {Gamma}{approximately}170, corresponding to the phase transition from liquid to solid. Instantaneous Lyapunov exponent has chaotic behavior and consists of three different spectra, flat, {ital f}{sup {minus}2} and {ital f}{sup {minus}1}. {copyright} {ital 1996 American Institute of Physics.}
Definition, Expansion and Screening of Architectures for Planetary Exploration Class Nuclear, expansion and screening of Nuclear Electric Propulsion and Power concepts capable of achieving planetary left blank 2 #12;Definition, Expansion and Screening of Architectures for Planetary Exploration Class
Sai Venkata Ramana, A.
2014-04-21
The coupling parameter series expansion and the high temperature series expansion in the thermodynamic perturbation theory of fluids are shown to be equivalent if the interaction potential is pairwise additive. As a consequence, for the class of fluids with the potential having a hardcore repulsion, if the hard-sphere fluid is chosen as reference system, the terms of coupling parameter series expansion for radial distribution function, direct correlation function, and Helmholtz free energy follow a scaling law with temperature. The scaling law is confirmed by application to square-well fluids.
Filtering with Marked Point Process Observations via Poisson Chaos Expansion
Sun Wei; Zeng Yong; Zhang Shu
2013-06-15
We study a general filtering problem with marked point process observations. The motivation comes from modeling financial ultra-high frequency data. First, we rigorously derive the unnormalized filtering equation with marked point process observations under mild assumptions, especially relaxing the bounded condition of stochastic intensity. Then, we derive the Poisson chaos expansion for the unnormalized filter. Based on the chaos expansion, we establish the uniqueness of solutions of the unnormalized filtering equation. Moreover, we derive the Poisson chaos expansion for the unnormalized filter density under additional conditions. To explore the computational advantage, we further construct a new consistent recursive numerical scheme based on the truncation of the chaos density expansion for a simple case. The new algorithm divides the computations into those containing solely system coefficients and those including the observations, and assign the former off-line.
Value of Options in Airport Expansion - Example of AICM
Morgado, Frederico
Investments decisions for airport capacity expansion are usually taken, either when demand exceeds the current capacity and the airport is working under congestion, or when current demand is expected to overcome current ...
Generation and transmission expansion planning for renewable energy integration
Bent, Russell W; Berscheid, Alan; Toole, G. Loren
2010-11-30
In recent years the expansion planning problem has become increasingly complex. As expansion planning (sometimes called composite or integrated resource planning) is a non-linear and non-convex optimization problem, researchers have traditionally focused on approximate models of power flows to solve the problem. The problem has also been split into generation expansion planning (GEP) and transmission network expansion planning (TNEP) to improve computational tractability. Until recently these approximations have produced results that are straight-forward to combine and adapt to the more complex and complete problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (e.g. large amounts of limited control, renewable generation, comparable generation and transmission construction costs) and necessitates new approaches. Recent work on deterministic Discrepancy Bounded Local Search (DBLS) has shown it to be quite effective in addressing the TNEP. In this paper, we propose a generalization of DBLS to handle simultaneous generation and transmission planning.
Seal assembly for materials with different coefficients of thermal expansion
Minford, Eric (Laurys Station, PA)
2009-09-01
Seal assembly comprising (a) two or more seal elements, each element having having a coefficient of thermal expansion; and (b) a clamping element having a first segment, a second segment, and a connecting segment between and attached to the first and second segments, wherein the two or more seal elements are disposed between the first and second segments of the clamping element. The connecting segment has a central portion extending between the first segment of the clamping element and the second segment of the clamping element, and the connecting segment is made of a material having a coefficient of thermal expansion. The coefficient of thermal expansion of the material of the connecting segment is intermediate the largest and smallest of the coefficients of thermal expansion of the materials of the two or more seal elements.
Direct Expansion Air Conditioning System Selection for Hot & Humid Climates
Browning, B. K.
2002-01-01
This paper discusses some of the difficulties of selecting direct expansion (DX) air conditioning systems to dehumidify conditioned spaces in hot & humid climates. It is a common opinion among designers that concerns of humidity control are best...
Expansion Joint Concepts for High Temperature Insulation Systems
Harrison, M. R.
1980-01-01
As high temperature steam and process piping expands with heat, joints begin to open between the insulation sections, resulting in increased energy loss and possible unsafe surface temperatures. Many different expansion joint designs are presently...
Pseudodynamic planning for expansion of power distribution sytems
Ramirez-Rosado, I.J. ); Gonen, T. )
1991-02-01
This paper presents basic and extended planning models, based on a pseudodynamic methodology, to solve the global expansion problem (sizing, locating, and timing) of distribution substations and feeders throughout the planning time period. The objective functions, that represent the expansion costs, are minimized by successive concatenated optimizations subject to the Kirchhoff's current law, power capacity limits and logical constraints, in the basic model. It also presents an extended model that is obtained by including the voltage drop constraints in the basic model.
Thermal expansion within a chain of magnetic colloidal particles
D. Lacoste; C. Brangbour; J. Bibette; J. Baudry
2009-06-19
We study the thermal expansion of chains formed by self-assembly of magnetic colloidal particles in a magnetic field. Using video-microscopy, complete positional data of all the particles of the chains is obtained. By changing the ionic strength of the solution and the applied magnetic field, the interaction potential can be tuned. We analyze the thermal expansion of the chain using a simple model of a one dimensional anharmonic crystal of finite size.
Differential expansion of space and the Hubble flow anisotropy
Krzysztof Bolejko; M. Ahsan Nazer; David L. Wiltshire
2015-12-24
The Universe on scales $10-100~h^{-1}$ Mpc is dominated by a cosmic web of voids, filaments, sheets and knots of galaxy clusters. These structures participate differently in the global expansion of the Universe: from non-expanding clusters to the above average expansion rate of voids. In this paper we characterize Hubble expansion anisotropies in the COMPOSITE sample of 4534 galaxies and clusters. We concentrate on the dipole and quadrupole in the rest frame of the Local Group. These both have statistically significant amplitudes. These anisotropies, and their redshift dependence, cannot be explained solely by a boost of the Local Group in the Friedmann-Lema\\^{i}tre-Robertson-Walker (FLRW) model which expands isotropically in the rest frame of the cosmic microwave background (CMB) radiation. We simulate the local expansion of the Universe with inhomogeneous Szekeres models, which match the standard FLRW model on $> 100~ h^{-1}$ Mpc scales but exhibit nonkinematic differential expansion on small scales. We restrict models to be consistent with observed CMB temperature anisotropies, while simultaneously fitting the redshift variation of the Hubble expansion dipole. We include features to account for both the Local Void and the "Great Attractor". While this naturally accounts for the Hubble expansion and CMB dipoles, the simulated quadrupoles are smaller than observed. Further refinement to incorporate additional structures may improve this. This would enable a test of the hypothesis that some large angle CMB anomalies result from failing to treat the differential expansion of space; a natural feature of Einstein's equations not included in the current standard model of cosmology.
Differential expansion of space and the Hubble flow anisotropy
Krzysztof Bolejko; M. Ahsan Nazer; David L. Wiltshire
2015-12-23
The Universe on scales $10-100~h^{-1}$ Mpc is dominated by a cosmic web of voids, filaments, sheets and knots of galaxy clusters. These structures participate differently in the global expansion of the Universe: from non-expanding clusters to the above average expansion rate of voids. In this paper we characterize Hubble expansion anisotropies in the COMPOSITE sample of 4534 galaxies and clusters. We concentrate on the dipole and quadrupole in the rest frame of the Local Group. These both have statistically significant amplitudes. These anisotropies, and their redshift dependence, cannot be explained solely by a boost of the Local Group in the Friedmann-Lema\\^{i}tre-Robertson-Walker (FLRW) model which expands isotropically in the rest frame of the cosmic microwave background (CMB) radiation. We simulate the local expansion of the Universe with inhomogeneous Szekeres models, which match the standard FLRW model on $> 100~ h^{-1}$ Mpc scales but exhibit nonkinematic differential expansion on small scales. We restrict models to be consistent with observed CMB temperature anisotropies, while simultaneously fitting the redshift variation of the Hubble expansion dipole. We include features to account for both the Local Void and the "Great Attractor". While this naturally accounts for the Hubble expansion and CMB dipoles, the simulated quadrupoles are smaller than observed. Further refinement to incorporate additional structures may improve this. This would enable a test of the hypothesis that some large angle CMB anomalies result from failing to treat the differential expansion of space; a natural feature of Einstein's equations not included in the current standard model of cosmology.
Cryogenic Thermal Expansion of Y-12 Graphite Fuel Elements
Eash, D. T.
2013-07-08
Thermal expansion measurements betwccn 20°K and 300°K were made on segments of three uranium-loaded Y-12 uncoated graphite fuel elements. The thermal expansion of these fuel elements over this temperature range is represented by the equation: {Delta}L/L = -39.42 x 10{sup -5} + 1.10 x 10{sup -7} T + 6.47 x 10{sup -9} T{sup 2} - 8.30 x 10{sup -12} T{sup 3}.
Nuclear incompressibility: An analytical study on leptodermous expansion
V. S. Uma Maheswari; V. S. Ramamurthy; L. Satpathy
1995-05-22
A comparative study of the liquid-drop model (LDM) type expansions of energy $E$ and compression modulus $K_A$ is made within the energy density formalism using Skyrme interactions. As compared to the energy expansion, it is found that, in the pure bulk mode of density vibration, the LDM expansion of $K_A$ shows an anomalous convergence behaviour due to {\\it pair \\ effect}. A least squares fit analysis is done to estimate the minimum error, one would expect even with synthetic data due to the inherent nature of the LDM expansion of $K_A$ as well as the narrow range of accessible mass number $A$, in the values of the various coefficients. The dependence of the higher-order coefficients like curvature and Gauss curvature on the coupling $\\beta_c$ between the bulk and surface parts of the monopole vibrations is analytically studied. It is shown that the $K_A -$ expansion including the dynamical effect ( $A-$ dependence of $\\beta_c$ ) shows an `up-turn' behaviour below mass number about 120, suggesting the inapplicability of the LDM expansion of $K_A$ over this mass region.
Bubble Free Energy in Cosmological Phase Transitions
J. Ignatius
1993-01-07
Free energy as a function of temperature and the bubble radius is determined for spherical bubbles created in cosmological first order phase transitions. The phase transition is assumed to be driven by an order parameter (e.g. a Higgs field) with quartic potential. The definition of the bubble radius and the corresponding generalized, curvature-dependent surface tensions are discussed. In the free energy expansion in powers of the inverse radius, the coefficients of the curvature term and the constant term are also calculated.
Anomalous expansion of the copper-apical-oxygen distance in supercondu...
Office of Scientific and Technical Information (OSTI)
Journal Article: Anomalous expansion of the copper-apical-oxygen distance in superconducting cuprate bilayers Citation Details In-Document Search Title: Anomalous expansion of the...
The Political History of Hydraulic Fracturing’s Expansion Across the West
Forbis, Robert E.
2014-01-01
Political History of Hydraulic Fracturing’s Expansion AcrossPolitical History of Hydraulic Fracturing’s Expansion Acrosss use of the hydraulic fracturing development process.
The Political History of Hydraulic Fracturing’s Expansion Across the West
Forbis, Robert E.
2014-01-01
History of Hydraulic Fracturing’s Expansion Across The WestHistory of Hydraulic Fracturing’s Expansion Across the Westuse of the hydraulic fracturing development process. First,
Escher, Christine
monitoring of the building system for performance, trending & energy usage. · The building will use 32% less computer irrigation management system to reduce potable water consumption. · Building systems were contained than in the prior situation. Reflector systems on the field lighting fixtures reduce the off
A Phase I Cultural Resources Survey of the Walker County Jail and Office Expansion Area Project
Moore, William
2015-06-08
on historical accounts and current populations. A study by Keller (1974:78-81) of the paleoecology of the middle Neches region lists those mammals most likely to have been hunted in the area. They are Whitetail deer, Cottontail rabbit, Swamp... and Miller Sites of Northeastern Texas, with a Preliminary Definition of the La Harpe Aspect. Bulletin of the Texas Archeological Society 32:141-284. Keller, John Esten 1974 The Subsistence Paleoecology of the Middle Neches Region of East Texas...
Anderson, Robert C. (Crossville, TN); Jones, Jack M. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN)
1982-01-01
The present invention is directed to the fabrication of an article of uranium-2.4 wt. % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22.degree. C. and 600.degree. C. which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 MPa, an ultimate tensile strength of 1050 MPa, a compressive yield strength of at least 0.2% offset of at least 675 MPa, and an elongation of at least 25% over 25.4 mm/sec. To provide this article with the improved thermal expansion, the uranium alloy billet is heated to 630.degree. C. and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/sec. These critical extrusion parameters provide the article with the desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article.
Zanolin, M.; Vitale, S.; Makris, N.
2010-06-15
In this paper we apply to gravitational waves (GW) from the inspiral phase of binary systems a recently derived frequentist methodology to calculate analytically the error for a maximum likelihood estimate of physical parameters. We use expansions of the covariance and the bias of a maximum likelihood estimate in terms of inverse powers of the signal-to-noise ration (SNR)s where the square root of the first order in the covariance expansion is the Cramer Rao lower bound (CRLB). We evaluate the expansions, for the first time, for GW signals in noises of GW interferometers. The examples are limited to a single, optimally oriented, interferometer. We also compare the error estimates using the first two orders of the expansions with existing numerical Monte Carlo simulations. The first two orders of the covariance allow us to get error predictions closer to what is observed in numerical simulations than the CRLB. The methodology also predicts a necessary SNR to approximate the error with the CRLB and provides new insight on the relationship between waveform properties, SNR, dimension of the parameter space and estimation errors. For example the timing match filtering can achieve the CRLB only if the SNR is larger than the Kurtosis of the gravitational wave spectrum and the necessary SNR is much larger if other physical parameters are also unknown.
Locally smeared operator product expansions in scalar field theory
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Monahan, Christopher; Orginos, Kostas
2015-04-01
We propose a new locally smeared operator product expansion to decompose non-local operators in terms of a basis of smeared operators. The smeared operator product expansion formally connects nonperturbative matrix elements determined numerically using lattice field theory to matrix elements of non-local operators in the continuum. These nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, which significantly complicates calculations of quantities such as the moments of parton distribution functions, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale complicates the connection to the Wilson coefficients of the standardmore »operator product expansion and requires the construction of a suitable formalism. We demonstrate the feasibility of our approach with examples in real scalar field theory.« less
Locally smeared operator product expansions in scalar field theory
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Monahan, Christopher J. [College of William & Mary; Orginos, Kostas [William and Mary College, JLAB
2015-04-01
We propose a new locally smeared operator product expansion to decompose non-local operators in terms of a basis of smeared operators. The smeared operator product expansion formally connects nonperturbative matrix elements determined numerically using lattice field theory to matrix elements of non-local operators in the continuum. These nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, which significantly complicates calculations of quantities such as the moments of parton distribution functions, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale complicates the connection to the Wilson coefficients of the standard operator product expansion and requires the construction of a suitable formalism. We demonstrate the feasibility of our approach with examples in real scalar field theory.
Small Winding-Number Expansion: Vortex Solutions at Critical Coupling
Keisuke Ohashi
2015-07-22
We study an axially symmetric solution of a vortex in the Abelian-Higgs model at critical coupling in detail. Here we propose a new idea for a perturbative expansion of a solution, where the winding number of a vortex is naturally extended to be a real number and the solution is expanded with respect to it around its origin. We test this idea on three typical constants contained in the solution and confirm that this expansion works well with the help of the Pad\\'e approximation. For instance, we analytically reproduce the value of the scalar charge of the vortex with an error of $O(10^{-6})$. This expansion is also powerful even for large winding numbers.
Small Winding-Number Expansion: Vortex Solutions at Critical Coupling
Keisuke Ohashi
2015-09-01
We study an axially symmetric solution of a vortex in the Abelian-Higgs model at critical coupling in detail. Here we propose a new idea for a perturbative expansion of a solution, where the winding number of a vortex is naturally extended to be a real number and the solution is expanded with respect to it around its origin. We test this idea on three typical constants contained in the solution and confirm that this expansion works well with the help of the Pad\\'e approximation. For instance, we analytically reproduce the value of the scalar charge of the vortex with an error of $O(10^{-6})$. This expansion is also powerful even for large winding numbers.
Small Winding-Number Expansion: Vortex Solutions at Critical Coupling
Ohashi, Keisuke
2015-01-01
We study an axially symmetric solution of a vortex in the Abelian-Higgs model at critical coupling in detail. Here we propose a new idea for a perturbative expansion of a solution, where the winding number of a vortex is naturally extended to be a real number and the solution is expanded with respect to it around its origin. We test this idea on three typical constants contained in the solution and confirm that this expansion works well with the help of the Pad\\'e approximation. For instance, we analytically reproduce the value of the scalar charge of the vortex with an error of $O(10^{-6})$. This expansion is also powerful even for large winding numbers.
Self-similar expansion of a warm dense plasma
Djebli, Mourad [USTHB, Faculty of Physics, Theoretical Physics Laboratory, B.P. 32 Bab-Ezzouar, 16079 Algiers (Algeria)] [USTHB, Faculty of Physics, Theoretical Physics Laboratory, B.P. 32 Bab-Ezzouar, 16079 Algiers (Algeria); Moslem, Waleed M. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt)] [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt)
2013-07-15
The properties of an expanding plasma composed of degenerate electron fluid and non-degenerate ions are studied. For our purposes, we use fluid equations for ions together with the electron momentum equation that include quantum forces (e.g., the quantum statistical pressure, forces due to the electron-exchange and electron correlations effects) and the quasi-neutrality condition. The governing equation is written in a tractable form by using a self-similar transformation. Numerical results for typical beryllium plasma parameters revealed that, during the expansion, the ion acoustic speed decreases for both isothermal and adiabatic ion pressure. When compared with classical hydrodynamic plasma expansion model, the electrons and ions are found to initially escape faster in vacuum creating thus an intense electric field that accelerates most of the particles into the vacuum ahead of the plasma expansion. The relevancy of the present model to beryllium plasma produced by a femto-second laser is highlighted.
An Operator Product Expansion for the Mutual Information in AdS/CFT
Javier Molina-Vilaplana
2014-09-11
We investigate the behaviour of the mutual information $\\mathcal{I}_{AB}$ between two "small" and wide separated spherical regions $A$ and $B$ in the $\\mathcal{N}=4$ SYM gauge theory dual to Type IIB string theory in $AdS_5 \\times S^5$. To this end, the mutual information is recasted in terms of correlators of surface operators $\\mathcal{W}\\left( \\Sigma\\right)$ defined along a surface $\\Sigma$ within the boundary gauge theory. This construction relies on the strong analogies between the twist field operators appearing in the replica trick method used for the computation of the entanglement entropy, and the disorder-like surface operators in gauge theories. In the AdS/CFT correspondence, a surface operator $\\mathcal{W}\\left( \\Sigma\\right)$ corresponds to having a D3-brane in $AdS_5 \\times S^5$ ending on the boundary along the prescribed surface $\\Sigma$. Then, a long distance expansion for $\\mathcal{I}_{AB}$ is provided. The coefficients of the expansion appear as a byproduct of the operator product expansion for the correlators of the operators $\\mathcal{W}(\\Sigma)$ with the chiral primaries of the theory. We find that, while undergoing a phase transition at a critical distance, the holographic mutual information, instead of strictly vanishing, decays with a power law whose leading contributions of order $\\mathcal{O}(N^0)$, originate from the exchange of pairs of the lightest bulk particles between $A$ and $B$. These particles correspond to operators in the boundary field theory with the smallest scaling dimensions.
Multi-Scale Gradient Expansion of the Turbulent Stress Tensor
Gregory L. Eyink
2005-12-10
We develop an expansion of the turbulent stress tensor into a double series of contributions from different scales of motion and different orders of space-derivatives of velocity, a Multi-Scale Gradient (MSG) expansion. The expansion is proved to converge to the exact stress, as a consequence of the locality of cascade both in scale and in space. Simple estimates show, however, that the convergence rate may be slow for the expansion in spatial gradients of very small scales. Therefore, we develop an approximate expansion, based upon an assumption that similar or `coherent' contributions to turbulent stress are obtained from disjoint subgrid regions. This Coherent-Subregions Approximation (CSA) yields an MSG expansion that can be proved to converge rapidly at all scales and is hopefully still reasonably accurate. As an application, we consider the cascades of energy and helicity in three-dimensional turbulence. To first order in velocity-gradients, the stress has three contributions: a tensile stress along principal directions of strain, a contractile stress along vortex lines, and a shear stress proportional to `skew-strain.' While vortex-stretching plays the major role in energy cascade, there is a second, less scale-local contribution from `skew-strain'. For helicity cascade the situation is reversed, and it arises scale-locally from `skew-strain' while the stress along vortex-lines gives a secondary, less scale-local contribution. These conclusions are illustrated with simple exact solutions of 3D Euler equations. In the first, energy cascade occurs by Taylor's mechanism of stretching and spin-up of small-scale vortices due to large-scale strain. In the second, helicity cascade occurs by `twisting' of small-scale vortex filaments due to a large-scale screw.
Cosmic expansion histories in massive bigravity with symmetric matter coupling
Enander, Jonas; Mörtsell, Edvard [Oskar Klein Center, Stockholm University, Albanova University Center, 106 91 Stockholm (Sweden); Solomon, Adam R. [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Rd., Cambridge CB3 0WA (United Kingdom); Akrami, Yashar, E-mail: enander@fysik.su.se, E-mail: a.r.solomon@damtp.cam.ac.uk, E-mail: yashar.akrami@astro.uio.no, E-mail: edvard@fysik.su.se [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway)
2015-01-01
We study the cosmic expansion history of massive bigravity with a viable matter coupling which treats both metrics on equal footing. We derive the Friedmann equation for the effective metric through which matter couples to the two metrics, and study its solutions. For certain parameter choices, the background cosmology is identical to that of ?CDM. More general parameters yield dynamical dark energy, which can still be in agreement with observations of the expansion history. We study specific parameter choices of interest, including minimal models, maximally-symmetric models, and a candidate partially-massless theory.
Study of the derivative expansions for the nuclear structure functions
I. Ruiz Simo; M. J. Vicente Vacas
2008-07-31
We study the convergence of the series expansions sometimes used in the analysis of the nuclear effects in Deep Inelastic Scattering (DIS) proccesses induced by leptons. The recent advances in statistics and quality of the data, in particular for neutrinos calls for a good control of the theoretical uncertainties of the models used in the analysis. Using realistic nuclear spectral functions which include nucleon correlations, we find that the convergence of the derivative expansions to the full results is poor except at very low values of $x$.
Non-minimal Kinetic coupling to gravity and accelerated expansion
Granda, L.N.
2010-07-01
We study a scalar field with kinetic term coupled to itself and to the curvature, as a source of dark energy, and analyze the role of this new coupling in the accelerated expansion at large times. In the case of scalar field dominance, the scalar field and potential giving rise to power-law expansion are found in some cases, and a dynamical equation of state is calculated for a given solution of the field equations. A behavior very close to that of the cosmological constant was found.
Static properties of nuclear matter within the Boson Loop Expansion
W. M. Alberico; R. Cenni; G. Garbarino; M. R. Quaglia
2007-10-24
The use of the Boson Loop Expansion is proposed for investigating the static properties of nuclear matter. We explicitly consider a schematic dynamical model in which nucleons interact with the scalar-isoscalar sigma meson. The suggested approximation scheme is examined in detail at the mean field level and at the one- and two-loop orders. The relevant formulas are provided to derive the binding energy per nucleon, the pressure and the compressibility of nuclear matter. Numerical results of the binding energy at the one-loop order are presented for Walecka's sigma-omega model in order to discuss the degree of convergence of the Boson Loop Expansion.
Derivative expansion at small mass for the spinor effective action
Dunne, Gerald V.; Huet, Adolfo; Hur, Jin; Min, Hyunsoo
2011-05-15
We study the small-mass limit of the one-loop spinor effective action, comparing the derivative expansion approximation with exact numerical results that are obtained from an extension to spinor theories of the partial-wave cutoff method. In this approach, one can compute numerically the renormalized one-loop effective action for radially separable gauge field background fields in spinor QED. We highlight an important difference between the small-mass limit of the derivative expansion for spinor and scalar theories.
The power-law expansion universe and dark energy evolution
Yi-Huan Wei
2005-02-03
In order to depict the transition from deceleration to acceleration expansion of the universe we use a power-law expansion scale factor, $a\\sim t^{n_0+bt^m}$, with $n_0$, $b$ and $m$ three parameters determined by $H_0$, $q_0$ and $z_T$. For the spatially flat, isotropic and homogeneous universe, such a scale factor leads to the results that the dark energy density is slowly changing currently, and predicts the equation of state $w_X$ changes from $w_X>-1$ to $w_X<-1$.
Expansion of a spherical dust gas -- the cosmological conundrum
Müller, Ingo
2015-01-01
The universe is viewed as a dust gas filling a sphere and floating in infinite empty space. Einstein's gravitational equations are applied to this case together with appropriate boundary values. The equations are solved for initial conditions chosen so as to describe the observed Hubble diagram. We find that the solution is not unique so that more astronomical observations are needed. However, those solutions which were found do not exhibit an accelerated expansion of the universe, nor -- obviously then -- do they need the notion of a dark energy driving such an expansion. We present this study as an alternative to the prevailing Robertson-Walker cosmology.
Gleeson, Joseph G.
Clean Energy Alliance Expansion Continues http://www.mmdnewswire.com/pdf-86054/clean-energy-alliance-expansion-continues.pdf[2/3/2012 12:13:14 PM] Clean Energy Alliance Expansion Continues UCSD and Chicago Members Expand CEA's Geographic Reach Golden, CO (MMD Newswire) February 1, 2012 -- Clean Energy Alliance, Inc. (CEA
VanOsdol, John G.
2014-07-08
The disclosure provides an apparatus and method for gas separation through the supersonic expansion and subsequent deceleration of a gaseous stream. The gaseous constituent changes phase from the gaseous state by desublimation or condensation during the acceleration producing a collectible constituent, and an oblique shock diffuser decelerates the gaseous stream to a subsonic velocity while maintain the collectible constituent in the non-gaseous state. Following deceleration, the carrier gas and the collectible constituent at the subsonic velocity are separated by a separation means, such as a centrifugal, electrostatic, or impingement separator. In an embodiment, the gaseous stream issues from a combustion process and is comprised of N.sub.2 and CO.sub.2.
Managing High-Tech Capacity Expansion Via Reservation Contracts
Wu, David
1 Managing High-Tech Capacity Expansion Via Reservation Contracts Murat Erkoc S. David Wuñ, Bethlehem, PA 18015 merkoc@miami.edu david.wu@lehigh.eduñ We study capacity reservation contracts in high-tech lead time. We conclude the paper by summarizing insights useful for high-tech capacity management. 1
Disaggregated Memory for Expansion and Sharing in Blade Servers
Wenisch, Thomas F.
