National Library of Energy BETA

Sample records for 2000-2001 2001-2002 2002-2003

  1. Microsoft Word - 6 Los Alamos National Lab Community Leaders...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... from each sector after excluding the DOE. 2000 2001 2002 2003 2004 2005 Sector of Names ... of the Bosque * Local government budget deficit * Portable housing * High taxes ...

  2. Warroad, MN Natural Gas Exports to Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1999 2000 2001 2002 2003 View...

  3. Table 16. Total Energy Consumption, Projected vs. Actual Projected

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6. Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 ...

  4. Table 8. Total Natural Gas Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 19.87 20.21 20.64 20.99 ...

  5. Energy-Related Carbon Dioxide Emissions at the State Level, 2000...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Table 7. Carbon intensity by state (2000-2013) kilograms of energy-related carbon dioxide per million Btu Change (2000-2013) State 2000 2001 2002 2003 2004 2005 2006 2007 2008 ...

  6. Energy-Related Carbon Dioxide Emissions at the State Level, 2000...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Table 6. Energy intensity by state (2000-2013) thousand Btu per chained 2009 dollar of GDP Change (2000-2013) State 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ...

  7. Microsoft PowerPoint - Sykes.EM Footprint Reduction.042909

    Office of Environmental Management (EM)

    Assistant Secretary Program Planning and Budget Program Planning and Budget Office of ... 350 400 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 ...

  8. NREL Fuel Cell and Hydrogen Technologies Program Introduction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    24,000 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Thousand Fiscal Year NREL Fuel Cell and Hydrogen Technologies Program Budget Authority ARRA ...

  9. Table of Contents: Accelerating Cleanup, Paths to Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Congressional allocations provide the DOE with "Budget Authority (BA)" the first year contracts ... C.1.1. Risk Data 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Public 1D 1D 1D ...

  10. DOE - Fossil Energy:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Applications (View complete applications and docket index) 1982-1994 (PhillipsMarathon Dockets) 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007...

  11. Microsoft PowerPoint - Crozat NEAC Final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Derived from IAEA, EIA and NRC 3 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 NEAC Meeting 12192013 Declining Electricity Demand Forecasts ...

  12. Havre, MT Natural Gas Exports to Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1998 1999 2000 2001 2002 2003 View History Pipeline Volumes NA NA 1,309 NA NA 0 1998-2003 Pipeline Prices NA NA 3.66 NA NA -- 1998-2003...

  13. ARM - Field Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsCampaign Data Additional Sorting By Site AAF AMF ENA NSA SGP TWP Other By Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009...

  14. ARM - Field Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsFeatured Additional Sorting By Site AAF AMF ENA NSA SGP TWP Other By Activity Current Upcoming Past By Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003...

  15. Table 9. Natural Gas Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Production, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2...

  16. Table 10. Natural Gas Net Imports, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Net Imports, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,...

  17. Table 10. Natural Gas Net Imports, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Net Imports, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012...

  18. Kootenai River Focus Watershed Coordination, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Kruse, Gretchen

    2002-07-01

    The 2001-2002 Kootenai River Network Annual Report reflects the organization's defined set of goals and objectives, and how by accomplishing these goals, we continue to meet the needs of communities and landowners throughout the Kootenai River Basin by protecting the resource. Our completed and ongoing projects throughout the watershed reflect the cooperation and support received and needed to accomplish the rehabilitation and restoration of critical habitat. They show that our mission of facilitation through collaboration with public and private interests can lead to improved resource management, the restoration of water quality and the preservation of pristine aquatic resources. Our vision to empower local citizens and groups from two states, one province, two countries and affected tribal nations to collaborate in natural resource management within the basin is largely successful due to the engagement of the basin's residents--the landowners, town government, local interest groups, businesses and agency representatives who live and work here. We are proof that forging these types of cooperative relationships, such as those exhibited by the Kootenai River subbasin planning process, leads to a sense of entitlement--that the quality of the river and its resources enriches our quality of life. Communication is essential in maintaining these relationships. Allowing ourselves to network and receive ideas and information, as well as to produce quality, accessible research data such as KRIS, shared with like organizations and individuals, is the hallmark of this facilitative organization. We are fortunate in the ability to contribute such information, and continue to strive to meet the standards and the needs of those who seek us out as a model for watershed rehabilitative planning and restoration. Sharing includes maintaining active, ongoing lines of communication with the public we serve--through our web site, quarterly newsletter, public presentations and stream table education--at every opportunity. We continue to seek ideas to guide us as we grow. We want to enlarge that sense of ownership that the river does indeed run through it, and belongs to us all. Through a continued and common effort, we hope to carry forward the good work and the momentum that underscores our intent. We are proud to report our accomplishments of this past year because they reflect our renewed sense of purpose. In alliance with diverse citizen groups, individuals, business, industry and tribal and government water resource management agencies, we strive to continue to protect and restore the beauty and integrity that is the Kootenai River watershed.

  19. win0203SelUpdates0203.doc

    Gasoline and Diesel Fuel Update (EIA)

    Updated Feb 2003) 1 Winter Fuels Outlook: 2002-2003 Selected Table and Figure Updates Based on the February 2003 Short-Term Energy Outlook Figure WF1. U.S. Winter Natural Gas Demand (Year-to-Year Percent Change) -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25% 2000-2001 2001-2002 2002-2003 Residential Commercial Indust. (incl. CHP) Total Projections Table WF1. Illustrative Consumer Prices and Expenditures for Heating Fuels During the Winter 1999-2000 2000-2001 2001-2002 2002-2003 Actual Actual

  20. 2001-2002 Long Range Plan Working Group Members | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) 1-2002 Long Range Plan Working Group Members Nuclear Science Advisory Committee (NSAC) NSAC Home Meetings NSAC Members Charges/Reports Charter .pdf file (78KB) NP Committees of Visitors Federal Advisory Committees NP Home NSAC Members 2001-2002 Long Range Plan Working Group Members Print Text Size: A A A FeedbackShare Page Baker, Keith Hampton University Lung, Allison JLAB Beene, Jim ORNL Marx, Jay LBNL Beise, Betsy University of Maryland McLerran, Larry BNL Bland, Les Indiana

  1. Table 1. U.S. emissions of greenhouse gases, based on global warming potential,

    U.S. Energy Information Administration (EIA) Indexed Site

    emissions of greenhouse gases, based on global warming potential, 1990-2009" " (Million Metric Tons of Carbon Dioxide Equivalent)" " Greenhouse Gas",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 "Carbon

  2. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  3. Table 3b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per barrel)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  4. Nebraska Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    1999 2000 2001 2002 2003 2004 View History Crude Oil (million bbls) 0 0 0 0 0 0 1996-2004 Lease Condensate (million bbls) 0 0 0 0 0 0 1998-2004 Total Gas (billion cu ft) 0 0 0 0 0 ...

  5. Table of Contents: Accelerating Cleanup, Paths to Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Total 100,637 98,684 101,494 111,737 C.1. Risk (Section E.1. in the FY 1999 Budget Update)one C.1.1. Risk Data 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Public 1D 1D 1D 1D ...

  6. Table of Contents: Accelerating Cleanup, Paths to Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Total 26,894 24,522 21,897 21,849 C.1. Risk (Section E.1. in the FY 1999 Budget Update)one C.1.1. Risk Data 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Public 1D 1D 1D 1D 1D ...

  7. Table of Contents: Accelerating Cleanup, Paths to Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Total 14,196 11,982 23,734 24,382 C.1. Risk (Section E.1. in the FY 1999 Budget Update)one C.1.1. Risk Data 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Public 2C 2C 2C 2C 2C ...

  8. "Table 2. Real Gross Domestic Product Growth Trends, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Gross Domestic Product Growth Trends, Projected vs. Actual" "Projected Real GDP Growth Trend" " (cumulative average percent growth in projected real GDP from first year shown for each AEO)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  9. Nonradioactive Ambient Air Monitoring at Los Alamos National Laboratory 2001--2002

    SciTech Connect (OSTI)

    E. Gladney; J.Dewart, C.Eberhart; J.Lochamy

    2004-09-01

    During the spring of 2000, the Cerro Grande forest fire reached Los Alamos National Laboratory (LANL) and ignited both above-ground vegetation and disposed materials in several landfills. During and after the fire, there was concern about the potential human health impacts from chemicals emitted by the combustion of these Laboratory materials. Consequently, short-term, intensive air-monitoring studies were performed during and shortly after the fire. Unlike the radiological data from many years of AIRNET sampling, LANL did not have an adequate database of nonradiological species under baseline conditions with which to compare data collected during the fire. Therefore, during 2001 the Meteorology and Air Quality Group designed and implemented a new air-monitoring program, entitled NonRadNET, to provide nonradiological background data under normal conditions. The objectives of NonRadNET were to: (1) develop the capability for collecting nonradiological air-monitoring data, (2) conduct monitoring to develop a database of typical background levels of selected nonradiological species in the communities nearest the Laboratory, and (3) determine LANL's potential contribution to nonradiological air pollution in the surrounding communities. NonRadNET ended in late December 2002 with five quarters of data. The purpose of this paper is to organize and describe the NonRadNET data collected over 2001-2002 to use as baseline data, either for monitoring during a fire, some other abnormal event, or routine use. To achieve that purpose, in this paper we will: (1) document the NonRadNET program procedures, methods, and quality management, (2) describe the usual origins and uses of the species measured, (3) compare the species measured to LANL and other area emissions, (4) present the five quarters of data, (5) compare the data to known typical environmental values, and (6) evaluate the data against exposure standards.

  10. Arrow Lakes Reservoir Fertilization Experiment; Years 4 and 5, Technical Report 2002-2003.

    SciTech Connect (OSTI)

    Schindler, E.

    2007-02-01

    This report presents the fourth and fifth year (2002 and 2003, respectively) of a five-year fertilization experiment on the Arrow Lakes Reservoir. The goal of the experiment was to increase kokanee populations impacted from hydroelectric development on the Arrow Lakes Reservoir. The impacts resulted in declining stocks of kokanee, a native land-locked sockeye salmon (Oncorhynchus nerka), a key species of the ecosystem. Arrow Lakes Reservoir, located in southeastern British Columbia, has undergone experimental fertilization since 1999. It is modeled after the successful Kootenay Lake fertilization experiment. The amount of fertilizer added in 2002 and 2003 was similar to the previous three years. Phosphorus loading from fertilizer was 52.8 metric tons and nitrogen loading from fertilizer was 268 metric tons. As in previous years, fertilizer additions occurred between the end of April and the beginning of September. Surface temperatures were generally warmer in 2003 than in 2002 in the Arrow Lakes Reservoir from May to September. Local tributary flows to Arrow Lakes Reservoir in 2002 and 2003 were generally less than average, however not as low as had occurred in 2001. Water chemistry parameters in select rivers and streams were similar to previous years results, except for dissolved inorganic nitrogen (DIN) concentrations which were significantly less in 2001, 2002 and 2003. The reduced snow pack in 2001 and 2003 would explain the lower concentrations of DIN. The natural load of DIN to the Arrow system ranged from 7200 tonnes in 1997 to 4500 tonnes in 2003; these results coincide with the decrease in DIN measurements from water samples taken in the reservoir during this period. Water chemistry parameters in the reservoir were similar to previous years of study except for a few exceptions. Seasonal averages of total phosphorus ranged from 2.11 to 7.42 {micro}g/L from 1997 through 2003 in the entire reservoir which were indicative of oligo-mesotrophic conditions. Dissolved inorganic nitrogen concentrations have decreased in 2002 and 2003 compared to previous years. These results indicate that the surface waters in Arrow Lakes Reservoir were approaching nitrogen limitation. Results from the 2003 discrete profile series indicate nitrate concentrations decreased significantly below 25 {micro}g/L (which is the concentration where nitrate is considered limiting to phytoplankton) between June and July at stations in Upper Arrow and Lower Arrow. Nitrogen to phosphorus ratios (weight:weight) were also low during these months indicating that the surface waters were nitrogen deficient. These results indicated that the nitrogen to phosphorus blends of fertilizer added to the reservoir need to be fine tuned and closely monitored on a weekly basis in future years of nutrient addition. Phytoplankton results shifted during 2002 and 2003 compared to previous years. During 2002, there was a co-dominance of potentially 'inedible' diatoms (Fragilaria spp. and Diatoma) and 'greens' (Ulothrix). Large diatom populations occurred in 2003 and these results indicate it may be necessary to alter the frequency and amounts of weekly loads of nitrogen and phosphorus in future years to prevent the growth of inedible diatoms. Zooplankton density in 2002 and 2003, as in previous years, indicated higher densities in Lower Arrow than in Upper Arrow. Copepods and other Cladocera (mainly tiny specimens such as Bosmina sp.) had distinct peaks, higher than in previous years, while Daphnia was not present in higher numbers particularly in Upper Arrow. This density shift in favor to smaller cladocerans was mirrored in a weak biomass increase. In Upper Arrow, total zooplankton biomass decreased from 1999 to 2002, and in 2003 increased slightly, while in Lower Arrow the biomass decreased from 2000-2002. In Lower Arrow the majority of biomass was comprised of Daphnia throughout the study period except in 2002, while in Upper Arrow the total biomass was comprised of copepods from 2000-2003.

  11. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Faler, Michael P.; Mendel, Glen W.; Fulton, Carl

    2004-04-01

    We collected 279 adult bull trout (Salvelinus confluentus) in the Tucannon River during the Spring and Fall of 2003. Passive Integrated Transponder (PIT) tags were inserted in 191 of them, and we detected existing PIT tags in an additional 31bull trout. Thirty five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout the year. Fourteen radio-tags were recovered shortly after tagging, and as a result, 21 remained in the river through December 31, 2003. Four bull trout that were radio-tagged in spring 2002 were known to survive and carry their tags through the spring and/or summer of 2003. One of these fish spent the winter near river mile (RM) 13.0; the other 3 over-wintered in the vicinity of the Tucannon Hatchery between RM 34 and 36. Twenty-one radio tags from bull trout tagged in 2002 were recovered during the spring and summer, 2003. These tags became stationary the winter of 2002/2003, and were recovered between RM 11 and 55. We were unable to recover the remaining 15 tags from 2002. During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon subbasin. We observed some downstream movements of radio-tagged bull trout in mid to late September and throughout October. By late November and early December, radio tagged bull trout were relatively stationary, and were distributed from the headwaters downstream to river mile 6.4, near Lower Monumental Pool. As in 2002, we did not conduct work associated with objectives 2, 3, or 4 of this study, because we were unable to monitor migratory movement of radio-tagged bull trout into the Federal hydropower system on the mainstem Snake River. Transmission tests of submerged ATS model F1830 radio-tags in Lower Granite Pool showed that audible detection and individual tag identification was possible at depths of 20 and 30 ft. Tests were conducted using an ATS R-4000 Receiver equipped with an ''H'' antenna at 200 and 700 feet above water surface from a helicopter. Audible detection and frequency separation were possible at both elevations. Two years of high tag loss, particularly after spawning, has prevented us from documenting fall and winter movements with an adequate sample of radio tagged bull trout. The high transmitter loss after spawning may be a reflection of high natural mortality for large, older age fish that we have been radio tagging to accommodate the longer life transmitters. Therefore, we are planning to reduce the size of the radio tags that we implant, and delay most of our collection and tagging of bull trout until after spawning. These changes are a new approach to try to maximize the number of radio tagged bull trout available post spawning to adequately document fall and winter movements and any use of the Snake River by bull trout from the Tucannon River.

  12. Buildings Energy Data Book: 5.7 Appliances

    Buildings Energy Data Book [EERE]

    0 Commercial Refrigeration - Display Case Shipments Year Shipments 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Source(s): 170,000 175,500 181,000 185,000 DOE/EERE/Navigant Consulting, Energy Savings Potential and R&D Opportunities for Commercial Refrigeration, Sept. 2009, Table 3-3, p. 28. 340,453 347,262 175,000 183,300 191,549 185,000

  13. Slide 1

    U.S. Energy Information Administration (EIA) Indexed Site

    Transport Sector David Sandalow EIA Annual Energy Conference April 27, 2011 0 2 4 6 8 10 12 14 16 18 20 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Total motor vehicle production (millions) Chinese auto production is skyrocketing Source: Ward's Automotive, International Organization of Motor Vehicle Manufacturers (OICA), Chinese and Japanese Auto Manufacturers Associations 2 United States China Japan Almost all Chinese production sold to rapidly growing domestic market Millions

  14. Table 4. Total Petroleum Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Petroleum Consumption, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",6449.55,6566.35,6643,6723.3,6810.9,6880.25,6956.9,7059.1,7124.8,7205.1,7296.35,7376.65,7446,7522.65,7595.65,7665,7712.45,7774.5 "AEO

  15. Table 6. Petroleum Net Imports, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Net Imports, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2934.6,3201.05,3361.65,3504,3657.3,3737.6,3879.95,3993.1,4098.95,4212.1,4303.35,4398.25,4474.9,4540.6,4584.4,4639.15,4668.35,4672 "AEO

  16. No Slide Title

    Office of Environmental Management (EM)

    George Beveridge Director, Europe BNFL Environmental Services 27 June 2003 Slide 4 File Ref: WAGR Decommissioning Programme 2000 2001 2002 2003 2004 2005 2006 Operational Waste Hot Box Loop Tubes Neutron Shield Graphite Core Thermal Shield Lower Structures PV&I TC & OVM Campaign Contract End date early 2005 Slide 5 File Ref: Recent Successes  Preliminary Operations completed to programme  Operational Waste completed to programme  Hot Box 5 months late  Loop Tubes completed 20

  17. ,"Table 3A.1. January Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area,"

    U.S. Energy Information Administration (EIA) Indexed Site

    A.1. January Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area," ,"1996-2010 Actual, 2011-2012 Projected" ,"(Megawatts)" ,"January","NERC Regional Assesment Area" ,,,"Actual",,,,,,,,,,,,,,,"Projected" ,,,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"2011E","2012E" ,"Eastern

  18. "Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO

  19. win0203SelUpdates0303.doc

    Gasoline and Diesel Fuel Update (EIA)

    En ergy Outlook -- October 2002 Updated Feb 2003) 1 Winter Fuels Outlook: 2002-2003 Selected Table and Figure Updates Based on the March 2003 Short-Term Energy Outlook Figure WF1. U.S. Winter Natural Gas Demand (Year-to-Year Percent Change) Table WF1. Illustrative Consumer Prices and Expenditures for Heating Fuels During the Winter 1999-2000 2000-2001 2001-2002 2002-2003 Actual Actual Actual Base Forecast Natural Gas (Midwest) Consumption (mcf) 81.7 99.1 81.3 92.1 Avg. Price ($/mcf) 6.69 9.54

  20. RF cavity R&D at LBNL for the NLC Damping Rings,FY2000/2001

    SciTech Connect (OSTI)

    Rimmer, R.A.; Atkinson, D.; Corlett, J.N.; Koehler, G.; Li, D.; Hartman, N.; Rasson, J.; Saleh, T.; Weidenbach, W.

    2001-06-01

    This report contains a summary of the R&D activities at LBNL on RF cavities for the NLC damping rings during fiscal years 2000/2001. This work is a continuation of the NLC RF system R&D of the previous year [1]. These activities include the further optimization and fine tuning of the RF cavity design for both efficiency and damping of higher-order modes (HOMs). The cavity wall surface heating and stresses were reduced at the same time as the HOM damping was improved over previous designs. Final frequency tuning was performed using the high frequency electromagnetic analysis capability in ANSYS. The mechanical design and fabrication methods have been developed with the goals of lower stresses, fewer parts and simpler assembly compared to previous designs. This should result in substantial cost savings. The cavity ancillary components including the RF window, coupling box, HOM loads, and tuners have been studied in more detail. Other cavity options are discussed which might be desirable to either further lower the HOM impedance or increase the stored energy for reduced transient response. Superconducting designs and the use of external ''energy storage'' cavities are discussed. A section is included in which the calculation method is summarized and its accuracy assessed by comparisons with the laboratory measurements of the PEP-II cavity, including errors, and with the beam-sampled spectrum.

  1. Buildings Energy Data Book: 2.5 Residential Construction and Housing Market

    Buildings Energy Data Book [EERE]

    1 Yearly Average Historic Mortgage Rates 30-Year Fixed 15-Year Fixed 1-Year ARM (1) 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Note(s): Source(s): 1) To calculate adjustable-rate mortgage (ARM) rates, Freddie Mac indexes the products to US Treasury yields and asks lenders for both the initial coupon rate as well as the margin on the ARM products. US

  2. Buildings Energy Data Book: 2.7 Industrialized Housing (IH)

    Buildings Energy Data Book [EERE]

    6 1980-2009 Manufactured Home Shipments, Estimated Retail Sales and Average Sales Prices Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Note(s): Source(s): Estimated Average Sales Price (2010$) Manufactured Home Retail Sales Shipments (2010$ Million) Single Section Multi-Section 238,808 9,396 $34,349 $56,715 295,079 11,905 $33,811 $58,592 221,091 10,146 $37,079 $66,046 240,313 10,133

  3. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    2 Net Internal Demand, Capacity Resources, and Capacity Margins in the Contiguous United States (GW) Net Internal Capacity Capacity Demand (1) Resources (2) Margin (3) 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Note(s): Source(s): 778.5 980.3 20.6% 1) Net internal demand represents the system demand that is planned for by the electric power industry`s reliability authority and is equal to internal demand less direct control load

  4. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    3.3 Commercial Sector Expenditures March 2012 3.3.3 Commercial Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Natural Gas Petroleum (2) Total 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 148.6 37.0 17.0 202.6 148.9 37.2 17.1 203.2 145.9 36.2

  5. Table 10 U.S. Carbon Dioxide Emissions from Industrial Sector Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Carbon Dioxide Emissions from Industrial Sector Energy Consumption, 1990-2009" " (Million Metric Tons of Carbon Dioxide)" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 " Petroleum" " Motor Gasoline",,13.19,13.779,13.882,12.707,13.56,14.091,14.108,14.93,14.057,10.664,10.555,20.734,21.724,22.677,26,24.788,26.141,21.23,16.982,16.857 "

  6. Table 2. U.S. greenhouse gas intensity and related factors, 1990 to 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    greenhouse gas intensity and related factors, 1990 to 2009" ,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 "Gross Domestic Product (Billion 2000 Dollars)",8033.9,8015.1,8287.1,8523.4,8870.7,9093.7,9433.9,9854.3,10283.5,10779.8,11226,11347.2,11553,11840.7,12263.8,12638.4,12976.2,13228.9,13228.8,12880.6 "Greenhouse Gas Emissions

  7. Table 6 U.S. Carbon Dioxide Emissions from Energy and Industry, 1990-2009

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Carbon Dioxide Emissions from Energy and Industry, 1990-2009" " (Million Metric Tons Carbon Dioxide )" ,,,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 "Energy Consumption" " Petroleum",,,,2186.572,2133.958,2179.897,2184.16,2221.028,2207.112,2290.191,2312.879,2357.929,2416.523,2460.593,2473.32,2471.581,2518.36,2608.579,2627.641,2602.51,2603.153,2443.536,2318.839 " Coal

  8. Table 7. U.S. Energy-Related Carbon Dioxide Emissions by End-Use Sector, 1990-20

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy-Related Carbon Dioxide Emissions by End-Use Sector, 1990-2009" " (Million Metric Tons Carbon Dioxide)" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 " Residential",,963.38,980.093,981.418,1039.553,1032.275,1039.099,1099.143,1089.835,1097.465,1121.649,1185.104,1171.525,1203.666,1230.086,1227.758,1261.459,1192.007,1242.002,1228.992,1162.154 "

  9. Table 8 U.S. Carbon Dioxide Emissions from Residential Sector Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Carbon Dioxide Emissions from Residential Sector Energy Consumption, 1990-2009" " (Million Metric Tons of Carbon Diioxide)" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 " Petroleum" " LPG",,22.21,23.85,23.299,24.571,24.199,24.901,29.564,28.685,26.735,33.175,34.998,33.156,33.879,34.341,32.277,32.346,28.1,30.505,34.861,36.5 " Distillate

  10. Table 9 U.S. Carbon Dioxide Emissions from Commercial Sector Energy Consumption,

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Carbon Dioxide Emissions from Commercial Sector Energy Consumption, 1990-2009" " (Million Metric Tons of Carbon Dioxide)" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 " Petroleum" " Motor Gasoline",,7.919,6.063,5.688,2.095,1.777,1.276,1.873,3.011,2.746,1.998,3.129,2.631,3.172,4.193,3.122,3.185,3.382,4.242,3.106,3.083 "

  11. Table 12. Total Coal Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Coal Consumption, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",920,928,933,938,943,948,953,958,962,967,978,990,987,992,1006,1035,1061,1079 "AEO 1995",,935,940,941,947,948,951,954,958,963,971,984,992,996,1002,1013,1025,1039 "AEO

  12. Table 12. Total Coal Consumption, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Coal Consumption, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 920 928 933 938 943 948 953 958 962 967 978 990 987 992 1006 1035 1061 1079 AEO 1995 935 940 941 947 948 951 954 958 963 971 984 992 996 1002 1013 1025 1039 AEO 1996 937 942 954 962 983 990 1004 1017 1027 1033 1046 1067 1070 1071 1074 1082 1087 1094 1103 AEO 1997 948 970 987 1003 1017 1020 1025 1034 1041

  13. Table 13. Coal Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",999,1021,1041,1051,1056,1066,1073,1081,1087,1098,1107,1122,1121,1128,1143,1173,1201,1223 "AEO 1995",,1006,1010,1011,1016,1017,1021,1027,1033,1040,1051,1066,1076,1083,1090,1108,1122,1137 "AEO

  14. Table 13. Coal Production, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 999 1021 1041 1051 1056 1066 1073 1081 1087 1098 1107 1122 1121 1128 1143 1173 1201 1223 AEO 1995 1006 1010 1011 1016 1017 1021 1027 1033 1040 1051 1066 1076 1083 1090 1108 1122 1137 AEO 1996 1037 1044 1041 1045 1061 1070 1086 1100 1112 1121 1135 1156 1161 1167 1173 1184 1190 1203 1215 AEO 1997 1028 1052 1072 1088

  15. Table 15. Total Electricity Sales, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electricity Sales, Projected vs. Actual" "Projected" " (billion kilowatt-hours)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2843,2891,2928,2962,3004,3039,3071,3112,3148,3185,3228,3263,3298,3332,3371,3406,3433,3469 "AEO 1995",,2951,2967,2983,3026,3058,3085,3108,3134,3166,3204,3248,3285,3321,3357,3396,3433,3475 "AEO

  16. Table 15. Total Electricity Sales, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electricity Sales, Projected vs. Actual Projected (billion kilowatt-hours) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2843 2891 2928 2962 3004 3039 3071 3112 3148 3185 3228 3263 3298 3332 3371 3406 3433 3469 AEO 1995 2951 2967 2983 3026 3058 3085 3108 3134 3166 3204 3248 3285 3321 3357 3396 3433 3475 AEO 1996 2973 2998 3039 3074 3106 3137 3173 3215 3262 3317 3363 3409 3454 3505 3553 3604 3660 3722 3775 AEO 1997 3075

