National Library of Energy BETA

Sample records for 1a main heating

  1. Optimizing PT Arun LNG main heat exchanger

    SciTech Connect (OSTI)

    Irawan, B.

    1995-12-01

    The capacity of a LNG liquefaction unit has been increased by upgrading the refrigeration system, without making changes to the main heat exchanger (MHE). It is interesting, that after all modifications were completed, a higher refrigerant circulation alone could not increase LNG production. However, by optimizing the refrigerant component ratio, the UA of the MHE increased and LNG production improved. This technical evaluation will provide recommendations and show how the evaluation of the internal temperature profile helped optimize the MHE operating conditions.

  2. Fig.1a. Schematic picture of ITER tokamak, showing the toroidal main chamber,

    E-Print Network [OSTI]

    Lin, Zhihong

    Fig.1a. Schematic picture of ITER tokamak, showing the toroidal main chamber, material wall, and the small divertor chamber at the bottom of the main chamber Gyrokinetic particle simulation of neoclassical and b). The wall plates in the divertor chamber are periodically replaced, giving the main wall a much

  3. Paper O.1.4.2 -1 -A SIMPLE TOOL FOR SIMULATION OF GROUND SOURCE HEAT

    E-Print Network [OSTI]

    Paper O.1.4.2 - 1 - A SIMPLE TOOL FOR SIMULATION OF GROUND SOURCE HEAT PUMP SYSTEMS Jeffrey D developed a number of ground heat exchanger models for use in simulation of ground source heat pump systems. Nevertheless, there are many situations where an easy to use hourly simulation of a ground source heat pump

  4. State of Maine residential heating oil survey 2001-02 season summary [SHOPP

    SciTech Connect (OSTI)

    Elder, Betsy

    2002-05-22

    This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

  5. Heat Transfer -1 A satellite in space orbits the sun. The satellite can be approximated as a flat plate with

    E-Print Network [OSTI]

    Virginia Tech

    Heat Transfer - 1 A satellite in space orbits the sun. The satellite can be approximated as a flat plate with dimensions and properties given below. (a) Calculate the solar heat flux (W/m2 is at a distance where the solar heat flux (as defined above) is 500 W/m2 , and the flat plate is oriented

  6. Technical Feasibility Study for Deployment of Ground-Source Heat Pump Systems: Portsmouth Naval Shipyard -- Kittery, Maine

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2014-11-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. Portsmouth Naval Shipyard (PNSY) is a United States Navy facility located on a series of conjoined islands in the Piscataqua River between Kittery, ME and Portsmouth, NH. EPA engaged NREL to conduct a study to determine technical feasibility of deploying ground-source heat pump systems to help PNSY achieve energy reduction goals.

  7. Behavior of lithium ions in the turbulent near-wall tokamak plasma under heating of ions and electrons of the main plasma

    SciTech Connect (OSTI)

    Shurygin, R. V., E-mail: regulxx@rambler.ru; Morozov, D. Kh. [National Research Centre Kurchatov Institute (Russian Federation)

    2014-12-15

    Turbulent dynamics of the near-wall tokamak plasma is simulated by numerically solving the nonlinear reduced Braginskii magnetohydrodynamic equations with allowance for a lithium ion admixture. The effects of turbulence and radiation of the admixture are analyzed in the framework of a self-consistent approach. The radial distributions of the radiative loss power and the density of Li{sup 0} atoms and Li{sup +1} ions are obtained as functions of the electron and ion temperatures of the main plasma in the near-wall layer. The results of numerical simulations show that supply of lithium ions into the low-temperature near-wall plasma substantially depends on whether the additional power is deposited into the electron or ion component of the main plasma. If the electron temperature in the layer increases (ECR heating), then the ion density drops. At the same time, an increase in the temperature of the main ions (ICR heating) leads to an increase in the density of Li{sup +1} ions. The results of numerical simulations are explained by the different influence of the electron and ion temperatures on the atomic processes governing the accumulation and loss of particles in the balance equations for neutral Li{sup 0} atoms and Li{sup +1} ions in the admixture. The radial profile of the electron temperature and the corresponding distribution of the radiative loss power for different densities of neutral Li{sup 0} atoms on the wall are obtained. The calculations show that the presence of Li{sup +1} ions affects turbulent transport of the main ions. In this case, the electron heat flux increases by 20–30% with increasing Li{sup +1} density, whereas the flux of the main ions drops by nearly the same amount. The radial profile of the turbulent flux of lithium ions is obtained. It is demonstrated that the appearance of the pinch effect is related to the positive density gradient of lithium ions across the calculation layer. For the parameters of the T-10 tokamak, the effect of radiative cooling of the near-wall plasma layer becomes appreciable when the near-wall density of neutral lithium atoms exceeds 7 × 10{sup 11} cm{sup ?3}. In this case, the density of radiative loss power in the center of the layer is estimated to be about 500–600 kW/m{sup 3}.

  8. Geothermal Heat Pump System for the New 500-bed 200,000 SF Student Housing Project at the University at Albanys Main Campus

    Broader source: Energy.gov [DOE]

    This project proposes to heat and cool planned 500-bed apartment-style student housing with closed loop vertical bore geothermal heat pump system installation.

  9. Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant

    SciTech Connect (OSTI)

    A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok

    2007-01-15

    Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

  10. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 1,035 1,030 1,025 1,022 1,020 1,020 2013-2015...

  11. Maine Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,046 1,044 1,047 1,032 1,030 1,029 2007-2014...

  12. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear5,020CubicCubic(Million::6)

  13. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear5,020CubicCubic(Million::6)May-15

  14. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  15. Alexandra Main CV 1 ALEXANDRA MAIN

    E-Print Network [OSTI]

    Oviedo, Néstor J.

    Alexandra Main CV 1 ALEXANDRA MAIN CURRICULUM VITAE JULY 15, 2014 Email: amain@ucmerced.edu School-REVIEWED PUBLICATIONS Main, A., Wiebe, D. J., Croom, A. R., Sardone, K., Godbey, E., Tucker, C., & White, P. C. (in and depressive symptoms in Latino and Caucasian youth. Journal of Pediatric Psychology. #12;Alexandra Main CV 2

  16. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01

    operating solar heating and cooling systems covering a widepractical heating and cooling system configurations andexperimental heating and cooling system, the main purpose of

  17. Preliminaries Main Theorem

    E-Print Network [OSTI]

    Nevins, Monica

    Preliminaries Main Theorem W-Graphs and their -Invariants Proof of the Main Theorem Type;Preliminaries Main Theorem W-Graphs and their -Invariants Proof of the Main Theorem Type An The other classical Jackson Todor MilevTau Signatures and Characters of Weyl Groups #12;Preliminaries Main Theorem W

  18. Census Snapshot: Maine

    E-Print Network [OSTI]

    Romero, Adam P; Rosky, Clifford J; Badgett, M.V. Lee; Gates, Gary J

    2008-01-01

    MAINE Adam P. Romero, Public Policy Fellow Clifford J.sex couples raising children in Maine. We compare same-sex “sex married couples in Maine. 1 JUNE 2008 In many ways, the

  19. Introduction Main Result

    E-Print Network [OSTI]

    Yan, Catherine Huafei

    Introduction Main Result Enumeration Crossings and Nestings of Two Edges in Set Partitions Yan Crossings and Nestings of Set Partitions #12;Introduction Main Result Enumeration Definition} Catherine Yan Crossings and Nestings of Set Partitions #12;Introduction Main Result Enumeration Definition

  20. First university owned district heating system using biomass heat

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Highlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu Main Campus District Heating Performance · Avoided: 3500 tonnes of CO2 · Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

  1. Definitions Main Result

    E-Print Network [OSTI]

    Heubach, Silvia

    Background Definitions Main Result Special Types of Patterns Summary Avoidance of partially ordered Avoidance of partially ordered patterns in compositions #12;Background Definitions Main Result Special Types of Patterns Summary Outline 1 Background 2 Definitions 3 Main Result Preliminaries Main Result 4 Special Types

  2. DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine

    Broader source: Energy.gov [DOE]

    Case study describing a single-story, 1,200-sq. ft. home in Maine with double shell walls, triple-pane windows, ductless heat pump, solar hot water, HERS 35 eithout PV, HERS 11 with PV

  3. Old Main - 82 

    E-Print Network [OSTI]

    Unknown

    2006-01-01

    One of the most important properties of a sustainable building is to provide thermal comfort conditions for users with a minimum heating and cooling energy consumption. Therefore, primary design parameters of building should be developed...

  4. CECG Maine, LLC (Maine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine:IAEAT Jump to:CBDCenter ofSolarCECG

  5. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  6. Insight From Efficiency Maine

    Broader source: Energy.gov [DOE]

    Presents an in-depth look at Efficiency Maine's transition to weatherization financing, its PowerSaver program, and much more.

  7. NA57 main results

    E-Print Network [OSTI]

    G. E. Bruno; for the NA57 Collaboration

    2007-10-15

    The CERN NA57 experiment was designed to study the production of strange and multi-strange particles in heavy ion collisions at SPS energies; its physics programme is essentially completed. A review of the main results is presented.

  8. Fusion heating technology

    SciTech Connect (OSTI)

    Cole, A.J.

    1982-06-01

    John Lawson established the criterion that in order to produce more energy from fusion than is necessary to heat the plasma and replenish the radiation losses, a minimum value for both the product of plasma density and confinement time t, and the temperature must be achieved. There are two types of plasma heating: neutral beam and electromagnetic wave heating. A neutral beam system is shown. Main development work on negative ion beamlines has focused on the difficult problem of the production of high current sources. The development of a 30 keV-1 ampere multisecond source module is close to being accomplished. In electromagnetic heating, the launcher, which provides the means of coupling the power to the plasma, is most important. The status of heating development is reviewed. Electron cyclotron resonance heating (ECRH), lower hybrid heating (HHH), and ion cyclotron resonance heating (ICRH) are reviewed.

  9. Main Title 32pt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat PumpsTechnologiesTechnologies |ReviewsAnalogues

  10. Main Title 32pt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat PumpsTechnologiesTechnologies |ReviewsAnalogues& JA

  11. James Kidder Main Library

    E-Print Network [OSTI]

    James Kidder Main Library Box 2008 Bldg. 4500N MS-6191 865-576-0535 kidderjh@ornl.gov Environmental Sciences Publications--Calendar Year 2008 Compiled January 11, 2009 Citation Total: 180 Books Sections and Functions at Interfaces. In L. Liang, R. Rinaldi & H. Schnober (Eds.), Neutron Applications in Earth, Energy

  12. Maine coast winds

    SciTech Connect (OSTI)

    Avery, Richard

    2000-01-28

    The Maine Coast Winds Project was proposed for four possible turbine locations. Significant progress has been made at the prime location, with a lease-power purchase contract for ten years for the installation of turbine equipment having been obtained. Most of the site planning and permitting have been completed. It is expect that the turbine will be installed in early May. The other three locations are less suitable for the project, and new locations are being considered.

  13. DOE Zero Energy Ready Home Case Study: Near Zero Maine Home II - Vassalboro, Maine

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready home in Vassalboro, Maine, that scored HERS 35 without PV and HERS 11 with PV. This 1,200 ft2 home has 10.5-inch-thick double-walls with 3 layers of mineral wool batt insulation, an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and triple-pane windows.

  14. 28 GHz Gyrotron and 4.6 GHz Klystron Heating Options for LDX P. P. Woskov1, A. C. Boxer1, J. L. Ellsworth1, D. T. Garnier2, J. Kesner1, M. E. Mauel2, P. C. Michael1

    E-Print Network [OSTI]

    Columbia University ABSTRACT - The success of fully levitated LDX plasma operations is now motivating magnetic configuration. Adding 28 GHz gyrotron and 4.6 GHz klystron electron cyclotron heating using to the magnetic field. The heating beam would be directed at the fundamental and 2nd harmonic electron cyclotron

  15. Maine’s Beginning with Habitat program and transportation partnership

    E-Print Network [OSTI]

    Bostwick, Richard; Charry, Barbara

    2005-01-01

    He has worked for the Maine Department of Transportation inanimal-vehicle crash study for the Maine DOT. On the Road toof Field Studies, Maine Department of Transportation, 16

  16. March 29, 2008 Operating Systems: Main Memory 1 Main Memory

    E-Print Network [OSTI]

    Adam, Salah

    March 29, 2008 Operating Systems: Main Memory 1 Main Memory Chapter 8 #12;March 29, 2008 Operating Systems: Main Memory 2 Chapter Outline Background Contiguous Memory Allocation Paging Structure of the Page Table Segmentation #12;March 29, 2008 Operating Systems: Main Memory 3 Objectives To provide

  17. University of Maine Cooperative Extension

    E-Print Network [OSTI]

    Leistikow, Bruce N.