1 Disaggregated Memory for Expansion and Sharing in Blade Servers Kevin Lim*, Jichuan Chang-memory co-location on a single system and details the design of a new general-purpose architectural building block--a memory blade--that allows memory to be "disaggregated" across a system ensemble. This remote
Long wave expansions for water waves over random topography
Craig, Walter
Long wave expansions for water waves over random topography Anne de Bouard1 , Walter Craig2 interacting with the random bottom. We show that the resulting influence of the random topography is expressed numbers: 76B15, 35Q53, 76M50, 60F17 Keywords :Water waves, random topography, long wave asymptotics #12
LONG WAVE EXPANSIONS FOR WATER WAVES OVER RANDOM TOPOGRAPHY
LONG WAVE EXPANSIONS FOR WATER WAVES OVER RANDOM TOPOGRAPHY ANNE DE BOUARD 1 , WALTER CRAIG 2 with the ran dom bottom. We show that the resulting influence of the random topography is expressed in terms of bottom topography a#ects the equations describing the limit of solutions in the long wave regime. We
Zone Determinant Expansions for Nuclear Lattice Simulations Dean J. Lee
Zone Determinant Expansions for Nuclear Lattice Simulations Dean J. Lee #3; Department of Physics simulations of #12;nite temperature nuclear matter on the lattice. We introduce a new approximation to nucleon parameter. PACS numbers: 21.65.+f, 21.30.-x, 02.70.-c Keywords: nuclear, matter, simulation, lattice
Zone determinant expansions for nuclear lattice simulations Dean J. Lee*
Ipsen, Ilse
Zone determinant expansions for nuclear lattice simulations Dean J. Lee* Department of Physics simulations of finite temperature nuclear matter on the lattice. We introduce a new approximation to nucleon quantum simulations of nuclear matter on the lattice. In particular, we address the problem of calculating
Modeling and Simulation of EP Plasma Plume Expansion into Vacuum
Carlos III de Madrid, Universidad
Modeling and Simulation of EP Plasma Plume Expansion into Vacuum F. Cichocki, M. Merino and E of characteristics. Lastly, the development plans for an advanced Hybrid/PIC plasma plume simulator, EP2-Plus, are presented. Nomenclature cs Plasma sonic velocity e Electron charge h Self-similarity function of the SSM
Technology Transfer Expansion Planned UTCA is conducting a major project
Carver, Jeffrey C.
Technology Transfer Expansion Planned UTCA is conducting a major project to evaluate and extend its technology transfer activities (UTCA project 03217). Steven Jones and David Eckhoff of UAB are working to expand the current technology transfer program to showcase the successes of the UTCA projects. Samples
Bipolar expansions and overlap corrections to the electrostatic interaction energy
G. Vaman
2015-06-10
We use the multipole technique to derive four equivalent expressions for the bipolar expansion of the inverse distance, valid in all the regions of configuration space. Using the first-order perturbation theory, we calculate the overlap correction to the long-range electrostatic energy between two hydrogen atoms and between a hydrogen atom and a proton.
Synchronous Machine Parameter Estimation Using Orthogonal Series Expansion
Synchronous Machine Parameter Estimation Using Orthogonal Series Expansion J. Rico G. T. Heydt A an alternative to estimate armature circuit parameters of large utility generators using real time operating data of digital fault recorder data to identify synchronous machine parameters. 1. INTRODUCTION The use orthogonal
YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF
YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF AN EXISTING FACILITY INITIAL STUDY-11-601) to expand an existing biofuels production facility (Yokayo Biofuels, Inc.) located at 350 Orr: THE PROPOSED PROJECT: Yokayo Biofuels, Inc. is an existing biofuels facility located at 350 Orr Springs Road
Rapid deglacial and early Holocene expansion of peatlands in Alaska
Yu, Zicheng
of the Holocene. Similar rapid peatland expansion occurred in West Siberia during the Holocene thermal maximum (HTM). Our results suggest that high summer temperature and strong season- ality during the HTM of these peatlands to the pre-Holocene increase in atmospheric methane concentrations. climate seasonality | Holocene
Chaos expansion of local time of fractional Brownian motions
Hu, Yaozhong; Oksendal, B.
2002-07-01
We find the chaos expansion of local time l(T)((H))(x, (.)) of fractional Brownian motion with Hurst coefficient H is an element of (0, 1) at a point x is an element of R-d. As an application we show that when H(0)d < 1 then l...
Analog of the Peter-Weyl Expansion for Lorentz Group
Perlov, Leonid
2015-01-01
The expansion of a square integrable function on $SL(2,C)$ into the sum of the principal series matrix coefficients with the specially selected representation parameters was recently used in the Loop Quantum Gravity in C. Rovelli and F. Vidotto's book. In this paper we prove that the sum used originally in the Loop Quantum Gravity: $\\sum\\limits_{j=0}^{\\infty}\\sum\\limits_{|m| \\le j}\\sum\\limits_{|n| \\le j} D^{(j, \\tau j)}_{jm, jn}(g)$, where $ j, m, n \\in Z, \\tau \\in C$ is convergent to a function on $SL(2,C)$, however the limit is not a square integrable function therefore such sums can not be used for the Peter-Weyl like expansion. We propose the alternative expansion and prove that for each fixed m: $\\sum\\limits_{j=m}^{\\infty}D^{(j, \\tau j)}_{jm, jm}(g)$ is convergent and that the limit is a square integrable function on $SL(2,C)$. We then prove the analog of the Peter-Weyl expansion: any $\\psi(g) \\in L_2(SL(2,C))$ can be decomposed into the sum: $\\psi(g) = \\sum\\limits_{j=m}^\\infty j^2 (1+ \\tau^2) c_{jmm} D^...
routing, Internet, BGP Internet Expansion, Refinement and Churn
California at San Diego, University of
routing, Internet, BGP Internet Expansion, Refinement and Churn ANDRE BROIDO, EVI NEMETH, KC CLAFFY measures reflect contributions of opposite sign, and that true measure of variation, or churn, is the sum a standalone prefix to a root prefix) are instances of routing system churn. One advantage of using our notion
routing, Internet, BGP Internet Expansion, Refinement and Churn
California at San Diego, University of
routing, Internet, BGP Internet Expansion, Refinement and Churn ANDRE BROIDO, EVI NEMETH, KC CLAFFY contributions of opposite sign, and that true measure of variation, or churn, is the sum of their absolute a standalone prefix to a root prefix) are instances of routing system churn. One advantage of using our notion
The effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics
Li, Jiangyu
The effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics JiangYu Li ceramics in terms of their microstructural information. The overall behaviors of ferroelectric ceramics be induced in an originally isotropic, thus non-pyroelectric ceramic composed of randomly oriented
Testing of Expansive Clays in a Centrifuge Permeameter
Zornberg, Jorge G.
Testing of Expansive Clays in a Centrifuge Permeameter M. D. Plaisted & J. G. Zornberg with the objective of characterizing the swelling of highly plastic clays using a centrifuge permeameter. The new. This study, conducted using a comparatively simple, non- instrumented centrifuge device complements ongo- ing
Transmission investment and expansion planning in a restructured electricity market
Leung, Ka-Cheong
Transmission investment and expansion planning in a restructured electricity market F.F Wua,b , F.L. Zhengb,c , F.S. Wena,b, * a Center for Electrical Energy Systems, University of Hong Kong, Pokfulam Road, Guangzhou, 510640, China Abstract Transmission planning in a restructured electricity market becomes
Mixed phases during the phase transitions
Tatsumi, Toshitaka; Maruyama, Toshiki
2011-01-01
Quest for a new form of matter inside compact stars compels us to examine the thermodynamical properties of the phase transitions. We closely consider the first-order phase transitions and the phase equilibrium on the basis of the Gibbs conditions, taking the liquid-gas phase transition in asymmetric nuclear matter as an example. Characteristic features of the mixed phase are figured out by solving the coupled equations for mean-fields and densities of constituent particles self-consistently within the Thomas-Fermi approximation. The mixed phase is inhomogeneous matter composed of two phases in equilibrium; it takes a crystalline structure with a unit of various geometrical shapes, inside of which one phase with a characteristic shape, called "pasta", is embedded in another phase by some volume fraction. This framework enables us to properly take into account the Coulomb interaction and the interface energy, and thereby sometimes we see the mechanical instability of the geometric structures of the mixed phase...
Large-$q$ expansion of the specific heat for the two-dimensional $q$-state Potts model
H. Arisue; K. Tabata
1998-07-03
We have calculated the large-$q$ expansion for the specific heat at the phase transition point in the two-dimensional $q$-state Potts model to the 23rd order in $1/\\sqrt{q}$ using the finite lattice method. The obtained series allows us to give highly convergent estimates of the specific heat for $q>4$ on the first order transition point. The result confirm us the correctness of the conjecture by Bhattacharya et al. on the asymptotic behavior of the specific heat for $q \\to 4_+$.
R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin
2010-09-01
The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to identify any nuclear fuel cycle technology or option that may result in a significant beneficial impact to the issues as compared to the current U.S. approach of once-through use of nuclear fuel in LWRs or similar reactors followed by direct disposal of UNF. This approach was taken because incremental differences may be difficult to clearly identify and justify due to the large uncertainties that can be associated with the specific causes of the issues. Phase II of this Options Study continued the review of nuclear fuel cycle options that was initiated and documented during Phase I, concentrating on reviewing and summarizing the potential of integrated nuclear fuel cycles. However, based on the reviews of previous studies and available data, it was not always possible to clearly determine sufficiently large differences between the various fuel cycle and technology options for some of the issues or evaluation measures, for example, in cases where only incremental differences with respect to the issues might be achieved regardless of the fuel cycle option or technologies being considered, or where differences were insufficient to clearly rise above the uncertainties.
Deconfinement Phase Transition with External Magnetic Field in Friedberg-Lee Model
Shijun Mao
2015-09-17
The deconfinement phase transition with external magnetic field is investigated in the Friedberg-Lee model. In the frame of functional renormalization group, we extend the often used potential expansion method for continuous phase transitions to the first-order phase transition in the model. By solving the flow equations we find that, the magnetic field displays a catalysis effect and it becomes more difficult to break through the confinement in hot and dense medium.
Wigeland, R.A.
1986-01-01
The present emphasis on inherent safety and inherently safe designs for liquid-metal reactors has resulted in a need to represent the various reactivity feedback mechanisms as accurately as possible. In particular, the reactivity feedback from radial core expansion has been found to provide the dominant negative feedback contribution in postulated anticipated transient without scram (ATWS) events. Review of the existing modeling in the SASSYS/SAS4A computer code system revealed that while the modeling may be adequate for the early phases of various unprotected transients, the accuracy would be less than desirable for the extended transients which typically occur for inherently safe designs. The existing model for calculating the reactivity feedback from radial core expansion uses a feedback from radial core expansion uses a feedback coefficient in conjunction with changes in the temperatures of the grid support plate and the above-core load pad. The accuracy of this approach is determined partly by the conditions used in deriving the feedback coefficient, and their relevance to the transient being investigated. Accuracy is also affected by the need to include effects other than those that could be directly related to changes in the grid plate and above-core load pad temperatures, such as subassembly bowing and the potential for clearances to occur between subassemblies in the above-core load pad region. As a result, a detailed model was developed in an attempt to account for these and other effects in a more mechanistic form.
A Low Temperature Expansion for Matrix Quantum Mechanics
Ying-Hsuan Lin; Shu-Heng Shao; Yifan Wang; Xi Yin
2013-04-08
We analyze solutions to loop-truncated Schwinger-Dyson equations in massless N=2 and N=4 Wess-Zumino matrix quantum mechanics at finite temperature, where conventional perturbation theory breaks down due to IR divergences. We find a rather intricate low temperature expansion that involves fractional power scaling in the temperature, based on a consistent "soft collinear" approximation. We conjecture that at least in the N=4 matrix quantum mechanics, such scaling behavior holds to all perturbative orders in the 1/N expansion. We discuss some preliminary results in analyzing the gauged supersymmetric quantum mechanics using Schwinger-Dyson equations, and comment on the connection to metastable microstates of black holes in the holographic dual of BFSS matrix quantum mechanics.
Experiences using DAKOTA stochastic expansion methods in computational simulations.
Templeton, Jeremy Alan; Ruthruff, Joseph R.
2012-01-01
Uncertainty quantification (UQ) methods bring rigorous statistical connections to the analysis of computational and experiment data, and provide a basis for probabilistically assessing margins associated with safety and reliability. The DAKOTA toolkit developed at Sandia National Laboratories implements a number of UQ methods, which are being increasingly adopted by modeling and simulation teams to facilitate these analyses. This report disseminates results as to the performance of DAKOTA's stochastic expansion methods for UQ on a representative application. Our results provide a number of insights that may be of interest to future users of these methods, including the behavior of the methods in estimating responses at varying probability levels, and the expansion levels for the methodologies that may be needed to achieve convergence.
ForPeerReview Cavity expansion in cross anisotropic rock
Wagner, Peter
for Numerical and Analytical Methods in Geomechanics Manuscript ID: NAG-10-0026.R1 Wiley - Manuscript type in Geomechanics #12;ForPeerReview Only Cavity expansion in cross-anisotropic rock Dimitrios Kolymbas Peter Wagner://mc.manuscriptcentral.com/nag International Journal for Numerical and Analytical Methods in Geomechanics 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Accelerating cosmological expansion from shear and bulk viscosity
Stefan Floerchinger; Nikolaos Tetradis; Urs Achim Wiedemann
2015-03-10
The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear and bulk viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.
Adiabatic expansion and magnetic fields in AGN jets
A. B. Pushkarev; Y. Y. Kovalev; A. P. Lobanov
2008-12-25
Results of high-resolution simultaneous multi-frequency 8.1-15.4 GHz VLBA polarimetric observations of relativistic jets in active galactic nuclei (the MOJAVE-2 project) are analyzed. We compare characteristics of VLBI features with jet model predictions and test if adiabatic expansion is a dominating mechanism for the evolution of relativistic shocks in parsec-scale AGN jets. We also discuss magnetic field configuration, both predicted by the model and deduced from electric vector position angle measurements.
Thermal expansion of the earth and the speed of neutrinos
C. S. Unnikrishnan
2011-10-04
It is pointed out that one of the systematic effects that can affect the measurement of the speed of neutrinos significantly is the variability of the unaveraged measurement of the distance between two points on the earth due to thermal expansion. Possible difference between estimates done with surface GPS apparatus and the true underground baseline can change substantially the statistical significance of the result of superluminal speed of neutrinos, reported recently.
Transverse radial expansion in nuclear collisions and two particle correlations
Sergei A. Voloshin
2005-11-21
At the very first stage of an ultra-relativistic nucleus-nucleus collision new particles are produced in individual nucleon-nucleon collisions. In the transverse plane, all particles from a single $NN$ collision are initially located at the same position. The subsequent thermalization and transverse radial expansion of the system create strong position-momentum correlations and lead to characteristic rapidity, transverse momentum, and azimuthal correlations among the produced particles.
Fast expansions and compressions of trapped-ion chains
M. Palmero; S. Martínez-Garaot; J. Alonso; J. P. Home; J. G. Muga
2015-02-03
We investigate the dynamics under diabatic expansions/compressions of linear ion chains.Combining a dynamical normal-mode harmonic approximation with the invariant-based inverse-engineering technique, we design protocols that minimize the final motional excitation of the ions. This can substantially reduce the transition time between high and low trap-frequency operations, potentially contributing to the development of scalable quantum information processing.
Eigenvalues from power--series expansions: an alternative approach
P. Amore; F. M. Fernandez
2008-12-09
An appropriate rational approximation to the eigenfunction of the Schr\\"{o}dinger equation for anharmonic oscillators enables one to obtain the eigenvalue accurately as the limit of a sequence of roots of Hankel determinants. The convergence rate of this approach is greater than that for a well--established method based on a power--series expansions weighted by a Gaussian factor with an adjustable parameter (the so--called Hill--determinant method).
Inhomogeneous High Frequency Expansion-Free Gravitational Waves
C. Barrabes; P. A. Hogan
2007-06-18
We describe a natural inhomogeneous generalization of high frequency plane gravitational waves. The waves are high frequency waves of the Kundt type whose null propagation direction in space-time has vanishing expansion, twist and shear but is not covariantly constant. The introduction of a cosmological constant is discussed in some detail and a comparison is made with high frequency gravity waves having wave fronts homeomorphic to 2-spheres.
Measurement and quantification of aggregate thermal coefficient of expansion
Chande, Gautam U
1997-01-01
method of cells 18 Summary. CHAPTER III DESCRIPTION OF TEST METHOD 20 Introduction 20 Test method 20 Apparatus . Calibration. 20 . 22 Procedure 24 Sample preparation 25 Measurement 26 Results of dilatometer method. 27 Scanning electron... 46 64 . . . 71 LIST OF FIGURES Page Figure I Aggregate mortar matrix . 8 Figure 2 Models for concrete 17 Figure 3. Glass flask dilatometer Figure 4 Equipment components . Figure 5 Aggregate samples for measurement of thermal expansion 21 22...
Characterization of Expansive Soil For Retaining Wall Design
Sahin, Hakan
2012-02-14
test results for boring no 2 ................................................................................................ 119 Table A-5: A full set of sieves includes the following sieves ..................................... 121 Table A-6... of the durability of the lateral earth pressure due to high plastic soils on the retaining structure is significantly important. 1.2 Objectives of Thesis This thesis presents the full set of tests that are required to characterize the properties of expansive...
N=4 Supersymmetric Gauge Theory in the Derivative Expansion
Chalmers, G
2002-01-01
Maximally supersymmetric gauge theories have experienced renewed interest due to the AdS/CFT correspondence and its conjectured S-duality. These gauge theories possess a large amount of symmetry and have quasi-integrable properties. We derive the amplitudes in the derivative expansion of the spontaneously broken examples and perform all loop integrations. The S-matrix is found via an algebraic recursion and at each order is SL(2,Z) invariant.
Cometary water expansion velocity from OH line shapes
W. -L. Tseng; D. Bockelée-Morvan; J. Crovisier; P. Colom; W. -H. Ip
2007-02-07
We retrieve the H_2O expansion velocity in a number of comets, using the 18-cm line shapes of the OH radical observed with the Nan\\c{c}ay radio telescope. The H_2O velocity is derived from the large base of a trapezium fitted to the observed spectra. This method, which was previously applied to 9 comets, is now extended to 30 further comets. This allows us to study the evolution of their water molecule outflow velocity over a large range of heliocentric distances and gas production rates. Our analysis confirms and extends previous analyses. The retrieved expansion velocities increases with increasing gas production rates and decreasing heliocentric distances. Heuristic laws are proposed, which could be used for the interpretation of observations of cometary molecules and as a touchstone for hydrodynamical models. The expansion velocities retrieved from 18 cm line shapes are larger than those obtained from millimetric observations of parent molecules with smaller fields of view, which demonstrates the acceleration of the gas with cometocentric distance. Our results are in reasonable quantitative agreement with current hydrodynamical models of cometary atmospheres.
General properties of the expansion methods of Lie algebras
Laura Andrianopoli; Nelson Merino; Felip Nadal; Mario Trigiante
2013-08-22
The study of the relation between Lie algebras and groups, and especially the derivation of new algebras from them, is a problem of great interest in mathematics and physics, because finding a new Lie group from an already known one also means that a new physical theory can be obtained from a known one. One of the procedures that allow to do so is called expansion of Lie algebras, and has been recently used in different physical applications - particularly in gauge theories of gravity. Here we report on further developments of this method, required to understand in a deeper way their consequences in physical theories. We have found theorems related to the preservation of some properties of the algebras under expansions that can be used as criteria and, more specifically, as necessary conditions to know if two arbitrary Lie algebras can be related by the some expansion mechanism. Formal aspects, such as the Cartan decomposition of the expanded algebras, are also discussed. Finally, an instructive example that allows to check explicitly all our theoretical results is also provided.
SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTI...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 11-161-LNG - ORDER 3357 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO....
SEMI-ANNUAL REPORTS - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION...
Broader source: Energy.gov (indexed) [DOE]
SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 12-06-LNG - ORDER 3066 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG...
A study of the mechanism of laser welding defects in low thermal expansion superalloy GH909
Yan, Fei; Wang, Chunming, E-mail: yanxiangfei225@163.com; Wang, Yajun; Hu, Xiyuan; Wang, Tianjiao; Li, Jianmin; Li, Guozhu
2013-04-15
In this paper, we describe experimental laser welding of low-thermal-expansion superalloy GH909. The main welding defects of GH909 by laser in the weld are liquation cracks and porosities, including hydrogen and carbon monoxide porosity. The forming mechanism of laser welding defects was investigated. This investigation was conducted using an optical microscope, scanning electron microscope, energy diffraction spectrum, X-ray diffractometer and other methodologies. The results demonstrated that porosities appearing in the central weld were related to incomplete removal of oxide film on the surface of the welding samples. The porosities produced by these bubbles were formed as a result of residual hydrogen or oxygenium in the weld. These elements failed to escape from the weld since laser welding has both a rapid welding speed and cooling rate. The emerging crack in the heat affected zone is a liquation crack and extends along the grain boundary as a result of composition segregation. Laves–Ni{sub 2}Ti phase with low melting point is a harmful phase, and the stress causes grain boundaries to liquefy, migrate and even crack. Removing the oxides on the surface of the samples before welding and carefully controlling technological parameters can reduce welding defects and improve formation of the GH909 alloy weld. - Highlights: ? It is a new process for the forming of GH909 alloy via laser welding. ? The forming mechanism of laser welding defects in GH909 has been studied. ? It may be a means to improve the efficiency of aircraft engine production.
The Quark Propagator in the NJL Model in a self-consistent 1/Nc Expansion
Daniel Müller; Michael Buballa; Jochen Wambach
2010-05-04
The quark propagator is calculated in the Nambu-Jona-Lasinio (NJL) model in a self-consistent 1/Nc-expansion at next-to-leading order. The calculations are carried out iteratively in Euclidean space. The chiral quark condensate and its dependence on temperature and chemical potential is calculated directly and compared with the mean-field results. In the chiral limit, we find a second-order phase transition at finite temperature and zero chemical potential, in agreement with universality arguments. At zero temperature and finite chemical potential, the phase transition is first order. In comparison with the mean-field results, the critical temperature and chemical potential are slightly reduced. We determine spectral functions from the Euclidean propagators by employing the Maximum-Entropy-Method (MEM). Thereby quark and meson masses are estimated and decay channels identified. For testing this method, we also apply it to evaluate perturbative spectral functions, which can be calculated directly in Minkowski space. In most cases we find that MEM is able to reproduce the rough features of the spectral functions, but not the details.
Energy recovery during expansion of compressed gas using power plant low-quality heat sources
Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)
2006-03-07
A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.
Bayesian estimation of dynamic systems function expansions Georgios D. Mitsis and Saad Jbabdi
Mitsis, Georgios
coefficients utilizing least-squares estimation in connection with discrete-time Laguerre expansions [9Bayesian estimation of dynamic systems function expansions Georgios D. Mitsis and Saad Jbabdi, the rate of which is determined by the Laguerre parameter . A critical aspect of the Laguerre expansion
Selection on the Structural Stability of a Ribosomal RNA Expansion Segment in Daphnia obtusa
Obbard, Darren
, Canada The high rate of sequence divergence in nuclear ribosomal RNA (rRNA) expansion segments offersSelection on the Structural Stability of a Ribosomal RNA Expansion Segment in Daphnia obtusa Seanna polymerase chain reaction amplified and cloned a 589-nt fragment of the 18S rRNA gene containing expansion
A PLASMA EXPANSION MODEL BASED ON THE FULL EULER-POISSON SYSTEM
Vignal, Marie-Hélène
current diodes and of arc phenomena on satellites. This plasma undergoes a thermal expansion in the gapA PLASMA EXPANSION MODEL BASED ON THE FULL EULER-POISSON SYSTEM P. Crispel CNES Centre de Toulouse a quasi-neutral plasma expanding in the vacuum gap separat- ing two electrodes. During the expansion, some
C. L. Herzenberg
2009-12-07
We consider an object at rest in space with a universal Hubble expansion taking place away from it. We find that a governing differential equation developed from the Schroedinger equation leads to wave functions which turn out to exhibit pronounced central localization. The extent of concentration of probability depends on the mass; objects with small masses tend to behave in a delocalized manner as ordinary quantum objects do in a static space, while quantum objects with large masses have wave functions that are largely concentrated into much smaller regions. This in turn suggests the possibility that classical behavior is being induced in quantum objects by the presence of the Hubble expansion. If the size of the localized region of concentrated probability density is larger than the size of the corresponding extended object, quantum behavior might be expected; whereas classical behavior might be expected for cases in which the region of high probability density is smaller than the size of the object. The resulting quantum-classical boundary due to Hubble expansion may be expressed in terms of a relationship between the size and mass of an object, or may be expressed in terms of a threshold moment of inertia.
Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia
Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.
1988-12-01
Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.
Are black holes in an ekpyrotic phase possible?
J. C. S. Neves
2015-09-10
The ekpyrotic phase (a slow contraction cosmic phase before the current expansion phase) manages to solve the main problems of the standard cosmology by means of a scalar field interpreted as an isotropic cosmic fluid in the Friedmann equation. Moreover, this phase generates a nearly scale-invariant spectrum of perturbations in agreement with the latest data. Then, the ekpyrotic mechanism is a serious possibility to the inflationary model. In this work, we point out that it is impossible to generate a black hole with spherical symmetry supported by an isotropic fluid in this scenario. Using the approach of deforming metrics to obtain solutions with an isotropic energy-momentum tensor, we show that the stiff fluid, dominant in the ekpyrotic phase, does not support these black holes.
Ceramic materials with low thermal conductivity and low coefficients of thermal expansion
Brown, Jesse (Christiansburg, VA); Hirschfeld, Deidre (Elliston, VA); Liu, Dean-Mo (Blacksburg, VA); Yang, Yaping (Blacksburg, VA); Li, Tingkai (Blacksburg, VA); Swanson, Robert E. (Blacksburg, VA); Van Aken, Steven (Blacksburg, VA); Kim, Jin-Min (Seoul, KR)
1992-01-01
Compositions having the general formula (Ca.sub.x Mg.sub.1-x)Zr.sub.4 (PO.sub.4).sub.6 where x is between 0.5 and 0.99 are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850.degree. C. for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200.degree. C. to 1350.degree. C. to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used.
Ceramic materials with low thermal conductivity and low coefficients of thermal expansion
Brown, J.; Hirschfeld, D.; Liu, D.M.; Yang, Y.; Li, T.; Swanson, R.E.; Van Aken, S.; Kim, J.M.
1992-04-07
Compositions, having the general formula (Ca[sub x]Mg[sub 1[minus]x])Zr[sub 4](PO[sub 4])[sub 6] where x is between 0.5 and 0.99, are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850 C for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200 C to 1350 C to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used. 7 figs.
Density Matrix Expansion for Low-Momentum Interactions
S. K. Bogner; R. J. Furnstahl; L. Platter
2008-11-26
A first step toward a universal nuclear energy density functional based on low-momentum interactions is taken using the density matrix expansion (DME) of Negele and Vautherin. The DME is adapted for non-local momentum-space potentials and generalized to include local three-body interactions. Different prescriptions for the three-body DME are compared. Exploratory results are given at the Hartree-Fock level, along with a roadmap for systematic improvements within an effective action framework for Kohn-Sham density functional theory.
How strong is the evidence for accelerated expansion?
Marina Seikel; Dominik J. Schwarz
2007-11-26
We test the present expansion of the universe using supernova type Ia data without making any assumptions about the matter and energy content of the universe or about the parameterization of the deceleration parameter. We assume the cosmological principle to apply in a strict sense. The result strongly depends on the data set, the light-curve fitting method and the calibration of the absolute magnitude used for the test, indicating strong systematic errors. Nevertheless, in a spatially flat universe there is at least a 5 sigma evidence for acceleration which drops to 1.8 sigma in an open universe.
ARM - Lesson Plans: Expansion of Population and Environment
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Room News PublicationsClimate in theEffectsExpansion of
Comparison among Magnus/Floquet/Fer expansion schemes in solid-state NMR
Takegoshi, K. Miyazawa, Norihiro; Sharma, Kshama; Madhu, P. K.