  17. Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 5060 5130 5185 5240 5287 5335 5379 5438 5482 5529 5599 5658 5694 5738 5797 5874 5925 5984 AEO 1995 5137 5174 5188 5262 5309 5361 5394 5441 5489 5551 5621 5680 5727 5775 5841 5889 5944 AEO 1996 5182 5224 5295 5355 5417 5464 5525 5589 5660 5735 5812 5879 5925 5981 6030 6087 6142 6203

  18. Table 22. Energy Intensity, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / $Billion 2005 Chained GDP)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",10.89145253,10.73335719,10.63428655,10.48440125,10.33479508,10.20669515,10.06546105,9.94541493,9.822393757,9.707148466,9.595465524,9.499032573,9.390723436,9.29474735,9.185496812,9.096176848,9.007677565,8.928276581 "AEO

  19. Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per barrel in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,16.69,16.42999,16.9899,17.66,18.28,19.0599,19.89,20.72,21.65,22.61,23.51,24.29,24.9,25.6,26.3,27,27.64,28.16

  20. Table 4. Total Petroleum Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Petroleum Consumption, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6450 6566 6643 6723 6811 6880 6957 7059 7125 7205 7296 7377 7446 7523 7596 7665 7712 7775 AEO 1995 6398 6544 6555 6676 6745 6822 6888 6964 7048 7147 7245 7337 7406 7472 7537 7581 7621 AEO 1996 6490 6526 6607 6709 6782 6855 6942 7008 7085 7176 7260 7329 7384 7450 7501 7545 7581 7632 7676 AEO 1997 6636 6694

  1. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2507.55,2372.5,2255.7,2160.8,2087.8,2022.1,1952.75,1890.7,1850.55,1825,1799.45,1781.2,1766.6,1759.3,1777.55,1788.5,1806.75,1861.5 "AEO

  2. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 2018 2055 AEO 1997 2362 2307

  3. Table 6. Petroleum Net Imports, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Net Imports, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2935 3201 3362 3504 3657 3738 3880 3993 4099 4212 4303 4398 4475 4541 4584 4639 4668 4672 AEO 1995 2953 3157 3281 3489 3610 3741 3818 3920 4000 4103 4208 4303 4362 4420 4442 4460 4460 AEO 1996 3011 3106 3219 3398 3519 3679 3807 3891 3979 4070 4165 4212 4260 4289 4303 4322 4325 4347 4344 AEO 1997 3099 3245 3497

  4. Next Update: November 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy for load, actual and projected by North American Electric Reliability Corporation Assessment Area, 1990-2014 actual, 2015-2016 projected thousands of megawatthours Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015E 2016E FRCC 142,502 146,903 147,464 153,468 159,861 169,021 173,377 175,557 188,384 188,598 196,561 200,134 211,116 219,021 220,335 226,544 230,115

  5. Next Update: November 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    4.A. Summer net internal demand, capacity resources, and capacity margins by North American Electric Reliability Corporation Region 1999 through 2014 actual, 2015-2016 projected megawatts and percent Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015E 2016E FRCC 27,162 27,773 28,898 29,435 30,537 31,649 31,868 32,874 34,562 34,832 35,666 38,932 37,951 40,387 42,243 45,950

  6. Slide 1

    U.S. Energy Information Administration (EIA) Indexed Site

    Wind Industry: On the Move Denise Bode Chief Executive Officer American Wind Energy Association Market Market Update Update U.S. is World Leader in Wind Power With over 25,000 megawatts, the U.S. is now the #1 wind energy producer in the world. Global Wind Energy Council, January 2009 U.S. Wind Power Installations (MW) 0 5,000 10,000 15,000 20,000 25,000 30,000 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 annual cumulative Source: AWEA, January 2009 Nearly 8,500 MW

  7. Electric Power Annual 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 1. Net Energy for load, actual and projected by North American Electric Reliability Corporation Assessment Area, 1990-2011 actual, 2012-2016 projected thousands of megawatthours Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012E 2013E 2014E 2015E 2016E FRCC 142,502 146,903 147,464 153,468 159,861 169,021 173,377 175,557 188,384 188,598 196,561 200,134 211,116 219,021 220,335

  8. Electronic_Doc._Online_Corrospondence_and_Concurrence.pdf

    Energy Savers [EERE]

    Electronic Docket Room (e-Docket Room) Electronic Docket Room (e-Docket Room) E-Docket -- Browse Searchable Database of Current and Historical Applications Submitted to DOE (click SHOW for drop down menu) Authorizations/Orders Granted by the Department -- NOTE: 1977 thru 2013 will take you to an external link. 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

  9. Location of Natural Gas Production Facilities in the Gulf of Mexico

    U.S. Energy Information Administration (EIA) Indexed Site

    Location of Natural Gas Production Facilities in the Gulf of Mexico 2014 U.S. Energy Information Administration | Natural Gas Annual 102 1,179,714 4.6 Gulf of Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Dry Production: Table S12. Summary statistics for natural gas - Gulf of Mexico, 2010-2014 Gulf of Mexico - Table S12 Federal Offshore Production trillion cubic feet 0 1 2 3 4 5 6 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

  10. The Status of Clean Energy in the United States

    Energy Savers [EERE]

    The Status of Clean Energy in the United States Tribal Energy Program Review May 6, 2015 Travis Lowder, NREL 2 Lazard's Levelized Cost of Energy (LCOE) Estimates Source: Lazard 2013 3 Lazard's Capital Cost Estimates Source: Lazard 2013 4 EIA Estimates (2012 data) 5 Solar PV 6 Solar PV Installed Capacity and Weighted Average System Cost $0 $2 $4 $6 $8 $10 $12 0 1000 2000 3000 4000 5000 6000 7000 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Wtd. Avg. System Price ($/W)

  11. win0203SelUpdates.doc

    Gasoline and Diesel Fuel Update (EIA)

    November 2002 Short-Term Energy Outlook Figure WF1. U.S. Winter Natural Gas Demand (Year-to-Year Percent Change) Table WF1. Illustrative Consumer Prices and Expenditures for Heating Fuels During the Winter 1999-2000 2000-2001 2001-2002 2002-2003 Actual Actual Actual Base Forecast Natural Gas (Midwest) Consumption (mcf) 81.7 99.1 81.3 92.5 Avg. Price ($/mcf) 6.69 9.54 7.34 8.06 Expenditures ($) 546 945 597 746 Heating Oil (Northeast) Consumption (gals) 644 731 584 703 Avg. Price ($/gal) 1.16 1.37

  12. win0203SelUpdates.doc

    Gasoline and Diesel Fuel Update (EIA)

    December 2002 Short-Term Energy Outlook Figure WF1. U.S. Winter Natural Gas Demand (Year-to-Year Percent Change) Table WF1. Illustrative Consumer Prices and Expenditures for Heating Fuels During the Winter 1999-2000 2000-2001 2001-2002 2002-2003 Actual Actual Actual Base Forecast Natural Gas (Midwest) Consumption (mcf) 81.7 99.1 81.3 93.1 Avg. Price ($/mcf) 6.69 9.54 7.34 8.38 Expenditures ($) 546 945 597 780 Heating Oil (Northeast) Consumption (gals) 644 731 584 716 Avg. Price ($/gal) 1.16 1.37

  13. win0203SelUpdates.doc

    Gasoline and Diesel Fuel Update (EIA)

    January 2003 Short-Term Energy Outlook Figure WF1. U.S. Winter Natural Gas Demand (Year-to-Year Percent Change) Table WF1. Illustrative Consumer Prices and Expenditures for Heating Fuels During the Winter 1999-2000 2000-2001 2001-2002 2002-2003 Actual Actual Actual Base Forecast Natural Gas (Midwest) Consumption (mcf) 81.7 99.1 81.3 91.9 Avg. Price ($/mcf) 6.69 9.55 7.33 8.71 Expenditures ($) 546 946 596 800 Heating Oil (Northeast) Consumption (gals) 644 731 584 719 Avg. Price ($/gal) 1.16 1.37

  14. Louisiana (with State Offshore) Coalbed Methane Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Location of Natural Gas Production Facilities in the Gulf of Mexico 2014 U.S. Energy Information Administration | Natural Gas Annual 102 1,179,714 4.6 Gulf of Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Dry Production: Table S12. Summary statistics for natural gas - Gulf of Mexico, 2010-2014 Gulf of Mexico - Table S12 Federal Offshore Production trillion cubic feet 0 1 2 3 4 5 6 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

  15. Slide 1

    Gasoline and Diesel Fuel Update (EIA)

    Asian Natural Gas: A Softer Market is coming Presented at the U.S. EIA's International Natural Gas Workshop August 23, 2012 Robert Smith Principal Consultant, FGE Dubai The dissemination, distribution, or copying by any means whatsoever without FACTS Global Energy's prior written consent is strictly prohibited. 2 0 25 50 75 100 125 150 175 200 225 250 275 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 mmt Asia Europe Americas Middle East Global LNG Trade: 2000-2012 6% Global

  16. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Assessment Area,"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Assessment Area," ,"1990-2010 Actual, 2011-2015 Projected" ,"(Thousands of Megawatthours)" ,"Interconnection","NERC Regional Assesment Area" ,,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"2011E","2012E","2013E","2014E","2015E" ,"Eastern

  17. "Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO

  18. "Interconnection","NERC Regional Assesment Area"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy for load, actual and projected by North American Electric Reliability Corporation Assessment Area," "1990-2011 actual, 2012-2016 projected" "thousands of megawatthours" "Interconnection","NERC Regional Assesment Area" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,"2012E","2013E","2014E","2015E","2016E" "Eastern

  19. "January","NERC Regional Assesment Area"

    U.S. Energy Information Administration (EIA) Indexed Site

    A.1. January monthly peak hour demand, by North American Electric Reliability Corporation Assesment Area, " "1996-2011 actual, 2012-2013 projected" "megawatts" "January","NERC Regional Assesment Area" ,,"Actual" ,,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "Eastern Interconnection","FRCC",39860,37127,27122,38581,37521,40258,39675,45033,35545,41247,34464,38352,41705,44945,53093,46086

  20. District of Columbia Natural Gas Industrial Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 -- -- -- -- -- -- -- -- -- -- -- -- 2002 -- -- -- -- -- -- -- -- -- -- -- -- 2003 -- -- -- -- -- -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- -- -- -- -- -- -- 2008 -- -- -- -- -- -- -- -- -- -- -- -- 2009 -- -- -- -- -- -- -- -- -- -- -- -- 2010 -- -- -- -- -- -- -- -- -- -- -- -- 2011 -- -- -- -- --

  1. Microsoft Word - 6 LANL Comm. Ldrs Report 201.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... from each sector after excluding the DOE. 2001 2002 2003 2004 2005 2006 Sector of ... In addition, LANL's recent budget shortfalls seem to have increased anxiety among the ...

  2. Microsoft Word - S0155800-FY 2004 Status Report Revised 01-14...

    Office of Legacy Management (LM)

    All Zones and All Months at Depth for Years 2000 Through 2004 at the Monument Valley ... Measurements Obtained Throughout Years 2000, 2001, 2002 and 2004 at the Monument ...

  3. Table 1. State energy-related carbon dioxide emissions by year...

    U.S. Energy Information Administration (EIA) Indexed Site

    State energy-related carbon dioxide emissions by year (2000-2011)" "million metric tons of carbon dioxide" ,,,"Change" ,,,"2000 to 2011" "State",2000,2001,2002,...

  4. Buildings Energy Data Book: 2.5 Residential Construction and Housing Market

    Buildings Energy Data Book [EERE]

    2 Annual Home Improvement Loan Origination Volumes and Values, by Housing Vintage of Loan Applicant Housing Vintage 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 1990-2000 N/A N/A N/A N/A 49 74 93 95 74 36 23 20 1980-1989 105 103 95 86 117 190 224 235 196 113 75 65 1970-1979 242 231 214 186 144 270 306 320 277 173 123 107 1960-1969 178 165 153 134 97 172 191 200 168 102 70 62 1950-1959 135 123 113 96 147 249 268 279 234 139 93 81 1949 or earlier 126 113 100 84 (1) Total Volume 786

  5. Buildings Energy Data Book: 2.5 Residential Construction and Housing Market

    Buildings Energy Data Book [EERE]

    9 Annual Sales of Existing Homes, by Region (thousands) North- Mid- east west South West 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Source(s): HUD, US Housing Market Conditions: 3rd Quarter 2011, Nov. 2011, Exhibit 7: Existing Home Sales 1969-Present, p. 73. 868 1,163 1,914 1,211 5,156 817 1,076 1,860 1,154 4,907 1,006 1,327 2,235 1,084

  6. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    2 Commercial Site Renewable Energy Consumption (Quadrillion Btu) (1) Growth Rate Wood (2) Solar Thermal (3) Solar PV (3) GHP Total 2010-Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 0.110 0.035 0.010 N.A. 0.155 0.4% 0.110 0.035 0.009 N.A. 0.154 0.4% 0.110 0.035 0.009 N.A. 0.153 0.4% 0.110

  7. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    Commercial Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Average 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 (2) 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 27.39 10.47 27.48 21.15 27.10 10.45 27.73 21.01 27.56 10.32 27.04 21.10 27.52 10.45 27.28 21.18 27.86 10.05 26.41 21.06

  8. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    2 Commercial Energy Prices, by Year and Fuel Type ($2010) Electricity Natural Gas Distillate Oil Residual Oil ($/gal) ($/gal) 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 9.39 104.50 2.79 3.78 9.35 104.74 2.81 3.81 9.47 101.25 2.73 3.69 9.40 103.22 2.76 3.75 9.54 99.28 2.67 3.60 9.51 100.49 2.70

  9. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    6 Cost of an Electric Quad Used in the Buildings Sector ($2010 Billion) Residential Commercial Buildings Sector 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 11.82 11.82 11.82 11.94 11.68 11.82 10.59 10.83 10.70 11.41 11.58 11.48 11.68 11.33 11.51 11.49 10.77 11.15 11.71 11.67 11.69 11.72 11.52

  10. Buildings Energy Data Book: 5.8 Active Solar Systems

    Buildings Energy Data Book [EERE]

    0 Annual Installed Capacity of Photovoltaic Cells and Modules, Off-Grid and On-Grid (DC MW) On-Grid Off-Grid Total 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 Cumulative (1) Note(s): Source(s): 1) Cumulative grid-tied capacity as of 2007 differs from total estimate in Table 6.3.9. Sherwood, Larry. Interstate Renewable Energy Council. Personal Communication. July, 2008. 150.1 55.0 205.1 469.9 282.0 751.9 67.4 33.0 100.4 103.2 0.0 103.2 43.4 25.0 68.4 54.7 28.0 82.7 11.1 16.0 27.1 22.5

  11. Buildings Energy Data Book: 5.8 Active Solar Systems

    Buildings Energy Data Book [EERE]

    6 Annual Shipments of Photovoltaic Cells and Modules (Peak Kilowatts) Number of Year Companies Domestic Exports Total 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Source(s): EIA, Annual Energy Review 2010, Oct. 2011, Tables 10.8 and 10.9, p. 309-311. 66 524,252 462,252 986,504 101 601,133 681,427 1,282,560 41 206,511 130,757 337,268 46 280,475 237,209 517,684 19 78,346 102,770 181,116 29 134,465 92,451 226,916 19 45,313 66,778 112,091 20 48,664 60,693 109,357 21 19,838

  12. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,1.4699,1.4799,1.53,1.57,1.58,1.57,1.61,1.63,1.68,1.69,1.7,1.72,1.7,1.76,1.79,1.81,1.88,1.92 "AEO

  13. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47

  14. Table 16. Total Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO

  15. Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per barrel in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 16.69 16.43 16.99 17.66 18.28 19.06 19.89 20.72 21.65 22.61 23.51 24.29 24.90 25.60 26.30 27.00 27.64 28.16 AEO 1995 1993 14.90 16.41 16.90 17.45 18.00 18.53 19.13 19.65 20.16 20.63

  16. Table 3b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per barrel) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 17.06 17.21 18.24 19.43 20.64 22.12 23.76 25.52 27.51 29.67 31.86 34.00 36.05 38.36 40.78 43.29 45.88 48.37 AEO 1995 15.24 17.27 18.23 19.26 20.39 21.59 22.97 24.33 25.79 27.27 28.82 30.38 32.14 33.89 35.85 37.97 40.28 AEO 1996 17.16 17.74 18.59

  17. Table 5.22 Refiner Sales Prices and Refiner Margins for Selected Petroleum Products, 1995-2011 (Dollars per Gallon, Excluding Taxes)

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Refiner Sales Prices and Refiner Margins for Selected Petroleum Products, 1995-2011 (Dollars 1 per Gallon, Excluding Taxes) Product 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Sales Prices to Resellers: 2 Aviation Gasoline 0.975 1.055 1.065 0.912 1.007 1.330 1.256 1.146 1.288 1.627 2.076 2.490 2.758 3.342 2.480 2.874 3.739 Motor Gasoline .626 .713 .700 .526 .645 .963 .886 .828 1.002 1.288 1.670 1.969 2.182 2.586 1.767 2.165 2.867 Unleaded Regular .593

  18. Table 5.23 All Sellers Sales Prices for Selected Petroleum Products, 1994-2010 (Dollars per Gallon, Excluding Taxes)

    U.S. Energy Information Administration (EIA) Indexed Site

    3 All Sellers Sales Prices for Selected Petroleum Products, 1994-2010 (Dollars 1 per Gallon, Excluding Taxes) Product 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Sales Prices to Resellers 2 Motor Gasoline 0.602 0.630 0.715 0.703 0.530 0.645 0.966 0.888 0.832 1.001 1.288 1.675 1.973 2.186 2.587 1.773 2.169 Unleaded Regular .571 .599 .689 .677 .504 .621 .946 .868 .813 .982 1.271 1.659 1.956 2.165 2.570 1.753 2.151 Conventional 3 .565 .583 .672 .658 .484

  19. Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 2.44 2.48 2.57 2.66 2.70 2.79 2.84 2.92 3.04 3.16 3.25 3.36 3.51 3.60 3.77 3.91 3.97 4.08 AEO 1995 1993 2.39 2.48 2.42 2.45 2.45 2.53 2.59 2.78 2.91 3.10 3.24 3.38 3.47 3.53 3.61 3.68

  20. Table 8. Total Natural Gas Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Consumption, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",19.87,20.21,20.64,20.99,21.2,21.42,21.6,21.99,22.37,22.63,22.95,23.22,23.58,23.82,24.09,24.13,24.02,24.14 "AEO 1995",,20.82,20.66,20.85,21.21,21.65,21.95,22.12,22.25,22.43,22.62,22.87,23.08,23.36,23.61,24.08,24.23,24.59 "AEO

  1. Next Update: November 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Noncoincident peak load, by North American Electric Reliability Corporation Assessment Area, 1990-2014 actual, 2015-2016 projected megawatts Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015E 2016E FRCC 27,266 28,818 30,601 32,823 32,904 34,524 35,444 35,375 38,730 37,493 37,194 39,062 40,696 40,475 42,383 46,396 45,751 46,676 44,836 46,550 45,722 44,968 44,338 44,653

  2. Price for Natural Gas Pipeline and Distribution Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2000 2001 2002 2003 2004 2005 View History U.S. 2.97 3.55 NA -- -- -- 1967-2005 Alabama 3.13 4.90 NA -- -- -- 1967-2005 Alaska 1.34 1.84 NA -- -- -- 1970-2005 Arizona 3.61 3.96 NA -- -- -- 1967-2005 Arkansas 2.41 4.09 NA -- -- -- 1967-2005 California 3.62 4.70 NA -- -- -- 1967-2005 Colorado 3.89 3.86 NA -- -- 1967-2005 Connecticut 4.82 4.93 NA

  3. Price for Natural Gas Pipeline and Distribution Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2000 2001 2002 2003 2004 2005 View History U.S. 2.97 3.55 NA -- -- -- 1967-2005 Alabama 3.13 4.90 NA -- -- -- 1967-2005 Alaska 1.34 1.84 NA -- -- -- 1970-2005 Arizona 3.61 3.96 NA -- -- -- 1967-2005 Arkansas 2.41 4.09 NA -- -- -- 1967-2005 California 3.62 4.70 NA -- -- -- 1967-2005 Colorado 3.89 3.86 NA -- -- 1967-2005 Connecticut 4.82 4.93 NA

  4. table01.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    2. Noncoincident Peak Load, by North American Electric Reliability Corporation Assessment Area, 1990-2010 Actual, 2011-2015 Projected (Megawatts) Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 FRCC 27,266 28,818 30,601 32,823 32,904 34,524 35,444 35,375 38,730 37,493 37,194 39,062 40,696 40,475 42,383 46,396 45,751 46,676 44,836 NPCC 44,116 46,594 43,658 46,706 47,581 47,705 45,094 49,269 49,566 52,855

  5. Electric Power Annual 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Noncoincident peak load, by North American Electric Reliability Corporation Assessment Area, 1990-2011 actual, 2012-2016 projected megawatts Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012E 2013E 2014E 2015E 2016E FRCC 27,266 28,818 30,601 32,823 32,904 34,524 35,444 35,375 38,730 37,493 37,194 39,062 40,696 40,475 42,383 46,396 45,751 46,676 44,836 46,550 45,722 44,968 45,613

  6. Electric Power Annual 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Summer net internal demand, capacity resources, and capacity margins by North American Electric Reliability Corporation Region 1999 through 2011 actual, 2012-2016 projected megawatts and percent Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012E 2013E 2014E 2015E 2016E FRCC 27,162 27,773 28,898 29,435 30,537 31,649 31,868 32,874 34,562 34,832 35,666 38,932 37,951 40,387 42,243 45,950

  7. Next Update: November 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Next Update: November 2013 megawatts January NERC Regional Assesment Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 FRCC 39,860 37,127 27,122 38,581 37,521 40,258 39,675 45,033 35,545 41,247 34,464 38,352 41,705 44,945 53,093 46,086 NPCC 41,680 41,208 40,009 44,199 45,227 43,553 42,039 45,987 66,215 47,041 43,661 45,002 46,803 45,047 43,849 45,395 Balance of Eastern Region 322,095 335,954 307,784 343,981 347,724 349,937 340,525 377,419 371,550 381,698

  8. Presentation title: This can be up to 2 lines

    U.S. Energy Information Administration (EIA) Indexed Site

    Genealogy of major U.S. refiners 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Amoco SOHIO BP ARCO Mapco Williams Clark Refining 1/89 12/98 4/00 3/98 Orion Diamond Shamrock Ultramar k 12/96 7/03 Ultramar Diamond Shamrock (UDS) Total North America UDS 9/97 Valero Salomon (Basis) Valero Williams BP BP b BP-Husky Refining LLC (jv) Husky Huntway 5/97 6/01 9/05 Valero Premcor g Valero Valero Valero 12/01 7/94 e 12/98 f Carlyle Group y Coastal 3/03 d 12/88 a 6/01 o Sun Company

  9. 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Figure 1. Uranium concentrate production in the United States, 1996 - 1st quarter 2016 pounds U 3 O 8 0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 5,000,000 5,500,000 6,000,000 6,500,000 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 P2016 1st quarter 2nd quarter 3rd quarter 4th quarter P = Preliminary data. Source: U.S. Energy Information Administration: Form EIA-851A and Form EIA-851Q,

  10. monthly_peak_bymonth_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    A.1. January Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area, 1996-2010 Actual, 2011-2012 Projected (Megawatts) January NERC Regional Assesment Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011E 2012E FRCC 39,860 37,127 27,122 38,581 37,521 40,258 39,675 45,033 35,545 41,247 34,464 38,352 41,705 44,945 53,093 46,839 47,613 NPCC 41,680 41,208 40,009 44,199 45,227 43,553 42,039 45,987 66,215 47,041 43,661 45,002 46,803

  11. peak_load_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Noncoincident Peak Load, by North American Electric Reliability Corporation Assessment Area, 1990-2010 Actual, 2011-2015 Projected (Megawatts) Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 FRCC 27,266 28,818 30,601 32,823 32,904 34,524 35,444 35,375 38,730 37,493 37,194 39,062 40,696 40,475 42,383 46,396 45,751 46,676 44,836 NPCC 44,116 46,594 43,658 46,706 47,581 47,705 45,094 49,269 49,566 52,855

  12. summer_capacity_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 FRCC 27,162 27,773 28,898 29,435 30,537 31,649 31,868 32,874 34,562 34,832 35,666 38,932 37,951 40,387 42,243 45,950 45,345 46,434 44,660 46,263 NPCC 46,016 45,952 46,007 46,380 47,465 48,290 48,950 50,240 51,760 53,450 54,270 55,888 55,164 53,936 51,580 57,402 60,879 58,221 59,896 55,730 Balance of Eastern Region 332,679 337,297 341,869 349,984

  13. 2007 CBECS Large Hospital Building List of Tables

    Gasoline and Diesel Fuel Update (EIA)

    Figure 1. Uranium concentrate production in the United States, 1996 - 1st quarter 2016 pounds U 3 O 8 0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 5,000,000 5,500,000 6,000,000 6,500,000 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 P2016 1st quarter 2nd quarter 3rd quarter 4th quarter P = Preliminary data. Source: U.S. Energy Information Administration: Form EIA-851A and Form EIA-851Q,

  14. "Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Residential Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",10.31,10.36,10.36,10.37,10.38,10.4,10.4,10.41,10.43,10.43,10.44,10.45,10.46,10.49,10.51,10.53,10.56,10.6 "AEO 1995",,10.96,10.8,10.81,10.81,10.79,10.77,10.75,10.73,10.72,10.7,10.7,10.69,10.7,10.72,10.75,10.8,10.85 "AEO

  15. "Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",6.82,6.87,6.94,7,7.06,7.13,7.16,7.22,7.27,7.32,7.36,7.38,7.41,7.45,7.47,7.5,7.51,7.55 "AEO 1995",,6.94,6.9,6.95,6.99,7.02,7.05,7.08,7.09,7.11,7.13,7.15,7.17,7.19,7.22,7.26,7.3,7.34 "AEO

  16. "Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Transportation Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,25.86,26.15,26.5,26.88,27.28,27.66,27.99,28.25,28.51,28.72,28.94 "AEO

  17. "Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected"

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Natural Gas Price, Electric Power Sector, Actual vs. Projected" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,2.44,2.48,2.57,2.66,2.7,2.79,2.84,2.92,3.04,3.16,3.25,3.36,3.51,3.6,3.77,3.91,3.97,4.08 "AEO

  18. 1st Quarter 2016 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Figure 1. Uranium concentrate production in the United States, 1996 - 1st quarter 2016 pounds U 3 O 8 0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 5,000,000 5,500,000 6,000,000 6,500,000 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 P2016 1st quarter 2nd quarter 3rd quarter 4th quarter P = Preliminary data. Source: U.S. Energy Information Administration: Form EIA-851A and Form EIA-851Q,

  19. Natural Gas Winter Outlook 2000-2001

    Reports and Publications (EIA)

    2000-01-01

    This article is based on the Winter Fuels Outlook published in the 4th Quarter Short-Term Energy Outlook and discusses the supply and demand outlook from October 2000 through March 2001.