    University of Maine Cooperative Extension Hand Signals Useful for Farmers Bulletin #2335 by Dawna L of Congress of May 8 and June 30, 1914, by the University of Maine Cooperative Extension, Vaughn H. Holyoke, Director for the University of Maine Cooperative Extension, the Land Grant University of the state of Maine

  18. Travel Pcard Reconciliation Main Campus

    E-Print Network [OSTI]

    New Mexico, University of

    Travel Pcard Reconciliation Manual Main Campus Version 1.0 January 2015 Contact Information Unrestricted Accounting ­ Main Campus MSC 01 1260 STAFF: Lisa Wirth-Fiscal Services Tech Ph. # 277-2019 wirthl accounting offices (Contracts and Grants-Main Campus, Unrestricted Accounting-Main Campus, Contracts

  19. MAIN CHAMBER NEUTRAL PRESSURE IN

    E-Print Network [OSTI]

    Pitcher, C. S.

    MAIN CHAMBER NEUTRAL PRESSURE IN ALCATOR C-MOD AND JET C S Pitcher, S K Erents*, W Fundamenski*, B on Controlled Fusion and Plasma Physics 18 ­ 22 June 1999, Madeira, Portugal MAIN CHAMBER NEUTRAL PRESSURE Science Centre, Abingdon, Oxon OX14 3DB,UK #12;(1) Introduction · main chamber gas can have a number

  20. EXPLORATORY FISHING FOR MAINE HERRING

    E-Print Network [OSTI]

    463 EXPLORATORY FISHING FOR MAINE HERRING by Keith A. Smith Marine Biolcgica! Labcratory Ul a R AR. McKernan, Director EXPLORATORY FISHING FOR MAINE HERRING by Keith A. Smith International;#12;EXPLORATORY FISHING FOR MAINE HERRING by Keith A. Smith Base Director, Exploratory Fishing Base Bureau

  1. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  2. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  3. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  4. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  5. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 636 580 46 1 Q 114.0...

  6. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  7. main campus self guided campus tour

    E-Print Network [OSTI]

    Le Roy, Robert J.

    in Canada. It will contain a garden, a wetland, and in-floor heating using recycled heat from computers. tat

  8. Residuals, Sludge, and Composting (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Department of Environmental Protection's Residuals, Sludge, and Composting program regulates the land application and post-processing of organic wastes, including sewage sludge, septage,...

  9. UC Santa Cruz Main Entrance

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    UC Santa Cruz West Entrance Em pire Grade Main Entrance HagarDrive Coolid geDrive P Sinsheimer Labs be purchased at the main entrance kiosk or at the TAPS Sales Office (located in the H Barn at the base

  10. Collector main replacement at Indianapolis Coke

    SciTech Connect (OSTI)

    Sickle, R.R. Van

    1997-12-31

    Indianapolis Coke is a merchant coke producer, supplying both foundry and blast furnace coke to the industry. The facility has three coke batteries: two 3 meter batteries, one Wilputte four divided and one Koppers Becker. Both batteries are underjet batteries and are producing 100% foundry coke at a net coking time of 30.6 hours. This paper deals with the No. 1 coke battery, which is a 72 oven, gun fired, 5 meter Still battery. No. 1 battery produces both foundry and blast furnace coke at a net coking rate of 25.4 hours. No. 1 battery was commissioned in 1979. The battery is equipped with a double collector main. Although many renovations have been completed to the battery, oven machinery and heating system, to date no major construction projects have taken place. Deterioration of the collector main was caused in part from elevated levels of chlorides in the flushing liquor, and temperature fluctuations within the collector main. The repair procedures are discussed.

  11. Efficiency Maine Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Maine offers rebates for the purchase of ENERGY STAR certified room air purifiers, clothes washers, and dehumidifiers. Purchases must be made between November 1, 2014 and June 30, 2015....

  12. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  13. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  14. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  15. Library Site Finder MAIN LIBRARY

    E-Print Network [OSTI]

    Sidorov, Nikita

    Library Site Finder MAIN LIBRARY Burlington Street Tel: 0161 275 3751 THE ALAN GILBERT LEARNING COMMONS Oxford Road Tel: 0161 306 4306 ART & ARCHAEOLOGY LIBRARY Mansfield Cooper Building Tel: 0161 275 3657 BRADDICK LIBRARY School of Physics & Astronomy Brunswick Street Tel: 0161 275 4078 EDDIE DAVIES

  16. Classical exponential inequalities Main results

    E-Print Network [OSTI]

    Bercu, Bernard

    on left or on right A keystone lemma New exponential inequalities 3 Statistical application B. Bercu and A results Heavy on left or on right A keystone lemma New exponential inequalities 3 Statistical application~na's inequalities 2 Main results Heavy on left or on right A keystone lemma New exponential inequalities 3

  17. ABSORPTION HEAT PUMP IN THE DISTRICT HEATING

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 · Riga District Heating company · Operation of the DH plant Imanta · Selection of the heat pump/chiller · Operation of the heat pump/chiller · Summary

  18. Flavor ofmaine 4 Maine Sardine Pizza

    E-Print Network [OSTI]

    Flavor of maine #12;Flavor ofmaine 4 Maine Sardine Pizza Maine Tomato Surprise French Toasted Sardine Sandwich 6 Sardines on a Roll Maine Sardine Olive Sandwich Sardine Skyscraper Sandwich 7 Maine Sardine Submarine Sandwich Mustard Sauce 8 Bohemian Salad Marinade Maine Sardine Cole Slaw Cole Slaw

  19. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ living --- HEATERâ??ACTIVE --- ACTIVATINGâ??HEATER --- HEATERâ??RUNNING ; #12; APPENDIX A. HEATING SYSTEM SPECIFICATION

  20. Vacuum Induction Melting Unit Induction heating is a process wherein induced eddy currents heat conductive materials. This heating

    E-Print Network [OSTI]

    Subramaniam, Anandh

    Vacuum Induction Melting Unit Induction heating is a process wherein induced eddy currents heat can be melted at a time. There are three main parts to the system: chiller, power unit and vacuum unit. The vacuum unit with rotary and diffusion pumps can attain a vacuum of 106 m bar. The power can deliver

  1. Library Locations Locations other than Main Library

    E-Print Network [OSTI]

    Library Locations Locations other than Main Library Example: Feminist Studies HQ1410 .U54 2009 ............................................................2 Central Call Number Main Library Location Main Library Example: Main Library HQ1410 .U54 2009 See Center (ATC) Classroom 1575 Building Operations Main Entrance Map and Imagery Laboratory (MIL

  2. Inverse Spectral Problem Proof of Main Result

    E-Print Network [OSTI]

    Stanhope, Liz

    Inverse Spectral Problem Proof of Main Result Geodesics on Weighted Projective Spaces Zuoqin Wang of Main Result Inverse Spectral Geometry Main Result Inverse Spectral Geometry Manifold setting: (M, g Proof of Main Result Inverse Spectral Geometry Main Result Inverse Spectral Geometry Manifold setting

  3. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    The Small Particle Heat Exchange Receiver (SPHER) for Solarof the small particle heat exchange receiver (or SPHER), asabsorption process, the heat exchange to the gas, the choice

  4. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  5. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  6. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  7. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  8. Heat transfer and heat exchangers reference handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-15

    The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

  9. Clean Cities: Maine Clean Communities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maine Clean Communities Coalition The Maine Clean Communities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use...

  10. West Virginia University -Main Campus Program Accreditations

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    West Virginia University - Main Campus Program Accreditations Updated 2013-14 School, College University - Main Campus Program Accreditations Updated 2013-14 School, College, or Program Accreditation

  11. Efficiency Maine Data Dashboard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The data dashboard for Efficiency Maine, a partner in the Better Buildings Neighborhood Program. Efficiency Maine Data Dashboard More Documents & Publications Washington -- SEP...

  12. Integrated heat pump and heat storage system

    SciTech Connect (OSTI)

    Katz, A.

    1983-09-13

    An integrated heat pump and heat storage system is disclosed comprising a heat pump, a first conduit for supplying return air from an enclosure to the heat pump, a second conduit for supplying heated air from the heat pump to the enclosure, heat storage apparatus. A first damper is operative in a first orientation to permit return air from the enclosure to enter the first conduit and to prevent return air from passing through the heat storage apparatus and operative in a second orientation to cause return air to pass through the heat storage apparatus for being heated thereby before entering the first conduit. A second damper is operative in a first orientation to cause heated air from the second conduit to pass through the heat storage apparatus for giving up a portion of its heat for storage and operative in a second orientation to prevent heated air from the second conduit from passing through the heat storage apparatus and to permit the heated air from the second conduit to reach the enclosure. The heat storage apparatus may comprise phase change materials.

  13. Topic 14. Retrofit and optimal operation of the building energy systems Performances of Low Temperature Radiant Heating Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , wall heating, floor heating, ceiling heating, EnergyPlus SUMMARY Low temperature heating panel systems. It is found that the floor-ceiling heating system has the lowest energy, exergy, CO2 emissions, operating and the surrounding areas, and the heat conduction between the floor and the ground. The main essence of the low

  14. TRANSPORT PATHWAYS OF THE MAINE COASTAL CURRENT

    E-Print Network [OSTI]

    TRANSPORT PATHWAYS OF THE MAINE COASTAL CURRENT Monica J. Holboke and Daniel R. Lynch September 1996 Abstract The Maine Coastal Current(MCC) is initiated off the eastern coast of Maine and circuits the Gulf of Maine in a counterclockwise direction transporting various nu­ trients, biological species

  15. The Maine Coastal Current: Spring Climatological Circulation

    E-Print Network [OSTI]

    The Maine Coastal Current: Spring Climatological Circulation Daniel R. Lynch, Monica J. Holboke in the Gulf of Maine, with special emphasis on its coastal current in the periods March­April and May of Maine cyclonic circulation is persistent, with significant bimonthly modulation of key Maine Coastal

  16. Library Locations Locations other than Main Library

    E-Print Network [OSTI]

    Library Locations Locations other than Main Library Example: Feminist Studies HQ1410 .U54 2009 these from the library catalog: www.library.ucsb.edu/depts/access/howinprocess.html Main: Items located in the Main Library, Davidson Main Serials Reading Area: 2 North Map & Imagery Lab: 1 North Media Collection

  17. MAIN THEOREM OF COMPLEX MULTIPLICATION BRIAN CONRAD

    E-Print Network [OSTI]

    Conrad, Brian

    MAIN THEOREM OF COMPLEX MULTIPLICATION BRIAN CONRAD In [S, Ch. IV, §18] the Main Theorem of complex and abelian varieties. The aim of the Main Theorem is as follows. Let (A, i) be an abelian variety over Q Galois automorphisms. In these notes, we give a complete proof of the Main Theorem of complex

  18. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  19. Carbon footprints of heating oil and LPG heating systems

    SciTech Connect (OSTI)

    Johnson, Eric P.

    2012-07-15

    For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

  20. West Virginia University -Main Campus Headcount Enrollment

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    West Virginia University - Main Campus Headcount Enrollment Comparison of Fall 2013 to Fall 2014's Student files submission *FTE includes courses taken by Main Campus Students at PSC West Virginia

  1. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  2. Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy

    E-Print Network [OSTI]

    efficient use of renewable energy in district heating · individual heat pumps solar heating and wood pellets· individual heat pumps, solar heating and wood pellets 6Risø International Energy Conference 2009Heat Plan

  3. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Savers [EERE]

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  4. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations 

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump ...

