National Library of Energy BETA

Sample records for 2-meter soil temperature

  1. Development Of 2-Meter Soil Temperature Probes And Results Of...

    Open Energy Info (EERE)

    Development Of 2-Meter Soil Temperature Probes And Results Of Temperature Survey Conducted At Desert Peak, Nevada, Usa Jump to: navigation, search OpenEI Reference LibraryAdd to...

  2. Shallow (2-meter) temperature surveys in Colorado

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Colorado 2m Survey Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Shallow temperature surveys are useful in early-stage geothermal exploration to delineate surface outflow zones, with the intent to identify the source of upwelling, usually a fault. Detailed descriptions of the 2-meter survey method and equipment design can be found in Coolbaugh et al. (2007) and Sladek et al. (2007), and are summarized here. The survey method was devised to measure temperature as far below the zone of solar influence as possible, have minimal equilibration time, and yet be portable enough to fit on the back of an all-terrain vehicle (ATV); Figure 2). This method utilizes a direct push technology (DPT) technique where 2.3 m long, 0.54” outer diameter hollow steel rods are pounded into the ground using a demolition hammer. Resistance temperature devices (RTD) are then inserted into the rods at 2-meter depths, and allowed to equilibrate for one hour. The temperatures are then measured and recorded, the rods pulled out of the ground, and re-used at future sites. Usually multiple rods are planted over the course of an hour, and then the sampler returns back to the first station, measures the temperatures, pulls the rods, and so on, to eliminate waiting time. At Wagon Wheel Gap, 32 rods were planted around the hot springs between June 20 and July 1, 2012. The purpose was to determine the direction of a possible upflow fault or other structure. Temperatures at 1.5m and 2m depths were measured and recorded in the attribute table of this point shapefile. Several anomalous temperatures suggest that outflow is coming from a ~N60W striking fault or shear zone that contains the quartz-fluorite-barite veins of the adjacent patented mining claims. It should be noted that temperatures at 2m depth vary according to the amount of solar heating from above, as well as possible geothermal heating from below. Spatial Domain: Extent: Top: 4490310.560635 m Left: 150307.008238 m Right: 433163.213617 m Bottom: 4009565.915398 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  3. Use of Rapid Temperature Measurements at a 2-Meter Depth to Augment...

    Open Energy Info (EERE)

    Temperature Measurements at a 2-Meter Depth to Augment Deeper Temperature Gradient Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  4. Development Of 2-Meter Soil Temperature Probes And Results Of Temperature

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi:DeltaFishDesertDetroitSolarSurvey Conducted

  5. Climate Change Effects on California Precipitation and Soil Moisture

    E-Print Network [OSTI]

    Berg, Neil

    2015-01-01

    soil moisture, water year-average 2 meter air temperature (soil moisture, water year-average 2 meter air temperature (air temperature (“T2 dry ssn ”, unit ? C) changes for all 10 water

  6. Carbon dioxide in soil profiles: Production and temperature dependence

    E-Print Network [OSTI]

    : Biosphere/atmosphere interactions 1. Introduction [2] Soil CO2 emissions comprise an important component of the global carbon cycle, and represent the largest terrestrial source of CO2 to the atmosphere. Globally, 2000]. As global temperatures rise, any changes in soil CO2 emissions will in part be determined

  7. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    2014-01-10

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  8. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  9. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Margaret Torn

    2015-01-14

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  10. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Margaret Torn

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  11. Soil organic matter stability and the temperature sensitivity of soil respiration 

    E-Print Network [OSTI]

    Burns, Nancy Rosalind

    2012-11-29

    Soil respiration is an important source of atmospheric CO2, with the potential for large positive feedbacks with global warming. The size of these feedbacks will depend on the relative sensitivity to temperature of very ...

  12. Distribution of Soil Temperature Regimes and Climate Change in the Mojave Desert Region

    E-Print Network [OSTI]

    Bai, Yanying

    2009-01-01

    1. Locations of the soil temperature monitoring sites in the6-1. Paired soil temperature monitoring sites and weatherW.R. , 1980. Monitoring long term temperature and humidity.

  13. Effects of Altered Temperature & Precipitation on Soil Bacterial & Microfaunal Communities as Mediated by Biological Soil Crusts

    SciTech Connect (OSTI)

    Neher, Deborah A. [University of Vermont

    2004-08-31

    With increased temperatures in our original pot study we observed a decline in lichen/moss crust cover and with that a decline in carbon and nitrogen fixation, and thus a probable decline of C and N input into crusts and soils. Soil bacteria and fauna were affected negatively by increased temperature in both light and dark crusts, and with movement from cool to hot and hot to hotter desert climates. Crust microbial biomass and relative abundance of diazotrophs was reduced greatly after one year, even in pots that were not moved from their original location, although no change in diazotroph community structure was observed. Populations of soil fauna moved from cool to hot deserts were affected more negatively than those moved from hot to hotter deserts.

  14. Importance of moisture transport, snow cover and soil freezing to ground temperature predictions

    E-Print Network [OSTI]

    Importance of moisture transport, snow cover and soil freezing to ground temperature predictions moisture transport, snow accumulation and melting, and soil freezing and thawing are investigated transport, snow cover, and soil freezing. 1. Introduction Prediction of ground temperature is an important

  15. Temperature-associated increases in the global soil respiration record

    SciTech Connect (OSTI)

    Bond-Lamberty, Benjamin; Thomson, Allison M.

    2010-03-25

    Soil respiration (RS), the flux of CO2 from the soil surface to the atmosphere, comprises the second-largest terrestrial carbon flux, but its dynamics are incompletely understood, and the global flux remains poorly constrained. Ecosystem warming experiments, modelling analyses, and biokinetics all suggest that RS should change with climate. This has been difficult to confirm observationally because of the high spatial variability of RS, inaccessibility of the soil medium, and inability of remote sensing instruments to measure large-scale RS fluxes. Given these constraints, is it possible to discern climate-driven changes in regional or global RS fluxes in the extant four-decade record of RS chamber measurements? Here we use a database of worldwide RS observations, matched with high-resolution historical climate data, to show a previously unknown temporal trend in the RS record after accounting for mean annual climate, leaf area, nitrogen deposition, and changes in CO2 measurement technique. Air temperature anomaly (deviation from the 1961-1990 mean) is significantly and positively correlated with changes in RS fluxes; both temperature and precipitation anomalies exert effects in specific biomes. We estimate that the current (2008) annual global RS flux is 98±12 Pg and has increased 0.1 Pg yr-1 over the last 20 years, implying a global RS temperature response (Q10) of 1.5. An increasing global RS flux does not necessarily constitute a positive feedback loop to the atmosphere; nonetheless, the available data are consistent with an acceleration of the terrestrial carbon cycle in response to global climate change.

  16. The chromosome folding problem: How to organize a 2 meter genome into a 20 micron nucleus?

    E-Print Network [OSTI]

    Poonen, Bjorn

    ;#12;#12;#12;Why study chromosome organization? #12;Human genome project-- now that we know our ATCGs, what do they mean? #12;Goal: Develop a parts list of functional elements in the human genome httpsThe chromosome folding problem: How to organize a 2 meter genome into a 20 micron nucleus? #12

  17. Use of Rapid Temperature Measurements at a 2-Meter Depth to Augment Deeper

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnited States: EnergyUpper Cumberland E

  18. Self-potential, soil CO2 flux, and temperature on Masaya volcano, J. L. Lewicki,1,2

    E-Print Network [OSTI]

    Connor, Charles

    , soil CO2 flux, and temperature may be a useful tool to monitor intrusive activity. INDEX TERMS: 0925 monitoring. We present soil CO2 flux, temperature, and SP data measured concurrently on the flanks of MasayaSelf-potential, soil CO2 flux, and temperature on Masaya volcano, Nicaragua J. L. Lewicki,1,2 C

  19. Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: Discover a blind, low-moderate temperature resource: Apply a combination of detailed sub-soil gas, hydrocarbon, and isotope data to define possible upflow areas; Calibrate the sub-soil chemistry with down-hole fluid inclusion stratigraphy and fluid analyses to define a follow-up exploration drilling target; Create short term jobs and long term employment through resource exploration, development and power plant operation; Extend and adapt the DOE sub-soil 2 meter probe technology to gas sampling.

  20. Validation of Noah-simulated Soil Temperature in the North American Land Data Assimilation System Phase 2

    SciTech Connect (OSTI)

    Xia, Youlong; Ek, Michael; Sheffield, Justin; Livneh, Ben; Huang, Maoyi; Wei, Helin; Song, Feng; Luo, Lifeng; Meng, Jesse; Wood, Eric

    2013-02-25

    Soil temperature can exhibit considerable memory from weather and climate signals and is among the most important initial conditions in numerical weather and climate models. Consequently, a more accurate long-term land surface soil temperature dataset is needed to improve weather and climate simulation and prediction, and is also important for the simulation of agricultural crop yield and ecological processes. The North-American Land Data Assimilation (NLDAS) Phase 2 (NLDAS-2) has generated 31-years (1979-2009) of simulated hourly soil temperature data with a spatial resolution of 1/8o. This dataset has not been comprehensively evaluated to date. Thus, the ultimate purpose of the present work is to assess Noah-simulated soil temperature for different soil depths and timescales. We used long-term (1979-2001) observed monthly mean soil temperatures from 137 cooperative stations over the United States to evaluate simulated soil temperature for three soil layers (0-10 cm, 10-40 cm, 40-100 cm) for annual and monthly timescales. We used short-term (1997-1999) observed soil temperature from 72 Oklahoma Mesonet stations to validate simulated soil temperatures for three soil layers and for daily and hourly timescales. The results showed that the Noah land surface model (Noah LSM) generally matches observed soil temperature well for different soil layers and timescales. At greater depths, the simulation skill (anomaly correlation) decreased for all time scales. The monthly mean diurnal cycle difference between simulated and observed soil temperature revealed large midnight biases in the cold season due to small downward longwave radiation and issues related to model parameters.

  1. Antarctic Science page 1 of 16 (2010) & Antarctic Science Ltd 2010 doi:10.1017/S0954102010000234 A dynamic physical model for soil temperature and water in

    E-Print Network [OSTI]

    Fountain, Andrew G.

    2010-01-01

    of capillary flows below the top 0.5 cm soil layer. Beginning with a completely saturated soil profile, soil A dynamic physical model for soil temperature and water in Taylor Valley, Antarctica H.W. HUNT1 , A and longwave radiation. Water fluxes included snowmelt, freezing/thawing of soil water, soil capillary flow

  2. Snow Removal and Ambient Air Temperature Effects on Forest Soil Temperatures in Northern Vermont

    E-Print Network [OSTI]

    Vermont, University of

    ', and `cool with low snow'. Snow-free soils were colder than where there is a persistent insulating snow layer-function of northeastern forests. The Intergovernmental plicated in dieback events in northern hardwood forestsPanel

  3. Self-potential, soil co2 flux, and temperature on masaya volcano, nicaragua

    SciTech Connect (OSTI)

    Lewicki, J.L.; Connor, C.; St-Amand, K.; Stix, J.; Spinner, W.

    2003-07-01

    We investigate the spatial relationship between self-potential (SP), soil CO{sub 2} flux, and temperature and the mechanisms that produce SP anomalies on the flanks of Masaya volcano, Nicaragua. We measured SP, soil CO{sub 2} fluxes (<1 to 5.0 x 10{sup 4} g m{sup -2} d{sup -1}), and temperatures (26 to 80 C) within an area surrounding a normal fault, adjacent to Comalito cinder cone (2002-2003). These variables are well spatially correlated. Wavelengths of SP anomalies are {le}100 m, and high horizontal SP gradients flank the region of elevated flux and temperature. Carbon isotopic compositions of soil CO{sub 2} ({delta}{sup 13}C = -3.3 to -1.1{per_thousand}) indicate a deep gas origin. Given the presence of a deep water table (100 to 150 m), high gas flow rates, and subsurface temperatures above liquid boiling points, we suggest that rapid fluid disruption is primarily responsible for positive SP anomalies here. Concurrent measurement of SP, soil CO{sub 2} flux, and temperature may be a useful tool to monitor intrusive activity.

  4. Effect of Combustion Temperature on Soil and Soil Organic Matter Properties: A Study of Soils from the Western Elevation Transect in Central Sierra Nevada, California

    E-Print Network [OSTI]

    Araya, Samuel Negusse

    2014-01-01

    during pyrolysis compared to untreated soils, Rosa et al. (soil organic matter as reflected by 13 C natural abundance, pyrolysis

  5. Asymmetric response of maximum and minimum temperatures to soil emissivity change over the Northern African Sahel in a GCM

    E-Print Network [OSTI]

    Zhou, Liming

    Asymmetric response of maximum and minimum temperatures to soil emissivity change over the Northern in the Sahel could lead to reduced land surface emissivity and thus might have an asymmetric impact on daytime balance to changes in soil emissivity over the Sahel using the recently developed Community Land Model

  6. Plant-soil interactions and acclimation to temperature of microbial-mediated soil respiration may affect predictions of soil CO2 efflux

    E-Print Network [OSTI]

    Curiel Yuste, J.; Ma, S.; Baldocchi, D. D.

    2010-01-01

    shifts in microbial communities due to soil warming.Soil Sci Soc Am J 61:475–481to an important portion of soil CO 2 ef?ux (Hanson et al.

  7. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity

    SciTech Connect (OSTI)

    Li, Jianwei [University of Oklahoma] [University of Oklahoma; Wang, Gangsheng [ORNL] [ORNL; Allison, Steven D. [University of California, Irvine] [University of California, Irvine; Mayes, Melanie [ORNL] [ORNL; Luo, Yiqi [University of Oklahoma] [University of Oklahoma

    2014-01-01

    Global ecosystem models may require microbial components to accurately predict feedbacks between climate warming and soil decomposition, but it is unclear what parameters and levels of complexity are ideal for scaling up to the globe. Here we conducted a model comparison using a conventional model with first-order decay and three microbial models of increasing complexity that simulate short- to long-term soil carbon dynamics. We focused on soil carbon responses to microbial carbon use efficiency (CUE) and temperature. Three scenarios were implemented in all models: constant CUE (held at 0.31), varied CUE ( 0.016 C 1), and 50 % acclimated CUE ( 0.008 C 1). Whereas the conventional model always showed soil carbon losses with increasing temperature, the microbial models each predicted a temperature threshold above which warming led to soil carbon gain. The location of this threshold depended on CUE scenario, with higher temperature thresholds under the acclimated and constant scenarios. This result suggests that the temperature sensitivity of CUE and the structure of the soil carbon model together regulate the long-term soil carbon response to warming. Equilibrium soil carbon stocks predicted by the microbial models were much less sensitive to changing inputs compared to the conventional model. Although many soil carbon dynamics were similar across microbial models, the most complex model showed less pronounced oscillations. Thus, adding model complexity (i.e. including enzyme pools) could improve the mechanistic representation of soil carbon dynamics during the transient phase in certain ecosystems. This study suggests that model structure and CUE parameterization should be carefully evaluated when scaling up microbial models to ecosystems and the globe.

  8. Data from one-, two-, and three-dimensional temperature fields in the soil surrounding an earth-sheltered house

    SciTech Connect (OSTI)

    Bligh, T.P.; Knoth, T.P.

    1983-01-01

    This paper presents data from one-, two-, and three-dimensional temperature fields in the soil surrounding an earth-sheltered house. The construction and installation of the temperature sensors is discussed, and the sources of error are evaluated. The precision of the measured temperatures is shown to be + or - 0.12/sup 0/C. Twenty-four hours of data from the one-dimensional temperature field in the roof soil are presented in the form of tautochrones. Data from cross-sections of the two- and three-dimensional temperature fields are presented as isotherms taken at approximately one-month intervals during winter and spring. The data show that extended roof insulation impedes heat flow to the ground surface in winter but allows heat to flow to the cool soil depths in summer.

  9. Characterizing Rocky and Gaseous Exoplanets with 2-meter Class Space-based Coronagraphs: General Considerations

    E-Print Network [OSTI]

    Robinson, Tyler D; Marley, Mark S

    2015-01-01

    Several concepts now exist for small, space-based missions to directly characterize exoplanets in reflected light. Here, we develop an instrument noise model suitable for studying the spectral characterization potential of a coronagraph-equipped, space-based telescope. We adopt a baseline set of telescope and instrument parameters, including a 2 m diameter primary aperture, an operational wavelength range of 0.4-1.0 um, and an instrument spectral resolution of 70, and apply our baseline model to a variety of spectral models of different planet types, including Earth twins, Jupiter twins, and warm and cool Jupiters and Neptunes. With our exoplanet spectral models, we explore wavelength-dependent planet-star flux ratios for main sequence stars of various effective temperatures, and discuss how coronagraph inner and outer working angle constraints will influence the potential to study different types of planets. For planets most favorable to spectroscopic characterization---cool Jupiters and Neptunes as well as ...

  10. Impact of Hillslope-Scale Organization of Topography, Soil Moisture, Soil Temperature, and Vegetation on Modeling Surface Microwave Radiation Emission

    E-Print Network [OSTI]

    Flores, Alejandro N.

    Microwave radiometry will emerge as an important tool for global remote sensing of near-surface soil moisture in the coming decade. In this modeling study, we find that hillslope-scale topography (tens of meters) influences ...

  11. Temperature effects on decomposition rates of soil organic matter with differing proportions of labile and

    E-Print Network [OSTI]

    Vallino, Joseph J.

    that the carbon dioxide loss from soil declines over time then picks up again after approximately15 years properties will change and thus their role as a carbon sink. This experiment uses forest soils since the microbial physiological properties change over long-term warming and if it is a result of a change in carbon

  12. Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity

    E-Print Network [OSTI]

    Kleber, M.

    2010-01-01

    Sollins 7 Department of Crop and Soil Science, Oregon StateDepartment of Crop and Soil Science and Subsurface Biosphere

  13. Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity

    SciTech Connect (OSTI)

    Kleber, M.; Nico, P.S.; Plante, A.; Filley, T.; Kramer, M.; Swanston, C.; Sollins, P.

    2010-03-01

    Soil carbon turnover models generally divide soil carbon into pools with varying intrinsic decomposition rates. Although these decomposition rates are modified by factors such as temperature, texture, and moisture, they are rationalized by assuming chemical structure is a primary controller of decomposition. In the current work, we use near edge X-ray absorption fine structure (NEXAFS) spectroscopy in combination with differential scanning calorimetry (DSC) and alkaline cupric oxide (CuO) oxidation to explore this assumption. Specifically, we examined material from the 2.3-2.6 kg L{sup -1} density fraction of three soils of different type (Oxisol, Alfisol, Inceptisol). The density fraction with the youngest {sup 14}C age (Oxisol, 107 years) showed the highest relative abundance of aromatic groups and the lowest O-alkyl C/aromatic C ratio as determined by NEXAFS. Conversely, the fraction with the oldest C (Inceptisol, 680 years) had the lowest relative abundance of aromatic groups and highest O-alkyl C/aromatic C ratio. This sample also had the highest proportion of thermally labile materials as measured by DSC, and the highest ratio of substituted fatty acids to lignin phenols as indicated by CuO oxidation. Therefore, the organic matter of the Inceptisol sample, with a {sup 14}C age associated with 'passive' pools of carbon (680 years), had the largest proportion of easily metabolizable organic molecules with low thermodynamic stability, whereas the organic matter of the much younger Oxisol sample (107 years) had the highest proportion of supposedly stable organic structures considered more difficult to metabolize. Our results demonstrate that C age is not necessarily related to molecular structure or thermodynamic stability, and we suggest that soil carbon models would benefit from viewing turnover rate as codetermined by the interaction between substrates, microbial actors, and abiotic driving variables. Furthermore, assuming that old carbon is composed of complex or 'recalcitrant' compounds will erroneously attribute a greater temperature sensitivity to those materials than they may actually possess.

  14. Soil Temperatures at Armagh Observatory, N. Ireland, from 1904 to 2002

    E-Print Network [OSTI]

    sites have positive slopes in all seasons which vary from 0.04 to 0.25 o C/decade, depending on the season, depth and location. There appear to be some geographical di#11;erences, with relatively shallow. (2002) have pointed out that the amplitude of the annual variation in heat storage of the top 5m of soil

  15. New Phytol. (1992), 120, 543-549 Effects of soil temperature on growth,

    E-Print Network [OSTI]

    Heckathorn, Scott

    1992-01-01

    in the growing season. Key words: Andropogon gerardii, nutrient uptake, photosynthesis, relative growth rate and function, as well as indirect season may cause substantial reductions in the effects on shoot processes, cause uncoupling of air and soil thermal regimes. 1985; Setter & Greenway, 1988; Tindall, Mills

  16. Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    biomass David A. Lipson*, Steven K. Schmidt, Russell K. Monson Department of Environmental, Population In Colorado alpine dry meadow soils, microbial biomass has been observed to increase during fall and winter hypothesized that: (1) freeze-thaw events in the spring cause reduction of the microbial biomass, (2

  17. Importance of moisture transport, snow cover and soil freezing to ground temperature predictions

    E-Print Network [OSTI]

    foundation may also be explicitly calculated. For buildings utilizing ground source heat pump systems, undisturbed ground temperatures are also needed for analysis of the ground heat exchangers. Besides foundation heat loss calculations. Despite this, availability of ground temperature data for engineers

  18. Soil fungicides in relation to cotton seedling disease at various temperature levels 

    E-Print Network [OSTI]

    Ranney, Carleton David

    1955-01-01

    lgho thfongh aCviee anC faith in the cook Cic meh to heing abont ite eeeyletioni Qaatefnl aehnoel, eCgaeni ie alee cae Ds ~ leithea site Ae hie eenetvnotivo eritxekm anc holy in the etatietieal jnteryve tation of the Cata. Iy thanka go te Mx" Chelae...1hxstration of the severe lxuning and eton% noted in sevexnX of the nine-yoond penta oronltrobenssne replications, Shallar bcu~g ea? noted in the nine-ponnd rep1jos talons of the sineb test" ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Si SOIL FUNOICXDES XN RELATION...

  19. Distribution of Soil Temperature Regimes and Climate Change in the Mojave Desert Region

    E-Print Network [OSTI]

    Bai, Yanying

    2009-01-01

    after time t, the mean reaction velocity coefficient ( k )? x )] [Eq. 3-2] The reaction velocity is proportion to thereaction depends on temperature according to the Van Hoff-Arrhenius law, namely, the logarithm of the velocity

  20. Department of Crop and Soil Sciences PhD Graduate Research Assistantship: Soil Science/Soil Quality/Soil Physics

    E-Print Network [OSTI]

    Flury, Markus

    Department of Crop and Soil Sciences PhD Graduate Research Assistantship: Soil Science/Soil Quality/Soil Physics Position Summary: Plastic mulches are used in agriculture to conserve water, suppress weeds, and increase soil temperatures. However, plastic mulches need to be disposed off at the end

  1. A comparison of variability of undisturbed and surface mined soils in Freestone County, Texas 

    E-Print Network [OSTI]

    Bearden, Eddie Dean

    1984-01-01

    -collected on some sites during Narch, 1983. PEDON SAMPLING SCHEMES B 1 Meter x 1 Meter 2 Meters x 2 Meters Fig. 5--multiple sub-sampling schemes from pit (A) and compositing core samples (B) . 18 Laboratory Methods Bulk Sample Preparation All soil material...';:::. ";, . . ")': ( 5% (TEU) 6- ION (COMMON) 'H ~ II-20% (MANY) UNO. 2YR IOYR UND, 2YR ' IOVR ' UNO. ' 2YR IOYR UNO. = UNDISTOROEO 2 YR ? 2 YEAR OI. O MINE)OIL IO YR = IO YEAR OLD MINESOIL Fig. 11--Root percentage classes with observations (5 meters apart. ROO...

  2. In-situ vitrification of soil

    DOE Patents [OSTI]

    Brouns, Richard A. (Kennewick, WA); Buelt, James L. (Richland, WA); Bonner, William F. (Richland, WA)

    1983-01-01

    A method of vitrifying soil at or below a soil surface location. Two or more conductive electrodes are inserted into the soil for heating of the soil mass between them to a temperature above its melting temperature. Materials in the soil, such as buried waste, can thereby be effectively immobilized.

  3. TEOS 02 La Selva soil and root dynamics: What happens in soil, stays in soil Team Members

    E-Print Network [OSTI]

    Soatto, Stefano

    TEOS 02 La Selva soil and root dynamics: What happens in soil, stays in soil Team Members · Michael. This includes clay soils, high precipitation, and relatively constant warm temperatures. Another importance flux network, and a large database on ecological dynamics. Approach Soil AMR units and sensor networks

  4. Biochar and Plant Growth Promoting Rhizobacteria as Soil Amendments

    E-Print Network [OSTI]

    Hale, Lauren Elizabeth

    2014-01-01

    pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil.soil biological community structures and functions and that pyrolysisPyrolysis Temperature of Biochar Amendments on Transport of Escherichia coli in Saturated and Unsaturated Soil.

  5. Evaluating the Effects of Organic Amendment Applications on Nitrous Oxide Emissions From Salt-Affected Soils

    E-Print Network [OSTI]

    Pulla Reddy Gari, Namratha

    2013-01-01

    conductivity, temperature, soil moisture, and microbialmicroorganisms in soil. Applied and Environmental127, in: A. Bouwman (Ed. ), Soils and the Greenhouse Effect,

  6. Surface Soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Soil Surface Soil We compare local soil samples with samples collected from northern New Mexico locations that are beyond the range of potential influence from normal...

  7. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic

    E-Print Network [OSTI]

    Neher, Deborah A.

    rights reserved. 1. Introduction Desertification is the collective process of reduced productivity of cyanobacteria, lichens, green algae, and mosses) may slow desertification in many desert soils by increasing

  8. Biochar as a soil amendment: Impact on hydraulic and physical properties of an arable loamy sand soil

    E-Print Network [OSTI]

    Lopez, Vivian Dominique

    2014-01-01

    feedstocks and pyrolysis temperatures on soil physical andpyrolysis of papermill waste on agronomic performance and soilpyrolysis of papermill waste on agronomic performance and soil

  9. ARM - Measurement - Soil surface temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Homepolarization ARMtotal downwelling

  10. Biogeochemistry of Soil Carbon and Nitrogen in Response to Elevated Temperatures and Altered Rainfall Regimes in Oak Savanna: A Global Change Experiment 

    E-Print Network [OSTI]

    Wellman, Rachel L

    2014-11-05

    combination in native soil. Warming alone and rainfall redistribution alone seldom affected the response variables in this study. Species composition and time appeared to be the most consistently important main effects; however, warming and rainfall...

  11. Artificial Soiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pigments found in soils throughout the United States roughly following the USDA soil taxonomy 11. Ensuring a repeatable test formulation was straightforward when using...

  12. Soils Soil Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience of SignaturesSoft0 Soils Soil Series and

  13. --SOILS SUSTAIN LIFE --SOIL SCIENCE

    E-Print Network [OSTI]

    McCarthy, John F.

    -- SOILS SUSTAIN LIFE -- SOIL SCIENCE SOCIETY OF AMERICA 677 South Segoe Road · Madison WI 53711 a PDF file only for $100. TOTAL: $ Invoice no. Shipping (to be added) $ * If you have a subscription;-- SOILS SUSTAIN LIFE -- SOIL SCIENCE SOCIETY OF AMERICA 677 South Segoe Road · Madison WI 53711 · (608

  14. Soil moisture in complex terrain: quantifying effects on atmospheric boundary layer flow and providing improved surface boundary conditions for mesoscale models

    E-Print Network [OSTI]

    Daniels, Megan Hanako

    2010-01-01

    74 ii Soil Moisture Sensors: Decagon ECH2O Capacitance133 A.10 Soil types corresponding to each75 Soil Moisture and Temperature Probe

  15. Soil effects on thermal signatures of buried nonmetallic landmines Remke L. van Dam*a

    E-Print Network [OSTI]

    Borchers, Brian

    Soil effects on thermal signatures of buried nonmetallic landmines Remke L. van Dam*a , Brian for temperature propagation through homogeneous and layered soils is presented to predict surface temperatures as a function of soil heat flux amplitude, soil texture, soil water content, and thermal properties and burial

  16. KSInglett Page 1 MATH FOR SOIL SCIENTISTS

    E-Print Network [OSTI]

    Ma, Lena

    transport 9. Soil temperature, heat capacity and conductivity Unit 3 PROBLEM SOLVING IN SOIL BIOCHEMISTRY 10 and radioactive isotopes Unit 4 PROBLEM SOLVING IN SOIL BIOLOGY 14. Microbial growth yield and mortality 15 and nutrient availability 22. Potential Erosion 23. Waste management and bioremediation Unit 6 DATA ANALYSIS

  17. Permafrost soils and carbon cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore »this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  18. The Impacts of Indirect Soil Moisture Assimilation and Direct Surface Temperature and Humidity Assimilation on a Mesoscale Model Simulation of an Indian

    E-Print Network [OSTI]

    Niyogi, Dev

    Assimilation on a Mesoscale Model Simulation of an Indian Monsoon Depression VINODKUMAR AND A. CHANDRASEKAR-generation Pennsylvania State University­NCAR Mesoscale Model (MM5) simulation utilized the humidity and temperature

  19. LAND MINE DETECTION IN BARE SOILS USING THERMAL INFRARED SENSORS

    E-Print Network [OSTI]

    Borchers, Brian

    LAND MINE DETECTION IN BARE SOILS USING THERMAL INFRARED SENSORS Sung-ho Hong, Timothy W. Miller, The Netherlands. lensen@fel.tno.nl ABSTRACT Soil surface temperatures not only exhibit daily and annual cycles of soil surface temperatures, it will be difficult to determine what times of day are most suitable

  20. Temperature System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexicoConference Tight Oil1 Soil Water and Temperature

  1. Soil respiration in perennial grass and shrub ecosystems: Linking environmental controls with plant and microbial sources on seasonal and diel timescales

    E-Print Network [OSTI]

    Carbone, Mariah S; Winston, Gregory C; Trumbore, Susan E

    2008-01-01

    R. Vargas (2008), Automated soil respiration measure- ments:and J. M. Wraith (2007), Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content,

  2. Analysis of volatile phase transport in soils using natural radon gas as a tracer

    SciTech Connect (OSTI)

    Chen, C.; Thomas, D.M.