  20. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars, cents per kilowatt-hour) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 ...

  1. Slide 1

    U.S. Energy Information Administration (EIA) Indexed Site

    Changes in Crude Oil Prices 0 20 40 60 80 100 120 140 160 180 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 ...

  2. Banks Lake Fishery Evaluation Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Polacek, Matt; Knuttgen, Kamia; Shipley, Rochelle

    2003-11-01

    The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. Fiscal Year (FY) 2001 of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. FY 2002 was used to continue seasonal fish and lakewide creel surveys and adjust methods and protocols as needed. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 meters deep, with 16-17 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until August when dissolved oxygen dropped near or below 5 mg/L below 20-meters deep. Secchi depths ranged from 2.5-8 meters and varied by location and date. Nearshore and offshore fish surveys were conducted in October 2002 and May and July 2003 using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Yellow Perch Perca flavescens (32 %) and cottid spp. (22 %) dominated the nearshore species composition in October; however, by May yellow perch (12 %) were the third most common species followed by smallmouth bass Micropterous dolomieui (34 %) and lake whitefish Coregonus clupeaformis (14 %). Lake whitefish dominated the offshore catch during October (78 %) and May (81 %). Fish diet analysis indicated that juvenile fishes consumed primarily insects and zooplankton, while adult piscivores consumed cottids spp. and yellow perch most frequently. For FY 2002, the following creel statistics are comprehensive through August 31, 2003. The highest angling pressure occurred in June 2003, when anglers were primarily targeting walleye and smallmouth bass. Boat anglers utilized Steamboat State Park more frequently than any other boat ramp on Banks Lake. Shore anglers used the rock jetty at Coulee City Park 76 % of the time, with highest use occurring from November through April. An estimated total of 11,915 ({+-}140 SD) smallmouth bass, 6,412 ({+-}59 SD) walleye, 5,470 ({+-}260 SD) rainbow trout, and 1,949 ({+-}118 SD) yellow perch were harvested from Banks Lake in FY 2002. Only 3 kokanee were reported in the catch during the FY 2002 creel survey. In the future, data from the seasonal surveys and creel will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The BLFEP will also evaluate the success of several rearing and stocking strategies for hatchery kokanee in Banks Lake.

  3. Kootenai River Focus Watershed Coordination, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Munson, Bob; Munson, Vicki; Rogers, Rox

    2003-10-01

    The Kootenai River Network Inc. (KRN) was incorporated in Montana in early 1995 with a mission ''to involve stakeholders in the protection and restoration of the chemical, physical and biological integrity of the Kootenai River Basin waters''. The KRN operates with funding from donations, membership dues, private, state and federal grants, and with funding through the Bonneville Power Administration (BPA) for a Focus Watershed Coordinator Program. The Focus Watershed Program is administered to KRN as of October 2001, through a Memorandum of Understanding. Katie Randall resigned her position as Watershed Coordinator in late January 2003 and Munson Consulting was contracted to fill that position through the BPA contract period ending May 30, 2003. To improve communications with in the Kootenai River watershed, the board and staff engaged watershed stakeholders in a full day KRN watershed conference on May 15 and 16 in Bonners Ferry, Idaho. This Annual General Meeting was a tremendous success with over 75 participants representing over 40 citizen groups, tribes and state/provincial/federal agencies from throughout northern Montana and Idaho as well as British Columbia and Alberta. Membership in the KRN increased during the course of the BPA 02/03 grant period. The board of directors grew in numbers during this same time frame and an Advisory Council was formed to assist in transboundary efforts while developing two reorganized KRN committees (Habitat/Restoration/Monitoring (HRM) and Communication/Education/Outreach (CEO)). These committees will serve pivotal roles in communications, outreach, and education about watershed issues, as well as habitat restoration work being accomplished throughout the entire watershed. During this BPA grant period, the KRN has capitalized on the transboundary interest in the Kootenai River watershed. Jim and Laura Duncan of Kimberley, British Columbia, have been instrumental volunteers who have acted as Canadian liaisons to the KRN. As a result, restoration work is in the planning stages for Canadian tributaries that flow into the Moyie River in northern Idaho and the Yaak River in northwest Montana.

  4. Forrest Ranch Management and Implementation, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Smith, Brent

    2004-01-01

    Through their John Day Basin Office, the Confederated Tribes of Warm Springs Reservation of Oregon (Tribes) acquired the Forrest Ranch during July of 2002. The property consists of two parcels located in the John Day subbasin within the Columbia basin. The mainstem parcel consists of 3,503 acres and is located 1/2 mile to the east of Prairie City, Oregon on the mainstem of the John Day River. The middle fork parcel consists of 820 acres and is located one mile to the west of the town of Austin, OR on the middle fork John Day River. The Forrest Ranch Project is under a memorandum of agreement with the Bonneville Power Administration (BPA) to provide an annual written report generally describing the real property interests of the project and management activities undertaken or in progress. The Forrest Ranch acquisition was funded by BPA as part of their program to protect, mitigate, and enhance fish and wildlife habitat affected by the operation of their hydroelectric facilities on the Columbia River and its tributaries. Following lengthy negotiations with the BPA and property owner, the Tribes were able to conclude the acquisition of the Forrest Ranch in July of 2002. The intent of the acquisition project was to partially mitigate fish and wildlife impacts for the John Day Dam on the Columbia River as outlined in the Northwest Power Planning Council's Wildlife Program (NPPC 1994, section 11.1, section 7.6). While the Tribes hold fee-title to the property, the BPA has assured a level of program funding through a memorandum of agreement and annual statement of work. As early as 1997, the Tribes identified this property as a priority for restoration in the John Day basin. In 2000, the Tribes arranged an agreement with the landowner to seek funds for the acquisition of both the Middle Fork and upper Mainstem John Day River holdings of Mr. John Forrest. This property had been a priority of not only the Tribes, but of many other basin natural resource agencies. The contract period was the first year of the program with December 2001 through July 2nd 2002 being previous to acquisition of the property. The majority of the activities conducted under the contract period were spent on O&M and pre acquisition activities.

  5. Earth Sciences Division Research Summaries 2002-2003

    SciTech Connect (OSTI)

    Bodvarsson, G.S.

    2003-11-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climate change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4) Environmental Remediation Technology; and (5) Climate Variability and Carbon Management. These programs draw from each of ESD's disciplinary departments: Microbial Ecology and Environmental Engineering, Geophysics and Geomechanics, Geochemistry, and Hydrogeology and Reservoir Dynamics. Short descriptions of these departments are provided as introductory material. A list of publications for the period from January 2002 to June 2003, along with a listing of our personnel, are appended to the end of this report.

  6. Colville Tribal Fish Hatchery, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Arteburn, John; Christensen, David

    2003-03-01

    Federal hydropower projects as well as private power utility systems have had a major negative impact upon anadromous fish resources that once flourished in the Columbia River and it's tributaries. Several areas have been completely blocked to anadromous fish by dams, destroying the primary food resource (salmon) for many native people forcing them to rely heavily upon resident fish to replace these lost resources. The Colville Tribal Fish Hatchery is an artificial production program that addresses the loss of anadromous fish resources in the Upper Columbia Sub-Region within the ''blocked area'' created by the construction of Chief Joseph and Grand Coulee Dams. This project enhances resident fisheries located in the Intermountain and Columbia Cascade Provinces, specifically within the Colville Reservation portion of the Upper Columbia, SanPoil and Oakanogan Sub-Basins. The project partially mitigates for anadromous fish losses through protection/augmentation of resident fish populations to enhance fishery potential (i.e. in-place, out-of-kind mitigation) pursuant to Resident Fish Substitution Policy of the Northwest Power Planning Councils Fish and Wildlife Program. The hatchery was accepted into the Council's Fish and Wildlife Program in 1984 and the hatchery was completed in 1990. The Colville Tribal Hatchery (CTH) is located on the northern bank of the Columbia River just down stream of the town of Bridgeport, Washington that is just down stream of Chief Joseph Dam. The hatchery is located on land owned by the Colville Tribes. The minimum production quota for this facility is 22,679 kg (50,000 lbs.) of trout annually. All fish produced are released into reservation waters, including boundary waters in an effort to provide a successful subsistence/recreational fishery for Colville Tribal members and provide for a successful nonmember sport fishery. The majority of the fish distributed from the facility are intended to support ''carry-over'' fisheries. Fish produced at the facility are intended to be of sufficient quality and quantity to meet specific monitoring and evaluation goals and objectives outlines in the 2002 statement of work (SOW).

  7. Forrest Ranch Acquisition, Annual Report 2001-2002.

    SciTech Connect (OSTI)

    Smith, Brent

    2003-08-01

    Through their John Day Basin Office, the Confederated Tribes of Warm Springs Reservation of Oregon (Tribes) acquired the Forrest Ranch during July of 2002. The property consists of two parcels located in the John Day subbasin within the Columbia basin. The mainstem parcel consists of 3,503 acres and is located 1/2 mile to the east of Prairie City, Oregon on the mainstem of the John Day River. The middle fork parcel consists of 820 acres and is located one mile to the west of the town of Austin, OR on the middle fork John Day River. The Forrest Ranch Project is under a memorandum of agreement with the Bonneville Power Administration (BPA) to provide an annual written report generally describing the real property interests of the project and management activities undertaken or in progress. The Forrest Ranch acquisition was funded by BPA as part of their program to protect, mitigate, and enhance fish and wildlife habitat affected by the operation of their hydroelectric facilities on the Columbia River and its tributaries. Following lengthy negotiations with the BPA and property owner, the Tribes were able to conclude the acquisition of the Forrest Ranch in July of 2002. The intent of the acquisition project was to partially mitigate fish and wildlife impacts for the John Day Dam on the Columbia River as outlined in the Northwest Power Planning Council's Wildlife Program (NPPC 1994, section 11.1, section 7.6). While the Tribes hold fee-title to the property, the BPA has assured a level of program funding through a memorandum of agreement and annual statement of work. As early as 1997, the Tribes identified this property as a priority for restoration in the John Day basin. In 2000, the Tribes arranged an agreement with the landowner to seek funds for the acquisition of both the Middle Fork and upper Mainstem John Day River holdings of Mr. John Forrest. This property had been a priority of not only the Tribes, but of many other basin natural resource agencies. The contract period was the first year of the program with December 2001 through July 2nd 2002 being previous to acquisition of the property. The majority of the activities conducted under the contract period were spent on O&M and pre acquisition activities.

  8. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1.50 1.55 1.64 1.73 1.78 1.82 1.92 2.01 2.13 2.22 2.30 2.41 2.46 2.64 2.78 2.90 3.12 3.30 AEO 1995 1.42 1.46 1.49 1.55 1.59 1.62 1.67 1.76 1.80 1.89 1.97 2.05 2.13 2.21 2.28 2.38 2.50 AEO 1996 1.35 1.35 1.37 1.39 1.42 1.46 1.50 1.56 1.62 1.67 1.75

  9. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Average Electricity Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars, cents per kilowatt-hour in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 6.80 6.80 6.90 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20 7.20 7.20 7.30 7.30 7.40 7.50 7.60 AEO 1995 1993 6.80 6.80 6.70 6.70 6.70 6.70 6.70 6.80 6.80 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20

  10. Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 12.0 12.1

  11. Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.2 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9

  12. Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 29.4 29.6

  13. Table 2. Real Gross Domestic Product Growth Trends, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Gross Domestic Product Growth Trends, Projected vs. Actual Projected Real GDP Growth Trend (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 3.09 3.15 2.86 2.78 2.73 2.65 2.62 2.60 2.56 2.53 2.52 2.49 2.45 2.41 2.40 2.36 2.32 2.29 AEO 1995 3.66 2.77 2.53 2.71 2.67 2.61 2.55 2.48 2.46 2.45 2.45 2.43 2.39 2.35 2.31 2.27 2.24 AEO 1996 2.61

  14. Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 29.3

  15. Table 22. Energy Intensity, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity, Projected vs. Actual Projected (quadrillion Btu / $Billion 2005 Chained GDP) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 10.9 10.7 10.6 10.5 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 AEO 1995 10.5 10.4 10.3 10.1 10.0 9.8 9.7 9.6 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 AEO 1996 10.4 10.3 10.1 10.0 9.8 9.7 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 8.7 8.6 8.5 AEO 1997 10.0 9.9 9.8 9.7 9.6 9.5 9.4

  16. Table 7b. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2.49 2.60 2.76 2.93 3.05 3.24 3.39 3.60 3.86 4.15 4.40 4.70 5.08 5.39 5.85 6.27 6.59 7.01 AEO 1995 2.44 2.61 2.61 2.70 2.78 2.95 3.11 3.44 3.72 4.10 4.43 4.78 5.07 5.33 5.64 5.95 6.23 AEO 1996 2.08 2.19 2.20 2.39 2.47 2.54 2.64 2.74 2.84 2.95 3.09

  17. Table 9. Natural Gas Production, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Production, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 17.71 17.68 17.84 18.12 18.25 18.43 18.58 18.93 19.28 19.51 19.80 19.92 20.13 20.18 20.38 20.35 20.16 20.19 AEO 1995 18.28 17.98 17.92 18.21 18.63 18.92 19.08 19.20 19.36 19.52 19.75 19.94 20.17 20.28 20.60 20.59 20.88 AEO 1996 18.90 19.15 19.52 19.59 19.59 19.65 19.73 19.97 20.36 20.82 21.25 21.37 21.68

  18. Next Update: November 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    megawatts January NERC Regional Assesment Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 FRCC 39,860 37,127 27,122 38,581 37,521 40,258 39,675 45,033 35,545 41,247 34,464 38,352 41,705 44,945 53,093 46,086 38,518 36,733 38,895 NPCC 41,680 41,208 40,009 44,199 45,227 43,553 42,039 45,987 66,215 47,041 43,661 45,002 46,803 45,047 43,849 45,395 43,827 45,545 47,072 Balance of Eastern Region 322,095 335,954 307,784 343,981 347,724 349,937 340,525

  19. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Table 1. State energy-related carbon dioxide emissions by year (2000-2013) million metric tons carbon dioxide Change (2000-2013) State 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 percent Absolute Alabama 142.1 133.5 138.3 139.1 141.3 142.9 145.1 146.5 138.9 119.4 131.8 128.9 122.2 119.8 -15.7% -22.3 Alaska 44.3 43.4 43.5 43.6 46.7 48.0 45.7 43.9 39.3 37.7 38.5 38.4 37.8 36.1 -18.5% -8.2 Arizona 86.0 88.3 87.6 89.4 96.2 96.3 99.2 100.9 101.2 92.2 93.9 91.9 89.9 93.8

  20. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Table 5. Per capita energy-related carbon dioxide emissions by state (2000-2013) metric tons carbon dioxide per person Change (2000-2013) State 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 percent Absolute Alabama 31.9 29.9 30.9 30.9 31.2 31.3 31.3 31.4 29.4 25.1 27.5 26.9 25.4 24.8 -22.4% -7.1 Alaska 70.6 68.4 67.8 67.3 70.9 72.0 67.7 64.6 57.2 53.9 53.9 53.1 51.8 49.0 -30.6% -21.6 Arizona 16.7 16.7 16.2 16.2 17.0 16.5 16.5 16.4 16.1 14.5 14.6 14.2 13.7 14.1 -15.2%

  1. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Table 9. Net electricity trade index and primary electricity source for states with least and most energy-related carbon dioxide emissions per capita (2000-2013) 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Primary 2011 2012 2013 Source Least CO2 per capita New York 0.9 1.0 0.9 0.9 0.9 0.9 1.0 1.0 1.0 0.9 0.9 1.0 1.0 1.0 Natural Gas Vermont 1.6 1.4 1.3 1.3 1.2 1.2 1.5 1.3 1.5 1.7 1.5 1.6 3.0 3.2 Nuclear California 0.8 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Natural Gas

  2. Colville Tribal Fish Hatchery, 2000-2001 Annual Report.

    SciTech Connect (OSTI)

    Arteburn, John; Christensen, David

    2003-03-01

    Federal hydropower projects as well as private power utility systems have had a devastating impact upon anadromous fish resources that once flourished in the Columbia River and it's tributaries. Several areas were completely blocked to anadromous fish by dams, causing the native people who's number one food resource was salmon to rely entirely upon resident fish to replace lost fisheries resources. The Colville Tribal Fish Hatchery is an artificial production program to partially mitigate for anadromous fish losses in the ''Blocked Area'' above Chief Joseph and Grand Coulee Dams pursuant to Resident Fish Substitution Policy of the Northwest Power Planning Councils Fish and Wildlife Program. The hatchery was accepted into the Council's Fish and Wildlife Program in 1984 as a resident fish substitution measure and the hatchery was completed in 1990. The minimum production quota for this facility is 22,679 kg (50,000 lbs.) of trout. To achieve this quota the Colville Tribal Hatchery was scheduled to produce 174,000 fingerling rainbow trout (5 grams/fish), 330,000 sub-yearling rainbow trout (15 grams/fish), 80,000 legal size rainbow trout (90 grams/fish), 196,000 fingerling brook trout (5 grams/fish), 330,000 subyearling brook trout (15 grams/fish) and 60,000 lahontan cutthroat trout (15 grams/fish) in 2001. All fish produced are released into reservation waters, including boundary waters in an effort to provide a successful subsistence /recreational fishery for Colville Tribal members as well as a successful non-member sport fishery. The majority of the fish distributed from the facility are intended to provide a ''carry-over'' fishery. Fish produced at the facility are intended to be capable of contributing to the natural production component of the reservation fish populations. Contribution to the natural production component will be achieved by producing and releasing fish of sufficient quality and quantity for fish to survive to spawning maturity, to spawn naturally in existing and future available habitat (i.e. natural supplementation), while meeting other program objectives. In addition to the hatchery specific goals detailed above, hatchery personnel will actively participate in the Northwest Power Planning Council program, participate in the Columbia Basin Fish and Wildlife Foundation, Resident Fish Committee, and other associated committees and Ad Hoc groups that may be formed to address resident fish issues in the blocked area above Chief Joseph and Grand Coulee Dams.

  3. Price of U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 NA NA 2001 -- -- -- -- -- -- -- -- -- -- -- -- 2002 -- -- -- -- -- -- -- -- -- -- -- -- 2003 -- -- -- -- -- -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- -- -- -- -- -- -- 2008 -- -- -- -- -- -- -- -- -- -- -- --

  4. Price of U.S. Liquefied Natural Gas Imports From The United Arab Emirates

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 3.34 3.57 1997 3.74 -- -- -- -- -- -- -- -- -- -- -- 1998 -- -- -- -- -- -- -- -- -- -- 2.78 2.47 1999 -- -- -- -- -- -- -- -- -- -- 3.03 -- 2000 -- -- -- -- -- 3.53 -- -- -- -- -- -- 2001 -- -- -- -- -- -- -- -- -- -- -- -- 2002 -- -- -- -- -- -- -- -- -- -- -- -- 2003 -- -- -- -- -- -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- --

  5. Franklin Completed Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May Jun July Aug Sep Oct Nov Dec 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012...

  6. Origin State Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W...

  7. Price of U.S. Liquefied Natural Gas Imports From Malaysia (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1999 -- -- -- -- -- -- 2.36 -- -- -- 2000 -- -- 2001 -- -- -- -- -- -- -- -- -- -- -- -- 2002 -- -- -- -- 3.43 -- -- -- -- -- -- -- 2003 -- -- -- -- -- -- 4.97 -- -- -- -- -- 2004 -- -- -- -- 4.91 -- 4.94 -- 4.91 -- -- -- 2005 5.35 -- 6.67 -- -- -- -- -- -- 14.47 -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- -- -- -- -- -- -- 2008 -- -- -- -- -- -- -- -- -- -- -- -- 2009 -- -- -- -- -- -- -- --

  8. El Paso, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1998 1999 2000 2001 2002 View History Pipeline Volumes 996 NA NA NA NA 1998-2002 Pipeline Prices 2.09 1998-1998

  9. Penitas, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1996 1998 1999 2000 2001 2002 View History Pipeline Volumes 253 40 NA NA NA NA 1996-2002 Pipeline Prices 1.72 2.04 1996-1998

  10. Lake Roosevelt Volunteer Net Pens, Lake Roosevelt Rainbow Trout Net Pens, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Smith, Gene

    2003-11-01

    The completion of Grand Coulee Dam for power production, flood control, and irrigation resulted in the creation of a blocked area above the dam and in the loss of anadromous fish. Because of lake level fluctuations required to meet the demands for water release or storage, native or indigenous fish were often threatened. For many years very little effort was given to stocking the waters above the dam. However, studies by fish biologists showed that there was a good food base capable of supporting rainbow and kokanee (Gangmark and Fulton 1949, Jagielo 1984, Scholz etal 1986, Peone etal 1990). Further studies indicated that artificial production might be a way of restoring or enhancing the fishery. In the 1980's volunteers experimented with net pens. The method involved putting fingerlings in net pens in the fall and rearing them into early summer before release. The result was an excellent harvest of healthy fish. The use of net pens to hold the fingerlings for approximately nine months appears to reduce predation and the possibility of entrainment during draw down and to relieve the hatcheries to open up available raceways for future production. The volunteer net pen program grew for a few years but raising funds to maintain the pens and purchase food became more and more difficult. In 1995 the volunteer net pen project (LRDA) was awarded a grant through the Northwest Power Planning Council's artificial production provisions.

  11. McKenzie River Focus Watershed Coordination, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Thrailkil, Jim

    2003-12-01

    BPA funding, in conjunction with contributions from numerous partners organizations, supports the McKenzie Watershed Council's efforts to coordinate restoration and monitoring programs of federal, state, local government, and residents within the watershed. A primary goal of the Council's program is to improve resource stewardship and conserve fish, wildlife, and water quality resources. The MWC will always have a baseline program centered on relationship building and information sharing. This watershed program is strengthened by the completion of the BPA funded Sub-basin Assessment, Conservation Strategy and the establishment of a Benchmarks system, thus, providing the MWC a prioritized framework for restoration efforts. Objectives for FY03 included: (1) Continued coordination of McKenzie Watershed activities among diverse groups that restore fish and wildlife habitat in the watershed, with a focus on the lower McKenzie, including private lands and the McKenzie-Willamette confluence area; (2) Influence behavior of watershed residents to benefit watershed function though a strategic and comprehensive outreach and education program, utilizing Assessment and Conservation Strategy information to provide a context for prioritized action; (3) Continue to maintain and sustain a highly functional watershed council; (4) Maintain and improve water quality concerns through the continuation of Council-sponsored monitoring and evaluation programs; and (5) Continue to secure other funding for watershed restoration and protection projects and council operations.

  12. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    McGowan, Vance

    2003-08-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream and 22.9 acres of habitat; (2) Conducting instream work activities in 3 streams to enhance habitat and/or restore natural channel dimensions, patterns or profiles; (3) Planting 31,733 plants along 3.7 stream miles, (4) Establishing 71 new photopoints and retaking 254 existing photopoint pictures; (5) Monitoring stream temperatures at 12 locations on 6 streams; (6) Completing riparian fence, water gap and other maintenance on 100.5 miles of project fences. Since initiation of the project in 1984 over 68.7 miles of anadromous fish bearing streams and 1,933 acres of habitat have been protected, enhanced and maintained.

  13. Yakima Tributary Access and Habitat Program, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Myra, D.; Ready, C.

    2003-12-01

    The Yakima Tributary Access and Habitat Program (YTAHP) was organized to restore salmonid passage to Yakima tributaries that historically supported salmonids and to improve habitat in areas where access is restored. This program intends to (a) screen unscreened diversion structures to prevent fish entrainment into artificial waterways; (b) provide for fish passage at man-made barriers, such as diversion dams, culverts, siphons and bridges; and (c) provide information and assistance to landowners interested in to contributing to the improvement of water quality, water reliability and stream habitat. The YTAHP developed from a number of groups actively engaged in watershed management, and/or habitat restoration within the Yakima River Basin. These groups include the Washington State Fish and Wildlife (WDFW), Kittitas County Conservation District (KCCD), North Yakima Conservation District (NYCD), Kittitas County Water Purveyors (KCWP), and Ahtanum Irrigation District (AID). The US Bureau of Reclamation (Reclamation) and Yakama Nation (YN) both participated in the development of the objectives of YTAHP. Other entities that will be involved during permitting or project review may include the YN, the federal Natural Resources Conservation Service (NRCS), the US Fish and Wildlife Service (USFWS), the National Marine Fisheries Service (NMFS), and US Army Corps of Engineers (COE). The objectives of YTAHP are listed below and also include subtasks detailed in the report: (1) Conduct Early Action Projects; (2) Review Strategic Plan; (3) Restore Access, including stream inventory, prioritization, implementation; and (4) Provide opportunities to improve habitat and conserve resources. The BPA YTAHP funding supported activities of the program which are described in this report. These activities are primarily related to objective 1 (conduct early action projects) and parts of objectives 2-4. The work supported by YTAHP funding will support a series of scheduled projects and be made larger by complementary funding through NRSC EQIP, Irrigation Efficiencies, WA State Salmon Recovery Funding Board and other local, state and federal programs. Projects completed FY-03: The Cooke Creek siphon and screen/bypass was completed on time and within budget. The Rosbach Farms project was completed in cooperation with the NRCS Environmental Quality Incentives Program and the KCCD's Irrigation Efficiencies Program. Tributary survey teams were trained and surveys of tributaries in Yakima and Kittitas counties commenced in December of 2002. By the end of September 2003 Cowiche Creek in Yakima County was completed as well as Coleman, Reecer, Currier, Dry, Cabin, Indian, and Jack Creeks in Kittitas County. A screen was installed on the Hernandez/Ringer diversion in cooperation with the NRCS office in Kittitas County. YTAHP submitted six applications to the Salmon Recovery Funding Board and three were selected and funded. Another Salmon Recovery Funding Board project awarded in 2000 to the Yakama Nation was transferred to the KCCD. Two miles of fencing of riparian zones on the north fork Ahtanum was completed by the North Yakima Conservation District in cooperation with the Department of Natural Resources and the Ahtanum Irrigation District and funded by US fish and Wildlife as part of YTAHP's outreach partnering. Completion of this year's effort has provided significant inroads to working on the private lands in two counties which will be vital to future efforts by YTAHP and others to protect and enhance Yakima River Basin habitat. 2003 saw the migration of the WEB site from MWH to the Kittitas County Conservation District and can be accessed at www.kccd.net.

  14. Hood River Monitoring and Evaluation Project, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Vaivoda, Alexis

    2004-02-01

    The Hood River Production Program Monitoring and Evaluation Project is co-managed by the Confederated Tribes of Warm Springs (CTWSRO) and the Oregon Department of Fish and Wildlife. The program is divided up to share responsibilities, provide efficiency, and avoid duplication. From October 2002 to September 2003 (FY 03) project strategies were implemented to monitor, protect, and restore anadromous fish and fish habitat in the Hood River subbasin. A description of the progress during FY 03 is reported here. Additionally an independent review of the entire program was completed in 2003. The purpose of the review was to determine if project goals and actions were achieved, look at critical uncertainties for present and future actions, determine cost effectiveness, and choose remedies that would increase program success. There were some immediate changes to the implementation of the project, but the bulk of the recommendations will be realized in coming years.