  5. Introduction to Heat Exchangers

    E-Print Network [OSTI]

    Heller, Barbara

    . Since, the effectiveness can be written in terms of heat capacitance rate [W/K], C, and change in temperature [K], . The heat capacitance rate is defined in terms of mass flow rate [kg/s], , and specific heat: ! ! ! " # = ! ! "# ! ! ! - ! ! ! ! ! ! = ! !! ! ! ! ! = ! ! ! ! ! - ! ! ! ! ! "# ! ! ! - ! ! ! ! ! ! = ! ! ! ! ! - ! ! ! ! ! "# ! ! ! - ! ! ! ! ! Heat%Capacitance%Rate % ! = ! !! ! ! Heat%Capacitance%Rate%[W % ! = ! ! ! ! ! ! ! = ! ! !! ! ! ! max

  6. THE UNIVERSITY OF EDINBURGH. ECA Main Building.

    E-Print Network [OSTI]

    Edinburgh, University of

    THE UNIVERSITY OF EDINBURGH. ECA Main Building. Lauriston Campus. A GUIDE TO ACCESS AND FACILITIES. Address. Edinburgh College of Art Main Building. University Of Edinburgh. Lauriston Place. Edinburgh. E,H,3, 9,D,F. Telephone. 0,1,3,1, 6,5,1, 5,9,0,0, Map Link. http://www.ed.ac.uk/maps/buildings/main

  7. Heat Pump for High School Heat Recovery 

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  8. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  9. City of Klamath Falls District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating...

  10. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low...

  11. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  12. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  13. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  14. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

  15. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  16. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    heat exchangers. These types of heat exchangers have limitedheat exchanger to solar collection systems that utilize linear trough- typenon-solar heat exchangers. These may be of the type used to

  17. Concentrating solar heat collector

    SciTech Connect (OSTI)

    Fattor, A.P.

    1980-09-23

    A heat storage unit is integrated with a collection unit providing a heat supply in off-sun times, and includes movable insulation means arranged to provide insulation during off-sun times for the heat storage unit.

  18. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  19. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  20. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  1. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  2. U1A Complex

    SciTech Connect (OSTI)

    None

    2014-10-28

    Some of the most sophisticated experiments in the stockpile stewardship program are conducted in an environmentally safe manner, nearly 1000 feet below the ground at the site. The U1a complex a sprawling underground laboratory and tunnel complex is home to a number of unique capabilities.

  3. U1A Complex

    ScienceCinema (OSTI)

    None

    2015-01-09

    Some of the most sophisticated experiments in the stockpile stewardship program are conducted in an environmentally safe manner, nearly 1000 feet below the ground at the site. The U1a complex a sprawling underground laboratory and tunnel complex is home to a number of unique capabilities.

  4. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  5. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  6. Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Find out if one is right for your home.

  7. Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models N. Legrand1,a , N. Labbe1,b D. Weisz-Patrault2,c , A. Ehrlacher2,d , T. Luks3,e heat transfers during pilot hot steel strip rolling. Two types of temperature sensors (drilled and slot

  8. intro, 2 bars main riff, 4 bars

    E-Print Network [OSTI]

    Reiners, Peter W.

    intro, 2 bars main riff, 4 bars verse riff 1: G G if you like to gamble, I tell you I'm your man G G you win some, loose some, it's all the same to me main riff with fill 1, 4 bars verse riff 2: D C the pleasure is to play it makes no difference what you say main riff with fill 1, 2 bars verse riff 2: D C I

  9. Maine Company Growing with Weatherization Work

    Broader source: Energy.gov [DOE]

    Maine's BIOSAFE Environmental Services expands into weatherization, assisting low-income families with their services and creating jobs as business grows.

  10. ,"Maine Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","0930...

  11. ,"Maine Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  12. ,"Maine Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  13. ,"Maine Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015"...

  14. Air Permits, Licenses, Certifications (Maine) | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Provider Department of Environmental Protection This program regulates and limits air emissions from a variety of sources within Maine through a statewide permitting program....

  15. Efficiency Maine Business Programs (Unitil Gas) - Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    Other EE Food Service Equipment Program Info Sector Name Utility Administrator Efficiency Maine Website http:www.efficiencymaine.comat-worknatural-gas-program State...

  16. Direct fired heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  17. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, Roger R. (Idaho Falls, ID)

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  18. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  19. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D. (Shelly, ID)

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  20. Mass and Heat Recovery 

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01

    In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

  1. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-A. Commercial fusion electric plant

    SciTech Connect (OSTI)

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 1-A contains the following chapters: (1) plasma engineering, (2) magnets, (3) ecr heating systems, (4) anchor ion-cyclotron resonance heating system, (5) sloshing ion neutral beam, (6) end cell structure, (7) end plasma technology, (8) fueling, (9) startup ion cyclotron resonant heating systems, and (10) end cell radiation analysis. (MOW)

  2. Heat Treating Apparatus

    DOE Patents [OSTI]

    De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

    2002-09-10

    Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

  3. Integrated heat pump system

    SciTech Connect (OSTI)

    Reedy, W.R.

    1988-03-01

    An integrated heat pump and hot water system is described that includes: a heat pump having an indoor heat exchanger and an outdoor heat exchanger that are selectively connected to the suction line and the discharge line respectively of a compressor by a flow reversing means, and to each other by a liquid line having an expansion device mounted therein, whereby heating and cooling is provided to an indoor comfort zone by cycling the flow reversing means, a refrigerant to water heat exchanger having a hot water flow circuit in heat transfer relation with a first refrigerant condensing circuit and a second refrigerant evaporating circuit, a connection mounted in the liquid between the indoor heat exchanger and the expansion device, control means for regulating the flow of refrigerant through the refrigerant to water heat exchanger to selectively transfer heat into and out of the hot water flow circuit.

  4. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  5. Contactless heat flux control with photonic devices

    E-Print Network [OSTI]

    Ben-Abdallah, Philippe

    2015-01-01

    The ability to control electric currents in solids using diodes and transistors is undoubtedly at the origin of the main developments in modern electronics which have revolutionized the daily life in the second half of 20th century. Surprisingly, until the year 2000 no thermal counterpart for such a control had been proposed. Since then, based on pioneering works on the control of phononic heat currents new devices were proposed which allow for the control of heat fluxes carried by photons rather than phonons or electrons. The goal of the present paper is to summarize the main advances achieved recently in the field of thermal energy control with photons.

  6. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  7. Koch Institute Corners of Main/Vassar Streets and Main/Ames Streets

    E-Print Network [OSTI]

    Leiserson, Charles E.

    Brownfield redevelopment Storm water filtration system Reflective roof material which will reduce the heat island effect Heat recovery methods incorporated into HVAC systems VAV system and right sizing of HVAC energy A construction waste management plan that recycles and salvages waste Project Managers

  8. Omnibus Energy Bill of 2013 (Maine)

    Broader source: Energy.gov [DOE]

    An Act To Reduce Energy Costs, Increase Energy Efficiency, Promote Electric System Reliability and Protect the Environment became law on July 2, 2013. This act, also known as the 2013 Maine Omnibus...

  9. Heat transfer system

    DOE Patents [OSTI]

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  10. Heat transfer system

    DOE Patents [OSTI]

    McGuire, Joseph C. (Richland, WA)

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  11. Wound tube heat exchanger

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  12. Feasibility of Municipal Water Mains as Heat Sink for Residential Air-Conditioning 

    E-Print Network [OSTI]

    Vliet, G. C.

    1994-01-01

    become significant. The general conclusion is that, while the benefit to an individual using this concept may be positive, the impact on water temperature is excessive....

  13. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7Cubic Foot) DecadeBarrels) + LeaseProved07,2430 20132

  14. ,"Maine Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNGUndergroundDry NaturalGas, Wet After LeaseConsumed"

  15. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUM FOR: JOHN CONTIPeter Gross

  16. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |AdministrationStanfordLabMailCharles

  17. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  18. 1 The Main Asteroid Belt Carolyn Crow: NASA's Dawn Mission The Main Asteroid Belt

    E-Print Network [OSTI]

    Waliser, Duane E.

    1 The Main Asteroid Belt Carolyn Crow: NASA's Dawn Mission The Main Asteroid Belt Written to the main asteroid belt to visit two of the largest protoplanets, Vesta and Ceres. Using sunlight, a mere accomplished by a spacecraft before. What compelled astronomers to send Dawn to the asteroid belt and what does

  19. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  20. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  1. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  2. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    influence on the heat transfer as the radiation. Since thethe heat transfer analysis, the difference of net radiationheat transfer involved i n this project were conduction, convection and radiation.

  3. Blue Stragglers After the Main Sequence

    E-Print Network [OSTI]

    Alison Sills; Amanda Karakas; John Lattanzio

    2008-11-18

    We study the post-main sequence evolution of products of collisions between main sequence stars (blue stragglers), with particular interest paid to the horizontal branch and asymptotic giant branch phases. We found that the blue straggler progeny populate the colour-magnitude diagram slightly blueward of the red giant branch and between 0.2 and 1 magnitudes brighter than the horizontal branch. We also found that the lifetimes of collision products on the horizontal branch is consistent with the numbers of so-called "evolved blue straggler stars" (E-BSS) identified by various authors in a number of globular clusters, and is almost independent of mass or initial composition profile. The observed ratio of the number of E-BSS to blue stragglers points to a main sequence lifetime for blue stragglers of approximately 1-2 Gyr on average.

  4. Main Coast Winds - Final Scientific Report

    SciTech Connect (OSTI)

    Jason Huckaby; Harley Lee

    2006-03-15

    The Maine Coast Wind Project was developed to investigate the cost-effectiveness of small, distributed wind systems on coastal sites in Maine. The restructuring of Maine's electric grid to support net metering allowed for the installation of small wind installations across the state (up to 100kW). The study performed adds insight to the difficulties of developing cost-effective distributed systems in coastal environments. The technical hurdles encountered with the chosen wind turbine, combined with the lower than expected wind speeds, did not provide a cost-effective return to make a distributed wind program economically feasible. While the turbine was accepted within the community, the low availability has been a negative.

  5. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  6. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  7. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  8. MA HEAT Loan Overview

    Broader source: Energy.gov [DOE]

    Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

  9. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

    1985-01-01

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  10. Introduction of Heat Recovery Chiller Control and Water System Design 

    E-Print Network [OSTI]

    Jia, J.

    2006-01-01

    The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

  11. DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS

    E-Print Network [OSTI]

    Dao, K.

    2013-01-01

    AIR CONDITIONERS AND HEAT PUMPS K. Dao, M. Wahlig, E. Wali,are liquid paths. DM: multistage pump driver, driven by highvapor. DW: main circulation pump driven by strong absorbent.

  12. Combined heat & Power (CHP), Federal Utility Partnership Working...

    Broader source: Energy.gov (indexed) [DOE]

    Combined Heat & Power (CHP) May 7, 2014 Pam Maines Who is Pepco Energy Services? ESCO Industry Leader Since 1995, and Pepco's UESC Representative HQ in Arlington, VA with MD,...

  13. Bunch coalescing in the Fermilab Main Ring

    SciTech Connect (OSTI)

    Wildman, D.; Martin, P.; Meisner, K.; Miller, H.W.

    1987-03-01

    A new rf system has been installed in the Fermilab Main Ring to coalesce up to 13 individual bunches of protons or antiprotons into a single high-intensity bunch. The coalescing process consists of adiabatically reducing the h = 1113 Main Ring rf voltage from 1 MV to less than 1 kV, capturing the debunched beam in a linearized h = 53 and h = 106 bucket, rotating for a quarter of a synchrotron oscillation period, and then recapturing the beam in a single h = 1113 bucket. The new system will be described and the results of recent coalescing experiments will be compared with computer-generated particle tracking simulations.

  14. Camden, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas:Information(RedirectedEnterprise JumpMissouri:Maine:

  15. Bradford, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy Resources Jump to:Open EnergyBradbury,Florida:Maine: Energy

  16. Brewer, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy ResourcesCounty, Texas:Brewer, Maine: Energy Resources Jump

  17. Brownville, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: EnergyEnergy InformationKansas:Brownville, Maine: Energy

  18. Burlington, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: EnergyEnergyOhio:Information PartnershipIllinois: EnergyMaine:

  19. Geothermal Heat Pump Basics

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes—from scorching heat in the summer to sub-zero cold in the winter—the ground a few feet below the earth's surface remains at a relatively constant temperature.