    1992-12-31

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The .experiment monitored soil gas radon activity, soil moisture, and soil temperature at three depths in the shallow soil column; barometric pressure, rainfall and wind speed were monitored at the soil surface. Linear and multiple regression analysis of the data sets has shown that the gas phase radon activities under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been demonstrated.

  3. Analysis of volatile phase transport in soils using natural radon gas as a tracer

    SciTech Connect (OSTI)

    Chen, C.; Thomas, D.M.

    1992-01-01

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The .experiment monitored soil gas radon activity, soil moisture, and soil temperature at three depths in the shallow soil column; barometric pressure, rainfall and wind speed were monitored at the soil surface. Linear and multiple regression analysis of the data sets has shown that the gas phase radon activities under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been demonstrated.

  4. LIFE IN THE SOIL SOIL BIODIVERSITY: ITS

    E-Print Network [OSTI]

    Wall, Diana

    LIFE IN THE SOIL SOIL BIODIVERSITY: ITS IMPORTANCE TO ECOSYSTEM PROCESSES Report of a Workshop Held vision Literature cited Workshop participants EXECUTIVE SUMMARY Soils are one of the most poorly the soil physico- chemical environment and the soil's species through activities such as: inputs

  5. Non-linear Seismic Soil Structure Interaction Method for Developing...

    Office of Environmental Management (EM)

    techniques * "EFFECT ON NON-LINEAR SOIL- STRUCTURE INTERACTION DUE TO BASE SLAB UPLIFT ON THE SEISMIC RESPONSE OF A HIGH- TEMPERATURE GAS-COOLED REACTOR (HTGR)" Kennedy,...

  6. Surface Soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel Production 1: TotalofSupplySurface Soil Surface Soil We

  7. Soil Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience of SignaturesSoft CostsSoil &Soil0

  8. SPATIAL VARIABILITY OF DIELECTRIC PROPERTIES IN FIELD SOILS

    E-Print Network [OSTI]

    Borchers, Brian

    SPATIAL VARIABILITY OF DIELECTRIC PROPERTIES IN FIELD SOILS J.M.H. Hendrickx, B. Borchers and J detection sensors are affected by soil properties such as water content, temperature, electrical measurements in the Netherlands, Panama, and New Mexico on spatial variability of soil water content. We also

  9. Fungi from geothermal soils in Yellowstone National Park

    SciTech Connect (OSTI)

    Redman, R.S.; Litvintseva, A.; Sheehan, K.B.; Henson, J.M.; Rodriguez, R.J.

    1999-12-01

    Geothermal soils near Amphitheater Springs in Yellowstone National Park were characterized by high temperatures (up to 70 C), high heavy metal content, low pH values (down to pH 2.7), sparse vegetation, and limited organic carbon. From these soils the authors cultured 16 fungal species. Two of these species were thermophilic, and six were thermotolerant. They cultured only three of these species from nearby cool (0 to 22 C) soils. Transect studies revealed that higher numbers of CFUs occurred in and below the root zone of the perennial plant Dichanthelium lanuginosum (hot springs panic grass). The dynamics of fungal CFUs in geothermal soil and nearby nongeothermal soil were investigated for 12 months by examining soil cores and in situ mesocosms. For all of the fungal species studied, the temperature of the soil from which the organisms were cultured corresponded with their optimum axenic growth temperature.

  10. Generation and mobility of radon in soil

    SciTech Connect (OSTI)

    Rose, A.W.; Jester, W.A.; Ciolkosz, E.J.

    1993-01-01

    This study has confirmed large seasonal and daily variations of Rn in soil gas, developed models for the effects of temperature and moisture on air-water Rn partition, inhibited Rn diffusion from wet soil into sparse large air-filled pores and effects of diffusion into bedrock, demonstrated that organic matter is a major host for 226Ra in soils and that organic-bound Ra largely determines the proportion of 222Rn emanated to pore space, shown that in contrast 220Rn is emanated mainly from 224Ra in Fe-oxides, detected significant disequilibrium between 226Ra and 238U in organic matter and in some recent glacial soils, demonstrated by computer models that air convection driven by temperature differences is expected in moderately permeable soils on hillsides.

  11. Soil Organic Carbon Degradation, Barrow, 2013-2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gu, Baohua; Yang, Ziming

    2015-03-30

    This dataset provides information about soil organic carbon decomposition in Barrow soil incubation studies. The soil cores were collected from low-center polygon (Area A) and were incubated in the laboratory at different temperatures for up to 60 days. Transformations of soil organic carbon were characterized by UV and FT-IR, and small organic acids in water-soluble carbons were quantified by ion chromatography during the incubation

  12. Soil Organic Carbon Degradation, Barrow, 2013-2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gu, Baohua; Yang, Ziming

    This dataset provides information about soil organic carbon decomposition in Barrow soil incubation studies. The soil cores were collected from low-center polygon (Area A) and were incubated in the laboratory at different temperatures for up to 60 days. Transformations of soil organic carbon were characterized by UV and FT-IR, and small organic acids in water-soluble carbons were quantified by ion chromatography during the incubation

  13. Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme and implementation of a new numerical scheme

    E-Print Network [OSTI]

    Moelders, Nicole

    ii Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme and implementation of a new.S. Fairbanks, Alaska August 2005 #12;iii Abstract The Hydro-Thermodynamic Soil-Vegetation Scheme (HTSVS........................................................................................................................... 24 Evaluation of snow depth and soil temperatures predicted by the Hydro- Thermodynamic Soil

  14. Building Fertile Soil

    E-Print Network [OSTI]

    Lindsey, Ann

    2008-01-01

    A Backyard Guide to Healthy Soil and Higher Yields, by JohnInstitute. Start with the Soil, by Grace Gershuny. Emmaus,Institute. 1993. The Soul of Soil: A Guide to Ecological

  15. Mass Transport within Soils

    E-Print Network [OSTI]

    McKone, Thomas E.

    2010-01-01

    Nature and Properties of Soils 2nd Edition. Prentice Hall,Exchange of PCBS betweetl Soil and the Atmosphere in theChemicals Residing below the Soil Surface” Water Resources

  16. Rapid reconnaissance of geothermal prospects using shallow temperature...

    Open Energy Info (EERE)

    Using a preliminary model and analysis of the Coso data, the importance of measuring soil thermal diffusivity data at each temperature probe site was shown. Corrected 2-m...

  17. Thermal properties of soils and soils testing

    SciTech Connect (OSTI)

    Not Available

    1981-02-17

    The thermal properties of soils are reviewed with reference to the use of soils as heat sources, heat sinks, or thermal storage. Specific heat and thermal conductivity are discussed. (ACR)

  18. Using electrical resistance tomography to map subsurface temperatures

    DOE Patents [OSTI]

    Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.

    1994-09-13

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.

  19. Using electrical resistance tomography to map subsurface temperatures

    DOE Patents [OSTI]

    Ramirez, Abelardo L. (Pleasanton, CA); Chesnut, Dwayne A. (San Francisco, CA); Daily, William D. (Livermore, CA)

    1994-01-01

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.

  20. Environmental Soil Chemistry Second Edition Environmental Soil Chemistry illustrates fundamental principles of soil

    E-Print Network [OSTI]

    Sparks, Donald L.

    Environmental Soil Chemistry Second Edition Environmental Soil Chemistry illustrates fundamental principles of soil chemistry with respect to environmental reactions between soils and other natural contemporary training in the basics of soil chemistry and applications to real-world environmental concerns

  1. Managing Soil Salinity 

    E-Print Network [OSTI]

    Provin, Tony; Pitt, John L.

    2001-07-13

    oceans and lakes. Fertilizers and organic amendments also add salts to the soil. Effects of salts on plants As soils become more saline, plants become unable to draw as much water from the soil. This is because the plant roots contain varying... and die, no matter how much you water them. Routine soil testing can identify your soil?s salinity levels and suggest measures you can take to correct the specific salinity problem in your soil. Salinity and salt The terms salt and salinity are often used...

  2. Rapid reconnaissance of geothermal prospects using shallow temperature...

    Open Energy Info (EERE)

    using shallow temperature surveys. Semi-annual technical report Abstract Shallow (2-m) soil temperature data have been collected at 27 sites at Long Valley, California, and at 102...

  3. Temperature, Temperature, Earth, geotherm for

    E-Print Network [OSTI]

    Treiman, Allan H.

    Temperature, Temperature, Earth, geotherm for total global heat flow Venus, geotherm for total global heat flow, 500 Ma #12;Temperature, Temperature, #12;Earth's modern regional continental geotherms Venusian Geotherms, 500 Ma Temperature, Temperature, After Blatt, Tracy, and Owens Petrology #12;Ca2Mg5Si8

  4. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in an old-field grassland

    SciTech Connect (OSTI)

    Wan, Shiqiang [Chinese Academy of Sciences; Norby, Richard J [ORNL; Childs, Joanne [ORNL; Weltzin, Jake [University of Tennessee, Knoxville (UTK)

    2007-01-01

    Responses of soil respiration to atmospheric and climatic change will have profound impacts on ecosystem and global C cycling in the future. This study was conducted to examine effects on soil respiration of the concurrent driving factors of elevated atmospheric CO2 concentration, rising temperature, and changing precipitation in a constructed old-field grassland in eastern Tennessee, USA. Model ecosystems of seven old-field species in 12 open-top chambers (4 m in diameter) were treated with two CO2 (ambient and ambient plus 300 ppm) and two temperature (ambient and ambient plus 3 C) levels. Two split plots with each chamber were assigned with high and low soil moisture levels. During the 19-month experimental period from June 2003 to December 2004, higher CO2 concentration and soil water availability significantly increased mean soil respiration by 35.8% and 15.7%, respectively. The effects of air warming on soil respiration varied seasonally from small reductions to significant increases to no response, and there was no significant main effect. In the wet side of elevated CO2 chambers, air warming consistently caused increases in soil respiration, whereas in other three combinations of CO2 and water treatments, warming tended to decrease soil respiration over the growing season but increase it over the winter. There were no interactive effects on soil respiration among any two or three treatment factors irrespective of testing time period. Temperature sensitivity of soil respiration was reduced by air warming, lower in the wet than the dry side, and not affected by CO2 treatment. Variations of soil respiration responses with soil temperature and soil moisture ranges could be primarily attributable to the seasonal dynamics of plant growth and its responses to the three treatments. Using a conceptual model to interpret the significant relationships of treatment-induced changes in soil respiration with changes in soil temperature and moisture observed in this study, we conclude that elevated CO2, air warming, and changing soil water availability had both direct and indirect effects on soil respiration via changes in the three controlling factors: soil temperature, soil moisture, and C substrate. Our results demonstrate that the response of soil respiration to climatic warming should not be represented in models as a simple temperature response function. A more mechanistic understanding of the direct and indirect impacts of concurrent global change drivers on soil respiration is needed to facilitate the interpretation and projection of ecosystem and global C cycling in response to atmospheric and climate change.

  5. Mass Transport within Soils

    SciTech Connect (OSTI)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone with three major horizons, the saturated zone can be further divided into other zones based on hydraulic and geologic conditions. Wetland soils are a special and important class in which near-saturation conditions exist most of the time. When a contaminant is added to or formed in a soil column, there are several mechanisms by which it can be dispersed, transported out of the soil column to other parts of the environment, destroyed, or transformed into some other species. Thus, to evaluate or manage any contaminant introduced to the soil column, one must determine whether and how that substance will (1) remain or accumulate within the soil column, (2) be transported by dispersion or advection within the soil column, (3) be physically, chemically, or biologically transformed within the soil (i.e., by hydrolysis, oxidation, etc.), or (4) be transported out of the soil column to another part of the environment through a cross-media transfer (i.e., volatilization, runoff, ground water infiltration, etc.). These competing processes impact the fate of physical, chemical, or biological contaminants found in soils. In order to capture these mechanisms in mass transfer models, we must develop mass-transfer coefficients (MTCs) specific to soil layers. That is the goal of this chapter. The reader is referred to other chapters in this Handbook that address related transport processes, namely Chapter 13 on bioturbation, Chapter 15 on transport in near-surface geological formations, and Chapter 17 on soil resuspention. This chapter addresses the following issues: the nature of soil pollution, composition of soil, transport processes and transport parameters in soil, transformation processes in soil, mass-balance models, and MTCs in soils. We show that to address vertical heterogeneity in soils in is necessary to define a characteristic scaling depth and use this to establish process-based expressions for soil MTCs. The scaling depth in soil and the corresponding MTCs depend strongly on (1) the composition of the soil and physical state of the soil, (2) the chemical and physic

  6. Overview of different aspects of climate change effects on soils.

    SciTech Connect (OSTI)

    Qafoku, Nikolla

    2014-08-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (?400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2 and create organic carbon (C) that is either reprocessed to CO2 or stored in soils, are the subject of active current investigations with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries and identifies key research needs required to understand the effects of climate change on soils.

  7. Soil thermal dynamics of terrestrial ecosystems of the conterminous United States from 1948 to 2008

    E-Print Network [OSTI]

    Zhuang, Qianlai

    ). Thus, the heat stored in soil and temperature variations cannot be ignored when studying airSoil thermal dynamics of terrestrial ecosystems of the conterminous United States from 1948 to 2008 to changes in vegetation, snow, soil moisture, and other climate variables (i.e., precipitation, solar

  8. Biol Fertil Soils (2006) 43: 6975 DOI 10.1007/s00374-005-0062-5

    E-Print Network [OSTI]

    Neher, Deborah A.

    2006-01-01

    Biol Fertil Soils (2006) 43: 69­75 DOI 10.1007/s00374-005-0062-5 ORIGINAL PAPER Won Il Choi . Daryl L. Moorhead . Deborah A. Neher . Mun Il Ryoo A modeling study of soil temperature and moisture Abstract The effect of soil moisture on population dynam- ics of Paronychiurus kimi (Collembola

  9. Experimental unsaturated soil mechanics

    E-Print Network [OSTI]

    Delage, Pierre

    2008-01-01

    In this general report, experimental systems and procedures of investigating the hydro-mechanical behaviour of unsaturated soils are presented. The water retention properties of unsaturated soils are commented and linked to various physical parameters and properties of the soils. Techniques of controlling suction are described together with their adaptation in various laboratory testing devices. Some typical features of the mechanical behaviour of unsaturated soils are presented within an elasto-plastic framework. An attempt to describe the numerous and significant recent advances in the investigation of the behaviour of unsaturated soils, including the contributions to this Conference, is proposed.

  10. Generation and mobility of radon in soil. Technical report

    SciTech Connect (OSTI)

    Rose, A.W.; Jester, W.A.; Ciolkosz, E.J.

    1993-05-01

    This study has confirmed large seasonal and daily variations of Rn in soil gas, developed models for the effects of temperature and moisture on air-water Rn partition, inhibited Rn diffusion from wet soil into sparse large air-filled pores and effects of diffusion into bedrock, demonstrated that organic matter is a major host for 226Ra in soils and that organic-bound Ra largely determines the proportion of 222Rn emanated to pore space, shown that in contrast 220Rn is emanated mainly from 224Ra in Fe-oxides, detected significant disequilibrium between 226Ra and 238U in organic matter and in some recent glacial soils, demonstrated by computer models that air convection driven by temperature differences is expected in moderately permeable soils on hillsides.

  11. Soil Horizons Some Noteworthy Soil Science in Wisconsin

    E-Print Network [OSTI]

    Meyers, Stephen R.

    Soil Horizons Some Noteworthy Soil Science in Wisconsin Alfred E. Hartemink The impact and benefits of soil science have only partly been documented. Here I highlight four noteworthy soil science achievements from the state of Wisconsin that took place between 1870 and the early 1980s: (i) the first soil

  12. ORIGINAL ARTICLE Soil order and management practices control soil

    E-Print Network [OSTI]

    van Kessel, Chris

    ORIGINAL ARTICLE Soil order and management practices control soil phosphorus fractions in managed in wetland rice soils. In this study we evaluated 71 wetland soils in the Sacramento Valley, California, consisting of different soil orders (Alfisols, Entisols, Mollisols and Verti- sols) and different management

  13. Disturbed core Undisturbed soil

    E-Print Network [OSTI]

    Pennycook, Steve

    Batch Disturbed core Undisturbed soil column Pedon Field Watershed Multi-scale modeling .001-1 m3 1-10 m3 10-10,000 m3 >10,000 m3 Unraveling the influence of scale on organic C transport Soil through deep soil profiles may be the "missing" C flux in global budgets. Jardine, P.M., M.A. Mayes, J. R

  14. Plant diversity increases soil microbial activity and soil carbon storage.

    E-Print Network [OSTI]

    2015-01-01

    B. The vertical distribution of soil organic carbon and itsA. S. & Whitmore, A. P. Soil organic matter turnover isorganic matter in a cultivated soil. Org. Geochem. 33, 357–

  15. Building Fertile Soil

    E-Print Network [OSTI]

    Lindsey, Ann

    2008-01-01

    soil amendments such as compost, manure, cover crops, andare some readily available sources: j Compost is rich inorganic matter, and making compost is a great way to recycle

  16. Mass Transport within Soils

    E-Print Network [OSTI]

    McKone, Thomas E.

    2010-01-01

    large fraction of the sewage sludge produced in many regionsharmful microorganisms. Sewage sludge contains contaminantsdisposal of sewage and industrial sludge. Soil contamination

  17. Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen; Victoria L. Sloan; Richard J. Norby; Mallory P. Ladd; Jason K. Keller; Ariane Jong; Joanne Childs; Deanne J. Brice

    2015-10-29

    This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopography in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.

  18. The Fixation of Phosphoric Acid by the Soil 

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1922-01-01

    by previous studies of other workers, the amount of "on varies with time, temperature, concentration of solution, ratio il to solvent, and other factors. For the purpose of estimating xing power of Texas soils for phosphoric acid the following method ~sed... on the absorption of phosphoric acid was studied by the method described above, the only variation being in the temperature. The solution in contact with the soil was kept five hours in ice water, or five hours at room temperature, or five hours in a water bath...

  19. SOIL TEST INTERPRETATIONS RECOMMENDATIONS HANDBOOK

    E-Print Network [OSTI]

    Noble, James S.

    1 SOIL TEST INTERPRETATIONS AND RECOMMENDATIONS HANDBOOK Originally written 1983 By Daryl D..................................................20 SOIL ACIDITY AND LIMESTONE...............................................27 EXCHANGEABLE MAGNESIUM No. Page No. I. Nitrogen rate adjustments based upon soil texture, organic matter, and time of major

  20. Technical Note Engineering Soils Maps

    E-Print Network [OSTI]

    Technical Note Engineering Soils Maps PAUL M. SANTI Department of Geology and Geological, Suite 100, Overland Park, KS 66211 Key Terms: Engineering Properties, Soils, Hazards, Mapping INTRODUCTION For many applications, `engineering soils maps' may be preferable to comprehensive engineering

  1. communications in soil scienceand

    E-Print Network [OSTI]

    Ma, Lena

    ) IMPACT OF HIGH-VOLUME WOOD-FIRED BOILER ASH AMENDMENT ON SOIL PROPERTIES AND NUTRIENTS Tait Chirenje was conducted to determine the changes in soil properties and the availability and leachability of nutrients.13) increased water holding capacity increases supply of water to plants. However, the results from coal ash

  2. communications in soil scienceand

    E-Print Network [OSTI]

    Ma, Lena

    ) IMPACT OF HIGH-VOLUME WOOD-FIRED BOILER ASH AMENDMENT ON SOIL PROPERTIES AND NUTRIENTS Tait Chirenje-0290 ABSTRACT Forest application of boiler ash is fast becoming a popular alternative to landfilling. Boiler ash following the application of large quantities of boiler ash in a sandy soil (with a spodic horizon). Two

  3. Free Standing Soil Sample

    E-Print Network [OSTI]

    Stuart, Steven J.

    Free Standing Soil Sample Kiosks Clemson University Cooperative Extension Service Reportto of Richland County, Jackie Kopack Jordan has partnered with local garden centers to provide free standing soil sample collections sites. The free standing kiosks are located at three local garden centers. Woodley

  4. Chapter 14 Geology and Soils

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in bold and acronyms are defined in Chapter 32, Glossary and Acronyms. Chapter 14 Geology and Soils This chapter describes existing geological and soil conditions in the...

  5. Evaluating the Potential of Biochars and Composts as Organic Amendments to Remediate a Saline-Sodic Soil Leached with Reclaimed Water

    E-Print Network [OSTI]

    Chaganti, Vijayasatya Nagendra

    2014-01-01

    pyrolysis of papermill waste on agronomic performance and soilpyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil.pyrolysis of switch grass at 500 °C for 2 h, increased cumulative soil

  6. In situ formation of phosphate barriers in soil

    DOE Patents [OSTI]

    Moore, Robert C. (Edgewood, NM)

    2002-01-01

    Reactive barriers and methods for making reactive barriers in situ in soil for sequestering soil ontaminants including actinides and heavy metals. The barrier includes phosphate, and techniques are disclosed for forming specifically apatite barriers. The method includes injecting dilute reagents into soil in proximity to a contamination plume or source such as a waste drum to achieve complete or partial encapsulation of the waste. Controlled temperature and pH facilitates rapid formation of apatite, for example, where dilute aqueous calcium chloride and dilute aqueous sodium phosphate are the selected reagents. Mixing of reagents to form precipitate is mediated and enhanced through movement of reagents in soil as a result of phenomena including capillary action, movement of groundwater, soil washing and reagent injection pressure.

  7. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-09-04

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing ofmore »ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha–1 yr–1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Provided the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.« less

  8. Extractable soil phosphorus in Blackland Prairie soils 

    E-Print Network [OSTI]

    Byrd, Robert Claude

    1995-01-01

    crop P response, evaluate crop response to P fertilizer placement and rate, and compare extractable P levels from TAEX, Bray 1, Olsen, TAEX 1, TAEX 2, and TAEX 3 in selected Blackland Prairie soils. Five field locations were established with replicated...

  9. Soil Profile Rebuilding Specification (Full Version)--1 Soil Profile Rebuilding

    E-Print Network [OSTI]

    Virginia Tech

    for Restoration of Graded and Compacted Soils that will be Vegetated CSI Div 2 CSICode-02910-Plant Preparation or addition of topsoil, and subsequent planting with woody plants. The soil preparation portion of Soil-Soil Preparation CONTENTS 1. PURPOSE AND DESCRIPTION 2. PROCEDURE 3. DEFINITIONS 4. SUBMITTALS REFERENCES

  10. Artificial Soiling of Photovoltaic Module Surfaces using Traceable Soil Components

    E-Print Network [OSTI]

    Artificial Soiling of Photovoltaic Module Surfaces using Traceable Soil Components Patrick D@sandia.gov Abstract--Effective evaluation and prediction of photovoltaic performance loss due to soiling requires types. I. INTRODUCTION Soiling is a significant source of energy loss in photovoltaic (PV) systems [1

  11. APBI 401 / SOIL 501: SOIL PROCESSES TERM 1 2014

    E-Print Network [OSTI]

    APBI 401 / SOIL 501: SOIL PROCESSES TERM 1 ­ 2014 Instructor Sandra Brown, MCML 156c Office hour: M Rationale: Soils are a fundamental component of agro-ecological, forest and other land use systems; reflecting natural processes and the influence of human activities. Soil properties and processes regulate

  12. APBI 403 / SOIL 503 SOIL SAMPLING, ANALYSES AND

    E-Print Network [OSTI]

    APBI 403 / SOIL 503 SOIL SAMPLING, ANALYSES AND DATA INTERPRETATION TERM 1 ­ 2015/16 Instructors measurement procedures and techniques in soil science. Course Learning Outcomes: Upon completion of APBI 403 readings will be drawn from a variety of sources. Course Marks: APBI 403 ­ Soil Sampling, Analyses and Data

  13. Experimental observation of signature changes in bulk soil electrical conductivity in response to engineered surface CO2 leakage

    SciTech Connect (OSTI)

    Zhou X.; Wielopolski L.; Lakkaraju, V. R.; Apple, M.; Dobeck, L. M.; Gullickson, K.; Shaw, J. A.; Cunningham, A. B.; Spangler, L. H.

    2012-03-01

    Experimental observations of signature changes of bulk soil electrical conductivity (EC) due to CO{sub 2} leakage were carried out at a field site at Bozeman, Montana, to investigate the change of soil geophysical properties in response to possible leakage of geologically sequestered CO{sub 2}. The dynamic evolution of bulk soil EC was measured during an engineered surface leakage of CO{sub 2} through in situ continuous monitoring of bulk soil EC, soil moisture, soil temperature, rainfall rate, and soil CO{sub 2} concentration to investigate the response of soil bulk EC signature to CO{sub 2} leakage. Observations show that: (1) high soil CO{sub 2} concentration due to CO{sub 2} leakage enhances the dependence of bulk soil EC on soil moisture. The bulk soil EC is a linear multivariate function of soil moisture and soil temperature, the coefficient for soil moisture increased from 2.111 dS for the non-leaking phase to 4.589 dS for the CO{sub 2} leaking phase; and the coefficient for temperature increased from 0.003 dS/C for the non-leaking phase to 0.008 dS/C for the CO{sub 2} leaking phase. The dependence of bulk soil EC on soil temperature is generally weak, but leaked CO{sub 2} enhances the dependence, (2) after the CO{sub 2} release, the relationship between soil bulk EC and soil CO{sub 2} concentration observes three distinct CO{sub 2} decay modes. Rainfall events result in sudden changes of soil moisture and are believed to be the driving forcing for these decay modes, and (3) within each mode, increasing soil CO{sub 2} concentration results in higher bulk soil EC. Comparing the first 2 decay modes, it is found that the dependence of soil EC on soil CO{sub 2} concentration is weaker for the first decay mode than the second decay mode.

  14. Digital Soil Mapping: Interactions with

    E-Print Network [OSTI]

    Grunwald, Sabine

    Chapter 21 Digital Soil Mapping: Interactions with and Applications for Hydropedology J.A. Thompson,1, * S. Roecker,2 S. Grunwald3 and P.R. Owens4 ABSTRACT Spatial information on soils, particularly hydrologic and hydromorphic soil properties, is used to understand and assess soil water retention, flooding

  15. Department: SOIL Course No.: 2120

    E-Print Network [OSTI]

    Alpay, S. Pamir

    :George Elliott Content Area: CA3 Science and Technology Catalog Copy: SOIL 2120. Environmental Soil Science (251 products) spend a significant amount of time in soils. This, in turn, impacts water quality. The production it has on our everyday lives, and the interdependency of the various natural environments. Soil formation

  16. Automated soil gas monitoring chamber

    DOE Patents [OSTI]

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  17. Saving our soils

    E-Print Network [OSTI]

    Grandy, A. Stuart; Billings, Sharon A.; Richter Dan

    2010-05-01

    Saving our soils 171 A Stuart Grandy Michigan State University, East Lansing, MI GUEST EDITORIAL GUEST EDITORIAL GUEST EDITORIAL © The Ecological Society of America www.frontiersinecology.org Although the US healthcare system is among the best... in the world at treating disease, it is frequentlycriticized for not doing enough to prevent disease. Similarly, soil management, while effectively address- ing acute problems, is less successful at preventing chronic degradation. This analogy becomes clear...