  15. Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Connor, Jason M.; McLellan, Jason G.; Butler, Chris

    2006-02-01

    In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. The project began addressing identified data gaps throughout the Blocked Area in 1999. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, Spokane River below Spokane Falls, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002 and 2003. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

  16. Coeur d'Alene Tribal Production Facility, Volume II of III, 2002-2003 Progress Report.

    SciTech Connect (OSTI)

    Anders, Paul

    2003-01-01

    This appendices covers the following reports: (1) Previous ISRP Reviews (Project 199004400) Implement Fisheries Enhancement Opportunities-Coeur d'Alene Reservation; (2) Step 1 review of the hatchery master plan (Memorandum from Mark Fritsch, Fish Production Coordinator, Draft version March 10, 2000); (3) Coeur d'Alene Tribe response to ISRP comments on Project No. 199004402; includes attachment A Water Quantity Report. This is an incomplete document Analysis of Well Yield Potential for a Portion of the Coeur d'Alene Reservation near Worley, Idaho, February 2001; (4) Coeur d'Alene Tribe Fisheries Program, Rainbow Trout Feasibility Report on the Coeur d'Alene Indian Reservation prepared by Ronald L. Peters, February 2001; (5) Coeur d'Alene Tribe response letter pursuant to the questions raised in the Step 1 review of the Coeur d'Alene Tribe Trout Production Facility from Ronald L. Peters, March 27, 2001 ; includes attachments Water quantity report (this is the complete report), Appendix A Logs for Test Wells and 1999 Worley West Park Well, letters from Ralston, Appendix B Cost of Rainbow Purchase Alternative; (6) NPPC response (memorandum from Mark Fritsch, March 28, 2001); (7) Response to NPPC (letter to Frank Cassidy, Jr., Chair, from Ernest L. Stensgar, April 18, 2001); (8) Final ISRP review (ISRP 2001-4: Mountain Columbia Final Report); (9) Response to ISRP comment (letter to Mark Walker, Director of Public Affairs, from Ronald Peters, May 7, 2001); (10) Final comments to the Fish 4 committee; (11) Scope of Work/Budget FY 2001-2004; (12) Letter from City of Worley concerning water service; (13) Letter to BPA regarding status of Step 1 package; (14) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1990 annual report; (15) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1991 annual report; and (16) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1992 annual report.

  17. Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Volkman, Jed

    2005-12-01

    In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reporting period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.

  18. Coeur d'Alene Tribal Production Facility, Volume I of III, 2002-2003 Progress Report.

    SciTech Connect (OSTI)

    Anders, Paul

    2003-01-01

    In fulfillment of the NWPPC's 3-Step Process for the implementation of new hatcheries in the Columbia Basin, this Step 1 submission package to the Council includes four items: (1) Cover letter from the Coeur d'Alene Tribe, Interdisciplinary Team Chair, and the USFWS; (2) References to key information (Attachments 1-4); (3) The updated Master Plan for the Tribe's native cutthroat restoration project; and (4) Appendices. In support of the Master Plan submitted by the Coeur d'Alene Tribe the reference chart (Item 2) was developed to allow reviewers to quickly access information necessary for accurate peer review. The Northwest Power Planning Council identified pertinent issues to be addressed in the master planning process for new artificial production facilities. References to this key information are provided in three attachments: (1) NWPPC Program language regarding the Master Planning Process, (2) Questions Identified in the September 1997 Council Policy, and (3) Program language identified by the Council's Independent Scientific Review Panel (ISRP). To meet the need for off-site mitigation for fish losses on the mainstem Columbia River, in a manner consistent with the objectives of the Council's Program, the Coeur d'Alene Tribe is proposing that the BPA fund the design, construction, operation, and maintenance of a trout production facility located adjacent to Coeur d'Alene Lake on the Coeur d'Alene Indian Reservation. The updated Master Plan (Item 3) represents the needs associated with the re-evaluation of the Coeur d'Alene Tribe's Trout Production Facility (No.199004402). This plan addresses issues and concerns expressed by the NWPPC as part of the issue summary for the Mountain Columbia provincial review, and the 3-step hatchery review process. Finally, item 4 (Appendices) documents the 3-Step process correspondence to date between the Coeur d'Alene Tribe and additional relevant entities. Item 4 provides a chronological account of previous ISRP reviews, official Coeur d'Alene fisheries program responses to a series of ISRP reviews, master planning documentation, and annual reports dating back to 1990. Collectively, the materials provided by the Coeur d'Alene Tribe in this Step-1 submission package comprehensively assesses key research, habitat improvement activities, and hatchery production issues to best protect and enhance native cutthroat trout populations and the historically and culturally important tribal fisheries they support.

  19. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Sears, Sheryl

    2004-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated Tribes (CCT), Spokane Tribe of Indians (STI) and Washington Department of Fish and Wildlife (WDFW) to develop and propose a comprehensive fishery management plan for Lake Roosevelt. The Rainbow Trout Habitat/Passage Improvement Project (LRHIP) was designed with goals directed towards increasing natural production while maintaining genetic integrity among current tributary stocks. The initial phase of the Lake Roosevelt Habitat Improvement Project (Phase I, baseline data collection: 1990-91) was focused on the assessment of limiting factors, including the quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other constraints. After the initial assessment of stream parameters, five streams meeting specific criteria were selected for habitat/passage improvement projects (Phase II, implementation -1992-1995). Four of these projects were on the Colville Indian Reservation South Nanamkin, North Nanamkin, Louie and Iron Creeks and one Blue Creek was on the Spokane Indian Reservation. At the completion of project habitat improvements, the final phase (Phase III, monitoring-1996-2000) began. This phase assessed the changes and determined the success achieved through the improvements. Data analysis showed that passage improvements are successful for increasing habitat availability and use. The results of in-stream habitat improvements were inconclusive. Project streams, to the last monitoring date, have shown increases in fish density following implementation of the improvements. In 2000 Bridge Creek, on the Colville Reservation was selected for the next phase of improvements. Data collection, including baseline stream survey and population data collection, was carried out during 2001 in preparation for the design and implementation of stream habitat/passage improvements. Agencies cooperating on the project include the Colville Confederated Tribes (CCT), Natural Resource Conservation Service (NRCS, Ferry County District), Ferry County Conservation District, and Ferry County. The Bonneville Power Administration (BPA) provided

  20. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2001-2002.

    SciTech Connect (OSTI)

    Sears, Sheryl

    2003-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated Tribes (CCT), Spokane Tribe of Indians (STI) and Washington Department of Fish and Wildlife (WDFW) to develop and propose a comprehensive fishery management plan for Lake Roosevelt. The Rainbow Trout Habitat/Passage Improvement Project (LRHIP) was designed with goals directed towards increasing natural production while maintaining genetic integrity among current tributary stocks. The initial phase of the Lake Roosevelt Habitat Improvement Project (Phase I, baseline data collection: 1990-91) was focused on the assessment of limiting factors, including the quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other constraints. After the initial assessment of stream parameters, five streams meeting specific criteria were selected for habitat/passage improvement projects (Phase II, implementation -1992-1995). Four of these projects were on the Colville Indian Reservation South Nanamkin, North Nanamkin, Louie and Iron Creeks and one Blue Creek was on the Spokane Indian Reservation. At the completion of project habitat improvements, the final phase (Phase III, monitoring-1996-2000) began. This phase assessed the changes and determined the success achieved through the improvements. Data analysis showed that passage improvements are successful for increasing habitat availability and use. The results of in-stream habitat improvements were inconclusive. Project streams, to the last monitoring date, have shown increases in fish density following implementation of the improvements. In 2000 Bridge Creek, on the Colville Reservation was selected for the next phase of improvements. Data collection, including baseline stream survey and population data collection, was carried out during 2001 in preparation for the design and implementation of stream habitat/passage improvements. Agencies cooperating on the project include the Colville Confederated Tribes (CCT), Natural Resource Conservation Service (NRCS, Ferry County District), Ferry County Conservation District, and Ferry County. The Bonneville Power Administration (BPA) provided

  1. Duck Valley Habitat Enhancement and Protection, 2001-2002 Progress Report.

    SciTech Connect (OSTI)

    Allen, Mattie H.; Sellman, Jake

    2003-03-01

    The Duck Valley Indian Reservation's Habitat Enhancement project is an ongoing project designed to enhance and protect critical riparian areas, natural springs, the Owhyee River and its tributaries, and native fish spawning areas on the Reservation. The project commenced in 1997 and addresses the Northwest Power Planning Council's measures 10.8C.2, 10.8C.3, and 10.8C.5 of the 1994 Columbia River Basin Fish and Wildlife Program. The performance period covers dates from April 2001 through August 2002.

  2. Mitigation for the Construction and Operation of Libby Dam, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Dunnigan, James L.; Marotz, Brian L.; DeShazer, Jay

    2003-06-01

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to ''protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries...'' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May, 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to redevelop fisheries and fisheries habitat in basin streams and lakes.

  3. Walla Walla River Basin Fish Habitat Enhancement Project, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Volkman, Jed; Sexton, Amy D.

    2003-04-01

    In 2001, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled six properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River. Since 1997, approximately 7 miles of critical salmonid habitat has been secured for restoration and protection under this project. Major accomplishments to date include the following: Secured approximately $250,000 in cost share; Secured 7 easements; Planted 30,000+ native plants; Installed 50,000+ cuttings; and Seeded 18 acres to native grass. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan. Basin-wide monitoring also included the deployment of 6 thermographs to collect summer stream temperatures.

  4. NSAC Members 2001 2002 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    1 2002 Nuclear Science Advisory Committee (NSAC) NSAC Home Meetings Members Charges... DOENSF Nuclear Science Advisory Committee Membership List 2001-2 Name Institution ...

  5. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Faler, Michael P.; Mendel, Glen W.; Fulton, Carl

    2003-06-01

    We collected, radio-tagged, and PIT-tagged 41 bull trout at the Tucannon River Hatchery trap from May 17, through June 14, 2002. An additional 65 bull trout were also collected and PIT tagged by June 24, at which time we ceased PIT tagging operations because water temperatures were reaching 16.0 C or higher on a regular basis. Six radio-tags were recovered shortly after tagging, and as a result, 35 remained in the river through November 30, 2002. During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon Subbasin. We began to observe some downstream movements of radio-tagged bull trout in mid to late September and throughout October. These movements appeared to be associated with post spawning migrations. As of November 30, radio tagged bull trout were relatively stationary, and distributed from the headwaters downstream to river mile 11.3, near Pataha Creek. None of the radio-tagged bull trout left the Tucannon Subbasin and entered the federal hydropower system on the mainstem Snake River. We conducted some initial transmission tests of submerged radio tags at depths of 25, 35, 45, and 55 ft. in Lower Monumental Pool to test our capability of detection at these depths. Equipment used included Lotek model MCFT-3A transmitters, an SRX 400 receiver, a 4 element Yagi antenna, and a Lotek ''H'' antenna. Test results indicated that depth transmission of these tags was poor; only the transmitter placed at 25 ft. was audibly detectable.

  6. Hydrologic Resources Management Program and Underground Test Area Project FY 2001-2002 Progress Report

    SciTech Connect (OSTI)

    Rose, T P; Kersting, A B; Harris, L J; Hudson, G B; Smith, D K; Williams, R W; Loewen, D R; Nelson, E J; Allen, P G; Ryerson, F J; Pawloski, G A; Laue, C A; Moran, J E

    2003-08-15

    This report contains highlights of FY 2001 and 2002 technical studies conducted by the Analytical and Nuclear Chemistry Division (ANCD) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work emphasizes the Defense Programs goal of responsible management of natural resources at the NTS, while UGTA-funded work focuses on defining the extent of radionuclide contamination in NTS groundwater resulting from underground nuclear testing. The report is organized on a topical basis, and contains eight chapters that reflect the range of technical work performed by LLNL-ANCD in support of HRMP and UGTA. Chapter 1 describes recent hot well sampling efforts at the NTS, and presents the results of chemical and isotopic analyses of groundwater samples from six near-field wells. These include the Cambric (UE-5n), Bilby (U-3cn PS No.2), Bourbon (UE-7nS), Nash (UE-2ce), Tybo/Benham (ER-20-5 No.3), and Almendro (U-19v PS No.1ds) sites. The data generated by the hot well program is vital to the development and validation of contaminant transport models at the NTS. Chapter 2 discusses the results of xenon isotope measurements of groundwater samples from the six near-field wells described in Chapter 1. This work demonstrates that fission xenon is present in the water at levels that are readily measurable and highlights the significant differences in xenon concentrations and isotopic abundances at different sites. These differences provide insight into the early cooling history of nuclear test cavities, and may assist in predicting the distribution of the source term in the near-field environment. Chapter 3 is an investigation of the distribution and abundance of actinides in a nuclear test cavity and chimney. This work demonstrates that early-time processes can widely disperse actinides at low concentrations outside the melt glass, implying that melt glass dissolution may not be the sole mechanism for the release of actinides to groundwater. The study also provides evidence for the isotopic fractionation of plutonium under the extreme conditions accompanying nuclear explosions. In Chapter 4, X-ray absorption spectroscopy measurements were used to determine the redox state of Fe and U in nuclear melt glass samples from the NTS. Both elements were found to occur in mixed valence states (Fe{sup 2+}/Fe{sup 3+} and U{sup 5+}/U{sup 6+}) in all samples. Comparison of the Fe and U redox states with published redox studies of synthetic glasses suggests that plutonium is predominantly in the Pu{sup 4+} oxidation state in the melt glasses. In Chapter 5, alpha autoradiography is used in a NTS field study to investigate the spatial distribution and transport of actinides in soils, and to help identify the size distribution and morphology of the actinide particles. It was found that {alpha}-emitting radionuclides have moved to at least 39 cm depth in the soil profile, far deeper than expected. The methodology that was developed could easily be applied to other field locations where actinides are dispersed in the soil zone. Chapter 6 summarizes the development of a method for measuring environmental levels of {sup 241}Am on the multi-collector inductively coupled plasma mass spectrometer. The method detection limit of 0.017 pCi/L is about two times lower than the best analyses possible by alpha spectrometry. Chapter 7 describes a chlorine-36 study of vertical groundwater transport processes in Frenchman Flat. Mass balance calculations developed from a {sup 36}Cl mixing model at well ER-5-3 No.2 are used to estimate vertical transport fluxes and average vertical flow velocities through the thick volcanic section underlying the basin. The study also documents the variations in {sup 36}Cl/Cl ratios within the three princ

  7. Next Update: November 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    4.B Winter net internal demand, capacity resources, and capacity margins by North American Electric Reliability Corporation Region, 2001/2002-2014/2015 actual, 2015-2017 projected megawatts and percent Interconnection NERC Regional Assesment Area 2001/ 2002 2002/ 2003 2003/ 2004 2004/ 2005 2005/ 2006 2006/ 2007 2007/ 2008 2008/ 2009 2009/ 2010 2010/ 2011 2011/ 2012 2012/ 2013 2013/ 2014 2014/ 2015 2015/ 2016E 2016/ 2017E FRCC 39,699 42,001 36,229 41,449 42,493 45,993 46,093 45,042 51,703 45,954

  8. NSAC Members 2000 2001 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    0 2001 Nuclear Science Advisory Committee (NSAC) NSAC Home Meetings Members Charges... DOENSF Nuclear Science Advisory Committee Membership List 2000-1 Name Institution ...

  9. Second-Tier Database for Ecosystem Focus, 2000-2001 Annual Report.

    SciTech Connect (OSTI)

    Van Holmes, Chris; Muongchanh, Christine; Anderson, James J.

    2001-11-01

    The Second-Tier Database for Ecosystem Focus (Contract 00004124) provides direct and timely public access to Columbia Basin environmental, operational, fishery and riverine data resources for federal, state, public and private entities. The Second-Tier Database known as Data Access in Realtime (DART) does not duplicate services provided by other government entities in the region. Rather, it integrates public data for effective access, consideration and application.

  10. Status of Natural Gas Pipeline System Capacity Entering the 2000-2001 Heating Season

    Reports and Publications (EIA)

    2000-01-01

    This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

  11. Hood River and Pelton Ladder Evaluation Studies, Annual Report 2000-2001.

    SciTech Connect (OSTI)

    Olsen, Erik

    2009-09-01

    The Bonneville Power Administration (BPA) funded the development of two master plans which outline the rationale, and general approach, for implementing a defined group of projects that are an integral part of a comprehensive watershed goal to 'Protect, enhance and restore wild and natural populations of anadromous and resident fish within the Hood River Subbasin'. The Hood River Production Master Plan and the Pelton Ladder Master Plan were completed in 1991 and subsequently approved by the Northwest Power Planning Council in 1992. Action items identified in the two master plans, as well as in a later document entitled 'Hood River/Pelton Ladder Master Agreement' (ODFW and CTWSRO Undated), are designed to achieve two biological fish objectives: (1) to increase production of wild summer and winter steelhead (Oncorhynchus mykiss) to levels commensurate with the subbasins current carrying capacity and (2) re-establishing a self-sustaining population of spring chinook salmon (Oncorhynchus tshawytscha). Numerical fish objectives for subbasin escapement, spawner escapement, and subbasin harvest are defined for each of these species in Coccoli (2000). Several projects are presently funded by the BPA to achieve the Hood River subbasin's numerical fish objectives for summer and winter steelhead and spring chinook salmon. They include BPA project numbers 1998-021-00 (Hood River Fish Habitat), 1998-053-03 (Hood River Production Program - CTWSRO: M&E), 1998-053-07 (Parkdale Fish Facility), 1998-053-08 (Powerdale/Oak Springs O&M), and 1998-053-12 (Hood River Steelhead Genetics Study). Collectively, they are implemented under the umbrella of what has come to be defined as the Hood River Production Program (HRPP). The HRPP is jointly implemented by the Oregon Department of Fish and Wildlife (ODFW) and The Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO). Strategies for achieving the HRPP's biological fish objectives for the Hood River subbasin were initially devised based on various assumptions about (1) subbasin carrying capacity, (2) survival rates for selected life history stages, and (3) historic and current escapements of wild, natural, and hatchery stocks of anadromous salmonids to the Hood River subbasin. The Oregon Department of Fish and Wildlife began funding a monitoring and evaluation (M&E) project in December 1991 to collect the quantitative biological information needed to (1) more accurately assess the validity of these assumptions and (2) evaluate the proposed hatchery supplementation component of the HRPP. Bonneville Power Administration assumed funding of the M&E project in August 1992. The M&E project was initially confined to sampling anadromous salmonids escaping to an adult trapping facility operated at Powerdale Dam; which is located at River Mile (RM) 4.5 on the mainstem of the Hood River. Stock specific life history and biological data was collected to (1) monitor subbasin spawner escapements and (2) collect pre-implementation data critical to evaluating the newly proposed HRPP's potential biological impact on indigenous populations of resident fish. The scope of the M&E project was expanded in 1994 to collect the data needed to quantify (1) subbasin smolt production and carrying capacity, (2) smolt to adult survival rates, and (3) the spatial distribution of indigenous populations of summer and winter steelhead, spring and fall chinook salmon, and coho salmon. A creel was incorporated into the M&E project in December 1996 to evaluate the HRPP with respect to its defined subbasin and spawner escapement objectives for Hood River stocks of wild and hatchery summer and winter steelhead and for natural and Deschutes stock hatchery spring chinook salmon. In 1996, the M&E project also began monitoring streamflow at various locations in the Hood River subbasin. Streamflow data will be used to correlate subbasin smolt production with summer streamflows. Data collected from 1991-1999 is reported in the following annual progress reports: Olsen et al. (1994), Olsen et al

  12. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Ward, David L.; Kern, J. Chris; Hughes, Michele L.

    2004-02-01

    We report on our progress from April 2002 through March 2003 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

  13. Assessment of Salmonids and Their Habitat Conditions in the Walla Walla River Basin within Washington, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Mendel, Glen; Trump, Jeremy; Gembala, Mike

    2003-09-01

    This study began in 1998 to assess salmonid distribution, relative abundance, genetics, and the condition of salmonid habitats in the Walla Walla River basin. Stream flows in the Walla Walla Basin continue to show a general trend that begins with a sharp decline in discharge in late June, followed by low summer flows and then an increase in discharge in fall and winter. Manual stream flow measurements at Pepper bridge showed an increase in 2002 of 110-185% from July-September, over flows from 2001. This increase is apparently associated with a 2000 settlement agreement between the U.S. Fish and Wildlife Service (USFWS) and the irrigation districts to leave minimum flows in the river. Stream temperatures in the Walla Walla basin were similar to those in 2001. Upper montane tributaries maintained maximum summer temperatures below 65 F, while sites in mid and lower Touchet and Walla Walla rivers frequently had daily maximum temperatures well above 68 F (high enough to inhibit migration in adult and juvenile salmonids, and to sharply reduce survival of their embryos and fry). These high temperatures are possibly the most critical physiological barrier to salmonids in the Walla Walla basin, but other factors (available water, turbidity or sediment deposition, cover, lack of pools, etc.) also play a part in salmonid survival, migration, and breeding success. The increased flows in the Walla Walla, due to the 2000 settlement agreement, have not shown consistent improvements to stream temperatures. Rainbow/steelhead (Oncorhynchus mykiss) trout represent the most common salmonid in the basin. Densities of Rainbow/steelhead in the Walla Walla River from the Washington/Oregon stateline to Mojonnier Rd. dropped slightly from 2001, but are still considerably higher than before the 2000 settlement agreement. Other salmonids including; bull trout (Salvelinus confluentus), chinook salmon (Oncorhynchus tshawytscha), mountain whitefish (Prosopium williamsoni), and brown trout (Salmo trutta) had low densities, and limited distribution throughout the basin. A large return of adult spring chinook to the Touchet River drainage in 2001 produced higher densities of juvenile chinook in 2002 than have been seen in recent years, especially in the Wolf Fork. The adult return in 2002 was substantially less than what was seen in 2001. Due to poor water conditions and trouble getting personnel hired, spawning surveys were limited in 2002. Surveyors found only one redd in four Walla Walla River tributaries (Cottonwood Ck., East Little Walla Walla, West Little Walla Walla, and Mill Ck.), and 59 redds in Touchet River tributaries (10 in the North Fork Touchet, 30 in the South Fork Touchet, and 19 in the Wolf Fork). Bull trout spawning surveys in the upper Touchet River tributaries found a total of 125 redds and 150 live fish (92 redds and 75 fish in the Wolf Fork, 2 redds and 1 fish in the Burnt Fork, 0 redds and 1 fish in the South Fork Touchet, 29 redds and 71 fish in the North Fork Touchet, and 2 redds and 2 fish in Lewis Ck.). A preliminary steelhead genetics analysis was completed as part of this project. Results indicate differences between naturally produced steelhead and those produced in the hatchery. There were also apparent genetic differences among the naturally produced fish from different areas of the basin. Detailed results are reported in Bumgarner et al. 2003. Recommendations for assessment activities in 2003 included: (1) continue to monitor the Walla Walla River (focusing from the stateline to McDonald Rd.), the Mill Ck system, and the Little Walla Walla System. (2) reevaluate Whiskey Ck. for abundance and distribution of salmonids, and Lewis Ck. for bull trout density and distribution. (3) select or develop a habitat survey protocol and begin to conduct habitat inventory and assessment surveys. (4) summarize bull trout data for Mill Ck, South Fork Touchet, and Lewis Ck. (5) begin to evaluate temperature and flow data to assess if the habitat conditions exist for spring chinook in the Touchet River.

  14. Washington Department of Fish and Wildlife Fish Program Hatcheries Division: Ford Hatchery, Annual Report 2001-2002.

    SciTech Connect (OSTI)

    Lewis, Mike; Polacek, Matt; Knuttgen, Kamia

    2002-11-01

    The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. The first year of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 m deep, with 19-20 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until mid summer when dissolved oxygen dropped near or below 5 mg/L below 20-m deep. Secchi depths ranged from 3-10 m and varied by location and date. Nearshore and offshore fish surveys were conducted in May and July using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Smallmouth bass Micropterous dolomieui (24%) and lake whitefish Coregonus clupeaformis (20%) dominated the nearshore species composition in May; however, by July yellow perch Perca flavescens (26%) were the second most common species to smallmouth bass (30%). Lake whitefish dominated the offshore catch during May (72%) and July (90%). The May hydroacoustic survey revealed highest densities of fish in the upper 1/3 of the water column in the mid- to northern sections of the reservoir near Steamboat Rock. In the future, data from seasonal surveys will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The BLFEP will also evaluate the success of several rearing and stocking strategies for hatchery kokanee in Banks Lake.

  15. Fisheries Enhancement on the Coeur d'Alene Indian Reservation; Hangman Creek, Annual Report 2001-2002.

    SciTech Connect (OSTI)

    Peters, Ronald; Kinkead, Bruce; Stanger, Mark

    2003-07-01

    Historically, Hangman Creek produced Chinook salmon (Oncorhynchus tshawytscha) and Steelhead trout (Oncorhynchus mykiss) for the Upper Columbia Basin Tribes. One weir, located at the mouth of Hangman Creek was reported to catch 1,000 salmon a day for a period of 30 days a year (Scholz et al. 1985). The current town of Tekoa, Washington, near the state border with Idaho, was the location of one of the principle anadromous fisheries for the Coeur d'Alene Tribe (Scholz et al. 1985). The construction, in 1909, of Little Falls Dam, which was not equipped with a fish passage system, blocked anadromous fish access to the Hangman Watershed. The fisheries were further removed with the construction of Chief Joseph and Grand Coulee Dams. As a result, the Coeur d'Alene Indian Tribe was forced to rely more heavily on native fish stocks such as Redband trout (Oncorhynchus mykiss gairdneri), Westslope Cutthroat trout (O. clarki lewisii), Bull trout (Salvelinus confluentus) and other terrestrial wildlife. Historically, Redband and Cutthroat trout comprised a great deal of the Coeur d'Alene Tribe's diet (Power 1997).

  16. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Ward, David L.; Kern, J. Chris; Hughes, Michele L.

    2003-12-01

    We report on our progress from April 2001 through March 2002 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

  17. Influences of Stocking Salmon Carcass Analogs on Salmonids in Yakima River Tributaries, 2001-2002 Technical Report.

    SciTech Connect (OSTI)

    Pearsons, Todd N.; Johnson, Christopher L.