  20. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  1. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  2. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  3. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  4. Heat recovery in building envelopes

    E-Print Network [OSTI]

    Walker, Iain S.; Sherman, Max H.

    2003-01-01

    2003). Infiltration heat recovery – ASHRAE Research ProjectModel for Infiltration Heat Recovery, Proc. 21 st AnnualN ATIONAL L ABORATORY Heat Recovery in Building Envelopes

  5. Heat Recovery in Building Envelopes

    E-Print Network [OSTI]

    Sherman, Max H.; Walker, Iain S.

    2001-01-01

    Model For Infiltration Heat Recovery. Proceedings 21st AivcLBNL 47329 HEAT RECOVERY IN BUILDING ENVELOPES Max H.contribution because of heat recovery within the building

  6. Heat recovery in building envelopes

    E-Print Network [OSTI]

    Walker, Iain S.; Sherman, Max H.

    2003-01-01

    2003). Infiltration heat recovery – ASHRAE Research ProjectModel for Infiltration Heat Recovery, Proc. 21 st AnnualWalker, I.S. (2001). "Heat Recovery in Building Envelopes".

  7. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  8. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks...

  9. Semantic Web Research anno 2006: main streams,

    E-Print Network [OSTI]

    van Harmelen, Frank

    Semantic Web Research anno 2006: main streams, popular fallacies, current status and future. In this topical1 paper we try to give an analysis and overview of the current state of Semantic Web research. We point to different in- terpretations of the Semantic Web as the reason underlying many contro- versies

  10. Old Main Library Shih-Liang Hall

    E-Print Network [OSTI]

    Wu, Yih-Min

    Library Shih-Liang Hall Computer and Information Networking Center Audio-Visual Educational Center College of Engineering Bldg. E.E. Bldg. No. 2 Graduate Institute of National Development Graduate. of Library and Information Science Depot. of Atmospheric Sciences Main Library Dept. of Physics Center

  11. Layered Manufacturing Sara McMains

    E-Print Network [OSTI]

    McMains, Sara

    Grossman) #12;LM vs. Conventional Manufacturing · Subtractive · Net shape · Additive #12;Conventional · Molding · Casting #12;Conventional Manufacturing · Additive ­ Combine complex sub-units ­ E.g. · WeldingLayered Manufacturing Sara McMains #12;Layered Manufacturing (LM) a.k.a. Solid Freeform Fabrication

  12. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  13. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  14. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  15. Use of ATLAS Visual and Thermal Imagery to Study the Urban Heat Island Effect in San Juan, Puerto Rico

    E-Print Network [OSTI]

    Gilbes, Fernando

    Use of ATLAS Visual and Thermal Imagery to Study the Urban Heat Island Effect in San Juan, Puerto as Urban Heat Islands (UHI). The main scientific objective of this research is to investigate the impact was used as the main sensor for this study with the objective of investigating the Urban Heat Island (UHI

  16. PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP by the heat pump effect. The Stirling engine/Rankine cycle refrigeration loop heat pump being developed would

  17. Radiant Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Radiant heating has a number of advantages. It is...

  18. Energy transport, overshoot, and mixing in the atmospheres of M-type main- and pre-main-sequence objects

    E-Print Network [OSTI]

    H. -G. Ludwig; F. Allard; P. H. Hauschildt

    2006-08-12

    We constructed hydrodynamical model atmospheres for mid M-type main-, as well as pre-main-sequence (PMS) objects. Despite the complex chemistry encountered in these cool atmospheres a reasonably accurate representation of the radiative transfer is possible, even in the context of time-dependent and three-dimensional models. The models provide detailed information about the morphology of M-type granulation and statistical properties of the convective surface flows. In particular, we determined the efficiency of the convective energy transport, and the efficiency of mixing by convective overshoot. The convective transport efficiency was expressed in terms of an equivalent mixing-length parameter alpha in the formulation of mixing-length theory (MLT) given by Mihalas (1978). Alpha amounts to values around 2 for matching the entropy of the deep, adiabatically stratified regions of the convective envelope, and lies between 2.5 and 3.0 for matching the thermal structure of the deep photosphere. For current spectral analysis of PMS objects this implies that MLT models based on alpha=2.0 overestimate the effective temperature by 100 K and surface gravities by 0.25 dex. The average thermal structure of the formally convectively stable layers is little affected by convective overshoot and wave heating, i.e., stays close to radiative equilibrium conditions. Our models suggest that the rate of mixing by convective overshoot declines exponentially with geometrical distance to the Schwarzschild stability boundary. It increases at given effective temperature with decreasing gravitational acceleration.

  19. Webster, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources Jump to: navigation, searchNebraska:Maine: Energy

  20. Whitney, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland:Meadow Lake,Maine: Energy Resources Jump to:

  1. Windham, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy ResourcesTurboPowerPortal HomeWindfarmMaine:

  2. Woolwich, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard Power PtyOhio: EnergyWoolwich, Maine: Energy

  3. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Marvinney, Robert

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  4. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Marvinney, Robert

    2013-11-06

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  5. The Advanced Photon Source main control room

    SciTech Connect (OSTI)

    Pasky, S.

    1998-07-01

    The Advanced Photon Source at Argonne National Laboratory is a third-generation light source built in the 1990s. Like the machine itself, the Main Control Room (MCR) employs design concepts based on today`s requirements. The discussion will center on ideas used in the design of the MCR, the comfort of personnel using the design, and safety concerns integrated into the control room layout.

  6. Stetson, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) JumpandStereo Satellite Imagery JumpStetson, Maine: Energy

  7. Hampden, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts: Energy Resources Jump to:Maine: Energy Resources Jump

  8. Hermon, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to: navigation,NavigationIndiana:HeraldHermon, Maine: Energy

  9. Freeport, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLCNorth Carolina:Arizona:Freeport, Maine:

  10. Dixmont, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOEDixmont, Maine: Energy Resources Jump to:

  11. Energy Incentive Programs, Maine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment ofArizona Energy IncentiveLouisiana Energy IncentiveMaine

  12. Monson, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec(Pritchett, 2004)Michigan: Energy ResourcesMaine: Energy

  13. Bradley, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy Resources Jump to:OpenBradfordwoods,

  14. Cumberland, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama:Crofton,DevelopingMaine: Energy Resources Jump to:

  15. Chester, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine:West Virginia: Energy Resources

  16. Optimization of Heat Exchangers

    SciTech Connect (OSTI)

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  17. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

    1983-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  18. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  19. Policies supporting Heat Pump Technologies

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

  20. Maine -- SEP Summary of Reported Data | Department of Energy

    Office of Environmental Management (EM)

    Summary of Reported Data Maine -- SEP Summary of Reported Data The summary of reported data for Maine -- SEP, a partner in the Better Buildings Neighborhood Program. Maine -- SEP...

  1. EA-1792: University of Maine's Deepwater Offshore Floating Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind...

  2. MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY | Department...

    Energy Savers [EERE]

    MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY Nearly 70% of...

  3. Efficiency Maine Summary of Reported Data | Department of Energy

    Energy Savers [EERE]

    Summary of Reported Data Efficiency Maine Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Efficiency Maine. Efficiency Maine...

  4. Fluidized bed heat treating system

    DOE Patents [OSTI]

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  5. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  6. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  7. Westbrook, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy ResourcesTurin, New York:Westbrook Center,Maine: Energy

  8. Union, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S.UnifinPark, Florida: Energy ResourcesMaine:

  9. Warren, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park, Indiana: Energy Resources Jump to:Maine:

  10. Washington, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park,|Information 6thMaine: Energy Resources

  11. Maine PACE Program Final Technical Report

    SciTech Connect (OSTI)

    Fischer, Dana; Adamson, Joy M

    2015-01-30

    The ARRA EECBG BetterBuilding helped augment the existing Home Energy Savings Programs (HESP) and incentives with financing through a subordinate lien PACE and HUD PowerSaver programs. The program was designed to document innovative techniques to dramatically increase the number of homes participating in weatherization programs in participating towns. Maine will support new energy efficiency retrofit pilots throughout the state, designed to motivate a large number of homeowners to invest in comprehensive home energy efficiency upgrades to bring real solutions to market.

  12. Greenville, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to: navigation,Capital AdvisorsSteamMaine: Energy

  13. Guilford, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,SolarFERC Hydroelectric Projects | Open EnergyProcessMaine:

  14. Holden, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: Energy ResourcesHoboken,Holden, Maine: Energy

  15. Hope, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: EnergyHollyHomaHometown,(CTI PFAN)Solar JumpMaine:

  16. Friendship, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLCNorthIdaho: EnergyTexas:Maine: Energy

  17. Eastport, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence, Rhode Island:Connecticut: Energy ResourcesMaine:

  18. Edinburg, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,New Mexico: Energy Resources JumpEdinburg, Maine:

  19. Etna, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,Power CorpEnergy InformationMaine: Energy Resources

  20. Exeter, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative Coolers JumpinUSFS1988Exeter, Maine:

  1. Falmouth, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative||NewFale-Safe,Maine: Energy Resources

  2. Springfield, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:Spill PreventionJump to: navigation, searchMaine:

  3. Medford, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump to:Electric Coop, IncSouthVirginia:Medford, Maine: Energy

  4. Milford, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPROLLC Jump to: navigation,MikeCenter, Ohio:Maine:

  5. Kenduskeag, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,NewKeith County,Kenduskeag, Maine: Energy Resources

  6. Kingsbury, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrderInformation Kilauea SouthwestofKings RiverKingsbury, Maine:

  7. Lincoln, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: Energy Resources Jump to:Heights, Ohio:California:Maine:

  8. Naples, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine: Energy Resources Jump to:

  9. Maine Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0 Year-1Total ConsumptionMaine

  10. Direct Energy Services (Maine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,Department ofEnergieSize HomeDirect EnergyMaine)

  11. Dominion Retail Inc (Maine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the National Climate Change Policy | OpenMaine) Jump to:

  12. Eastern Maine Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the NationalDynetek EuropeEPG|Elec Pwr Assn JumpMaine

  13. Brunswick, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine: Energy Resources Jump to:

  14. CECG Maine, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine:IAEAT Jump to:CBDCenter

  15. University of Maine Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZ ClimateFeed JumpAlberta JumpLisbon Jump to:Maine

  16. Argyle, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S JumpArchuleta County,Argillic-AdvancedArgyle, Maine: Energy

  17. Ashland, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen EnergyInformationAshkelonMaine: Energy Resources

  18. Atkinson, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio:Atchison-Holt ElectricAthol,AtkinsonMaine:

  19. Baldwin, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels BrasilMaine: Energy Resources Jump to:

  20. Carroll, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas:Fund forCarnegieIndiana:NewCarrollMaine: Energy

  1. Casco, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas:FundMichigan:NorthCasasCasco, Maine: Energy

  2. Bowerbank, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia

  3. Bridgton, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy ResourcesCounty, Texas:Brewer,Iowa: EnergySustainable

  4. Corinna, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon:Volcano, Hawaii | OpenCorinna, Maine:

  5. Charleston, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine: Energy Resources Jump to: navigation, search

  6. Maine Green Power Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Energy This Revision 3Federal EnergyMaine -- SEP,<

  7. Maine PACE Loans | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Energy This Revision 3Federal EnergyMaine --

  8. Maine Public Service Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump|Soda LakeMahoningMountainMaine

  9. Augusta, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|LineMaine: Energy Resources Jump to: navigation,

  10. Yarmouth, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name:XinjiangPupingYanyuan LujiangMaine: Energy

  11. Acton, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)dataSuccessful SmartAcomita Lake,Acton, California:Maine:

  12. Heat pulse propagation in chaotic three-dimensional magnetic fields

    SciTech Connect (OSTI)

    Del-Castillo-Negrete, Diego [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Blazevski, Daniel [Institute for Mechanical Systems, ETH, Zurich (Switzerland)

    2014-06-01

    Heat pulse propagation in three-dimensional chaotic magnetic fields is studied by numerically solving the parallel heat transport equation using a Lagrangian Green's function (LG) method. The main two problems addressed are: the dependence of the radial transport of heat pulses on the level of magnetic field stochasticity (controlled by the amplitude of the magnetic field perturbation, ?), and the role of reversed shear magnetic field configurations on heat pulse propagation. The role of separatrix reconnection of resonant modes in the shear reversal region, and the role of shearless Cantori in the observed phenomena are also discussed.