  18. Soil Biology & Biochemistry 38 (2006) 22922299 Modifications of degradation-resistant soil organic matter by soil

    E-Print Network [OSTI]

    Miksik, Ivan

    2006-01-01

    Soil Biology & Biochemistry 38 (2006) 2292­2299 Modifications of degradation-resistant soil organic matter by soil saprobic microfungi Veronika R eza´ c ova´ a,b,Ã, Hana Hrs elova´ a , Hana Gryndlerova in their solutions and in sterile soil by microfungal species and two well-known HA degraders were studied

  19. Growing plants on atoll soils

    SciTech Connect (OSTI)

    Stone, E L; Migvar, L; Robison, W L

    2000-02-16

    Many years ago people living on atolls depended entirely on foods gathered from the sea and reefs and grown on land. Only a few plants, such as coconut (ni), Pandanus (bob), and arrowroot (mok-mok), could be grown on the lower rainfall atolls, although adequate groundwater conditions also allowed taro (iaraj, kotak, wot) to be cultivated. On higher rainfall atolls, breadfruit (ma) was a major food source, and banana (binana, kepran), lime (laim), and taros (iaraj, kotak, wot) could be grown. The early atoll populations were experts in growing plants that were vital to sustaining their nutrition requirements and to providing materials for thatch, basketry, cordage, canoe construction, flowers, and medicine. They knew which varieties of food plants grew well or poorly on their atolls, how to propagate them, and where on their atoll they grew best. They knew the uses of most native plants and what the various woods were well suited for. Many varieties of Pandanus (bob) and breadfruit (ma) grew well with high rainfall, but only a few produced well on drier atolls. Such information had been passed down through the generations although some of it has been lost in the last century. Today there are new plants and new varieties of existing plants that can be grown on atolls. There are also new materials and information on how to grow both the old and new plants more effectively. However, there are also introduced weeds and pests to control. Today, there is also an acute need to grow more of the useful plants adapted to atolls. Increasing numbers of people living on an atoll without an equal increase in income or food production stretches the available food supplies. Much has been written about the poor conditions for plant growth on atolls. As compared with many places in the world where crops are grown, however, atolls can provide some highly favorable conditions. For instance, the driving force for plant growth is sunlight, and on atolls light is abundant throughout the year. Except on the driest of atolls, air temperature and humidity range only within limits set by the surrounding sea. There are no cold seasons, no frosts, no cold soils, no dry winds, and no periodic plagues of insects or diseases moving from miles away. Problems of soil drainage or salinity are few and easily recognized. Nor are there problems with acid soils, soil crusting, or erosion that challenge cultivators in many other areas. On the contrary, some of the black soils at the center of wide islands rank with the best soils of Russia and the American Midwest, except for their shortage of potassium and the uncertainties of rainfall. Some of these atoll soils contain more total nitrogen than many of the world's most productive agricultural soils and, in some, the total phosphorus content is so high as to be almost unbelievable--two to five tons of the element per acre. Certainly, problems exist in growing plants on atolls. There are also some special concerns not encountered in other environments, such as the wind and salt spray near shore. The two major physical limitations, however, are inadequate rainfall in some years and in many places, and soil fertility limitations. The alkaline or ''limy'' make-up of atoll soils means that a few plant nutrients, especially iron, limit growth of many introduced plants, and this is difficult to correct. As elsewhere in the world, many--but not all--atoll soils lack enough nitrogen and/or phosphorus for high yield, and all lack sufficient potassium. There is no practical way of overcoming drought except by use of tolerant plants such as coconut (ni) and Pandanus (bob), plus collection and careful use of whatever water is available. There are opportunities to overcome nutritional limitations mentioned above, first, by intensive use of all organic debris and household wastes in small gardens and, second, by use of commercial fertilizers. Imported fertilizers are expensive, certainly, but much less so on a family basis than the equivalent costs of imported food.

  20. Factors affecting hydrolysis of condensed phosphates in soils 

    E-Print Network [OSTI]

    Stewart, William M.

    1983-01-01

    -55% of added PP. This, depending on time, was 2-3 times more hydrolysis than was induced by non-deficient roots. Effect of Temperature Hydrolysis of polyphosphate compounds depends largely on tempera- ture. Huffman (1970) noted that a 5C rise in temperature..., found PP to be less effective than OP on an acid soil (pH 4. 0), while there were only very slight differences i. n the effectiveness of the two sources in a soil with a pH value of 7. 2. Reported results have shown that increasing the pH of acid...

  1. Propagation of seismic waves through liquefied soils

    E-Print Network [OSTI]

    Taiebat, Mahdi; Jeremic, Boris; Dafalias, Yannis; Kaynia, Amir; Cheng, Zhao

    2010-01-01

    Journal of the Soil Mechanics and Foundations Division,of critical state soil mechanics and bounding surfacewith critical state soil mechanics principles; it renders

  2. Crop and Soil Science Degree Checklist Name: ____________________________

    E-Print Network [OSTI]

    Grünwald, Niklaus J.

    and Soil Science Degree Checklist Name: ____________________________ ID Intensive (SOIL 325) (3) _______ HHS 231 ­ Lifetime Fitness for Health (2. Global Issues (3) (*soil science electives meeting requirement) _______ Science

  3. Pennsylvania Soil Survey Edward J. Ciolkosz,

    E-Print Network [OSTI]

    dePamphilis, Claude

    Pennsylvania Soil Survey History by Edward J. Ciolkosz, Robert L. Cunningham, and Joseph J ............................................................................................... 1 CHAPTER 2 Pennsylvania Soil Characterization ......................................... 10 CHAPTER 4 Soil Survey Committee History

  4. Controls on black carbon storage in soils

    E-Print Network [OSTI]

    Czimczik, Claudia I; Masiello, Caroline A

    2007-01-01

    Physical and chemical protection of soil organic carbonin three agricultural soils with different contents ofcalcium carbonate, Aust. J. Soil Res. , 38, 1005 – 1016.

  5. Short communication Microsite differences in fungal hyphal length, glomalin, and soil

    E-Print Network [OSTI]

    Rilli, Matthias C.

    , 2001). Soil structure has a prevailing role in soil infiltration and biogeochem- ical processes), lower temperature (Maestre et al., 2001), higher infiltration capacity (Maestre et al., 2002a), a larger in semiarid steppes of SE Spain. This study was conducted at three S. tenacissima steppes located

  6. Construction, monitoring, and performance of two soil liners

    SciTech Connect (OSTI)

    Krapac, I.G.; Cartwright, K.; Hensel, B.R.; Herzog, B.L.

    1991-01-01

    A prototype and large-scale soil liner were constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the standard set by the U.S. Environmental Protection Agency for saturated hydraulic conductivity. In situ ponded infiltration rates into the prototype liner were measured and water containing fluorescein and rhodamine WT dyers was allowed to infiltrate in the prototype liner. Although the liner met the USEPA conductivity requirement, the dye flow paths indicated a need for better bonding between lifts and a reduction in soil clod sizes. These observations suggested that if soil liners are to perform according to design specifications, soil processing prior to construction and rigid construction QA/QC are necessary. The large-scale liner (7.3 c 14.6 {times} 0.9 m) consisted of six 15-cm compacted lifts. Full-scale equipment was used for compaction, and construction practices were modified on the basis of experience gained from the prototype liner study. The work conducted so far indicates that compacted soil barriers can be constructed to meet the saturated hydraulic conductivity requirements established by the USEPA. Questions regarding methodologies to collect in situ infiltration data have arisen from the research. Differences have been noted in infiltration fluxes, as measured by different types of infiltrometers. Perturbations in measurements of infiltration rates and soil tensions have been correlated with barometric pressure fluctuations and/or temperature changes in the liner.

  7. Weathering controls on mechanisms of carbon storage in grassland soils

    SciTech Connect (OSTI)

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-09-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation of Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought.

  8. POST OAK SAVANNA IN TRANSITION: JUNIPER ENCROACHMENT AND CLIMATE CHANGE ALTER GRASSLAND SOIL RESPIRATION 

    E-Print Network [OSTI]

    Thompson, Bennie

    2011-08-08

    The amount of carbon flux from soils on a global scale is estimated at over 75 x 1015 g C yr-1. Climate change is projected to affect regional environmental conditions, raising temperatures and altering precipitation patterns. The semi...

  9. Miamisburg Environmental Management Project Archived Soil & Groundwate...

    Office of Environmental Management (EM)

    Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports...

  10. Fernald Environmental Management Project Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald...

  11. Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems Intergrating Magnetotellurics, Soil...

  12. Comparison of soil respiration methods in a mid-latitude deciduous forest

    SciTech Connect (OSTI)

    Wayson, C. A. [Indiana University; Randolph, J. C. [Indiana University; Hanson, Paul J [ORNL; Schmid, H. P. [Indiana University; Grimmond, CSB [Indiana University

    2006-01-01

    In forest ecosystems the single largest respiratory flux influencing net ecosystem productivity (NEP) is the total soil CO2 efflux; however, it is difficult to make measurements of this flux that are accurate at the ecosystem scale. We examined patterns of soil CO2 efflux using five different methods: auto-chambers, portable gas analyzers, eddy covariance along and two models parameterized with the observed data. The relation between soil temperature and soil moisture with soil CO2 effluxes are also investigated, both inter-annually and seasonally, using these observations/results. Soil respiration rates (Rsoil) are greatest during the growing season when soil temperatures are between 15 and 25 C, but some soil CO2 efflux occurs throughout the year. Measured soil respiration was sensitive to soil temperature, particularly during the spring and fall. All measurement methods produced similar annual estimates. Depending on the time of the year, the eddy covariance (flux tower) estimate for ecosystem respiration is similar to or slightly lower than estimates of annual soil CO2 efflux from the other methods. As the eddy covariance estimate includes foliar and stem respiration which the other methods do not; it was expected to be larger (perhaps 15-30%). The auto-chamber system continuously measuring soil CO2 efflux rates provides a level of temporalr esolution that permits investigation of short- to longer term influences of factors on these efflux rates. The expense of building and maintaining an auto chamber system may not be necessary for those esearchers interested in estimating Rsoil annually, but auto-chambers do allow the capture of data from all seasons needed for model parameterization.

  13. Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)

    SciTech Connect (OSTI)

    Garten Jr, Charles T [ORNL

    2012-01-01

    Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

  14. LIVING SOIL Master Gardener College

    E-Print Network [OSTI]

    Isaacs, Rufus

    LIVING SOIL Master Gardener College George W. Bird, Professor, MSU (June 9, 2012) #12;#12;Living Soil References G. W. Bird, Professor Michigan State University birdg@msu.edu http://www.ent.msu.edu/Directory/Facultypages/bird/tabid/133/Default.aspx · Brady, N. and R. Weil. 2002. Nature and Properties of Soils (13th ed) Prentice Hall

  15. Soil Testing for Environmental Contaminates

    E-Print Network [OSTI]

    Soil Testing for Environmental Contaminates Interpreting Your Heavy Metals Test Results Olivia quantities. Soils have often been the landing spot for heavy metals, chemicals, and wastes as byproducts of industrial and agricultural pollutants. Many of these metals are present in soils natu- rally, usually

  16. LUNAR SOIL SIMULATION TRAFFICABILITY PARAMETERS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    LUNAR SOIL SIMULATION and TRAFFICABILITY PARAMETERS by W. David Carrier, III Lunar Geotechnical.0 RECOMMENDED LUNAR SOIL TRAFFICABILITY PARAMETERS Table 9.14 in the Lunar Sourcebook (Carrier et al. 1991, p. 529) lists the current recommended lunar soil trafficability parameters: bc = 0.017 N/cm2 bN = 35° K

  17. SOIL INFORMATION Last Lime Application

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    production. Send samples, forms, and payment to Virginia Tech Soil Testing Lab, 145 Smyth Hall (MC 0465), 185 Industrial Lawns - Bermudagrass Routine (soil pH, P, K, Ca, Mg, Zn, Mn, Cu, Fe, B, and estimated CEC) $10, Virginia Tech." COST PER SAMPLE IN-STATE OUT-OF-STATE SOIL TEST DESIRED AND FEES SAMPLE IDENTIFICATION Your

  18. The Influence of Soil Moisture Upon the Geothermal Climate Signal

    E-Print Network [OSTI]

    Smerdon, Jason E.

    The Influence of Soil Moisture Upon the Geothermal Climate Signal A.W. England*, Xiaohua Lin climate warming over the past few hundred years are being obtained from profiles of borehole temperature fractions of the geothermal climate signal. One of the long-term objectives of this investigation is to use

  19. The Basicity of Texas Soils

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach); Carlyle, E. C. (Elmer Cardinal)

    1929-01-01

    mixture of nitrate of soda and sulphate of ammonia in proper proportions will not affect the acidity of the soil. THE BASICITY OF TEXAS SOILS 7 The importance of these characteristics of sulphate of ammonia and nitrate of soda depencls upon various... to the effect of fertilizer an the reaction of soils. Some fertilizer materials, such as sulphate of ammonia, have a tendency to cause the soil to become acid. Sulphate ,of ammonia reacts with the replaceable bases in the soil silicates; the ammonia replaces...

  20. Characterization of soil water content variability and soil texture using GPR groundwave techniques

    E-Print Network [OSTI]

    Grote, K.

    2010-01-01

    wave method for soil water content measurement: Hydrologicalfor estimating soil water content during irrigation andvariations of the soil water content in an agro-ecosystem

  1. Water and heat transport in boreal soils: Implications for soil response to climate change

    E-Print Network [OSTI]

    2011-01-01

    G. An integrated model of soil, hydrology, and vegetatione n v Water and heat transport in boreal soils: Implicationsfor soil response to climate change Zhaosheng Fan a, ? ,

  2. Digitally controlled simple shear apparatus for dynamic soil testing

    E-Print Network [OSTI]

    Duku, Pendo M; Stewart, Jonathan P; Whang, Daniel H; Venugopal, Ravi

    2007-01-01

    Techniques in Soil Mechanics,” Soils Found. , Vol. 23, No.Experimental Unsaturated Soil Mechanics, A. Taran- tino, E.

  3. Pneumatic soil removal tool

    DOE Patents [OSTI]

    Neuhaus, John E. (Newport News, VA)

    1992-01-01

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw.

  4. Pneumatic soil removal tool

    DOE Patents [OSTI]

    Neuhaus, J.E.

    1992-10-13

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw. 3 figs.

  5. Effects of soil moisture on the responses of soil temperatures to climate change in cold regions

    E-Print Network [OSTI]

    Subin, Z.M.

    2014-01-01

    and the Commu- nity Earth System Model 1 (CESM1) (http://poorly simulated by current earth system models. A number of

  6. Crop rotation and soil temperature influence the community structure of Aspergillus flavus in soil

    E-Print Network [OSTI]

    Cotty, Peter J.

    June 2010 Available online 14 July 2010 Keywords: Maize Cottonseed Biocontrol Population structure a b the strain L isolates. The S strain has been implicated as the primary causal agent of several contamination, the main causal agent of aflatoxin contami- nation, frequently infects several agricultural crops

  7. Soil protection major Prof. Dani Or

    E-Print Network [OSTI]

    Giger, Christine

    1 Soil protection major Prof. Dani Or Soil and Terrestrial Environmental Physics CHN F 29.1 Universitätstrasse 16 8092 Zürich dani.or@env.ethz.ch +41 44 633 60 15 Dr. Peter Lehmann Soil and Terrestrial Environmental Physics Objectives of soil protection major · understand composition and structure of soil · study

  8. Compacted Soil Liner Interface Strength Importance

    E-Print Network [OSTI]

    Case Study Compacted Soil Liner Interface Strength Importance Timothy D. Stark, F.ASCE1 ; Hangseok interface is not the geomembrane (GM)/compacted low-permeability soil liner (LPSL) but a soil­soil interface placing the cover soil from bottom to top. DOI: 10.1061/(ASCE)GT.1943-5606 .0000556. © 2012 American

  9. Rehabilitating Damaged Urban SoilsRehabilitating Damaged Urban Soils to OptimizeTree Establishment and Growth & Improve Soil Functionto OptimizeTree Establishment and Growth & Improve Soil Function

    E-Print Network [OSTI]

    Virginia Tech

    Rehabilitating Damaged Urban SoilsRehabilitating Damaged Urban Soils to OptimizeTree Establishment and Growth & Improve Soil Functionto OptimizeTree Establishment and Growth & Improve Soil Function Rachel of Crop and Soil Environmental Sciences This project is funded in part by theTree Research and Education

  10. Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994)

    SciTech Connect (OSTI)

    Raich, J.W.

    2003-09-15

    We used a climate-driven regression model to develop spatially resolved estimates of soil-CO{sub 2} emissions from the terrestrial land surface for each month from January 1980 to December 1994, to evaluate the effects of interannual variations in climate on global soil-to-atmosphere CO{sub 2} fluxes. The mean annual global soil-CO{sub 2} flux over this 15-y period was estimated to be 80.4 (range 79.3-81.8) Pg C. Monthly variations in global soil-CO{sub 2} emissions followed closely the mean temperature cycle of the Northern Hemisphere. Globally, soil-CO{sub 2} emissions reached their minima in February and peaked in July and August. Tropical and subtropical evergreen broad-leaved forests contributed more soil-derived CO{sub 2} to the atmosphere than did any other vegetation type ({approx}30% of the total) and exhibited a biannual cycle in their emissions. Soil-CO{sub 2} emissions in other biomes exhibited a single annual cycle that paralleled the seasonal temperature cycle. Interannual variability in estimated global soil-CO{sub 2} production is substantially less than is variability in net carbon uptake by plants (i.e., net primary productivity). Thus, soils appear to buffer atmospheric CO{sub 2} concentrations against far more dramatic seasonal and interannual differences in plant growth. Within seasonally dry biomes (savannas, bushlands, and deserts), interannual variability in soil-CO{sub 2} emissions correlated significantly with interannual differences in precipitation. At the global scale, however, annual soil-CO{sub 2} fluxes correlated with mean annual temperature, with a slope of 3.3 PgCY{sup -1} per degree Celsius. Although the distribution of precipitation influences seasonal and spatial patterns of soil-CO{sub 2} emissions, global warming is likely to stimulate CO{sub 2} emissions from soils.

  11. Homeowner Soil Sample Information Form 

    E-Print Network [OSTI]

    Provin, Tony

    2007-04-11

    THE TEXAS A&M UNIVERSITY SYSTEM Soil, Water and Forage Testing Laboratory Urban and Homeowner Soil Sample Information Form See sampling procedures and mailing instructions on the back of this form. (PLEASE DO NOT SEND CASH) SU07 E-444... (7-07) Results will be mailed to this address ONLY Address City Phone County where sampled Name Laboratory # (For Lab Use Only) State Zip Payment (DO NOT SEND CASH). Amount Paid $ SUBMITTED BY: Check Money Order Make Checks Payable to: Soil...

  12. How Does Your Soil Rate? 

    E-Print Network [OSTI]

    Barton, Jack H.; Mills, J. F.

    1956-01-01

    ~SERVICE G. G. GIBSON. DIRECTOR. COLLEGE STATION. TEXAS THE C $acb . Soil and Water Conservation ! Texas Agricultural Extensio~ 8. Assistant rrotessc 1 Department of A A. & M. College Texas A. & M. College aysrey ACKNOWLEDGMENTS This bulletin has... been written with the desire to give a better understanding of the soil. It is designed as a guide toward a more uniform method of teaching land evaluation. The advice, consultations and suggestions of the agronomists and soil scientists...

  13. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  14. Organic Constituents of the Soil

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1922-01-01

    materials. As might be expected, those in the excrement are the most resistant to the action of the soil bacteria. Other experiments were made, but the results were similar to this one. SUGARS BY HYDROLYSIS OF SOILS The reducing sugars formed by heating... sheep excrement. The amount of reducing substance, calculated as sugars, produced by heating the soil with la per cent. sulphuric acid varied from .OO2 to .215 per cent. with the average of .058 for 7'7 soils. The nitrogen insoluble in permanganate...

  15. Soil metagenomics and carbon cycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stands to improve climate modeling Environmental microbiology In 2009, the Department of Energy established the Los Alamos Science Focus Area in Soil Metagenomics & Carbon Cycling...

  16. Soil Density/Moisture Gauge

    Broader source: Energy.gov [DOE]

    This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of a soil moisture/density gauge (Class 7 -...

  17. Long-term soil warming and Carbon Cycle Feedbacks to the Climate System

    SciTech Connect (OSTI)

    Melillo, Jerry M.

    2014-04-30

    The primary objective of the proposed research was to quantify and explain the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem. The research was done at an established soil warming experiment at the Harvard Forest in central Massachusetts – Barre Woods site established in 2001. In the field, a series of plant and soil measurements were made to quantify changes in C storage in the ecosystem and to provide insights into the possible relationships between C-storage changes and nitrogen (N) cycling changes in the warmed plots. Field measurements included: 1) annual woody increment; 2) litterfall; 3) carbon dioxide (CO2) efflux from the soil surface; 4) root biomass and respiration; 5) microbial biomass; and 6) net N mineralization and net nitrification rates. This research was designed to increase our understanding of how global warming will affect the capacity of temperate forest ecosystems to store C. The work explored how soil warming changes the interactions between the C and N cycles, and how these changes affect land-atmosphere feedbacks. This core research question framed the project – What are the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem? A second critical question was addressed in this research – What are the effects of a sustained in situ 5{degrees}C soil temperature increase on nitrogen (N) cycling in a northeastern deciduous forest ecosystem?

  18. Effects of Frozen Soil on Snowmelt Runoff and Soil Water Storage at a Continental Scale

    E-Print Network [OSTI]

    Yang, Zong-Liang

    Effects of Frozen Soil on Snowmelt Runoff and Soil Water Storage at a Continental Scale GUO-YUE NIU) ABSTRACT The presence of ice in soil dramatically alters soil hydrologic and thermal properties. Despite computes soil ice content and its modifications to soil hydrologic and thermal properties. However

  19. Simulating the water content and temperature changes in an experimental embankment using meteorological data

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Simulating the water content and temperature changes in an experimental embankment using on the soil response such as changes in water content and temperature as well as the induced vertical from the base of embankment. In this study, the changes in temperature, volumetric water content

  20. Soils | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH JumpSlough HeatMccoy Geothermal Area (DOE GTP)Soils

  1. Determination of diffusion coefficient for unsaturated soils 

    E-Print Network [OSTI]

    Sood, Eeshani

    2005-08-29

    The structures constructed on unsaturated soils are damaged by the movement of the soil underneath. The movement is basically due to the flow of moisture in and out of the soil. This change in moisture also affects the ...

  2. Climatic influences on hillslope soil transport efficiency

    E-Print Network [OSTI]

    Schurr, Naomi D. (Naomi Danika)

    2014-01-01

    The soil transport coefficient D represents the relationship between local topographical gradient and soil flux in the landscape evolution model. This work presents new estimates of the soil transport coefficient D at 9 ...

  3. Collection Policy: Crop and Soil Sciences Introduction

    E-Print Network [OSTI]

    Angenent, Lars T.

    Collection Policy: Crop and Soil Sciences ___________________________________________________________________________________ Introduction: This 2007 collection policy review for the Department of Crops and Soil Sciences comes several the Department of Atmospheric and Earth Sciences. Since then, Crops and Soil Sciences has reorganized into three

  4. Sulfate induced heave in lime stabilized soil 

    E-Print Network [OSTI]

    Bredenkamp, Sanet

    1994-01-01

    The addition of hydrated lime to clay soils is one of the most common methods of soil stabilization. However, when sulfates are present in the soil, the calcium in the lime reacts with the sulfates to form ettringite, an ...

  5. Remote sensing of soil radionuclide fluxes in a tropical ecosystem

    SciTech Connect (OSTI)

    Clegg, B.; Koranda, J.; Robinson, W.; Holladay, G.

    1980-11-06

    We are using a transponding geostationary satellite to collect surface environmental data to describe the fate of soil-borne radionuclides. The remote, former atomic testing grounds at the Eniwetok and Bikini Atolls present a difficult environment in which to collect continuous field data. Our land-based, solar-powered microprocessor and environmental data systems remotely acquire measurements of net and total solar radiation, rain, humidity, temperature, and soil-water potentials. For the past year, our water flux model predicts wet season plant transpiration rates nearly equal to the 6 to 7 mm/d evaporation pan rate, which decreases to 2 to 3 mm/d for the dry season. Radioisotopic analysis confirms the microclimate-estimated 1:3 to 1:20 soil to plant /sup 137/Cs dry matter concentration ratio. This ratio exacerbates the dose to man from intake of food plants. Nephelometer measurements of airborne particulates presently indicate a minimum respiratory radiological dose.

  6. Examining the Relationship between Antecedent Soil Moisture and Summer Precipitation in the U.S. Great Plains 

    E-Print Network [OSTI]

    Meng, Lei

    2010-01-14

    This dissertation focuses on examining the relationship between antecedent soil moisture and summer precipitation in the U.S. Great Plains (GP). The influence of Nino sea surface temperatures (SSTs) on summer precipitation ...

  7. Permafrost soils and carbon cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2014-10-30

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon (OC) stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous OC stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global C cycle and the potential vulnerability of the region's soil OC stocks to changing climatic conditions. In this review,more »we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of OC stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this OC to permafrost thaw under a warming climate.« less

  8. Contrasting soil microbial community functional structures in...

    Office of Scientific and Technical Information (OSTI)

    Contrasting soil microbial community functional structures in two major landscapes of the Tibetan alpine meadow Prev Next Title: Contrasting soil microbial community...

  9. How Soil Organic Matter Composition Controls Hexachlorobenzene-Soil-Interactions: Adsorption Isotherms and Quantum Chemical Modelling

    E-Print Network [OSTI]

    Ahmed, Ashour; Kühn, Oliver

    2013-01-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soil soil soil+3 HWE soil+6 HWE. For the latter three samples this order was also valid for the HCB adsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption behaviour combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HC...

  10. The Composition and Properties of Some Texas Soils

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1907-01-01

    What Constitutes Soil Fertility; Causes of Small Crops; Maintaining Soil Fertitlity; Increasing Soil Fertility; Chemical Analysis of Soils; Value of Chemical Analysis; Pot Experiments; The United States Soil Survey; General ...

  11. Non-Traditional Soil Additives: Can They Improve Crop Production? 

    E-Print Network [OSTI]

    McFarland, Mark L.; Stichler, Charles; Lemon, Robert G.

    2002-06-26

    Non-traditional soil additives include soil conditioners such as organic materials and minerals, soil activators that claim to stimulate soil microbes or inoculate soil with new beneficial organisms, and wetting agents that may be marketed...

  12. Demonstration testing and evaluation of in situ soil heating. Health and safety plan (Revision 2)

    SciTech Connect (OSTI)

    Dev, H.

    1994-12-28

    This document is the Health and Safety Plan (HASP) for the demonstration of IITRI`s EM Treatment Technology. In this process, soil is heated in situ by means of electrical energy for the removal of hazardous organic contaminants. This process will be demonstrated on a small plot of contaminated soil located in the Pit Area of Classified Burial Ground K-1070-D, K-25 Site, Oak Ridge, TN. The purpose of the demonstration is to remove organic contaminants present in the soil by heating to a temperature range of 85{degrees} to 95{degrees}C. The soil will be heated in situ by applying 60-Hz AC power to an array of electrodes placed in boreholes drilled through the soil. In this section a brief description of the process is given along with a description of the site and a listing of the contaminants found in the area.

  13. Uranium soils integrated demonstration: Soil characterization project report

    SciTech Connect (OSTI)

    Cunnane, J.C. [Argonne National Lab., IL (United States); Gill, V.R. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Lee, S.Y. [Oak Ridge National Lab., TN (United States); Morris, D.E. [Los Alamos National Lab., NM (United States); Nickelson, M.D. [HAZWRAP, Oak Ridge, TN (United States); Perry, D.L. [Lawrence Berkeley Lab., CA (United States); Tidwell, V.C. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP.

  14. Soil and Water Conservation Spring 2014

    E-Print Network [OSTI]

    Ma, Lena

    of agricultural soil drainage on them. Define water harvesting and give examples. #12;2 Basic Course1 SWS 4233 Soil and Water Conservation 3 Credits Spring 2014 Instructor Susan Curry scurry resources: soil and water. Topics discussed include: Soil/water resources, historical erosions and sediment

  15. Soil Moisture Constants and Physical Properties

    E-Print Network [OSTI]

    , Kauai, and Oahu. These soils represent 10 great soil groups commonly found in the State of HawaiiSoil Moisture Constants and Physical Properties of Selected Soils in Hawaii Teruo Yamamoto U S is a geologist with the Pacific Southwest Sta- tion's watershed management research project in Honolulu, Hawaii

  16. SOIL, WATER, AND CLIMATE MS DEFENSE SEMINAR

    E-Print Network [OSTI]

    Minnesota, University of

    SOIL, WATER, AND CLIMATE MS DEFENSE SEMINAR Case study for Determining the Presence of the Moorsh- Forming Process in Drained Peat (Markey Muck) Soils, Anoka County, Minnesota, USA by Allyz Kramer Polacsek Soil Science Advisor: Jay Bell Friday, May 15, 2009 9:00 ­ 10:00 am S415 Soil Science Building ABSTRACT

  17. Integrating Soil Ecological Knowledge into Restoration Management

    E-Print Network [OSTI]

    Pavao-Zuckerman, Mitchell

    Integrating Soil Ecological Knowledge into Restoration Management Liam Heneghan,1,2 Susan P. Miller that lead to restoration success. The discipline of soil ecology, which emphasizes both soil organisms the outcomes of restoration despite this variability. Here, we propose that the usefulness of this soil

  18. Classification of urban & industrial soils in the World Reference Base for Soil Resources

    E-Print Network [OSTI]

    Classification of urban & industrial soils in the World Reference Base for Soil Resources: Working, Industrial, Traffic and Mining Areas (SUITMA) of the International Union of Soil Science (IUSS), 09­11 July . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 Urban and industrial soils in the current WRB 4 3.1 Natural Soils

  19. Soil Test Report The following information is being provided for farmers. For consumer soil test report

    E-Print Network [OSTI]

    Isaacs, Rufus

    Soil Test Report The following information is being provided for farmers. For consumer soil test fertility status of the soil in each field can invest wisely in fertilizer and lime to produce the most economical crop yields. A soil test provides the needed information about soil pH, lime need and available

  20. MICHIGAN'S SOIL NITRATE TEST FOR CORN MSU SOIL AND PLANT NUTRIENT LAB

    E-Print Network [OSTI]

    Isaacs, Rufus

    MICHIGAN'S SOIL NITRATE TEST FOR CORN MSU SOIL AND PLANT NUTRIENT LAB Michigan State University Extension Crop and Soil Sciences Department Michigan State University WHY TEST SOIL FOR NITRATES Nitrate testing of soil is an excellent and inexpensive way of evaluating the available nitrogen (N) status

  1. Impact of Soil Type and Compaction Conditions on Soil Water Characteristic

    E-Print Network [OSTI]

    Yu, Sheng-Tao

    Impact of Soil Type and Compaction Conditions on Soil Water Characteristic C. J. Miller, M.ASCE1 the variation of water content and pore water suction for compacted clayey soils. The soils had varying amounts of clay fraction with plasticities ranging from low to high plasticity. The unsaturated soil behavior

  2. Soil Science Society of America Journal Soil Sci. Soc. Am. J.

    E-Print Network [OSTI]

    Larson, Kristine

    Soil Science Society of America Journal Soil Sci. Soc. Am. J. doi:10.2136/sssaj2013.03.0093 Received 8 Mar. 2013. *Corresponding author (tyson.ochsner@okstate.edu). © Soil Science Society of America. State of the Art in Large-Scale Soil Moisture Monitoring Review & Analysis--Soil Physics T he science

  3. Soil Aggregate Size Affects Phosphorus Desorption from Highly Weathered Soils and Plant Growth

    E-Print Network [OSTI]

    van Kessel, Chris

    Soil Aggregate Size Affects Phosphorus Desorption from Highly Weathered Soils and Plant Growth X of P around soil aggregates (Gunary et al., 1964; Linquist etfrom soil, understanding P desorption from soils may improve the precision of P diagnosis and fertilization recommendations. Many al., 1997

  4. REGULAR ARTICLE Impact of biological soil crusts and desert plants on soil

    E-Print Network [OSTI]

    Neher, Deborah A.