    2003-04-01

    The benefits that marine derived nutrients from adult salmon carcasses provide to juvenile salmonids are increasingly being recognized. Current estimates suggest that only 6-7% of marine-derived nitrogen and phosphorus that were historically available to salmonids in the Pacific Northwest are currently available. Food limitation may be a major constraint limiting the restoration of salmonids. A variety of methods have been proposed to offset this nutrient deficit including: allowing greater salmon spawning escapement, stocking hatchery salmon carcasses, and stocking inorganic nutrients. Unfortunately, each of these methods has some ecological or socio-economic shortcoming. We intend to overcome many of these shortcomings by making and evaluating a pathogen free product that simulates a salmon carcass (analog). Abundant sources of marine derived nutrients are available such as fish offal from commercial fishing and salmon carcasses from hatcheries. However, a method for recycling these nutrients into a pathogen free analog that degrades at a similar rate as a natural salmon carcass has never been developed. We endeavored to (1) develop a salmon carcass analog that will increase the food available to salmonids, (2) determine the pathways that salmonids use to acquire food from analogs, and (3) determine the benefits to salmonids and the potential for application to salmonid restoration. We used a before-after-control-impact-paired design in six tributaries of the upper Yakima basin to determine the utility of stocking carcass analogs. Our preliminary results suggest that the introduction of carcass analogs into food-limited streams can be used to restore food pathways previously provided by anadromous salmon. The analogs probably reproduced both of the major food pathways that salmon carcasses produce: direct consumption and food chain enhancement. Trout and salmon fed directly on the carcass analogs during the late summer and presumably benefited from the increased invertebrate biomass later in the year. Future reports will analyze whether any benefits are statistically detectable. The risks of using carcass analogs also appear to be low. Pathogens appear to be killed in the manufacturing process of the analogs. In addition, preliminary results suggest that fish exposed to the analogs did not have higher incidences of pathogens. The water quality was also not degraded by the analog additions with the exception of a temporary surface film. Finally, our anecdotal observations, suggested that there was not an increase in the number of predators during the first year of analog distribution. In summary, the risks of analog placement appear to be low but the benefits appear to be high. All results should be considered preliminary until further analyses and field work are conducted.

  18. Lake Roosevelt Fisheries Evaluation Program; Movements and Growth of Marked Walleye Recaptured in Lake Roosevelt, 2000-2001 Annual Report.

    SciTech Connect (OSTI)

    McLellan, Holly; Scholz, Allan

    2002-03-01

    Walleye (Stizostedion vitreum) have been marked with floy tags in Lake Roosevelt since 1997 to estimate abundance, distribution and movement trends. In 2000, walleye were collected and marked during the spawning run in the Spokane River through electrofishing and angling to supplement movement and growth data collected in previous years. Walleye were also collected and marked during the 2000 and 2001 Kettle Falls Governor's Cup Walleye Tournaments. Seventy-six tag returns were recovered in 2000 and twenty-three in 2001. Walleye migrated into the Spokane River to spawn in mid April and early May. The majority of marked walleye were recovered within 25 km of their original marking location, with a few traveling long distances between recovery locations. Data also verified earlier results that walleye establish summer home ranges. Some walleye remained in the Spokane River, while others moved downstream, or upstream after entering the mainstem of Lake Roosevelt. Those moving upstream moved as far north as Keenlyside Dam in British Columbia (245 km). Growth data indicated similar trends exhibited in the past. Walleye growth and mortality rates were consistent with other walleye producing waters. Walleye condition was slightly below average when compared to other systems.

  19. John Day Basin Spring Chinook Salmon Escapement and Productivity Monitoring; Fish Research Project Oregon, 2000-2001 Annual Report.

    SciTech Connect (OSTI)

    Carmichael, Richard W.; Claire, Glenda M.; Seals, Jason

    2002-01-01

    The four objectives of this report are: (1) Estimate annual spawner escapement and number of spring chinook salmon redds in the John Day River basin; (2) Determine sex ratio, age composition, length-at-age of spawners, and proportion of natural spawners that are hatchery origin strays; (3) Determine adequacy of historic index surveys for indexing spawner abundance and for detecting changes in spawner distribution through time; and (4) Estimate smolt-to-adult survival for spring chinook salmon emigrating from the John Day River basin.

  20. Buildings Energy Data Book: 3.10 Hotels/Motels

    Buildings Energy Data Book [EERE]

    2 Lodging Industy, Sales and Occupancy Rates Year Sales ($2010 billion) Avg. Occupancy Rate Avg. Room Rate ($2010) 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Note(s): Source(s): 1) Based on properties with 15 or more rooms The American Hotel & Lodging Association, 2002 Lodging Industy Profile, p. 2-3; The American Hotel & Lodging Association, 2003 Lodging Industy Profile, p. 2-3, 2002; The American Hotel & Lodging Association, 2004 Lodging Industy Profile, p. 2-4, 2004; The

  1. Pipeline transportation and underground storage are vital and complementary components of the U

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Underground Storage Expansions in 2003 Energy Information Administration, Office of Oil and Gas, September 2004 1 Figure 1. Source: Energy Information Administration, Office of Oil and Gas, Natural Gas Pipeline Capacity and Construction Databases. 8,460 10,423 6,787 6,517 6,983 9,262 12,848 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 1998 1999 2000 2,001 2002 2003 2004 (Scheduled) Million Cubic Feet per Day Natural Gas Pipeline Capacity Additions, 1998-2004 Figure 1. Source:

  2. Electric Power Annual 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2001-2011 Actual, 2012-2016 Projected megawatts and percent Interconnection NERC Regional Assesment Area 2001/ 2002 2002/ 2003 2003/ 2004 2004/ 2005 2005/ 2006 2006/ 2007 2007/ 2008 2008/ 2009 2009/ 2010 2010/ 2011 2011/ 2012 2012/ 2013E 2013/ 2014E 2014/ 2015E 2015/ 2016E 2016/ 2017E FRCC 39,699 42,001 36,229 41,449 42,493 45,993 46,093 45,042 51,703 45,954 39,924

  3. "Interconnection","NERC Regional Assesment Area","Net Internal Demand[1] -- Winter"

    U.S. Energy Information Administration (EIA) Indexed Site

    B Winter net internal demand, capacity resources, and capacity margins by North American Electric Reliability Corporation" "Region, 2001-2011 actual, 2012-2016 projected" "megawatts and percent" "Interconnection","NERC Regional Assesment Area","Net Internal Demand[1] -- Winter" ,,"Actual",,,,,,,,,,,"Projected" ,,"2001/ 2002","2002/ 2003","2003/ 2004","2004/ 2005","2005/

  4. 5

    Office of Legacy Management (LM)

    04 Site Management Plan Page 5-1 5.0 Project Schedules and Milestones (FY 2005) 5.1 Establishing Project Schedules and Milestones The SMP establishes the overall plan for remedial actions at the MMTS and milestones against which progress can be measured. The SMP also documents the overall plan for remedial actions at the MVP Site, which has been deleted. The SMP was first prepared in 1995 and was revised in 1998, 1999, 2000, 2001, 2002, and 2003. As stated in the 2003 SMP, Section 5.0,

  5. Effects of Cougar Predation and Nutrition on Mule Deer Population Declines in the IM Province of the Columbia Basin, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Wielgus, Robert; Shipley, Lisa; Myers, Woodrow

    2003-09-01

    Construction of the Grand Coulee and Chief Joseph dams has resulted in inundation and loss of 29,125 total habitat units for mule deer and irrigation agriculture in many parts the Intermountain Province (IM) of the Columbia Basin. Mule deer in the Shrub-Steppe are ranked high priority target species for mitigation and management and are declining in most portions of the sub basins of the IM. Reasons for the decline are unknown but believed to be related to habitat changes resulting from dams and irrigation agriculture. White-tailed deer are believed to be increasing throughout the basin because of habitat changes brought about by the dams and irrigation agriculture. Recent research (1997-2000) in the NE IM and adjacent Canadian portions of the Columbia Basin (conducted by this author and funded by the Columbia Basin Fish & Wildlife Compensation Program B.C.), suggest that the increasing white-tailed deer populations (because of dams and irrigation agriculture) are resulting in increased predation by cougars on mule deer (apparent competition or alternate prey hypothesis). The apparent competition hypothesis predicts that as alternate prey (white-tailed deer) densities increase, so do densities of predators, resulting in increased incidental predation on sympatric native prey (mule deer). Apparent competition can result in population declines and even extirpation of native prey in some cases. Such a phenomenon may account for declines of mule deer in the IM and throughout arid and semi-arid West where irrigation agriculture is practiced. We will test the apparent competition hypothesis by conducting a controlled, replicated 'press' experiment in at least 2 treatment and 2 control areas of the IM sub basins by reducing densities of white-tailed deer and observing any changes in cougar predation on mule deer. Deer densities will be monitored by WADFW personnel using annual aerial surveys and/or other trend indices. Predation rates and population growth rates of deer will be determined using radio telemetry. Changes in cougar functional (kills/unit time), aggregative (cougars/unit area), numerical (offspring/cougar), and total (predation rate) responses on deer will also be monitored using radio telemetry. The experiment will be conducted and completed over a period of 5 years. Results will be used to determine the cause and try to halt the mule deer population declines. Results will also guide deer mitigation and management in the IM and throughout the North American West.

  6. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Johnson, R.; McKinstry, C.; Simmons, C.

    2003-01-01

    Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the second year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The 2002 study period extended from May 18 through July 30. The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. The prototype system consisted of six strobe lights affixed to an aluminum frame suspended vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, were aimed to illuminate a specific region directly upstream of the barge. Three light level treatments were used: 6 of 6 lights on, 3 of 6 lights on, and all lights off. These three treatment conditions were applied for an entire 24-hr day and were randomly assigned within a 3-day block throughout the study period. A seven-transducer splitbeam hydroacoustic system was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. Two of the seven transducers were mounted to the frame containing the strobe lights and were oriented horizontally. The remaining five transducers were spaced approximately 4 m apart on individual floating frames upstream of the barge, with the transducers looking vertically downward.

  7. Survival Estimates for the Passage of Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Muir, William D.; Smith, Steven G.; Zabel, Richard W.

    2003-07-01

    In 2002, the National Marine Fisheries Service and the University of Washington completed the tenth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder tags (PIT tags). We PIT tagged and released a total of 19,891 hatchery steelhead at Lower Granite Dam. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the ''Single-Release Model''). Primary research objectives in 2002 were to (1) estimate reach and project survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling chinook salmon O. tshawytscha and steelhead O. mykiss; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2002 for PIT-tagged yearling chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures; details on methodology and statistical models used are provided in previous reports cited here. Results for summer-migrating chinook salmon will be reported separately.

  8. Conceptual Spawning Habitat Model to Aid in ESA Recovery Plans for Snake River Fall Chinook Salmon, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Geist, David

    2005-09-01

    The goal of this project is to develop a spawning habitat model that can be used to determine the physical habitat factors that are necessary to define the production potential for fall chinook salmon that spawn in large mainstem rivers like the Columbia River's Hanford Reach and Snake River. This project addresses RPA 155 in the NMFS 2000 Biological Opinion: Action 155: BPA, working with BOR, the Corps, EPA, and USGS, shall develop a program to: (1) Identify mainstem habitat sampling reaches, survey conditions, describe cause-and-effect relationships, and identify research needs; (2) Develop improvement plans for all mainstem reaches; and (3) Initiate improvements in three mainstem reaches. During FY 2003 we continued to collect and analyze information on fall chinook salmon spawning habitat characteristics in the Hanford Reach that will be used to address RPA 155, i.e., items 1-3 above. For example, in FY 2003: (1) We continued to survey spawning habitat in the Hanford Reach and develop a 2-dimensional hydraulic and habitat model that will be capable of predicting suitability of fall chinook salmon habitat in the Hanford Reach; (2) Monitor how hydro operations altered the physical and chemical characteristics of the river and the hyporheic zone within fall chinook salmon spawning areas in the Hanford Reach; (3) Published a paper on the impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon (Dauble et al. 2003). This paper was made possible with data collected on this project; (4) Continued to analyze data collected in previous years that will ultimately be used to identify cause-and-effect relationships and identify research needs that will assist managers in the improvement of fall chinook habitat quality in main-stem reaches. During FY 2004 we plan to: (1) Complete preliminary reporting and submit papers based on the results of the project through FY 2004. Although we have proposed additional analysis of data be conducted in FY 2005, we anticipate a significant number of key papers being prepared and submitted in FY 2004 which will go toward identifying the data gaps this RPA is intended to address; (2) Make available data from this project for use on Project 2003-038-00 ('Evaluate restoration potential of Snake River fall chinook salmon') which is a BPA-funded project that will start in FY 2004; and (3) Present results of our work at regional and national meetings in order to facilitate technology transfer and information sharing. The objective of this project is to define the production potential of fall chinook salmon that spawn in the Hanford Reach. We will provide fisheries and resource managers with the information they need to determine if the Hanford Reach fall chinook salmon population is indeed healthy, and whether this population will be capable of seeding other satellite populations in the future. We will accomplish this purpose by continuing our on-going research at determining the carrying capacity of the Hanford Reach for producing fall chinook salmon under current operational scenarios, and then begin an assessment of whether the Reach is functioning as a model of a normative river as is widely believed. The product of our research will be a better understanding of the key habitat features for mainstem populations of anadromous salmonids, as well as a better understanding of the measures that must be taken to ensure long-term protection of the Hanford Reach fall chinook population. Although the project was originally funded in FY 1994, it was significantly redefined in FY 2000. At that time five tasks were proposed to accomplish the project objective. The purpose of this progress report is to briefly describe the activities that have been completed on each of the five tasks from FY 2000 through FY 2003.

  9. Assessment of High Rates of Precocious Male Maturation in a Spring Chinook Salmon Supplementation Hatchery Program, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Larsen, Donald; Beckman, Brian; Cooper, Kathleen

    2003-08-01

    The Yakima River Spring Chinook Salmon Supplementation Project in Washington State is currently one of the most ambitious efforts to enhance a natural salmon population in the United States. Over the past five years we have conducted research to characterize the developmental physiology of naturally- and hatchery-reared wild progeny spring chinook salmon (Oncorhynchus tshawytscha) in the Yakima River basin. Fish were sampled at the main hatchery in Cle Elum, at remote acclimation sites and, during smolt migration, at downstream dams. Throughout these studies the maturational state of all fish was characterized using combinations of visual and histological analysis of testes, gonadosomatic index (GSI), and measurement of plasma 11-ketotestosterone (11-KT). We established that a plasma 11-KT threshold of 0.8 ng/ml could be used to designate male fish as either immature or precociously maturing approximately 8 months prior to final maturation (1-2 months prior to release as 'smolts'). Our analyses revealed that 37-49% of the hatchery-reared males from this program undergo precocious maturation at 2 years of age and a proportion of these fish appear to residualize in the upper Yakima River basin throughout the summer. An unnaturally high incidence of precocious male maturation may result in loss of potential returning anadromous adults, skewing of female: male sex ratios, ecological, and genetic impacts on wild populations and other native species. Precocious male maturation is significantly influenced by growth rate at specific times of year and future studies will be conducted to alter maturation rates through seasonal growth rate manipulations.

  10. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Connolly, Patrick J.

    2003-12-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the second year of at least a three-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  11. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Connolly, Patrick J.

    2003-01-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1914. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for future genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the first year of a three-year study, this report is restricted to describing our work on the first two objectives only.

  12. Effects of Cougar Predation and Nutrition on Mule Deer Population Declines in the Intermountain Province of the Columbia Basin, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Wielgus, Robert B.; Shipley, Lisa

    2002-07-01

    Construction of the Grand Coulee and Chief Joseph dams has resulted in inundation and loss of 29,125 total habitat units for mule deer and irrigation agriculture in many parts the Intermountain Province (IM) of the Columbia Basin. Mule deer in the Shrub-Steppe are ranked high priority target species for mitigation and management and are declining in most portions of the subbasins of the IM. Reasons for the decline are unknown but believed to be related to habitat changes resulting from dams and irrigation agriculture. White-tailed deer are not ranked as target species and are believed to be increasing throughout the basin because of habitat changes brought about by the dams and irrigation agriculture. Recent research (1997-2000) in the NE IM and adjacent Canadian portions of the Columbia Basin (conducted by this author and funded by the Columbia Basin Fish & Wildlife Compensation Program B.C.), suggest that the increasing white-tailed deer populations (because of dams and irrigation agriculture) are resulting in increased predation by cougars on mule deer (apparent competition or alternate prey hypothesis). The apparent competition hypothesis predicts that as alternate prey (white-tailed deer) densities increase, so do densities of predators, resulting in increased incidental predation on sympatric native prey (mule deer). Apparent competition can result in population declines and even extirpation of native prey in some cases. Such a phenomenon may account for declines of mule deer in the IM and throughout arid and semi-arid West where irrigation agriculture is practiced. We will test the apparent competition hypothesis by conducting a controlled, replicated ''press'' experiment in at least 2 treatment and 2 control areas of the IM subbasins by reducing densities of white-tailed deer and observing any changes in cougar predation on mule deer. Deer densities will be monitored by WADFW personnel using annual aerial surveys and/or other trend indices. Predation rates and population growth rates of deer will be determined using radio telemetry. Changes in cougar functional (kills/unit time), aggregative (cougars/unit area), numerical (offspring/cougar), and total (predation rate) responses on deer will also be monitored using radio telemetry. The experiment will be conducted and completed over a period of 5 years. Results will be used to determine the cause and try to halt the mule deer population declines. Results will also guide deer mitigation and management in the IM and throughout the North American West.

  13. Lake Roosevelt Fisheries Evaluation Program : Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt Annual Report 2000-2001.

    SciTech Connect (OSTI)

    McLellan, Holly J.; Scholz, Allan T.

    2001-07-01

    Lake Roosevelt has been stocked with Whatcom stock kokanee since 1989 to mitigate for anadromous salmon losses caused by the construction of Grand Coulee Dam. The primary objective of the hatchery plantings was to create a self-sustaining recreational fishery. Due to low return numbers, it was hypothesized a native stock of kokanee might perform better than the coastal Whatcom strain. Therefore, kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Matched pair releases of Whatcom stock and Meadow Creek kokanee were made from Sherman Creek in late June 2000. Stock performance between Lake Whatcom and Meadow Creek kokanee was evaluated through three performance measures (1) returns to Sherman Creek, the primary egg collection facility, (2) returns to other tributaries, indicating availability for angler harvest, and (3) returns to the creel. A secondary objective was to evaluate the numbers collected at downstream fish passage facilities. Age 2 kokanee were collected during five passes through the reservoir, which included 89 tributaries between August 17th and November 7th, 2000. Sherman Creek was sampled once a week because it was the primary egg collection location. A total of 2,789 age 2 kokanee were collected, in which 2,658 (95%) were collected at Sherman Creek. Chi-square analysis indicated the Meadow Creek kokanee returned to Sherman Creek in significantly higher numbers compared to the Whatcom stock ({chi}{sup 2} = 734.4; P < 0.01). Reservoir wide recoveries indicated similar results ({chi}{sup 2} = 733.1; P < 0.01). No age 2 kokanee were collected during creel surveys. Age 3 kokanee are expected to recruit to the creel in 2001. No age 2 kokanee were collected at the fish passage facilities due to a 170 mm size restriction at the fish passage centers. Age 3 kokanee are expected to be collected at the fish passage centers during 2001. Stock performance cannot be properly evaluated until 2001, when age 3 kokanee are expected to return to Sherman Creek.

  14. Buildings Energy Data Book: 5.6 Lighting

    Buildings Energy Data Book [EERE]

    1 Selected Fluorescent and Incandescent Lamp Sales (thousands) Commercial Trends 2001 2002 2003 2004 2005 T12 Rapid-Start Fluorescent (Mainly 4') 213 206 182 176 163 T8 Medium Bi-Pin Fluorescent (Mainly 4') 164 164 172 196 216 Total (mainly) 4' 377 370 354 372 378 2' U-Shaped T12 10 9 9 7 9 2' U-Shaped T8 8 7 7 9 9 Total 2' U lamp 18 16 16 16 17 8' Slimline T12 (Mainly 8') 43 41 37 36 34 8' Slimline T8 (Mainly 8') 4 5 5 6 5 Total Slimline (Mainly 8') 48 47 42 42 39 8' HO T12 (Mainly 8') 24 24 24

  15. EIA - Annual Energy Outlook 2016 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table 4.B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2001-2010 Actual, 2011-2015 Projected (Megawatts and Percent) Interconnection NERC Regional Assesment Area 2001/2002 2002/2003 2003/2004 2004/2005 2005/2006 2006/2007 2007/2008 2008/2009 2009/2010 2010/ 2011 2011/2012E 2012/2013E 2013/2014E 2014/2015E 2015/2016E FRCC 39,699 42,001 36,229 41,449 42,493 45,993 46,093 45,042 51,703 45,954 44,196 44,750 45,350

  16. Franklin Completed Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Completed Jobs Franklin Completed Jobs Select a time period Show jobs that completed after Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 @ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

  17. winter_capacity_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 4.B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2001-2010 Actual, 2011-2015 Projected (Megawatts and Percent) Interconnection NERC Regional Assesment Area 2001/2002 2002/2003 2003/2004 2004/2005 2005/2006 2006/2007 2007/2008 2008/2009 2009/2010 2010/ 2011 2011/2012E 2012/2013E 2013/2014E 2014/2015E 2015/2016E FRCC 39,699 42,001 36,229 41,449 42,493 45,993 46,093 45,042 51,703 45,954 44,196 44,750 45,350

  18. net_energy_load_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Assessment Area, 1990-2010 Actual, 2011-2015 Projected (Thousands of Megawatthours) Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 FRCC 142,502 146,903 147,464 153,468 159,861 169,021 173,377 175,557 188,384 188,598 196,561 200,134 211,116 NPCC 250,681 253,701 252,256 257,447 259,947 261,235 263,125 264,464 268,309 277,902 281,518 282,670

  19. Re-Analysis of Hydroacoustic Fish-Passage Data from Bonneville Dam after Spill-Discharge Corrections

    SciTech Connect (OSTI)

    Ploskey, Gene R.; Kim, Jina; Weiland, Mark A.; Hughes, James S.; Fischer, Eric S.

    2007-06-07

    The U.S. Army Corps of Engineers - Portland District asked Pacific Northwest National Laboratory to re-analyze four years of fixed-aspect hydroacoustic data after the District made adjustments to spill discharge estimates. In this report, we present new estimates of all major fish-passage metrics for study years 2000, 2001, 2002, and 2004, as well as estimates for 2005. This study supports the Portland District and its effort to maximize survival of juvenile salmon passing Bonneville Dam. Major passage routes through Bonneville Dam include 10 turbines and a sluiceway at Powerhouse 1 (B1), an 18-bay spillway, and eight turbines at Powerhouse 2 (B2) and a sluiceway including the B2 Corner Collector. The original reports and all associated results, discussion, and conclusions for non flow-related metrics remain valid and useful, but effectiveness measures for study years 2000, 2001, 2002, and 2004 as reported in previous reports by Ploskey et al. should be superseded with the new estimates reported here. The fish-passage metrics that changed the most were related to effectiveness. Re-analysis produced spill effectiveness estimates that ranged from 12% to 21% higher than previous estimates in spring and 16.7% to 27.5% higher in summer, but the mean spill effectiveness over all years was only slightly above 1:1 (1.17 for spring and 1.29 for summer). Conversely surface-passage effectiveness decreased in the years this metric was measured (by 10.1% in spring and 10.7% in summer of 2002 and 9.5% in spring and 10.2% in summer of 2004). The smallest changes in the re-analysis were in project fish passage efficiency (0%-1%) and spill efficiency (0.9%-3.0%).

  20. Using 3D Acoustic Telemetry to Assess the Response of Resident Salmonids to Strobe Lights in Lake Roosevelt, Washington; Chief Joseph Kokanee Enhancement Feasibility Study, Annual Report 2001-2002.

    SciTech Connect (OSTI)

    Perry, Russlee; Farley, M.; Hansen, Gabriel

    2003-01-01

    In 1995, the Chief Joseph Kokanee Enhancement Project was established to mitigate the loss of anadromous fish due to the construction of Chief Joseph and Grand Coulee dams. The objectives of the Chief Joseph Enhancement Project are to determine the status of resident kokanee (Oncorhynchus nerka) populations above Chief Joseph and Grand Coulee dams and to enhance kokanee and rainbow trout (Oncorhynchus mykiss) populations. Studies conducted at Grand Coulee Dam documented substantial entrainment of kokanee through turbines at the third powerhouse. In response to finding high entrainment at Grand Coulee Dam, the Independent Scientific Review Panel (ISRP) recommended investigating the use of strobe lights to repel fish from the forebay of the third powerhouse. Therefore, our study focused on the third powerhouse and how strobe lights affected fish behavior in this area. The primary objective of our study was to assess the behavioral response of kokanee and rainbow trout to strobe lights using 3D acoustic telemetry, which yields explicit spatial locations of fish in three dimensions. Our secondary objectives were to (1) use a 3D acoustic system to mobile track tagged fish in the forebay and upriver of Grand Coulee Dam and (2) determine the feasibility of detecting fish using a hydrophone mounted in the tailrace of the third powerhouse. Within the fixed hydrophone array located in the third powerhouse cul-de-sac, we detected 50 kokanee and 30 rainbow trout, accounting for 47% and 45% respectively, of the fish released. Kokanee had a median residence time of 0.20 h and rainbow trout had a median residence time of 1.07 h. We detected more kokanee in the array at night compared to the day, and we detected more rainbow trout during the day compared to the night. In general, kokanee and rainbow trout approached along the eastern shore and the relative frequency of kokanee and rainbow trout detections was highest along the eastern shoreline of the 3D array. However, because we released fish near the eastern shore, this approach pattern may have resulted from our release location. A high percentage of rainbow trout (60%) approached within 35 m of the eastern shore, while fewer kokanee (40%) approached within 35 m of the eastern shore and were more evenly distributed across the entrance to the third powerhouse cul-de-sac area. During each of the strobe light treatments there were very few fish detected within 25 m of the strobe lights. The spatial distribution of fish detections showed relatively few tagged fish swam through the center of the array where the strobe lights were located. We detected 11 kokanee and 12 rainbow trout within 25 m of the strobe lights, accounting for 10% and 18% respectively, of the fish released. Both species exhibited very short residence times within 25 m of the strobe lights No attraction or repulsion behavior was observed within 25 m of the strobe lights. Directional vectors of both kokanee and rainbow trout indicate that both species passed the strobe lights by moving in a downstream direction and slightly towards the third powerhouse. We statistically analyzed fish behavior during treatments using a randomization to compare the mean distance fish were detected from the strobe lights. We compared treatments separately for day and night and with the data constrained to three distances from the strobe light (< 85m, < 50 m, and < 25 m). For kokanee, the only significant randomization test (of 10 tests) occurred with kokanee during the day for the 3-On treatment constrained to within 85 m of the strobe lights, where kokanee were significantly further away from the strobe lights than during the Off treatment (randomization test, P < 0.004, Table 1.5). However, one other test had a low P-value (P = 0.064) where kokanee were closer to the lights during the 3-On treatment at night within 85 m of the strobe lights compared to the Off treatment. For rainbow trout, none of the 11 tests were significant, but one test had a low P-value (P = 0.04), and fish were further away from the strobe lights during

  1. David Lee, Douglas Osheroff, Superfluidity, and Helium 3

    Office of Scientific and Technical Information (OSTI)

    ... David Lee, Nobel Voices Video History Project, 2000 - 2001, Smithsonian Douglas Osheroff, Nobel Voices Video History Project, 2000 - 2001, Smithsonian Nobel Prize Winner to Join ...