2015-04-07
We here revisit expansion schemes used in nuclear magnetic resonance (NMR) for the calculation of effective Hamiltonians and propagators, namely, Magnus, Floquet, and Fer expansions. While all the expansion schemes are powerful methods there are subtle differences among them. To understand the differences, we performed explicit calculation for heteronuclear dipolar decoupling, cross-polarization, and rotary-resonance experiments in solid-state NMR. As the propagator from the Fer expansion takes the form of a product of sub-propagators, it enables us to appreciate effects of time-evolution under Hamiltonians with different orders separately. While 0th-order average Hamiltonian is the same for the three expansion schemes with the three cases examined, there is a case that the 2nd-order term for the Magnus/Floquet expansion is different from that obtained with the Fer expansion. The difference arises due to the separation of the 0th-order term in the Fer expansion. The separation enables us to appreciate time-evolution under the 0th-order average Hamiltonian, however, for that purpose, we use a so-called left-running Fer expansion. Comparison between the left-running Fer expansion and the Magnus expansion indicates that the sign of the odd orders in Magnus may better be reversed if one would like to consider its effect in order.
CrowdPhase: crowdsourcing the phase problem
Jorda, Julien; Sawaya, Michael R. [Institute for Genomics and Proteomics, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); Yeates, Todd O., E-mail: yeates@mbi.ucla.edu [Institute for Genomics and Proteomics, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); Molecular Biology Institute, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); University of California, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States)
2014-06-01
The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing.
Anderson, R.C.; Jones, J.M.; Kollie, T.G.
1982-05-24
The present invention is directed to the fabrication of an article of uranium-2.4 wt % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22 and 600/sup 0/C which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 MPa, an ultimate tensile strength of 1050 MPa, a compressive yield strength of at least 0.2% offset of at least 675 MPa, and an elongation of at least 25% over 25.4 mm/s. To provide this article with the improved thermal expansion, the uranium alloy billet is heated to 630/sup 0/C and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/s. These critical extrusion parameters provide the article with a desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article.
A. Nishiyama; A. Ohnishi
2010-06-06
We derive an expression of the kinetic entropy current in the nonequilibrium $O(N)$ scalar theory from the Schwinger-Dyson (Kadanoff-Baym) equation with the 1st order gradient expansion. We show that our kinetic entropy satisfies the H-theorem for the leading order of the gradient expansion with the next-to-leading order self-energy of the $1/N$ expansion in the symmetric phase, and that entropy production occurs as the Green's function evolves with an nonzero collision term. Entropy production stops at local thermal equilibrium where the collision term contribution vanishes and the maximal entropy state is realized. Next we also compare our entropy density with that in thermal equilibrium which is given from thermodynamic potential or equivalently 2 particle irreducible effective action. We find that our entropy density corresponds to that in thermal equilibrium with the next-to-leading order skeletons of the $1/N$ expansion if skeletons with energy denominators in momentum integral can be regularized appropriately. We have a possibility that memory correction terms remain in entropy current if not regularized.
Feasibility of wavelet expansion methods to treat the energy variable
Van Rooijen, W. F. G.
2012-07-01
This paper discusses the use of the Discrete Wavelet Transform (DWT) to implement a functional expansion of the energy variable in neutron transport. The motivation of the work is to investigate the possibility of adapting the expansion level of the neutron flux in a material region to the complexity of the cross section in that region. If such an adaptive treatment is possible, 'simple' material regions (e.g., moderator regions) require little effort, while a detailed treatment is used for 'complex' regions (e.g., fuel regions). Our investigations show that in fact adaptivity cannot be achieved. The most fundamental reason is that in a multi-region system, the energy dependence of the cross section in a material region does not imply that the neutron flux in that region has a similar energy dependence. If it is chosen to sacrifice adaptivity, then the DWT method can be very accurate, but the complexity of such a method is higher than that of an equivalent hyper-fine group calculation. The conclusion is thus that, unfortunately, the DWT approach is not very practical. (authors)
Aussie LNG players target NE Asia in expansion bid
Not Available
1994-02-28
Australia's natural gas players, keen to increase their presence in world liquefied natural gas trade, see Asia as their major LNG market in the decades to come. That's despite the fact that two spot cargoes of Australian Northwest Shelf LNG were shipped to Europe during the last 12 months and more are likely in 1994. Opportunities for growth are foreseen within the confines of the existing Northwest Shelf gas project for the rest of the 1990s. But the main focus for potential new grassroots project developers and expansions of the existing LNG plant in Australia is the expected shortfall in contract volumes of LNG to Japan, South Korea, and Taiwan during 2000--2010. Traditionally the price of crude oil has been used as a basis for calculating LNG prices. This means the economics of any new 21st century supply arrangements are delicately poised because of the current low world oil prices, a trend the market believes is likely to continue. In a bid to lessen the effect of high initial capital outlays and still meet projected demand using LNG from new projects and expansion of the existing plant, Australia's gas producers are working toward greater cooperation with prospective Asian buyers.
Expansion joint for guideway for magnetic levitation transportation system
Rossing, T.D.
1993-02-09
An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The side walls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging side walls so that the cuts have a substantially dove-tail shape.
Glass-ceramic hermetic seals to high thermal expansion metals
Kramer, D.P.; Massey, R.T.
1987-04-28
A process for forming glass-ceramic materials from an alkaline silica-lithia glass composition comprising 60-72 mole-% SiO/sub 2/, 18-27 mole-% Li/sub 2/O, 0-5 mole-% Al/sub 2/O/sub 3/, 0-6 mole-% K/sub 2/O, 0-3 mole-% B/sub 2/O/sub 3/, and 0.5-2.5 mole-% P/sub 2/O/sub 5/, which comprises heating said glass composition at a first temperature within the 950-1050/degree/C range for 5-60 minutes, and then at a devitrification temperature within the 700-900/degree/C range for about 5-300 minutes to obtain a glass-ceramic having a thermal expansion coefficient of up to 210 x 10/sup /minus/7///degree/C. These ceramics form strong, hermetic seals with high expansion metals such as stainless steel alloys. An intermediate nucleation heating step conducted at a temperature within the range of 675-750/degree/C for 10-120 minutes may be employed between the first stage and the devitrification stage. 1 fig., 2 tabs.
Plasma expansion in the presence of a dipole magnetic field
Winske, D.; Omidi, N. [Applied Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); SciberNet, Inc., Solana Beach, California 92075 (United States)
2005-07-15
Simulations of the initial expansion of a plasma injected into a stationary magnetized background plasma in the presence of a dipole magnetic field are carried out in two dimensions with a kinetic ion, massless fluid electron (hybrid) electromagnetic code. For small values of the magnetic dipole, the injected ions have large gyroradii compared to the scale length of the dipole field and are essentially unmagnetized. As a result, these ions expand, excluding the ambient magnetic field and plasma to form a diamagnetic cavity. However, for stronger magnetic dipoles, the ratio of the gyroradii of the injected ions to the dipole field scale length is small so that they remain magnetized, and hence trapped in the dipole field, as they expand. The trapping and expansion then lead to additional plasma currents and resulting magnetic fields that not only exclude the background field but also interact with the dipole field in a more complex manner that stretches the closed dipole field lines. A criterion to distinguish between the two regimes is derived and is then briefly discussed in the context of applying the results to the plasma sail scheme for the propulsion of small spacecraft in the solar wind.
Lattice thermal expansion for normal tetrahedral compound semiconductors
Omar, M.S. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq)]. E-mail: dr_m_s_omar@yahoo.com
2007-02-15
The cubic root of the deviation of the lattice thermal expansion from that of the expected value of diamond for group IV semiconductors, binary compounds of III-V and II-VI, as well as several ternary compounds from groups I-III-VI{sub 2}, II-IV-V{sub 2} and I-IV{sub 2}V{sub 3} semiconductors versus their bonding length are given straight lines. Their slopes were found to be 0.0256, 0.0210, 0.0170, 0.0259, 0.0196, and 0.02840 for the groups above, respectively. Depending on the valence electrons of the elements forming these groups, a formula was found to correlate all the values of the slopes mentioned above to that of group IV. This new formula which depends on the melting point and the bonding length as well as the number of valence electrons for the elements forming the compounds, will gives best calculated values for lattice thermal expansion for all compounds forming the groups mentioned above. An empirical relation is also found between the mean ionicity of the compounds forming the groups and their slopes mentioned above and that gave the mean ionicity for the compound CuGe{sub 2}P{sub 3} in the range of 0.442.
Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Bioscience Division, Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2001-12-01
A map-likelihood function is described that can yield phase probabilities with very low model bias. The recently developed technique of maximum-likelihood density modification [Terwilliger (2000 ?), Acta Cryst. D56, 965–972] allows a calculation of phase probabilities based on the likelihood of the electron-density map to be carried out separately from the calculation of any prior phase probabilities. Here, it is shown that phase-probability distributions calculated from the map-likelihood function alone can be highly accurate and that they show minimal bias towards the phases used to initiate the calculation. Map-likelihood phase probabilities depend upon expected characteristics of the electron-density map, such as a defined solvent region and expected electron-density distributions within the solvent region and the region occupied by a macromolecule. In the simplest case, map-likelihood phase-probability distributions are largely based on the flatness of the solvent region. Though map-likelihood phases can be calculated without prior phase information, they are greatly enhanced by high-quality starting phases. This leads to the technique of prime-and-switch phasing for removing model bias. In prime-and-switch phasing, biased phases such as those from a model are used to prime or initiate map-likelihood phasing, then final phases are obtained from map-likelihood phasing alone. Map-likelihood phasing can be applied in cases with solvent content as low as 30%. Potential applications of map-likelihood phasing include unbiased phase calculation from molecular-replacement models, iterative model building, unbiased electron-density maps for cases where 2F{sub o} ? F{sub c} or ?{sub A}-weighted maps would currently be used, structure validation and ab initio phase determination from solvent masks, non-crystallographic symmetry or other knowledge about expected electron density.
Exposing the Nuclear Burning Ashes of Radius Expansion Type I X-ray Bursts
Nevin N. Weinberg; Lars Bildsten; Hendrik Schatz
2005-11-09
We solve for the evolution of the vertical extent of the convective region of a neutron star atmosphere during a Type I X-ray burst. The convective region is well-mixed with ashes of nuclear burning and its extent determines the rise time of the burst light curve. Using a full nuclear reaction network, we show that the maximum vertical extent of the convective region during photospheric radius expansion (RE) bursts can be sufficiently great that: (1) some ashes of burning are ejected by the radiation driven wind during the RE phase and, (2) some ashes of burning are exposed at the neutron star surface following the RE phase. We find that ashes with mass number A ~ 30 - 60 are mixed in with the ejected material. We calculate the expected column density of ejected and surface ashes in hydrogen-like states and determine the equivalent widths of the resulting photoionization edges from both the wind and neutron star surface. We find that these can exceed 100 eV and are potentially detectable. A detection would probe the nuclear burning processes and might enable a measurement of the neutron star gravitational redshift. In addition, we find that in bursts with pure helium burning layers, protons from (alpha, p) reactions cause a rapid onset of the 12C(p, gamma)13N(alpha, p)16O reaction sequence. The sequence bypasses the relatively slow 12C(alpha, gamma)16O reaction and leads to a sudden surge in energy production that is directly observable as a rapid (~ ms) increase in flux during burst rise.
Ultracold plasma expansion as a function of charge neutrality
Witte, Craig; Roberts, Jacob L.
2014-10-15
Ultracold plasmas (UCPs) are created under conditions of near but not perfect neutrality. In the limit of zero electron temperature, electron screening results in non-neutrality manifesting itself as an interior region of the UCP with both electrons and ions and an exterior region composed primarily of ions. The interior region is the region of the most scientific interest for 2-component ultracold plasma physics. This work presents a theoretical model through which the time evolution of non-neutral UCPs is calculated. Despite Debye screening lengths much smaller than the characteristic plasma spatial size, model calculations predict that the expansion rate and the electron temperature of the UCP interior is sensitive to the neutrality of the UCP. The predicted UCP dependence on neutrality has implications for the correct measurement of several UCP properties, such as electron temperature, and a proper understanding of evaporative cooling of the electrons in the UCP.
Power-law expansion cosmology in Schrödinger-type formulation
Burin Gumjudpai
2008-09-08
We investigate non-linear Schr\\"{o}dinger-type formulation of cosmology of which our cosmological system is a general relativistic FRLW universe containing canonical scalar field under arbitrary potential and a barotropic fluid with arbitrary spatial curvatures. We extend the formulation to include phantom field case and we have found that Schr\\"{o}dinger wave function in this formulation is generally non-normalizable. Assuming power-law expansion, $a \\sim t^q$, we obtain scalar field potential as function of time. The corresponding quantities in Schr\\"{o}dinger-type formulation such as Schr\\"{o}dinger total energy, Schr\\"{o}dinger potential and wave function are also presented.
HAZARDS OF THERMAL EXPANSION FOR RADIOLOGICAL CONTAINER ENGULFED IN FIRE
Donna Post Guillen
2013-05-01
Fire accidents pose a serious threat to nuclear facilities. It is imperative that transport casks or shielded containers designed to transport/contain radiological materials have the ability to withstand a hypothetical fire. A numerical simulation was performed for a shielded container constructed of stainless steel and lead engulfed in a hypothetical fire as outlined by 10 CFR §71.73. The purpose of this analysis was to determine the thermal response of the container during and after the fire. The thermal model shows that after 30 minutes of fire, the stainless steel will maintain its integrity and not melt. However, the lead shielding will melt since its temperature exceeds the melting point. Due to the method of construction of the container under consideration, ample void space must be provided to allow for thermal expansion of the lead upon heating and melting, so as to not overstress the weldment.
Dynamic Time Expansion and Compression Using Nonlinear Waveguides
Findikoglu, Alp T.; Hahn, Sangkoo F.; Jia, Quanxi
2004-06-22
Dynamic time expansion or compression of a small amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.
Portugal`s Petrogal eyes expansion amid continuing privatization
1995-10-16
Portugal`s recently privatized state oil company Petrogal is about to embark on a major expansion worldwide. That comes against the backdrop of major change in Portugal`s energy sector and the rocky road to Petrogal`s partial privatization. Despite the controversy, there remain opportunities for foreign companies investing in Portugal`s energy sector. The most attractive opportunities are in Portugal`s downstream petroleum sector and in the country`s continuing campaign to develop its natural gas industry. Typical of the latter is Portugal`s participation in the Trans-Maghreb gas pipeline megaproject. The paper discusses the background to privatization, its current status, Petrogal strategy, modernization of refineries, a joint partnership with Venezuela, constraints, energy policy program, gas pipeline privatization, and concerns of the gas industry.
Ultra low thermal expansion, highly thermal shock resistant ceramic
Limaye, S.Y.
1996-01-30
Three families of ceramic compositions having the given formula: {phi}{sub 1+X}Zr{sub 4}P{sub 6{minus}2X}Si{sub 2X}O{sub 24}, {phi}{sub 1+X}Zr{sub 4{minus}2X}Y{sub 2X}P{sub 6}O{sub 24} and {phi}{sub 1+X}Zr{sub 4{minus}X}Y{sub X}P{sub 6{minus}2X}Si{sub X}O{sub 24} wherein {phi} is either strontium or barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures. 7 figs.
Consistency among distance measurements: transparency, BAO scale and accelerated expansion
A. Avgoustidis; Licia Verde; Raul Jimenez
2009-06-11
We explore consistency among different distance measures, including Supernovae Type Ia data, measurements of the Hubble parameter, and determination of the Baryon acoustic oscillation scale. We present new constraints on the cosmic transparency combining $H(z)$ data together with the latest Supernova Type Ia data compilation. This combination, in the context of a flat $\\Lambda$CDM model, improves current constraints by nearly an order of magnitude. We re-examine the recently reported tension between the Baryon acoustic oscillation scale and Supernovae data in light of possible deviations from transparency, concluding that the source of the discrepancy may most likely be found among systematic effects of the modelling of the low redshift data or a simple $\\sim 2-\\sigma$ statistical fluke, rather than in exotic physics. Finally, we attempt to draw model-independent conclusions about the recent accelerated expansion, determining the acceleration redshift to be $z_{acc}=0.35^{+0.20}_{-0.13}$ (1-$\\sigma$).
Growth of Cosmic Structure: Probing Dark Energy Beyond Expansion
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Huterer, Dragan [University of Michigan, Department of Physics Ann Harbor, MI (United States); Kirkby, David [UC Irvine, Department of Physics and Astronomy, CA (United States); Bean, Rachel [Cornell University, Department of Astronomy, Ithaca, NY (United States); Connolly, Andrew [University of Washington, Department of Astronomy, Seattle, WA (United States); Dawson, Kyle [University of Utah, Department of Physics & Astronomy, Salt Lake City, UT (United States); Dodelson, Scott [Fermi National Accelerator Laboratory, Fermilab Center for Particle Astrophysics, Batavia, IL (United States); University of Chicago, Department of Physics & Astrophysics, Chicago, IL (United States); Evrard, August [University of Michigan, Department of Physics Ann Harbor, MI (United States); Jain, Bhuvnesh [University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA (United States); Jarvis, Michael [University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA (United States); Linder, Eric [Lawrence Berkeley National Laboratory, Physics Division, Berkeley, CA (United States); Mandelbaum, Rachel [Carnegie Mellon University, Department of Physics, Pittsburgh, PA (United States); May, Morgan [Brookhaven National Laboratory (BNL), Upton, NY (United States); Raccanelli, Alvise [California Institute of Technology, NASA Jet Propulsion Laboratory, Pasadena, CA (United States); Reid, Beth [Lawrence Berkeley National Laboratory, Physics Division, Berkeley, CA (United States); Rozo, Eduardo [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Schmidt, Fabian [Princeton University, Department of Astrophysical Sciences, Princeton, NJ (United States); Max-Planck-Insitute for Astrophysics, Garching (Germany); Sehgal, Neelima [Stony Brook University, NY (United States); Slosar, Anze [Brookhaven National Laboratory (BNL), Upton, NY (United States); Van Engelen, Alex [Stony Brook University, NY (United States); Wu, Hao-Yi [University of Michigan, Department of Physics, Ann Harbor, MI (United States); Zhao, Gongbo [Chinese Academy of Science, National Astronomy Observatories, Beijing (China)
2015-03-01
The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansion such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe.
Dynamic time expansion and compression using nonlinear waveguides
Findikoglu, Alp T.; Hahn, Sangkoo F.; Jia, Quanxi
2004-06-22
Dynamic time expansion or compression of a small-amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small-amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.
Emergence and Expansion of Cosmic Space in BIonic system
A. Sepehri; Farook Rahaman; Anirudh Pradhan; Iftikar Hossain Sardar
2015-01-07
Recently, Padmanabhan [arXiv:1206.4916] argued that the expansion rate of the universe can be thought of as the emergence of space as cosmic time progresses and is related to the difference between the surface degrees of freedom on the holographic horizon and the bulk degrees of freedom inside. The main question arises as to what is origin of emergence of space in 4D universe? We answer to this question in BIonic system. The BIon is a configuration in flat space of a D-brane and a parallel anti-D-brane connected by a thin shell wormhole with F-string charge. We propose a new model that allows all degrees of freedom inside and outside the universe are controlled by the evolutions of BIon in extra dimension and tend to degrees of freedom of black F-string in string theory or black M2-brane in M theory.
Ultra low thermal expansion, highly thermal shock resistant ceramic
Limaye, Santosh Y. (1440 Sandpiper Cir. #38, Salt Lake City, UT 84117)
1996-01-01
Three families of ceramic compositions having the given formula: .phi..sub.1+X Zr.sub.4 P.sub.6-2X Si.sub.2X O.sub.24, .phi..sub.1+X Zr.sub.4-2X Y.sub.2X P.sub.6 O.sub.24 and .phi..sub.1+X Zr.sub.4-X Y.sub.X P.sub.6-2X Si.sub.X O.sub.24 wherein .phi. is either Strontium or Barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures.
Study of Proton Expansion in (p,2p) Quasielastic Scattering at Large Transverse Momentum
Alan S. Carroll
2003-03-03
The measured nuclear transparencies in targets of Li, C, Al, Cu and Pb at incident momenta of 6, 10, and 12 GeV/c have been used to study the rate of proton expansion connected with (p,2p) quasielastic scattering at large momentum transfer. Simple models with linear or quadratic expansion of the effective cross section fail to simultaneously fit the measured transparencies at all three momenta. If only the 6 and 10 GeV/c transparencies are fitted, satisfactory representations can be obtained when the expansion distances for protons at 6 GeV/c are greater than 6.4 fm(linear) and 4.0 fm(quadratic). These distances are greater than those suggested by most Expansion models except the quadratic 'naive expansion' picture. However, the transparencies are well represented by the Nuclear Filtering model with no explicit expansion.
Combustion instabilities in sudden expansion oxy-fuel flames
Ditaranto, Mario; Hals, Joergen
2006-08-15
An experimental study on combustion instability is presented with focus on oxy-fuel type combustion. Oxidants composed of CO{sub 2}/O{sub 2} and methane are the reactants flowing through a premixer-combustor system. The reaction starts downstream a symmetric sudden expansion and is at the origin of different instability patterns depending on oxygen concentration and Reynolds number. The analysis has been conducted through measurement of pressure, CH* chemiluminescence, and velocity. As far as stability is concerned, oxy-fuel combustion with oxygen concentration similar to that found in air combustion cannot be sustained, but requires at least 30% oxygen to perform in a comparable manner. Under these conditions and for the sudden expansion configuration used in this study, the instability is at low frequency and low amplitude, controlled by the flame length inside the combustion chamber. Above a threshold concentration in oxygen dependent on equivalence ratio, the flame becomes organized and concentrated in the near field. Strong thermoacoustic instability is then triggered at characteristic acoustic modes of the system. Different modes can be triggered depending on the ratio of flame speed to inlet velocity, but for all types of instability encountered, the heat release and pressure fluctuations are linked by a variation in mass-flow rate. An acoustic model of the system coupled with a time-lag-based flame model made it possible to elucidate the acoustic mode selection in the system as a function of laminar flame speed and Reynolds number. The overall work brings elements of reflection concerning the potential risk of strong pressure oscillations in future gas turbine combustors for oxy-fuel gas cycles. (author)
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Rubinstein, Robert; Kurien, Susan; Cambon, Claude
2015-06-22
The representation theory of the rotation group is applied to construct a series expansion of the correlation tensor in homogeneous anisotropic turbulence. The resolution of angular dependence is the main analytical difficulty posed by anisotropic turbulence; representation theory parametrises this dependence by a tensor analogue of the standard spherical harmonics expansion of a scalar. As a result, the series expansion is formulated in terms of explicitly constructed tensor bases with scalar coefficients determined by angular moments of the correlation tensor.
Lindley, R.A.
1993-10-01
This thesis discusses the following on resonant holographic measurements of laser ablation plume expansion: Introduction to laser ablation; applications of laser ablation; The study of plume expansion; holographic interferometry; resonant holographic interferometry; accounting for finite laser bandwidth; The solution for doppler broadening and finite bandwidth; the main optical table; the lumonics laser spot shape; developing and reconstructing the holograms; plume expansion in RF/Plasma Environments; Determining {lambda}{sub o}; resonant refraction effects; fringe shift interpretation; shot-to-shot consistency; laser ablation in vacuum and low pressure, inert, background gas; theoretically modeling plume expansion in vacuum and low pressure, inert, background gas; and laser ablation in higher pressure, inert, background gas.
Arbanas, Goran; Dunn, Michael E; Larson, Nancy M; Leal, Luiz C; Williams, Mark L
2012-01-01
Convergence properties of Legendre expansion of a Doppler-broadened double-differential elastic neutron scattering cross section of {sup 238}U near the 6.67 eV resonance at temperature 10{sup 3} K are studied. A variance of Legendre expansion from a reference Monte Carlo computation is used as a measure of convergence and is computed for as many as 15 terms in the Legendre expansion. When the outgoing energy equals the incoming energy, it is found that the Legendre expansion converges very slowly. Therefore, a supplementary method of computing many higher-order terms is suggested and employed for this special case.
Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE...
Broader source: Energy.gov (indexed) [DOE]
of Energy (DOEFE) issued Order No. 3357 (FLEX II Conditional Order) to Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC, and FLNG...
"Modeling the Integrated Expansion of the Canadian and U.S. Power...
Broader source: Energy.gov (indexed) [DOE]
The National Renewable Energy Laboratory (NREL) has released a study entitled "Modeling the Integrated Expansion of the Canadian and U.S. Power Sectors with the Regional Energy...
Digital quadrature phase detection
Smith, James A. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID)
1992-01-01
A system for detecting the phase of a frequency of phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2.pi. when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2.pi. when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention.
Digital quadrature phase detection
Smith, J.A.; Johnson, J.A.
1992-05-26
A system for detecting the phase of a frequency or phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2[pi] when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2[pi] when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention. 6 figs.
J. M. Robbins
2010-09-10
Quantum eigenstates undergoing cyclic changes acquire a phase factor of geometric origin. This phase, known as the Berry phase, or the geometric phase, has found applications in a wide range of disciplines throughout physics, including atomic and molecular physics, condensed matter physics, optics, and classical dynamics. In this article, the basic theory of the geometric phase is presented along with a number of representative applications. The article begins with an account of the geometric phase for cyclic adiabatic evolutions. An elementary derivation is given along with a worked example for two-state systems. The implications of time-reversal are explained, as is the fundamental connection between the geometric phase and energy level degeneracies. We also discuss methods of experimental observation. A brief account is given of geometric magnetism; this is a Lorenz-like force of geometric origin which appears in the dynamics of slow systems coupled to fast ones. A number of theoretical developments of the geometric phase are presented. These include an informal discussion of fibre bundles, and generalizations of the geometric phase to degenerate eigenstates (the nonabelian case) and to nonadiabatic evolution. There follows an account of applications. Manifestations in classical physics include the Hannay angle and kinematic geometric phases. Applications in optics concern polarization dynamics, including the theory and observation of Pancharatnam's phase. Applications in molecular physics include the molecular Aharonov-Bohm effect and nuclear magnetic resonance studies. In condensed matter physics, we discuss the role of the geometric phase in the theory of the quantum Hall effect.
Landfill Expansion and Permit Revision FEIR Addendum #1 2003 LRDP FEIR Addendum #2
Ullrich, Paul
and post-closure maintenance activities for Waste Management Unit 2 (WMU2) at the UC Davis campus landfillUC Davis Landfill Expansion and Permit Revision FEIR Addendum #1 2003 LRDP FEIR Addendum #2 August 2011 Page 1 1 August 2011 ADDENDUM #1 TO THE LANDFILL EXPANSION AND PERMIT REVISION FEIR (State
Static vacuum solutions from convergent null data expansions at space-like infinity
Static vacuum solutions from convergent null data expansions at space-like infinity Helmut Abstract We study formal expansions of asymptotically flat solutions to the static vacuum field equations characterization of all asymptotically flat solutions to the static vacuum field equations. PACS: 04.20.Ex, 04
California at Berkeley, University of
Correction to "Precursor activation and substorm expansion associated with observations of a dipolarization front by Thermal Emission Imaging System (THEMIS)" C. L. Tang, V. Angelopoulos, A. Runov, C. T, K. H. Fornacon, and Z. Y. Li (2010), Correction to "Precursor activation and substorm expansion
The contribution of mangrove expansion to salt marsh loss on the Texas Gulf coast
Armitage, Anna R.; Highfield, Wesley E.; Brody, Samuel D.; Louchouarn, Patrick
2015-05-06
to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small...
Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications
Truhlar, Donald G
Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water present electrostatically embedded two-body and three-body expansions for calculating the energies of molecular clusters. The system is divided into fragments, and dimers or trimers of fragments are calculated
Iterative-Expansion A* Colin M. Potts and Kurt D. Krebsbach
Krebsbach, Kurt D.