    REGULAR ARTICLE Impact of biological soil crusts and desert plants on soil microfaunal community plants and biological soil crusts on desert soil nematode and protozoan abundance and community composition. In the first experiment, biological soil crusts were removed by physical trampling. Treatments

  5. Soil Profile Rebuilding Specification (Brief Version)--1 Soil Profile Rebuilding--Abbreviated Specification

    E-Print Network [OSTI]

    Virginia Tech

    Soil Profile Rebuilding Specification (Brief Version)--1 Soil Profile Rebuilding--Abbreviated Specification Specification for Restoration of Graded and Compacted Soils that will be Vegetated 1. PURPOSE AND DESCRIPTION Purpose Soil Profile Rebuilding is an appropriate soil restoration technique for sites where

  6. Worldwide organic soil carbon and nitrogen data

    SciTech Connect (OSTI)

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanual, W.R.; Olson, J.S.

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  7. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    SciTech Connect (OSTI)

    Ernie F. Stine

    2002-08-14

    The Department of Energy (DOE) currently has mercury (Hg) contaminated materials and soils at the various sites. Figure 1-1 (from http://www.ct.ornl.gov/stcg.hg/) shows the estimated distribution of mercury contaminated waste at the various DOE sites. Oak Ridge and Idaho sites have the largest deposits of contaminated materials. The majorities of these contaminated materials are soils, sludges, debris, and waste waters. This project concerns treatment of mercury contaminated soils. The technology is applicable to many DOE sites, in-particular, the Y-12 National Security Complex in Oak Ridge Tennessee and Idaho National Engineering and Environmental Laboratory (INEEL). These sites have the majority of the soils and sediments contaminated with mercury. The soils may also be contaminated with other hazardous metals and radionuclides. At the Y12 plant, the baseline treatment method for mercury contaminated soil is low temperature thermal desorption (LTTD), followed by on-site landfill disposal. LTTD is relatively expensive (estimated cost of treatment which exclude disposal cost for the collect mercury is greater than $740/per cubic yard [cy] at Y-12), does not treat any of the metal or radionuclides. DOE is seeking a less costly alternative to the baseline technology. As described in the solicitation (DE-RA-01NT41030), this project initially focused on evaluating cost-effective in-situ alternatives to stabilize or remove the mercury (Hg) contamination from high-clay content soil. It was believed that ex-situ treatment of soil contaminated with significant quantities of free-liquid mercury might pose challenges during excavation and handling. Such challenges may include controlling potential mercury vapors and containing liquid mercury beads. As described below, the focus of this project was expanded to include consideration of ex-situ treatment after award of the contract to International Technology Corporation (IT). After award of the contract, IT became part of Shaw E&I. The company will be denoted as ''IT'' for the rest of the document since the original contract was awarded to IT. This report details IT, Knoxville, TN and its subcontractor Nuclear Fuels Services (NFS) study to investigate alternative mercury treatment technology. The IT/NFS team demonstrated two processes for the amalgamation/stabilization/fixation of mercury and potentially Resource Conservation Recovery Act (RCRA) and radionuclide-contaminated soils. This project was to identify and demonstrate remedial methods to clean up mercury-contaminated soil using established treatment chemistries on soil from the Oak Ridge Reservation, Y-12 National Security Complex, the off-site David Witherspoon properties, and/or other similarly contaminated sites. Soil from the basement of Y-12 Plant Alpha 2 Building at the Oak Ridge Reservation was received at IT and NFS on December 20, 2001. Soils from the other locations were not investigated. The soil had background levels of radioactivity and had all eight RCRA metals well below the Toxicity Characteristic (TC) criteria. This project addresses the new DOE Environmental Management Thrust 2 ''Alternative Approaches to Current High Risk/High Cost Baselines''. Successful completion of this project will provide a step-change in DOE's treatment ability.

  8. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    SciTech Connect (OSTI)

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60[degree]C) or long extraction times (23 h). Adding KMnO[sub 4] in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

  9. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    SciTech Connect (OSTI)

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60{degree}C) or long extraction times (23 h). Adding KMnO{sub 4} in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

  10. Numerical study on transient heat transfer under soil with plastic mulch in agriculture applications using a nonlinear finite element model

    E-Print Network [OSTI]

    De Castro, Carlos Armando

    2011-01-01

    In this paper is developed a simple mathematical model of transient heat transfer under soil with plastic mulch in order to determine with numerical studies the influence of different plastic mulches on the soil temperature and the evolutions of temperatures at different depths with time. The governing differential equations are solved by a Galerkin Finite Element Model, taking into account the nonlinearities due to radiative heat exchange between the soil surface, the plastic mulch and the atmosphere. The model was validated experimentally giving good approximation of the model to the measured data. Simulations were run with the validated model in order to determine the optimal combination of mulch optical properties to maximize the soil temperature with a Taguchi's analysis, proving that the material most used nowadays in Colombia is not the optimal and giving quantitative results of the properties the optimal mulch must possess.

  11. Measuring Static and Dynamic Properties of Frozen Silty Soils

    SciTech Connect (OSTI)

    Furnish, M.D.

    1998-09-30

    A mechanical characterization of frozen silty soils has been conducted to support computer modeling of penetrators. The soils were obtained from the Eilson AFB (Alaska) vicinity. Quasi-static testing with a multiaxial system in a cold room and intermediate strain rate testing with a split Hopkinson pressure bar were conducted. Maximum stresses achieved were slightly above 1 GPa, apparently limiting the observed behavior primarily to elastic compression and pore crushing phenomena. Lower temperatures seem to increase the strength of the material markedly, although not by a simple factor. Lower temperatures and higher strain rates increase the apparent Young's and bulk moduli as well (an increase of {approximately} a factor of two is observed for strain rate increasing from 0.001 s{sup {minus}1} to 800 s{sup {minus}1}). The strength also depends strongly on strain rate. Increasing the strain rate from 0.001 {sup {minus}1} to 0.07 {sup {minus}1} increases the strength by a factor of five to ten (to values of order 1 GPa). However,only a small increase in strength is seen as strain rate is increased to {approximately} 10{sup 2}--10{sup 3} s{sup {minus}1}. The reliability of the strength measurements at strain rates< 1 s{sup {minus}1} is decreased due to details of the experimental geometry, although general trends are observable. A recipe is provided for a simulant soil based on bentonite, sand, clay-rich soil and water to fit the {approximately} 6% air-filled porosity, density and water content of the Alaska soils, based on benchtop mixing and jacketed compression testing of candidate mixes.

  12. Nuclear forensics: Soil content

    SciTech Connect (OSTI)

    Beebe, Merilyn Amy

    2015-08-31

    Nuclear Forensics is a growing field that is concerned with all stages of the process of creating and detonating a nuclear weapon. The main goal is to prevent nuclear attack by locating and securing nuclear material before it can be used in an aggressive manner. This stage of the process is mostly paperwork; laws, regulations, treaties, and declarations made by individual countries or by the UN Security Council. There is some preliminary leg work done in the form of field testing detection equipment and tracking down orphan materials; however, none of these have yielded any spectacular or useful results. In the event of a nuclear attack, the first step is to analyze the post detonation debris to aid in the identification of the responsible party. This aspect of the nuclear forensics process, while reactive in nature, is more scientific. A rock sample taken from the detonation site can be dissolved into liquid form and analyzed to determine its chemical composition. The chemical analysis of spent nuclear material can provide valuable information if properly processed and analyzed. In order to accurately evaluate the results, scientists require information on the natural occurring elements in the detonation zone. From this information, scientists can determine what percentage of the element originated in the bomb itself rather than the environment. To this end, element concentrations in soils from sixty-nine different cities are given, along with activity concentrations for uranium, thorium, potassium, and radium in various building materials. These data are used in the analysis program Python.

  13. Organic soil phosphorus is plant-available but is neglected by routine soil-testing methods

    E-Print Network [OSTI]

    Steffens, Diedrich; Leppin, Thomas; Schubert, Sven

    2009-01-01

    microorganisms. Biol. Fertil. Soils 1988; 5: 308-312 Van derplant species and to evaluate different soil-testing methodsin measuring organic soil-P. Material and Methods This

  14. Soil Organic Matter of Natural and Restored Coastal Wetland Soils in Southern California

    E-Print Network [OSTI]

    Elgin, Barbara K.

    2012-01-01

    of natural and created marsh soils. J. Exp. Mar. Biol. Ecol.2007. Freshwater Input Structures Soil Properties, VerticalS.S. , Hoover, K.L. 1996. Soil properties of reference

  15. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis

    SciTech Connect (OSTI)

    Harp, D. R. [Los Alamos National Laboratory, Los Alamos, NM, USA; Atchley, A. L. [Los Alamos National Laboratory, Los Alamos, NM, USA; Painter, S. L. [Oak Ridge National Laboratory, Oak Ridge, TN, USA; Coon, E. T. [Los Alamos National Laboratory, Los Alamos, NM, USA; Wilson, C. J. [Los Alamos National Laboratory, Los Alamos, NM, USA; Romanovsky, V. E. [University of Alaska, Fairbanks, USA] (ORCID:0000000295152087); Rowland, J. C. [Los Alamos National Laboratory, Los Alamos, NM, USA

    2015-01-01

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.

  16. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2015-06-29

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows formore »the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.« less

  17. High Temperature ESP Monitoring

    Broader source: Energy.gov [DOE]

    The purpose of the High Temperature ESP Monitoring project is to develop a down-hole monitoring system to be used in wells with bottom hole temperature up to 300 °C for measuring motor temperature; pump discharge pressure; and formation temperature and pressure.

  18. Finite Temperature Schrödinger Equation

    E-Print Network [OSTI]

    Xiang-Yao Wu; Bai-Jun Zhang; Xiao-Jing Liu; Nuo Ba; Yi-Heng Wu; Qing-Cai Wang; Yan Wang

    2011-06-11

    We know Schr\\"{o}dinger equation describes the dynamics of quantum systems, which don't include temperature. In this paper, we propose finite temperature Schr\\"{o}dinger equation, which can describe the quantum systems in an arbitrary temperature. When the temperature T=0, it become Shr\\"{o}dinger equation.

  19. Global Soil Change: Land Use, Soil and Water SWS4231C, SWS5234

    E-Print Network [OSTI]

    Ma, Lena

    Global Soil Change: Land Use, Soil and Water SWS4231C, SWS5234 Course Syllabus: Fall 2014 that can be found at: https://catalog

  20. Recovery of Soil Carbon Stocks on Disturbed Coastal Plain Soils Through Secondary Forest SuccessionPlain Soils Through Secondary Forest Succession

    E-Print Network [OSTI]

    Post, Wilfred M.

    Recovery of Soil Carbon Stocks on Disturbed Coastal Plain Soils Through Secondary Forest SuccessionPlain Soils Through Secondary Forest Succession Recovery of soil carbon stocks in historically Contact and Environmental Research 50 µm Recovery of soil carbon stocks in historically degraded soils provides a means

  1. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P. (Idaho Falls, ID)

    1992-01-01

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  2. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-08-04

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  3. Heterotrophic Soil Respiration in Warming Experiments: Using Microbial Indicators to Partition Contributions from Labile and Recalcitrant Soil Organic Carbon. Final Report

    SciTech Connect (OSTI)

    Bradford, M A; Melillo, J M; Reynolds, J F; Treseder, K K; Wallenstein, M D

    2010-06-10

    The central objective of the proposed work was to develop a genomic approach (nucleic acid-based) that elucidates the mechanistic basis for the observed impacts of experimental soil warming on forest soil respiration. The need to understand the mechanistic basis arises from the importance of such information for developing effective adaptation strategies for dealing with projected climate change. Specifically, robust predictions of future climate will permit the tailoring of the most effective adaptation efforts. And one of the greatest uncertainties in current global climate models is whether there will be a net loss of carbon from soils to the atmosphere as climate warms. Given that soils contain approximately 2.5 times as much carbon as the atmosphere, a net loss could lead to runaway climate warming. Indeed, most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing such a positive feedback to rising global temperatures. Yet the IPCC highlights the uncertainty regarding this projected feedback. The uncertainty arises because although warming-experiments document an initial increase in the loss of carbon from soils, the increase in respiration is short-lived, declining to control levels in a few years. This attenuation could result from changes in microbial physiology with temperature. We explored possible microbial responses to warming using experiments and modeling. Our work advances our understanding of how soil microbial communities and their activities are structured, generating insight into how soil carbon might respond to warming. We show the importance of resource partitioning in structuring microbial communities. Specifically, we quantified the relative abundance of fungal taxa that proliferated following the addition of organic substrates to soil. We added glycine, sucrose, cellulose, lignin, or tannin-protein to soils in conjunction with 3-bromo-deoxyuridine (BrdU), a nucleotide analog. Active microbes absorb BrdU from the soil solution; if they multiply in response to substrate additions, they incorporate the BrdU into their DNA. After allowing soils to incubate, we extracted BrdU-labeled DNA and sequenced the ITS regions of fungal rDNA. Fungal taxa that proliferated following substrate addition were likely using the substrate as a resource for growth. We found that the structure of active fungal communities varied significantly among substrates. The active fungal community under glycine was significantly different from those under other conditions, while the active communities under sucrose and cellulose were marginally different from each other and the control. These results indicate that the overall community structure of active fungi was altered by the addition of glycine, sucrose, and cellulose and implies that some fungal taxa respond to changes in resource availability. The community composition of active fungi is also altered by experimental warming. We found that glycine-users tended to increase under warming, while lignin-, tannin/protein-, and sucrose-users declined. The latter group of substrates requires extracellular enzymes for use, but glycine does not. It is possible that warming selects for fungal species that target, in particular, labile substrates. Linking these changes in microbial communities and resource partitioning to soil carbon dynamics, we find that substrate mineralization rates are, in general, significantly lower in soils exposed to long-term warming. This suggests that microbial use of organic substrates is impaired by warming. Yet effects are dependent on substrate identity. There are fundamental differences in the metabolic capabilities of the communities in the control and warmed soils. These differences might relate to the changes in microbial community composition, which appeared to be associated with groups specialized on different resources. We also find that functional responses indicate temperature acclimation of the microbial community. There are distinct seasonal patterns and to long-term soil warming, with

  4. Inverse modelling of in situ soil water dynamics: investigating the effect of different prior distributions of the soil hydraulic parameters

    E-Print Network [OSTI]

    Scharnagl, B.; Vrugt, J. A; Vereecken, H.; Herbst, M.

    2011-01-01

    monitor- ing soil water contents, Water Resour. Res. , 26,spatial variation of soil water content at the field scaledetermination of soil water content: measurements in coaxial

  5. Inverse modelling of in situ soil water dynamics: investigating the effect of different prior distributions of the soil hydraulic parameters

    E-Print Network [OSTI]

    Scharnagl, B.; Vrugt, J. A; Vereecken, H.; Herbst, M.

    2011-01-01

    data for identifying soil hydraulic parameters from outflowdistributions of the soil hydraulic parameters Carrera, J.method to determine soil hydraulic functions from multistep

  6. Author's personal copy Pyrolytic temperatures impact lead sorption mechanisms by bagasse

    E-Print Network [OSTI]

    Ma, Lena

    of Environmental Engineering, Chongqing University, Chongqing 400045, China b Department of Soil and Water Science December 2013 Accepted 11 December 2013 Available online 3 January 2014 Keywords: Pyrolysis temperature precipitation was also respon- sible for Pb sorption. Pyrolysis temperature significantly affected biochar

  7. Soil microbial responses to nitrogen addition in arid ecosystems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sinsabaugh, Robert L.; Belnap, Jayne; Rudgers, Jennifer; Kuske, Cheryl R.; Martinez, Noelle; Sandquist, Darren

    2015-08-14

    The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH, and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts). We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg N ha-1 y-1 from March 2012 to March 2013. In March 2013, biocrust (0–0.5 cm) and bulk soils (0–10 cm) were collected beneath Ambrosia canopies and in the interspaces betweenmore »plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities and rates of N transformation. With most measures, nutrient availability, microbial biomass, and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N amendment that included data from 14 other studies. Effect sizes were calculated for biomass and metabolic responses. Regressions of effect sizes, calculated for biomass, and metabolic responses, showed similar trends in relation to N application rate and N load (rate × duration). The critical points separating positive from negative treatment effects were 88 kg ha-1 y-1 and 159 kg ha-1, respectively, for biomass, and 70 kg ha-1 y-1 and 114 kg ha-1, respectively, for metabolism. These critical values are comparable to those for microbial biomass, decomposition rates and respiration reported in broader meta-analyses of N amendment effects in mesic ecosystems. The large effect sizes at low N addition rates indicate that arid ecosystems are sensitive to modest increments in anthropogenic N deposition.« less

  8. Treatment of radionuclide contaminated soils

    SciTech Connect (OSTI)

    Pettis, S.A.; Kallas, A.J.; Kochen, R.L.; McGlochlin, S.C.

    1988-06-01

    Rockwell, International, Rocky Flats Plants, is committed to remediating within the scope of RCRA/CERCLA, Solid Waste Managements Units (SWMUs) at Rocky Flats found to be contaminated with hazardous substances. SWMUs fund to have radionuclide (uranium, plutonium, and/or americium) concentrations in the soils and/or groundwater that exceed background levels or regulatory limits will also be included in this remediation effort. This paper briefly summarizes past and present efforts by Rockwell International, Rocky Flats Plant, to identify treatment technologies appropriate for remediating actinide contaminated soils. Many of the promising soil treatments evaluated in Rocky Flats' laboratories during the late 1970's and early 1980's are currently being revisited. These technologies are generally directed toward substantially reducing the volume of contaminated soils, with the subsequent intention of disposing of a small remaining concentrated fraction of contaminated soil in a facility approved to receive radioactive wastes. Treatment processes currently will be treated to remove actinides, and recycled back to the process. Past investigations have included evaluations of dry screening, wet screening, scrubbing, ultrasonics, chemical oxidation, calcination, desliming, flotation, and heavy-liquid density separation. 8 refs., 2 figs.

  9. Detection of explosives in soils

    DOE Patents [OSTI]

    Chambers, William B. (Edgewood, NM); Rodacy, Philip J. (Albuquerque, NM); Phelan, James M. (Bosque Farms, NM); Woodfin, Ronald L. (Sandia Park, NM)

    2002-01-01

    An apparatus and method for detecting explosive-indicating compounds in subsurface soil. The apparatus has a probe with an adsorbent material on some portion of its surface that can be placed into soil beneath the ground surface, where the adsorbent material can adsorb at least one explosive-indicating compound. The apparatus additional has the capability to desorb the explosive-indicating compound through heating or solvent extraction. A diagnostic instrument attached to the probe detects the desorbed explosive-indicating compound. In the method for detecting explosive-indicating compounds in soil, the sampling probe with an adsorbent material on at least some portion of a surface of the sampling probe is inserted into the soil to contact the adsorbent material with the soil. The explosive-indicating compounds are then desorbed and transferred as either a liquid or gas sample to a diagnostic tool for analysis. The resulting gas or liquid sample is analyzed using at least one diagnostic tool selected from the group consisting of an ion-mobility spectrometer, a gas chromatograph, a high performance liquid chromatograph, a capillary electrophoresis chromatograph, a mass spectrometer, a Fourier-transform infrared spectrometer and a Raman spectrometer to detect the presence of explosive-indicating compounds.

  10. Soil structure interaction for shrink-swell soils a new design procedure for foundation slabs on shrink-swell soils 

    E-Print Network [OSTI]

    Abdelmalak, Remon Melek

    2009-05-15

    ............................................................................. 34 3.3 Weather-Soil Interaction Models ................................................... 37 viii CHAPTER Page 3.4 Soil-Structure Interaction Models .................................................. 40 3.5 Comparison of Beam Depths... for Stiffened Slabs on Shrink-Swell Soils Using WRI, PTI 2004 and AS 2870...................................... 42 3.6 Influence of the 2002 Texas Section of ASCE Recommended Practice on the Beam Depths for Stiffened Slabs on Shrink-Swell Soils...

  11. Vapor Transport in Dry Soils

    SciTech Connect (OSTI)

    Gee, Glendon W.; Ward, Anderson L.

    2001-11-16

    Water-vapor movement in soils is a complex process, controlled by both diffusion and advection and influenced by pressure and thermal gradients acting across tortuous flow paths. Wide-ranging interest in water-vapor transport includes both theoretical and practical aspects. Just how pressure and thermal gradients enhance water-vapor flow is still not completely understood and subject to ongoing research. Practical aspects include dryland farming (surface mulching), water harvesting (aerial wells), fertilizer placement, and migration of contaminants at waste-sites. The following article describes the processes and practical applications of water-vapor transport, with emphasis on unsaturated (dry) soil systems.

  12. Rainwater Harvesting: Soil Storage and Infiltration System 

    E-Print Network [OSTI]

    Mechell, Justin; Lesikar, Bruce J.

    2008-08-11

    A soil storage and infiltration system collects rainfall runoff from the roofs of buildings and directs it underground where it infiltrates the soil. Such a system conserves water and protects it from surface pollution. This publication describes...

  13. Probabilistic Analysis of the Compressibility of Soils 

    E-Print Network [OSTI]

    Jung, Byoung C.

    2010-07-14

    , to incorporate all available sources of information, and to integrate the uncertainty in an estimate of the probability. In geotechnical engineering, current soil classification charts based on CPT data may not provide an accurate prediction of soil type, even...

  14. Soil Carbon Sequestration and the Greenhouse Effect

    E-Print Network [OSTI]

    Archer, Steven R.

    Soil Carbon Sequestration and the Greenhouse Effect Second edition Rattan Lal & Ronald F. Follett. Printed in the United States of America. #12;181 Soil Carbon Sequestration and the Greenhouse Effect, 2nd

  15. Beth Brockett SOIL 502 Soil Quality Analysis -Chemistry Case Study

    E-Print Network [OSTI]

    (see map in Appendix 1). Sustainability Street is in an urban location and the microclimate) will be useful in diagnosing management issues at this site. History of Site Urban soils can be expected as grazing land, has had an orchard planted on it, and has been developed for building. Proximity to storage

  16. Persistence of soil organic matter as an ecosystem property

    E-Print Network [OSTI]

    Schmidt, M.W.

    2012-01-01

    Belgium. 8 Department of Crop and Soil Science, Oregon State10 Department of Crop and Soil Sciences, Cornell Center for

  17. Characterization of Soil Water Content Variability and Soil Texture using GPR Groundwave Techniques

    E-Print Network [OSTI]

    Hubbard, Susan

    Characterization of Soil Water Content Variability and Soil Texture using GPR Groundwave Techniques@ce.berkeley.edu ABSTRACT Accurate characterization of near-surface soil water content is vital for guiding agricultural. Characterizing the near-surface soil water content can be difficult, as this parameter is often both spatially

  18. Effects of Soil pH and Soil Water Content on Prosulfuron Dissipation

    E-Print Network [OSTI]

    Sims, Gerald K.

    Effects of Soil pH and Soil Water Content on Prosulfuron Dissipation RYAN P. HULTGREN,*, ROBERT J% dissipation of the herbicide (DT50) was determined for each soil and water content treatment. At equivalent water contents, prosulfuron DT50 values were positively correlated with soil pH (P

  19. Water in the Soil http://www.alison-burke.com/jpgs-large/lifesciences/soil_waterflow.jpg

    E-Print Network [OSTI]

    Nowak, Robert S.

    Recap Recap Recap #12;Water in the Soil http://www.alison-burke.com/jpgs-large/lifesciences/soil_waterflow.jpg Soil water potential More negative #12;Less water requires more force As the soil water content decreases, plants need to excerpt more pressure to take water Photosynthesis and Water A decreases

  20. Recommended Academic Plan for the Environmental Resource Management -Soil Science Option (E R M/SOIL)

    E-Print Network [OSTI]

    Omiecinski, Curtis

    of Pollutants in Soils 3 ASM 327 (fall only) Soil and Water Resource Management 3 SOILS 401 Soil Composition requirements. GWS, GHA, GQ, GN, GA, GH, and GS are codes used to identify General Education requirements. US, IL, and US;IL are codes used to designate courses that satisfy University United States

  1. Holme et al. Soil Redox Sensor Networks RADIO FREQUENCY ENABLED SOIL REDOX POTENTIAL

    E-Print Network [OSTI]

    Rubinstein, Benjamin

    Holme et al. Soil Redox Sensor Networks RADIO FREQUENCY ENABLED SOIL REDOX POTENTIAL SENSOR technologies that may be combined into a cost effective soil redox sensor network, discuss the merits of each as a component of said network, describe a prototype soil redox sensor network and perform basic laboratory

  2. Soil Science Society of America Journal Soil Sci. Soc. Am. J. 78:310

    E-Print Network [OSTI]

    Thomas, David D.

    Soil Science Society of America Journal Soil Sci. Soc. Am. J. 78:3­10 doi:10.2136/sssaj2013.07.0287dgs Received 17 July 2013. *Corresponding author (david.myrold@oregonstate.edu). © Soil Science by the publisher. The Potential of Metagenomic Approaches for Understanding Soil Microbial Processes The11th

  3. Soil Biology & Biochemistry 39 (2007) 21382149 Heterogeneity of soil nutrients and subsurface biota

    E-Print Network [OSTI]

    Neher, Deborah A.

    2007-01-01

    Author's personal copy Soil Biology & Biochemistry 39 (2007) 2138­2149 Heterogeneity of soil Laboratory, 999-W, Aiken, SC 29808, USA f Department of Plant & Soil Science, University of Vermont, Hills to have a highly heterogeneous distribution of nutrients and soil biota, with greater concentrations

  4. The effect of soil hydraulic properties vs. soil texture in land surface models

    E-Print Network [OSTI]

    Small, Eric

    The effect of soil hydraulic properties vs. soil texture in land surface models E. D. Gutmann and E and difficulties in scaling existing data. In particular, the spatial distribution of Soil Hydraulic Properties to determine SHPs. Citation: Gutmann, E. D., and E. E. Small (2005), The effect of soil hydraulic properties vs

  5. Bio-Char Soil Management on Highly Weathered Soils in the Humid Tropics

    E-Print Network [OSTI]

    Lehmann, Johannes

    36 Bio-Char Soil Management on Highly Weathered Soils in the Humid Tropics Johannes Lehmann1), ColombiaQ1 CONTENTS 36.1 Bio-Char Management and Soil Nutrient Availability ............................................. 518 36.2 Microbial Cycling of Nutrients in Soils with Bio-Char

  6. Role of large-scale soil structure in organic carbon turnover: Evidence from California grassland soils

    E-Print Network [OSTI]

    Role of large-scale soil structure in organic carbon turnover: Evidence from California grassland soils Stephanie A. Ewing,1 Jonathan Sanderman,1 W. Troy Baisden,2 Yang Wang,3 and Ronald Amundson1 characterized the effect of large-scale (>20 mm) soil physical structure on the age and recalcitrance of soil

  7. Abundant and Stable Char Residues in Soils: Implications for Soil Fertility and Carbon Sequestration

    E-Print Network [OSTI]

    Lehmann, Johannes

    Abundant and Stable Char Residues in Soils: Implications for Soil Fertility and Carbon Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States § Department of Crop and Soil, Ames, Iowa 50011, United States *S Supporting Information ABSTRACT: Large-scale soil application

  8. The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils

    E-Print Network [OSTI]

    The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils a Rhizosphere Science Research Group, Department of Plant and Soil Sciences, N122S Agricultural Sciences North Manure and Byproducts Laboratory, Beltsville, MD 20705, USA c Environmental Soil Chemistry Research Group

  9. Soil Science Society of America Journal Revealing Soil Structure and Functional Macroporosity

    E-Print Network [OSTI]

    Wildenschild, Dorthe

    how fast water, greenhouse gases, vola- tile compounds, chemicals, and pollutants can enter and move ecosystem functions. In this study, soil physical measurements (soil-water retention and air permeability soil clay content, while significantly higher air permeability was observed for the l1 to l3 soils than

  10. Soil microbial activity and N availability with elevated CO2 in Mojave Desert soils

    E-Print Network [OSTI]

    Billings, Sharon A.; Schaeffer, Sean M.