  2. Microsoft Word - 2012 ASER R2

    Energy Savers [EERE]

    ... fluoride, kerosene, lubricating oils, methanol, mineral oils, nitric acid, nitrogen, ... (22 acres) - 2002 & 2003 Injection of hydrogen release compounds - 2004 ...

  3. January

    Energy Savers [EERE]

    ... peroxide, kerosene, lubricating oil, methanol, nitric acid, nitrogen, PCBs, ... (22 acres) - 2002 & 2003 Injection of hydrogen release compounds - 2004 ...

  4. Microsoft Word - 2013 ASER.docx

    Office of Environmental Management (EM)

    ... oxide, limestone, lubricating oils, methanol, mineral oils, nitric acid, nitrogen, ... (22 acres) - 2002 & 2003 Injection of hydrogen release compounds - 2004 ...

  5. Annual Site Environmental Report

    Office of Environmental Management (EM)

    ... oxide, limestone, lubricating oils, methanol, mineral oils, nitric acid, nitrogen, ... (22 acres) - 2002 & 2003 Injection of hydrogen release compounds - 2004 ...

  6. 2010 Dry and 2009 - 2010 Wet Season Branchiopod Survey Report, Site 300

    SciTech Connect (OSTI)

    Dexter, W

    2011-03-14

    Lawrence Livermore National Laboratory (LLNL) requested that Condor Country Consulting, Inc. (CCCI) perform wet season surveys and manage the dry season sampling for listed branchiopods in two ponded locations within the Site 300 Experimental Test Site. Site 300 is located in Alameda and San Joaquin Counties, located between the Cities of Livermore and Tracy. The two pool locations have been identified for possible amphibian enhancement activities in support of the Compensation Plan for impacts tied to the Building 850 soil clean-up project. The Building 850 project design resulted in formal consultation with the U.S. Fish and Wildlife Service (USFWS) as an amendment (File 81420-2009-F-0235) to the site-wide Biological Opinion (BO) (File 1-1-02-F-0062) in the spring of 2009 and requires mitigation for the California tiger salamander (AMCA, Ambystoma californiense) and California red-legged frog (CRLF, Rana draytonii) habitat loss. Both pools contain breeding AMCA, but do not produce metamorphs due to limited hydroperiod. The pool to the southeast (Pool BC-FS-2) is the preferred site for amphibian enhancement activities, and the wetland to northwest (Pool OA-FS-1) is the alternate location for enhancement. However, prior to enhancement, LLNL has been directed by USFWS (BO Conservation Measure 17 iii) to 'conduct USFWS protocol-level branchiopod surveys to determine whether listed brachiopod species are present within the compensation area.' CCCI conducted surveys for listed branchiopods in the 2009-2010 wet season to determine the presence of federally-listed branchiopods at the two pools (previous surveys with negative findings were performed by CCCI in 2001-2002 and 2002-2003 onsite). Surveys were conducted to partially satisfy the survey requirements of the USFWS 'Interim Survey Guidelines to Permittees for Recovery Permits under Section 10(a)(1)(A) of the Endangered Species Act for the Listed Vernal Pool Branchiopods' ('Guidelines, USFWS 1996 and BO Conservation Measure 17 iii). The dry sampling (included as an Appendix D) followed the wet season surveys in the summer of 2010.

  7. Costs of Crude Oil and Natural Gas Wells Drilled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003...

  8. A Multidisciplinary Approach To Detect Active Pathways For Magma...

    Open Energy Info (EERE)

    Multidisciplinary Approach To Detect Active Pathways For Magma Migration And Eruption At Mt Etna (Sicily, Italy) Before The 2001 And 2002-2003 Eruptions Jump to: navigation, search...

  9. The Alternative Fuel Price Report December 27, 2002

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Gasoline, diesel, crude oil, and natural gas prices were obtained from the Energy ... 2000-2001, when expanded natural gas consumption combined with a decline in production ...

  10. Jack Steinberger and the Muon-Neutrino

    Office of Scientific and Technical Information (OSTI)

    ..."1 1Edited excerpt from Nobel Voices Video History Project, 2000-2001 Resources with ... Interview with Jack Steinberger, nobelprize.org (video) 1988 National Medal of Science ...

  11. dec01

    Gasoline and Diesel Fuel Update (EIA)

    ... Energy Outlook -- December 2001) 2 to the 2000-2001 season, principally because of expected lower usage due to ... supply disruptions, the annual average natural gas price ...

  12. Price of U.S. Liquefied Natural Gas Imports From Brunei (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 -- -- -- -- -- -- -- -- -- -- -- -- 2002 -- -- -- -- 3.25 -- -- -- -- -- -- -- 2003 -- -- -- -- -- -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- -- -- -- -- -- -- 2008 -- -- -- -- -- -- -- -- -- -- -- -- 2009 -- -- -- -- -- -- -- -- -- -- -- -- 2010 -- -- -- -- -- -- -- -- -- -- -- -- 2011 -- --

  13. Microsoft Word - FOIA Log FY 2003.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of her work or her ability to manage the IT department its budget, (7) all documents or records regarding and budget or financial concerns for Fiscal years 2001, 2002, and 2003,

  14. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    reporting, 24 indicated that long-term contractual agreements (1 year or longer) were a part of their peak-day purchases during the 2001-2002 heating season. Twenty-two companies...

  15. John Shalf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 2001-2002. He is a member of the DOE Exascale Steering committee, and is a co-author of the landmark "View from Berkeley" paper as well as the DARPA Exascale Software Report. ...

  16. Prediction of External Corrosion for Steel Cylinders--2007 Report

    SciTech Connect (OSTI)

    Schmoyer, Richard L

    2008-01-01

    Depleted uranium hexafluoride (DUF{sub 6}) is stored in over 62,000 containment cylinders at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. Over 4,800 of the cylinders at Portsmouth were recently moved there from the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. The cylinders range in age up to 56 years and come in various models, but most are 48-inch diameter 'thin-wall'(312.5 mil) and 'thick-wall' (625 mil) cylinders and 30-inch diameter '30A' (including '30B') cylinders with 1/2-inch (500 mil) walls. Most of the cylinders are carbon steel, and they are subject to corrosion. The United States Department of Energy (DOE) manages the cylinders to maintain them and the DUF{sub 6} they contain. Cylinder management requirements are specified in the System Requirements Document (LMES 1997a), and the activities to fulfill them are specified in the System Engineering Management Plan (LMES 1997b). This report documents activities that address DUF{sub 6} cylinder management requirements involving measuring and forecasting cylinder wall thicknesses. As part of these activities, ultrasonic thickness (UT) measurements are made on samples of cylinders. For each sampled cylinder, multiple measurements are made in an attempt to find, approximately, the minimum wall thickness. Some cylinders have a skirt, which is an extension of the cylinder wall to protect the head (end) and valve. The head/skirt interface crevice is thought to be particularly vulnerable to corrosion, and for some skirted cylinders, in addition to the main body UT measurements, a separate suite of measurements is also made at the head/skirt interface. The main-body and head/skirt minimum thickness data are used to fit models relating minimum thickness to cylinder age, nominal thicknesses, and cylinder functional groups defined in terms of plant site, storage yard, top or bottom row storage positions, etc. These models are then used to compute projections of numbers of cylinders expected to fail various minimum wall thickness criteria. The minimum wall thickness criteria are as follows. For thin-wall cylinders: 0 (breach), 62.5, and 250 mils. For thick-wall cylinders: 0, 62.5, and 500 mils. For 30A cylinders: 0, 62.5, and 100 mils. Each of these criteria triplets are based respectively on (1) loss of DUF{sub 6} (breaching), (2) safe handling and stacking operations, and (3) ANSI N14.1 standards for off-site transport and contents transfer. This report complements and extends previous editions of the cylinder corrosion report by Lyon (1995, 1996, 1997, 1998, 2000), by Schmoyer and Lyon (2001, 2002, 2003), and by Schmoyer (2004). These reports are based on UT data collected in FY03 and before. In this report UT data collected after FY03 but before FY07 is combined with the earlier data, and all of the UT data is inventoried chronologically and by the various functional groups. The UT data is then used to fit models of maximum pit depth and minimum wall thickness, statistical outliers are investigated, and the fitted models are used to extrapolate minimum thickness estimates into the future and in turn to compute projections of numbers of cylinders expected to fail various thickness criteria. A model evaluation is performed comparing UT measurements made after FY05 with model-fitted projections based only on data collected in FY05 and before. As in previous reports, the projections depend on the treatment of outliers.

  17. Price of U.S. Liquefied Natural Gas Imports From Other Countries (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 -- -- -- -- -- -- -- -- -- -- -- -- 2003 -- -- -- -- -- -- -- -- -- -- -- -- 2004 -- -- -- -- -- 5.52 -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- -- -- -- -- -- -- 2008 -- -- -- -- -- -- -- -- -- -- -- -- 2009 -- -- -- -- -- -- -- -- -- -- -- -- 2010 -- -- -- -- -- -- -- -- -- -- -- -- 2011 -- -- -- -- -- -- -- -- -- -- -- -- 2012

  18. Hawaii Natural Gas Price Sold to Electric Power Consumers (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 -- -- -- -- -- -- -- -- -- -- -- -- 2003 -- -- -- -- W -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- -- -- -- -- -- -- 2008 -- -- -- -- -- -- -- -- -- -- -- -- 2009 -- -- -- -- -- -- -- -- -- -- -- -- 2010 -- -- -- -- -- -- -- -- -- -- -- -- 2011 -- -- -- -- -- -- -- -- -- -- -- -- 2012 -- -- --

  19. Susan Habas | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph.D., Chemistry, University of California at Berkeley, 2003-2008 Fulbright Scholar, Massey University, New Zealand, 2002-2003 A.B., ChemistryBiochemistry, Wheaton College, ...

  20. Tennessee Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    01 2002 2003 2004 2005 2006 View History Net Withdrawals -337 131 9 -42 426 16 1968-2006 Injections 556 63 336 262 0 1968-2005 Withdrawals 219 194 344 220 426 16 1968-2006

  1. Press Pass - Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21, the Fermilab Arts Series for 2002-2003 gets off to a rousing start this weekend at Ramsey Auditorium in Wilson Hall. Due to security measures enacted by the U.S. Department of...

  2. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    than those of 2003, when stocks after the winter of 2002-2003 were at record lows. Short-Term Natural Gas Market Outlook, December 2003 History Projections Sep-03 Oct-03 Nov-03...

  3. Two Phase Flow Measurements by Nuclear Magnetic Resonance (NMR)

    SciTech Connect (OSTI)

    Altobelli, Stephen A; Fukushima, Eiichi

    2006-08-14

    In concentrated suspensions, there is a tendency for the solid phase to migrate from regions of high shear rate to regions of low shear (Leighton & Acrivos, 1987). In the early years that our effort was funded by the DOE Division of Basic Energy Science, quantitative measurement of this process in neutrally buoyant suspensions was a major focus (Abbott, et al., 1991; Altobelli, et al., 1991). Much of this work was used to improve multi-phase numerical models at Sandia National Laboratories. Later, our collaborators at Sandia and the University of New Mexico incorporated body forces into their numerical models of suspension flow (Rao, Mondy, Sun, et al., 2002). We developed experiments that allow us to study flows driven by buoyancy, to characterize these flows in well-known and useful engineering terms (Altobelli and Mondy, 2002) and to begin to explore the less well-understood area of flows with multiple solid phases (Beyea, Altobelli, et al., 2003). We also studied flows that combine the effects of shear and buoyancy, and flows of suspensions made from non-Newtonian liquids (Rao, Mondy, Baer, et al, 2002). We were able to demonstrate the usefulness of proton NMR imaging of liquid phase concentration and velocity and produced quantitative data not obtainable by other methods. Fluids flowing through porous solids are important in geophysics and in chemical processing. NMR techniques have been widely used to study liquid flow in porous media. We pioneered the extension of these studies to gas flows (Koptyug, et al, 2000, 2000, 2001, 2002). This extension allows us to investigate a wider range of Peclet numbers, and to gather data on problems of interest in catalysis. We devised two kinds of NMR experiments for three-phase systems. Both experiments employ two NMR visible phases and one phase that gives no NMR signal. The earlier method depends on the two visible phases differing in a NMR relaxation property. The second method (Beyea, Altobelli, et al., 2003) uses two different nuclei, protons and 19F. It also uses two different types of NMR image formation, a conventional spin-echo and a single-point method. The single-point method is notable for being useful for imaging materials which are much more rigid than can usually be studied by NMR imaging. We use it to image low density polyethylene (LDPE) plastic in this application. We have reduced the imaging time for this three-phase imaging method to less than 10 s per pair of profiles by using new hardware. Directly measuring the solid LDPE signal was a novel feature for multi-phase flow studies. We also used thermally polarized gas NMR (as opposed to hyper-polarized gas) which produces low signal to noise ratios because gas densities are on the order of 1000 times smaller than liquid densities. However since we used multi-atom molecules that have short T1's and operated at elevated pressures we could overcome some of the losses. Thermally polarized gases have advantages over hyperpolarized gases in the ease of preparation, and in maintaining a well-defined polarization. In these studies (Codd and Altobelli, 2003), we used stimulated echo sequences to successfully obtain propagators of gas in bead packs out to observation times of 300 ms. Zarraga, et al. (2000) used laser-sheet profilometry to investigate normal stress differences in concentrated suspensions. Recently we developed an NMR imaging analog for comparison with numerical work that is being performed by Rekha Rao at Sandia National Laboratories (Rao, Mondy, Sun, et al, 2002). A neutrally buoyant suspension of 100 mm PMMA spheres in a Newtonian liquid was sheared in a vertical Couette apparatus inside the magnet. The outer cylinder rotates and the inner cylinder is fixed. At these low rotation rates, the free-surface of the Newtonian liquid shows no measurable deformation, but the suspension clearly shows its non-Newtonian character.

  4. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Actual Data Monthly Estimates Weekly Estimates 0 6-Year High (1995-99) 6-Year Low (1995-99) Month 1995 1996 1997 1998 1999 2000 2001 6-Year High (1995-2000) 6-Year Low...

  5. ARM - Field Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsList of Campaigns Additional Sorting By Site AAF AMF ENA NSA SGP TWP Other By Activity Current Upcoming Past By Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001...

  6. Buildings Energy Data Book: 9.1 ENERGY STAR

    Buildings Energy Data Book [EERE]

    5 Specification Dates for ENERGY STAR-Labeled Consumer Electronics and Office Equipment Labeled (Covered) Product Dates of updated specification Computers 1992 1995, 1999, 2000, 2007, 2009 Displays 1992 1995, 1998, 1999, 2005, 2006, 2009 Printers (1) 1993 1995, 2000, 2001, 2007, 2009 Fax Machines (1) 1995 1995, 2000, 2001, 2007, 2009 Copiers (1) 1995 1997, 1999, 2007, 2009 Scanners (1) 1997 2007, 2009 Multi-Function Devices (1) 1997 1999, 2007, 2009 Televisions 1998 2002, 2004, 2005, 2008, 2010,

  7. District of Columbia Natural Gas Price Sold to Electric Power Consumers

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 -- -- -- -- -- -- -- -- -- -- -- -- 2003 -- -- -- -- -- -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- -- -- -- -- -- -- 2008 -- -- -- -- -- -- -- -- -- -- -- -- 2009 -- -- -- -- -- -- -- -- -- -- -- -- 2010 -- -- -- -- -- -- -- -- -- -- -- -- 2011 -- -- 4.84 5.02 5.12 5.34 5.20 4.88

  8. SSRL HEADLINES Jul 2001

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Jul, 2001 _____________________________________________________________________________ Contents of This Issue: Science Highlight - Complex Materials Research by Angle-Resolved Photoemission Spectroscopy: Challenging the Mystery of the High Tc Superconductivity 2000-2001 Experimental Run Highlights Stanford-Berkeley 2001 SR Summer School: A Successful Start to the First in a Series SSRL Well Represented at the American Crystallographic Association Meeting The Shutdown Clock is Ticking BL10

  9. Conversion Technologies for Advanced Biofuels … Carbohydrates Upgrading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrading Report-Out Webinar February 9, 2012 Ellen Panisko, Ph.D. PNNL Energy Efficiency & Renewable Energy eere.energy.gov 2 Dr. Ellen Panisko Senior Research Scientist Chemical and Biological Process Development Group Pacific Northwest National Laboratory 2002 - present Pacific Northwest National Laboratory 2001 - 2002 Phytagenics Ph.D., Biochemistry, University of Texas Health Science Center at San Antonio, 2000 B.S., Biochemistry, Washington State University, 1995  Current work

  10. Biographical sketch - Giovanna Ghirlanda | Center for Bio-Inspired Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Production Giovanna Ghirlanda a. Professional Preparation University of Padova, Italy Chemistry B. S./M.S. 1991 University of Padova, Italy Chemistry Ph. D. 1996 University of Pennsylvania Chemistry Postdoctoral fellow 1996 - 2001 b. Area of Specialization: Organic and protein Chemistry c. Appointments 2002-present: Arizona State University, Department of Chemistry and Biochemistry, Assistant Professor. 2001-2002: University of Pennsylvania, Department of Biochemistry and Biophysics,

  11. SSRL_2003_Run_Sched.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6/02 Run Shutdown Weekends Maintenance / AP Injector Startup University Holidays PPS Certification Injector / SPEAR Startup SLAC Closed Edited - Robleto, Scott 10 11 12 AP 13 14 12 AP MA/AP 13 14 15 8 9 7 3 L A 11 12 8 9 I S N 30 11 O 12 13 14 18 A I T 31 29 2002 2003 1 2 3 13 4 2002 2003 1 2 3 4 25 26 29 30 28 30 5 6 5 6 8 9 22 16 17 15 16 N 23 24 25 5 17 18 19 Startup 23 24 23 22 21 1 2 3 MA/AP 10 4 5 AP 6 7 8 9 20 22 18 24 24 17 22 23 20 21 14 15 11 16 10 12 9 13 7 8 S T A 1 2 3 15 4 5 5 6 8

  12. Energy Information Administration/Natural Gas Monthly October 2000

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Monthly October 2000 vii Status of Natural Gas Pipeline System Capacity Entering the 2000-2001 Heating Season During the summer and fall of 2000 natural gas prices reached record highs for a nonheating season period. The dramatic rise in prices resulted from an upsurge in natural gas demand, mainly from electric generation needs during a warmer-than-usual spring and summer. The increased demand has occurred while domestic production levels have continued to decrease over the past

  13. Errata Corrections as of May 8, 2012

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Monthly October 2000 vii Status of Natural Gas Pipeline System Capacity Entering the 2000-2001 Heating Season During the summer and fall of 2000 natural gas prices reached record highs for a nonheating season period. The dramatic rise in prices resulted from an upsurge in natural gas demand, mainly from electric generation needs during a warmer-than-usual spring and summer. The increased demand has occurred while domestic production levels have continued to decrease over the past

  14. Progress Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2000-2001 CONTENTS INTRODUCTION J.B. Natowitz, Director SECTION I. NUCLEAR STRUCTURE, FUNDAMENTAL INTERACTIONS AND ASTROPHYSICS SECTION II. HEAVY ION REACTIONS SECTION III. NUCLEAR THEORY SECTION IV. ATOMIC AND MOLECULAR SCIENCE SECTION V. SUPERCONDUCTING CYCLOTRON AND INSTRUMENTATION SECTION VI. PUBLICATIONS Abstracts of Papers Published Abstracts of Papers Submitted SECTION VII. APPENDIX Talks Presented Research Personnel and Engineering Staff Organizational Chart Graduate Degree Students

  15. Natural Gas Storage in the United States in 2001: A Current Assessment and Near-Term Outlook

    Reports and Publications (EIA)

    2001-01-01

    This report examines the large decline of underground natural gas storage inventories during the 2000-2001 heating season and the concern that the nation might run out of working gas in storage prior to the close of the heating season on March 31, 2001. This analysis also looks at the current profile and capabilities of the U.S. natural gas underground storage sector.

  16. FinalReport_01ER41190.dvi

    Office of Scientific and Technical Information (OSTI)

    07/15/2001 - 08/14/2010 Funding Agency: DOE, Office of Nuclear Physics (Nuclear Theory) Project title: Theory of ultra-relativistic heavy-ion collisions DOE grant number: DE-FG02-01ER41190 Grant Period: 07/15/2001 - 08/14/2010 Principal Investigator: Ulrich Heinz Additional Personnel: (working on project during reporting period but not all fully supported by the grant) Postdocs: Stephen M. H. Wong (2001-2002) Gert Aarts (2001-2004) Jose Martinez Resco (2003) Denes Molnar (2002-2005) Zi-wei Lin

  17. wind-turbine fleet reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1) 1 Winter Fuels Outlook: 2001/2002 Introduction Tension in world oil markets, due to anticipated U.S. military action in response to the September 11 terrorist attacks in New York and Washington, has added an obvious dimension of uncertainty to any particular view of winter oil prices. We assume that expressed levels of support and cooperation for U.S. actions by the international community, including members of OPEC, include a willingness to at least maintain the level of oil supply that

  18. Federal Stewardship | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Offshore Gulf of Mexico Proved Reserves Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series 2002 2003 2004 2005 2006 2007 View History Dry Natural Gas (billion cubic feet) 24,689 22,059 18,812 17,007 14,549 13,634 1992-2007 Depth Less Than 200 Meters 14,423 12,224 10,433 8,964 8,033 NA 1992-2007 Depth Greater Than 200 Meters 10,266 9,835 8,379 8,043 6,516 NA 1992-2007 Percentage from Depth Greater

  19. Federal Offshore Gulf of Mexico Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Federal Offshore Gulf of Mexico Proved Reserves Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series 2002 2003 2004 2005 2006 2007 View History Dry Natural Gas (billion cubic feet) 24,689 22,059 18,812 17,007 14,549 13,634 1992-2007 Depth Less Than 200 Meters 14,423 12,224 10,433 8,964 8,033 NA 1992-2007 Depth Greater Than 200 Meters 10,266 9,835 8,379 8,043 6,516 NA 1992-2007 Percentage from Depth Greater

  20. Direct measurement of the W boson decay width in proton-antiproton collisions at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Zhu, Jun-jie

    2004-10-01

    This dissertation describes a direct measurement of the W boson total decay width, {Lambda}{sub W}, using the D0 detector at the Fermilab Tevatron Collider. The measurement uses an integrated luminosity of 177.3 pb{sup -1} data, collected during the 2002-2003 run. The width is determined from the shape of the transverse mass distribution, M{sub T}, by fitting the data in the tail region 100 < M{sub T} < 200 GeV. The result if {Lambda}{sub W} = 2.011 {+-} 0.093(stat) {+-} 0.107(syst) GeV.

  1. FY2003 Run Sched.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7/16/02 Run Maint/AP PPS Certification SLAC Closed Shutdown Startup Weekends University Holidays AP AP 15 8 9 10 11 12 14 12 AP MA/AP 7 3 L A 11 12 8 9 I 7 8 9 T S N 30 11 O 12 13 14 18 A I Edited by J. Robleto, B. Scott 31 29 2002 2003 1 2 3 N 13 4 2002 2003 1 2 3 29 30 31 10 5 6 5 6 7 8 9 22 23 MA/AP AP A E 5 17 18 19 10 11 12 9 MA/AP 18 Startup 24 23 22 21 16 17 15 1 2 3 15 10 4 5 AP 5 6 16 13 20 21 20 22 23 24 24 16 17 13 14 5 6 7 8 4 5 1 2 3 6 4 5 1 2 3 8 9 7 6 7 10 8 9 10 11 12 13 14 15 16

  2. Buildings Energy Data Book: 5.6 Lighting

    Buildings Energy Data Book [EERE]

    2 Value of Electric Lighting Fixture Shipments ($Million) Lighting Fixture Type 1985 1990 1995 2000 2001 Residential 786.8 827.6 983.8 983.9 Commercial/Institutional (except spotlight) Industrial 389.2 529.4 676.3 718.3 628.1 Vehicular (1) N.A. N.A. N.A. Outdoor 905.5 Note(s): Source(s): 1) Data for vehicular lighting fixtures was discontinued in 1992. DOC, Electric Lighting Fixtures MA 335L(01)-1, Jan. 2003 for 2000 and 2001; DOC, Current Industrial Reports: Electric Lighting Fixtures,

  3. Westinghouse Offers $6,400 in College Scholarships to Eddy County Students

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offers $6,400 in College Scholarships to Eddy County Students CARLSBAD, N.M., February 18, 2000 - The Westinghouse Government Services Group today announced that $6,400 in college scholarships will be awarded to Eddy County students for the 2000-2001 school year. The deadline to apply is April 3. Two $2,500 scholarships are being offered - one will be honored at New Mexico State University (NMSU) in Las Cruces, and one at the College of the Southwest (CSW) in Carlsbad. High school seniors

  4. Winter Weather Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Winter Weather Outlook With the chill of colder temperatures in the air, we can rest assured that the icy grips of winter are just around the corner. The Climate Prediction Center (CPC), a specialized part of the National Weather Service (NWS), has issued its annual winter outlook for the 2000-2001 winter season. The CPC, located in Camp Springs, Maryland, is a government agency that focuses its predictions on Earth's climate. In comparison to the NWS forecasts of short-term weather events,

  5. winfuel

    Gasoline and Diesel Fuel Update (EIA)

    0 1 Winter Fuels Outlook: 2000-2001 Introduction This winter--defined as the period from October 2000 to March 2001--is expected to bring with it significantly higher heating bills than those seen last winter. The main reasons for this outcome are: 1) expected space-heating fuels requirements larger than those of last winter, the warmest on record; 2) inventories of key heating fuels-- especially heating oil--below normal and substantially below those of the outset of the winter of 1999-2000,

  6. A MATERIAL WORLD Tailoring Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WINTER* 2000-2001 A MATERIAL WORLD Tailoring Materials for the Future A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 2, NO. 4 ALSO: New Materials for Microsystems Predictive Modeling Meets the Challenge S A N D I A T E C H N O L O G Y ON THE COVER: Bonnie Mckenzie operates a dual beam Focused Ion Beam/Scanning Electron Microscope (FIB/SEM). The image on the computer screen shows a cross section of a radiation-hardened device. The cross section was rendered with the FIB/SEM and allowed the

  7. South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 -- -- -- -- -- -- -- -- -- -- -- -- 2003 -- -- -- -- W -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- -- -- -- -- -- -- 2008 5.93 5.90 6.31 4.17 4.38 7.99 8.28 6.67 5.03 3.64 6.19 6.47 2009 9.40 9.59 10.43 7.55 8.73 4.47 4.78 4.55 3.94 3.96 4.80 5.80 2010 8.76 10.61 9.50 7.58 6.38 6.09 5.53

  8. Search for second-generation scalar leptoquarks in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Abulencia, A.; Acosta, D.; Adelman, J.; Affolder, Anthony A.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; Antos, J.; Aoki, M.; Apollinari, G.; Arguin, J.-F.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Azfar, F.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara /Cantabria Inst. of Phys. /Carnegie Mellon U. /Chicago U., EFI /Dubna, JINR /Duke U. /Fermilab /Florida U. /Frascati /Geneva U. /Glasgow U.