Iterative-Expansion A* (IEA*), fo- cuses on reducing redundant node expansions within indi- vidual depth IEA* with several other competing approaches. We also sketch proofs of optimality and com- pleteness for IEA*, and note that IEA* is particularly ef- ficient for solving implicitly-defined general graph
Center-of-mass corrections reexamined: a many-body expansion approach
Center-of-mass corrections reexamined: a many-body expansion approach Bogdan Mihaila Department, Durham, NH 03824 (August 4, 2006) A many-body expansion for the computation of the charge form factor of the calculation involving realistic nuclear wave functions. Results obtained for the Argonne v18 two
Simulated impact of urban expansion on future temperature heatwaves in Sydney
Evans, Jason
Simulated impact of urban expansion on future temperature heatwaves in Sydney D. Argüesoa,b , J on 2-m temperature are investigated over Greater Sydney using the Weather Research and Forecasting (WRF the expected urban expansion in the future simulation according to local government urbanisation plans
Effect of mould expansion on pattern allowances in sand casting of steel
Beckermann, Christoph
properties of the sand and the solidifying steel. Such hindered shrinkage of restrained casting featuresEffect of mould expansion on pattern allowances in sand casting of steel F. Peters1 , R. Voigt2 , S. Z. Ou3 and C. Beckermann*3 For steel castings produced in sand moulds, the expansion of the sand
Melamed, Timor
Progress In Electromagnetics Research, Vol. 114, 317332, 2011 PULSED BEAM EXPANSION-based pulsed-beams expansion of planar aperture time- dependent electromagnetic fields. The propagating field-beam waveobjects over the frame spectral lattice. Explicit asymptotic expressions for the electromagnetic pulsed
Savannah Harbor Expansion Project General Re-Evaluation Report and Environmental Impact Statement
US Army Corps of Engineers
#12; Savannah Harbor Expansion Project General Re-Evaluation Report and Environmental Impact, was engaged to conduct the IEPR of the Savannah Harbor Expansion Project (SHEP) Draft General Re-Evaluation review of the Economic Appendix and model and the Cost Engineering Appendix in the summer of 2010
ORIGINAL PAPER A review of the alien and expansive species of freshwater
ORIGINAL PAPER A review of the alien and expansive species of freshwater cyanobacteria and algae their impact on local species and other real or potential risks resulting from their spread. The list of alien Alien species Á Invasive species Á Expansive species Á Cyanobacteria Á Algae Á Freshwater Á Czech
DETERMINATION OF THE SWELL-STRESS CURVE OF AN EXPANSIVE SOIL USING CENTRIFUGE TECHNOLOGY
Zornberg, Jorge G.
DETERMINATION OF THE SWELL-STRESS CURVE OF AN EXPANSIVE SOIL USING CENTRIFUGE TECHNOLOGY project was conducted on the use of centrifuge technology to characterize the expansive properties of a soil sample in the centrifuge. This paper focuses on the analysis of testing results, specifically how
Lecture 4: The Age, Shape, and Expansion History of the Universe Risa H. Wechsler
Wechsler, Risa H.
Lecture 4: The Age, Shape, and Expansion History of the Universe Risa H. Wechsler Arthur H Compton, and geometry · The expansion history of the Universe is determined by the combination of the matter density and the curvature · A universe with less than the critical density is "open", it will expand forever · A universe
Chiral dynamics in the low-temperature phase of QCD
Bastian B. Brandt; Anthony Francis; Harvey B. Meyer; Daniel Robaina
2014-10-22
We investigate the low-temperature phase of QCD and the crossover region with two light flavors of quarks. The chiral expansion around the point $(T, m_q = 0)$ in the temperature vs. quark-mass plane indicates that a sharp real-time excitation exists with the quantum numbers of the pion. We determine its dispersion relation and test the applicability of the chiral expansion. The time-dependent correlators are also analyzed using the Maximum Entropy Method (MEM), yielding consistent results. Finally, we test the predictions of ordinary chiral perturbation theory around the point $(T = 0, m_q = 0)$ for the temperature dependence of static observables. Around the crossover temperature, we find that all quantities considered depend only mildly on the quark mass in the considered range 8MeV $\\leq \\bar{m}^{\\bar{\\text{MS}}} \\leq$ 15MeV.
Extraordinary stiffness tunability through thermal expansion of nonlinear defect modes
Marc Serra-Garcia; Joseph Lydon; Chiara Daraio
2014-11-19
Incremental stiffness characterizes the variation of a material's force response to a small deformation change. Typically materials have an incremental stiffness that is fixed and positive, but recent technologies, such as super-lenses, low frequency band gap materials and acoustic cloaks, are based on materials with zero, negative or extremely high incremental stiffness. So far, demonstrations of this behavior have been limited either to a narrow range of frequencies, temperatures, stiffness or to specific deformations. Here we demonstrate a mechanism to tune the static incremental stiffness that overcomes those limitations. This tunability is achieved by driving a nonlinear defect mode in a lattice. As in thermal expansion, the defect's vibration amplitude affects the force at the boundary, hence the lattice's stiffness. By using the high sensitivities of nonlinear systems near bifurcation points, we tune the magnitude of the incremental stiffness over a wide range: from positive, to zero, to arbitrarily negative values. The particular deformation where the incremental stiffness is modified can be arbitrarily selected varying the defect's driving frequency. We demonstrate this experimentally in a compressed array of spheres and propose a general theoretical model.
Relativistic plasma expansion with Maxwell-Juettner distribution
Huang, Yongsheng; Wang, Naiyan; Tang, Xiuzhang; Shi, Yijin
2013-11-15
A self-similar analytical solution is proposed to describe the relativistic ion acceleration with the local Maxwell-Juettner relativistic distribution electrons. It is an alternative to the existing static model [M. Passoni and M. Lontano, Phys. Rev. Lett. 101, 115001 (2008)], which exploits a limited solution for the acceleration potential. With our model, the potential is finite naturally and has an upper limitation proportional to the square root of the electron temperature. The divergent potential in the non-relativistic case is the linear items of the Taylor expansion of that obtained relativistic one here. The energy distribution of ions and the dependence of the ion momentum on the acceleration time are obtained analytically. Maximum ion energy has an upper limitation decided by the finite potential difference. In the ultra-relativistic region, the ion energy at the ion front is proportional to t{sup 4/5} and the energy of the ions behind the ion front is proportional to t{sup 2/3} since the field there is shielded by the ions beyond them and the field at the ion front is the most intense.
Water Constraints in an Electric Sector Capacity Expansion Model
Macknick, Jordan; Cohen, Stuart; Newmark, Robin; Martinez, Andrew; Sullivan, Patrick; Tidwell, Vince
2015-07-17
This analysis provides a description of the first U.S. national electricity capacity expansion model to incorporate water resource availability and costs as a constraint for the future development of the electricity sector. The Regional Energy Deployment System (ReEDS) model was modified to incorporate water resource availability constraints and costs in each of its 134 Balancing Area (BA) regions along with differences in costs and efficiencies of cooling systems. Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013b). Scenarios analyzed include a business-as-usual 3 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. scenario without water constraints as well as four scenarios that include water constraints and allow for different cooling systems and types of water resources to be utilized. This analysis provides insight into where water resource constraints could affect the choice, configuration, or location of new electricity technologies.
$1/d$ Expansion for $k$-Core Percolation
A. B. Harris; J. M. Schwarz
2005-06-02
The physics of $k$-core percolation pertains to those systems whose constituents require a minimum number of $k$ connections to each other in order to participate in any clustering phenomenon. Examples of such a phenomenon range from orientational ordering in solid ortho-para ${\\rm H}_2$ mixtures to the onset of rigidity in bar-joint networks to dynamical arrest in glass-forming liquids. Unlike ordinary ($k=1$) and biconnected ($k=2$) percolation, the mean field $k\\ge3$-core percolation transition is both continuous and discontinuous, i.e. there is a jump in the order parameter accompanied with a diverging length scale. To determine whether or not this hybrid transition survives in finite dimensions, we present a $1/d$ expansion for $k$-core percolation on the $d$-dimensional hypercubic lattice. We show that to order $1/d^3$ the singularity in the order parameter and in the susceptibility occur at the same value of the occupation probability. This result suggests that the unusual hybrid nature of the mean field $k$-core transition survives in high dimensions.
Project Fever - Fostering Electric Vehicle Expansion in the Rockies
Swalnick, Natalia
2013-06-30
Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.
West Foster Creek Expansion Project 2007 HEP Report.
Ashley, Paul R.
2008-02-01
During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus), western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding access toSmallTechnicalSheldon' THE TONGONAN GEOTHERMAL FIELD
G. P. Alexander; J. M. Yeomans
2006-09-22
We present an investigation of the phase diagram of cholesteric liquid crystals within the framework of Landau - de Gennes theory. The free energy is modified to incorporate all three Frank elastic constants and to allow for a temperature dependent pitch in the cholesteric phase. It is found that the region of stability of the cubic blue phases depends significantly on the value of the elastic constants, being reduced when the bend elastic constant is larger than splay and when twist is smaller than the other two. Most dramatically we find a large increase in the region of stability of blue phase I, and a qualitative change in the phase diagram, in a system where the cholesteric phase displays helix inversion.
Michael, Joseph R. (Albuquerque, NM); Goehner, Raymond P. (Albuquerque, NM); Schlienger, Max E. (Albuquerque, NM)
2001-01-01
A method and apparatus for determining the crystalline phase and crystalline characteristics of a sample. This invention provides a method and apparatus for unambiguously identifying and determining the crystalline phase and crystalline characteristics of a sample by using an electron beam generator, such as a scanning electron microscope, to obtain a backscattered electron Kikuchi pattern of a sample, and extracting crystallographic and composition data that is matched to database information to provide a quick and automatic method to identify crystalline phases.
Zambia : long-term generation expansion study - executive summary.
Conzelmann, G.; Koritarov, V.; Buehring, W.; Veselka, T.; Decision and Information Sciences
2008-02-28
The objective of this study is to analyze possible long-term development options of the Zambian electric power system in the period up to 2015. The analysis involved the hydro operations studies of the Zambezi river basin and the systems planning studies for the least-cost generation expansion planning. Two well-known and widely accepted computer models were used in the analysis: PC-VALORAGUA model for the hydro operations and optimization studies and the WASP-III Plus model for the optimization of long-term system development. The WASP-III Plus model is a part of the Argonne National Laboratory's Energy and Power Evaluation Model (ENPEP). The analysis was conducted in close collaboration with the Zambia Electricity Supply Corporation (ZESCO). On the initiative from The World Bank, the sponsor of the study, ZESCO formed a team of experts that participated in the analysis and were trained in the use of computer models. Both models were transferred to ZESCO free of charge and installed on several computers in the ZESCO corporate offices in Lusaka. In September-October 1995, two members of the ZESCO National Team participated in a 4-week training course at Argonne National Laboratory near Chicago, U.S.A., focusing on the long-term system expansion planning using the WASP and VALORAGUA models. The hydropower operations studies were performed for the whole Zambezi river basin, including the full installation of the Kariba power station, and the Cahora Bassa hydro power station in Mozambique. The analysis also included possible future projects such as Itezhi-Tezhi, Kafue Gorge Lower, and Batoka Gorge power stations. As hydropower operations studies served to determine the operational characteristics of the existing and future hydro power plants, it was necessary to simulate the whole Zambezi river basin in order to take into account all interactions and mutual influences between the hydro power plants. In addition, it allowed for the optimization of reservoir management and optimization of hydro cascades, resulting in the better utilization of available hydro potential. Numerous analyses were performed for different stages of system development. These include system configurations that correspond to years 1997, 2001, 2015 and 2020. Additional simulations were performed in order to determine the operational parameters of the three existing hydro power stations Victoria Falls, Kariba, and Kafue Gorge Upper, that correspond to the situation before and after their rehabilitation. The rehabilitation works for these three major power stations, that would bring their operational parameters and availability back to the design level, are planned to be carried out in the period until 2000. The main results of the hydro operations studies are presented in Table ES-1. These results correspond to VALORAGUA simulations of system configurations in the years 2001 and 2015. The minimum, average, and maximum electricity generation is based on the simulation of monthly water inflows that correspond to the chronological series of unregulated water inflows at each hydro profile in the period from April 1961 to March 1990. The recommended hydrology dataset provided in the Hydrology Report of the SADC Energy Project AAA 3.8 was used for this study.
G P Alexander; J M Yeomans
2007-07-01
We describe the occurence and properties of liquid crystal phases showing two dimensional splay and bend distortions which are stabilised by flexoelectric interactions. These phases are characterised by regions of locally double splayed order separated by topological defects and are thus highly analogous to the blue phases of cholesteric liquid crystals. We present a mean field analysis based upon the Landau--de Gennes Q-tensor theory and construct a phase diagram for flexoelectric structures using analytic and numerical results. We stress the similarities and discrepancies between the cholesteric and flexoelectric cases.
Thermodynamically Stable Blue Phases
F. Castles; S. M. Morris; E. M. Terentjev; H. J. Coles
2011-01-28
We show theoretically that flexoelectricity stabilizes blue phases in chiral liquid crystals. Induced internal polarization reduces the elastic energy cost of splay and bend deformations surrounding singular lines in the director field. The energy of regions of double twist is unchanged. This in turn reduces the free energy of the blue phase with respect to that of the chiral nematic phase, leading to stability over a wider temperature range. The theory explains the discovery of large temperature range blue phases in highly flexoelectric "bimesogenic" and "bent-core" materials, and predicts how this range may be increased further.
Influence of Crystal Expansion/Contraction on Zeolite Membrane Permeation
Sorenson, Stephanie G; Payzant, E Andrew; Noble, Richard D; Falconer, John L.
2010-01-01
X-ray diffraction was used to measure the unit cell parameters of B-ZSM-5, SAPO-34, and NaA zeolite powders as a function of adsorbate loading at 303 K, and in one case, at elevated temperatures. Most adsorbates expanded the zeolite crystals below saturation loading at 303 K: n-hexane and SF6 in B-ZSM-5, methanol and CO2 in SAPO-34, and methanol in NaA zeolite. As the loadings increased, the crystals expanded more. Changes in the unit cell volumes of B-ZSM-5 and SAPO-34 zeolite powders correlated with changes in permeation through zeolite membranes defects. When the zeolite crystals expanded or contracted upon adsorption, the defect sizes decreased or increased. In B-ZSM-5 membranes, the fluxes through defects decreased dramatically when n-hexane or SF6 adsorbed. In contrast, i-butane adsorption at 303 K contracted B-ZSM-5 crystals at low loadings and expanded them at higher loadings. Correspondingly, the flux through B-ZSM-5 membrane defects increased at low i-butane loadings and decreased at high loading because the defects increased in size at low loading and decreased at high loadings. At 398 K and 473 K, n-hexane expanded the B-ZSM-5 unit cell more as the temperature increased from 303 to 473 K. The silicalite-1 and B-ZSM-5 unit cell volumes expanded similarly upon n-hexane adsorption at 303 K; boron substitution had little effect on volume expansion.
The Smectic $A$-$C$ Phase Transition in Biaxial Disordered Environments
Leiming Chen; John Toner
2011-12-07
We study the smectic $A$-$C$ phase transition in biaxial disordered environments, e.g. fully anisotropic aerogel. We find that both the $A$ and $C$ phases belong to the universality class of the "XY Bragg glass", and therefore have quasi-long-ranged translational smectic order. The phase transition itself belongs to a new universality class, which we study using an $\\epsilon=7/2-d$ expansion. We find a stable fixed point, which implies a continuous transition, the critical exponents of which we calculate.
Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models
Diakov, Victor; Cole, Wesley; Sullivan, Patrick; Brinkman, Gregory; Margolis, Robert
2015-11-01
Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validity of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.
Expansion analyses of strategic petroleum reserve in Bayou Choctaw : revised locations.
Ehgartner, Brian L.; Park, Byoung Yoon
2010-11-01
This report summarizes a series of three-dimensional simulations for the Bayou Choctaw Strategic Petroleum Reserve. The U.S. Department of Energy plans to leach two new caverns and convert one of the existing caverns within the Bayou Choctaw salt dome to expand its petroleum reserve storage capacity. An existing finite element mesh from previous analyses is modified by changing the locations of two caverns. The structural integrity of the three expansion caverns and the interaction between all the caverns in the dome are investigated. The impacts of the expansion on underground creep closure, surface subsidence, infrastructure, and well integrity are quantified. Two scenarios were used for the duration and timing of workover conditions where wellhead pressures are temporarily reduced to atmospheric pressure. The three expansion caverns are predicted to be structurally stable against tensile failure for both scenarios. Dilatant failure is not expected within the vicinity of the expansion caverns. Damage to surface structures is not predicted and there is not a marked increase in surface strains due to the presence of the three expansion caverns. The wells into the caverns should not undergo yield. The results show that from a structural viewpoint, the locations of the two newly proposed expansion caverns are acceptable, and all three expansion caverns can be safely constructed and operated.
Taghizadeh, Rouzbeh R
2006-01-01
Ex vivo expansion of hematopoietic stem cells (HSCs) is a long-standing challenge faced by both researchers and clinicians. To date, no robust, efficient method for the pure, ex vivo expansion of human HSCs has been ...
Rutledge, G.P. [Central Environmental, Inc., Anchorage, AK (United States)
1991-12-31
Three unusual incidents and case histories involving uranium hexafluoride in the enrichment facilities of the USA in the late 1940`s and early 1950`s are presented. The history of the measurements of the thermal expansion of liquids containing fluorine atoms within the molecule is reviewed with special emphasis upon uranium hexafluoride. A comparison is made between fluorinated esters, fluorocarbons, and uranium hexafluoride. The quantitative relationship between the thermal expansion coefficient, a, of liquids and the critical temperature, T{sub c} is presented. Uranium hexafluoride has an a that is very high in a temperature range that is used by laboratory and production workers - much higher than any other liquid measured. This physical property of UF{sub 6} has resulted in accidents involving filling the UF{sub 6} containers too full and then heating with a resulting rupture of the container. Such an incident at a uranium gaseous diffusion plant is presented. Production workers seldom {open_quotes}see{close_quotes} uranium hexafluoride. The movement of UF{sub 6} from one container to another is usually trailed by weight, not sight. Even laboratory scientists seldom {open_quotes}see{close_quotes} solid or liquid UF{sub 6} and this can be a problem at times. This inability to {open_quotes}see{close_quotes} the UF{sub 6}-HF mixtures in the 61.2{degrees}C to 101{degrees}C temperature range caused a delay in the understanding of the phase diagram of UF{sub 6}-HF which has a liquid - liquid immiscible region that made the eutectic composition somewhat elusive. Transparent fluorothene tubes solved the problem both for the UF{sub 6}-HF phase diagram as well as the UF{sub 6}-HF-CIF{sub 3} phase diagram with a miscibility gap starting at 53{degrees}C. The historical background leading to the first use of CIF{sub 3} to produce UF{sub 6} in both the laboratory and plant at K-25 is presented.
Nugent, K.A.; Paganin, D.; Gureyev, T.E. (Melbourne)
2009-01-06
We are introduced to the effects of phase from the earliest days of our childhood, from the nursery rhyme above (or its less verbose for 'Twinkle, Twinkle Little Star') to the shimmer over a hot road and the network of bright lines at the bottom of a swimming pool. These are all manifestations of phase. And there are many more.
1995-08-01
The Utility PhotoVoltaic Group (UPVG), supported by member dues and a grant from the US Department of Energy, has as its mission the acceleration of the use of cost-effective small-scale and emerging large-scale applications of photovoltaics for the benefit of electric utilities and their customers. Formed in October, 1992, with the support of the American Public Power Association, Edison Electric Institute, and the National Rural Electric Cooperative Association, the UPVG currently has 90 members from all sectors of the electric utility industry. The UPVG`s efforts as conceived were divided into four phases: Phase 0--program plan; Phase 1--organization and strategy development; Phase 2--creating market assurance; and Phase 3--higher volume purchases. The Phase 0 effort developed the program plan and was completed early in 1993. The Phase 1 goal was to develop the necessary background information and analysis to lead to a decision as to which strategies could be undertaken by utilities to promote greater understanding of PV markets and achieve increased volumes of PV purchases. This report provides the details of the UPVG`s Phase 2 efforts to initiate TEAM-UP, its multiyear, 50-MW hardware initiative.
Hans-Dieter Alber
2015-05-20
The accurate simulation of phase interfaces in solids requires small model error and small numerical error. If a phase field model is used and the interface carries low interface energy, then the model error is only small if the interface width in the model is chosen small. Yet, for effective numerical computation the interface width should be large. Choosing the parameters, which determine the width, is therefore an optimality problem. We study this problem for the Allen-Cahn equation coupled to the elasticity equations by constructing an asymptotic solution of second order, which yields an expansion for the kinetic relation of the model. This expansion determines the choice of the parameters, however only if the difference between the expansion and the exact kinetic relation is uniformly small with respect to a second parameter controlling the interface energy. To show this uniformity we determine the asymptotics with respect to this second parameter by scaling of the model equations. Our investigations are formal.
Nuclear-matter--quark-matter phase diagram with strangeness
Barz, H. W.; Friman, B. L.; Knoll, J.; Schulz, H.
1989-07-01
A phenomenological equation of state of strongly interacting matter, including strange degrees of freedom, is presented. It is shown that the hyperon and kaon interactions must be included, in order to obtain a reasonable description of the deconfinement transition at high baryon densities. The consequences of kaon condensation on the nuclear-matter--quark-matter phase diagram are explored. The relative particle abundances obtained in an isentropic expansion of a blob of quark-gluon plasma are presented for different initial conditions. Implications for ultrarelativistic heavy-ion collisions are briefly discussed.
Chen, Long-Qing
and thermochemical properties E. Ab-initio calculations a b s t r a c t First-principles calculations are employed) in the MgeAleCa system. The enthalpies of formation at 0 K are predicted. The vibrational contributions phases, including enthalpy, entropy, bulk modulus, heat capacity, and thermal expansion coefficient
Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste
Ghabezloo, Siavash
2011-01-01
The results of a macro-scale experimental study of the effect of heating on a fluid-saturated hardened cement paste are analysed using a multi-scale homogenization model. The analysis of the experimental results revealed that the thermal expansion coefficient of the cement paste pore fluid is anomalously higher than the one of pure bulk water. The micromechanics model is calibrated using the results of drained and undrained heating tests and permits the extrapolation of the experimentally evaluated thermal expansion and thermal pressurization parameters to cement pastes with different water-to-cement ratios. It permits also to calculate the pore volume thermal expansion coefficient f a which is difficult to evaluate experimentally. The anomalous pore fluid thermal expansion is also analysed using the micromechanics model.
Jordan, Rhonda LeNai
2013-01-01
This research develops a novel approach to long-term power system capacity expansion planning for developing countries by incorporating endogenous demand dynamics resulting from social processes of technology adoption. ...
Pressurized heat treatment of glass-ceramic to control thermal expansion
Kramer, Daniel P. (Dayton, OH)
1985-01-01
A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.
Impact of unit commitment constraints on generation expansion planning with renewables
Palmintier, Bryan Stephen
Growing use of renewables pushes thermal generators against operating constraints - e.g. ramping, minimum output, and operating reserves - that are traditionally ignored in expansion planning models. We show how including ...
Supply chain design and site selection for the expansion of international manufacturing capacity
Constantine, Aimée E. (Aimée Elizabeth)
2009-01-01
The research conducted for this thesis was performed at "Company X", a U.S.-based engineered goods manufacturer. This project focused on Company X's overall manufacturing strategy, with an emphasis on how global expansion ...
A simple way to the high-temperature expansion of relativistic Fermi-Dirac integrals
Khvorostukhin, A S
2015-01-01
The pressure of an ideal relativistic Fermi gas is computed as an infinite series for high temperatures. Expansion of the particle number density, the scalar density, and the entropy density as first derivatives of the pressure is also found.
Bertels, Koen
Flexible Pipelining Design for Recursive Variable Expansion Zubair Nawaz, Thomas Marconi, Koen area by doing loops parallelization with extensive use of pipelining. This paper presents an automated flexible pipeline design algorithm for our unique acceleration technique called Recursive Variable
Mitsis, Georgios
the Laguerre expansion coefficients utilizing least- squares estimation in connection with discrete , which determines the rate of exponential decay. This selection is typically made by trial and dy- namic range of system operation. Among several approaches suggested for the estimation
Decay of theX(3872)into?cJand the operator product expansion...
Office of Scientific and Technical Information (OSTI)
Decay of theX(3872)intocJand the operator product expansion in effective field theory Citation Details In-Document Search Title: Decay of theX(3872)intocJand the operator...
Operator Product Expansion for Pure Spinor Superstring on AdS(5)*S(5)
Valentina Giangreco M. Puletti
2006-07-16
The tree-level operator product expansion coefficients of the matter currents are calculated in the pure spinor formalism for type IIB superstring in the AdS(5)*S(5) background.
Broader source: Energy.gov [DOE]
The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050.These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect to four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.
Zhang, Xiong
2005-11-01
to perform uncoupled two or three dimensional consolidation calculation for both expansive soils and collapsible soils. From the analysis, the equivalent effective stress and excessive pore water pressure can be easily calculated. At the same time...
Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes
Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes Karin is an example of invasive harmful microalgae (Neilan et al., 2003). Another presumably invasive species
Akarsu, Özgür [Department of Physics, Koç University, 34450 Sariyer, ?stanbul (Turkey); Kumar, Suresh [Department of Mathematics, BITS Pilani, Pilani Campus, Rajasthan-333031 (India); Myrzakulov, R.; Sami, M. [Centre of Theoretical Physics, Jamia Millia Islamia, New Delhi-110025 (India); Xu, Lixin, E-mail: oakarsu@ku.edu.tr, E-mail: sukuyd@gmail.com, E-mail: rmyrzakulov@gmail.com, E-mail: samijamia@gmail.com, E-mail: lxxu@dlut.edu.cn [Institute of Theoretical Physics, Dalian University of Technology, Dalian, 116024 (China)
2014-01-01
In this paper, we consider a simple form of expansion history of Universe referred to as the hybrid expansion law - a product of power-law and exponential type of functions. The ansatz by construction mimics the power-law and de Sitter cosmologies as special cases but also provides an elegant description of the transition from deceleration to cosmic acceleration. We point out the Brans-Dicke realization of the cosmic history under consideration. We construct potentials for quintessence, phantom and tachyon fields, which can give rise to the hybrid expansion law in general relativity. We investigate observational constraints on the model with hybrid expansion law applied to late time acceleration as well as to early Universe a la nucleosynthesis.
Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
0-161-LNG Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 10-161-LNG On May 17, 2013, the Office of Fossil Energy of the Department of Energy (DOEFE) issued...
SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTIO...
Broader source: Energy.gov (indexed) [DOE]
2014 April 2015 October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 11-161-LNG - ORDER 3357...
Transmission System Expansion Plans in View Point of Deterministic, Probabilistic and Security reliability criterion, probabilistic reliability criterion and security criterion based on N- contingency control system as well as reasonable strength of grid originally. Because investment for power system
Graph Expansion Analysis for Communication Costs of Fast Rectangular Matrix Multiplication
California at Berkeley, University of
Graph Expansion Analysis for Communication Costs of Fast Rectangular Matrix Multiplication Grey analysis of computational DAGs is useful for obtaining communication cost lower bounds where previous to fast algorithms for rectangular matrix multiplication, obtaining a new class of communication cost
BREAKDOWN OF LINDSTEDT EXPANSION FOR CHAOTIC MAPS GUIDO GENTILE AND TITUS S. VAN ERP
Roma "La Sapienza", Università di
BREAKDOWN OF LINDSTEDT EXPANSION FOR CHAOTIC MAPS GUIDO GENTILE AND TITUS S. VAN ERP Abstract; critical constant; natural boundary. 1 #12; 2 GUIDO GENTILE AND TITUS S. VAN ERP The theoretical framework
BREAKDOWN OF LINDSTEDT EXPANSION FOR CHAOTIC MAPS GUIDO GENTILE AND TITUS S. VAN ERP
Gentile, Guido
BREAKDOWN OF LINDSTEDT EXPANSION FOR CHAOTIC MAPS GUIDO GENTILE AND TITUS S. VAN ERP Abstract; critical constant; natural boundary. 1 #12;2 GUIDO GENTILE AND TITUS S. VAN ERP The theoretical framework
ASYMPTOTIC AND INCREASING PROPAGATION OF CHAOS EXPANSIONS FOR GENEALOGICAL PARTICLE MODELS
Del Moral , Pierre
ASYMPTOTIC AND INCREASING PROPAGATION OF CHAOS EXPANSIONS FOR GENEALOGICAL PARTICLE MODELS PIERRE with genealogical tree models. Applications to nonlinear filtering problems and interacting Markov chain Monte Carlo algorithms are discussed. Key words. Interacting particle systems, historical and genealogical tree models
Temme, N.M.