  13. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    by half, the solar collection efficiency will still be insolar thermal electric power program rests on the efficiency,efficiency heat storage systems. This type of hybrid, solar-

  14. Mechanical Compression Heat Pumps 

    E-Print Network [OSTI]

    Apaloo, T. L.; Kawamura, K.; Matsuda, J.

    1986-01-01

    of the compressors which constitute the heart and soul of the system. It will also provide a quick survey of the available types of compressors for heat pumping and some of the industrial processes where simultaneous heating and cooling proceed along parallel..., the real challenge comes process environment, or even for comfort HEAT PUMP APPLICATIONS INPU~ AND OUTPUT UTIUnES (HEAT SOUlCE) (ME0U.4) (API't1CATION) CoofIng, Dehumldilication. L.- -J ~Ing. Hot ...,tolel SIJr-lpIy Chilled ....,oter. Hoi waler...

  15. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  16. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    Effect of building integrated photovoltaics on microclimateof a building's integrated-photovoltaics on heating a n dgaps for building- integrated photovoltaics, Solar Energy

  17. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2011-06-28

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  18. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  19. Passive solar space heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1980-01-01

    An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

  20. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  1. Electro-mechanical heat switch for cryogenic applications

    DOE Patents [OSTI]

    van den Berg, Marcel L. (Oakland, CA); Batteux, Jan D. (Hayward, CA); Labov, Simon E. (Berkeley, CA)

    2003-01-01

    A heat switch includes two symmetric jaws. Each jaw is comprised of a link connected at a translatable joint to a flexible arm. Each arm rotates about a fixed pivot, and has an articulated end including a thermal contact pad connected to a heat sink. The links are joined together at a translatable main joint. To close the heat switch, a closing solenoid is actuated and forces the main joint to an over-center position. This movement rotates the arms about their pivots, respectively, forces each of them into a stressed configuration, and forces the thermal contact pads towards each other and into compressive contact with a cold finger. The closing solenoid is then deactivated. The heat switch remains closed due to a restoring force generated by the stressed configuration of each arm, until actuation of an opening solenoid returns the main joint to its starting open-switch position.

  2. New blow-up rates for fast controls of Schrdinger and heat equations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    New blow-up rates for fast controls of Schrödinger and heat equations G. Tenenbaum & M. Tucsnak 11/4/2007, 14h23) Abstract: We consider the null-controllability problem for the Schrödinger and heat the minimal norm control driving the system to zero. Our main results concern the Schrödinger and heat

  3. John H. Dearborn Department of Zoology. University of Maine

    E-Print Network [OSTI]

    John H. Dearborn Department of Zoology. University of Maine Orono. Maine 04469 F. Patricio Ojeda Department of Zoology. University of Maine. Orono. Maine 04469 Present address: Departamento de Ecologra of the Gulf of Maine* Shallow subtidal habitats of the Gulf of Maine harbor important popula- tions of decapod

  4. c1a.xls

    Gasoline and Diesel Fuel Update (EIA)

    ... 3,825 63,560 6,149 10,402 3,445 1,987 181 536 Buildings with Water Heating ... 3,659 62,827 6,158 10,202 3,379 2,035 218 525 Notes: Site...

  5. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D. (Pittsburgh, PA)

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  6. 4.A. HEAT FLOW 119 4.A. Heat flow

    E-Print Network [OSTI]

    Hunter, John K.

    denote the temperature, g : R the rate per unit volume at which heat sources create energy inside the body, and q : Rn the heat flux. That is, the rate per unit area at which heat energy diffuses across of energy implies that for any smooth open set the heat flux out of is equal to the rate at which heat

  7. Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Kandlikar, Satish

    Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference Las Vegas, Nevada, USA July 21-23, 2003 HT2003-47449 HEAT TRANSFER FROM A MOVING AND EVAPORATING MENISCUS ON A HEATED SURFACE meniscus with complete evaporation of water without any meniscus break-up. The experimental heat transfer

  8. Heat Integrate Heat Engines in Process Plants 

    E-Print Network [OSTI]

    Hindmarsh, E.; Boland, D.; Townsend, D. W.

    1986-01-01

    -06-75 Proceedings from the Eighth Annual Industrial Energy Technology Conference, Houston, TX, June 17-19, 1986 I I APPROPRIATE/INAPPROPRIATE INTEGRATION OF HEiT PUMPS, engine transfers h'eat across the' process; pinch.'" . . :i".p., J The insights...

  9. Microchannel heat sink assembly

    DOE Patents [OSTI]

    Bonde, W.L.; Contolini, R.J.

    1992-03-24

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

  10. Microchannel heat sink assembly

    DOE Patents [OSTI]

    Bonde, Wayne L. (Livermore, CA); Contolini, Robert J. (Pleasanton, CA)

    1992-01-01

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.

  11. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  12. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  13. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  14. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1981-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  15. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru; Reese, Jason M.

    2014-05-15

    We present a “Knudsen heat capacity” as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  16. Improved solar heating systems

    DOE Patents [OSTI]

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  17. Solar heating system

    DOE Patents [OSTI]

    Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  18. EFFICIENCY MAINE DIRECT INSTALLS INCREASE UPGRADE PACE | Department...

    Energy Savers [EERE]

    all types of homes typically depend upon heating oil for warmth in the winter, and the price of heating oil rose significantly in recent years. To help residents take advantage of...

  19. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 1: Main Report

    SciTech Connect (OSTI)

    Ball, Sydney J

    2008-03-01

    A phenomena identification and ranking table (PIRT) process was conducted for the Next Generation Nuclear Plant (NGNP) design. This design (in the conceptual stage) is a modular high-temperature gas-cooled reactor (HTGR) that generates both electricity and process heat for hydrogen production. Expert panels identified safety-relevant phenomena, ranked their importance, and assessed the knowledge levels in the areas of accidents and thermal fluids, fission-product transport and dose, high-temperature materials, graphite, and process heat for hydrogen production. This main report summarizes and documents the process and scope of the reviews, noting the major activities and conclusions. The identified phenomena, analyses, rationales, and associated ratings of the phenomena, plus a summary of each panel's findings, are presented. Individual panel reports for these areas are provided as attached volumes to this main report and provide considerably more detail about each panel's deliberations as well as a more complete listing of the phenomena that were evaluated.

  20. Heat Exchangers for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar...

  1. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commonly used as the heat transfer fluid in refrigerators, air conditioners, and heat pumps. They generally have a low boiling point and a high heat capacity. This enables a...

  2. Heat Exchangers for Solar Water Heating Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because...

  3. Thermal rectification at silicon-amorphous polyethylene interface Ming Hu,1,a

    E-Print Network [OSTI]

    Li, Baowen

    Thermal rectification at silicon-amorphous polyethylene interface Ming Hu,1,a Pawel Keblinski,1,b heat currents. We estimate that in the limit of large heat currents, the silicon-amorphous polyethylene by amorphous polymer polyethylene PE and silicon crystal. We will also show that the mecha- nism governing

  4. Micro heat barrier

    DOE Patents [OSTI]

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  5. Integrating preconcentrator heat controller

    DOE Patents [OSTI]

    Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

    2007-10-16

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  6. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Home Heating Oil Reserve System (Heating Oil) More Documents & Publications PIA - WEB Physical Security Major Application PIA - GovTrip (DOE data) PIA - WEB Unclassified...

  7. Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal...

    Open Energy Info (EERE)

    Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  8. Condensing Heating and Water Heating Equipment Workshop Location...

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

  9. TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS

    E-Print Network [OSTI]

    Selkowitz, S.

    2011-01-01

    advantage of light transmission through heat mirrors may notimportant but heat gain may not be, the transmission windowheat mirror coating alone (without substrate losses) is a solar transmission

  10. Low-Cost Gas Heat Pump for Building Space Heating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Cost Gas Heat Pump for Building Space Heating 2015 Building Technologies Office Peer Review Michael Garrabrant mgarrabrant@stonemtntechnologies.com Stone Mountain Technologies,...

  11. Low-Cost Gas Heat Pump for Building Space Heating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Cost Gas Heat Pump for Building Space Heating 2014 Building Technologies Office Peer Review Michael Garrabrant mgarrabrant@stonemtntechnologies.com Stone Mountain Technologies,...

  12. Molecular heat pump

    E-Print Network [OSTI]

    Dvira Segal; Abraham Nitzan

    2005-10-11

    We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

  13. Heat treatment furnace

    DOE Patents [OSTI]

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  14. Stirling engine heating system

    SciTech Connect (OSTI)

    Johansson, L.N.; Houtman, W.H.; Percival, W.H.

    1988-06-28

    A hot gas engine is described wherein a working gas flows back and forth in a closed path between a relatively cooler compression cylinder side of the engine and a relatively hotter expansion cylinder side of the engine and the path contains means including a heat source and a heat sink acting upon the gas in cooperation with the compression and expansion cylinders to cause the gas to execute a thermodynamic cycle wherein useful mechanical output power is developed by the engine, the improvement in the heat source which comprises a plurality of individual tubes each forming a portion of the closed path for the working gas.

  15. Specifying Waste Heat Boilers 

    E-Print Network [OSTI]

    Ganapathy, V.

    1992-01-01

    HEAT BOILERS V.Ganapathy.ABCO Industries Abilene,Texas ABSTRACT Waste heat boilers or Heat Recovery Steam 'Generators(HRSGs) as they are often called are used to recover energy from waste gas streams in chemical plants, refineries... stream_source_info ESL-IE-92-04-42.pdf.txt stream_content_type text/plain stream_size 11937 Content-Encoding ISO-8859-1 stream_name ESL-IE-92-04-42.pdf.txt Content-Type text/plain; charset=ISO-8859-1 SPECIFYING WASTE...

  16. Heating & Cooling | Department of Energy

    Energy Savers [EERE]

    Energy Saver Heating & Cooling Heating & Cooling Heating and cooling account for about 48% of the energy use in a typical U.S. home, making it the largest energy expense for...

  17. Energy 101: Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe ...

  18. Complex Compound Chemical Heat Pumps 

    E-Print Network [OSTI]

    Rockenfeller, U.; Langeliers, J.; Horn, G.

    1987-01-01

    Complex-compound solid-vapor fluid pairs can be used in heat of reaction heat pumps for temperature amplifier (TA) as well as heat amplifier (HA) cycle configurations. This report describes the conceptual hardware design for complex compound...

  19. Water Heating | Department of Energy

    Energy Savers [EERE]

    Water Heating Water Heating September 2, 2015 - 11:07am Addthis Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo...

  20. Brook Trout Angling in Maine 2009 Survey Results

    E-Print Network [OSTI]

    Thomas, Andrew

    Brook Trout Angling in Maine 2009 Survey Results Marc Edwards University of Maine Cooperative Extension Franklin County Office A Cooperative Project between the University of Maine Cooperative Extension and Maine Department of Inland Fisheries and Wildlife #12;2 Background In a meeting at University of Maine

  1. Gas Main Sensor and Communications Network System

    SciTech Connect (OSTI)

    Hagen Schempf

    2006-05-31

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetooth PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.

  2. Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor

    SciTech Connect (OSTI)

    Piyush Sabharwall; Ali Siahpush; Michael McKellar; Michael Patterson; Eung Soo Kim

    2012-06-01

    The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.

  3. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature

  4. Passive solar heating analysis

    SciTech Connect (OSTI)

    Balcomb, J.D.; Jones, R.W.; Mc Farland, R.D.; Wray, W.O.

    1984-01-01

    This book discusses about the design of solar heating systems. The terms and symbols are clearly defined. Step-by-step procedures are indicated. Worked examples are given with tables, graphs, appendixes.

  5. Heating Plant Emergency Instructions

    E-Print Network [OSTI]

    de Leon, Alex R.

    Heating Plant Emergency Instructions In the event of an EMERGENCY dial 403-220-5333 for Campus room, closet or hallway (ground floor, if possible) Stay away from outside walls, windows and doors

  6. Greywater heat exchanger

    SciTech Connect (OSTI)

    Holmberg, D.