    2004-01-01

    We examined the effects of elevated CO2 on soil nitrogen (N) dynamics in the Mojave Desert by measuring plant N isotope composition (?15N), soil microbial biomass N, soil respiration, resin-available N, and C and N dynamics during soil incubations...

  11. ASSESSING AND MANAGING SOIL QUALITY FOR URBAN AGRICULTURE IN A DEGRADED VACANT LOT SOIL

    E-Print Network [OSTI]

    (OM) amendments produced from yard wastes and the use of raised beds on soil properties and vegetable wastes can improve soil quality at previously degraded sites and increase crop yields for urban; compost; Soil Management Assessment Framework; vacant land; shrinking cities; soil compaction INTRODUCTION

  12. Ice-lens formation and geometrical supercooling in soils and other colloidal materials

    E-Print Network [OSTI]

    Robert W. Style; Stephen S. L. Peppin; Alan C. F. Cocks; John S. Wettlaufer

    2011-09-09

    We present a new, physically-intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil, and the geometrical supercooling of the water in the soil; a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good agreement with experiments, in particular explaining ice-lens pattern formation, and surges in heave rate associated with the growth of new lenses. Importantly for systems with no frozen fringe, ice-lens formation and frost heave can be predicted given only the unfrozen properties of the soil. We use our theory to estimate ice-lens growth temperatures obtaining quantitative agreement with the limited experimental data that is currently available. Finally we suggest experiments that might be performed in order to verify this theory in more detail. The theory is generalizable to complex natural-soil scenarios, and should therefore be useful in the prediction of macroscopic frost heave rates.

  13. Multiple soil nutrient competition between plants, microbes,...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several...

  14. Arsenic chemistry in soils and sediments

    E-Print Network [OSTI]

    Fendorf, S.

    2010-01-01

    and selenium from landfill leachate by clay minerals. Soil1987) Using landfill leachate, (Frost and Griffin, 1977) (

  15. Light, earthworms, and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 tree species

    E-Print Network [OSTI]

    2016-01-01

    a mesocosm study. Applied Soil Ecology 8, 61e75. Mueller,and acidity in mineral soils at a common garden experiment.of Stasi n litter traits, soil biota, and soil chemistry on

  16. SOIL PHYSICS, SWS 4602C I. COURSE INSTRUCTOR

    E-Print Network [OSTI]

    Ma, Lena

    tube c. Soil water content d. Measurement of soil water content e. Energy status of soil water f. Soil water velocity c. Darcy's law and Poiseuille's Law d. Saturated hydraulic conductivity, permeability Soils (Hillel pages 203-233, Lectures 10-14) a. Darcy's Law in unsaturated soils b. Hydraulic

  17. Mechanisms of Organic-inorganic Interactions in Soils and Aqueous Environments Elucidated using Calorimetric Techniques 

    E-Print Network [OSTI]

    Harvey, Omar R.

    2011-08-08

    : bacteria, viruses and spores; roads, tire and brake abrasions; and fine soil particles [20]. Secondary organic aerosols (SOAs) are formed through condensation of VOCs in the atmosphere [20]. Estimates of atmospheric organic matter production are very... of the biochar formed during pyrolysis is dependent on combustion conditions (eg. temperature, combustion duration and oxygen supply) and the chemistry of the original plant tissues. As combustion temperature increases transformation of plant tissues occur via...

  18. Soil and Water Conservation Spring 2014

    E-Print Network [OSTI]

    Ma, Lena

    on them. Define water harvesting and give examples. #12;Basic Course Requirements: 1. Exams consistSWS 4233 Soil and Water Conservation Spring 2014 Instructor Susan Curry scurry@ufl.edu 352 most valuable and most mistreated resources: soil and water. Topics discussed include: Soil/water

  19. 9, 1443714473, 2012 Soil carbon drivers

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    BGD 9, 14437­14473, 2012 Soil carbon drivers and benchmarks in Earth system models K. E. O. Todd if available. Causes of variation in soil carbon predictions from CMIP5 Earth system models and comparison #12;BGD 9, 14437­14473, 2012 Soil carbon drivers and benchmarks in Earth system models K. E. O. Todd

  20. Common Questions Why should I soil test?

    E-Print Network [OSTI]

    Isaacs, Rufus

    Common Questions Why should I soil test? Soil testing is an important diagnostic tool to evaluate nutrient imbalances and understand plant growth. The most important reason to soil test is to have a basis for intelligent application of fertilizer and lime. Testing also allows for growers and homeowners to maintain

  1. Factors influencing swelling and shrinking in soils 

    E-Print Network [OSTI]

    Davidson, Steve Edwin

    1956-01-01

    in the laboratory on top of a soil sample compacted inside the Proctor mold followed by plate tests. That way, a soil modulus versus water content curve is developed which parallels the approach for the dry density versus water content. The soil modulus versus water...

  2. FieldIndicators of Hydric Soils

    E-Print Network [OSTI]

    Gray, Matthew

    Soils, Version 5.01, 2003 Natural Resources Conservation Service Wetland Science Institute Soil on the right has mucky peat (hemic soil material) to a depth of about 8 cm. If indicator S2 (2.5 cm mucky peat or peat) or indicator S3 (5 cm mucky peat or peat) is not a concern, morphologies below 8 cm would

  3. Effect of soil freezing on particulate resuspension

    SciTech Connect (OSTI)

    Duce, S.W.; Shaw, P.G.; Winberg, M.R.

    1988-08-01

    This report presents the results of small scale laboratory tests that were conducted to determine the effect of soil freezing on soil resuspension. Nontransuranic contaminated soil form the Radioactive Waste Management Complex was subjected to a series of test conditions to determine respirable and nonrespirable fractions of airborne dust. A separate fraction of the same soil was spiked with Pu-239 and subjected to the same test conditions. Concentrations of resuspended soil and Pu in air were determined. Test results show that: (a) the largest fraction of soil resuspended is in the nonrespirable size fraction, (b) the concentration of resuspended soil in air is highly dependent on surface air velocity, and (c) freezing is not as effective at reducing resuspension of fine dry soil as it is with coarse soil, and (d) artificially prepared Pu contaminated soil has a high proportion of the total activity distributed on ultrafine material, reacts inversely to the mass movement of soil, and does not adequately imitate Pu movement in an actual contaminated soil. 26 figs., 3 tabs.

  4. Soil and Water Chemistry Distance Education Section

    E-Print Network [OSTI]

    Ma, Lena

    ., 2nd edition Oxford University Press. 3. Soil Chemistry. Bohn, McNeal, O'Connor, and Myer. 2001 3rd, Professor, Soil and Water Science Dept Mailing address: University of Florida Everglades Research principles of soil and water chemistry. The class will cover the fundamentals principles of the properties

  5. Soil Carbon Accumulation During Temperate Forest Succession

    E-Print Network [OSTI]

    Grogan, Paul

    K7L 3N6, Canada ABSTRACT Carbon sequestration in soils that have previously beendepletedoforganic the soil carbon sequestration potential of such lands by sampling adjacent mature forest and agricultural abandonment is more important than soil type in determining the potential magnitude of carbon sequestration

  6. Pennsylvania Soil Survey The First 100 Years

    E-Print Network [OSTI]

    dePamphilis, Claude

    Pennsylvania Soil Survey The First 100 Years by Joseph J. Eckenrode and Edward J. Ciolkosz Agronomy Series Number 144 July 1999 #12;Pennsylvania Soil Survey The First 100 Years by Joseph J. Eckenrode1 University Park, PA 16802 July 1999 1 Soil Scientist USDA Natural Resources Conservation Service (NRCS

  7. DIVISION S-6--SOIL & WATER MANAGEMENT & CONSERVATION

    E-Print Network [OSTI]

    DIVISION S-6--SOIL & WATER MANAGEMENT & CONSERVATION Soil Organic Carbon Sequestration Rates soil column within 20 yr following culti- Carbon sequestration rates, with a change from CT to NT, can in approximately 40 to and returning to the original land cover or other peren- 60 yr. Carbon sequestration rates

  8. Soil: 24077 (subsample 24077,9)

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Soil: 24077 (subsample 24077,9) D.S. McKay PI LOCATION COMMENTS: Sample collected from the Luna 24.S. scientists were given sam ples totalling 3 grams; these were divided into 6 soil samples and one rock fragment. The Moscow Institute of Geochemistry reports that the Luna 24 soil included more large grains

  9. WATER TEMPERATURE RECORDS FROM

    E-Print Network [OSTI]

    ? WATER TEMPERATURE RECORDS FROM CALIFORNIA'S CENTRAL VALLEY 1939-1948 Marine Biological i STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE #12;#12;a WATER TEMPERATURE RECORDS FROM arid to avoid delay in publication. Washington D. CWATER TEMPERATURE RECORDS FROM

  10. TSNo s02-staats173645-P Alum Amendment Effects on Soil Phosphorus Stabilization in Poultry Litter Amended Sandy Soils.

    E-Print Network [OSTI]

    Sparks, Donald L.

    bioavailable P on Arkansas loamy pasture soils. However, the effects on acidic sandy soils are not well

  11. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy

    SciTech Connect (OSTI)

    Fantozzi, L., E-mail: l.fantozzi@iia.cnr.it [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy); Ferrara, R., E-mail: romano.ferrara@pi.ibf.cnr.it [CNR-Institute of Biophysics, San Cataldo Research Area, Via G. Moruzzi 1, 56124 Pisa (Italy); Dini, F., E-mail: fdiniprotisti@gmail.com [University of Pisa, Department of Biology, Via A. Volta 4, 56126 Pisa (Italy); Tamburello, L., E-mail: ltamburello@biologia.unipi.it [University of Pisa, Department of Biology, Via Derna 1, I-56126 Pisa (Italy); Pirrone, N.; Sprovieri, F. [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy)] [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy)

    2013-08-15

    Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000 ng m{sup ?2} h{sup ?1}) were observed on bare soils during the hours of maximum insulation, while lower values (250 ng m{sup ?2} h{sup ?1}) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500 ng m{sup ?2} h{sup ?1}, which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28 °C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20 h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. -- Highlights: ? Mercury air/surface exchange from grass covered soil is different from bare soil. ? Light enhances mercury emissions and is the main parameter driving the process. ? The presence of wild vegetation covering the soil reduces mercury emission. ? Vegetative covers could be a solution to reduce atmospheric mercury pollution.

  12. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    SciTech Connect (OSTI)

    Ernest F. Stine Jr; Steven T. Downey

    2002-08-14

    U.S. Department of Energy (DOE) used large quantities of mercury in the uranium separating process from the 1950s until the late 1980s in support of national defense. Some of this mercury, as well as other hazardous metals and radionuclides, found its way into, and under, several buildings, soil and subsurface soils and into some of the surface waters. Several of these areas may pose potential health or environmental risks and must be dealt with under current environmental regulations. DOE's National Energy Technology Laboratory (NETL) awarded a contract ''Alternative Field Methods to Treat Mercury in Soil'' to IT Group, Knoxville TN (IT) and its subcontractor NFS, Erwin, TN to identify remedial methods to clean up mercury-contaminated high-clay content soils using proven treatment chemistries. The sites of interest were the Y-12 National Security Complex located in Oak Ridge, Tennessee, the David Witherspoon properties located in Knoxville, Tennessee, and at other similarly contaminated sites. The primary laboratory-scale contract objectives were (1) to safely retrieve and test samples of contaminated soil in an approved laboratory and (2) to determine an acceptable treatment method to ensure that the mercury does not leach from the soil above regulatory levels. The leaching requirements were to meet the TC (0.2 mg/l) and UTS (0.025 mg/l) TCLP criteria. In-situ treatments were preferred to control potential mercury vapors emissions and liquid mercury spills associated with ex-situ treatments. All laboratory work was conducted in IT's and NFS laboratories. Mercury contaminated nonradioactive soil from under the Alpha 2 building in the Y-12 complex was used. This soils contained insufficient levels of leachable mercury and resulted in TCLP mercury concentrations that were similar to the applicable LDR limits. The soil was spiked at multiple levels with metallic (up to 6000 mg/l) and soluble mercury compounds (up to 500 mg/kg) to simulate expected ranges of mercury contamination and to increase the TCLP mercury values. IT/NFS investigated ambient temperature amalgamation/stabilization/fixation of mercury-contaminated soils to meet these objectives. Treatment ranged in size from a few ounces to 10 pounds. The treatability study philosophy was to develop working envelops of formulations where reasonable minimum and maximum amounts of each reagent that would successfully treat the contaminated soil were determined. The dosages investigated were based on ratios of stoichiometric reactions and applications of standard sets of formulations. The approach purposely identified formulations that failed short or longer cure-time performance criteria to define the limits of the envelope. Reagent envelops successfully met the project requirements one day after treatment and after greater than 30-day cures. The use of multiple levels of spikes allowed the establishment of reagent dosages that were successful across a broad range of mercury values, e.g., 50 to 6000 mg/kg mercury. The treatment products were damp to slightly wet material. Enough drying reagent, e.g., Portland cement or lime by-product, were added to some formulations to control the leachability of uranium and other hazardous metals and to ensure the product passed the paint filter test. Cost analyzes and conceptual designs for four alternatives for full-scale treatments were prepared. The alternatives included two in-situ treatments and two ex-situ treatments. The cost estimates were based on the results from the bench-scale study. All four alternatives treatment costs were well below the baseline costs.

  13. Biochar and denitrification in soils: when, how much and why does biochar reduce

    E-Print Network [OSTI]

    Lehmann, Johannes

    pyrolysis high- temperature biochars lead to the greatest N2O reductions8­14 . However, there are no studiesBiochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions and the use of biochar is being investigated as a means to reduce N2O emissions. However, the mechanisms

  14. Thermo-Viscous Fingering in Porous Media and In-Situ Soil

    E-Print Network [OSTI]

    Fournier, John J.F.

    and for the extraction of crude oil for energy. While many companies are involved in this soil remediation process of fingers to a maximal wave number and to prevent their formation entirely beyond a certain critical wave number. Finally with the inclusion of temperature, via heated water injection, we see the formation

  15. Soil Science Minor To earn a Soil Science minor, students must complete the following courses to total 27 credits

    E-Print Network [OSTI]

    Grünwald, Niklaus J.

    Soil Science Minor To earn a Soil Science minor, students must complete the following courses to total 27 credits: I. Soil Core A. ______SOIL 205.Soil Science (4) or ____ CSS 305. Principles of Soil Science (4) [Taught at EOU La Grande campus only

  16. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  17. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael (Plano, TX)

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  18. Soil microbial biomass: an estimator of soil development in reclaimed lignite mine soil 

    E-Print Network [OSTI]

    Swanson, Eric Scott

    1996-01-01

    A two-year study was conducted at the Big Brown lignite mine in Fairfield, Texas, to determine the rate and extent of recovery of the soil microbial biomass (SMB) in mixed overburden. The relationships between SMB carbon (SMBC), basal respiration...

  19. Vitrification testing of soil fines from contaminated Hanford 100 Area and 300 Area soils

    SciTech Connect (OSTI)

    Ludowise, J.D.

    1994-05-01

    The suitability of Hanford soil for vitrification is well known and has been demonstrated extensively in other work. The tests reported here were carried out to confirm the applicability of vitrification to the soil fines (a subset of the Hanford soil potentially different in composition from the bulk soil) and to provide data on the performance of actual, vitrified soil fines. It was determined that the soil fines were generally similar in composition to the bulk Hanford soil, although the fraction <0.25 mm in the 100 Area soil sample appears to differ somewhat from the bulk soil composition. The soil fines are readily melted into a homogeneous glass with the simple additions of CaO and/or Na{sub 2}O. The vitrified waste (plus additives) occupies only 60% of the volume of the initial untreated waste. Leach testing has shown the glasses made from the soil fines to be very durable relative to natural and man-made glasses and has demonstrated the ability of the vitrified waste to greatly reduce the release of radionuclides to the environment. Viscosity and electrical conductivity measurements indicate that the soil fines will be readily processable, although with levels of additives slightly greater than used in the radioactive melts. These tests demonstrate the applicability of vitrification to the contaminated soil fines and the exceptional performance of the waste form resulting from the vitrification of contaminated Hanford soils.

  20. Magnetic nanoparticle temperature estimation

    SciTech Connect (OSTI)

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  1. Superconductivity at Any Temperature

    E-Print Network [OSTI]

    Anber, Mohamed M; Sabancilar, Eray; Shaposhnikov, Mikhail

    2015-01-01

    We construct a 2+1 dimensional model that sustains superconductivity at all temperatures. This is achieved by introducing a Chern Simons mixing term between two Abelian gauge fields A and Z. The superfluid is described by a complex scalar charged under Z, whereas a sufficiently strong magnetic field of A forces the superconducting condensate to form at all temperatures. In fact, at finite temperature, the theory exhibits Berezinsky-Kosterlitz-Thouless phase transition due to proliferation of topological vortices admitted by our construction. However, the critical temperature is proportional to the magnetic field of A, and thus, the phase transition can be postponed to high temperatures by increasing the strength of the magnetic field. This model can be a step towards realizing the long sought room temperature superconductivity.

  2. High-temperature sensor

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  3. Automatic temperature adjustment apparatus

    DOE Patents [OSTI]

    Chaplin, James E. (66 Overlook Rd., Bloomingdale, NJ 07403)

    1985-01-01

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  4. Innovative Vitrification for Soil Remediation

    SciTech Connect (OSTI)

    Hnat, James G.; Patten, John S.; Jetta, Norman W.

    1996-12-31

    Vortec has successfully completed Phases 1 and 2 of a technology demonstration program for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation.'' The principal objective of the program is to demonstrate the ability of a Vortec Cyclone Melting System (CMS) to remediate DOE contaminated soils and other waste forms containing TM RCRA hazardous materials, low levels of radionuclides and TSCA (PCB) containing wastes. The demonstration program will verify the ability of this vitrification process to produce a chemically stable glass final waste form which passes both TCLP and PCT quality control requirements, while meeting all federal and state emission control regulations. The demonstration system is designed to process 36 ton/day of as-received drummed or bulk wastes. The processing capacity equates to approximately 160 barrels/day of waste materials containing 30% moisture at an average weight of 450 lbs./barrel.

  5. Temperature and RH Targets

    Broader source: Energy.gov [DOE]

    Presented by Vishal O Mittal of the Florida Solar Energy Center at the High Temperature Membrane Working Group Meeting, San Francisco, September 14, 2006.

  6. Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species

    E-Print Network [OSTI]

    2015-01-01

    Nematode density (min. soil) Bacterial-feeding nemat.C:N microb. biomass (min. soil) Ectomycorrh. sporocarp spp.R, McCartney D (2002) Soil carbon and nitrogen dynamics in

  7. Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species

    E-Print Network [OSTI]

    2015-01-01

    and acidity in mineral soils at a common garden experimentof dominant tree species on soils, but the underlyingN), and acidity in mineral soils from an experiment with

  8. Soil suitability index identifies potential areas for groundwater banking on agricultural lands

    E-Print Network [OSTI]

    2015-01-01

    R. 1981. Range claypan soil improvement: response fromdoi:10.2134/ agronj2001.932281x Soil Survey Division Staff.1993. Soil survey manual. Soil Conservation Service. US

  9. Effects of soil solarization on yields of celery, pepper, onion, control of soil-borne pathogens, and chemical changes in the soil 

    E-Print Network [OSTI]

    Avila, Francisco Antonio

    1989-01-01

    EFFECTS OF SOIL SOLARIZATION ON YIELDS OF CELERY, PEPPER, ONION, CONTROL OF SOIL-BORNE PATHOGENS, AND CHEMICAL CHANGES IN THE SOIL A Thesis by FRANCISCO ANTONIO AVILA Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1989 Major Subject: Horticulture EFFECTS OF SOIL SOLARIZATION ON YIELDS OF CELERY, PEPPER, ONION, CONTROL OF SOIL-BORNE PATHOGENS, AND CHEMICAL CHANGES IN THE SOIL A...

  10. Fiber optic temperature sensor

    SciTech Connect (OSTI)

    Rabold, D.

    1995-12-01

    Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

  11. Thermoelectric Temperature Control

    E-Print Network [OSTI]

    Saffman, Mark

    NOTE 201TM TECHNICAL Optimizing Thermoelectric Temperature Control Systems #12;2 May 1995 92-040000A © 1995 Wavelength Electronics, Inc. Thermoelectric coolers (TECs) are used in a variety understanding of thermal management techniques and carefully select the thermoelectric module, temperature

  12. High Temperature ESP Monitoring

    SciTech Connect (OSTI)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  13. Water Transfer from Soil to the Atmosphere as Related to Climate and Soil Properties 

    E-Print Network [OSTI]

    Wendt, C. W.

    1970-01-01

    of the soil surface is the limiting parameter. Effects of Crude Oil on Evaporation - Crude oil applied to the wet soil surfaces of the lysimeters following rains suppressed evaporation immediately following the rains. However, the value of the crude oil...

  14. Water and heat transport in boreal soils: Implications for soil response to climate change

    E-Print Network [OSTI]

    2011-01-01

    upward gradients of water potential energy (mainly due towater movement could be an important factor in seasonal soil energywater movement through boreal soil is a critical factor for accurate simulations of energy (

  15. Consolidation theories for saturated-unsaturated soils and numerical simulation of residential buildings on expansive soils 

    E-Print Network [OSTI]

    Zhang, Xiong

    2005-11-01

    to perform uncoupled two or three dimensional consolidation calculation for both expansive soils and collapsible soils. From the analysis, the equivalent effective stress and excessive pore water pressure can be easily calculated. At the same time...

  16. Soil phosphorus status and fertilizer use in select agricutural soils in Nicaragua 

    E-Print Network [OSTI]

    Niemeyer, Patrick G

    2001-01-01

    A survey of small, medium and large Nicaraguan producers indicated a heavy reliance on imported complete fertilizer. Analysis of soils sampled from the large-scale commercial producers found low P retention in the lowland heavy clay soils...

  17. Pedogenic Thresholds and Soil Process Domains in Basalt-Derived Soils

    E-Print Network [OSTI]

    Vitousek, PM; Chadwick, OA

    2013-01-01

    rejuvenation of weathering-derived nutri- ent supply in anProcess Domains in Basalt-Derived Soils Peter M. Vitousekand domains in basalt-derived soils on two rainfall

  18. Soil maps of Wisconsin Alfred E. Hartemink a,

    E-Print Network [OSTI]

    Meyers, Stephen R.

    Soil maps of Wisconsin Alfred E. Hartemink a, , Birl Lowery a , Carl Wacker b a University of Wisconsin-Madison, Department of Soil Science, FD Hole Soils Lab, 1525 Observatory Drive, Madison, WI 53706 May 2012 Accepted 15 May 2012 Available online xxxx Keywords: Soil maps Historical maps Digital soil

  19. Soil degradation, global warming and climate impacts

    E-Print Network [OSTI]

    Feddema, Johannes J.; Freire, Sergio Carneiro

    2001-01-01

    stream_size 21847 stream_content_type text/plain stream_name Feddema_Soil_Degradation_Global_Warming.pdf.txt stream_source_info Feddema_Soil_Degradation_Global_Warming.pdf.txt Content-Encoding UTF-8 Content-Type text.... This study will demonstrate one methodology for assessing the potential large-scale impacts of soil degradation on African climates and water resources. In addition it will compare and contrast these impacts to those expected from global warming and compare...

  20. Dynamic Soil-Structure-Soil-Interaction Analysis of Structures in Dense Urban Environments

    E-Print Network [OSTI]

    Jones, Katherine Carys

    2013-01-01

    soil. International Journal of Geomechanics, 8(6), 336-346.International Journal of Geomechanics. Takewaki, I. (1998).

  1. Supplementary Information Pyrogenic carbon additions to soil counteract positive priming of soil carbon

    E-Print Network [OSTI]

    Lehmann, Johannes

    derive the fraction of total soil CO2 emissions that are from this plant as compared to those from the C3 soil using the equation: fC4 veg T C3soil C4 veg C3soil , where fC4veg is the fraction of CO2 the contrasting metabolic pathways of C3 and C4 plants. During photosynthetic uptake of CO2, C3 plants

  2. Elevated CO2 stimulates grassland soil respiration by increasing carbon inputs rather than by enhancing soil

    E-Print Network [OSTI]

    Thomas, David D.

    Elevated CO2 stimulates grassland soil respiration by increasing carbon inputs rather than by enhancing soil moisture E . C A R O L A D A I R * § , P E T E R B . R E I C H , J A R E D J . T R O It is not clear whether the consistent positive effect of elevated CO2 on soil respiration (soil carbon flux, SCF

  3. Oxidation of Organic Compounds in the Soil

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1915-01-01

    aerated. It is known, for example, that nitrification in a liquid culture is not the same as nitrification in the soil. Cottonseed meal will putrefy in soil in flaslcs stopperecl with cotton wool, while in glass jars, the same mixture will nitrifv. A... cnpaciiy. The nitrif-ing capac- it" the oxidatioa capacity 'and the capacit~ of the soil to convert am- monia into nitrates and ammonia are to a certain extent related, espe- . cially the t-ro latter. They are not necessarily the same in the same soils...

  4. The Chemical Composition of Some Texas Soils

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1907-01-01

    as to be unfit for agricultural purposes, although very productive when the stones are removed. Crawford silty clay is a brown to reddish brown clay, being the principal truck soil of the area. Blanco Ioam is a heavy gray loam or silty loam occurring only... acid is low in the Houston Ioam and in the Susquehanna fine sandy loam, but other soils contain an abundance. A fair quantity of nit- rogen is present in all the soils. Potash is low in Houston clay and in the Blanco loam. These soils as a rule...

  5. Contrasting soil microbial community functional structures in...

    Office of Scientific and Technical Information (OSTI)

    two major landscapes of the Tibetan alpine meadow Prev Next Title: Contrasting soil microbial community functional structures in two major landscapes of the Tibetan alpine...

  6. Arsenic chemistry in soils and sediments

    E-Print Network [OSTI]

    Fendorf, S.

    2010-01-01

    retention mechanisms on goethite. 1. Surface structure.ion adsorbed on synthetic goethite (?-FeOOH). Soil Sci. 35:of arsenic(III) on goethite: spectroscopic evidence for

  7. Performance evaluation soil samples utilizing encapsulation technology

    DOE Patents [OSTI]

    Dahlgran, James R. (Idaho Falls, ID)

    1999-01-01

    Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

  8. Performance evaluation soil samples utilizing encapsulation technology

    DOE Patents [OSTI]

    Dahlgran, J.R.

    1999-08-17

    Performance evaluation soil samples and method of their preparation uses encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration. 1 fig.

  9. Stable or unstable wetting fronts in water repellent soils effect of antecedent soil moisture content

    E-Print Network [OSTI]

    Walter, M.Todd

    contents during the experiment, which caused the soil to be wettable instead of water repellent. The waterStable or unstable wetting fronts in water repellent soils ± effect of antecedent soil moisture content Coen J. Ritsemaa,* , John L. Nieberb , Louis W. Dekkera , T.S. Steenhuisc a DLO Winand Staring

  10. Nitrogen Fixation and Leaching of Biological Soil Crust Communities in Mesic Temperate Soils

    E-Print Network [OSTI]

    Neher, Deborah A.

    Microbial Ecology Nitrogen Fixation and Leaching of Biological Soil Crust Communities in Mesic Temperate Soils Roberta M. Veluci1,2 , Deborah A. Neher1,3 and Thomas R. Weicht1,3 (1) Department of Earth, FL 32611-0760, USA (3) Department of Plant and Soil Science, University of Vermont, 105 Carrigan Dr

  11. 100 Area soil washing: Bench scale tests on 116-F-4 pluto crib soil

    SciTech Connect (OSTI)

    Field, J.G.

    1994-06-10

    The Pacific Northwest Laboratory conducted a bench-scale treatability study on a pluto crib soil sample from 100 Area of the Hanford Site. The objective of this study was to evaluate the use of physical separation (wet sieving), treatment processes (attrition scrubbing, and autogenous surface grinding), and chemical extraction methods as a means of separating radioactively-contaminated soil fractions from uncontaminated soil fractions. The soil washing treatability study was conducted on a soil sample from the 116-F-4 Pluto Crib that had been dug up as part of an excavation treatability study. Trace element analyses of this soil showed no elevated concentrations above typically uncontaminated soil background levels. Data on the distribution of radionuclide in various size fractions indicated that the soil-washing tests should be focused on the gravel and sand fractions of the 116-F-4 soil. The radionuclide data also showed that {sup 137}Cs was the only contaminant in this soil that exceeded the test performance goal (TPG). Therefore, the effectiveness of subsequent soil-washing tests for 116-F-4 soil was evaluated on the basis of activity attenuation of {sup 137}Cs in the gravel- and sand-size fractions.

  12. The production and degradation of trichloroacetic acid in soil: results from in situ soil column experiments 

    E-Print Network [OSTI]

    Heal, Mathew R; Dickey, Catherine A; Heal, Kate V; Stidson, Ruth T; Matucha, Miroslav; Cape, J Neil

    2010-01-01

    experiments with radioactively-labelled TCA and with irradiated (sterilised) soil columns. Control in situ forest soil columns showed evidence of net export (i.e. in situ production) of TCA, consistent with a net soil TCA production inferred from forest...