    2005-12-01

    Results on a search for pair production of second generation scalar leptoquark in p{bar p} collisions at {radical}s=1.96 TeV are reported. The data analyzed were collected by the CDF detector during the 2002-2003 Tevatron Run II and correspond to an integrated luminosity of 198 pb{sup -1}. Leptoquarks (LQ) are sought through their decay into (charged) leptons and quarks, with final state signatures represented by two muons and jets and one muon, large transverse missing energy and jets. We observe no evidence for LQ production and derive 95% C.L. upper limits on the LQ production cross sections as well as lower limits on their mass as a function of {beta}, where {beta} is the branching fraction for LQ {yields} {mu}q.

  9. MiniBooNE at All Experimenter's Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Year [2002] [2003] [2004] [2005] [2006][2007] [2008] [2009] [2010] [2011] [2012] [2014] 2014 Date Focus Speaker Every Monday @ 4:00 P.M., Curia II 09/08/14 MiniBooNE Status Report Zarko Pavlovic 08/25/14 MiniBooNE Status Report Zarko Pavlovic 08/18/14 MiniBooNE Status Report Zarko Pavlovic 08/11/14 MiniBooNE Status Report Zarko Pavlovic 08/04/14 MiniBooNE Status Report Zarko Pavlovic 07/28/14 MiniBooNE Status Report Zarko Pavlovic 07/21/14 MiniBooNE Status Report Zarko Pavlovic 07/14/14

  10. HCCI Engine Optimization and Control

    SciTech Connect (OSTI)

    Rolf D. Reitz

    2005-09-30

    The goal of this project was to develop methods to optimize and control Homogeneous-Charge Compression Ignition (HCCI) engines, with emphasis on diesel-fueled engines. HCCI offers the potential of nearly eliminating IC engine NOx and particulate emissions at reduced cost over Compression Ignition Direct Injection engines (CIDI) by controlling pollutant emissions in-cylinder. The project was initiated in January, 2002, and the present report is the final report for work conducted on the project through December 31, 2004. Periodic progress has also been reported at bi-annual working group meetings held at USCAR, Detroit, MI, and at the Sandia National Laboratories. Copies of these presentation materials are available on CD-ROM, as distributed by the Sandia National Labs. In addition, progress has been documented in DOE Advanced Combustion Engine R&D Annual Progress Reports for FY 2002, 2003 and 2004. These reports are included as the Appendices in this Final report.

  11. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    6 Estimated U.S. Emissions of Halocarbons, 1987-2001 (MMT CO2 Equivalent) Gas 1987 1990 1992 1995 1998 2000 2001 Chlorofluorocarbons CFC-11 391 246 207 167 115 105 105 CFC-12 1,166 1,194 853 549 223 182 226 CFC-113 498 158 103 52 0 0 0 CFC-114 N.A. 46 29 16 1 N.A. N.A. CFC-115 N.A. 30 27 22 19 N.A. N.A. Bromofluorocarbons Halon-1211 N.A. 1 1 1 1 N.A. N.A. Halon-1301 N.A. 12 12 12 13 N.A. N.A. Hydrochlorofluorocarbons HCFC-22 116 136 135 123 128 134 137 HCFC-123 N.A. 0 0 0 0 N.A. N.A. HCFC-124 0

  12. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2001-10-01

    This yearly technical progress report will summarize work accomplished for Phase 1 Program during the program year 2000/2001. In task 1, the lead material composition was modified to enable superior fluxes and its mechanical properties improved. In task 2, composite OTM elements were fabricated that enable oxygen production at the commercial target purity and 75% of the target flux. In task 3, manufacturing development demonstrated the technology to fabricate an OTM tube of the size required for the multi-tube tester. The work in task 4 has enabled a preferred composite architecture and process conditions to be predicted. In task 5, the multi-tube reactor is designed and fabrication almost complete.

  13. The Walla Walla Basin Natural Production Monitoring and Evaluation Project : Progress Report, 1999-2002.

    SciTech Connect (OSTI)

    Contor, Craig R.; Sexton, Amy D.

    2003-06-02

    The Walla Walla Basin Natural Production Monitoring and Evaluation Project (WWNPME) was funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P. L. 96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) under the Walla Walla Basin Natural Production Monitoring and Evaluation Project (WWNPME). Chapter One provides an overview of the entire report and how the objectives of each statement of work from 1999, 2000, 2001, and 2002 contract years are organized and reported. Chapter One also provides background information relevant to the aquatic resources of the Walla Walla River Basin. Objectives are outlined below for the statements of work for the 1999, 2000, 2001 and 2002 contract years. The same objectives were sometimes given different numbers in different years. Because this document is a synthesis of four years of reporting, we gave objectives letter designations and listed the objective number associated with the statement of work for each year. Some objectives were in all four work statements, while other objectives were in only one or two work statements. Each objective is discussed in a chapter. The chapter that reports activities and findings of each objective are listed with the objective below. Because data is often interrelated, aspects of some findings may be reported or discussed in more than one chapter. Specifics related to tasks, approaches, methods, results and discussion are addressed in the individual chapters.

  14. AISI/DOE Technology Roadmap Program: Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications

    SciTech Connect (OSTI)

    Brenda Yan; Dennis Urban

    2003-04-21

    A 2-year project (2001-2002) to generate fatigue and high strain data for a new generation of high strength steels (HSS) has been completed in December 2002. The project tested eleven steel grades, including Dual Phase (DP) steels, Transformation-Induced Plasticity (TRIP) steels, Bake Hardenable (BH) steels, and conventional High Strength Low Alloy (HSLA) steels. All of these steels are of great interest in automotive industry due to the potential benefit in weight reduction, improved fuel economy, enhanced crash energy management and total system cost savings. Fatigue behavior includes strain controlled fatigue data notch sensitivity for high strength steels. High strain rate behavior includes stress-strain data for strain rates from 0.001/s to 1000/s, which are considered the important strain rate ranges for crash event. The steels were tested in two phases, seven were tested in Phase 1 and the remaining steels were tested in Phase. In a addition to the fatigue data and high st rain rate data generated for the steels studied in the project, analyses of the testing results revealed that Advanced High Strength Steels (AHSS) exhibit significantly higher fatigue strength and crash energy absorption capability than conventional HSS. TRIP steels exhibit exceptionally better fatigue strength than steels of similar tensile strength but different microstructure, for conditions both with or without notches present

  15. Apacheta, a new geothermal prospect in Northern Chile

    SciTech Connect (OSTI)

    Urzua, Luis; Powell, Tom; Cumming, William B.; Dobson, Patrick

    2002-05-24

    The discovery of two high-temperature fumaroles, with gas geochemistry compatible with an economic geothermal system, established Apacheta as one of the most attractive geothermal exploration prospects in northern Chile. These remote fumaroles at 5,150 m elevation were first sampled in 1999 by ENAP and its partners, following up on the reports of a CODELCO water exploration well that flowed small amounts of dry steam at 4,540 m elevation in the valley 4.5 km east of the fumaroles. The prospect is associated with a Plio-Pleistocene volcanic complex located within a NW-trending graben along the axis of the high Andes. The regional water table is 4,200 masl. There are no hot springs, just the 88 degrees C steam well and the 109 degrees and 118 degrees C fumaroles with gas compositions that indicate reservoir temperatures of greater than or equal to 250 degrees C, using a variety of gas geothermometers. An MT-TDEM survey was completed in 2001-2002 by Geotermica del Norte (SDN), an ENAP-C ODELCO partnership, to explore the Apacheta geothermal concession. The survey results indicated that base of the low resistivity clay cap has a structural apex just west of the fumaroles, a pattern typically associated with shallow permeability within a high temperature geothermal resource. SGN plans to drill at least one exploration well in 2002-03 to characterize a possible economic resource at Apacheta.

  16. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    DOE R&D Accomplishments [OSTI]

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  17. Coal mining and the resource community cycle: A longitudinal assessment of the social impacts of the Coppabella coal mine

    SciTech Connect (OSTI)

    Lockie, S.; Franettovich, M.; Petkova-Timmer, V.; Rolfe, J.; Ivanova, G.

    2009-09-15

    Two social impact assessment (SIA) studies of Central Queensland's Coppabella coal mine were undertaken in 2002-2003 and 2006-2007. As ex post studies of actual change, these provide a reference point for predictive assessments of proposed resource extraction projects at other sites, while the longitudinal element added by the second study illustrates how impacts associated with one mine may vary over time due to changing economic and social conditions. It was found that the traditional coupling of local economic vitality and community development to the life cycle of resource projects - the resource community cycle - was mediated by labour recruitment and social infrastructure policies that reduced the emphasis on localised employment and investment strategies. and by the cumulative impacts of multiple mining projects within relative proximity to each other. The resource community cycle was accelerated and local communities forced to consider ways of attracting secondary investment and/or alternative industries early in the operational life of the Coppabella mine in order to secure significant economic benefits and to guard against the erosion of social capital and the ability to cope with future downturns in the mining sector.

  18. Quantifying the value that wind power provides as a hedge against volatile natural gas prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2002-05-31

    Advocates of renewable energy have long argued that wind power and other renewable technologies can mitigate fuel price risk within a resource portfolio. Such arguments--made with renewed vigor in the wake of unprecedented natural gas price volatility during the winter of 2000/2001--have mostly been qualitative in nature, however, with few attempts to actually quantify the price stability benefit that wind and other renewables provide. This paper attempts to quantify this benefit by equating it with the cost of achieving price stability through other means, particularly gas-based financial derivatives (futures and swaps). We find that over the past two years, natural gas consumers have had to pay a premium of roughly 0.50 cents/kWh over expected spot prices to lock in natural gas prices for the next 10 years. This incremental cost is potentially large enough to tip the scales away from new investments in natural gasfired generation and in favor of investments in wind power and other renewable technologies.

  19. A NEW ACCRETION DISK AROUND THE MISSING LINK BINARY SYSTEM PSR J1023+0038

    SciTech Connect (OSTI)

    Patruno, A.; Archibald, A. M.; Hessels, J. W. T.; Bassa, C. G.; Janssen, G. H.; Bogdanov, S.; Stappers, B. W.; Lyne, A. G.; Kaspi, V. M.; Tendulkar, S.

    2014-01-20

    PSR J1023+0038 is an exceptional system for understanding how slowly rotating neutron stars are spun up to millisecond rotational periods through accretion from a companion star. Observed as a radio pulsar from 2007-2013, optical data showed that the system had an accretion disk in 2000/2001. Starting at the end of 2013 June, the radio pulsar has become undetectable, suggesting a return to the previous accretion-disk state, where the system more closely resembles an X-ray binary. In this Letter we report the first targeted X-ray observations ever performed of the active phase and complement them with UV/optical and radio observations collected in 2013 October. We find strong evidence that indeed an accretion disk has recently formed in the system and we report the detection of fast X-ray changes spanning about two orders of magnitude in luminosity. No radio pulsations are seen during low flux states in the X-ray light curve or at any other times.

  20. Status of Activities on Rehabilitation Of Radioactively Contaminated Facilities and the Site of Russian Research Center ''Kurchatov Institute''

    SciTech Connect (OSTI)

    Volkov, V. G.; Ponomarev-Stepnoi, N. N.; Melkov, E. S; Ryazantsev, E. P.; Dikarev, V. S.; Gorodetsky, G. G.; Zverkov, Yu. A.; Kuznetsov, V. V.; Kuznetsova, T. I.

    2003-02-25

    This paper describes the program, the status, and the course of activities on rehabilitation of radioactively contaminated facilities and the territory of temporary radioactive waste (radwaste) disposal at the Russian Research Center ''Kurchatov Institute'' (RRC KI) in Moscow as performed in 2001-2002. The accumulation of significant amounts of radwaste at RRC KI territory is shown to be the inevitable result of Institute's activity performed in the days of former USSR nuclear weapons project and multiple initial nuclear power projects (performed from 1950's to early 1970's). A characterization of RRC KI temporary radwaste disposal site is given. Described is the system of radiation control and monitoring as implemented on this site. A potential hazard of adverse impacts on the environment and population of the nearby housing area is noted, which is due to possible spread of the radioactive plume by subsoil waters. A description of the concept and project of the RRC KI temporary radwaste disposal site is presented. Specific nature of the activities planned and performed stems from the nearness of housing area. This paper describes main stages of the planned activities for rehabilitation, their expected terms and sources of funding, as well as current status of the project advancement. Outlined are the problems faced in the performance and planning of works. The latter include: diagnostics of the concrete-grouted repositories, dust-suppression technologies, packaging of the fragmented ILW and HLW, soil clean-up, radioactive plume spread prevention, broad radiation monitoring of the work zone and environment in the performance of rehabilitation works. Noted is the intention of RRC KI to establish cooperation with foreign, first of all, the U.S. partners for the solution of problems mentioned above.

  1. Atmospheric Radiation Measurement Program facilities newsletter, November 2002.

    SciTech Connect (OSTI)

    Holdridge, D. J.

    2002-12-03

    Fall 2002 Intensive Operation Periods: Single Column Model and Unmanned Aerospace Vehicle--In an Intensive Operation Period (IOP) on November 3-23, 2002, researchers at the SGP CART site are collecting a detailed data set for use in improving the Single Column Model (SCM), a scaled-down climate model. The SCM represents one vertical column of air above Earth's surface and requires less computation time than a full-scale global climate model. Researchers first use the SCM to efficiently improve submodels of clouds, solar radiation transfer, and atmosphere-surface interactions, then implement the results in large-scale global models. With measured values for a starting point, the SCM predicts atmospheric variables during prescribed time periods. A computer calculates values for such quantities as the amount of solar radiation reaching the surface and predicts how clouds will evolve and interact with incoming light from the sun. Researchers compare the SCM's predictions with actual measurements made during the IOP, then adjust the submodels to make predictions more reliable. A second IOP conducted concurrently with the SCM IOP involves high-altitude, long-duration aircraft flights. The original plan was to use an unmanned aerospace vehicle (UAV), but the National Aeronautics and Space Administration (NASA) aircraft Proteus will be substituted because all UAVs have been deployed elsewhere. The UAV is a small, instrument-equipped, remote-control plane that is operated from the ground by a computer. The Proteus is a manned aircraft, originally designed to carry telecommunications relay equipment, that can be reconfigured for uses such as reconnaissance and surveillance, commercial imaging, launching of small space satellites, and atmospheric research. The plane is designed for two on-board pilots in a pressurized cabin, flying to altitudes up to 65,000 feet for as long as 18 hours. The Proteus has a variable wingspan of 77-92 feet and is 56 feet long. The plane can carry up to 7,260 pounds of equipment, making it a versatile research tool. The Proteus is making measurements at the very top of the cirrus cloud layer to characterize structures of these clouds. These new measurements will provide more accurate, more abundant data for use in improving the representation of clouds in the SCM. 2002-2003 Winter Weather Forecast--Top climate forecasters at the National Oceanic and Atmospheric Administration's (NOAA's) Climate Prediction Center say that an El Nino condition in the tropical Pacific Ocean will influence our winter weather this year. Although this El Nino is not as strong as the event of the 1997-1998 winter season, the United States will nevertheless experience some atypical weather. Strong impacts could be felt in several areas. Nationally, forecasters are predicting warmer-than-average temperatures over the northern tier of states and wetter-than-average conditions in the southern tier of states during the 2002-2003 winter season. Kansas residents should expect warmer and wetter conditions, while Oklahoma will be wetter than average.

  2. DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    SciTech Connect (OSTI)

    E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

    2005-05-01

    In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

  3. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    SciTech Connect (OSTI)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on-road vehicles: the MCMA motor vehicles produce abundant amounts of primary PM, elemental carbon, particle-bound polycyclic aromatic hydrocarbons, carbon monoxide and a wide range of air toxics; the feasibility of using eddy covariance techniques to measure fluxes of volatile organic compounds in an urban core and a valuable tool for validating local emissions inventory; a much better understanding of the sources and atmospheric loadings of volatile organic compounds; the first spectroscopic detection of glyoxal in the atmosphere; a unique analysis of the high fraction of ambient formaldehyde from primary emission sources; characterization of ozone formation and its sensitivity to VOCs and NOx; a much more extensive knowledge of the composition, size distribution and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models; evaluations of significant errors that can arise from standard air quality monitors for O3 and NO2; and the implementation of an innovative Markov Chain Monte Carlo method for inorganic aerosol modeling as a powerful tool to analyze aerosol data and predict gas phase concentrations where these are unavailable. During the MILAGRO Campaign the collaborative team utilized a combination of central fixed sites and a mobile laboratory deployed throughout the MCMA to representative urban and boundary sites to measure trace gases and fine particles. Analysis of the extensive 2006 data sets has confirmed the key findings from MCMA-2002/2003; additionally MCMA-2006 provided more detailed gas and aerosol chemistry and wider regional scale coverage. Key results include an updated 2006 emissions inventory; extension of the flux system to measure fluxes of fine particles; better understanding of the sources and apportionment of aerosols, including contribution from biomass burning and industrial sources; a comprehensive evaluation of metal containing particles in a complex urban environment; identification of a close correlation between the rate of production of SOA and “Odd Oxygen” (O3 + NO3) and primary organic PM with CO in the urban plume; a more sophisticated understanding of the relationship between ozone formation and ozone precursors: while ozone production in the urban area is VOC-limited, the response is mostly NOx-limited in the surrounding mountain. Comparison of the findings from 2003 and 2006 also confirm that the VOC levels have decreased during the three-year period, while NOx levels remain the same. The results from the 2002/2003 and 2006 have been presented at international conferences and communicated to Mexican government officials. In addition, a large number of graduate students and post-doctoral associates were involved in the project. All data sets and publications are available to the scientific community.

  4. Quantifying the value that energy efficiency and renewable energy provide as a hedge against volatile natural gas prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Bachrach, Devra; Golove, William

    2002-05-15

    Advocates of energy efficiency and renewable energy have long argued that such technologies can mitigate fuel price risk within a resource portfolio. Such arguments--made with renewed vigor in the wake of unprecedented natural gas price volatility during the winter of 2000/2001--have mostly been qualitative in nature, however, with few attempts to actually quantify the price stability benefit that these sources provide. In evaluating this benefit, it is important to recognize that alternative price hedging instruments are available--in particular, gas-based financial derivatives (futures and swaps) and physical, fixed-price gas contracts. Whether energy efficiency and renewable energy can provide price stability at lower cost than these alternative means is therefore a key question for resource acquisition planners. In this paper we evaluate the cost of hedging gas price risk through financial hedging instruments. To do this, we compare the price of a 10-year natural gas swap (i.e., what it costs to lock in prices over the next 10 years) to a 10-year natural gas price forecast (i.e., what the market is expecting spot natural gas prices to be over the next 10 years). We find that over the past two years natural gas users have had to pay a premium as high as $0.76/mmBtu (0.53/242/kWh at an aggressive 7,000 Btu/kWh heat rate) over expected spot prices to lock in natural gas prices for the next 10 years. This incremental cost to hedge gas price risk exposure is potentially large enough - particularly if incorporated by policymakers and regulators into decision-making practices - to tip the scales away from new investments in variable-price, natural gas-fired generation and in favor of fixed-price investments in energy efficiency and renewable energy.

  5. Umatilla Basin Natural Production Monitoring and Evaluation; 1998-2002 Summary Report.

    SciTech Connect (OSTI)

    Contor, Craig R.

    2004-07-01

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (WWNPME) was funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P. L. 96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) under the Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPME). Chapter One provides an overview of the entire report and shows how the objectives of each statement of work from 1999, 2000, 2001, and 2002 contract years are organized and reported. This chapter also provides background information relevant to the aquatic resources of the Umatilla River Basin. (Figure 1-1, Tables 1-1 and 1-2). Data and reports from this and previous efforts are available on the CTUIR website http://www.umatilla.nsn.us. This project was one of several subprojects of the Umatilla River Basin Fisheries Restoration Master Plan (CTUIR 1984, ODFW 1986) orchestrated to rehabilitate salmon and steelhead runs in the Umatilla River Basin. Subprojects in additions to this project include: Watershed Enhancement and Rehabilitation; Hatchery Construction and Operation; Hatchery Monitoring and Evaluation; Satellite Facility Construction and Operations for Juvenile Acclimation and Adult Holding and Spawning; Fish Passage Construction and Operation; Juvenile and Adult Passage Facility Evaluations; Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River Basin, and Flow Augmentation to Increase Stream Flows below Irrigation Diversions.

  6. Precise determination of the deuteron spin structure at low to moderate Q2 with CLAS and extraction of the neutron contribution

    SciTech Connect (OSTI)

    Guler, N.; Fersch, R. G.; Kuhn, S. E.; Bosted, P.; Griffioen, K. A.; Keith, C.; Minehart, R.; Prok, Y.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A.; Briscoe, W. J.; Brooks, W. K.; Bltmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Alaoui, A. El; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Garillon, B.; Garon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Livingston, K.; Lu, H. Y.; Mayer, M.; MacGregor, I. J. D.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabati, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Simonyan, A.; Skorodumina, Iu.; Sokhan, D.; Sparveris, N.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Voutier, E.; Walford, N. K.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2015-11-02

    In this study, we present the final results for the deuteron spin structure functions obtained from the full data set collected with Jefferson Lab's CLAS in 2000-2001. Polarized electrons with energies of 1.6, 2.5, 4.2 and 5.8 GeV were scattered from deuteron (15ND3) targets, dynamically polarized along the beam direction, and detected with CLAS. From the measured double spin asymmetry, the virtual photon absorption asymmetry Ad1 and the polarized structure function gd1 were extracted over a wide kinematic range (0.05 GeV2 < Q2 < 5 GeV2 and 0.9 GeV < W < 3 GeV). We use an unfolding procedure and a parametrization of the corresponding proton results to extract from these data the polarized structure functions An1 and g1n of the (bound) neutron, which are so far unknown in the resonance region, W < 2 GeV. We compare our final results, including several moments of the deuteron and neutron spin structure functions, with various theoretical models and expectations as well as parametrizations of the world data. The unprecedented precision and dense kinematic coverage of these data can aid in future extractions of polarized parton distributions, tests of perturbative QCD predictions for the quark polarization at large x, a better understanding of quark-hadron duality, and more precise values for higher-twist matrix elements in the framework of the Operator Product Expansion.

  7. High-resolution emissions of CO{sub 2} from power generation in the USA - article no. G04008

    SciTech Connect (OSTI)

    Petron, G.; Tans, P.; Frost, G.; Chao, D.L.; Trainer, M. [NOAA, Boulder, CO (United States). Earth Systems Research Laboratory

    2008-10-15

    Electricity generation accounts for close to 40% of the U.S. CO{sub 2} emissions from fossil fuel burning, making it the economic sector with the largest source of CO{sub 2}. Since the late 1990s, the Environmental Protection Agency Clean Air Markets Division (EPA CAMD) has kept a repository of hourly CO{sub 2} emission data for most power plants in the conterminous United States. In this study, the CAMD CO{sub 2} data are used to derive a high spatiotemporal resolution CO{sub 2} emissions inventory for the electricity generation sector (inventory available on request). Data from 1998 to 2006 have been processed. This unique inventory can be used to improve the understanding of the carbon cycle at fine temporal and spatial scales. The CAMD data set provides the first quantitative estimates of the diurnal and seasonal cycles of the emissions as well as the year to year variability. Emissions peak in the summertime owing to the widespread use of air conditioning. Summertime emissions are in fact highly correlated with the daily average temperature. In conjunction with the EPA Emissions and Generation Resource Integrated Database (eGRID), we have derived high-resolution maps of CO{sub 2} emissions by fossil fuel burned (coal, gas, oil) for the year 2004. The CAMD data set also reflects regional anomalies in power generation such as the August 2003 blackout in the northeastern United States and the 2000-2001 increase in production in California. We recommend that all sectors of the economy report similar high-resolution CO{sub 2} emissions because of their great usefulness both for carbon cycle science and for greenhouse gases emissions mitigation and regulation.

  8. Precise determination of the deuteron spin structure at low to moderate Q2 with CLAS and extraction of the neutron contribution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guler, N.; Fersch, R. G.; Kuhn, S. E.; Bosted, P.; Griffioen, K. A.; Keith, C.; Minehart, R.; Prok, Y.; Adhikari, K. P.; Adikaram, D.; et al

    2015-11-02

    In this study, we present the final results for the deuteron spin structure functions obtained from the full data set collected with Jefferson Lab's CLAS in 2000-2001. Polarized electrons with energies of 1.6, 2.5, 4.2 and 5.8 GeV were scattered from deuteron (15ND3) targets, dynamically polarized along the beam direction, and detected with CLAS. From the measured double spin asymmetry, the virtual photon absorption asymmetry Ad1 and the polarized structure function gd1 were extracted over a wide kinematic range (0.05 GeV2 < Q2 < 5 GeV2 and 0.9 GeV < W < 3 GeV). We use an unfolding procedure andmore » a parametrization of the corresponding proton results to extract from these data the polarized structure functions An1 and g1n of the (bound) neutron, which are so far unknown in the resonance region, W < 2 GeV. We compare our final results, including several moments of the deuteron and neutron spin structure functions, with various theoretical models and expectations as well as parametrizations of the world data. The unprecedented precision and dense kinematic coverage of these data can aid in future extractions of polarized parton distributions, tests of perturbative QCD predictions for the quark polarization at large x, a better understanding of quark-hadron duality, and more precise values for higher-twist matrix elements in the framework of the Operator Product Expansion.« less

  9. Development and Performance of Detectors for the Cryogenic Dark Matter Search Experiment with an Increased Sensitivity Based on a Maximum Likelihood Analysis of Beta Contamination

    SciTech Connect (OSTI)

    Driscoll, Donald D.; /Case Western Reserve U.

    2004-01-01

    The Cryogenic Dark Matter Search (CDMS) uses cryogenically-cooled detectors made of germanium and silicon in an attempt to detect dark matter in the form of Weakly-Interacting Massive Particles (WIMPs). The expected interaction rate of these particles is on the order of 1/kg/day, far below the 200/kg/day expected rate of background interactions after passive shielding and an active cosmic ray muon veto. Our detectors are instrumented to make a simultaneous measurement of both the ionization energy and thermal energy deposited by the interaction of a particle with the crystal substrate. A comparison of these two quantities allows for the rejection of a background of electromagnetically-interacting particles at a level of better than 99.9%. The dominant remaining background at a depth of {approx} 11 m below the surface comes from fast neutrons produced by cosmic ray muons interacting in the rock surrounding the experiment. Contamination of our detectors by a beta emitter can add an unknown source of unrejected background. In the energy range of interest for a WIMP study, electrons will have a short penetration depth and preferentially interact near the surface. Some of the ionization signal can be lost to the charge contacts there and a decreased ionization signal relative to the thermal signal will cause a background event which interacts at the surface to be misidentified as a signal event. We can use information about the shape of the thermal signal pulse to discriminate against these surface events. Using a subset of our calibration set which contains a large fraction of electron events, we can characterize the expected behavior of surface events and construct a cut to remove them from our candidate signal events. This thesis describes the development of the 6 detectors (4 x 250 g Ge and 2 x 100 g Si) used in the 2001-2002 CDMS data run at the Stanford Underground Facility with a total of 119 livedays of data. The preliminary results presented are based on the first use of a beta-eliminating cut based on a maximum-likelihood characterization described above.