1987-11-01
The analytical approach of Temme (1983 and 1985), based on uniform asymptotic expansions, is extended to an additional class of incomplete Laplace integrals. The terminology is introduced; the construction of the formal series is explained; representations for the remainders are derived; the asymptotic nature of the expansions is explored; and error bounds are determined. Numerical results are presented for the case of the incomplete beta function. 14 references.
The hybrid Seiberg-Witten map, its $?$-exact expansion and the antifield formalism
C. P. Martin; David G. Navarro
2015-09-18
We deduce an evolution equation for an arbitrary hybrid Seiberg-Witten map for compact gauge groups by using the antifield formalism. We show how this evolution equation can be used to obtain the hybrid Seiberg-Witten map as an expansion, which is $\\theta$-exact, in the number of ordinary fields. We compute explicitly this expansion up to order three in the number of ordinary gauge fields and then particularize it to case of the Higgs of the noncommutative Standard Model.
Coburn, Jordan McQuade
2010-10-12
FACTORS REGULATING THE POPULATION EXPANSION AND CONTRACTION OF AMBLYOMMA MACULATUM (ACARI: IXODIDAE) IN TEXAS A Thesis by JORDAN MCQUADE COBURN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 2009 Major Subject: Entomology METEOROLOGICAL FACTORS REGULATING THE POPULATION EXPANSION AND CONTRACTION OF AMBLYOMMA MACULATUM (ACARI: IXODIDAE) IN TEXAS A Thesis by JORDAN...
Zhang, Yan; Sahinidis, Nikolaos V.
2013-04-06
In this paper, surrogate models are iteratively built using polynomial chaos expansion (PCE) and detailed numerical simulations of a carbon sequestration system. Output variables from a numerical simulator are approximated as polynomial functions of uncertain parameters. Once generated, PCE representations can be used in place of the numerical simulator and often decrease simulation times by several orders of magnitude. However, PCE models are expensive to derive unless the number of terms in the expansion is moderate, which requires a relatively small number of uncertain variables and a low degree of expansion. To cope with this limitation, instead of using a classical full expansion at each step of an iterative PCE construction method, we introduce a mixed-integer programming (MIP) formulation to identify the best subset of basis terms in the expansion. This approach makes it possible to keep the number of terms small in the expansion. Monte Carlo (MC) simulation is then performed by substituting the values of the uncertain parameters into the closed-form polynomial functions. Based on the results of MC simulation, the uncertainties of injecting CO{sub 2} underground are quantified for a saline aquifer. Moreover, based on the PCE model, we formulate an optimization problem to determine the optimal CO{sub 2} injection rate so as to maximize the gas saturation (residual trapping) during injection, and thereby minimize the chance of leakage.
Environmental Microbiology (2003) 5(3), 212216 2003 Blackwell Publishing Ltd
2003-01-01
, using environmental bacterial artificial chromosome (BAC) libraries, we were able to corre- late psb. Based on satellite measurements of ocean colour and production models, it is estimated et al., 2001). Oxygenic (`green- plant') photosynthesis has been a key metabolic process on Earth
2010-08-05
pplane8 Phase Portraits. • The routine pplane8 is already loaded on all ITaP machines as standard software. (If you are using your own copy of MAtlAB you may ...
Electron microscope phase enhancement
Jin, Jian; Glaeser, Robert M.
2010-06-15
A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.
Dirty, Skewed, and Backwards: The Smectic $A$-$C$ Phase Transition in Aerogel
Leiming Chen; John Toner
2004-07-28
We study the smectic AC transition in anisotropic and uniaxial disordered environments, e.g., aerogel with an external field. We find very strange behavior of translational correlations: the low-temperature, lower-symmetry Smectic C phase is itless translationally ordered than the it high-temperature, higher-symmetry Smectic A phase, with short-ranged and algebraic translational correlations, respectively. Specifically, the A and C phase belong to the quasi-long-ranged translationally ordered " XY Bragg glass '' and short-ranged translationally ordered " m=1 Bragg glass '' phase, respectively. The AC phase transition itself belongs to a new universality class, whose fixed points and exponents we find in a d=5-epsilon expansion.
Newberry Volcano EGS Demonstration - Phase I Results
William L. Osborn, Susan Petty, Trenton T. Cladouhos, Joe Iovenitti, Laura Nofziger, Owen Callahan, Douglas S. Perry and Paul L. Stern
2011-10-23
Phase I of the Newberry Volcano Enhanced Geothermal System (EGS) Demonstration included permitting, community outreach, seismic hazards analysis, initial microseismic array deployment and calibration, final MSA design, site characterization, and stimulation planning. The multi-disciplinary Phase I site characterization supports stimulation planning and regulatory permitting, as well as addressing public concerns including water usage and induced seismicity. A review of the project'Ã?Â?Ã?Â?s water usage plan by an independent hydrology consultant found no expected impacts to local stakeholders, and recommended additional monitoring procedures. The IEA Protocol for Induced Seismicity Associated with Enhanced Geothermal Systems was applied to assess site conditions, properly inform stakeholders, and develop a comprehensive mitigation plan. Analysis of precision LiDAR elevation maps has concluded that there is no evidence of recent faulting near the target well. A borehole televiewer image log of the well bore revealed over three hundred fractures and predicted stress orientations. No natural, background seismicity has been identified in a review of historic data, or in more than seven months of seismic data recorded on an array of seven seismometers operating around the target well. A seismic hazards and induced seismicity risk assessment by an independent consultant concluded that the Demonstration would contribute no additional risk to residents of the nearest town of La Pine, Oregon. In Phase II of the demonstration, an existing deep hot well, NWG 55-29, will be stimulated using hydroshearing techniques to create an EGS reservoir. The Newberry Volcano EGS Demonstration is allowing geothermal industry and academic experts to develop, validate and enhance geoscience and engineering techniques, and other procedures essential to the expansion of EGS throughout the country. Successful development will demonstrate to the American public that EGS can play a significant role in reducing foreign energy dependence, and provide clean, renewable, baseload geothermal power generation in the State of Oregon.
Boundary Circles of Mixed Phase Space, Hamiltonian Systems
Or Alus; Shmuel Fishman; James D. Meiss
2014-10-28
The phase space of an area-preserving map typically contains infinitely many elliptic islands embedded in a chaotic sea. Orbits near the boundary of a chaotic region have been observed to stick for long times, strongly influencing their transport properties. The boundary is composed of invariant circles, called "Boundary circles." We investigate the distribution of rotation numbers of boundary circles for the Henon quadratic map and show that the probability of occurrence of small elements of their continued fraction expansions is larger than would be expected for a number chosen at random. However, large elements occur with probabilities distributed proportionally to the random case. These results have implications for models of transport in mixed phase space.
Anderson, G.W.
1991-09-16
An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l_angle}{phi}{r_angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l_angle}{phi}{r_angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l_angle}{phi}{r_angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l_angle}{phi}{r_angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l_angle}{phi}{r_angle} = 246 GeV unstable. The requirement that the state {l_angle}{phi}{r_angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.
Anderson, G.W.
1991-09-16
An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l angle}{phi}{r angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l angle}{phi}{r angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l angle}{phi}{r angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l angle}{phi}{r angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l angle}{phi}{r angle} = 246 GeV unstable. The requirement that the state {l angle}{phi}{r angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.
Linear phase compressive filter
McEwan, T.E.
1995-06-06
A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.
Guttman, Tony
high- and low-temperature expansions P. Butera* and M. Comi Istituto Nazionale di Fisica Nucleare high-temperature expansions with the low-temperature expansions derived some time ago by Enting of limited accuracy such as, stochastic simulations, series expansions, or transfer-matrix calculations
Barrash, Warren
immigration reform and Medicaid expansion to national parks management, regional transportation issues
Gabriel Álvarez; Luis Martínez Alonso; Elena Medina
2011-01-14
We present a method to compute the genus expansion of the free energy of Hermitian matrix models from the large N expansion of the recurrence coefficients of the associated family of orthogonal polynomials. The method is based on the Bleher-Its deformation of the model, on its associated integral representation of the free energy, and on a method for solving the string equation which uses the resolvent of the Lax operator of the underlying Toda hierarchy. As a byproduct we obtain an efficient algorithm to compute generating functions for the enumeration of labeled k-maps which does not require the explicit expressions of the coefficients of the topological expansion. Finally we discuss the regularization of singular one-cut models within this approach.
Large-Spin and Large-Winding Expansions of Giant Magnons and Single Spikes
Emmanuel Floratos; Georgios Linardopoulos
2015-11-11
We generalize the method of our recent paper on the large-spin expansions of Gubser-Klebanov-Polyakov (GKP) strings to the large-spin and large-winding expansions of finite-size giant magnons and finite-size single spikes. By expressing the energies of long open strings in RxS2 in terms of Lambert's W-function, we compute the leading, subleading and next-to-subleading series of classical exponential corrections to the dispersion relations of Hofman-Maldacena giant magnons and infinite-winding single spikes. We also compute the corresponding expansions in the doubled regions of giant magnons and single spikes that are respectively obtained when their angular and linear velocities become smaller or greater than unity.
Nuclear Clusters as a Probe for Expansion Flow in Heavy Ion Reactions at 10-15AGeV
R. Mattiello; H. Sorge; H. Stöcker; W. Greiner
1996-07-02
A phase space coalescence description based on the Wigner-function method for cluster formation in relativistic nucleus-nucleus collisions is presented. The momentum distributions of nuclear clusters d,t and He are predicted for central Au(11.6AGeV)Au and Si(14.6AGeV)Si reactions in the framework of the RQMD transport approach. Transverse expansion leads to a strong shoulder-arm shape and different inverse slope parameters in the transverse spectra of nuclear clusters deviating markedly from thermal distributions. A clear ``bounce-off'' event shape is seen: the averaged transverse flow velocities in the reaction plane are for clusters larger than for protons. The cluster yields --particularly at low $p_t$ at midrapidities-- and the in-plane (anti)flow of clusters and pions change if suitably strong baryon potential interactions are included. This allows to study the transient pressure at high density via the event shape analysis of nucleons, nucleon clusters and other hadrons.
Salyer, Ival O. (Dayton, OH); Griffen, Charles W. (Mason, OH)
1986-01-01
Compositions containing crystalline, long chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.
Salyer, Ival O. (Dayton, OH)
1989-01-01
Compositions containing crystalline, straight chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.
Schuknecht, Nate; White, David; Hoste, Graeme
2014-09-11
The SkyTrough DSP will advance the state-of-the-art in parabolic troughs for utility applications, with a larger aperture, higher operating temperature, and lower cost. The goal of this project was to develop a parabolic trough collector that enables solar electricity generation in the 2020 marketplace for a 216MWe nameplate baseload power plant. This plant requires an LCOE of 9¢/kWhe, given a capacity factor of 75%, a fossil fuel limit of 15%, a fossil fuel cost of $6.75/MMBtu, $25.00/kWht thermal storage cost, and a domestic installation corresponding to Daggett, CA. The result of our optimization was a trough design of larger aperture and operating temperature than has been fielded in large, utility scale parabolic trough applications: 7.6m width x 150m SCA length (1,118m2 aperture), with four 90mm diameter × 4.7m receivers per mirror module and an operating temperature of 500°C. The results from physical modeling in the System Advisory Model indicate that, for a capacity factor of 75%: The LCOE will be 8.87¢/kWhe. SkyFuel examined the design of almost every parabolic trough component from a perspective of load and performance at aperture areas from 500 to 2,900m2. Aperture-dependent design was combined with fixed quotations for similar parts from the commercialized SkyTrough product, and established an installed cost of $130/m2 in 2020. This project was conducted in two phases. Phase I was a preliminary design, culminating in an optimum trough size and further improvement of an advanced polymeric reflective material. This phase was completed in October of 2011. Phase II has been the detailed engineering design and component testing, which culminated in the fabrication and testing of a single mirror module. Phase II is complete, and this document presents a summary of the comprehensive work.
Single Scale Cluster Expansions with Applications to Many Boson and Unbounded Spin Systems
Martin Lohmann
2014-11-04
We develop a cluster expansion to show exponential decay of correlations for quite general single scale spin systems, as they arise in lattice quantum field theory and discretized functional integral representations for observables of quantum statistical mechanics. We apply our results to: the small field approximation to the coherent state correlation functions of the grand canonical Bose gas at negative chemical potential, constructed by Balaban, Feldman, Kn\\"orrer and Trubowitz (2010); and to N component unbounded spin systems with repulsive two body interaction and massive, possibly complex, covariance. Our cluster expansion is derived by a single application of the BKAR interpolation formula.
A possible geometrical origin of the accelerated expansion of the universe
Montiel, Ariadna; Cordero, Rubén; Rojas, Efraín
2015-01-01
The modified geodetic brane cosmology (MGBC) is tested with observational data. The MGBC is derived from the geodetic brane gravity action corrected by the extrinsic curvature of the braneworld. The density parameter coming from this additional term produces an accelerated expansion of geometrical origin. Subject to the Supernovae Ia, Observable Hubble parameter, Baryon Acoustic Oscillations and Cosmic Microwave Background probes, the obtained fit provides enough evidence in the sense that the extrinsic curvature effect is able to reproduce the accelerated expansion of the universe without need of invoking dark energy, exotic matter or cosmological constant. Moreover the MGBC is free of the problems present in other braneworld models.
Asymptotic expansions for the escape rate of stochastically perturbed unimodal maps
C. P. Dettmann; T. B. Howard
2009-10-06
The escape rate of a stochastic dynamical system can be found as an expansion in powers of the noise strength. In previous work the coefficients of such an expansion for a one-dimensional map were fitted to a general form containing a few parameters. These parameters were found to be related to the fractal structure of the repeller of the system. The parameter alpha, the "noise dimension", remains to be interpreted. This report presents new data for alpha showing that the relation to the dimensions is more complicated than predicted in earlier work and oscillates as a function of the map parameter, in contrast to other dimension-like quantities.
Exact Q-Deformed Dyson Expansion for the Nuclear J=5/2 Shell
S. S. Avancini; J. R. Marinelli; D. P. Menezes; M. M. Watanabe de Moraes; N. Yoshinaga
1997-01-29
The quon algebra, which interpolates between the Bose and Fermi algebras and depends on a free paramenter $q$, is used to generate a deformed Dyson boson expansion of the quadrupole operator. Then we obtain a quadrupole-quadrupole hamiltonian, for a single j-shell, in terms of this deformed bosonic operator. The hamiltonian is diagonalized and its eigenvalues are compared with the ones obtained from the fermionic quadrupole-quadrupole hamiltonian. The deformation parameter helps in achieving the correct energy levels, what cannot be encountered in practice with the usual non-deformed Dyson expansion.
Pion parameters in nuclear medium from chiral perturbation theory and virial expansion
S. Mallik; Sourav Sarkar
2003-09-11
We consider two methods to find the effective parameters of the pion traversing a nuclear medium. One is the first order chiral perturbation theoretic evaluation of the pion pole contribution to the two-point function of the axial-vector current. The other is the exact, first order virial expansion of the pion self-energy. We find that, although the results of chiral perturbation theory are not valid at normal nuclear density, those from the virial expansion may be reliable at such density. The latter predicts both the mass-shift and the in-medium decay width of the pion to be small, of about a few MeV.
Static vacuum solutions from convergent null data expansions at space-like infinity
Helmut Friedrich
2006-06-30
We study formal expansions of asymptotically flat solutions to the static vacuum field equations which are determined by minimal sets of freely specifyable data referred to as `null data'. These are given by sequences of symmetric trace free tensors at space-like infinity of increasing order. They are 1:1 related to the sequences of Geroch multipoles. Necessary and sufficient growth estimates on the null data are obtained for the formal expansions to be absolutely convergent. This provides a complete characterization of all asymptotically flat solutions to the static vacuum field equations.
Modified uncertainty principle from the free expansion of a Bose-Einstein Condensate
Elías Castellanos; Celia Escamilla-Rivera
2015-09-21
We develop a theoretical and numerical analysis of the free expansion of a Bose-Einstein condensate, in which we assume that the single particle energy spectrum is deformed due to a possible quantum structure of space time. Also we consider the presence of inter particle interactions in order to study more realistic and specific scenarios. The modified free velocity expansion of the condensate leads in a natural way to a modification of the uncertainty principle, which allows us to investigate some possible features of the Planck scale regime in low-energy earth-based experiments.
Thermal expansion of multiwall carbon nanotube reinforced nanocrystalline silver matrix composite
Sharma, Manjula Sharma, Vimal; Pal, Hemant
2014-04-24
Multiwall carbon nanotube reinforced silver matrix composite was fabricated by novel molecular level mixing method, which involves nucleation of Ag ions inside carbon nanotube dispersion at the molecular level. As a result the carbon nanotubes get embedded within the powder rather than on the surfaces. Micro structural characterization by X- ray diffraction and scanning electron microscopy reveals that the nanotubes are homogeneously dispersed and anchored within the matrix. The thermal expansion of the composite with the multiwall nanotube content (0, 1.5 vol%) were investigated and it is found that coefficient of thermal expansion decreases with the addition of multiwall nanotube content and reduce to about 63% to that of pure Ag.
Toru Miyazawa
2011-12-26
A new formalism is presented for high-energy analysis of the Green function for Fokker-Planck and Schr\\"odinger equations in one dimension. Formulas for the asymptotic expansion in powers of the inverse wave number are derived, and conditions for the validity of the expansion are studied through the analysis of the remainder term. The short-time expansion of the Green function is also discussed.
Sommargren, G.E.
1999-08-03
An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.
Phase shifting diffraction interferometer
Sommargren, Gary E. (Santa Cruz, CA)
1996-01-01
An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.
Sommargren, Gary E. (Santa Cruz, CA)
1999-01-01
An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.
Phase shifting diffraction interferometer
Sommargren, G.E.
1996-08-29
An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.
Solid phase extraction membrane
Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI
2002-11-05
A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.
Phase Field Fracture Mechanics.
Robertson, Brett Anthony
2015-11-01
For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.
Tucker, Matthew G. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Goodwin, Andrew L.; Dove, Martin T. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Keen, David A. [Physics Department, Oxford University, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Wells, Stephen A. [Biological Physics, Bateman Physical Sciences Building, Arizona State University, Tempe, Arizona 85287-1504 (United States); Evans, John S.O. [Department of Chemistry, University Science Laboratories, South Road, Durham DH1 3LE (United Kingdom)
2005-12-16
The local structure of the low-temperature ordered phase of the negative thermal expansion (NTE) material ZrW{sub 2}O{sub 8} has been investigated by reverse Monte Carlo (RMC) modeling of neutron total scattering data. We obtain, for the first time, quantitative measurements of the extent to which the WO{sub 4} and ZrO{sub 6} polyhedra move as rigid units, and we show that these values are consistent with the predictions of rigid unit mode theory. We suggest that rigid unit modes are associated with the NTE. Our results do not support a recent interpretation of x-ray-absorption fine structure spectroscopy data in terms of a larger rigid structural component involving the Zr-O-W linkage.
Three Phases of CD8 T Cell Response in the Lung Following H1N1 Influenza Infection and Sphingosine 1
Parker, Ian
Three Phases of CD8 T Cell Response in the Lung Following H1N1 Influenza Infection and Sphingosine, United States of America Abstract Influenza-induced lung edema and inflammation are exacerbated in the lungs and draining lymph node, leading to expansion of virus-specific effector cells. Using two
DELETERIOUS EXPANSION OF CEMENT PASTE SUBJECTED TO WET-DRY CYCLES
·I CEMENT PASTE SUBJECTED TO WET-DRY CYCLES John A. Wells*, Emmanuel K with five cements produced in different regions of Canada. Test specimens with nominal diameters of 25 mm program show that cement paste specimens exhibit significant differences in the magnitude of expansion
Ecological and environmental footprint of 50 years of agricultural expansion in Argentina
Nacional de San Luis, Universidad
Ecological and environmental footprint of 50 years of agricultural expansion in Argentina E R N E Gestio´n Ambiental (GIGA), Av. Spinetto 785, 6300 Santa Rosa, La Pampa, Argentina, wINCITAP-CONICET, Ruta 35, km 335, 6300 Santa Rosa, La Pampa, Argentina, zUNLPam, Facultad de Ciencias Exactas y Naturales
WordNet-based Index Terms Expansion for Geographical Information Retrieval
Rosso, Paolo
WordNet-based Index Terms Expansion for Geographical Information Retrieval Davide Buscaldi geographic information from text, particularly in the cases in which the indication of the containing geograph- ical entity is omitted. The system is based on the Lucene search engine. We submitted two kind
Primary T Cell Expansion and Differentiation In Vivo Requires Antigen Presentation by B Cells1
Primary T Cell Expansion and Differentiation In Vivo Requires Antigen Presentation by B Cells1 Alison Crawford,* Megan MacLeod,* Ton Schumacher, Louise Corlett,* and David Gray2 * B cells are well documented as APC; however, their role in supporting and programming the T cell response in vivo is still
The Fiber Walk: A Model of Tip-Driven Growth with Lateral Expansion
Turk, Greg
The Fiber Walk: A Model of Tip-Driven Growth with Lateral Expansion Alexander Bucksch1,2 *, Greg Turk1 , Joshua S. Weitz2,3 1 Georgia Institute of Technology, School of Interactive Computing, Atlanta, Georgia, United States of America, 2 Georgia Institute of Technology, School of Biology, Atlanta, Georgia
Vlad, Gregorio
(with scaled plasma current) and suitable to fulfil plasma conditions for integrated studies of plasmaÂwall interaction, burning plasma physics, ITER relevant operation problems and steady state scenarios. FIXFREE is a toroidal multipolar expansions equilibrium code, recently ported to the Integrated Tokamak Modelling (ITM
A new mineralogical approach to predict coefficient of thermal expansion of aggregate and concrete
Neekhra, Siddharth
2005-02-17
TE.........................10 Gnomix pvT High Pressure Dilatometer ...............................................................17 3. CoTE LABORATORY TESTING AND MODEL DEVELOPMENT........................18 Volumetric Dilatometer Method... Expansion of Hydraulic Cement Concrete (17).............................................. 16 Figure 5 Gnomix pvT High Pressure Dilatometer (19). ............................................... 17 Figure 6 The Dilatometer Test Device...
Evolution of eggshell structure during rapid range expansion in a passerine bird
Badyaev, Alex
and Alexander V. Badyaev* Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona of colonization of novel environments provide a powerful insight into the relative importance of ecological that accompanied rapid range expansion of house finches (Carpodacus mexicanus) across North America. We analysed
Photo-production of Positive Parity Excited Baryons in the 1/Nc Expansion of QCD
Jose L. Goity Norberto N. Scoccola
2007-01-29
We analyze the photo-production helicity amplitudes for the positive parity excited baryons in the context of the $1/N_c$ expansion of QCD. The results show that sub-leading corrections in $1/N_c$ are important and that, while 1-body effective operators are dominant, there is some evidence for the need of 2-body effects.
Capacity expansion planning of alternative resources Formulation of a new mechanism to
McCalley, James D.
Capacity expansion planning of alternative resources Formulation of a new mechanism to procure · Gap between net revenues produced by energy markets and the capital costs of investing in new capacity GENERATING CAPACITY, MIT 2006 . FTI Consulting, "Evaluation of the New York Capacity Market", March 2013
GENERALIZED DE BRUIJN DIGRAPHS AND THE DISTRIBUTION OF PATTERNS IN -EXPANSIONS
+ Â· Â· Â· , where 1 = [x], the integer part of x, and the other digits are computed with the transformation T that certain functionals of -expansions, e.g. the number of specific digital patterns, satisfy a central limit(x) = {x} (where {x} denotes the fractional part of x): n = [Tn-2(x)]. Then the digits j satisfy (n, n+1
GENERALIZED DE BRUIJN DIGRAPHS AND THE DISTRIBUTION OF PATTERNS IN #EXPANSIONS #
+ Â· Â· Â· , where # 1 = [x], the integer part of x, and the other digits are computed with the transformation T (x that certain functionals of #Âexpansions, e.g. the number of specific digital patterns, satisfy a central limit) = {#x} (where {x} denotes the fractional part of x): # n = [#T n-2 (x)]. Then the digits # j satisfy
Gauge-invariant metric fluctuations from NKK theory of gravity: de Sitter expansion
Jose Edgar Madriz Aguilar; Mariano Anabitarte; Mauricio Bellini
2005-10-20
In this paper we study gauge-invariant metric fluctuations from a Noncompact Kaluza-Klein (NKK) theory of gravity in a de Sitter expansion. We recover the well known result $\\delta\\rho/\\rho \\simeq 2\\Phi$, obtained from the standard 4D semiclassical approach to inflation. The spectrum for these fluctuations should be dependent of the fifth (spatial-like) coordinate.
POLE EXPANSION FOR SOLVING A TYPE OF PARAMETRIZED LINEAR SYSTEMS IN ELECTRONIC STRUCTURE
Ying, Lexing
POLE EXPANSION FOR SOLVING A TYPE OF PARAMETRIZED LINEAR SYSTEMS IN ELECTRONIC STRUCTURE, parametrized linear systems, electronic structure calculation AMS subject classifications. 65F30,65D30,65Z05 1 linear systems. Under certain assumptions on the parametrization, solutions to the linear systems for all
Taylor Expansion Diagrams: A Canonical Representation for Verification of Data Flow Designs
Ciesielski, Maciej
series expansion that allows to model word-level signals as alge- braic symbols. This power increase in the size and complexity of digital systems has made it essential to address verification issues verification meth- ods, such as theorem proving, property and model checking, equiv- alence checking, etc
Anomalous expansion and negative specific heat in quasi-2D plasmas
Lim, Chjan C.
Anomalous expansion and negative specific heat in quasi-2D plasmas Timothy D. Andersen and Chjan C. Lim May 23, 2010 #12;Magnetic Nuclear Fusion Magnetic nuclear fusion is one of the most promising confining the plasma. #12;Magnetic Nuclear Fusion continued 2 1D +3 1 T 4 2 He +1 0 n + 17.6MeV. (1) Plasma
Zhao Xinghai; Mathews, Grant J.
2011-01-15
General relativistic corrections to the expansion rate of the Universe arise when the Einstein equations are averaged over a spatial volume in a locally inhomogeneous cosmology. It has been suggested that they may contribute to the observed cosmic acceleration. In this paper, we propose a new scheme that utilizes numerical simulations to make a realistic estimate of the magnitude of these corrections for general inhomogeneities in (3+1) spacetime. We then quantitatively calculate the volume averaged expansion rate using N-body large-scale structure simulations and compare it with the expansion rate in a standard FRW cosmology. We find that in the weak gravitational field limit, the converged corrections are slightly larger than the previous claimed 10{sup -5} level, but not large enough nor even of the correct sign to drive the current cosmic acceleration. Nevertheless, the question of whether the cumulative effect can significantly change the expansion history of the Universe needs to be further investigated with strong-field relativity.