  13. Elevated CO2 stimulates grassland soil respiration by increasing carbon inputs rather than by enhancing soil

    E-Print Network [OSTI]

    Minnesota, University of

    Elevated CO2 stimulates grassland soil respiration by increasing carbon inputs rather than It is not clear whether the consistent positive effect of elevated CO2 on soil respiration (soil carbon flux, SCF) results from increased plant and microbial activity due to (i) greater C availability through CO2-induced

  14. Soil organic carbon and nutrient content in aggregate-size fractions of a subtropical rice soil under variable tillage

    E-Print Network [OSTI]

    Florida, University of

    Soil organic carbon and nutrient content in aggregate-size fractions of a subtropical rice soil The effects of tillage on soil organic carbon (SOC) and nutrient content of soil aggregates can vary spatially and temporally, and for different soil types and cropping systems. We assessed SOC and nutrient levels within

  15. EFFECTS OF COMPOST AND LIME APPLICATION ON SOIL CHEMICAL PROPERTIES, SOIL MICROBIAL COMMUNITY, AND FUSARIUM WILT IN

    E-Print Network [OSTI]

    Ma, Lena

    1 EFFECTS OF COMPOST AND LIME APPLICATION ON SOIL CHEMICAL PROPERTIES, SOIL MICROBIAL COMMUNITY compost as an antagonistic suppression approach to combat soil-borne disease effects on crop yields the effect of compost and lime on soil chemical properties, the soil microbial community (including Fusarium

  16. Soil metagenomics and carbon cycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience of SignaturesSoft CostsSoilBioscience:

  17. Penrose Well Temperatures

    SciTech Connect (OSTI)

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  18. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Z.F.

    1988-04-12

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperatures of 77 degrees Kelvin, is discussed. 3 figs.

  19. High-Temperature Superconductivity

    ScienceCinema (OSTI)

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  20. Finnish forest soils Pekka Tamminen and Erkki Tomppo

    E-Print Network [OSTI]

    Tomppo, Erkki

    .9 %), Gleysols (1.4 %) and Regosols (1.2 %), had only a small proportion. International soil classifications seem properties, the use of continuous variables would be more useful for primary soil users. Keywords soil survey

  1. Soil-landscape model helps predict potassium supply in vineyards

    E-Print Network [OSTI]

    O'Geen, Anthony T; Pettygrove, Stuart; Southard, Randal; Minoshima, Hideomi; Verdegaal, Paul S.

    2008-01-01

    for making and inter- preting soil surveys (2nd ed. ). USDA-K S, V, K Depth inches Color* moist soil Sand Silt Clay Claymineralogy† pH CEC cmol(+)/kg soil‡ Exchangeable K K

  2. Soil Disturbance from an Integrated Mechanical Forest Fuel Reduction

    E-Print Network [OSTI]

    Bolding, M. Chad

    Soil Disturbance from an Integrated Mechanical Forest Fuel Reduction Operation in Southwest Oregon1 literature has quantified harvesting system effectiveness or soil disturbance concerns from such operations. This paper reports results of soil disturbance generated from an integrated forest harvesting

  3. In-Situ Bioremediation of Perchlorate in Groundwater and Soil

    E-Print Network [OSTI]

    Jin, Liyan

    2012-01-01

    AND SPATIAL PATTERNS OF SOIL REDOX POTENTIAL IN FLORIDAParker, Effects of common soil anions and pH on the uptakein lettuce. Plant and Soil, 2008. 302(1-2): p. 139-148.

  4. Storage and turnover of organic matter in soil

    E-Print Network [OSTI]

    Torn, M.S.

    2009-01-01

    of organic carbon from peat soils. Nature 412 , 785. Fried,Plant Litter. Standard Soil Methods for Long-Term Ecological2007). Role of proteins in soil carbon and nitrogen storage:

  5. SOIL MICROBIOLOGY Resource Use of Soilborne Streptomyces Varies with Location,

    E-Print Network [OSTI]

    Thomas, David D.

    SOIL MICROBIOLOGY Resource Use of Soilborne Streptomyces Varies with Location, Phylogeny in prairie soils. Resource use patterns were highly variable among Streptomyces isolates and were soils less than 1 m apart differed significantly in their ability to use resources, indicating

  6. Soil Hydraulic Characteristics of a Small Southwest Oregon Watershed Following

    E-Print Network [OSTI]

    --------------------------------------------- Soil Hydraulic Characteristics of a Small Southwest by a high-intensity burn over areas of steep topography. The areal distribution of soil hydraulic of infiltration capacity, saturated hydraulic conductivity, and soil moisture characteristics. Also, measures

  7. Dynamics of decadally cycling carbon in subsurface soils

    E-Print Network [OSTI]

    Koarashi, Jun; Hockaday, William C; Masiello, Caroline A; Trumbore, Susan E

    2012-01-01

    of organic carbon in deep soil layers controlled by freshcarbon input G03033 from fresh liter to deep mineral soils,Soil Sci. Soc. Am. J. , 71, 347–354, doi:

  8. Soils of Amazonia with particular reference to the RAINFOR sites

    E-Print Network [OSTI]

    Quesada, C. A; Lloyd, J.; Anderson, L. O; Fyllas, N. M; Schwarz, M.; Czimczik, C. I

    2011-01-01

    in S. Paulo State, Brazil, Soil Sci. Soc. Am. J. , 38, Lima,G. : Variable Charge Soils: Their Mineralogy, Chemistry andV. S. : Edaphic controls on soil organic carbon retention in

  9. Measurement and Modeling of Solute Diffusion Coefficients in Unsaturated Soils

    E-Print Network [OSTI]

    Chou, Hsin-Yi

    2010-01-01

    Diffusion and flow in gravel, soil, and whole rock, AppliedEds. ) (2002), Methods of Soil Analysis Part 4 PhysicalUnsaturated Volcanic Ash Soils, Vadose Zone Journal, 8(4),

  10. Vineyard nutrient needs vary with rootstocks and soils

    E-Print Network [OSTI]

    Lambert, Jean-Jacques; Anderson, Michael M; Wolpert, J A

    2008-01-01

    to the interpretation of soil analysis for potassium andA (ed. ). 1986. Methods of Soil Analysis. Part 1. Physi- cal9:154–68. Nicholas P. 2004. Soil, Irrigation and Nutrition.

  11. Comparative toxicity of pentachlorophenol to three earthworm species in artificial soil

    SciTech Connect (OSTI)

    Fitzgerald, D.; Lanno, R.P.; Farwell, A.; Dixon, D.G.

    1994-12-31

    Although methods for standardized toxicity tests with earthworms exist, many of the test parameters and conditions have not been validated in actual tests and with different species of worms. This study evaluated the toxicity of pentachlorophenol (PCP) to three species of earthworms, Lumbricus terrestris, Eisenia fetida, and Eudrilus eugeniae using various methods of data analysis and body residues. Tests were conducted in artificial soil for a period of 28 days or until an Acute Lethality Threshold (ALT) was reached. An intensive temporal sampling regime was applied to generate sufficient data for the accurate estimation of ALTs using both LC50/time and time-to-death/soil concentration methods of data analysis. L. terrestris was tested at 15 C, E. eugeniae at 24 C, and E. fetida at both temperatures. Total body residues of PCP were measured by GC following cryogenic separation of the lipid fraction of the worm. ALTs were significantly different between E. fetida and the two larger species of worms. No effect of temperature on the ALT for E. fetida was observed, although the time taken to reach the ALT increased at the lower temperature. The relationship of PCP residues at mortality will be discussed in terms of the effects of species, body size and temperature. Limitations of the artificial soil based upon growth curves of worms will also be examined.

  12. Temperature measuring device

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Sohns, Carl W. (Oak Ridge, TN)

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  13. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA); Scandrol, Roy O. (Library, PA)

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  14. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)] [and others

    1996-03-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  15. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)

    1995-10-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase I consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  16. Cliff T. Johnston Professor of Soil Chemistry

    E-Print Network [OSTI]

    Jackson, Scott A.

    in Academic, Professional and Scholarly Societies American Chemical Society Clay Minerals Society Awarded a Fulbright Senior Specialist Grant ­ Brazil. Publications - Journal Articles and Invited Reviews developments in soil science research, L.L. Boersma (ed.), Soil Sci. Soc. of Am. Publications, Madison, WI

  17. Data management system for organic soil

    SciTech Connect (OSTI)

    Stinnette, P.

    1999-07-01

    A Data Management System for Organic Soil (DMSOS) has been developed that enables the acquisition, management and analysis of organic soil data as well as the presentation of results to be conducted effectively through a common interface. This development was in response to the data management needs of research investigating the engineering properties of organic soil and its extension to the stabilization of organic soil through dynamic replacement (DR). It is shown how the above functions are implemented efficiently using Windows-based software to perform comprehensive data management and analysis of data gathered from both laboratory and field tests. When the engineering properties of a given organic soil deposit are needed, a build-in Computer Advisor for Organic Soil Projects (CAOSP) predicts the properties from DMSOS based correlations. A unique and useful feature of the CAOSP is its ability to estimate the anticipated ultimate settlement of an organic soil deposit given the loading conditions and the moisture or organic content. Also incorporated in the DMSOS is a quality control system that utilizes computerized data acquisition/data management techniques in order to evaluate the degree of improvement of an organic soil layer at a given stage of treatment using DR.

  18. Analysis of large soil samples for actinides

    DOE Patents [OSTI]

    Maxwell, III; Sherrod L. (Aiken, SC)

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  19. NNSS Soils Monitoring: Plutonium Valley (CAU366)

    SciTech Connect (OSTI)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott

    2012-02-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

  20. Process for removing polychlorinated biphenyls from soil

    DOE Patents [OSTI]

    Hancher, C.W.; Saunders, M.B.; Googin, J.M.

    1984-11-16

    The present invention relates to a method of removing polychlorinated biphenyls from soil. The polychlorinated biphenyls are extracted from the soil by employing a liquid organic solvent dispersed in water in the ratio of about 1:3 to 3:1. The organic solvent includes such materials as short-chain hydrocarbons including kerosene or gasoline which are immiscible with water and are nonpolar. The organic solvent has a greater affinity for the PCB's than the soil so as to extract the PCB's from the soil upon contact. The organic solvent phase is separated from the suspended soil and water phase and distilled for permitting the recycle of the organic solvent phase and the concentration of the PCB's in the remaining organic phase. The present process can be satisfactorily practiced with soil containing 10 to 20% petroleum-based oils and organic fluids such as used in transformers and cutting fluids, coolants and the like which contain PCB's. The subject method provides for the removal of a sufficient concentration of PCB's from the soil to provide the soil with a level of PCB's within the guidelines of the Environmental Protection Agency.

  1. Moisture Relations of Some Texas Soils

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1915-01-01

    . %Water Content of Houston Black Clay, 1912 The curves show clearly the effects of cultivation upon the water content of the soil. T'he cultivated soil contains a larger percentage of water in practicaJly all cases. The curves also show the decided...

  2. Using soil sensing technology to examine interactions and controls between ectomycorrhizal growth and environmental factors on soil CO2 dynamics

    E-Print Network [OSTI]

    Hasselquist, Niles J.; Vargas, Rodrigo; Allen, Michael F.

    2010-01-01

    Plant Soil (2010) 331:17–29 DOI 10.1007/s11104-y REGULAR ARTICLE Using soil sensing technology to examineand environmental factors on soil CO 2 dynamics Niles J.

  3. 19th World Congress of Soil Science, Soil solutions for a changing world, Brisbane, Australia 1-6 August 2010

    E-Print Network [OSTI]

    Boyer, Edmond

    ). The investigated ES were climate regulation through carbon sequestration in soil and biomass, soil conservation of these results are discussed. Key Words Land use change, socioeconomic drivers, carbon sequestration, soil

  4. Non-Linear Seismic Soil Structure Interaction (SSI) Method for...

    Office of Environmental Management (EM)

    Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Non-Linear Seismic Soil Structure Interaction (SSI) Method for...

  5. SIMULATION OF CONSOLIDATION IN PARTIALLY SATURATED SOIL MATERIALS

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2010-01-01

    T.W. and R.V. Whitman, Soil Mechanics, John Wiley, New York,in the field of soil mechanics. The now widely used concept

  6. ORNL researchers improve soil carbon cycling models | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and releases carbon into the soil. Enzymes released by microbes in the soil degrade the organic matter, releasing carbon molecules, which the microbes absorb as food. Eventually,...

  7. Plant stimulation of soil microbial community succession: how...

    Office of Scientific and Technical Information (OSTI)

    Plant stimulation of soil microbial community succession: how sequential expression mediates soil carbon stabilization and turnover Citation Details In-Document Search Title: Plant...

  8. Mapping Soil Carbon from Cradle to Grave: Identifying the Microbial...

    Office of Scientific and Technical Information (OSTI)

    Conference: Mapping Soil Carbon from Cradle to Grave: Identifying the Microbial Blueprint for Root-carbon Transformations in Soil Citation Details In-Document Search Title: Mapping...

  9. Mapping Soil Carbon from Cradle to Grave: Identifying the Microbial...

    Office of Scientific and Technical Information (OSTI)

    In-Document Search Title: Mapping Soil Carbon from Cradle to Grave: Identifying the Microbial Blueprint for Root-carbon Transformations in Soil Erin Nuccio, Lawrence...

  10. Rocky Flats Environmental Technology Site Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky...

  11. LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming...

    Office of Environmental Management (EM)

    Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010...

  12. Soil and Groundwater Cleanup - In-Situ Grouting, Lessons Learned...

    Energy Savers [EERE]

    Soil and Groundwater Cleanup - In-Situ Grouting, Lessons Learned (Post CD-4), Environmental Management Cleanup, May 2011 Soil and Groundwater Cleanup - In-Situ Grouting, Lessons...

  13. After More Than 20 Years Operating, Hanford's Soil Vapor Extraction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    After More Than 20 Years Operating, Hanford's Soil Vapor Extraction Project Nears Completion After More Than 20 Years Operating, Hanford's Soil Vapor Extraction Project Nears...

  14. Soil Sampling At Long Valley Caldera Geothermal Area (Klusman...

    Open Energy Info (EERE)

    Soil Sampling At Long Valley Caldera Geothermal Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At...

  15. Soil Sampling At Waunita Hot Springs Geothermal Area (Ringrose...

    Open Energy Info (EERE)

    Soil Sampling At Waunita Hot Springs Geothermal Area (Ringrose & Pearl, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At...

  16. STRUCTURE-SOIL-STRUCTURE INTERACTION AT SRS | Department of Energy

    Office of Environmental Management (EM)

    INTERACTION AT SRS Structure-Soil-Structure Interaction at SRS Structural Mechanics - SRS October 25, 2011 Structure-Soil-Structure Interaction at SRS More Documents &...

  17. NYSDOT soil bioengineering and biotechnical engineering design guidance and specifications

    E-Print Network [OSTI]

    Glath, Gary; Radzyminski, Stephen; Lohse, Robert; Freehart, William

    2003-01-01

    NYSDOT SOIL BIOENGINEERING AND BIOTECHNICAL ENGINEERING15, 2002, NYSDOT issued Soil Bioengineering and BiotechnicalBenefits of bioengineering/biotechnical engineering systems

  18. Measuring spatial variability in soil characteristics

    DOE Patents [OSTI]

    Hoskinson, Reed L. (Rigby, ID); Svoboda, John M. (Idaho Falls, ID); Sawyer, J. Wayne (Hampton, VA); Hess, John R. (Ashton, ID); Hess, J. Richard (Idaho Falls, ID)

    2002-01-01

    The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.

  19. Clean soil at Eniwetok and Johnston Atolls

    SciTech Connect (OSTI)

    Bramlitt, E.T.

    1990-01-01

    The Defense Nuclear Agency has managed two large-scale soil cleanups (landmass decontaminations) of plutonium contamination. Both are at Pacific Ocean atolls formerly used for nuclear weapons tests. The Eniwetok Atoll (EA) cleanup between 1977 and 1980 evaluated 390 ha of contaminated land and cleaned 50 ha by removing 80,000 m[sup 3] of contaminated soil. The Johnston Atoll (JA) cleanup is in process. It has checked 270 ha, will clean 15 ha, and plans for removal of 80,000 m[sup 3] of soil. The cleanups are similar in other respects including carbonate-based soil, in situ radiation surveys, contamination characteristics, soil excavation methods, safety, and weather. The two cleanups are in contrast relative to planning time, agencies involved, funding, documentation, environmental considerations, cleanup workforce, site beneficiaries, waste characterization, regulatory permits, management, and project duration. The most noteworthy differences are the rationale for cleanup, the cleanup process, the definition of clean, and the cost.

  20. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  1. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  2. Investigation of transient, two-dimensional coupled heat and moisture flow in soils

    SciTech Connect (OSTI)

    Shen, L.S.W.

    1986-01-01

    A two-dimensional finite difference numerical model has been developed to study coupled heat and moisture flow in the soil surrounding an earth-sheltered construction. The model is based on a mechanistic approach formulated by Milly and developed from the work of Philip and deVries. Using soil temperatures and matric potentials as the dependent variables, the model is capable of simulating unsaturated/saturated flow conditions in heterogeneous soil domains. The model is a fully implicit, integrated finite difference approach based on the Patankar Spalding method. The numerical modeling of the governing heat and moisture equations was validated against a number of analytical and quasi-analytical solutions. An axisymmetric, two-dimensional experiment was then defined to which the numerical model could be compared. The experimental apparatus was composed of a cylinder filled with a dredged Mississippi River sand. A series of one and two dimensional heat and moisture flow experiments were run, using boundary conditions consistent with those that occur in the soil surrounding a building. Soil properties used in the model were either calculated from theoretical models or measured experimentally. Agreement between the model and experiments were good, with an error of 10-15% obtained for the two-dimensional coupled heat and moisture flow experiment.

  3. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  4. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  5. Errors in determination of soil water content using time-domain reflectometry caused by soil compaction around wave guides

    E-Print Network [OSTI]

    Ghezzehei, T.A.

    2008-01-01

    as well as the water content and water retention propertiesvariations in soil-water content, Water Resources Research,eld soil. Subsequent to water content water measurement, the

  6. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    Provides essential information on soil ecosystem managementexports to a soil ecosystem? What information would you needInformation-rich resource on soil organisms offers a comprehensive guide to soil biology, soil ecosystem

  7. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, Robert W. (Livermore, CA); Shell, Thomas E. (Livermore, CA)

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  8. PHYSICAL REVIEW E 84, 041402 (2011) Ice-lens formation and geometrical supercooling in soils and other colloidal materials

    E-Print Network [OSTI]

    Wettlaufer, John S.

    2011-01-01

    the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large 2011) We present a physically intuitive model of ice-lens formation and growth during the freezing pressures on the crack walls that will eventually cause the crack to split open. We show that the crack

  9. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, D.M.; Bionta, R.M.

    1995-01-17

    The joining technique is disclosed that requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process. 5 figures.

  10. Fluorescent temperature sensor

    DOE Patents [OSTI]

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-03-03

    The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  11. Temperature determination using pyrometry

    DOE Patents [OSTI]

    Breiland, William G. (Albuquerque, NM); Gurary, Alexander I. (Bridgewater, NJ); Boguslavskiy, Vadim (Princeton, NJ)

    2002-01-01

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  12. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hart, J.G.

    1995-12-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

  13. Effect of soiling in CPV systems

    SciTech Connect (OSTI)

    Vivar, M.; Herrero, R.; Anton, I.; Martinez-Moreno, F.; Moreton, R.; Sala, G.

    2010-07-15

    The effect of soiling in flat PV modules has been already studied, causing a reduction of the electrical output of 4% on average. For CPV's, as far as soiling produces light scattering at the optical collector surface, the scattered rays should be definitively lost because they cannot be focused onto the receivers again. While the theoretical study becomes difficult because soiling is variable at different sites, it becomes easier to begin the monitoring of the real field performance of concentrators and then raise the following question: how much does the soiling affect to PV concentrators in comparison with flat panels?' The answers allow to predict the PV concentrator electrical performance and to establish a pattern of cleaning frequency. Some experiments have been conducted at the IES-UPM and CSES-ANU sites, consisting in linear reflective concentration systems, a point focus refractive concentrator and a flat module. All the systems have been measured when soiled and then after cleaning, achieving different increases of I{sub SC}. In general, results show that CPV systems are more sensitive to soiling than flat panels, accumulating losses in I{sub SC} of about 14% on average in three different tests conducted at IES-UPM and CSES-ANU test sites in Madrid (Spain) and Canberra (Australia). Some concentrators can reach losses up to 26% when the system is soiled for 4 months of exposure. (author)

  14. High temperature storage battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1988-06-07

    A high temperature electrochemical cell is described comprising: a solid-state divalent cation conducting electrolyte; a positive electrode in contact with the electrolyte; a solid-state negative electrode contacting a divalent cation conducting molten salt mediating agent providing ionic mediation between the solid-state negative electrode and the solid-state electrolyte.

  15. Temperature differential detection device

    DOE Patents [OSTI]

    Girling, Peter M. (Allentown, PA)

    1986-01-01

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

  16. Transition temperature in QCD

    SciTech Connect (OSTI)

    Cheng, M.; Christ, N. H.; Mawhinney, R. D. [Physics Department, Columbia University, New York, New York 10027 (United States); Datta, S.; Jung, C.; Schmidt, C.; Umeda, T. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Heide, J. van der; Kaczmarek, O.; Laermann, E.; Miao, C. [Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Karsch, F. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Petreczky, P. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973 (United States); Petrov, K. [Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen (Denmark)

    2006-09-01

    We present a detailed calculation of the transition temperature in QCD with two light and one heavier (strange) quark mass on lattices with temporal extent N{sub {tau}}=4 and 6. Calculations with improved staggered fermions have been performed for various light to strange quark mass ratios in the range, 0.05{<=}m-circumflex{sub l}/m-circumflex{sub s}{<=}0.5, and with a strange quark mass fixed close to its physical value. From a combined extrapolation to the chiral (m-circumflex{sub l}{yields}0) and continuum (aT{identical_to}1/N{sub {tau}}{yields}0) limits we find for the transition temperature at the physical point T{sub c}r{sub 0}=0.457(7) where the scale is set by the Sommer-scale parameter r{sub 0} defined as the distance in the static quark potential at which the slope takes on the value (dV{sub qq}(r)/dr){sub r=r{sub 0}}=1.65/r{sub 0}{sup 2}. Using the currently best known value for r{sub 0} this translates to a transition temperature T{sub c}=192(7)(4) MeV. The transition temperature in the chiral limit is about 3% smaller. We discuss current ambiguities in the determination of T{sub c} in physical units and also comment on the universal scaling behavior of thermodynamic quantities in the chiral limit.

  17. Defining Niger Delta Soils – Are They Laterites?

    E-Print Network [OSTI]

    Alayaki, Funmilayo; Al-Tabbaa, Abir; Ayotamuno, Josiah

    2015-01-01

    by rainwater and groundwater caused detrimental effect on soil structure. He noted that the rigidity of the soils matrix may become deflocculated when there is leaching out of salt which makes the soil particles to lose their inter-particle attractive forces... ://www.iiste.org/conference/upcoming-conferences-call-for-paper/ IISTE Knowledge Sharing Partners EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe...

  18. Localized temperature stability of low temperature cofired ceramics

    SciTech Connect (OSTI)

    Dai, Steven Xunhu

    2013-11-26

    The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.

  19. The Role of Micro-Mechanics in Soil Mechanics

    E-Print Network [OSTI]

    Bolton, Malcolm

    The Role of Micro-Mechanics in Soil Mechanics M.D.Bolton CUED/D-Soils/TR313 September 2000;1 The Role of Micro-Mechanics in Soil Mechanics Malcolm Bolton Summary It is suggested that observations of the changing microstructure of soils will permit the selection and refinement of relevant micro-mechanisms

  20. Persistence of soil organic matter as an ecosystem property

    E-Print Network [OSTI]

    Schmidt, M.W.

    2012-01-01

    soils, probably depending on the conditions under which they were produced, which suggests that pyrolysis

  1. Identifying Street Tree Stressors in Urban Forest Soils

    E-Print Network [OSTI]

    Gray, Matthew

    availability · Contaminants · Particulate mader o Car exhaust · Low soil nutrients o OM removed (Craul

  2. Automated soil respiration measurements: new information, opportunities and challenges

    E-Print Network [OSTI]

    Vargas, R.; Carbone, M. S.

    2008-01-01

    information, opportunities, and challenges Automated Soil Respiration Workshop – a Terrestrial Ecosystem

  3. SOIL MOISTURE CHARACTERISTICS IN UPPER PART OF HINDON RIVER CATCHMENT

    E-Print Network [OSTI]

    Kumar, C.P.

    1 SOIL MOISTURE CHARACTERISTICS IN UPPER PART OF HINDON RIVER CATCHMENT C. P. Kumar* Vijay Kumar** Vivekanand Singh*** ABSTRACT Knowledge of the physics of soil water movement is crucial to the solution for estimating the soil hydraulic properties are required for prediction of soil water flow. This paper presents

  4. Method for treatment of soils contaminated with organic pollutants

    DOE Patents [OSTI]

    Wickramanayake, Godage B. (Cranbury, NJ)

    1993-01-01

    A method for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil to decompose the organic compounds. The soil may be treated in situ or may be removed for treatment and refilled.

  5. Predicting Soil-Water Partition Coefficients for Cadmium

    E-Print Network [OSTI]

    Sparks, Donald L.

    Predicting Soil-Water Partition Coefficients for Cadmium S U E N - Z O N E L E E Department, University of Delaware, Newark, Delaware 19716 D O N A L D L . S P A R K S Department of Plant and Soil of Cd(II) on 15 New Jersey soils. The soils were characterized in terms of surface properties

  6. REGIONAL SOIL TEST LABS FOR HOME GARDENERS 1

    E-Print Network [OSTI]

    Hill, Wendell T.

    REGIONAL SOIL TEST LABS FOR HOME GARDENERS 1 HG110a Labs and links current as of 10/8/2015 A basic soil test that gives readings for soil acidity (pH), calcium (Ca), phosphorus (P), potassium (K includes lead in its basic "Home Lawn and Garden Soil Test." · Most labs offer homeowner and commercial

  7. forEnvironmentalManagementofMilitaryLands Guide to Sampling Soil

    E-Print Network [OSTI]

    forEnvironmentalManagementofMilitaryLands Guide to Sampling Soil Compaction Using Hand-Held Soil Fort Collins, CO 80523-1490 January 2004 #12;#12;1 Guide to Sampling Soil Compaction Using Hand-Held Soil Penetrometers1 Prepared by Dave Jones and Matt Kunze Center for Environmental Management

  8. SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA OSURR Section 17

    E-Print Network [OSTI]

    66 26 76 26 26 26 SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA OSURR Section 17 0 300 600 900 1,200150 Feet 0 100 20050 Meters Web Soil Survey 1.1 National Cooperative Soil Survey 5/7/2007 Page 1 of 3 #12;MAP INFORMATION SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA OSURR Section 17 Source of Map: Natural Resources

  9. Protein accumulation and distribution in floodplain soils and river foam

    E-Print Network [OSTI]

    Rilli, Matthias C.

    REPORT Protein accumulation and distribution in floodplain soils and river foam Mary J. Harner,1 of particular organisms is unknown. In this study, we explore how a Bradford-reactive soil protein (BRSP in Montana, we extracted BRSP from soils and related the protein concentrations to the age of soil surfaces

  10. Manoj Shukla Assistant Professor of Environmental Soil Physics,

    E-Print Network [OSTI]

    Johnson, Eric E.

    of scales, and carbon sequestration in soils Professional Activities and Honors (last 6 years) Present

  11. Soil to plant transfer of 238 Th on a uranium

    E-Print Network [OSTI]

    Hu, Qinhong "Max"

    Soil to plant transfer of 238 U, 226 Ra and 232 Th on a uranium mining-impacted soil from species grown in soils from southeastern China contaminated with uranium mine tailings were analyzed. Keywords: Uranium; Thorium; Radium; Tailings-contaminated soil; Soileplant transfer 1. Introduction

  12. Monday, March 23, 2009 PHOENIX: SOIL, CHEMISTRY, AND HABITABILITY

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Monday, March 23, 2009 PHOENIX: SOIL, CHEMISTRY, AND HABITABILITY 2:30 p.m. Waterway Ballroom 1 Properties of the Icy Soil at the Phoenix Landing Site [#1671] The physical properties of the icy martian soil documented by the robotic arm camera of the Phoenix lander are discussed. The soil is friable

  13. Occurrence of positive soil water potentials during infiltration in layered soils 

    E-Print Network [OSTI]

    Hill, Dennis Wade

    1992-01-01

    OCCURRENCE OF POSITIVE SOIL WATER POTENTIALS DURING INFILTRATION IN LAYERED SOILS A Thesis by DENNIS WADE HILL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of NASTER OF SCIENCE May 1992 Major Subject: Agricultural Engineering OCCURRENCE OF POSITIVE SOZL WATER POTENTIALS DURING INFILTRATION IN LAYERED SOILS A Thesis DENNIS WADE HZLL Approved as to style and content by: Marshall J. McFarland (Chair) p...