    1983-11-21

    A kilowatt meter and water meter were installed to monitor pregreywater usage. The design considerations, the heat exchanger construction and installation, and the monitoring of usage levels are described.

  7. Heat Pump Strategies and Payoffs 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1982-01-01

    (Evaporator) Heat Source Heat Pump Turbine Compressor Compressed Vapor Pump IZl:G1 Type IV - Rankine Cycle (Waste Heat Driven) Heat Sink (Condenser) Fig. 3 Basic Heat Pump Categories 324 ESL-IE-82-04-66 Proceedings from the Fourth Industrial... payback. 500 450 400 Leas Than G:" ~ 2! 350 2-Vear Payback .a e 300 !. E ~ 250 Simple Waste Heat Boller 200 100 1.-........_-'-_.1.---1"---.1._..&0.._1.---'-_'-__ o 10 20 30 40 50 60 70 80 Heat Removed (%) 82291 Fig. 4 Heat...

  8. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Services Homes Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water...

  9. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

  10. Land Snail Ecology and Biogeography of Eastern Maine

    E-Print Network [OSTI]

    Nekola, Jeffrey C.

    Land Snail Ecology and Biogeography of Eastern Maine Vertigo bollesiana Vertigo nylanderi Vertigo & Invertebrate Group Maine Department of Inland Fisheries & Wildlife and the Aroostook Hills and Lowlands ......................................................................................................... 75 Appendix I: Taxonomic Key for Maine Land Snails ............................................... 78

  11. Habitat Partitioning by Foraging Gulls in Maine and Northwestern Europe

    E-Print Network [OSTI]

    Hunt, GL; Hunt, MW

    1973-01-01

    size; this in the case in Maine, where three species breed:BY FORAGING GULLS IN MAINE AND NORTHWESTERN EUROPE GEORGE L.differences between the Maine gulls. The comparison of

  12. Heat exchange apparatus

    DOE Patents [OSTI]

    Degtiarenko, Pavel V.

    2003-08-12

    A heat exchange apparatus comprising a coolant conduit or heat sink having attached to its surface a first radial array of spaced-apart parallel plate fins or needles and a second radial array of spaced-apart parallel plate fins or needles thermally coupled to a body to be cooled and meshed with, but not contacting the first radial array of spaced-apart parallel plate fins or needles.

  13. Freezable heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA); Sanzi, James L. (Lancaster, PA)

    1981-02-03

    A heat pipe whose fluid can be repeatedly frozen and thawed without damage to the casing. An additional part is added to a conventional heat pipe. This addition is a simple porous structure, such as a cylinder, self-supporting and free standing, which is dimensioned with its diameter not spanning the inside transverse dimension of the casing, and with its length surpassing the depth of maximum liquid.

  14. Ris Energy Report 6 Summary, main conclusions and recommendations 2 Summary, main conclusions

    E-Print Network [OSTI]

    energy. IPCC states that CO2 must peak soon In its Fourth Assessment Report the Intergovernmental Panel of long-term variability. It is feasible to save more energy Even though energy efficiency has improved-through. They will be used in three main applications: stationary power generation, transport, and portable equipment. Solar

  15. Integrated heat pump water heater

    SciTech Connect (OSTI)

    Robinson, G.P.; Blackshaw, A.L.

    1986-07-08

    An integrated heat pump water heater system is described for providing either heating or cooling of an interior space, and heating water in conjunction with either the heating or cooling cycle or independently, by means of a refrigerant flowing through the system. The system consists of: a compressor; a first heat exchanger means for providing heat to the interior space in the heating cycle and for removing heat during the cooling cycle by heat transfer with a refrigerant therein; a second heat exchanger means for transferring heat to or from a refrigerant therein by heat exchanger with an exterior medium; a third heat exchanger means for transferring heat from a refrigerant therein to water circulated therethrough; a first expansion device; a second expansion device; a third expansion device; refrigerant flow connection means connected between the compressor, the heat exchanger means, and the expansion devices which may be controllably connected in alternate configurations whereby. In a first configuration the refrigerant flow is sequentially from the compressor, through the third heat exchanger means, through the second heat exchanger means, through the first expansion device, through the first heat exchanger means, and back to the compressor. In a second configuration the refrigerant flow is sequentially from the compressor, through the third heat exchanger means, through the first heat exchanger means, through the second expansion device, through the second heat exchanger means, and back to the compressor. In a third configuration the refrigerant flow is sequentially from the compressor, through the third heat exchanger means, through the third expansion device, through the second heat exchanger means, and back to the compressor.

  16. Radial flow heat exchanger

    DOE Patents [OSTI]

    Valenzuela, Javier (Hanover, NH)

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  17. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  18. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  19. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  20. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  1. Better Buildings: Workforce, Spotlight on Maine: Contractor Sales...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions Better Buildings: Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy...

  2. Focus Series: Maine - Residential Direct Install Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Better Buildings Neighborhood Program Focus Series: Maine - Residential Direct Install Program: Residential Air Sealing Program Drives Maine Home Energy Savings Through the Roof....

  3. University of Maine Researching Floating Technologies for Deepwater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maine Researching Floating Technologies for Deepwater Offshore Wind University of Maine Researching Floating Technologies for Deepwater Offshore Wind October 1, 2012 - 12:57pm...

  4. Brazil's Biofuels Scenario: What are the Main Drivers Which will...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brazil's Biofuels Scenario: What are the Main Drivers Which will Shape Investments in the Long Term? Brazil's Biofuels Scenario: What are the Main Drivers Which will Shape...

  5. Evaluation of Heat Checking and Washout of Heat Resistant Superalloys and Coatings for Die inserts

    SciTech Connect (OSTI)

    David Schwam; John F. Wallace; Yulong Zhu; Edward Courtright; Harold Adkins

    2005-01-30

    This project had two main objectives: (1) To design, fabricate and run a full size test for evaluating soldering and washout in die insert materials. This test utilizes the unique capabilities of the 350 Ton Squeeze Casting machine available in the Case Meal Casting Laboratory. Apply the test to evaluate resistance of die materials and coating, including heat resistant alloys to soldering and washout damage. (2) To evaluate materials and coatings, including heat resistant superalloys, for use as inserts in die casting of aluminum alloys.

  6. Theory of Off Resonance Heat:ing J .C. SPROTI

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    The heating rate for a cold, tenuous, unifonn plasma in a unifonn magnetic field can be written as (1) where E previously proved successful for calculating resonance heating rates. II. Upper off Resonance Heating, and the resulting heating rate is independent of the collision frequency v . It is often said that there can

  7. Solar air heating system for combined DHW and space heating

    E-Print Network [OSTI]

    Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren Østergaard Jensen

  8. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P. (San Ramon, CA)

    2012-07-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  9. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P.

    2015-12-08

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  10. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  11. Main References Braids and Configurations Simplicial Structure and Brunnian braids Boundary Brunnian Braids Main Results Braids, configurations and homotopy groups

    E-Print Network [OSTI]

    Wu, Jie

    Main References Braids and Configurations Simplicial Structure and Brunnian braids Boundary Brunnian Braids Main Results Braids, configurations and homotopy groups Joint with Jingyan Li Jie Wu at Hebei Normal University #12;Main References Braids and Configurations Simplicial Structure and Brunnian

  12. Oakwood Main Oakwood Main is a major teaching and research hospital and home to three medical residency

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    Oakwood Main Oakwood Main is a major teaching and research hospital and home to three as one of the main teaching facilities for the Orthopaedic Program with the residents completing

  13. Heat Pipe Impact on Dehumidification, Indoor Air Quality and Energy Savings 

    E-Print Network [OSTI]

    Cooper, J. T.

    1996-01-01

    for dehumidification, precooling, reheating and heat recovery. FIGURE 1. A SIMPLE HEAT BACKGROUND AND OVERVIEW The use of heat pipes dates back to the turn of the century. Heat pipes, also termed Perkins pipes, are heat transfer devices which work by means... stream_source_info ESL-HH-96-05-44.pdf.txt stream_content_type text/plain stream_size 15385 Content-Encoding UTF-8 stream_name ESL-HH-96-05-44.pdf.txt Content-Type text/plain; charset=UTF-8 HEAT PIPE IMPACT...

  14. Toolbox Safety Talk Heat Stress

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Heat Stress Environmental Health & Safety Facilities Safety & Health Section for inducing heat stress. When the body is unable to cool itself by sweating, several heat-induced illnesses Stress · Know signs/symptoms of heat-related illnesses; monitor yourself and coworkers. · Block out

  15. Guide to Geothermal Heat Pumps

    SciTech Connect (OSTI)

    None

    2011-02-01

    Geothermal heat pumps, also known as ground source heat pumps, geoexchange, water-source, earth-coupled, and earth energy heat pumps, take advantage of this resource and represent one of the most efficient and durable options on the market to heat and cool your home.

  16. Heat exchanger-accumulator

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX)

    1980-01-01

    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  17. BUILDING CONNECTION SOUTH BLOCK: ACCESS VIA MAIN ENTRANCE

    E-Print Network [OSTI]

    Shoubridge, Eric

    ENTRANCE ELEVATOR WASHROOMS BUILDING CONNECTION SOUTH BLOCK: ACCESS VIA MAIN ENTRANCE NORTH BLOCK: ACCESS VIA MAIN ENTRANCE WEST BLOCK: ALL LEVELS ARE ACCESSIBLE BY PUBLIC ELEVATOR SOUTH BLOCK MAIN ENTRANCE NORTH BLOCK: ACCESS VIA MAIN ENTRANCE WEST BLOCK: ALL LEVELS ARE ACCESSIBLE BY PUBLIC

  18. Conjunctive Selection Conditions in Main Memory Kenneth A. Ross

    E-Print Network [OSTI]

    Ross, Kenneth A.

    Conjunctive Selection Conditions in Main Memory Kenneth A. Ross Columbia University kar of records. With large main memories available cheaply, systems may choose to keep the data entirely in main in main memory needs to take into account the architectural characteristics of modern processors, just

  19. Main Chamber Pressure why do we care about it?

    E-Print Network [OSTI]

    Pitcher, C. S.

    Main Chamber Pressure why do we care about it? - neutrals in the main chamber imply a particle-surface interaction there which may result in impurity production and erosion - neutrals in the main chamber may.main chamber recycling 3.ion flux to the upper part of the outer plate 4.upper divertor leakage #12

  20. Friction-Induced Fluid Heating in Nanoscale Helium Flows

    SciTech Connect (OSTI)

    Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-05-21

    We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.

  1. High Efficiency R-744 Commercial Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Elbel, Dr. Stefan W.; Petersen, Michael

    2013-04-25

    The project investigated the development and improvement process of a R744 (CO2) commercial heat pump water heater (HPWH) package of approximately 35 kW. The improvement process covered all main components of the system. More specific the heat exchangers (Internal heat exchanger, Evaporator, Gas cooler) as well as the expansion device and the compressor were investigated. In addition, a comparison to a commercially available baseline R134a unit of the same capacity and footprint was made in order to compare performance as well as package size reduction potential.

  2. Optimization of Heat Exchanger Cleaning 

    E-Print Network [OSTI]

    Siegell, J. H.

    1986-01-01

    EXCHANGER CLEANING Jeffrey H. Siegell Exxon Research and Engineering Company Florham Park, New Jersey ABSTRACT The performance of heat integration systems is quantified in terms of the amount of heat that is recovered. This decreases with time due... to increased fouling of the heat exchange surface. Using the "Total Fouling Related Expenses (TFRE)" approach, economic incentives for heat exchanger cleaning are evaluated using linear, exponential, and exponential finite decrease models of the heat...

  3. Heat distribution ceramic processing method

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

    2001-01-01

    A multi-layered heat distributor system is provided for use in a microwave process. The multi-layered heat distributors includes a first inner layer of a high thermal conductivity heat distributor material, a middle insulating layer and an optional third insulating outer layer. The multi-layered heat distributor system is placed around the ceramic composition or article to be processed and located in a microwave heating system. Sufficient microwave energy is applied to provide a high density, unflawed ceramic product.