Regularization of Hele-Shaw flows, multiscaling expansions and the Painleve I equation
Luis Martinez Alonso; E. Medina
2007-10-19
Critical processes of ideal integrable models of Hele-Shaw flows are considered. A regularization method based on multiscaling expansions of solutions of the KdV and Toda hierarchies characterized by string equations is proposed. Examples are exhibited in which the tritronq'ee solution of the Painleve-I equation turns out to provide the leading term of the regularization
Heavy-quark expansion for D and B mesons in nuclear matter
Thomas Buchheim; Thomas Hilger; Burkhard Kampfer
2014-10-01
The planned experiments at FAIR enable the study of medium modifications of $D$ and $B$ mesons in (dense) nuclear matter. Evaluating QCD sum rules as a theoretical prerequisite for such investigations encounters heavy-light four-quark condensates. We utilize an extended heavy-quark expansion to cope with the condensation of heavy quarks.
Construction of a Mechanical Model for the Expansion of a Virus
Guest, Simon
Construction of a Mechanical Model for the Expansion of a Virus S.D. Guest1 , F. KovÃ¡cs2 , T@eng.cam.ac.uk, fax +44 1223 332662 Abstract Many viruses have an outer protein coat with the structure of a truncated icosahedron, and can expand following changes to the environment around the virus. The protein coat consists
Double-link expandohedra: a mechanical model for expansion of a virus
Guest, Simon
Double-link expandohedra: a mechanical model for expansion of a virus By F. KovÂ´acs1 , T. Tarnai2), the derived expandohedra provide a mechanical model for the experimen- tally observed swelling of viruses such as cowpea chlorotic mottle virus (CCMV). A fully symmetric swelling motion (a finite mechanism) is found
C4 expansion in the central Inner Mongolia during the latest Miocene and early Pliocene
Miocene The emergence of C4 photosynthesis in plants as a significant component of terrestrial ecosystems Neogene times and has had a profound effect on the global terrestrial biosphere. Although expansion of C4 on the photosyn- thetic pathways they use: C3, C4, and CAM (crassulacean acid metabolism). C3 plants include
7/31/2008 ICHEP 2008, Philadelphia 1 All-Order -Expansion of
Yost, Scott
7/31/2008 ICHEP 2008, Philadelphia 1 All-Order -Expansion of Generalized Hypergeometric Functions Scott Yost with M. Kalmykov, B.F.L. Ward PRINCETON UNIVERSITY #12;7/31/2008 ICHEP 2008, Philadelphia 2;7/31/2008 ICHEP 2008, Philadelphia 3 Generalized Hypergeometric Functions The generalized hypergeometric function
U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets
Noble, James S.
May 2012 U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets FAPRI-MU Report #02 for agricultural and biofuel markets.1 That baseline assumes current biofuel policy, including provisions credit expired, as scheduled, at the end of 2011. The additional tax credit for cellulosic biofuel
Relation between thermal expansion and interstitial formation energy in pure Fe and Cr
term, i.e. the contribution to the total energy from the valence electron density. Consequently we needRelation between thermal expansion and interstitial formation energy in pure Fe and Cr Janne Wallenius a,b,*, Pa¨r Olsson b , Christina Lagerstedt a a Department of Nuclear and Reactor Physics, KTH
Invasion and expansion of cooperators in lattice populations: Prisoner's dilemma vs. snowdrift games
Hauert, Christoph
Invasion and expansion of cooperators in lattice populations: Prisoner's dilemma vs. snowdrift and the social sciences. Two social dilemmas, the prisoner's dilemma and the snowdrift game have emerged interactions has long been identified as a potent promoter of cooperation in the prisoner's dilemma
Combining Multiple Evidence from Dierent Types of Thesaurus for Query Expansion
Nie, Jian-Yun
Combining Multiple Evidence from Dierent Types of Thesaurus for Query Expansion Rila Mandala only one type of thesaurus has generally been used. In this paper we analyze the characteristics of dierent thesaurus types and propose a method to combine them for query ex- pansion. Experiments using
A characterization of the Taylor expansion of Pierre Boudes, Fanny He, and Michele Pagani
Pagani, Michele
conditions which semantically describe normalizable and total -terms. 1998 ACM Subject Classification F.4 generally, modules). In fact, one can define the Taylor expansion of a function as an infinite sum of terms terms [8, 9]. Also, the authors define a rewriting system inspired by the standard rules for computing
Real and padic expansions involving symmetric patterns Boris ADAMCZEWSKI & Yann BUGEAUD
Bugeaud, Yann
, and by questions related to the expected normality of irrational algebraic numbers. We introduce a class symmetric patterns. Then, we prove several transcendence statements involving both real and pÂadic numbers) expansion of irrational algebraic real (resp. pÂadic) numbers. Moreover, it is expected that these numbers
Polymers in poor solvents : loop expansion of irreducible diagrams (II) J. des Cloizeaux
Boyer, Edmond
761 Polymers in poor solvents : loop expansion of irreducible diagrams (II) J. des Cloizeaux polydispersion. Abstract. 2014 Properties of polymers in poor solvent are found by calculating irreducible. Expressions are given for the osmotic pressure, the size of a polymer in a solution and the density
Economic transition and urban land expansion in Provincial China Jinlong Gao a, b
Wei, Yehua Dennis
Economic transition and urban land expansion in Provincial China Jinlong Gao a, b , Yehua Dennis: Available online 29 September 2014 Keywords: Economic transition Marketization Globalization Decentralization Land use change Jiangsu a b s t r a c t China has undergone economic transition characterized
Beyond the Grave: Facebook as a site for the expansion of death and
Hayes, Gillian R.
Beyond the Grave: Facebook as a site for the expansion of death-mortem, social network sites, Facebook Abstract: Online identities survive the deaths of those they represent its launch, Facebook has permeated the daily lives of its users. More than just a space in which
Thermal Expansion Models of Viscous Fluids Based on Limits of Free Energy
Thermal Expansion Models of Viscous Fluids Based on Limits of Free Energy S.E. Bechtel Department applied directly on the free energy formulation of the compressible Navier-Stokes system. The method the reversible physical mechanisms governed by the gradient and Hessian of the free energy function take special
1 INTRODUCTION Expansive soils have a major source of damages to
Zornberg, Jorge G.
on the per- formance of the geosynthetic reinforcements as a technique to mitigate the development research studies have been conducted to predict the behavior of ex- pansive soils, the field behavior control, ac- cess to water for expansive soils in the field is very uncertain (Coduto 2001
Zheng, M.; Kong, F.; Han, Z.; Liu, W.
2006-01-01
expansion dynamic ice-on-coil storage system that overcame the disadvantages of static and dynamic ice-storage system. It is concluded that periodic ice moving avoids the increased heat resistance that creates a decreased evaporating temperature. Due to a...
Path Planning in Expansive Configuration Spaces David Hsu JeanClaude Latombe Rajeev Motwani
Motwani, Rajeev
be effectively captured by a roadmap of randomlysampled milestones. The analysis of expansive configuration of precomputing a roadmap for the entire configuration space. Thus, it is wellsuited for problems where only in [12], uses random sampling to construct a probabilistic roadmap in the configuration space
Exact asymptotic expansions for thermodynamics of the hydrogen gas in the Saha regime
Boyer, Edmond
Exact asymptotic expansions for thermodynamics of the hydrogen gas in the Saha regime A. Alastuey and V. Ballenegger Abstract We consider the hydrogen quantum plasma in the Saha regime, where it almost of thermo- dynamical functions beyond Saha theory, which describes an ideal mixture of ionized protons
Yock, Adam D. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas (United States); Garden, Adam S. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Court, Laurence E. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas (United States); Beadle, Beth M. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhang, Lifei [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Dong, Lei, E-mail: dong.lei@scrippshealth.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas (United States)
2013-11-01
Purpose: The purpose of this work was to determine the expansions in 6 anatomic directions that produced optimal margins considering nonrigid setup errors and tissue deformation for patients receiving image-guided radiation therapy (IGRT) of the oropharynx. Methods and Materials: For 20 patients who had received IGRT to the head and neck, we deformably registered each patient's daily images acquired with a computed tomography (CT)-on-rails system to his or her planning CT. By use of the resulting vector fields, the positions of volume elements within the clinical target volume (CTV) (target voxels) or within a 1-cm shell surrounding the CTV (normal tissue voxels) on the planning CT were identified on each daily CT. We generated a total of 15,625 margins by dilating the CTV by 1, 2, 3, 4, or 5 mm in the posterior, anterior, lateral, medial, inferior, and superior directions. The optimal margins were those that minimized the relative volume of normal tissue voxels positioned within the margin while satisfying 1 of 4 geometric target coverage criteria and 1 of 3 population criteria. Results: Each pair of geometric target coverage and population criteria resulted in a unique, anisotropic, optimal margin. The optimal margin expansions ranged in magnitude from 1 to 5 mm depending on the anatomic direction of the expansion and on the geometric target coverage and population criteria. Typically, the expansions were largest in the medial direction, were smallest in the lateral direction, and increased with the demand of the criteria. The anisotropic margin resulting from the optimal set of expansions always included less normal tissue than did any isotropic margin that satisfied the same pair of criteria. Conclusions: We demonstrated the potential of anisotropic margins to reduce normal tissue exposure without compromising target coverage in IGRT to the head and neck.
Zornberg, Jorge G.
Long-Term Monitoring of a Drilled Shaft Retaining Wall in Expansive Clay: Behavior Before are that the instrumentation survived construction and is working, residual stresses developed in the drilled shafts prior The motivation for this work is uncertainty in the design of drilled shaft retaining walls in expansive clay
Paris-Sud XI, Université de
1 La052605k(250) "Osmotic compression and expansion of highly ordered clay dispersions" Table" #12;2 Osmotic compression and expansion of highly ordered clay dispersions Céline Martin1 , Frédéric, mechanical compression, and osmotic stress (dialysis against a polymer solution). The positional
Fluid vs PIC Modeling of a Plasma Plume Expansion IEPC-2015-IEPC-420/ISTS-2015-b-IEPC-420
Carlos III de Madrid, Universidad
Fluid vs PIC Modeling of a Plasma Plume Expansion IEPC-2015-IEPC-420/ISTS-2015-b-IEPC-420 Presented on the Asymptotic Expansion Method and a full PIC simulator, benchmarking one against the other, in terms complex full PIC simulator is investigated, identifying the limitations of a simple polytropic law
Algorithm for obtaining the gradient expansion of the local density of states and the free energy for obtaining the gauge-invariant gradient expansion of the local density of states and the free energy confirm a recent calculation of the fourth order correction to the free energy by Kosztin, Kos, Stone
Toru Miyazawa
2011-12-26
We study the low-energy behavior of the Green function for one-dimensional Fokker-Planck and Schr\\"odinger equations with periodic potentials. We derive a formula for the power series expansion of reflection coefficients in terms of the wave number, and apply it to the low-energy expansion of the Green function.
Takada, Yasutami
Highdensity expansion of correlation energy and its extrapolation to the metallic density region T to the kinetic energy. Practically, energyband calculations in the local density ap proximation rely densities. The r s expansion of the groundstate energy of the elec tron gas is originally an asymptotic
Not Available
1984-07-01
The recently submitted Revised SRC-I Project Baseline included 30 months of plant operations. This period is divided into two sub-phases: IIIA and IIIB. Phase IIIA is six months in duration and is defined as Startup and Shakedown of the Demonstration Plant. Phase IIIB is two years in duration and encompasses two years of test operations. The Prime Contract allowed for the possibility of up to three additional years of test operations. This extension, Phase IIIC, was subject to mutual agreement by ICRC and DOE. It was also dependent upon a formal Notice of Buyout and plan for expansion of the Demonstration Plant. Pursuant to DOE instructions, the cash flows associated with Phase IIIC have been prepared consistent with the Revised SRC-I Project Baseline and are herewith included.
Toru Miyazawa
2015-05-13
We study low-energy expansion and high-energy expansion of reflection coefficients for one-dimensional Schr\\"odinger equation, from which expansions of the Green function can be obtained. Making use of the equivalent Fokker-Planck equation, we develop a generalized formulation of a method for deriving these expansions in a unified manner. In this formalism, the underlying algebraic structure of the problem can be clearly understood, and the basic formulas necessary for the expansions can be derived in a natural way. We also examine the validity of the expansions for various asymptotic behaviors of the potential at spatial infinity.
Reports and Publications (EIA)
1999-01-01
This appendix examines the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It also includes those projects in Canada and Mexico that tie-in with the U.S. markets or projects.
Physics of Substorm Growth Phase, Onset, and Dipolarization
C.Z. Cheng
2003-10-22
A new scenario of substorm growth phase, onset, and depolarization during expansion phase and the corresponding physical processes are presented. During the growth phase, as a result of enhanced plasma convection, the plasma pressure and its gradient are continued to be enhanced over the quiet-time values in the plasma sheet. Toward the late growth phase, a strong cross-tail current sheet is formed in the near-Earth plasma sheet region, where a local magnetic well is formed, the plasma beta can reach a local maximum with value larger than 50 and the cross-tail current density can be enhanced to over 10nA/m{sup 2} as obtained from 3D quasi-static magnetospheric equilibrium solutions for the growth phase. The most unstable kinetic ballooning instabilities (KBI) are expected to be located in the tailward side of the strong cross-tail current sheet region. The field lines in the most unstable KBI region map to the transition region between the region-1 and region-2 currents in the ionosphere, which is consistent with the observed initial brightening location of the breakup arc in the intense proton precipitation region. The KBI explains the AMPTE/CCE observations that a low-frequency instability with a wave period of 50-75 seconds is excited about 2-3 minutes prior to substorm onset and grows exponentially to a large amplitude at the onset of current disruption (or current reduction). At the current disruption onset higher frequency instabilities are excited so that the plasma and electromagnetic field fluctuations form a strong turbulent state. Plasma transport takes place due to the strong turbulence to relax the ambient plasma pressure profile so that the plasma pressure and current density are reduced and the ambient magnetic field intensity increases by more than a factor of 2 in the high-beta(sub)eq region and the field line geometry recovers from tail-like to dipole-like dipolarization.
Phase transition in finite density and temperature lattice QCD
Rui Wang; Ying Chen; Ming Gong; Chuan Liu; Yu-Bin Liu; Zhao-Feng Liu; Jian-Ping Ma; Xiang-Fei Meng; Jian-Bo Zhang
2015-04-09
We investigate the behavior of the chiral condensate in lattice QCD at finite temperature and finite chemical potential. The study was done using two flavors of light quarks and with a series of $\\beta$ and $ma$ at the lattice size $24\\times12^{2}\\times6$. The calculation was done in the Taylar expansion formalism. We are able to calculate the first and second order derivatives of $\\langle\\bar{\\psi}\\psi\\rangle$ in both isoscalar and isovector channels. With the first derivatives being small, we find that the second derivatives are sizable close to the phase transition and the magnitude of $\\bar{\\psi}\\psi$ decreases under the influence of finite chemical potential in both channels.
Phase transition in finite density and temperature lattice QCD
Wang, Rui; Gong, Ming; Liu, Chuan; Liu, Yu-Bin; Liu, Zhao-Feng; Ma, Jian-Ping; Meng, Xiang-Fei; Zhang, Jian-Bo
2015-01-01
We investigate the behavior of the chiral condensate in lattice QCD at finite temperature and finite chemical potential. The study was done using two flavors of light quarks and with a series of $\\beta$ and $ma$ at the lattice size $24\\times12^{2}\\times6$. The calculation was done in the Taylar expansion formalism. We are able to calculate the first and second order derivatives of $\\langle\\bar{\\psi}\\psi\\rangle$ in both isoscalar and isovector channels. With the first derivatives being small, we find that the second derivatives are sizable close to the phase transition and the magnitude of $\\bar{\\psi}\\psi$ decreases under the influence of finite chemical potential in both channels.
Fourier expansions for a logarithmic fundamental solution of the polyharmonic equation
Howard S. Cohl
2012-02-08
In even-dimensional Euclidean space for integer powers of the Laplacian greater than or equal to the dimension divided by two, a fundamental solution for the polyharmonic equation has logarithmic behavior. We give two approaches for developing a Fourier expansion of this logarithmic fundamental solution. The first approach is algebraic and relies upon the construction of two-parameter polynomials. We describe some of the properties of these polynomials, and use them to derive the Fourier expansion for a logarithmic fundamental solution of the polyharmonic equation. The second approach depends on the computation of parameter derivatives of Fourier series for a power-law fundamental solution of the polyharmonic equation. The resulting Fourier series is given in terms of sums over associated Legendre functions of the first kind. We conclude by comparing the two approaches and giving the azimuthal Fourier series for a logarithmic fundamental solution of the polyharmonic equation in rotationally-invariant coordinate systems.
The effect of 150?m expandable graphite on char expansion of intumescent fire retardant coating
Ullah, Sami, E-mail: samichemist1@gmail.com; Shariff, A. M., E-mail: azmish@petronas.com.my, E-mail: azmibustam@petronas.com.my; Bustam, M. A., E-mail: azmish@petronas.com.my, E-mail: azmibustam@petronas.com.my [Research Center for Carbon Dioxide Capture, Department of Chemical Engineering, Universiti Techologi PETRONAS, Bandar Sri Iskandar, Tronoh 31750 Perak (Malaysia); Ahmad, Faiz, E-mail: faizahmadster@gmail.com [Department of Mechanical Engineering, Universiti Techologi PETRONAS, Bandar Sri Iskandar, Tronoh 31750 Perak (Malaysia)
2014-10-24
Intumescent is defined as the swelling of certain substances to insulate the underlying substrate when they are heated. In this research work the effect of 150?m expandable graphite (EG) was studied on char expansion, char morphology and char composition of intumescent coating formulations (ICFs). To study the expansion and thermal properties of the coating, nine different formulations were prepared. The coatings were tested at 500 °C for one hour and physically were found very stable and well bound with the steel substrate. The morphology was studied by Scanning Electron Microscopy (SEM). The char composition was analysed by X-ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. EG above than 10.8wt% expands the char abruptly with uniform network structure and affect the outer surface of the char.
Jet Sideways Expansion Effect on Estimating the Gamma-Ray Burst Efficiency
Xiaohong Zhao; J. M. Bai
2006-11-27
The high efficiency of converting kinetic energy into gamma-rays estimated with late-time afterglows in Gamma-Ray Burst (GRB) phenomenon challenges the commonly accepted internal-shock model. However, the efficiency is still highly uncertain because it is sensitive to many effects. In this Letter we study the sideways expansion effect of jets on estimating the efficiency. We find that this effect is considerable, reducing the efficiency by a factor of $\\sim0.5$ for typical parameters, when the afterglow data $\\sim 10$ hr after the GRB trigger are used to derive the kinetic energy. For a more dense circumburst medium, this effect is more significant. As samples, taking this effect into account, we specifically calculate the efficiency of two bursts whose parameters were well constrained. Almost the same results are derived. This suggests that the sideways expansion effect should be considered when the GRB efficiency is estimated with the late afterglow data.
Capricious Cables: Understanding the Key Concepts in Transmission Expansion Planning and Its Models
Donohoo, P.; Milligan, M.
2014-06-01
The extra-high-voltage transmission network is the bulk transport network of the electric power system. To understand how the future power system may react to planning decisions today, wide-area transmission models are increasingly used to aid decision makers and stakeholders. The goal of this work is to illuminate these models for a broader audience that may include policy makers or relative newcomers to the field of transmission planning. This paper explains the basic transmission expansion planning model formulation. It highlights six of the major simplifications made in transmission expansion planning models and the resulting need to contextualize model results using knowledge from other models and knowledge not captured in the modeling process.
Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint
Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.
2014-08-01
An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.
R. Yarmukhamedov; D. Baye
2011-02-08
Explicit relations between the effective-range expansion and the nuclear vertex constant or asymptotic normalization coefficient (ANC) for the virtual decay $B\\to A+a$ are derived for an arbitrary orbital momentum together with the corresponding location condition for the ($A+a$) bound-state energy. They are valid both for the charged case and for the neutral case. Combining these relations with the standard effective-range function up to order six makes it possible to reduce to two the number of free effective-range parameters if an ANC value is known from experiment. Values for the scattering length, effective range, and form parameter are determined in this way for the $^{16}$O+$p$, $\\alpha+t$ and $\\alpha+^3$He collisions in partial waves where a bound state exists by using available ANCs deduced from experiments. The resulting effective-range expansions for these collisions are valid up to energies larger 5 MeV.
The Magnus expansion and the in-medium similarity renormalization group
T. D. Morris; N. Parzuchowski; S. K. Bogner
2015-08-03
We present an improved variant of the in-medium similarity renormalization group (IM-SRG) based on the Magnus expansion. In the new formulation, one solves flow equations for the anti-hermitian operator that, upon exponentiation, yields the unitary transformation of the IM-SRG. The resulting flow equations can be solved using a first-order Euler method without any loss of accuracy, resulting in substantial memory savings and modest computational speedups. Since one obtains the unitary transformation directly, the transformation of additional operators beyond the Hamiltonian can be accomplished with little additional cost, in sharp contrast to the standard formulation of the IM-SRG. Ground state calculations of the homogeneous electron gas (HEG) and $^{16}$O nucleus are used as test beds to illustrate the efficacy of the Magnus expansion.
Van Dyken, J David; Mack, Keenan M L; Desai, Michael M
2013-01-01
Cooperation is ubiquitous in nature, but explaining its existence remains a central interdisciplinary challenge. Cooperation is most difficult to explain in the Prisoner's Dilemma game, where cooperators always lose in direct competition with defectors despite increasing mean fitness. Here we demonstrate how spatial population expansion, a widespread natural phenomenon, promotes the evolution of cooperation. We engineer an experimental Prisoner's Dilemma game in the budding yeast Saccharomyces cerevisiae to show that, despite losing to defectors in nonexpanding conditions, cooperators increase in frequency in spatially expanding populations. Fluorescently labeled colonies show genetic demixing of cooperators and defectors, followed by increase in cooperator frequency as cooperator sectors overtake neighboring defector sectors. Together with lattice-based spatial simulations, our results suggest that spatial population expansion drives the evolution of cooperation by (1) increasing positive genetic assortment ...
Power-law solutions and accelerated expansion in scalar-tensor theories
C. E. M. Batista; W. Zimdahl
2010-07-01
We find exact power-law solutions for scalar-tensor theories and clarify the conditions under which they can account for an accelerated expansion of the Universe. These solutions have the property that the signs of both the Hubble rate and the deceleration parameter in the Jordan frame may be different from the signs of their Einstein-frame counterparts. For special parameter combinations we identify these solutions with asymptotic attractors that have been obtained in the literature through dynamical-system analysis. We establish an effective general-relativistic description for which the geometrical equivalent of dark energy is associated with a time dependent equation of state. The present value of the latter is consistent with the observed cosmological ``constant". We demonstrate that this type of power-law solutions for accelerated expansion cannot be realized in f(R) theories.
Power-law solutions and accelerated expansion in scalar-tensor theories
Batista, C. E. M.; Zimdahl, W. [Universidade Federal do Espirito Santo, Departamento de Fisica, Av. Fernando Ferrari, 514, Campus de Goiabeiras, CEP 29075-910, Vitoria, Espirito Santo (Brazil)
2010-07-15
We find exact power-law solutions for scalar-tensor theories and clarify the conditions under which they can account for an accelerated expansion of the Universe. These solutions have the property that the signs of both the Hubble rate and the deceleration parameter in the Jordan frame may be different from the signs of their Einstein-frame counterparts. For special parameter combinations we identify these solutions with asymptotic attractors that have been obtained in the literature through dynamical-system analysis. We establish an effective general-relativistic description for which the geometrical equivalent of dark energy is associated with a time dependent equation of state. The present value of the latter is consistent with the observed cosmological 'constant'. We demonstrate that this type of power-law solution for accelerated expansion cannot be realized in f(R) theories.
Smith, G.D. )
1991-01-01
This paper reports on INCOLOY{sup 1} alloy 909 which is a low-expansion alloy used in critical seal and shaft applications within the gas turbine engine. However, because of its poor oxidation resistance at elevated temperatures, the maximum service temperature is limited. Since its coefficient of expansion is similar to that of partially stabilized zirconia for temperatures to 1200{degrees}F (649{degrees}C), it has been proposed to use this metal-ceramic combination for dimensionally critical, air-cooled jet engine components. This coating system should extend temperature limitations by reducing metal temperatures and providing oxidation resistance. The performance advantage offered by a thermal barrier coating has been investigated at temperatures up to 2000{degrees}F (1093{degrees}C) and the results are presented in this paper. Metal temperatures and heat flow rates of coated and bare specimens are compared for two air-cooling flow rates.
Mayer expansion of the Nekrasov pre potential: the subleading $\\epsilon_2$-order
Bourgine, Jean-Emile
2015-01-01
The Mayer cluster expansion technique is applied to the Nekrasov instanton partition function of $\\mathcal{N}=2$ $SU(N_c)$ super Yang-Mills. The subleading small $\\epsilon_2$-correction to the Nekrasov-Shatashvili limiting value of the prepotential is determined by a detailed analysis of all the one-loop diagrams. Indeed, several types of contributions can be distinguished according to their origin: long range interaction or potential expansion, clusters self-energy, internal structure, one-loop cyclic diagrams, etc.. The field theory result derived more efficiently in [1], under some minor technical assumptions, receives here definite confirmation thanks to several remarkable cancellations: in this way, we may infer the validity of these assumptions for further computations in the field theoretical approach.
Mayer expansion of the Nekrasov pre potential: the subleading $?_2$-order
Jean-Emile Bourgine; Davide Fioravanti
2015-11-09
The Mayer cluster expansion technique is applied to the Nekrasov instanton partition function of $\\mathcal{N}=2$ $SU(N_c)$ super Yang-Mills. The subleading small $\\epsilon_2$-correction to the Nekrasov-Shatashvili limiting value of the prepotential is determined by a detailed analysis of all the one-loop diagrams. Indeed, several types of contributions can be distinguished according to their origin: long range interaction or potential expansion, clusters self-energy, internal structure, one-loop cyclic diagrams, etc.. The field theory result derived more efficiently in [1], under some minor technical assumptions, receives here definite confirmation thanks to several remarkable cancellations: in this way, we may infer the validity of these assumptions for further computations in the field theoretical approach.
Transmission Expansion in Argentina 5: The Regional Electricity Forum of Buenos Aires Province
Littlechild, Stephen C.; Ponzano, Eduardo A.
stream_source_info 0762&EPRG0729.pdf.txt stream_content_type text/plain stream_size 138347 Content-Encoding UTF-8 stream_name 0762&EPRG0729.pdf.txt Content-Type text/plain; charset=UTF-8 Transmission expansion in Argentina 5... consumers, but this does not require the regulator to lead or monitor the detail of the process. Key words: Argentina, electricity, transmission, regulation. JEL classification: L33, L51, L94, L98...
Kosar, D.; Swami, M.; Shirey, D.; Raustad, R.; Basarkar, M.
2006-01-01
performance spreadsheet models for single path, mixed air packaged systems compare a conventional “off the shelf” direct expansion (DX) cooling system and its performance to systems that augment the DX coil with enhanced dehumidification components... spreadsheet models combine available algorithms from the EnergyPlus TM simulation program for DX coils and heat exchangers with newly developed algorithms for desiccant dehumidifiers. All the models and their algorithms are applied in EnergyPlus TM...