  14. Zero Temperature Hope Calculations

    SciTech Connect (OSTI)

    Rozsnyai, B F

    2002-07-26

    The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the outer part of the self-consistent potential in such a way that in the final state after photoexcitation or photoionization the newly occupied orbital sees the hole left in the initial state. This is very important to account for the large number of Rydberg states in the case of low densities. In the next Section we show calculated photoabsorptions compared with experimental data in figures with some rudimentary explanations.

  15. Using finished compost is a way of returning organic matter to the soil in a usable form. Soil organic matter benefits plant growth by improving the moisture and nutrient-holding capacity of sandy soils, by

    E-Print Network [OSTI]

    New Hampshire, University of

    Using finished compost is a way of returning organic matter to the soil in a usable form. Soil and by helping prevent soil erosion. Think of compost primarily as a soil conditioner rather than a fertilizer will be necessary for adequate plant growth. A soil test will determine if compost-amended garden soil requires

  16. Characterization of soil water content variability and soil texture using GPR groundwave techniques

    E-Print Network [OSTI]

    Grote, K.

    2010-01-01

    of soil moisture: Adv. Water Resourc. , 17, Fageria, N.K. ,SGP97) Hydrology Experiment: Water Resources Research, 35(6)variability across scales: Water Resources Research, 44,

  17. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  18. Dirac Equation at Finite Temperature

    E-Print Network [OSTI]

    Xiang-Yao Wu; Bo-Jun Zhang; Xiao-Jing Liu; Nuo Ba; Yi-Heng Wu; Si-Qi Zhang; Jing Wang; Chun-Hong Li

    2012-12-01

    In this paper, we propose finite temperature Dirac equation, which can describe the quantum systems in an arbitrary temperature for a relativistic particle of spin-1/2. When the temperature T=0, it become Dirac equation. With the equation, we can study the relativistic quantum systems in an arbitrary temperature.

  19. Stochastic analysis of soil-structure interaction 

    E-Print Network [OSTI]

    Chan, Charles Cheuk Lap

    1994-01-01

    This study investigates the effect of soil structure interaction on the response of a building subjected to an earthquake motion. Spectra consisting of the auto and cross spectral densities of three components of free-field earthquake motion at all...

  20. The Soil Moisture Active Passive (SMAP) Mission

    E-Print Network [OSTI]

    Entekhabi, Dara

    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey. SMAP will make global measurements of ...

  1. FINGERPRINTING SOILS – A PROOF OF CONCEPT 

    E-Print Network [OSTI]

    Kobylinski, Catherine

    2011-05-06

    assess Locard’s Exchange Principle. Soil samples were collected within in a thirty-mile radius of a designated “crime scene” in the Brazos River floodplain near Texas A...

  2. Bioaugmentation of TNT-contaminated soil 

    E-Print Network [OSTI]

    Bokelmann, Annamarie

    1999-01-01

    test period. The soil treatments in this study included: (1) the Bacillus sp., (2) the existing indigenous microorganisms, and (3) a sterile control. The disappearance of TNT, as measured by high performance liquid chromatography (HPLC), was compared...

  3. Dynamics of digging in wet soil

    E-Print Network [OSTI]

    Jung, Sunghwan

    Numerous animals live in, and locomote through, subsea soils. To move in a medium dominated by frictional interactions, many of these animals have adopted unique burrowing strategies. This paper presents a burrowing model ...

  4. Adsorption and transport of pyrithiobac in soils 

    E-Print Network [OSTI]

    Matocha, Christopher John

    1996-01-01

    adsorbents (Gonzales bentonite, Georgia kaolinite, goethite, and Michigan peat) and four soils (Houston Black c, Hidalgo sl, Orelia scl, and Ships sic) having a wide range of physical and chemical properties. Adsorption isotherms were developed...

  5. Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of

    E-Print Network [OSTI]

    Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation partitioning of carbon (C) to fine roots under elevated [CO2], especially deep in the soil profile, could alter soil C and nitrogen (N) cycling in forests. After more than 11 years of free-air CO2 enrichment

  6. Soil Security: Solving the Global Soil Crisis Andrea Koch, Alex McBratney, Mark Adams, Damien Field, Robert Hill,

    E-Print Network [OSTI]

    Lehmann, Johannes

    Soil Security: Solving the Global Soil Crisis Andrea Koch, Alex McBratney, Mark Adams, Damien Field England Michael Zimmermann University of Natural Resources and Life Sciences Vienna Abstract Soil degradation is a critical and growing global problem. As the world population increases, pressure on soil also

  7. Effects of Soil Organic Matter on the Kinetics and Mechanisms of Pb(II) Sorption and Desorption in Soil

    E-Print Network [OSTI]

    Sparks, Donald L.

    Effects of Soil Organic Matter on the Kinetics and Mechanisms of Pb(II) Sorption and Desorption in Soil Daniel G. Strawn* and Donald L. Sparks ABSTRACT make better predictions about the mobility and threat from Pb contami- and desorption behavior on soil be understood, as wellnated soil, it is critical

  8. Soil nematode communities are ecologically more mature beneath late-than early-successional stage biological soil crusts

    E-Print Network [OSTI]

    Neher, Deborah A.

    Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts Brian J. Darby a,*, Deborah A. Neher a , Jayne Belnap b a Department of Plant and Soil; accepted 12 April 2006 Abstract Biological soil crusts are key mediators of carbon and nitrogen inputs

  9. THE SOIL SCOOP by Clain Jones, Montana State University Extension Soil Fertility Specialist, and Kathrin Olson-Rutz, Research Associate

    E-Print Network [OSTI]

    Lawrence, Rick L.

    THE SOIL SCOOP by Clain Jones, Montana State University Extension Soil Fertility Specialist Feeding the Vegetable Garden Knowing about garden soil can lead to healthy plants, efficient resource use, and protection of ground and surface water. Soil nutrients and organic matter are important for a healthy garden

  10. Investigation of Low-Temperature Geothermal Resources in the Sonoma Valley Area, California

    SciTech Connect (OSTI)

    Youngs, Leslie G.; Chapman, Rodger H.; Chase, Gordon W.; Bezore, Stephen P.; Majmundar, Hasu H.

    1983-01-01

    The Sonoma Valley area contains low-temperature geothermal resources (20 C {le} T {le} 90 C) having the potential for useful development. Sonoma Valley residents, local governments and institutions, private developers, and manufacturers may be able to utilize the geothermal resources as an alternate energy source. Historically, there have been at least six geothermal spring areas developed in the Sonoma Valley. Four of these (Boyes Hot Springs, Fetter's Hot Springs, Agua Caliente Springs, and the Sonoma State Hospital warm spring) lie on a linear trend extending northwestward from the City of Sonoma. Detailed geophysical surveys delineated a major fault trace along the east side of the Sonoma Valley in association with the historic geothermal areas. Other fault traces were also delineated revealing a general northwest-trending structural faulting fabric underlying the valley. Water wells located near the ''east side'' fault have relatively high boron concentrations. Geochemical evidence may suggest the ''east side'' fault presents a barrier to lateral fluid migration but is a conduit for ascending fluids. Fifteen of the twenty-nine geothermal wells or springs located from literature research or field surveys are located along or east of this major fault in a 10 km (6.2 miles) long, narrow zone. The highest recorded water temperature in the valley appears to be 62.7 C (145 F) at 137.2 meters (450 feet) in a well at Boyes Hot Springs. This is consistent with the geothermal reservoir temperature range of 52-77 C (126-171 F) indicated by geothermometry calculations performed on data from wells in the area. Interpretation of data indicates a low-temperature geothermal fluid upwelling or ''plume'', along the ''east side'' fault with subsequent migration into permeable aquifers predominantly within volcanic strata. It is quite likely other geothermal fluid ''plumes'' in association with faulting are present within the Sonoma Valley area. A 5.8 km{sup 2} geothermal zone, that parallels the fault trace, is delineated and is perhaps the most favorable area for further investigation and possible geothermal production.

  11. The Soils of Brazos, Camp, Ellis, and Washington Counties. 

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1924-01-01

    10 ............................. Plant food required by crops 12 Pot experiments .......'................................ 12 Average composition of the soil of the counties studied ....... 13 ................................... Soils of Brazos..., as well as by the pot experiments. HOW TO USE THE ANALYSES Analyses of the soils are given in connection with the de- scription of the various types of soil. The interpretation of the analyses is also given and will be discussed there also. If a soil...

  12. Predicting soil erosion from Cap Rouge Plateau, Haiti 

    E-Print Network [OSTI]

    Marcelin, Fritz Sauveur

    1985-01-01

    in waterways, causing more frequent flooding, higher costs for navigation, and reduced storage capacity of reservoirs. Geological (sometimes called natural or normal) erosion is the inexorable and continuous process of evolution of the earth's surface... clays and other soil grains together in quite stable forms in many strongly leached, temperate- region soils and in numerous tropical soils. These soils may be quite resistant to erosion. 27 Cro in Hi Soils just plowed from native vegetation...

  13. SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA OSURR Section 5

    E-Print Network [OSTI]

    21 76 11 25 61 49 2 11 65 25 74 25 25 25 6125 65 25 40 11 W 26 25 32 W 54 3 11 65 11 74 11 74 SOIL Soil Survey 1.1 National Cooperative Soil Survey 5/7/2007 Page 1 of 3 #12;MAP INFORMATION SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA OSURR Section 5 Source of Map: Natural Resources Conservation Service Web Soil

  14. Procedures for sampling radium-contaminated soils

    SciTech Connect (OSTI)

    Fleischhauer, H.L.

    1985-10-01

    Two procedures for sampling the surface layer (0 to 15 centimeters) of radium-contaminated soil are recommended for use in remedial action projects. Both procedures adhere to the philosophy that soil samples should have constant geometry and constant volume in order to ensure uniformity. In the first procedure, a ''cookie cutter'' fashioned from pipe or steel plate, is driven to the desired depth by means of a slide hammer, and the sample extracted as a core or plug. The second procedure requires use of a template to outline the sampling area, from which the sample is obtained using a trowel or spoon. Sampling to the desired depth must then be performed incrementally. Selection of one procedure over the other is governed primarily by soil conditions, the cookie cutter being effective in nongravelly soils, and the template procedure appropriate for use in both gravelly and nongravelly soils. In any event, a minimum sample volume of 1000 cubic centimeters is recommended. The step-by-step procedures are accompanied by a description of the minimum requirements for sample documentation. Transport of the soil samples from the field is then addressed in a discussion of the federal regulations for shipping radioactive materials. Interpretation of those regulations, particularly in light of their application to remedial action soil-sampling programs, is provided in the form of guidance and suggested procedures. Due to the complex nature of the regulations, however, there is no guarantee that our interpretations of them are complete or entirely accurate. Preparation of soil samples for radium-226 analysis by means of gamma-ray spectroscopy is described.

  15. Effect of moisture on leaf litter decomposition and its contribution to soil respiration in a temperate forest

    SciTech Connect (OSTI)

    Cisneros-Dozal, Luz Maria; Trumbore, Susan E.; Hanson, Paul J

    2007-01-01

    The degree to which increased soil respiration rates following wetting is caused by plant (autotrophic) versus microbial (heterotrophic) processes, is still largely uninvestigated. Incubation studies suggest microbial processes play a role but it remains unclear whether there is a stimulation of the microbial population as a whole or an increase in the importance of specific substrates that become available with wetting of the soil. We took advantage of an ongoing manipulation of leaf litter 14C contents at the Oak Ridge Reservation, Oak Ridge, Tennessee, to (1) determine the degree to which an increase in soil respiration rates that accompanied wetting of litter and soil, following a short period of drought, could be explained by heterotrophic contributions; and (2) investigate the potential causes of increased heterotrophic respiration in incubated litter and 0-5 cm mineral soil. The contribution of leaf litter decomposition increased from 6 3 mg C m 2 hr 1 during a transient drought, to 63 18 mg C m 2 hr 1 immediately after water addition, corresponding to an increase in the contribution to soil respiration from 5 2% to 37 8%. The increased relative contribution was sufficient to explain all of the observed increase in soil respiration for this one wetting event in the late growing season. Temperature (13 C versus 25 C) and moisture (dry versus field capacity) conditions did not change the relative contributions of different decomposition substrates in incubations, suggesting that more slowly cycling C has at least the same sensitivity to decomposition as faster cycling organic C at the temperature and moisture conditions studied.

  16. Soil washing: A preliminary assessment of its applicability to Hanford

    SciTech Connect (OSTI)

    Gerber, M A; Freeman, H D; Baker, E G; Riemath, W F

    1991-09-01

    Soil washing is being considered for treating soils at the US Department of Energy's (DOE) Hanford Site. As a result of over 50 years of operations to produce plutonium for the US Department of Defense and research for DOE, soils in areas within the Site are contaminated with hazardous wastes and radionuclides. In the soil washing process, contaminated soil is mixed with a liquid and then physically and/or chemically treated to dissolve the contaminants into solution and/or concentrate them in a small fraction of the soil. The purpose of this procedure is to separate the contaminants from the bulk of the soil. The key to successful application is to match the types of contaminants and soil characteristics with physical-chemical methods that perform well under the existing conditions. The applicability of soil washing to Hanford Site contaminated soils must take into account both the characteristics of the oil and the type of contamination. Hanford soils typically contain up to 90% sand, gravel, and cobbles, which generally are favorable characteristics for soil washing. For example, in soil samples from the north pond in the 300 Area, 80% to 90% of the soil particles were larger than 250 {mu}m. The principal contaminants in the soil are radionuclides, heavy metals, and nitrate and sulfate salts. For most of the sites, organic contaminants are either not present or are found in very low concentration. 28 refs., 5 figs., 10 tabs.

  17. MINERALAVATER INTERFACE USING MOLECULAR SCALE TECHNIQUES An understanding of the kinetics and mechanisms of metal sorption on soil minerals and soils is

    E-Print Network [OSTI]

    Sparks, Donald L.

    and mechanisms of metal sorption on soil minerals and soils is fundamental in assessing the speciation, mobility metals (e.g., Co, Ni, Zn) residence time affects the rate of metal release from soil minerals while on soil minerals and soils and speciation of metals in contaminated soils via macroscopic and molecular

  18. Effects of conservation tillage and conventional tillage on selected physical and chemical properties of a Blackland Praire soil in Texas 

    E-Print Network [OSTI]

    Mella, Welhelmus Isak Imanuel

    1991-01-01

    Table 5. EIFect of tillage and location on 33 kPa water content in the Ap horizon (0 to 20-cm depth) of a, Burleson soil after wheat harvest in the fall of 1988. 30 Table 6. Tillage x depth interaction efFect on 33 kPa water content in dif... the period of January 1984 to December 1987 were 22. 4 ~ 10. 2 ' C and 17. 0 + 7. 7 ' C, respectively. From January to August 1988 the maxi- 14 mum and minimum soil temperatures were 23. 2 6 7. 4 C and 16. 8 + 9. 8 ' C (Texas Agricultural Extension...

  19. 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World

    E-Print Network [OSTI]

    Sparks, Donald L.

    of Ni include magmatic sulfide ores and lateritic silicates found in serpentine soils. Anthropogenic Ni, Brisbane, Australia. Published on DVD. 160 Nickel Speciation in Serpentine Soils using Synchrotron Sciences and Delaware Environmental Institute, Newark, DE, USA, mgs@udel.edu Abstract We examined nickel

  20. The accompanying Soil Test Report (and supplemental Soil Test Notes, when provided) will help you assess

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    and Abbreviations P = phosphorus K = potassium Ca = calcium Mg = magnesium Zn = zinc Mn = manganese Cu = copper Fe Specialist, Virginia Tech Steve Heckendorn, Soil Test Laboratory Manager, Virginia Tech Soil Test Note #1 www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences, Virginia Polytechnic

  1. Soil Science Society of America Journal Soil Sci. Soc. Am. J. 76:17071718

    E-Print Network [OSTI]

    Battles, John

    a diamond-tipped cylindrical drill bit powered by a rotary engine (Ponder and Alley, 1997). This type the Suitability of Rotary Coring for Sampling in Rocky Soils Pedology F orest and wildland soils are difficult of corer can cut through large roots and rocks to a depth of 90 cm or more. Sampling by rotary coring

  2. Title: Scientist of Soil Microbiologist Address: P.O. Box 110290, Soil and Water Science Department

    E-Print Network [OSTI]

    Balser, Teri C.

    degradation of methyl bromide in methane-, 2,4-D-, and #12;phenol-treated soils. Bull. Environ. Contam and Bioremediation Research Interests: Degradation and fate of pesticides and other environmentally important organic.G. Hornsby. 1997. Stimulation of microbial degradation of methyl bromide in soil during oxidation

  3. Analytical Modeling of Soil Solution Monitoring by Diffusion in Porous Cups

    E-Print Network [OSTI]

    Shaw, Benjamin D.; Tuli, Atac; Wei, Jing-Bin; Hopmans, Jan W.

    2010-01-01

    I. : In situ soil water extraction: a review. J. Environ.used in situ soil water extraction methods to monitor soilmethods require soil water extraction by suction with

  4. CPT-Based Probabilistic and Deterministic Assessment of In Situ Seismic Soil Liquefaction Potential

    E-Print Network [OSTI]

    Moss, Robb E.S.; Seed, Raymond B; Kayen, Robert E.; Stewart, Jonathan P; Der Kiureghian, Armen

    2006-01-01

    Int. Conf. of Soil Mechanics and Foundation Engineering,Int. Conf. on Soil Mechanics and Foundation Engineering, SanInt. Conf. on Soil Mechanics and Foundation Engineering, Rio

  5. Physical and Chemical Factors Influencing the Transport and Fate of Microorganisms in Soils With Preferential Flow

    E-Print Network [OSTI]

    Wang, Yusong

    2013-01-01

    Modeling transport of microbes in ten undisturbed soilsModeling transport of microbes in ten undisturbed soilsModeling transport of microbes in ten undisturbed soils

  6. Analytical Modeling of Soil Solution Monitoring by Diffusion in Porous Cups

    E-Print Network [OSTI]

    Shaw, Benjamin D.; Tuli, Atac; Wei, Jing-Bin; Hopmans, Jan W.

    2010-01-01

    in situ soil water extraction methods to monitor soil soluteeach of the soil solution extraction methods. An alternativethe diffusion and vacuum extraction methods was conducted by

  7. Suppression of Heterodera schachtii Populations by Dactylella oviparasitica in Four Soils

    E-Print Network [OSTI]

    Olatinwo, R; Becker, J Ole; Borneman, J

    2006-01-01

    R. Keeney, eds. Methods of soil analysis: Part 2. Chemicalresponsible for speci?c soil suppressiveness to plantto nonsuppressive soil produced stable suppressiveness over

  8. Molecular hydrogen uptake by soils in forest, desert, and marsh ecosystems in California

    E-Print Network [OSTI]

    Smith-Downey, Nicole V; Randerson, James T; Eiler, John M

    2008-01-01

    deposition to boreal forest soil in southern Finland,The over- whelming role of soils in the global atmosphericuptake by temperate forest soils: The effects of leaves and

  9. Searching Electronic Databases for Information on Soil Remediation: The Interview and the Bibliography

    E-Print Network [OSTI]

    Jantz, Ronald

    1999-01-01

    contaminated soils with thermal desorption. Journal of thecontaminated soils with thermal desorption. Journal of theeffective: 1) soil washing, 2) thermal desorption, and 3)

  10. Thermionic converter temperature controller

    DOE Patents [OSTI]

    Shaner, Benjamin J. (McMurray, PA); Wolf, Joseph H. (Pittsburgh, PA); Johnson, Robert G. R. (Trafford, PA)

    2001-04-24

    A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

  11. Drexel University Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) Drexel University Project 31091 irradiation. The objective of this test was to assess the radiation performance of new ceramic materials for advanced reactor applications. Accordingly, irradiations of transition metal carbides and nitrides were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in static capsules inserted into the A-3 and East Flux Trap Position 5 locations of the ATR.

  12. Crowdsourcing urban air temperatures from smartphone battery?temperatures

    E-Print Network [OSTI]

    Overeem, A.

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on ...

  13. Heavy metal movement in metal-contaminated soil profiles

    SciTech Connect (OSTI)

    Li, Zhenbin; Shuman, L.M.

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  14. Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils

    DOE Patents [OSTI]

    Lindgren, Eric R. (Albuquerque, NM); Mattson, Earl D. (Albuquerque, NM)

    1995-01-01

    There is presented an electrokinetic electrode assembly for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. There is further presented an electrode system and method for extraction of soil contaminants, the system and method utilizing at least two electrode assemblies as described above.

  15. Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils

    DOE Patents [OSTI]

    Lindgren, E.R.; Mattson, E.D.

    1995-07-25

    An electrokinetic electrode assembly is described for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. An electrode system and method are also revealed for extraction of soil contaminants. The system and method utilize at least two electrode assemblies as described above. 5 figs.

  16. Modelling chemical degradation of concrete during leaching with rain and soil water types

    SciTech Connect (OSTI)

    Jacques, D., E-mail: djacques@sckcen.b [Belgian Nuclear Research Centre (SCK-CEN), Institute for Environment, Health, and Safety, Boeretang 200, B-2400 Mol (Belgium); Wang, L.; Martens, E.; Mallants, D. [Belgian Nuclear Research Centre (SCK-CEN), Institute for Environment, Health, and Safety, Boeretang 200, B-2400 Mol (Belgium)

    2010-08-15

    Percolation of external water through concrete results in the degradation of cement and changes the concrete pore water and solid phase composition. The assessment of long-term degradation of concrete is possible by means of model simulation. This paper describes simulations of chemical degradation of cement for different types of rain and soil water at an ambient earth surface temperature (10 {sup o}C). Rain and soil water types were derived using generic equations and measurement of atmospheric boundary conditions representative for North-Belgium. An up-to-date and consistent thermodynamic model is used to calculate the geochemical changes during chemical degradation of the concrete. A general pattern of four degradation stages was simulated with the third stage being the geochemically most complex stage involving reactions with calcium-silicate hydrates, AFm and AFt phases. Whereas the sequence of the dissolution reactions was relatively insensitive to the composition of the percolating water, the duration of the different reactions depends strongly on the percolating water composition. Major identified factors influencing the velocity of cement degradation are the effect of dry deposition and biological activity increasing the partial pressure of CO{sub 2(g)} in the soil air phase (and thus increasing the inorganic carbon content in the percolating water). Soil weathering processes have only a minor impact, at least for the relatively inert sandy material considered in this study.

  17. A study of cellulose gasification in a fluidized bed using a high-temperature solar furnace

    SciTech Connect (OSTI)

    Murray, J.P.

    1989-01-01

    A 4.2-meter solar furnace was used to study the gasification of cellulose with steam in a fluidized bed. The heating value of the high-temperature equilibrium products is about twenty percent higher than that of the reactants. The increase represents stored solar energy; and the product, synthesis gas, is valuable as a chemical feedstock or pipeline gas. All experiments were performed at atmospheric pressure. Pure tabular alumina as well as crushed automotive exhaust was used as a bed material. Microcrystalline {alpha}-cellulose, entrained in argon, entered the fluidized bed just above the distributor. Steam heated to the operating temperature in a 10 cm packed bed section below the fluidized bed. In all cases, the process ran with more steam than required to produce an equimolar mixture of carbon monoxide and hydrogen. We used a quartz reactor between 1100 and 1430 K; a steel reactor at 1500 K and an Inconel reactor at 1600 K. Reactor inside diameter, nominally 5 cm, varied slightly; the bed height was adjusted to keep the gas residence time constant. Hydrogen production rate was measured before and after experiments with steam alone, with this amount subtracted. Equilibrium mixtures were not achieved. Catalysts improved hydrogen yields with higher than expected concentrations of carbon monoxide, methane and lighter hydrocarbons such as ethylene and acetylene. Experiments performed without catalyst at 1300 K, achieved a mixture (dry, argon-free) of 46 mole% CO, 30% H{sub 2} 14% CH{sub 4} 5% CO{sub 2} and 5% C{sub 2}H{sub 4}. An equilibrium mixture at this temperature would have contained 39% CO, 30% H{sub 2} 7% CO{sub 2} and no CH{sub 4} or C{sub 2}H{sub 4}. With the catalyst, the CO and CH{sub 4} decreased to 40% and 2% respectively, the H{sub 2} increased to 47%, and CO{sub 2} remained the same. No ethylene was formed. The hydrocarbon-rich mixtures achieved are typical of rapid-pyrolysis processes.

  18. Availability of Potash in Some Soil-Forming Minerals 

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1921-01-01

    AVAILABILITY OF POTASH IN SOME SOIL-FORMING MINERALS . knowledge of the availability of potash in minerals which occur in ,,,, soil is important to soil chemistry. It aids in the interpretation of the analysis of the soil and in judging methods of analysis.... McCaughey and Fry (Bulletin 91 of the Bureau of Soils, U. S. De- partment of Agriculture) have found that four primary minerals in tht soil are the chief carriers of potash. These are biotite, muscovite, ortho- clase, and microcline. Potash may...

  19. High-temperature-measuring device

    DOE Patents [OSTI]

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  20. Philosophy 26 High Temperature Superconductivity

    E-Print Network [OSTI]

    Callender, Craig

    Philosophy 26 High Temperature Superconductivity By Ohm's Law, resistance will dim. Low temperature superconductivity was discovered in 1911 by Heike was explained by BCS theory. BCS theory explains superconductivity microscopically

  1. Recovery of Depleted Uranium Fragments from Soil

    SciTech Connect (OSTI)

    Farr, C.P.; Alecksen, T.J.; Heronimus, R.S.; Simonds, M.H.; Farrar, D.R.; Baker, K.R. [Environmental Restoration Group, Inc., Washington St. NE, Albuquerque, NM (United States); Miller, M.L. [Sandia National Laboratories, Albuquerque, NM (United States)

    2008-07-01

    A cost-effective method was demonstrated for recovering depleted uranium (DU) fragments from soil. A compacted clean soil pad was prepared adjacent to a pile of soil containing DU fragments. Soil from the contaminated pile was placed on the pad in three-inch lifts using conventional construction equipment. Each lift was scanned with an automatic scanning system consisting of an array of radiation detectors coupled to a detector positioning system. The data were downloaded into ArcGIS for data presentation. Areas of the pad exhibiting scaler counts above the decision level were identified as likely locations of DU fragments. The coordinates of these locations were downloaded into a PDA that was wirelessly connected to the positioning system. The PDA guided technicians to the locations where hand-held trowels and shovels were used to remove the fragments. After DU removal, the affected areas were re-scanned and the new data patched into the data base to replace the original data. This new data set along with soil sample results served as final status survey data. (authors)

  2. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  3. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  4. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  5. Seasonality of soil CO2 efflux in a temperate forest: Biophysical effects of snowpack and spring freeze–thaw cycles

    SciTech Connect (OSTI)

    Wang, Chuankuan; Han, Yi; Chen, Jiquan; Wang, Xingchang; Zhang, Quanzhi; Bond-Lamberty, Benjamin

    2013-08-15

    Changes in characteristics of snowfall and spring freeze–thaw-cycle (FTC) events under the warming climate make it critical to understand biophysical controls on soil CO2 efflux (RS) in seasonally snow-covered ecosystems. We conducted a snow removal experiment and took year-round continuous automated measurements of RS, soil temperature (T5) and soil volumetric water content at the 5 cm depth (W5) with a half-hour interval in a Chinese temperate forest in 2010–2011. Our objectives were to: (1) develop statistical models to describe the seasonality of RS in this forest; (2) quantify the contribution of seasonal RS to the annual budget; (3) examine biophysical effects of snowpack on RS; and (4) test the hypothesis that an FTC-induced enhancement of RS is jointly driven by biological and physical processes.

  6. Effect of soil temperature on resistance of rice to seedling blight caused by Sclerotium rolfsii Sacc 

    E-Print Network [OSTI]

    Weerapat, Praphas

    1964-01-01

    I":". . -"';-'. , ;::::, RP9?C2 '|GZ - GGt'W "ZR%Zh&'~I'Tgfi *" zo?: 3~Gh'&IPWI|tG! Eh QZ 'BXCAK. - TQ '-, ';: ?' ! ', -':;, i", , ;. :;?-i;'!:G :. BGGZZIIG BBIZGGG, ':G"G", Kl'GZ' h il 'ZZZIIGXIIXGLGZGBZZ;::"BGG. ''::, . :":G ';"', . '?'i... . ". -", "!4&, ";;. . "-TQj:. :. W$4'j@"+hg4ja, " gp, . '. ~@@i"-W? i:RICO, ". "keX5 q -4X'q '. "' ~= ', , '- -', '-' ", . ' ' '-, , . ?' Sxe ?-:. yx4tib&"-Mph'ig. . :t0. :-py$e'gi&Xg' 4hagpk- 'Qg ' . "; P...

  7. Impact of vegetation removal and soil aridation on diurnal temperature range in a semiarid

    E-Print Network [OSTI]

    Zhou, Liming

    surface emissivity longwave radiation sensitivity test surface energy balance The global mean land surface). Changes in DTR can result from a number of mechanisms, all connected to the surface energy balance with more rainfall and better human management. Other mechanisms with similar effects on surface energy

  8. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models

    E-Print Network [OSTI]

    Allison, Steven D.