  4. Pour venir l'Universit du MainePour venir l'Universit du MainePour venir l'Universit du MainePour venir l'Universit du Maine

    E-Print Network [OSTI]

    Di Girolami, Cristina

    Pour venir à l'Université du MainePour venir à l'Université du MainePour venir à l'Université du MainePour venir à l'Université du Maine :::: Par le train : Prenez la sortie « NORD » dans la gare A la MAINE Hôtel 1ère classe ZAC du Ribay 02.43.47.03.13 Bâtiment IRA (Département de Maths Et Laboratoire

  5. Electrochemical heat engine

    DOE Patents [OSTI]

    Elliott, Guy R. B. (Los Alamos, NM); Holley, Charles E. (Alcalde, NM); Houseman, Barton L. (Cockeysville, MD); Sibbitt, Jr., Wilmer L. (Albuquerque, NM)

    1978-01-01

    Electrochemical heat engines produce electrochemical work, and mechanical motion is limited to valve and switching actions as the heat-to-work cycles are performed. The electrochemical cells of said heat engines use molten or solid electrolytes at high temperatures. One or more reactions in the cycle will generate a gas at high temperature which can be condensed at a lower temperature with later return of the condensate to electrochemical cells. Sodium, potassium, and cesium are used as the working gases for high temperature cells (above 600 K) with halogen gases or volatile halides being used at lower temperature. Carbonates and halides are used as molten electrolytes and the solid electrolyte in these melts can also be used as a cell separator.

  6. Lead Sorption onto Ferrihydrite. 1. A Macroscopic and Spectroscopic

    E-Print Network [OSTI]

    Sparks, Donald L.

    Lead Sorption onto Ferrihydrite. 1. A Macroscopic and Spectroscopic Assessment P A R A S T R I V E bidentate complexes are mainly formed on the oxide surface with two Fe atoms located at approximately 3.34 Å complexes present at the oxide surface. Interestingly, at constant pH, the configuration of the sorption

  7. An analytical approach to multi-cylinder regenerative machines with application to 3-cylinder heat-aided Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, Sumio; Fujishima, Ichiro; Corey, J.; Isshiki, Naotsugu

    1996-12-31

    This paper describes a method for analysis and optimization of multi-cylinder regenerative machines. The authors have devised this method in a project at KUBOTA to develop an improved gas engine-driven heat pump using both shaft power and exhaust heat sources. Based on combinations of included Stirling cycles, this analytical approach allows use of well-established and validated Stirling simulation models to optimize partial systems. The technique further provides a method of integrating such optimal partial-system Stirling cycles into a complex combination system. It is shown that this remains an optimum solution for the three-cylinder heat-assisted heat pump case. Results from hardware tests of the main Stirling heat pump cycle (2-cylinders) are given and compared with analytical expectations using Sage simulation code. This is extended to validate Sage modeling of 3-cylinder machines.

  8. Social Media: Heat #HeatSafety #BeatTheHeat #SummerSafety

    E-Print Network [OSTI]

    ; Facebook: Did you know the air temperature can actually feel hotter than what the thermometer reads to help the NWS build a WeatherReady Nation. Facebook: Heat is typically the leading cause.weather.gov/heat #HeatSafety #12; Facebook: Heat waves can be deadly! They can also happen anywhere in the U

  9. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MacArthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  10. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  11. Air heating system

    DOE Patents [OSTI]

    Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  12. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  13. Laboratory Heat Recovery System 

    E-Print Network [OSTI]

    Burrows, D. B.; Mendez, F. J.

    1981-01-01

    that they will be considerable. The system has been in successful operation since October 1979. 724 ESL-IE-81-04-123 Proceedings from the Third Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 Conoco R&D West The award-winning laboratory heat-recovery... stream_source_info ESL-IE-81-04-123.pdf.txt stream_content_type text/plain stream_size 11112 Content-Encoding ISO-8859-1 stream_name ESL-IE-81-04-123.pdf.txt Content-Type text/plain; charset=ISO-8859-1 LABORATORY HEAT...

  14. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  15. Absorption Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Absorption Heat Pumps Absorption Heat Pumps June 24, 2012 - 2:11pm Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat...

  16. Tips: Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pumps Tips: Heat Pumps July 20, 2014 - 5:48pm Addthis Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat...

  17. DOE Zero Energy Ready Home Case Study 2014: Near Zero Maine Home II, Vassalboro, Maine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY Takes 9.New Town BuildersHealthyNear Zero Maine

  18. CONVERGENCE OF A NUMERICAL SCHEME FOR A NONLINEAR COUPLED SYSTEM OF RADIATIVE---CONDUCTIVE HEAT TRANSFER EQUATIONS

    E-Print Network [OSTI]

    Henri Poincaré -Nancy-Université, Université

    . Introduction And Main Results Radiative heat transfer coupled with conduction through semi---transparent media---state combined radiative---conductive heat transfer. The media studied were assumed to be homogeneous, grey1 CONVERGENCE OF A NUMERICAL SCHEME FOR A NONLINEAR COUPLED SYSTEM OF RADIATIVE---CONDUCTIVE HEAT

  19. Heat Transfer Characteristics of a Generalized Divided Flow Heat Exchanger 

    E-Print Network [OSTI]

    Singh, K. P.

    1979-01-01

    CHARACTERISTICS OF A GENERALIZED DIVIDED FLrnJ HEAT EXCHANGER KRISHNA P. SINGH, CHIEF ENGINEER JOSEPH OAT CORPORATION 2500 Broadway, Camden, New Jersey 08104 ,l\\bstract The concept of a "Di vi ded-fl O~I" heat exchanger is general i zed by 1oca t i n...-Pass Split-Flow Shell Trans. of the ASME, Journal of Heat Transfer, pp 408-416, Aug. 1964. (4) Singh, K. P. and Holtz, ~I.J., "Generalization of the Split Flow Heat Exchanger - Geometry for Enhanced Heat Transfer", 18th National ASME/AICHE Heat Transfer...

  20. Pairing and specific heat in hot nuclei

    E-Print Network [OSTI]

    Danilo Gambacurta; Denis Lacroix; Nicu Sandulescu

    2013-07-15

    The thermodynamics of pairing phase-transition in nuclei is studied in the canonical ensemble and treating the pairing correlations in a finite-temperature variation after projection BCS approach (FT-VAP). Due to the restoration of particle number conservation, the pairing gap and the specific heat calculated in the FT-VAP approach vary smoothly with the temperature, indicating a gradual transition from the superfluid to the normal phase, as expected in finite systems. We have checked that the predictions of the FT-VAP approach are very accurate when compared to the results obtained by an exact diagonalization of the pairing Hamiltonian. The influence of pairing correlations on specific heat is analysed for the isotopes $^{161,162}$Dy and $^{171,172}$Yb. It is shown that the FT-VAP approach, applied with a level density provided by mean field calculations and supplemented, at high energies, by the level density of the back-shifted Fermi gas model, can approximate reasonably well the main properties of specific heat extracted from experimental data. However, the detailed shape of the calculated specific heat is rather sensitive to the assumption made for the mean field.

  1. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  2. Industrial Waste Heat Recovery 

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01

    was that the upper material temperature limit of 1500oF is state-of-the-art for recuperators operating in an oxidizing environment produced by the com-bustion of Diesel No.2. A full size counter axial flow metal heat exchanger test module has successfully completed...

  3. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  4. Heat exchange assembly

    DOE Patents [OSTI]

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2004-06-08

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  5. TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS

    E-Print Network [OSTI]

    Selkowitz, S.

    2011-01-01

    surfaces in a passive solar-heated building is to maximizeBuildings and Community Systems. -i- TRANSPARENT HEATING MIRRORS FOR PASSIVEpassive solar systems. Architecturally, a window is a very complex building

  6. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression 

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01

    The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

  7. Modeling of Heat Transfer in Geothermal Heat Exchangers 

    E-Print Network [OSTI]

    Cui, P.; Man, Y.; Fang, Z.

    2006-01-01

    Ground-coupled heat pump (GCHP) systems have been gaining increasing popularity for space conditioning in residential and commercial buildings. The geothermal heat exchanger (GHE) is devised for extraction or injection of thermal energy from...

  8. Influence of Heat Transmission Mode on Heating Rates and on the Selection of Patches for Heating in a Mediterranean Lizard

    E-Print Network [OSTI]

    Carrascal, Luis M.

    369 Influence of Heat Transmission Mode on Heating Rates and on the Selection of Patches the role of heat trans- mission modes on heating rates and on the selection of sites for heating a significant effect on the heating rate, with heat gain per unit of time being faster at the higher operative

  9. Orbits, masses, and evolution of main belt triple (87) Sylvia

    E-Print Network [OSTI]

    Fang, J; Margot, JL; Margot, JL; Rojo, P

    2012-01-01

    D. 2008, Binaries in the Kuiper Belt, ed. Barucci, M. A. ,Brozovic et al. 2009), main belt triples Kleopatra (DescampsMASSES, AND EVOLUTION OF MAIN BELT TRIPLE (87) SYLVIA J ULIA

  10. Orbits, Masses, and Evolution of Main Belt Triple (87) Sylvia

    E-Print Network [OSTI]

    Fang, Julia; Margot, Jean-Luc; Rojo, Patricio

    2012-01-01

    D. 2008, Binaries in the Kuiper Belt, ed. Barucci, M. A. ,Brozovic et al. 2009), main belt triples Kleopatra (DescampsMASSES, AND EVOLUTION OF MAIN BELT TRIPLE (87) SYLVIA J ULIA

  11. Prandtl Number Dependent Natural Convection with Internal Heat Sources

    SciTech Connect (OSTI)

    Kang Hee Lee; Seung Dong Lee; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

    2004-06-01

    Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. Recently, attention is being paid to the feasibility of external vessel flooding as a severe accident management strategy and to the phenomena affecting the success path for retaining the molten core material inside the vessel. The heat transfer inside the molten core material can be characterized by the strong buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of such flow depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, the natural convection heat transfer phenomena involving the internal heat generation are represented by the modified Rayleigh number (Ra’), which quantifies the internal heat source and hence the strength of the buoyancy force. In this study, tests were conducted in a rectangular section 250 mm high, 500 mm long and 160 mm wide. Twenty-four T-type thermocouples were installed in the test section to measure temperatures. Four T-type thermocouples were used to measure the boundary temperatures. The thermocouples were placed in designated locations after calibration. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Ra' between 1.5x106 and 7.42x1015 and the Prandtl number (Pr) between 0.7 and 6.5. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained uniform. The results demonstrated feasibility of the direct heating method to simulate uniform volumetric heat generation. Particular attentions were paid to the effect of Pr on natural convection heat transfer within the rectangular pool.

  12. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  13. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

    1985-01-01

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  14. Unum Life Insurance Company of America Portland, Maine 04122

    E-Print Network [OSTI]

    Cina, Jeff

    Unum Life Insurance Company of America Portland, Maine 04122 Election for Continuation of Coverage - A Long Term Care Mail to: Unum LTC Customer Services 2211 Congress Street Portland, Maine 04122 Services 2211 Congress Street Portland, Maine 04122-1760 How Long Will Unum Continue To Pay For Long Term

  15. Implementation and main results Ecient Management of HVAC Systems

    E-Print Network [OSTI]

    Schenato, Luca

    Motivation Implementation and main results Ecient Management of HVAC Systems Mirco Rampazzo Management of HVAC Systems #12;Motivation Implementation and main results Outline 1 Motivation HVAC Systems Multiple-chiller systems 2 Implementation and main results Models, Control and Optimization Examples Mirco

  16. FAST SEARCH IN MAIN MEMORY DATABASES Anastasia Analyti & Sakti Pramanik *

    E-Print Network [OSTI]

    Analyti, Anastasia

    FAST SEARCH IN MAIN MEMORY DATABASES ABSTRACT Anastasia Analyti & Sakti Pramanik * Computer Science and analyze high performance hash based search methods for main memory databasea. We define optimal search in main memory databases as the search that requires at most one key comparison to locate a record

  17. ARCHITECTURE AND MAIN HARDWARE COMPONENTS OF THE FEL CONTROL SYSTEM

    E-Print Network [OSTI]

    Kozak, Victor R.