The analytic solution for the power series expansion of Heun function
Choun, Yoon Seok, E-mail: ychoun@gmail.com
2013-11-15
The Heun function generalizes all well-known special functions such as Spheroidal Wave, Lame, Mathieu, and hypergeometric {sub 2}F{sub 1}, {sub 1}F{sub 1} and {sub 0}F{sub 1} functions. Heun functions are applicable to diverse areas such as theory of black holes, lattice systems in statistical mechanics, solution of the Schrödinger equation of quantum mechanics, and addition of three quantum spins. In this paper I will apply three term recurrence formula (Y.S. Choun, (arXiv:1303.0806), 2013) to the power series expansion in closed forms of Heun function (infinite series and polynomial) including all higher terms of A{sub n}’s. Section 3 contains my analysis on applying the power series expansions of Heun function to a recent paper (R.S. Maier, Math. Comp. 33 (2007) 811–843). Due to space restriction final equations for the 192 Heun functions are not included in the paper, but feel free to contact me for the final solutions. Section 4 contains two additional examples using the power series expansions of Heun function. This paper is 3rd out of 10 in series “Special functions and three term recurrence formula (3TRF)”. See Section 5 for all the papers in the series. The previous paper in series deals with three term recurrence formula (3TRF). The next paper in the series describes the integral forms of Heun function and its asymptotic behaviors analytically. -- Highlights: •Power series expansion for infinite series of Heun function using 3 term rec. form. •Power series for polynomial which makes B{sub n} term terminated of Heun function. •Applicable to areas such as the Teukolsky equation in Kerr–Newman–de Sitter geometries.
Physics 112 Mathematical Notes Winter 2000 1. Power Series Expansion of the FermiDirac Integral
California at Santa Cruz, University of
Physics 112 Mathematical Notes Winter 2000 1. Power Series Expansion of the FermiDirac Integral The FermiDirac integral is defined as: f n (z) # 1 #(n) # # 0 x n-1 dx z -1 e x + 1 , where x # #/kT and z e -(m+1)x x n-1 dx . Using the well known integral: # # 0 e -Ax x n-1 dx = #(n) A n , and changing
Physics 112 Mathematical Notes Winter 2000 1. Power Series Expansion of the Fermi-Dirac Integral
California at Santa Cruz, University of
Physics 112 Mathematical Notes Winter 2000 1. Power Series Expansion of the Fermi-Dirac Integral The Fermi-Dirac integral is defined as: fn(z) 1 (n) 0 xn-1 dx z-1ex + 1 , where x /kT and z eµ/kT . We (ze-x )m = z (n) m=0 (-1)m zm 0 e-(m+1)x xn-1 dx . Using the well known integral: 0 e-Ax xn-1 dx
Xiang Zhou; Qingmin Zhang; Qian Liu; Zhenyu Zhang; Yayun Ding; Li Zhou; Jun Cao
2015-04-04
We report the measurements of the densities of linear alkylbenzene at three temperatures over 4 to 23 Celsius degree with pressures up to 10 MPa. The measurements have been analysed to yield the isobaric thermal expansion coefficients and, so far for the first time, isothermal compressibilities of linear alkylbenzene. Relevance of results for current generation (i.e. Daya Bay) and next generation (i.e. JUNO) large liquid scintillator neutrino detectors are discussed.
White food-type sorghum in direct-expansion extrusion applications
Acosta Sanchez, David
2004-09-30
) December 2003 Major Subject: Food Science and Technology iii ABSTRACT White Food-Type Sorghum Performance in Direct-Expansion Extrusion Applications. (December 2003) David Acosta Sanchez, B.S., Instituto Tecnologico y de Estudios Superiores de... first grinding, the final grinding and total yield (considering decortication losses) ??????. 89 XXXI Particle size distribution (% weight) of whole and decorticated sorghums, corn and sorghum meals ??...??...??...??...??...?. 90 xii...
Retardation of Particle Evaporation from Excited Nuclear Systems Due to Thermal Expansion
J. Tõke; L. Pie?kowski; M. Houck; W. U. Schröder; L. G. Sobotka
2005-07-26
Particle evaporation rates from excited nuclear systems at equilibrium matter density are studied within the Harmonic-Interaction Fermi Gas Model (HIFGM) combined with Weisskopf's detailed balance approach. It is found that thermal expansion of a hot nucleus, as described quantitatively by HIFGM, leads to a significant retardation of particle emission, greatly extending the validity of Weisskopf's approach. The decay of such highly excited nuclei is strongly influenced by surface instabilities.
C. Providencia; D. P. Menezes; L. Brito; Ph. Chomaz
2007-04-26
In the present work we take the non relativistic limit of relativistic models and compare the obtained functionals with the usual Skyrme parametrization. Relativistic models with both constant couplings and with density dependent couplings are considered. While some models present very good results already at the lowest order in the density, models with non-linear terms only reproduce the energy functional if higher order terms are taken into account in the expansion.
Sergei A. Voloshin
2004-10-05
At the very first stage of an ultra-relativistic nucleus-nucleus collision new particles are produced in individual nucleon-nucleon collisions. In the transverse plane, all particles from a single $NN$ collision are initially located at the same position. The subsequent transverse radial expansion of the system creates strong position-momentum correlations and leads to characteristic rapidity, transverse momentum, and azimuthal correlations among the produced particles.
History-dependent thermal expansion in NbO{sub 2}F
Wilkinson, Angus P.; Josefsberg, Ryan E.; Gallington, Leighanne C.; Morelock, Cody R.; Monaco, Christopher M.
2014-05-01
Materials with cubic ReO{sub 3}-type structures are of interest for their low or negative thermal expansion characteristics. TaO{sub 2}F is known to display almost zero thermal expansion over a wide temperature range. On heating NbO{sub 2}F, its volume coefficient of thermal expansion decreases from ?+45 ppm K{sup ?1} at 100 K to almost zero at 400 K. NbO{sub 2}F is cubic between 100 and 500 K. Samples of “NbO{sub 2}F” prepared by the digestion of Nb{sub 2}O{sub 5} in aqueous HF followed by mild drying contain hydroxyl defects and metal vacancies. On heating, they can undergo irreversible chemical changes while maintaining a cubic ReO{sub 3}-type structure. The possibility of hydroxyl defect incorporation should be considered when preparing oxyfluorides for evaluation as battery materials. - Graphical abstract: “NbO{sub 2}F” prepared by the digestion of Nb{sub 2}O{sub 5} in HF contains cation vacancies and hydroxyl groups. It undergoes irreversible changes on heating to low temperatures, unlike NbO{sub 2}F prepared by the solid state reaction of Nb{sub 2}O{sub 5} and NbF{sub 5}. - Highlights: • The digestion of Nb{sub 2}O{sub 5} in aqueous HF followed by mild drying does not produce NbO{sub 2}F. • The ReO{sub 3}-type product from the HF digestion of Nb{sub 2}O{sub 5} contains metal vacancies and hydroxyl. • The thermal expansion coefficient of NbO{sub 2}F decreases on heating and approaches zero at ?400 K.
Xiao-Jing Lu; Xi Chen; J. Alonso; J. G. Muga
2014-01-07
Combining invariant-based inverse engineering, perturbation theory, and Optimal Control Theory, we design fast, transitionless expansions of cold neutral atoms or ions in Gaussian anharmonic traps. Bounding the possible trap frequencies and using a "bang-singular-bang" control we find fast processes for a continuum of durations up to a minimum time that corresponds to a purely bang-bang (stepwise frequency constant) control.
An asymptotic expansion of the solution of a matrix difference equation of general form
Sgibnev, M S
2014-12-31
An asymptotic expansion of the solution of an inhomogeneous matrix difference equation of general form is obtained. The case when there is no bound on the differences of the arguments is considered. The effect of the roots of the characteristic equation is taken into account. An integral estimate with a submultiplicative weight is established for the remainder in terms of the submultiplicative moment of the free term of the equation. Bibliography: 14 titles.
The curious case of large-N expansions on a (pseudo)sphere
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Polyakov, Alexander M.; Saleem, Zain H.; Stokes, James
2015-02-03
We elucidate the large-N dynamics of one-dimensional sigma models with spherical and hyperbolic target spaces and find a duality between the Lagrange multiplier and the angular momentum. In the hyperbolic model we propose a new class of operators based on the irreducible representations of hyperbolic space. We also uncover unexpected zero modes which lead to the double scaling of the 1/N expansion and explore these modes using Gelfand-Dikiy equations.
EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington
Broader source: Energy.gov [DOE]
This EA evaluate the potential environmental impacts of expansion or continued use of existing sand and gravel pits located on the Hanford Site (Pits F, H, N, 6, 9, 18, 21, 23, 24, 30, and 34) and establishing one new borrow area source in the 100 Area for ongoing construction activities and fill material following remediation activities. The scope of this EA does not include borrow sources for silt-loam material.
The curious case of large-N expansions on a (pseudo)sphere
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Polyakov, Alexander M. [Princeton Univ., NJ (United States); Saleem, Zain H. [Univ. of Pennsylvania, Philadelphia, PA (United States)] (ORCID:0000000281822764); Stokes, James [Univ. of Pennsylvania, Philadelphia, PA (United States)
2015-04-01
We elucidate the large-N dynamics of one-dimensional sigma models with spherical and hyperbolic target spaces and find a duality between the Lagrange multiplier and the angular momentum. In the hyperbolic model we propose a new class of operators based on the irreducible representations of hyperbolic space. We also uncover unexpected zero modes which lead to the double scaling of the 1/N expansion and explore these modes using Gelfand-Dikiy equations.
Xifeng Su; Lei Zhang; Rafael de la Llave
2015-03-11
We consider 1-D quasi-periodic Frenkel-Kontorova models (describing, for example, deposition of materials in a quasi-periodic substratum). We study the existence of equilibria whose frequency (i.e. the inverse of the density of deposited material) is resonant with the frequencies of the substratum. We study perturbation theory for small potential. We show that there are perturbative expansions to all orders for the quasi-periodic equilibria with resonant frequencies. Under very general conditions, we show that there are at least two such perturbative expansions for equilibria for small values of the parameter. We also develop a dynamical interpretation of the equilibria in these quasi-periodic media. We show that the dynamical system has very unusual properties. Using these, we obtain results on the Lyapunov exponents of the resonant quasi-periodic solutions. In a companion paper, we develop a rather unusual KAM theory (requiring new considerations) which establishes that the perturbative expansions converge when the perturbing potentials satisfy a one-dimensional constraint.
Negative thermal expansion and anomalies of heat capacity of LuB 50 at low temperatures
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; Mitroshenkov, N. V.; Kuznetsov, S. V.; Bud'ko, S. L.
2015-07-20
Heat capacity and thermal expansion of LuB50 boride were experimentally studied in the 2–300 K temperature range. The data reveal an anomalous contribution to the heat capacity at low temperatures. The value of this contribution is proportional to the first degree of temperature. It was identified that this anomaly in heat capacity is caused by the effect of disorder in the LuB50crystalline structure and it can be described in the soft atomic potential model (SAP). The parameters of the approximation were determined. The temperature dependence of LuB50 heat capacity in the whole temperature range was approximated by the sum ofmore »SAP contribution, Debye and two Einstein components. The parameters of SAP contribution for LuB50 were compared to the corresponding values for LuB66, which was studied earlier. Negative thermal expansion at low temperatures was experimentally observed for LuB50. The analysis of the experimental temperature dependence for the Gruneisen parameter of LuB50 suggested that the low-frequency oscillations, described in SAP mode, are responsible for the negative thermal expansion. Thus, the glasslike character of the behavior of LuB50 thermal characteristics at low temperatures was confirmed.« less
High-expansion foam for LNG vapor mitigation. Topical report, September 1987-December 1989
Atallah, S.; Shah, J.N.; Peterlinz, M.E.
1990-05-01
One of the purposes of these high expansion foam systems is to reduce the extent of the hazardous vapor cloud generated during an accidental LNG release. Should the LNG ignite, these systems serve the additional function of controlling the LNG fire and minimizing its radiation to the surroundings. Foam generators have been installed along the tops of dike walls surrounding some LNG storage tanks, and around other fenced containment areas where LNG may be accidentally released, such as LNG pump pits and pipe rack trenches. To date there are no technically justifiable guidelines for the design and installation of these systems. Furthermore, there are no models that may be used describe the vapor source so as to be able to predict the reduction in the hazardous vapor cloud zone when high expansion foam is applied to an LNG spill. Information is essential not only for the optimal design of high expansion foam systems, but also for comparing the cost effectiveness of alternative LNG vapor mitigation measures.
ISW effect as probe of features in the expansion history of the Universe
Das, Santanu; Souradeep, Tarun [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India); Shafieloo, Arman, E-mail: santanud@iucaa.ernet.in, E-mail: arman@apctp.org, E-mail: tarun@iucaa.ernet.in [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of)
2013-10-01
In this paper, using and implementing a new line of sight CMB code, called CMBAns [1], that allows us to modify H(z) for any given feature at any redshift we study the effect of changes in the expansion history of the Universe on the CMB power spectrum. Motivated by the detailed analytical calculations of the effects of the changes in H(z) on ISW plateau and CMB low multipoles, we study two phenomenological parametric form of the expansion history using WMAP data and through MCMC analysis. Our MCMC analysis shows that the standard ?CDM cosmological model is consistent with the CMB data allowing the expansion history of the Universe vary around this model at different redshifts. However, our analysis also shows that a decaying dark energy model proposed in [2] has in fact a marginally better fit than the standard cosmological constant model to CMB data. Concordance of our studies here with the previous analysis showing that Baryon Acoustic Oscillation (BAO) and supernovae data (SN Ia) also prefer mildly this decaying dark energy model to ?CDM, makes this finding interesting and worth further investigation.
Effective-range expansion for two coupled channels and properties of bound states
Blokhintsev, L. D.
2011-07-15
The S matrix and the scattering-amplitude matrix (F matrix) are considered for the case of two coupled elastic-scattering channels differing by the values of the orbital angular momentum (l{sub 1} and l{sub 2} = l{sub 1} + 2). The matrix elements of the S and F matrices in the absence of Coulomb interaction are expressed in terms of the matrix elements of the matrix K{sup -1} inverse to the reaction K matrix. The elements of the K{sup -1} matrix are written in the form of expansions that are generalizations of the single-channel effective-range expansion. If there is a bound state in the system of colliding particles, then an analytic continuation of these expansions to the region of negative energies makes it possible to obtain both the position of the pole corresponding to this bound state and the residues of scattering amplitudes at this pole, the respective vertex constants and asymptotic normalization coefficients being expressed in terms of these residues. By way of example, the developed formalism is applied to describing triplet neutron-proton scattering.
Omar, M.S., E-mail: dr_m_s_omar@yahoo.com [Department of Physics, College of Science, University of Salahaddin-Erbil, Arbil, Kurdistan (Iraq)
2012-11-15
Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ? A model for a size dependent mean bonding length is derived. ? The size dependent melting point of nanoparticles is modified. ? The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 ?{sup 3} for bulk to 57 ?{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup ?6} K{sup ?1} for a bulk crystal down to a minimum value of 0.1 × 10{sup ?6} K{sup ?1} for a 6 nm diameter nanoparticle.
Phase-mixing of Langmuir oscillations in cold electron-positron-ion plasmas
Maity, Chandan
2014-07-15
Space-time evolution of Langmuir oscillations in a cold homogeneous electron-positron-ion plasma has been analyzed by employing a straightforward perturbation expansion method, showing phase-mixing and, thus, wave-breaking of excited oscillations at arbitrary amplitudes. Within an assumption of infinitely massive ions, an approximate phase-mixing time is found to scale as ?{sub pe}t{sub mix}?[(6/?{sup 2})((2??){sup 5/2}/(1??))]{sup 1/3}, where “?” and “?” (= n{sub 0i}/n{sub 0e}) are the amplitude of perturbation and the ratio of equilibrium ion density to equilibrium electron density, respectively, and ?{sub pe}??(4?n{sub 0e}e{sup 2}/m) is the electron plasma frequency. The results presented on phase-mixing of Langmuir modes in multispecies plasmas are expected to be relevant to laboratory and astrophysical environments.
Feister, S. Orban, C.; Nees, J. A.; Morrison, J. T.; Frische, K. D.; Chowdhury, E. A.; Roquemore, W. M.
2014-11-15
Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiers synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120° phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre-pulse measurements with instantaneous plasma profiles and for enabling realistic Particle-in-Cell simulations of the ultra-intense laser-matter interaction.
Characterization of Instrumental Phase Stability
D. Y. Kubo; T. R. Hunter; R. D. Christensen; P. I. Yamaguchi
2007-04-17
Atmospheric water vapor causes significant undesired phase fluctuations for the Submillimeter Array (SMA) interferometer, particularly in its highest frequency observing band of 690 GHz. One proposed solution to this atmospheric effect is to observe simultaneously at two separate frequency bands of 230 and 690 GHz. Although the phase fluctuations have a smaller magnitude at the lower frequency, they can be measured more accurately and on shorter timescales due to the greater sensitivity of the array to celestial point source calibrators at this frequency. In theory, we can measure the atmospheric phase fluctuations in the 230 GHz band, scale them appropriately with frequency, and apply them to the data in 690 band during the post-observation calibration process. The ultimate limit to this atmospheric phase calibration scheme will be set by the instrumental phase stability of the IF and LO systems. We describe the methodology and initial results of the phase stability characterization of the IF and LO systems.
Digitally controlled distributed phase shifter
Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.
1993-08-17
A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.
Bleher, Pavel
2012-01-01
," International Mathematics Research Notices, rns126, 57 pages. doi:10.1093/imrn/rns126 Topological Expansion
Phase Transitions in the Early Universe
Wainwright, Carroll Livingston
2013-01-01
rapid change in the minimum caused by either the disappearance of the phase or a second- order phase transition.
Method for aqueous phase reactions
Elliott, Douglas C. (Richland, WA); Hart, Todd R. (Kennewick, WA)
2000-01-01
A method for converting liquid organic material in a mixture into a product utilizing a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.
Phase Retrieval: Hubble and the
Masci, Frank
(Gerchberg-Saxton/Misell/Fienup) Gradient search (steepest descent, conjugate gradient, . . .) Damped least squares (Newton-Raphson) Neural network Linear programming Prescription retrieval Phase diversity etc
Marcus S. Cohen
2009-07-10
We start with the spinfluid: a nearly-homogeneous, 8-spinor medium, with small local eddies and twists. As it expends, these seed a raft of intersecting codimension-J singularities: a spinfoam. As this expands, the energy trapped in each (4-J) brane varies as the Jth power of the scale factor. Summing on J=(0,1,2,3,4) creates a quartic dilation potential with either 1 or 2 minima: preferred length and mass scales. The spinfoam expands forever with 1 minimum, but recontracts with 2. To quantize it, we take a canonical ensemble of spinfoams, immersed in a heat bath of vacuum spinors, whose microstates vastly outnumber the matter states. It's evolution is governed by a free energy which admits phase transitions at two critical scale, separated by a triple point.Their critical droplets correspond to the varieties of leptons and hadrons.We identify the first as inflation, the second as baryogenesis; and the heat bath of vacuum spinors as dark energy.
Mills, Andrew D
2011-01-01
Colorado: National Renewable Energy Laboratory. NREL/SR-Decisions in the Western Renewable Energy Zone Initiative.Finn, J. 2009. Western Renewable Energy Zones, Phase 1: QRA
Mills, Andrew
2010-01-01
Colorado: National Renewable Energy Laboratory. http://Colorado: National Renewable Energy Laboratory. NREL/SR-550-Finn, J. 2009. Western Renewable Energy Zones, Phase 1: QRA
O'Neal, D. L.; Ramsey, C. J.; Farzad, M.
1989-01-01
Recent studies have been conducted at Texas A & M University to quantify the effect of over/undercharging on the performance of a residential central air conditioner with two different expansion devices: capillary tubes ...
Carlos R. Handy; Daniel Vrinceanu; Carl Marth; Harold A. Brooks
2014-11-19
Many quantum systems admit an explicit analytic Fourier space expansion, besides the usual analytic Schrodinger configuration space representation. We argue that the use of weighted orthonormal polynomial expansions for the physical states (generated through the power moments) can define both an $L^2$ convergent, non-orthogonal, basis expansion with sufficient point-wise convergent behaviors enabling the direct coupling of the global (power moments) and local (Taylor series) expansions in configuration space. Our formulation is elaborated within the orthogonal polynomial projection quantization (OPPQ) configuration space representation previously developed by Handy and Vrinceanu. The quantization approach pursued here defines an alternative strategy emphasizing the relevance OPPQ to the reconstruction of the local structure of the physical states.
Santana Rodriguez, Gabriel Enrique
2003-01-01
Pure gases such as methane, carbon dioxide and steam were used to make comparisons between Leiden and Berlin virial expansions for the calculation of the compressibility factor, fugacity coefficient and enthalpy residual. ...
Salvania, Abigail C
2015-01-01
In this study, we looked at the effect of promotion in the speed and width of spread of information on the Internet by tracking the diffusion of news articles over a social network. Speed of spread means the number of readers that the news has reached in a given time, while width of spread means how far the story has travelled from the news originator within the social network. After analyzing six stories in a 30-hour time span, we found out that the lifetime of a story's popularity among the members of the social network has three phases: Expansion, Front-page, and Saturation. Expansion phase starts when a story is published and the article spreads from a source node to nodes within a connected component of the social network. Front-page phase happens when a news aggregator promotes the story in its front page resulting to the story's faster rate of spread among the connected nodes while at the same time spreading the article to nodes outside the original connected component of the social network. Saturation...
Three phase downhole separator process
Cognata, Louis John (Baytown, TX)
2008-06-24
Three Phase Downhole Separator Process (TPDSP) is a process which results in the separation of all three phases, (1) oil, (2) gas, and (3) water, at the downhole location in the well bore, water disposal injection downhole, and oil and gas production uphole.
Hanold, R.J.
1983-12-01
The two-phase flow program is directed at understanding the hydrodynamics of two-phase flows. The two-phase flow regime is characterized by a series of flow patterns that are designated as bubble, slug, churn, and annular flow. Churn flow has received very little scientific attention. This lack of attention cannot be justified because calculations predict that the churn flow pattern will exist over a substantial portion of the two-phase flow zone in producing geothermal wells. The University of Houston is experimentally investigating the dynamics of churn flow and is measuring the holdup over the full range of flow space for which churn flow exists. These experiments are being conducted in an air/water vertical two-phase flow loop. Brown University has constructed and is operating a unique two-phase flow research facility specifically designed to address flow problems of relevance to the geothermal industry. An important feature of the facility is that it is dedicated to two-phase flow of a single substance (including evaporation and condensation) as opposed to the case of a two-component two-phase flow. This facility can be operated with horizontal or vertical test sections of constant diameter or with step changes in diameter to simulate a geothermal well profile.
Yang, W.; Wu, H.; Cao, L.
2012-07-01
More and more MOX fuels are used in all over the world in the past several decades. Compared with UO{sub 2} fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for {sup 240}Pu and {sup 242}Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)
NONUNIFORM EXPANSION OF THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3
Borkowski, Kazimierz J.; Reynolds, Stephen P. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Green, David A. [Cavendish Laboratory, 19 J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Hwang, Una [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Petre, Robert [NASA/GSFC, Code 660, Greenbelt, MD 20771 (United States); Krishnamurthy, Kalyani [Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 (United States); Willett, Rebecca, E-mail: kborkow@unity.ncsu.edu [Department of Electrical and Computing Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States)
2014-08-01
We report measurements of the X-ray expansion of the youngest Galactic supernova remnant, G1.9+0.3, using Chandra observations in 2007, 2009, and 2011. The measured rates strongly deviate from uniform expansion, decreasing radially by about 60% along the X-ray bright SE-NW axis from 0.84% ± 0.06% yr{sup –1} to 0.52% ± 0.03% yr{sup –1}. This corresponds to undecelerated ages of 120-190 yr, confirming the young age of G1.9+0.3 and implying a significant deceleration of the blast wave. The synchrotron-dominated X-ray emission brightens at a rate of 1.9% ± 0.4% yr{sup –1}. We identify bright outer and inner rims with the blast wave and reverse shock, respectively. Sharp density gradients in either the ejecta or ambient medium are required to produce the sudden deceleration of the reverse shock or the blast wave implied by the large spread in expansion ages. The blast wave could have been decelerated recently by an encounter with a modest density discontinuity in the ambient medium, such as may be found at a wind termination shock, requiring strong mass loss in the progenitor. Alternatively, the reverse shock might have encountered an order-of-magnitude density discontinuity within the ejecta, such as may be found in pulsating delayed-detonation Type Ia models. We demonstrate that the blast wave is much more decelerated than the reverse shock in these models for remnants at ages similar to G1.9+0.3. Similar effects may also be produced by dense shells possibly associated with high-velocity features in Type Ia spectra. Accounting for the asymmetry of G1.9+0.3 will require more realistic three-dimensional Type Ia models.
Filtrations in Dyson-Schwinger equations: next-to^{j} -leading log expansions systematically
Olaf Krueger; Dirk Kreimer
2015-02-11
Dyson-Schwinger equations determine the Green functions $G^r(\\alpha,L)$ in quantum field theory. Their solutions are triangular series in a coupling constant $\\alpha$ and an external scale parameter $L$ for a chosen amplitude $r$, with the order in $L$ bounded by the order in the coupling. Perturbation theory calculates the first few orders in $\\alpha$. On the other hand, Dyson--Schwinger equations determine next-to$^{\\{\\mathrm{j}\\}}$-leading log expansions, $G^r(\\alpha,L) = 1 + \\sum_{j=0}^\\infty \\sum_{\\mathcal{M}} p_j^{\\mathcal{M}}\\alpha^j \\mathcal{M}(u)$. $\\sum_{\\mathcal{M}}$ sums a finite number of functions $\\mathcal{M}$ in $u = \\alpha L/2$. The leading logs come from the trivial representation $\\mathcal{M}(u) = \\begin{bsmallmatrix}\\bullet\\end{bsmallmatrix}(u)$ at $j=0$ with $p_0^{\\begin{bsmallmatrix}\\bullet\\end{bsmallmatrix}} = 1$. All non-leading logs are organized by the suppression in powers $\\alpha^j$. We describe an algebraic method to derive all next-to$^{\\{\\mathrm{j}\\}}$-leading log terms from the knowledge of the first $(j+1)$ terms in perturbation theory and their filtrations. This implies the calculation of the functions $\\mathcal{M}(u)$ and periods $p_j^\\mathcal{M}$. In the first part of our paper, we investigate the structure of Dyson-Schwinger equations and develop a method to filter their solutions. Applying renormalized Feynman rules maps each filtered term to a certain power of $\\alpha$ and $L$ in the log-expansion. Based on this, the second part derives the next-to$^{\\{\\mathrm{j}\\}}$-leading log expansions. Our method is general. Here, we exemplify it using the examples of the propagator in Yukawa theory and the photon self-energy in quantum electrodynamics. The reader may apply our method to any (set of) Dyson-Schwinger equation(s) appearing in renormalizable quantum field theories.
Partial decay widths of negative parity baryons in the 1/N{sub c} expansion
Gonzalez de Urreta, E. J.; Scoccola, N. N.; Jayalath, C. P.; Goity, J. L.
2013-03-25
The partial decay widths of lowest lying negative parity baryons belonging to the 70-plet of SU(6) are analyzed in the framework of the 1/N{sub c} expansion. The channels considered are those with single pseudoscalar meson emission. The analysis is carried out to sub-leading order in 1/N{sub c} and to first order in SU(3) symmetry breaking. Conclusions about the magnitude of SU(3) breaking effects along with predictions for some unknown or poorly determined partial decay widths of known resonances are given.
Negative parity baryon decays in the 1/N{sub c} expansion
Jayalath, C.; Goity, J. L.; Gonzalez de Urreta, E.; Scoccola, N. N.
2011-10-01
The partial decay widths of lowest lying negative parity baryons belonging to the 70-plet of SU(6) are analyzed in the framework of the 1/N{sub c} expansion. The channels considered are those with single pseudoscalar meson emission. The analysis is carried out to sub-leading order in 1/N{sub c} and to first order in SU(3) symmetry breaking. Conclusions about the magnitude of SU(3) breaking effects along with predictions for some unknown or poorly determined partial decay widths of known resonances are obtained.