    , accounting for the response of microbial communities to environmental parameters in Earth system models may

  9. Distribution of Soil Temperature Regimes and Climate Change in the Mojave Desert Region

    E-Print Network [OSTI]

    Bai, Yanying

    2009-01-01

    W.Kingman Ariz. E.Yucca Ariz. Alamo Rd Ariz. N F S N S N S SW.Kingman Ariz. E.Yucca Ariz. Alamo Rd Ariz. Longitude ( o )

  10. Low-Temperature Soil Heating Using Renewable Energy Anthony J. Rossman1

    E-Print Network [OSTI]

    Vermont, University of

    was harvested with a hybrid photovoltaic/wind electric system. The electrical energy generated by the hybrid with a lower potential environmental impact than traditional strategies and can be cost effective at sites contaminant volatility, diffusion, desorption, and microbiological activity. Direct and indirect solar energy

  11. Distribution of Soil Temperature Regimes and Climate Change in the Mojave Desert Region

    E-Print Network [OSTI]

    Bai, Yanying

    2009-01-01

    and H. Diaz (eds). El Niño and the Southern Oscillation:and D. Parker. 1996. El Niño Southern Oscillation and285 Bowers, J. E. 2005. El Nino and displays of spring-

  12. Chemotactic selection of pollutant degrading soil bacteria

    DOE Patents [OSTI]

    Hazen, T.C.

    1991-03-04

    A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  13. CONTRIBUTION TO THE KNOWLEDGE OF SOIL ALGAE OF TWO ABANDONED INDUSTRIAL

    E-Print Network [OSTI]

    CONTRIBUTION TO THE KNOWLEDGE OF SOIL ALGAE OF TWO ABANDONED INDUSTRIAL SEDIMENTATION BASINS Sixty three species of soil algae and Cyanoprocaryota were recovered from eight investigated sites sites in Chvaletice suggests soil toxicity of these biotopes. Keywords Soil algae, Chlorophyta

  14. Soil Testing Following Flooding, Overland Flow of Wastewater and other Freshwater Disasters 

    E-Print Network [OSTI]

    Provin, Tony; Feagley, Sam E.; Pitt, John L.; McFarland, Mark L.

    2009-05-26

    Freshwater flooding can seriously affect soil fertility and the physical and chemical properties of soil. This publication explains how to reclaim flooded soil. Having the soil tested for microbes, pesticides, hydrocarbons and other contaminants...

  15. Soil Biology & Biochemistry 38 (2006) 16081614 Endogeic earthworms differentially influence bacterial communities

    E-Print Network [OSTI]

    Rilli, Matthias C.

    2006-01-01

    Soil Biology & Biochemistry 38 (2006) 1608­1614 Endogeic earthworms differentially influence bacterial communities associated with different soil aggregate size fractions Daniel L. Mummeya,Ã, Matthias influence soil structure. Although soil microorganisms are thought to be central to earthworm

  16. Soil community composition and ecosystem processes Comparing agricultural ecosystems with natural ecosystems

    E-Print Network [OSTI]

    Neher, Deborah A.

    Soil community composition and ecosystem processes Comparing agricultural ecosystems with natural, nitrogen, pesticides Abstract. Soil organisms play principal roles in several ecosystem functions, i decomposition, and acting as an environmental buffer. Agricultural soils would more closely resemble soils

  17. SOIL MOISTURE RETENTION CHARACTERISTICS AND HYDRAULIC CONDUCTIVITY FOR DIFFERENT AREAS IN INDIA IN SELECTED STATES

    E-Print Network [OSTI]

    Kumar, C.P.

    SOIL MOISTURE RETENTION CHARACTERISTICS AND HYDRAULIC CONDUCTIVITY FOR DIFFERENT AREAS IN INDIA systems require knowledge of the relationships between soil moisture content (), soil water pressure (h) and unsaturated hydraulic conductivity (K). This study involved field and laboratory determination of soil

  18. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    Insects t .BOZJOTFDUTMJWFJOPSPOUIFTPJMBTMBSWBFPSBEVMUTBOEUIVTöMMNBOZGVODUJPOBM roles in the soil food

  19. In situ removal of contamination from soil

    DOE Patents [OSTI]

    Lindgren, Eric R. (Albuquerque, NM); Brady, Patrick V. (Albuquerque, NM)

    1997-01-01

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination, and further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed.

  20. In situ removal of contamination from soil

    DOE Patents [OSTI]

    Lindgren, E.R.; Brady, P.V.

    1997-10-14

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination. The process also uses further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed. 5 figs.

  1. Soil Moisture Sensor - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience of SignaturesSoft CostsSoil &Soil Find

  2. Quantum Chemistry at Finite Temperature

    E-Print Network [OSTI]

    Liqiang Wei

    2006-05-23

    In this article, we present emerging fields of quantum chemistry at finite temperature. We discuss its recent developments on both experimental and theoretical fronts. First, we describe several experimental investigations related to the temperature effects on the structures, electronic spectra, or bond rupture forces for molecules. These include the analysis of the temperature impact on the pathway shifts for the protein unfolding by atomic force microscopy (AFM), the temperature dependence of the absorption spectra of electrons in solvents, and the temperature influence over the intermolecular forces measured by the AFM. On the theoretical side, we review advancements made by the author in the coming fields of quantum chemistry at finite temperature. Starting from the Bloch equation, we have derived the sets of hierarchy equations for the reduced density operators in both canonical and grand canonical ensembles. They provide a law according to which the reduced density operators vary in temperature for the identical and interacting many-body systems. By taking the independent particle approximation, we have solved the equations in the case of a grand canonical ensemble, and obtained an energy eigenequation for the molecular orbitals at finite temperature. The explicit expression for the temperature-dependent Fock operator is also given. They form a mathematical foundation for the examination of the molecular electronic structures and their interplay with finite temperature. Moreover, we clarify the physics concerning the temperature effects on the electronic structures or processes of the molecules, which is crucial for both theoretical understanding and computation. Finally, ....

  3. Scaling hydraulic properties of a macroporous soil Binayak P. Mohanty

    E-Print Network [OSTI]

    Mohanty, Binayak P.

    Scaling hydraulic properties of a macroporous soil Binayak P. Mohanty U.S. Salinity Laboratory, Riverside, California Abstract. Macroporous soils exhibit significant differences in their hydraulic properties for different pore domains. Multimodal hydraulic functions may be used to describe

  4. Soil microbes drive the classic plant diversity­ productivity pattern

    E-Print Network [OSTI]

    Schnitzer, Stefan A.; Klironomos, John N.; HilleRisLambers, Jannek; Kinkel, Linda L.; Reich, Peter B.; Xiao, Kun; Rillig, Matthias C.; Sikes, Benjamin A.; Callaway, Ragan M.; Mangan, Scott A.; van Nes, Egbert H.; Scheffer, Marten

    2011-02-01

    and empirically that host-specific soil microbes can be major determinants of the diversity–productivity relationship in grasslands. In the presence of soil microbes, plant disease decreased with increasing diversity, and productivity increased nearly 500...

  5. A baseline characterization of trace elements in Texas soils 

    E-Print Network [OSTI]

    Frybarger, Mary Rita

    1998-01-01

    background concentrations of elements in soils for sewage sludge application. Elements in the study soils were well below USEPA limits. When compared to the median concentration of elements on a worldwide basis, all except Co, As, and Se were found...

  6. Soil strength from geophysical measurements for soft clays

    E-Print Network [OSTI]

    Murali, Madhuri; Biscontin, Giovanna; Aubeny, Charles

    2015-01-01

    Knowledge of seabed soils is essential if offshore and nearshore structures are to be safely designed and properly built. A large part of the commercial and operational risk involved relates to uncertainties about the soil properties at the site...

  7. Biochar amendment and greenhouse gas emissions from agricultural soils 

    E-Print Network [OSTI]

    Case, Sean Daniel Charles

    2013-11-28

    The aim of this study was to investigate the effects of biochar amendment on soil greenhouse gas (GHG) emissions and to elucidate the mechanisms behind these effects. I investigated the suppression of soil carbon dioxide ...

  8. Testing Your Soil: How to Collect and Send Samples 

    E-Print Network [OSTI]

    Provin, Tony; Pitt, John L.

    2002-06-26

    Soil tests can be used to estimate the kinds and amounts of soil nutrients available to plants and as aids in determining fertilizer needs. This publication covers the three-step procedure for obtaining sample bags and instructions, collecting...

  9. Changes in soil carbon and nitrogen associated with switchgrass production 

    E-Print Network [OSTI]

    Lobo Alonzo, Porfirio Jose

    2004-11-15

    Greater knowledge of the short- and long-term effects of biomass production practices on soil biological and chemical properties is needed to determine influences on sustainable land management. Soil samples under switchgrass (Panicum virgatum L...

  10. Onsite Wastewater Treatment Systems: Septic Tank/Soil Absorption Field 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23

    For septic tank and soil absorption systems to work properly, homeowners must choose the right kind of system for their household size and soil type, and they must maintain them regularly. This publication explains the treatment, design, operation...

  11. Soil and Water Assessment Tool Theoretical Documentation Version 2009 

    E-Print Network [OSTI]

    Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R.

    2011-01-01

    Documentation.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Theoretical Documentation Version 2009 Soil & Water Assessment Tool TR-406 COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-406 2011 Soil and Water Assessment Tool...

  12. Earth pressures and deformations in civil infrastructure in expansive soils 

    E-Print Network [OSTI]

    Hong, Gyeong Taek

    2008-10-10

    . The volume change model in expansive clay has been refined to reinforce realistic characteristics of swelling and shrinkage behavior of expansive clay soils. Refinements include more realistic design soil suction versus depth profiles and improved...

  13. Soil moisture modeling and scaling using passive microwave remote sensing 

    E-Print Network [OSTI]

    Das, Narendra N.

    2007-04-25

    Soil moisture in the shallow subsurface is a primary hydrologic state governing land-atmosphere interaction at various scales. The primary objectives of this study are to model soil moisture in the root zone in a distributed ...

  14. Active cooling-based surface confinement system for thermal soil treatment

    DOE Patents [OSTI]

    Aines, R.D.; Newmark, R.L.

    1997-10-28

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.

  15. Active cooling-based surface confinement system for thermal soil treatment

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Pleasanton, CA)

    1997-01-01

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.

  16. Method for recovery of hydrocarbons form contaminated soil or refuse materials

    DOE Patents [OSTI]

    Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Turak, Ali A. (3125 - 109 Street, Edmonton, Alberta, CA); Pawlak, Wanda (407 Saddleback Road, #203, Edmonton, Alberta, CA); Ignasiak, Boleslaw L. (10967 34 A Avenue, Edmonton, Alberta, CA); Guerra, Carlos R. (6050 Boulevard E., West New York, NJ 07093); Zwillenberg, Melvin L. (475 Richmond Ave., Maplewood, NJ 07040)

    1991-01-01

    A method is provided for separating an inert solid substantially inorganic fraction comprising sand or soil from a tarry or oily organic matter in a feedstock. The feedstock may be contaminated soil or tarry waste. The feedstock is combined with pulverized coal and water. The ratio (oil or tar to dry weight of coal) of about 1.0:10 to about 4.0:10 at a temperature in the range of 60.degree.-95.degree. C. The mixture is agitated, the coarse particles are removed, and up to about 0.10% by weight (based on weight of coal) of a frothing agent is added. The mixture is then subjected to flotation, and the froth is removed from the mixture.

  17. Evaluating the impact of urban morphology configurations on the accuracy of urban canopy model temperature simulations with MODIS

    E-Print Network [OSTI]

    Monaghan, Andrew J.; Hu, Leiqiu; Brunsell, Nathaniel A.; Barlage, Michael; Wilhelmi, Olga V.

    2014-06-09

    –2012, preceded by a 1 year (2002) “spin-up” period to allow the soil temperature and moisture states to equilibrate. The upper boundary conditions for HRLDAS are derived from one-eighth degree hourly meteorological data from the North American Land Data...

  18. Land surface skin temperatures from a combined analysis of microwave and infrared satellite observations for an all-weather

    E-Print Network [OSTI]

    Aires, Filipe

    Land surface skin temperatures from a combined analysis of microwave and infrared satellite Microwave/Imager (SSM/I) and International Satellite Cloud Climatology Project (ISCCP) data. In the absence all the expected variations with solar flux, soil characteristics, and cloudiness. During daytime

  19. Soil organic matter distribution and microaggregate characteristics as affected by agricultural management and earthworm activity

    E-Print Network [OSTI]

    Pulleman, M M; Six, J; van Breemen, N; Jongmans, A G

    2005-01-01

    and arable soil: a study using pyrolysis techniques. Soilsame soils by Nierop et al. (2001). Using pyrolysis GC/MS,

  20. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis

    E-Print Network [OSTI]

    2010-01-01

    phosphated calcite and goethite, Plant Soil, 211, 111–polygalacturonate-coated Goethite, Soil Sci. Soc. Am. J. ,

  1. Manganese in Texas Soils and its Relation to Crops. 

    E-Print Network [OSTI]

    Carlyle, E. C. (Elmer Cardinal)

    1931-01-01

    to applications of manganese sulfate. Twenty-one Texas soils have been tested for their response to manganese sulfate by means of pot experiments. No marked increase in the growth of crops was produced by manganese sulfate. On six of the soils manganese... of Procecture 9 .............................. Ifethod for Pot Experiments 10 Determination of ISlanganese in Crops ...................... 10 T)etermination of Acid-soluble 3langanese in Soil ............ 10 Determination of Total Illlanganese in Soil...

  2. Organic Matter Content of Soil After Logging of Fir

    E-Print Network [OSTI]

    .) and assorted minor species. The sampling sites are in silt or clay loams of the Tish Tang or Strawberry soil

  3. Strategic Soil Management for Rainfed Agriculture in West Africa 

    E-Print Network [OSTI]

    Pitts, Lauren Kyla R.

    2015-08-12

    and Entisols are the most abundant soils in SSA, particularly in West Africa. These soils tend to have low inherent fertility due to natural properties rather than by virtue of nutrient mining or other anthropogenic degradation of fertility. Such natural... properties could include age of soils, weathering, and parent material. The soils of interest in this study are considered Alfisols by U.S. Taxonomy. Major constraints of Alfisols include low water holding capacity, poor nutrient reserves, low cation...

  4. SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA OSURR Section 4

    E-Print Network [OSTI]

    25 6 4 11 25 41 72 25 74 49 74 11 51 4926 26 74 26 26 26 SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA OSURR Section 4 0 400 800 1,200 1,600200 Feet 0 100 20050 Meters Web Soil Survey 1.1 National Cooperative Soil Survey 5/7/2007 Page 1 of 3 #12;MAP INFORMATION SOIL SURVEY OF PAYNE COUNTY, OKLAHOMA OSURR Section 4

  5. REGULAR ARTICLE Responses of Pinus halepensis growth, soil microbial

    E-Print Network [OSTI]

    Thioulouse, Jean

    and desertification processes result- ing in a loss or reduction of major physico-chemical and biological soil

  6. Leachability of salmonella and fecal pollution indicator bacteria through soil 

    E-Print Network [OSTI]

    Fehrmann, Robert Clinton

    1977-01-01

    of Department (Member) / /. ' Member) August 1977 74M3- ABSTRACT Leachability of Salmonella and Fecal Pollution Indicator Bacteria through Soil. (August 1977) Robert Clinton Fehrmann, B. S. , Texas AM University Chairman of Advisory Committee: Dr... microorganisms to be leached through soil, columns :ere filled with different soils and inoculs. ted with suspensions of fecal bacteria. Dif er ences in bacterial movement within a particular sni I, and bacterial movement between different types of soils...

  7. High temperature interfacial superconductivity

    DOE Patents [OSTI]

    Bozovic, Ivan (Mount Sinai, NY); Logvenov, Gennady (Port Jefferson Station, NY); Gozar, Adrian Mihai (Port Jefferson, NY)

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  8. An investigation into the reactions of biochar in soil S. D. JosephA,K

    E-Print Network [OSTI]

    Lehmann, Johannes

    charge, pyrolysis, redox, soil amendment, soil carbon, carbon sequestration, soil organic matter, biochar-soilAn investigation into the reactions of biochar in soil S. D. JosephA,K , M. Camps-ArbestainB , Y, Australia. G Department of Crop and Soil Sciences, College of Agriculture and Life Sciences, Cornell

  9. The assessment of greenhouse gas emissions from soils requires an accurate knowledge on the fate of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    that NIRS can help to take up. Keywords NIRS; soil organic matter pools; soil carbon sequestration; soil on the fate of carbon (C) and nitrogen (N) in soils. This know- ledge shouldn't be limited to C and N stocks on carbon stocks (CS) in soils at a global scale. Increasing carbon stocks in soils is possible through

  10. Unsaturated soil behavior under monotonic and cyclic stress states 

    E-Print Network [OSTI]

    Mun, Byoung-Jae

    2005-02-17

    with experimental results. The critical state model for unsaturated soil is used to calculate cone tip resistance in unsaturated silty sand. The calculated cone tip resistance is used to evaluate the liquefaction potential of unsaturated soils. The results from... the stress based liquefaction potential analysis reveal that even in an unsaturated condition soil is susceptible to liquefaction...

  11. Australian climatecarbon cycle feedback reduced by soil black carbon

    E-Print Network [OSTI]

    Lehmann, Johannes

    Annual emissions of carbon dioxide from soil organic carbon are an order of magnitude greater than all anthropogenic carbon dioxide emissions taken together1 . Global warming is likely to increase the decomposition of soil organic carbon, and thus the release of carbon dioxide from soils2­5 , creating a positive

  12. 1 INTRODUCTION Geosynthetic inclusions within a soil mass can pro-

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    the model in a geotech- nical centrifuge (Zornberg et al., 1998). The use of inclusions to improve Fall Conference 2008 / November 21, 2008 / Seoul / Korea Advances in Soil Reinforcement Technology of conventional reinforced soil applications, this paper focuses on recent advances in reinforced soil technology

  13. MICROWAVE PROCESSING OF LUNAR SOIL Lawrence A. Taylor1

    E-Print Network [OSTI]

    Taylor, Lawrence A.

    MICROWAVE PROCESSING OF LUNAR SOIL Lawrence A. Taylor1 and Thomas T. Meek2 The unique properties of lunar regolith make for the extreme coupling of the soil to microwave radiation. Space weathering lunar soil (i.e., 1200-1500 o C) in minutes in a normal kitchen-type 2.45 GHz microwave, almost as fast

  14. In-Situ Thermal Remediation of Contaminated Soil1

    E-Print Network [OSTI]

    Lapin, Sergey

    Chapter 1 In-Situ Thermal Remediation of Contaminated Soil1 Written by Huaxiong Huang,2 Serguei Lapin and Rex Westbrook 1.1 Background Recently, a method for removing contaminants from soil (several as follows. Over a period of several weeks, electrical energy is introduced to the contaminated soil using

  15. Soil erosion and agricultural sustainability David R. Montgomery*

    E-Print Network [OSTI]

    Montgomery, David R.

    Soil erosion and agricultural sustainability David R. Montgomery* Department of Earth and Space conventionally plowed agricultural fields average 1­2 orders of magnitude greater than rates of soil production indicates that, considered globally, hill- slope soil production and erosion evolve to balance geologic

  16. Archaeorhizomycetes: Patterns of Distribution and Abundance in Soil

    E-Print Network [OSTI]

    Taylor, Lee

    Chapter 14 Archaeorhizomycetes: Patterns of Distribution and Abundance in Soil Anna Rosling, Ina lineages of soil fungi, and its formal description adds a prominent branch to the Taphrinomycotina among the basal Ascomycota (Rosling et al. 2011). Fungi in the class are strongly associated with soil

  17. SOIL MICROBIOLOGY Resource Amendments Influence Density and Competitive

    E-Print Network [OSTI]

    Thomas, David D.

    SOIL MICROBIOLOGY Resource Amendments Influence Density and Competitive Phenotypes of Streptomyces in Soil Daniel Schlatter & Alfred Fubuh & Kun Xiao & Dan Hernandez & Sarah Hobbie & Linda Kinkel Received Media, LLC 2008 Abstract Carbon from plant rhizospheres is a source of energy for soil microbial

  18. Soil sampling kit and a method of sampling therewith

    DOE Patents [OSTI]

    Thompson, Cyril V. (Knoxville, TN)

    1991-01-01

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.

  19. Soil sampling kit and a method of sampling therewith

    DOE Patents [OSTI]

    Thompson, C.V.

    1991-02-05

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

  20. PERFORMANCE OF GEOTEXTILE-REINFORCED SOIL STRUCTURES Jorge Gabriel Zomberg

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    PERFORMANCE OF GEOTEXTILE-REINFORCED SOIL STRUCTURES by Jorge Gabriel Zomberg B.S. (UniversidadJ.i.LChair. University of California at Berkeley 1994 #12;Performance Geotextile-Reinforced Soil Structures Copyright © 1994 by Jorge Gabriel Zornberg #12;1 Abstract Performance of geotextile-reinforced soil structures

  1. Soil Biochar Quantification via Hyperspectral Unmixing Chengyuan Xu3

    E-Print Network [OSTI]

    Zhou, Jun

    Soil Biochar Quantification via Hyperspectral Unmixing Lei Tong1 Jun Zhou2 Chengyuan Xu3 Yuntao, P. R. China Abstract Biochar has unique function to improve soil chemo- physical and biological properties for crop growth. Be- cause changes of biochar in soil may affect its long-term effectiveness

  2. Tuesday, November 6, 2007 Arsenic Status in Delaware Soils.

    E-Print Network [OSTI]

    Sparks, Donald L.

    Tuesday, November 6, 2007 186-4 Arsenic Status in Delaware Soils. Jennifer Seiter, University of Delaware, 531 South College Ave, Rm 152, Department of Plant & Soil Sciences, Newark, DE 19717 & Soil Sciences, Newark, DE 19717-1303. The Delmarva Peninsula is one of the most concentrated poultry

  3. Conditions for Suffosive Erosion Phemomena in Soils Concept and Approach

    E-Print Network [OSTI]

    Prohaska, Steffen

    Conditions for Suffosive Erosion Phemomena in Soils ­ Concept and Approach ­ Olivier Semar1-CT analysis of soil specimen, and percolation theory. The goal of this interdisciplinary approach in subsurface. One kind of such particle displacement is the internal erosion. Internal erosion of soil

  4. Nematode Communities in Organically and Conventionally Managed Agricultural Soils1

    E-Print Network [OSTI]

    Neher, Deborah A.

    Nematode Communities in Organically and Conventionally Managed Agricultural Soils1 Deborah A. Neher organically and conventionally managed soils in the Piedmont region of North Carolina. Available nitrogen availability. Soils were sampled six times yearly in 1993 and 1994 to determine the best time of year to sample

  5. Predicting Nickel Precipitate Formation in Contaminated Soils. (3717)

    E-Print Network [OSTI]

    Sparks, Donald L.

    Predicting Nickel Precipitate Formation in Contaminated Soils. (3717) Authors: E. Peltier* - Univ in contaminated soils plays a crucial role in determining the long term fate of toxic metal pollutants speciation in laboratory contaminated soils with thermodynamic and kinetic analyses of precipitate stability

  6. Evaluation of Environmental Quality and Evolution in Urban Soils of

    E-Print Network [OSTI]

    Report on Evaluation of Environmental Quality and Evolution in Urban Soils of Qingdao City Y. Cai and Evolution in Urban Soils of Qingdao City ­ p. 0/2 #12;1. Problems Report on Evaluation of Environmental Quality and Evolution in Urban Soils of Qingdao City ­ p. 1/2 #12;1. Problems What we know about

  7. Willie Harris Address: Soil and Water Science Department

    E-Print Network [OSTI]

    Balser, Teri C.

    .G. Harris. 1994. Quantitative thermal analysis of soil minerals. p. 360-411. In J. Ammonette and L. In M. Sumner (ed.) Handbook of soil science. Rhue, R.D., and Harris, W.G. 1999. Phosphorus sorption/desorption1 Willie Harris Address: Soil and Water Science Department 2169 McCarty Hall University of Florida

  8. Unsaturated hydraulic conductivity function based on a soil fragmentation process

    E-Print Network [OSTI]

    Tartakovsky, Daniel M.

    , s, and Residual, r, Water Contents Used in our Analysisa Soil Type Catalog Number s, m3 /m3 r, m3 /m Department of Environmental Physics, Institute of Soil, Water and Environmental Sciences, Volcani Center. This assumption allows us to derive hydraulic properties of soils (water retention curves and unsaturated

  9. UNCORRECTED 2 Reduced raindrop-impact driven soil erosion

    E-Print Network [OSTI]

    Walter, M.Todd

    study were to 29see if infiltration influences soil erosion due to raindrop- 0022-1694/$ - see frontUNCORRECTED PROOF 2 Reduced raindrop-impact driven soil erosion 3 by infiltration 4 Jeffrey D transport; Infiltration; Shield formation; soil erosion; Rainfall impact; Deposition Summary We used

  10. Enhancing the soil organic matter pool through biomass incorporation.

    SciTech Connect (OSTI)

    Felipe G. Sanchez; Emily A. Carter; John F. Klepac

    2003-01-01

    A study was installed in the upper Coastal Plains of South Carolina, USA that sought to examine the impact of incorporating downed slash materials into subsoil layers on soil chemical and physical properties as compared with the effect of slash materials left on the soil surface. Two sites were examined which differed in soil textural composition: sandy vs. clay.

  11. Department of Soil and Crop Sciences Promotion and Tenure Policy

    E-Print Network [OSTI]

    Bermúdez, José Luis

    Department of Soil and Crop Sciences Promotion and Tenure Policy Adopted by Action of the Soil & Crop Sciences Faculty on June 21, 1993. Modified by departmental action in January 2012. INTRODUCTION The Soil & Crop Sciences Department at Texas A&M University seeks to retain and reward faculty members who

  12. Agricultural Soil Carbon Sequestration: Economic Issues and Research Needs

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Agricultural Soil Carbon Sequestration: Economic Issues and Research Needs Draft paper Bruce A Mc............................................................................................................. 5 2 Why Consider Promoting Agricultural Soil Carbon Sequestration?...................... 6 2 Agricultural Soil Carbon Sequestration....... 11 3.1 What is the cost of GHGE offsets arising from large

  13. Activated Peroxygens for Remediation of Contaminated Soil and Groundwater

    E-Print Network [OSTI]

    Hansen, René Rydhof

    i Activated Peroxygens for Remediation of Contaminated Soil and Groundwater Ph.D. thesis Submitted May 2011 #12;ii Activated Peroxygens for Remediation of Contaminated Soil and Groundwater Ph.D. thesis peroxygens for remediation of contaminated soil and groundwater" along with 5 papers describing part

  14. Errors in determination of soil water content using time-domain reflectometry caused by soil compaction around wave guides

    E-Print Network [OSTI]

    Ghezzehei, T.A.

    2008-01-01

    soil bulk density and the water retention curve, Vadose ZoneA. Bruand, A conceptual model of the soil water retentioncurve, Water Resources Research, 34 (2), 223–231, 1998.

  15. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect (OSTI)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  16. Sidewall tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    2001-01-01

    A sidewall tensiometer to in situ determine below-grade soil moisture potential of earthen soil includes, a) a body adapted for insertion into an opening in earthen soil below grade, the body having lateral sidewalls; b) a laterally oriented porous material provided relative to the body lateral sidewalls, the laterally oriented porous material at least in part defining a fluid chamber within the body; c) a pressure a sensor in fluid communication with the fluid chamber; and d) sidewall engaging means for engaging a portion of a sidewall of an earth opening to laterally urge the porous material into hydraulic communication with earthen soil of another portion of the opening sidewall. Methods of taking tensiometric measurements are also disclosed.

  17. Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils

    E-Print Network [OSTI]

    Jougnot, Damien; Revil, A; Doussan, Claude; 10.2136/vzj2011.0086

    2012-01-01

    Water movement in unsaturated soils gives rise to measurable electrical potential differences that are related to the flow direction and volumetric fluxes, as well as to the soil properties themselves. Laboratory and field data suggest that these so-called streaming potentials may be several orders of magnitudes larger than theoretical predictions that only consider the influence of the relative permeability and electrical conductivity on the self potential (SP) data. Recent work has partly improved predictions by considering how the volumetric excess charge in the pore space scales with the inverse of water saturation. We present a new theoretical approach that uses the flux-averaged excess charge, not the volumetric excess charge, to predict streaming potentials. We present relationships for how this effective excess charge varies with water saturation for typical soil properties using either the water retention or the relative permeability function. We find large differences between soil types and the pred...

  18. Potassium in Atlantic Coastal Plain Soils: I. Soil Characterization and Distribution of Potassium

    E-Print Network [OSTI]

    Sparks, Donald L.

    ). Potassium can react with Al-hydrox- ides and acid calcium phosphate solutions to form taranakite (Taylor et al., 1963). In addition, K could be coprecipitated with Al and sulfate to form alunite in acid soils

  19. Irrigation and Management of Texas Soils

    E-Print Network [OSTI]

    Box, John; Bennett, William F.

    1959-01-01

    are of two types - those pro- viding soluble calcium such as gypsum, and acid or acid-forming amendments such as sul- fur, sulfuric acid, iron sulfate and aluminium sulfate. Application of limestone may be valu- able as a source of calcium on acid soils...

  20. Pullman Soils: Distribution, Importance, Variability, and Management. 

    E-Print Network [OSTI]

    Unger, Paul W.; Pringle, Fred B

    1981-01-01

    are presented in Table 3, but they were obtained at cities that are riot on Pullman soils and that are at the lower elevations of the Rolling Plains. Also listed in Table 3 are the average length and *kites of the frost-free period, aver- age daily...