  10. Off-Highway Gasoline Consuption Estimation Models Used in the Federal Highway Administration Attribution Process: 2008 Updates

    SciTech Connect (OSTI)

    Hwang, Ho-Ling; Davis, Stacy Cagle

    2009-12-01

    This report is designed to document the analysis process and estimation models currently used by the Federal Highway Administration (FHWA) to estimate the off-highway gasoline consumption and public sector fuel consumption. An overview of the entire FHWA attribution process is provided along with specifics related to the latest update (2008) on the Off-Highway Gasoline Use Model and the Public Use of Gasoline Model. The Off-Highway Gasoline Use Model is made up of five individual modules, one for each of the off-highway categories: agricultural, industrial and commercial, construction, aviation, and marine. This 2008 update of the off-highway models was the second major update (the first model update was conducted during 2002-2003) after they were originally developed in mid-1990. The agricultural model methodology, specifically, underwent a significant revision because of changes in data availability since 2003. Some revision to the model was necessary due to removal of certain data elements used in the original estimation method. The revised agricultural model also made use of some newly available information, published by the data source agency in recent years. The other model methodologies were not drastically changed, though many data elements were updated to improve the accuracy of these models. Note that components in the Public Use of Gasoline Model were not updated in 2008. A major challenge in updating estimation methods applied by the public-use model is that they would have to rely on significant new data collection efforts. In addition, due to resource limitation, several components of the models (both off-highway and public-us models) that utilized regression modeling approaches were not recalibrated under the 2008 study. An investigation of the Environmental Protection Agency's NONROAD2005 model was also carried out under the 2008 model update. Results generated from the NONROAD2005 model were analyzed, examined, and compared, to the extent that is possible on the overall totals, to the current FHWA estimates. Because NONROAD2005 model was designed for emission estimation purposes (i.e., not for measuring fuel consumption), it covers different equipment populations from those the FHWA models were based on. Thus, a direct comparison generally was not possible in most sectors. As a result, NONROAD2005 data were not used in the 2008 update of the FHWA off-highway models. The quality of fuel use estimates directly affect the data quality in many tables published in the Highway Statistics. Although updates have been made to the Off-Highway Gasoline Use Model and the Public Use Gasoline Model, some challenges remain due to aging model equations and discontinuation of data sources.

  11. ON THE NATURE OF THE PROTOTYPE LUMINOUS BLUE VARIABLE AG CARINAE. II. WITNESSING A MASSIVE STAR EVOLVING CLOSE TO THE EDDINGTON AND BISTABILITY LIMITS

    SciTech Connect (OSTI)

    Groh, J. H.; Hillier, D. J.; Damineli, A.

    2011-07-20

    We show that the significantly different effective temperatures (T{sub eff}) achieved by the luminous blue variable AG Carinae during the consecutive visual minima of 1985-1990 (T{sub eff} {approx_equal} 22,800 K) and 2000-2001 (T{sub eff} {approx_equal} 17,000 K) place the star on different sides of the bistability limit, which occurs in line-driven stellar winds around T{sub eff} {approx} 21,000 K. Decisive evidence is provided by huge changes in the optical depth of the Lyman continuum in the inner wind as T{sub eff} changes during the S Dor cycle. These changes cause different Fe ionization structures in the inner wind. The bistability mechanism is also related to the different wind parameters during visual minima: the wind terminal velocity was 2-3 times higher and the mass-loss rate roughly two times smaller in 1985-1990 than in 2000-2003. We obtain a projected rotational velocity of 220 {+-} 50 km s{sup -1} during 1985-1990 which, combined with the high luminosity (L{sub *} = 1.5 x 10{sup 6} L{sub sun}), puts AG Car extremely close to the Eddington limit modified by rotation ({Omega}{Gamma} limit): for an inclination angle of 90{sup 0}, {Gamma}{sub {Omega}} {approx}> 1.0 for M{sub sun} {approx}< 60. Based on evolutionary models and mass budget, we obtain an initial mass of {approx}100 M{sub sun} and a current mass of {approx}60-70 M{sub sun} for AG Car. Therefore, AG Car is close to, if not at, the {Omega}{Gamma} limit during visual minimum. Assuming M = 70 M{sub sun}, we find that {Gamma}{sub {Omega}} decreases from 0.93 to 0.72 as AG Car expands toward visual maximum, suggesting that the star is not above the Eddington limit during maximum phases.

  12. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    SciTech Connect (OSTI)

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas and natural gas liquids production on a remote part of the Uintah & Ouray Reservation. Much of the natural gas and natural gas liquids are being produced from the Wingate Formation, which to our knowledge has never produced commercially anywhere. Another large percentage of the natural gas is being produced from the Entrada Formation which has not previously produced in this part of the Uinta Basin. In all, at least nine geologic formations are contributing hydrocarbons to these wells. This survey has clearly established the fact that high-quality data can be obtained in this area, despite the known obstacles.

  13. Development and evaluation of fully automated demand response in large facilities

    SciTech Connect (OSTI)

    Piette, Mary Ann; Sezgen, Osman; Watson, David S.; Motegi, Naoya; Shockman, Christine; ten Hope, Laurie

    2004-03-30

    This report describes the results of a research project to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve electric grid reliability, manage electricity costs, and ensure that customers receive signals that encourage load reduction during times when the electric grid is near its capacity. The two main drivers for widespread demand responsiveness are the prevention of future electricity crises and the reduction of electricity prices. Additional goals for price responsiveness include equity through cost of service pricing, and customer control of electricity usage and bills. The technology developed and evaluated in this report could be used to support numerous forms of DR programs and tariffs. For the purpose of this report, we have defined three levels of Demand Response automation. Manual Demand Response involves manually turning off lights or equipment; this can be a labor-intensive approach. Semi-Automated Response involves the use of building energy management control systems for load shedding, where a preprogrammed load shedding strategy is initiated by facilities staff. Fully-Automated Demand Response is initiated at a building or facility through receipt of an external communications signal--facility staff set up a pre-programmed load shedding strategy which is automatically initiated by the system without the need for human intervention. We have defined this approach to be Auto-DR. An important concept in Auto-DR is that a facility manager is able to ''opt out'' or ''override'' an individual DR event if it occurs at a time when the reduction in end-use services is not desirable. This project sought to improve the feasibility and nature of Auto-DR strategies in large facilities. The research focused on technology development, testing, characterization, and evaluation relating to Auto-DR. This evaluation also included the related decisionmaking perspectives of the facility owners and managers. Another goal of this project was to develop and test a real-time signal for automated demand response that provided a common communication infrastructure for diverse facilities. The six facilities recruited for this project were selected from the facilities that received CEC funds for new DR technology during California's 2000-2001 electricity crises (AB970 and SB-5X).

  14. Corrective Action Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2002-06-01

    This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for Corrective Action Unit (CAU) 262, Area 25 Septic Systems and Underground Discharge Point. CAU 262 is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996. Remediation of CAU 262 is required under the FFACO. CAU 262 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles [mi]) northwest of Las Vegas, Nevada. The nine Corrective Action Sites (CASs) within CAU 262 are located in the Nuclear Rocket Development Station complex. Individual CASs are located in the vicinity of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); Engine Maintenance, Assembly, and Disassembly (E-MAD); and Test Cell C compounds. CAU 262 includes the following CASs as provided in the FFACO (1996); CAS 25-02-06, Underground Storage Tank; CAS 25-04-06, Septic Systems A and B; CAS 25-04-07, Septic System; CAS 25-05-03, Leachfield; CAS 25-05-05, Leachfield; CAS 25-05-06, Leachfield; CAS 25-05-08, Radioactive Leachfield; CAS 25-05-12, Leachfield; and CAS 25-51-01, Dry Well. Figures 2, 3, and 4 show the locations of the R-MAD, the E-MAD, and the Test Cell C CASs, respectively. The facilities within CAU 262 supported nuclear rocket reactor engine testing. Activities associated with the program were performed between 1958 and 1973. However, several other projects used the facilities after 1973. A significant quantity of radioactive and sanitary waste was produced during routine operations. Most of the radioactive waste was managed by disposal in the posted leachfields. Sanitary wastes were disposed in sanitary leachfields. Septic tanks, present at sanitary leachfields (i.e., CAS 25-02-06,2504-06 [Septic Systems A and B], 25-04-07, 25-05-05,25-05-12) allowed solids to settle out of suspension prior to entering the leachfield. Posted leachfields do not contain septic tanks. All CASs located in CAU 262 are inactive or abandoned. However, some leachfields may still receive liquids from runoff during storm events. Results from the 2000-2001 site characterization activities conducted by International Technology (IT) Corporation, Las Vegas Office are documented in the Corrective Action Investigation Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada. This document is located in Appendix A of the Corrective Action Decision Document for CAU 262. Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada. (DOE/NV, 2001).

  15. Establishment of Lipolexis oregmae (Hymenoptera: Aphidiidae) in a classical biological control program directed against the brown citrus aphid (Homoptera: Aphididae) in Florida

    SciTech Connect (OSTI)

    Persad, A.B.; Hoy, M.A.; Ru Nguyen

    2007-03-15

    The parasitoid Lipolexis oregmae Gahan (introduced as L. scutellaris Mackauer) was imported from Guam, evaluated in quarantine, mass reared, and released into citrus groves in Florida in a classical biological control program directed against the brown citrus aphid, Toxoptera citricida Kirkaldy. Releases of 20,200, 12,100, and 1,260 adults of L. oregmae were made throughout Florida during 2000, 2001, and 2002, respectively. To determine if L. oregmae had successfully established, surveys were conducted throughout the state beginning in the summer of 2001 and continuing through the summer of 2003. Parasitism during 2001 and 2002 was evaluated by holding brown citrus aphids in the laboratory until parasitoid adults emerged. Lipolexis oregmae was found in 10 sites in 7 counties and 4 sites in 3 counties with parasitism rates ranging from 0.7 to 3.3% in 2001 and 2002, respectively. Laboratory tests indicated that high rates of mortality occurred if field-collected parasitized aphids were held in plastic bags, so a molecular assay was used that allowed immature L. oregmae to be detected within aphid hosts immediately after collection. The molecular assay was used in 2003 with the brown citrus aphids and with other aphid species collected from citrus, weeds, and vegetables near former release sites; immatures of L. oregmae were detected in black citrus aphids, cowpea aphids, spirea aphids, and melon aphids, as well as in the brown citrus aphid, in 4 of 8 counties sampled, with parasitism ranging from 2.0 to 12.9%, indicating that L. oregmae is established and widely distributed. Samples taken in Polk County during Oct 2005 indicated that L. oregmae has persisted. The ability of L. oregmae to parasitize other aphid species on citrus, and aphids on other host plants, enhances the ability of L. oregmae to persist when brown citrus aphid populations are low. (author) [Spanish] El parasitoide Lipolexis oregmae Gahan (introducido como L. scutellaris Mackauer) fue importado de Guam, evaluado en cuarentena, criado en masa y liberado en huertos de citricos en un programa de control biologico clasico dirigido contra el afido pardo de citricos, Toxoptera citricida Kirkaldy. Se hicieron liberaciones de 20,200, 12,100, y 1,260 adultos de L. oregmae a traves de la Florida durante los anos de 2000, 2001, y 2002, respectivamente. Para determinar si L. oregmae ha logrado en establecer, se realizaron sondeos a traves del estado empezando en el verano del 2001 y continuando hasta el final del verano del 2003. El parasitismo durante 2001 y 2002 fue evaluado con el mantenimiento de individuos del afido pardo de los citricos en el laboratorio hasta que los adultos emergieron. Lipolexis oregmae fue encontrado en 10 sitios en 7 condados y con tasas de parasitismo en 4 sitios en 3 condados entre 0.7 a 3.3% en el 2001 y 2002, respectivamente. Las pruebas del laboratorio indicaron que las tasas altas de mortalidad fueron posibles si los afidos con parasitos recolectados en el campo fueron mantenidos en bolsas plasticas, entonces un ensayo molecular fue usado con lo que permitio la deteccion de inmaduros de L. oregmae dentro de los hospederos de afidos inmediatamente despues de la recoleccion. El ensayo molecular fue usado en el 2003 con individuos del afido pardo de los citricos y con otras especies de afidos recolectados sobre citricos, malezas y hortalizas cerca de los sitios donde los parasitoides fueron liberados anteriormente; inmaduros de L. oregmae fueron detectados en individuos del afido negro de los citricos, el afido del caupi, el afido spirea y el afido del melon, ademas del afido pardo de los citricos en 4 de los 8 condados muestreados, con la tasa del parasitismo entre 2.0 a12.9%, indicando que L. oregmae estaba estabecido y ampliamente distribuido. Las muestras tomadas en el Condado de Polk durante octobre del 2005 indicaron que L. oregmae ha persistido. La capacidad de L. oregmae para parasitar otras especies de afidos sobre citricos y otros afidos sobre otras plantas hospederas, incrementa la capacidad de L. oregmae para persistir cuand

  16. Xyce Parallel Electronic Simulator - Users' Guide Version 2.1.

    SciTech Connect (OSTI)

    Hutchinson, Scott A; Hoekstra, Robert J.; Russo, Thomas V.; Rankin, Eric; Pawlowski, Roger P.; Fixel, Deborah A; Schiek, Richard; Bogdan, Carolyn W.; Shirley, David N.; Campbell, Phillip M.; Keiter, Eric R.

    2005-06-01

    This manual describes the use of theXyceParallel Electronic Simulator.Xycehasbeen designed as a SPICE-compatible, high-performance analog circuit simulator, andhas been written to support the simulation needs of the Sandia National Laboratorieselectrical designers. This development has focused on improving capability over thecurrent state-of-the-art in the following areas:%04Capability to solve extremely large circuit problems by supporting large-scale par-allel computing platforms (up to thousands of processors). Note that this includessupport for most popular parallel and serial computers.%04Improved performance for all numerical kernels (e.g., time integrator, nonlinearand linear solvers) through state-of-the-art algorithms and novel techniques.%04Device models which are specifically tailored to meet Sandia's needs, includingmany radiation-aware devices.3 XyceTMUsers' Guide%04Object-oriented code design and implementation using modern coding practicesthat ensure that theXyceParallel Electronic Simulator will be maintainable andextensible far into the future.Xyceis a parallel code in the most general sense of the phrase - a message passingparallel implementation - which allows it to run efficiently on the widest possible numberof computing platforms. These include serial, shared-memory and distributed-memoryparallel as well as heterogeneous platforms. Careful attention has been paid to thespecific nature of circuit-simulation problems to ensure that optimal parallel efficiencyis achieved as the number of processors grows.The development ofXyceprovides a platform for computational research and de-velopment aimed specifically at the needs of the Laboratory. WithXyce, Sandia hasan %22in-house%22 capability with which both new electrical (e.g., device model develop-ment) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms)research and development can be performed. As a result,Xyceis a unique electricalsimulation capability, designed to meet the unique needs of the laboratory.4 XyceTMUsers' GuideAcknowledgementsThe authors would like to acknowledge the entire Sandia National Laboratories HPEMS(High Performance Electrical Modeling and Simulation) team, including Steve Wix, CarolynBogdan, Regina Schells, Ken Marx, Steve Brandon and Bill Ballard, for their support onthis project. We also appreciate very much the work of Jim Emery, Becky Arnold and MikeWilliamson for the help in reviewing this document.Lastly, a very special thanks to Hue Lai for typesetting this document with LATEX.TrademarksThe information herein is subject to change without notice.Copyrightc 2002-2003 Sandia Corporation. All rights reserved.XyceTMElectronic Simulator andXyceTMtrademarks of Sandia Corporation.Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence DesignSystems, Inc.Silicon Graphics, the Silicon Graphics logo and IRIX are registered trademarks of SiliconGraphics, Inc.Microsoft, Windows and Windows 2000 are registered trademark of Microsoft Corporation.Solaris and UltraSPARC are registered trademarks of Sun Microsystems Corporation.Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation.HP and Alpha are registered trademarks of Hewlett-Packard company.Amtec and TecPlot are trademarks of Amtec Engineering, Inc.Xyce's expression library is based on that inside Spice 3F5 developed by the EECS De-partment at the University of California.All other trademarks are property of their respective owners.ContactsBug Reportshttp://tvrusso.sandia.gov/bugzillaEmailxyce-support%40sandia.govWorld Wide Webhttp://www.cs.sandia.gov/xyce5 XyceTMUsers' GuideThis page is left intentionally blank6

  17. Application of the New Decommissioning Regulation to the Nuclear Licensed Facilities (NLF) at Fontenay-aux-Roses's Nuclear Center (CEA)

    SciTech Connect (OSTI)

    Sauret, Josiane; Piketty, Laurence; Jeanjacques, Michel

    2008-01-15

    This abstract describes the application of the new decommissioning regulation on all Nuclear Licensed Facilities (NLF is to say INB in French) at Fontenay-aux-Roses's Center (CEA/FAR). The decommissioning process has been applied in six buildings which are out of the new nuclear perimeter proposed (buildings no 7, no 40, no 94, no 39, no 52/1 and no 32) and three buildings have been reorganized (no 54, no 91 and no 53 instead of no 40 and no 94) in order to increase the space for temporary nuclear waste disposal and to reduce the internal transports of nuclear waste on the site. The advantages are the safety and radioprotection improvements and a lower operating cost. A global safety file was written in 2002 and 2003 and was sent to the French Nuclear Authority on November 2003. The list of documents required is given in the paragraph I of this paper. The main goals were two ministerial decrees (one decree for each NLF) getting the authorization to modify the NLF perimeter and to carry out cleaning and dismantling activities leading to the whole decommissioning of all NLF. Some specific authorizations were necessary to carry out the dismantling program during the decommissioning procedure. They were delivered by the French Nuclear Safety Authority (FNSA) or with limited delegation by the General Executive Director (GED) on the CEA Fontenay-aux-Roses's Center, called internal authorization. Some partial dismantling or decontamination examples are given below: - evaporator for the radioactive liquid waste treatment station (building no 53): FNSA authorization: phase realised in 2002/2003. - disposal tanks for the radioactive liquid waste treatment station (building no 53) FNSA authorization: phase realised in 2004, - incinerator for the radioactive solid waste treatment station (building no 07): FNSA authorization: operation realised in 2004, - research equipments in the building no. 54 and building no. 91: internal authorization ; realised in 2005, - sample-taking to characterize solvent contained in one tank of Petrus installation (NLF 57, building 18) for radiological and chemical analysis needed to prepare the treatment and the evacuation of these wastes : internal authorization ; realised in june 2005. It was possible to plan the whole decommissioning process on the Nuclear Licensed Facilities of Fontenay-aux-Roses's Center (CEA/FAR) taking into account the French new regulation and to plan a coherent and continue program activity for the dismantling process. For the program not to be interrupted during the administrative process (2003-2006), specific authorisations have been delivered by the French Nuclear Safety Authority or by the General Executive Director (GED) on the CEA Fontenay-aux- Roses's Center (internal authorization). The time schedule to complete the entire program is until 2017 for NLF 'Procede' (NLF no 165) and until 2018 for NLF 'Support' (NLF no 166). Since 1999, an annual press meeting has been organised by the Fontenay-aux-Roses's Center Head Executive Manager.

  18. Final report on the project entitled "The Effects of Disturbance & Climate on Carbon Storage & the Exchanges of CO2 Water Vapor & Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements at a Cluster of Supersites"

    SciTech Connect (OSTI)

    Beverly E. Law , Christoph K. Thomas

    2011-09-20

    This is the final technical report containing a summary of all findings with regard to the following objectives of the project: (1) To quantify and understand the effects of wildfire on carbon storage and the exchanges of energy, CO2, and water vapor in a chronosequence of ponderosa pine (disturbance gradient); (2) To investigate the effects of seasonal and interannual variation in climate on carbon storage and the exchanges of energy, CO2, and water vapor in mature conifer forests in two climate zones: mesic 40-yr old Douglas-fir and semi-arid 60-yr old ponderosa pine (climate gradient); (3) To reduce uncertainty in estimates of CO2 feedbacks to the atmosphere by providing an improved model formulation for existing biosphere-atmosphere models; and (4) To provide high quality data for AmeriFlux and the NACP on micrometeorology, meteorology, and biology of these systems. Objective (1): A study integrating satellite remote sensing, AmeriFlux data, and field surveys in a simulation modeling framework estimated that the pyrogenic carbon emissions, tree mortality, and net carbon exchange associated with four large wildfires that burned ~50,000 hectares in 2002-2003 were equivalent to 2.4% of Oregon statewide anthropogenic carbon emissions over the same two-year period. Most emissions were from the combustion of the forest floor and understory vegetation, and only about 1% of live tree mass was combusted on average. Objective (2): A study of multi-year flux records across a chronosequence of ponderosa pine forests yielded that the net carbon uptake is over three times greater at a mature pine forest compared with young pine. The larger leaf area and wetter and cooler soils of the mature forest mainly caused this effect. A study analyzing seven years of carbon and water dynamics showed that interannual and seasonal variability of net carbon exchange was primarily related to variability in growing season length, which was a linear function of plant-available soil moisture in spring and early summer. A multi-year drought (2001-2003) led to a significant reduction of net ecosystem exchange due to carry-over effects in soil moisture and carbohydrate reserves in plant-tissue. In the same forest, the interannual variability in the rate carbon is lost from the soil and forest floor is considerable and related to the variability in tree growth as much as it is to variability in soil climatic conditions. Objective (3): Flux data from the mature ponderosa pine site support a physical basis for filtering nighttime data with friction velocity above the canopy. An analysis of wind fields and heat transport in the subcanopy at the mesic 40-year old Douglas site yielded that the non-linear structure and behavior of spatial temperature gradients and the flow field require enhanced sensor networks to estimate advective fluxes in the subcanopy of forest to close the surface energy balance in forests. Reliable estimates for flux uncertainties are needed to improve model validation and data assimilation in process-based carbon models, inverse modeling studies and model-data synthesis, where the uncertainties may be as important as the fluxes themselves. An analysis of the time scale dependence of the random and flux sampling error yielded that the additional flux obtained by increasing the perturbation timescale beyond about 10 minutes is dominated by random sampling error, and therefore little confidence can be placed in its value. Artificial correlation between gross ecosystem productivity (GEP) and ecosystem respiration (Re) is a consequence of flux partitioning of eddy covariance flux data when GEP is computed as the difference between NEE and computed daytime Re (e.g. using nighttime Re extrapolated into daytime using soil or air temperatures). Tower-data must be adequately spatially averaged before comparison to gridded model output as the time variability of both is inherently different. The eddy-covariance data collected at the mature ponderosa pine site and the mesic Douglas fir site were used to develop and evaluate a new method to extra

  19. Annual Site Environmental Report: 2003

    SciTech Connect (OSTI)

    Nuckolls, H.; /SLAC

    2006-04-19

    This report provides information about environmental programs during 2003 at the Stanford Linear Accelerator Center (SLAC). Seasonal activities that span calendar years are also included. Production of an annual site environmental report (ASER) is a requirement established by the DOE for all management and operating (M&O) contractors throughout the DOE complex. This summary demonstrates the effective application of SLAC environmental management to meet the site's integrated safety management system (ISMS) goals. For normal daily activities, all SLAC managers and supervisors are responsible for ensuring proper procedures are followed so that worker safety and health are protected; the environment is protected; and compliance is ensured. Throughout 2003, SLAC focused on these activities through the SLAC management systems (described in Chapter 3). These systems were utilized by SLAC to implement such ''greening of the government'' initiatives like Executive Order 13148. The management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. There were no reportable releases to the environment from SLAC operations during 2003. In addition, many improvements were continued during 2003 in waste minimization, recycling, decreasing air emission rates, stormwater drain system, groundwater restoration, and planning for a system to better manage chemical use. Program-specific details discussed are: (1) Air Quality--SLAC operates its air quality management program in compliance with established permit conditions; 2003 was the sixth consecutive year the air quality management program operated without any NOVs issued by regulators. Nevertheless, SLAC has an active program to improve its environmental performance in air quality. (2) Hazardous Waste--The Environmental Health Division of the San Mateo County Health Services Agency is the California certified unified permitting agency (CUPA) responsible for overseeing hazardous materials and waste management at SLAC. The CUPA made facility enforcement inspections of SLAC in August and September of 2003. These inspections covered SLAC's hazardous materials and waste management, business plan, California Accidental Release Prevention Program (CalARP), and tiered permitting/permit-by-rule programs. No notices of violation were issued as a result of either inspection. (3) Stormwater and Industrial Wastewater--SLAC operates its industrial and sanitary wastewater management program in compliance with established permit conditions; 2003 was the seventh consecutive year the program operated without any NOVs issued by regulators. SLAC actively pursues projects to reduce flow to the wastewater system, and through a variety of measures, has managed to keep its facility-wide wastewater discharge constant during a period in which many new connections were made to the system. SLAC continues to make the transition to a new facility-wide sanitary sewer flow-monitoring scheme, and made substantial progress towards completing the project during 2003. SLAC discharges stormwater with the potential to come into contact with industrial activities. SLAC has an extensive monitoring program in place at the eight discharge locations where the greatest potential for contact exists. During the 2002-2003 wet season, SLAC met all the requirements of its monitoring plan, with the exception of consistent sample collection within the first hour of discharge. For the eleventh consecutive year, the surface water program operated in 2003 without receiving any NOVs from program regulators. After expenditures of more than $1 million, SLAC was nearly complete with its Unauthorized Stormwater Connection Project at year-end; only 32 connections (less than 10 percent of the original total) remained to be replumed. SLAC actively pursued several other BMP-related performance improvements during the year. (4) Hazardous Materials Program--Although SLAC has been successful in meeting regulatory requirements for managing hazardous materials, it has decided to pursue a more active strategy to reduce the use of such materials. The cornerstone of this reduction effort is the chemical management system (CMS). (5) Environmental Radiological Program--In 2003, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC reduced the amount of waste generated. As detailed in Chapter 5, SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. (6) Groundwater Protection and Environmental Restoration--In general, environmental concerns at SLAC are limited in number, small in scale, and are actively managed or eliminated.

  20. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2005-09-30

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third well has not been on production long enough for an accurate assessment but initial results from it are encouraging. Cumulative production from the first two wells through August 31, 2005 was 235,039 BO, 816,592 MCFG and 310,333 barrels of water (BW). Total estimated reserves from all three of the horizontal wells are 878,135 BO and 3.87 BCFG. The ratio of net revenue to cost for the first two wells is approximately 2.9 to 1 for an oil price of $30 per barrel that existed when the wells were drilled. Based on recent pricing trends, a detailed reserve study for the project was performed that assumed an oil price of $40 per barrel and a gas price of $7 per MCFG. These results show that this project has acceptable economics and similar projects can be economically developed as long as oil and gas prices remain over $30 per BOE.