Partial Decay Widths of Negative Parity Baryons in the 1/N{sub c} Expansion
Gonzalez de Urreta, Emiliano; Scoccola, Norberto; Jayalath, Chandala; Goity, Jose
2013-04-01
The partial decay widths of lowest lying negative parity baryons belonging to the 70-plet of SU(6) are analyzed in the framework of the 1/N{sub c} expansion. The channels considered are those with single pseudoscalar meson emission. The analysis is carried out to sub-leading order in 1/N{sub c} and to first order in SU(3) symmetry breaking. Conclusions about the magnitude of SU(3) breaking effects along with predictions for some unknown or poorly determined partial decay widths of known resonances are given.
Aspects of excited baryon phenomenology in the 1/N{sub c} expansion of QCD
Gonzalez de Urreta, E. J.; Scoccola, Norberto N.
2010-11-12
We report on the application of the 1/N{sub c} expansion of QCD to the description of the properties of non-strange excited baryons belonging to the [70, 1{sup -}]-plet. In particular, we present the results of an improved determination of the corresponding mixing angles obtained by performing a simultaneous fit of masses and strong decay widths. We find {theta}{sub 1} 0.47{+-}0.06 and {theta}{sub 3} = 2.74{+-}0.07. These values are within the range of those determined in previous non-global analyses but have smaller uncertainties.
Carmelo, J. M. P.; Penc, K.
2006-03-15
We show that the prefactors of all terms of the one-dimensional (1D) Hubbard model correlation-function asymptotic expansions have a universal form, as the corresponding critical exponents. In addition to calculating such prefactors, our study clarifies the relation of the low-energy Tomonaga-Luttinger-liquid behavior to the scattering mechanisms which control the spectral properties of the model at all energy scales. Our results are of general nature for many integrable interacting models and provide a broader understanding of the unusual properties of quasi-1D nanostructures, organic conductors, and optical lattices of fermionic atoms.
Improved Connected-Component Expansion Strategies for Sampling-Based Motion Planning
Burgos, Juan Luis
2013-04-13
problems would allow us to further analyze the benefits expansion method biases and node selection methods. 29 REFERENCES [1] A. P. Singh, J.-C. Latombe, and D. L. Brutlag, “A motion planning approach to flexible ligand binding,” in Int. Conf.... on Intelligent Systems for Molecular Biology (ISMB), pp. 252–261, 1999. [2] J.-M. Lien, O. B. Bayazit, R.-T. Sowell, S. Rodriguez, and N. M. Amato, “Shepherding be- haviors,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 4159–4164, April 2004. [3] J. H. Reif...
Isentropic expansion of copper plasma in Mbar pressure range at “Luch” laser facility
Bel'kov, S. A.; Derkach, V. N.; Garanin, S. G.; Mitrofanov, E. I.; Voronich, I. N.; Fortov, V. E.; Levashov, P. R.; Minakov, D. V.
2014-01-21
We present experimental results on thermodynamic properties of dense copper plasma in Mbar pressure range. The laser facility “Luch” with laser intensity 10{sup 14}?W/cm{sup 2} is used to compress copper up to ?8?Mbar by a strong shock wave; subsequent expansion of copper plasma into Al, Ti, Sn allows us to obtain release isentropes of copper by the impedance–matching method. A theoretical analysis and quantum simulations show that in our experiments strongly coupled quantum plasma is generated.
Formation of surface nano-structures by plasma expansion induced by highly charged ions
Moslem, W. M.; El-Said, A. S.
2012-12-15
Slow highly charged ions (HCIs) create surface nano-structures (nano-hillocks) on the quartz surface. The formation of hillocks was only possible by surpassing a potential energy threshold. By using the plasma expansion approach with suitable hydrodynamic equations, the creation mechanism of the nano-hillocks induced by HCIs is explained. Numerical analysis reveal that within the nanoscale created plasma region, the increase of the temperature causes an increase of the self-similar solution validity domain, and consequently the surface nano-hillocks become taller. Furthermore, the presence of the negative (positive) nano-dust particles would lead to increase (decrease) the nano-hillocks height.
Transient particle energies in shortcuts to adiabatic expansions of harmonic traps
Yang-Yang Cui; Xi Chen; J. G. Muga
2015-05-12
The expansion of a harmonic potential that holds a quantum particle may be realized without any final particle excitation but much faster than adiabatically via "shortcuts to adiabaticity" (STA). While ideally the process time can be reduced to zero, practical limitations and constraints impose minimal finite times for the externally controlled time-dependent frequency protocols. We examine the role of different time-averaged energies (total, kinetic, potential, non-adiabatic) and of the instantaneous power in characterizing or selecting different protocols.Specifically, we prove a virial theorem for STA processes, set minimal energies for specific times or viceversa, and discuss their realizability by means of Dirac impulses or otherwise.
Fast transitionless expansions of cold atoms in optical Gaussian beam traps
E. Torrontegui; Xi Chen; M. Modugno; A. Ruschhaupt; D. Guéry-Odelin; J. G. Muga
2011-10-31
We study fast expansions of cold atoms in a three-dimensional Gaussian-beam optical trap. Three different methods to avoid final motional excitation are compared: inverse engineering using Lewis-Riesenfeld invariants, which provides the best overall performance, a bang-bang approach, and a fast adiabatic approach. We analyze the excitation effect of anharmonic terms, radial-longitudinal coupling, and radial-frequency mismatch. In the inverse engineering approach these perturbations can be suppressed or mitigated by increasing the laser beam waist.
Nuclear electric dipole moment of light nuclei in the gaussian expansion method
Yamanaka, Nodoka
2015-01-01
The nuclear electric dipole moment is a very sensitive probe of CP violation beyond the standard model, and for light nuclei, it can be evaluated accurately using few-body calculational methods. In this talk, we present the result of the calculation of the electric dipole moment of the deuteron, $^3$He, $^3$H, $^6$Li, and $^9$Be in the Gaussian expansion method with the realistic nuclear force, and assuming the one-meson exchange model for the P, CP-odd nuclear force. We then give future prospects for models beyond standard model such as the supersymmetry.
Boltzmann expansion in a radiofrequency conical helicon thruster operating in xenon and argon
Charles, C.; Boswell, R. [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)] [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Takahashi, K. [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia) [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Department of Electrical Engineering, Tohoku University, Sendai 980-9579 (Japan)
2013-06-03
A low pressure ({approx}0.5 mTorr in xenon and {approx}1 mTorr in argon) Boltzmann expansion is experimentally observed on axis within a magnetized (60 to 180 G) radiofrequency (13.56 MHz) conical helicon thruster for input powers up to 900 W using plasma parameters measured with a Langmuir probe. The axial forces, respectively, resulting from the electron and magnetic field pressures are directly measured using a thrust balance for constant maximum plasma pressure and show a higher fuel efficiency for argon compared to xenon.
Holographic Competition of Phases and Superconductivity
Kiritsis, Elias
2015-01-01
We use a holographic theory to model and study the competition of four phases: an antiferromagnetic phase, a superconducting phase, a metallic phase and a striped phase, using as control parameters temperature and a doping-like parameter. We analyse the various instabilities and determine the possible phases. One class of phase diagrams, that we analyse in detail, is similar to that of high-temperature superconductors as well as other strange metal materials.
Stochastic storage models and noise-induced phase transitions
Serge Shpyrko; V. V. Ryazanov
2007-01-13
The most frequently used in physical application diffusive (based on the Fokker-Planck equation) model leans upon the assumption of small jumps of a macroscopic variable for each given realization of the stochastic process. This imposes restrictions on the description of the phase transition problem where the system is to overcome some finite potential barrier, or systems with finite size where the fluctuations are comparable with the size of a system. We suggest a complementary stochastic description of physical systems based on the mathematical stochastic storage model with basic notions of random input and output into a system. It reproduces statistical distributions typical for noise-induced phase transitions (e.g. Verhulst model) for the simplest (up to linear) forms of the escape function. We consider a generalization of the stochastic model based on the series development of the kinetic potential. On the contrast to Gaussian processes in which the development in series over a small parameter characterizing the jump value is assumed [Stratonovich R.L., Nonlinear Nonequilibrium Thermodynamics, Springer Series in Synergetics, vol.59, Springer Verlag, 1994], we propose a series expansion directly suitable for storage models and introduce the kinetic potential generalizing them.
Liquid-phase compositions from vapor-phase analyses
Davis, W. Jr. ); Cochran, H.D. )
1990-02-01
Arsenic normally is not considered to be a contaminant. However, because arsenic was found in many cylinders of UF{sub 6}, including in corrosion products, a study was performed of the distribution of the two arsenic fluorides, AsF{sub 3} and AsF{sub 5}, between liquid and vapor phases. The results of the study pertain to condensation or vaporization of liquid UF{sub 6}. This study includes use of various experimental data plus many extrapolations necessitated by the meagerness of the experimental data. The results of this study provide additional support for the vapor-liquid equilibrium model of J.M. Prausnitz and his coworkers as a means of describing the distribution of various impurities between vapor and liquid phases of UF{sub 6}. Thus, it is concluded that AsF{sub 3} will tend to concentrate in the liquid phase but that the concentration of AsF{sub 5} in the vapor phase will exceed its liquid-phase concentration by a factor of about 7.5, which is in agreement with experimental data. Because the weight of the liquid phase in a condensation operation may be in the range of thousands of times that of the vapor phase, most of any AsF{sub 5} will be in the liquid phase in spite of this separation factor of 7.5. It may also be concluded that any arsenic fluorides fed into a uranium isotope separation plant will either travel with other low-molecular-weight gases or react with materials present in the plant. 25 refs., 3 figs., 6 tabs.
SNMR pulse sequence phase cycling
Walsh, David O; Grunewald, Elliot D
2013-11-12
Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.
Feasibility of a wavelet expansion method to treat energy in cell calculations
Van Rooijen, W. F. G.
2012-07-01
This paper discusses the application of the Discrete Wavelet Transform (DWT) for the functional expansion of the energy variable in a cell calculation. The motivation of the work is the desire to obtain a self-shielding methodology in which the treatment of the energy variable in a given material region can be automatically adapted to the complexity of the cross section in that region. Unfortunately, the work presented in this paper shows that it is generally not possible to obtain the desired adaptivity. The most fundamental reason is that in a multi-region system, the energy dependence of the flux in a given material region is a function of the energy dependent cross sections and sources in all material regions through which the neutrons have crossed before entering into the present material. The complexity of the energy dependence of the cross section in a material region is thus not necessarily linked to the energy dependence of the flux in that region. If one sacrifices the objective of adaptivity, then an accurate method can be obtained using the DWT as a functional expansion. However, the resulting system of equations is more complicated than the direct solution of a hyper-fine group calculation. The conclusion is thus that the DWT approach is not very practical. (authors)
Lateral Expansion of the Bridges of Cygnus A and other Powerful Radio Sources
Greg F. Wellman; Ruth A. Daly
1995-07-25
Measurements of the width of the radio bridge at several locations along the bridge for each of four powerful extended radio sources are presented. Adopting a few simple assumptions, these measurements may be used to predict the radio surface brightness as a function of position across the radio bridge. The predicted and observed surface brightnesses across the bridges are compared and found to agree fairly well. The results are consistent with a simple picture in which the radio power and size of the radio lobe at the forward edge of the radio bridge are roughly time-independent for a given source, and the expansion of the bridge in the lateral direction is adiabatic. There is no indication that reacceleration or energy transport is important in the bridges of these sources. The rate of lateral expansion of the bridge just behind the radio lobe and hotspot in terms of the rate of forward propagation is compared with that predicted, and found to be in good agreement with the predicted value.
Edge effects in graphene nanostructures: I. From multiple reflection expansion to density of states
J. Wurm; K. Richter; I. Adagideli
2011-08-06
We study the influence of different edge types on the electronic density of states of graphene nanostructures. To this end we develop an exact expansion for the single particle Green's function of ballistic graphene structures in terms of multiple reflections from the system boundary, that allows for a natural treatment of edge effects. We first apply this formalism to calculate the average density of states of graphene billiards. While the leading term in the corresponding Weyl expansion is proportional to the billiard area, we find that the contribution that usually scales with the total length of the system boundary differs significantly from what one finds in semiconductor-based, Schr\\"odinger type billiards: The latter term vanishes for armchair and infinite mass edges and is proportional to the zigzag edge length, highlighting the prominent role of zigzag edges in graphene. We then compute analytical expressions for the density of states oscillations and energy levels within a trajectory based semiclassical approach. We derive a Dirac version of Gutzwiller's trace formula for classically chaotic graphene billiards and further obtain semiclassical trace formulae for the density of states oscillations in regular graphene cavities. We find that edge dependent interference of pseudospins in graphene crucially affects the quantum spectrum.
Farid, N.; Harilal, S. S. Hassanein, A.; Ding, H.
2014-01-21
The influence of ambient pressure on the spectral emission features and expansion dynamics of a plasma plume generated on a metal target has been investigated. The plasma plumes were generated by irradiating Cu targets using 6?ns, 1064?nm pulses from a Q-switched Nd:YAG laser. The emission and expansion dynamics of the plasma plumes were studied by varying air ambient pressure levels ranging from vacuum to atmospheric pressure. The ambient pressure levels were found to affect both the line intensities and broadening along with the signal to background and signal to noise ratios and the optimum pressure conditions for analytical applications were evaluated. The characteristic plume parameters were estimated using emission spectroscopy means and noticed that the excitation temperature peaked ?300?Torr, while the electron density showed a maximum ?100?Torr. Fast-gated images showed a complex interaction between the plume and background air leading to changes in the plume geometry with pressure as well as time. Surface morphology of irradiated surface showed that the pressure of the ambient gas affects the laser-target coupling significantly.
Gluon Radiation off Hard Quarks in a Nuclear Environment: Opacity Expansion
Urs Achim Wiedemann
2000-08-15
We study the relation between the Baier-Dokshitzer-Mueller-Peigne-Schiff (BDMPS) and Zakharov formalisms for medium-induced gluon radiation off hard quarks, and the radiation off very few scattering centers. Based on the non-abelian Furry approximation for the motion of hard partons in a spatially extended colour field, we derive a compact diagrammatic and explicitly colour trivial expression for the N-th order term of the kt-differential gluon radiation cross section in an expansion in the opacity of the medium. Resumming this quantity to all orders in opacity, we obtain Zakharov's path-integral expression (supplemented with a regularization prescription). This provides a new proof of the equivalence of the BDMPS and Zakharov formalisms which extends previous arguments to the kt-differential cross section. We give explicit analytical results up to third order in opacity for both the gluon radiation cross section of free incoming and of in-medium produced quarks. The N-th order term in the opacity expansion of the radiation cross section is found to be a convolution of the radiation associated to N-fold rescattering and a readjustment of the probabilities that rescattering occurs with less than N scattering centers. Both informations can be disentangled by factorizing out of the radiation cross section a term which depends only on the mean free path of the projectile. This allows to infer analytical expressions for the totally coherent and totally incoherent limits of the radiation cross section to arbitrary orders in opacity.
New expansion rate measurements of the Crab Nebula in radio and optical
Bietenholz, Michael F
2015-01-01
We present new radio measurements of the expansion rate of the Crab nebula's synchrotron nebula over a ~30-yr period. We find a convergence date for the radio synchrotron nebula of CE 1255 +- 27. We also re-evaluated the expansion rate of the optical line emitting filaments, and we show that the traditional estimates of their convergence dates are slightly biased. Using an un-biased Bayesian analysis, we find a convergence date for the filaments of CE 1091 +- 34 (~40 yr earlier than previous estimates). Our results show that both the synchrotron nebula and the optical line-emitting filaments have been accelerated since the explosion in CE 1054, but that the synchrotron nebula has been relatively strongly accelerated, while the optical filaments have been only slightly accelerated. The finding that the synchrotron emission expands more rapidly than the filaments supports the picture that the latter are the result of the Rayleigh-Taylor instability at the interface between the pulsar-wind nebula and the surroun...
On the modular structure of the genus-one Type II superstring low energy expansion
Eric D'Hoker; Michael B. Green; Pierre Vanhove
2015-06-03
The analytic contribution to the low energy expansion of Type II string amplitudes at genus-one is a power series in space-time derivatives with coefficients that are determined by integrals of modular functions over the complex structure modulus of the world-sheet torus. These modular functions are associated with world-sheet vacuum Feynman diagrams and given by multiple sums over the discrete momenta on the torus. In this paper we exhibit exact differential and algebraic relations for a certain infinite class of such modular functions by showing that they satisfy Laplace eigenvalue equations with inhomogeneous terms that are polynomial in non-holomorphic Eisenstein series. Furthermore, we argue that the set of modular functions that contribute to the coefficients of interactions up to order D**10 R*4 are linear sums of functions in this class and quadratic polynomials in Eisenstein series and odd Riemann zeta values. Integration over the complex structure results in coefficients of the low energy expansion that are rational numbers multiplying monomials in odd Riemann zeta values.
Evolution of context dependent regulation by expansion of feast/famine regulatory proteins
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Plaisier, Christopher L.; Lo, Fang -Yin; Ashworth, Justin; Brooks, Aaron N.; Beer, Karlyn D.; Kaur, Amardeep; Pan, Min; Reiss, David J.; Facciotti, Marc T.; Baliga, Nitin S.
2014-11-14
Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions thatmore »mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism.« less
Evolution of context dependent regulation by expansion of feast/famine regulatory proteins
Plaisier, Christopher L.; Lo, Fang -Yin; Ashworth, Justin; Brooks, Aaron N.; Beer, Karlyn D.; Kaur, Amardeep; Pan, Min; Reiss, David J.; Facciotti, Marc T.; Baliga, Nitin S.
2014-11-14
Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions that mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism.
Consequences from conservation of the total density of the universe during the expansion
Dimitar Valev
2010-08-11
The recent Cosmic Microwave Background (CMB) experiments have shown that the average density of the universe is close to the critical one and the universe is asymptotically flat (Euclidean). Taking into account that the universe remains flat and the total density of the universe $\\Omega_{0}$ is conserved equal to a unit during the cosmological expansion, the Schwarzschild radius of the observable universe has been determined equal to the Hubble distance $R_{s}=2GM/c^{2}=R\\sim c/H$, where M is the mass of the observable universe, R is the Hubble distance and H is the Hubble constant. Besides, it has been shown that the speed of the light c appears the parabolic velocity for the observable universe $c=\\sqrt{2GM/R}=v_{p}$ and the recessional velocity $v_{r}=Hr$ of an arbitrary galaxy at a distance r > 100 Mps from the observer, is equal to the parabolic velocity for the sphere, having radius r and a centre, coinciding with the observer. The requirement for conservation of $\\Omega_{0}=1$ during the expansion enables to derive the Hoyle-Carvalho formula for the mass of the observable universe $M=c^{3}/(2GH)$ by a new approach. Key words: flat universe; critical density of the universe; Schwarzschild radius; mass of the universe; parabolic velocity
Predicting Pattern Tooling and Casting Dimensions for Investment Casting, Phase III
Sabau, Adrian S
2008-04-01
Efforts during Phase III focused mainly on the shell-alloy systems. A high melting point alloy, 17-4PH stainless steel, was considered. The experimental part of the program was conducted at ORNL and commercial foundries, where wax patterns were injected, molds were invested, and alloys were poured. Shell molds made of fused-silica and alumino-silicates were considered. A literature review was conducted on thermophysical and thermomechanical properties alumino-silicates. Material property data, which were not available from material suppliers, was obtained. For all the properties of 17-4PH stainless steel, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. Thus, some material properties were evaluated using ProCAST, based on CompuTherm database. A comparison between the predicted material property data and measured property data was made. It was found that most material properties were accurately predicted only over several temperature ranges. No experimental data for plastic modulus were found. Thus, several assumptions were made and ProCAST recommendations were followed in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted during heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution on heating and cooling. Numerical simulations were performed using ProCAST for the investment casting of 17-4PH stainless steel parts in fused silica molds using the thermal expansion obtained on heating and another one with thermal expansion obtained on cooling. Since the fused silica shells had the lowest thermal expansion properties in the industry, the dewaxing phase, including the coupling between wax-shell systems, was neglected. The shell mold was considered to be a pure elastic material. The alloy dimensions were obtained from numerical simulations. For 17-4PH stainless steel parts, the alloy shrinkage factors were over-predicted, as compared with experimental data. Additional R&D focus was placed on obtaining material property data for filled waxes, waxes that are common in the industry. For the first time in the investment casting industry, the thermo-mechanical properties of unfilled and filled waxes were measured. Test specimens of three waxes were injected at commercial foundries. Rheometry measurement of filled waxes was conducted at ORNL. The analysis of the rheometry data to obtain viscoelastic properties was not completed due to the reduction in the budget of the project (approximately 50% funds were received).
Weston, R.E. Jr.; Sears, T.J.; Preses, J.M. [Brookhaven National Laboratory, Upton, NY (United States)
1993-12-01
Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.
Multiobjective Optimization and Phase Transitions
Seoane, Luís F
2015-01-01
Many complex systems obey to optimality conditions that are usually not simple. Conflicting traits often interact making a Multi Objective Optimization (MOO) approach necessary. Recent MOO research on complex systems report about the Pareto front (optimal designs implementing the best trade-off) in a qualitative manner. Meanwhile, research on traditional Simple Objective Optimization (SOO) often finds phase transitions and critical points. We summarize a robust framework that accounts for phase transitions located through SOO techniques and indicates what MOO features resolutely lead to phase transitions. These appear determined by the shape of the Pareto front, which at the same time is deeply related to the thermodynamic Gibbs surface. Indeed, thermodynamics can be written as an MOO from where its phase transitions can be parsimoniously derived; suggesting that the similarities between transitions in MOO-SOO and Statistical Mechanics go beyond mere coincidence.
Polydispersity in Colloidal Phase Transitions
Fairhurst, David John
I have studied the effects of polydispersity on the phase behaviour of suspensions of PMMA colloidal spheres on their own and in the presence of non-adsorbed polymer. I systematically explored the volume fraction-polydispersity ...
Carrender, Curtis Lee; Gilbert, Ronald W.
2007-02-20
A radio frequency (RF) communication system employs phase-modulated backscatter signals for RF communication from an RF tag to an interrogator. The interrogator transmits a continuous wave interrogation signal to the RF tag, which based on an information code stored in a memory, phase-modulates the interrogation signal to produce a backscatter response signal that is transmitted back to the interrogator. A phase modulator structure in the RF tag may include a switch coupled between an antenna and a quarter-wavelength stub; and a driver coupled between the memory and a control terminal of the switch. The driver is structured to produce a modulating signal corresponding to the information code, the modulating signal alternately opening and closing the switch to respectively decrease and increase the transmission path taken by the interrogation signal and thereby modulate the phase of the response signal. Alternatively, the phase modulator may include a diode coupled between the antenna and driver. The modulating signal from the driver modulates the capacitance of the diode, which modulates the phase of the response signal reflected by the diode and antenna.
Mills, Andrew D
2011-01-01
economics of large-scale wind power in a carbon constrainedwith large amounts of wind power. Final Report, Phase oneModeling utility-scale wind power plants. Part 2: Capacity
Not Available
1991-03-01
This report has been prepared in response to the Senate Report No. 101-534 accompanying the bill which was enacted as the Department of the Interior and Related Agencies Appropriations Act for Fiscal Year 1991. Senate Report 101-534 requested the Department of Energy to initiate construction planning for an expansion of the Strategic Petroleum Reserve to one billion barrels and to report to the Committees on Appropriations by March 15, 1991, regarding recommended storage sites, the proposed method of storage, a conceptual plan for storage and distribution facilities, and preliminary construction cost estimates. The Department of Energy's 1989 Report to the Congress entitled Report to Congress on Expansion of the Strategic Petroleum Reserve to One Billion Barrels provides a background and point of departure for this report. An analysis of expansion of the Strategic Petroleum Reserve has been directed toward the expected US petroleum market and likely crude oil distribution systems in the Year 2000. The projections in this report do not assume implementation of the National Energy Strategy (NES). The Department has initiated an environmental review process in accordance with NEPA and completed an analysis of the 1976 Programmatic Environmental Impact Statement (EIS) and its 1979 Supplement which addressed expansion of the Reserve to one billion barrels. The analysis concludes that another supplement to the Reserve's Programmatic EIS likely will not be required to support its expansion to one billion barrels. The appropriate site-specific NEPA document will be prepared. 72 refs., 27 figs., 7 tabs.
VanKuiken, J.C.; Veselka, T.D.; Guziel, K.A.; Blodgett, D.W.; Hamilton, S.; Kavicky, J.A.; Koritarov, V.S.; North, M.J.; Novickas, A.A.; Paprockas, K.R. [and others
1994-11-01
This report describes operating procedures and background documentation for the Argonne Production, Expansion, and Exchange Model for Electrical Systems (APEX). This modeling system was developed to provide the U.S. Department of Energy, Division of Fossil Energy, Office of Coal and Electricity with in-house capabilities for addressing policy options that affect electrical utilities. To meet this objective, Argonne National Laboratory developed a menu-driven programming package that enables the user to develop and conduct simulations of production costs, system reliability, spot market network flows, and optimal system capacity expansion. The APEX system consists of three basic simulation components, supported by various databases and data management software. The components include (1) the investigation of Costs and Reliability in Utility Systems (ICARUS) model, (2) the Spot Market Network (SMN) model, and (3) the Production and Capacity Expansion (PACE) model. The ICARUS model provides generating-unit-level production-cost and reliability simulations with explicit recognition of planned and unplanned outages. The SMN model addresses optimal network flows with recognition of marginal costs, wheeling charges, and transmission constraints. The PACE model determines long-term (e.g., longer than 10 years) capacity expansion schedules on the basis of candidate expansion technologies and load growth estimates. In addition, the Automated Data Assembly Package (ADAP) and case management features simplify user-input requirements. The ADAP, ICARUS, and SMN modules are described in detail. The PACE module is expected to be addressed in a future publication.
Gas-Phase IR Spectroscopy of Nucleobases
de Vries, MS
2015-01-01
ionization spectroscopy of gas phase guanine: Evidence for2007) Imino tautomers of gas-phase guanine from mid-infraredAlkali Metal Cation Size on Gas Phase Conformation. J. Am.
Computational phase imaging based on intensity transport
Waller, Laura A. (Laura Ann)
2010-01-01
Light is a wave, having both an amplitude and a phase. However, optical frequencies are too high to allow direct detection of phase; thus, our eyes and cameras see only real values - intensity. Phase carries important ...
Torquato, Salvatore
through second order in evaluate, for concreteness, some ofthe integrals that arise in this study, for arbitrary A, in the permeable-sphere model study he gives an explicit expression for the second-order term in *.9 JeffreyJO found and evaluated
From constituent quarks to hadrons in course of nuclear matter expansion
O. D. Chernavskaya; I. I. Royzen
2002-01-13
The up-dated three-phase concept of nuclear matter evolution in course of cooling down - from the phase of quark-qluon plasma (QGP) through the intermediate phase allowing for massive constituent quarks (valons), pions and kaons (QPK) to the phase of hadronic matter (H) - is exploited for the treatment of relative hadronic yields in the central region of heavy ion collisions. The most attention is paid to the description of the QPK-phase which is argued to be a gaseous one and lasts until the valonic spacing approaches the confinement radius (at the temperature about 110 MeV), when the valons start fusing to be locked, in the end, within the hadrons. The hadronic yields emerged from thermal treatment of QPK-phase and simple combinatorial approach to the hadronization process are shown to fit the available experimental data from AGS, SPS and RHIC quite well. This provides an alternative insight into the real origin of the observed relative hadronic yields which is (to a considerable extent) free of the well known puzzle inherent in some conventional models where the early chemical freeze-out is assumed: namely, why the gaseous thermal approach to actually tightly packed (even overlapping) hadrons seems workable? Many predictions for the other hadronic yields which could be observed at these machines as well as at LHC are given.