    ARCHITECTURE AND MAIN HARDWARE COMPONENTS OF THE FEL CONTROL SYSTEM E.N. Dementiev, V.R. Kozak, E general structure and listing the main features and hardware of individual components. Comparative as the reasons for choosing certain standards. Main issues of the future development of the control system

  18. Local Deformations of Polymers with Nonplanar Rigid Main-Chain

    E-Print Network [OSTI]

    Dinner, Aaron

    Local Deformations of Polymers with Nonplanar Rigid Main-Chain Internal Coordinates AARON R. DINNER: A procedure for local deformation of a polymer by concerted rotation of several main-chain dihedral angles has of an RNA hairpin loop in which the main chain (C3 --C4 ) bonds that are constrained by the sugar rings

  19. 2015 Promotion and Tenure Main Binder Checklist Name _________________________________ College _________________________

    E-Print Network [OSTI]

    McQuade, D. Tyler

    2015 Promotion and Tenure Main Binder Checklist Name _________________________________ College _________________________ This is an outline; please use Attachment 1 of the P&T Memo for detailed instructions. Labeling the Main Binder SPOT and/or # 13 from SPCI https://java.apps.fsu.edu/sussai2/main.jsp ___SPOT/SPCI Summary Forms

  20. Use of Strontium Isotopes to Identify Buried Water Main Leakage

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    Use of Strontium Isotopes to Identify Buried Water Main Leakage Into Groundwater in a Highly water mains. The identification of leakage locations was done by conventional water quality parameters to identify leakage locations especially where the leakage is from drinking water mains because the chemical

  1. UNIVERSITY OF MAINE INTERDISCIPLINARY PH.D. PROGRAM GUIDELINES

    E-Print Network [OSTI]

    Thomas, Andrew

    1 UNIVERSITY OF MAINE INTERDISCIPLINARY PH.D. PROGRAM GUIDELINES Revised ­ January 29th, 2015 are Graduate Faculty of the University of Maine, two of whom must hold Full Graduate Faculty status (inclusive of the chair). The four University of Maine Graduate Faculty should represent multiple distinct disciplines

  2. Main Campus Urban Forest and Landscape Management Policy Policy Statement

    E-Print Network [OSTI]

    Stuart, Steven J.

    Main Campus Urban Forest and Landscape Management Policy Policy Statement: Clemson University and recreation. This Main Campus Urban Forest and Landscape Management Policy enables that commitment through procedures and requirements for achieving the purpose of this policy and its implementation ("Main Campus

  3. Main resonances in directly modulated semiconductor lasers: effect of spontaneous

    E-Print Network [OSTI]

    Toral, Raúl

    Main resonances in directly modulated semiconductor lasers: effect of spontaneous emission and gain saddle-node bifurcations related to the main resonances in pump-modulated laser diodes are obtained via] and of the spontaneous emission terms [lo] have already been considered, but little attention has been given to main

  4. Modeling the Circulation in Penobscot Bay, Maine Huijie Xue1

    E-Print Network [OSTI]

    Xiu, Peng

    Xue et al1 Modeling the Circulation in Penobscot Bay, Maine Huijie Xue1 , Yu Xu1 , David Brooks2 , Neal Pettigrew1 , John Wallinga1 1. School of Marine Sciences, University of Maine, Orono, ME 04469 Penobscot Bay, with approximate dimensions 50 x 100 km, is the largest estuarine embayment along the Maine

  5. Applicant Name: ______________________________________ University of Maine MASTER OF SOCIAL WORK

    E-Print Network [OSTI]

    Thomas, Andrew

    Applicant Name: ______________________________________ University of Maine MASTER OF SOCIAL WORK Program of Study Schedule Options Directions: The University of Maine School of Social Work offers several The University of Maine's Master of Social Work Program may be completed in three years through our new Online

  6. HEPC Peer Institutions West Virginia University -Main Campus

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    HEPC Peer Institutions West Virginia University - Main Campus 2008-09 Data HEPC Peer Institutions of Massachusetts-Amherst Univ of Missouri-Columbia University of Nevada-Reno Univ of New Mexico-Main Campus College Navigator #12;HEPC Peer Institutions West Virginia University - Main Campus 2010-11 Data HEPC Peer

  7. Applicant Name: ______________________________________ University of Maine MASTER OF SOCIAL WORK

    E-Print Network [OSTI]

    Thomas, Andrew

    Applicant Name: ______________________________________ University of Maine MASTER OF SOCIAL WORK Program of Study Schedule Options Directions: The University of Maine School of Social Work offers several 2016 The University of Maine's Master of Social Work Program may be completed in three years through

  8. Main Ecosystem Characteristics and Distribution of Wetlands in Boreal and

    E-Print Network [OSTI]

    9 Main Ecosystem Characteristics and Distribution of Wetlands in Boreal and Alpine Landscapes influenced while the rest are considered uninfluenced by human impact. Impacts are mainly from machines used or successional shifts to other vegetation types are more evident in such habitats. The main threats

  9. Sminaire Y. FOUQUET dialogue & main9en domicile Sminaire Travaux

    E-Print Network [OSTI]

    Fouquet, Yannick

    Séminaire Y. FOUQUET ­ dialogue & main9en à domicile Séminaire Travaux de;Séminaire Y. FOUQUET ­ dialogue & main9en à domicile Extension experte de corpus réduit ­ dialogue & main9en à domicile Modélisation des attentes en dialogue oral Pourriez-vous me

  10. LLM/DIPLOMA EMPLOYMENT LAW MAIN CAMPUS, UNIVERSITY OF LEICESTER

    E-Print Network [OSTI]

    Banaji,. Murad

    LLM/DIPLOMA EMPLOYMENT LAW MAIN CAMPUS, UNIVERSITY OF LEICESTER 26 ­ 28 September 2014 Induction Floor, Charles Wilson Building on Main Campus, University of Leicester 9.30 ­ 10.15 Registration not attend the Foundation Day) #12;LLM/DIPLOMA EMPLOYMENT LAW MAIN CAMPUS, UNIVERSITY OF LEICESTER 26 ­ 28

  11. Background Main Result Mechanism Design Properties General Characterizations of Truthfulness

    E-Print Network [OSTI]

    Chen, Yiling

    Background Main Result Mechanism Design Properties General Characterizations of Truthfulness via November 29, 2012 Joint work with Ian Kash (MSRC) #12;Background Main Result Mechanism Design Properties Ian Says Hi! #12;Background Main Result Mechanism Design Properties Warm-up: Convex Functions y

  12. Heat Transfer in Complex Fluids

    SciTech Connect (OSTI)

    Mehrdad Massoudi

    2012-01-01

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

  13. ELECTRIC CO-HEATING: A METHOD FOR EVALUATING SEASONAL HEATING EFFICIENCIES AND HEAT LOSS RATES IN DWELLINGS

    E-Print Network [OSTI]

    Modera, M.P.

    2012-01-01

    the measured values for heat transmission and air leakagethe contribution by heat transmission alone through theheating efficiency, heat transmission coefficient and air

  14. Challenges in Industrial Heat Recovery 

    E-Print Network [OSTI]

    Dafft, T.

    2007-01-01

    This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

  15. Faculty Positions Heat Transfer and

    E-Print Network [OSTI]

    Faculty Positions Heat Transfer and Thermal/Energy Sciences Naval Postgraduate School Monterey-track faculty position at the assistant professor level in the areas of Heat Transfer and Thermal/Fluid Sciences

  16. Central Multifamily Water Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Building America Program is hosting a no-cost, webinar-based training on Central Multifamily Water Heating Systems. The webinar will focus the effective use of central heat pump water heaters...

  17. Phase Change Heat Transfer Device for Process Heat Applications

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2010-10-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to approx.1300 K) and industrial scale power transport (=50MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  18. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  19. Superradiant Quantum Heat Engine

    E-Print Network [OSTI]

    Ali Ü. C. Hardal; Özgür E. Müstecapl?oglu

    2015-07-16

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

  20. Superradiant Quantum Heat Engine

    E-Print Network [OSTI]

    Ali Ü. C. Hardal; Özgür E. Müstecapl?oglu

    2015-04-22

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

  1. Heat transport system

    DOE Patents [OSTI]

    Harkness, Samuel D. (McMurray, PA)

    1982-01-01

    A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.

  2. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  3. [Waste water heat recovery system

    SciTech Connect (OSTI)

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  4. Multi-Source Hydronic Heat Pump System Performance Test Bed 

    E-Print Network [OSTI]

    Meckler, M.

    1984-01-01

    of peak power and energy savings allowed by the innovative system. The main difference between the MSHHP and a conventional HVAC system is use of a chilled water "diversity" cooling loop interconnecting air to water coils (located at each water source heat...

  5. Heat Balance Study for Submersible Mixer Pump

    SciTech Connect (OSTI)

    Lee, S.Y.

    2003-07-21

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on waste temperature during the process of waste mixing and removal for the Type-I SRS tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing long-shaft mixer pumps used during waste removal. The model will also be used to provide input to the operation planning. This planning will be used as input to pump run duration in order to maintain temperature requirements within the tank during SMP operation.

  6. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  7. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-08-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  8. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-01-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  9. Energy 101: Geothermal Heat Pumps

    SciTech Connect (OSTI)

    None

    2011-01-01

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  10. Energy 101: Geothermal Heat Pumps

    ScienceCinema (OSTI)

    None

    2013-05-29

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  11. 4065 (RP-664) Heat Transfer

    E-Print Network [OSTI]

    of roomsurface-to-air heat transmission is dependentonan accurateestimateof the filmcoefficient. Forty- eight4065 (RP-664) Convective Energy and Heat Transfer Thermal Load in Building Calculations Daniel E convection film coefficients significantly underpredict the rate of surface convective heat 'transfer

  12. Confocal Heat Pump Mike Lampton

    E-Print Network [OSTI]

    California at Berkeley, University of

    Confocal Heat Pump Mike Lampton Space Sciences Lab, UC Berkeley Originally posted 1 April 2014 heat pump since it is based on ideas stemming from confocal ellipsoids. 2 Confocal Ellipsoids I begin symmetrical. There are infinitely many other possibilities. Each is reciprocal. 3 Confocal Heat Pump

  13. temperature heat pumps applied to

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Very high- temperature heat pumps applied to energy efficiency in industry Application of industrial heat pumps June 21 th 2012 J-L Peureux, E. Sapora, D. Bobelin EDF R&D #12;Achema 2012 Frankfurt There are thermal requirements in the industrial plant Treq Heat exchanger = Cons ~ 0 CO2 ~ -100% Treq

  14. 5. Heat transfer Ron Zevenhoven

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Three heat transfer mechanisms Conduction Convection Radiation 2/120 Pic: BÖ88 Åbo Akademi University1/120 5. Heat transfer Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering / Värme | Thermal and Flow Engineering | 20500 Turku | Finland #12;3/120 5.1 Conductive heat transfer Åbo Akademi

  15. Heat Pipes: An Industrial Application 

    E-Print Network [OSTI]

    Murray, F.

    1984-01-01

    pipe exchangers, an industrial case history is presented. The case history involves a retrofit project which added heat pipes to five natural draft process heaters with a combined heat duty of 150 M Btu/hr. A heat recovery of 15 M Btu/hr has resulted...

  16. Spring 2014 Heat Transfer -1

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 1 Heat Transfer - 1 Consider a cylindrical nuclear fuel rod of length L and diameter df and the tube at a rate m , and the outer surface of the tube is well insulated. Heat generation occurs within. The specific heat of water pc , and the thermal conductivity of the fuel rod fk are constants. The system

  17. Heat Waves, Global Warming, and Mitigation

    E-Print Network [OSTI]

    Carlson, Ann E.

    2008-01-01

    Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177

  18. Urban Surfaces and Heat Island Mitigation Potentials

    E-Print Network [OSTI]

    Akbari, Hashem

    2008-01-01

    Finster. 2000. “The Urban Heat Island, Photochemical Smog,2001. “EPA/NASA Urban Heat Island Pilot Project,” GlobalSystem Urban Surfaces and Heat Island Mitigation Potentials

  19. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01

    water (solar heated, boosted, or heated entirely in the auxiliary heater)for the solar-heated hot water. This heater can be seen in

  20. Research & Development Roadmap: Emerging Water Heating Technologies...

    Energy Savers [EERE]

    Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies...

  1. Tips: Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    climates, providing up to three times more heat than the energy they use. Today's heat pump can reduce your electricity use for heating by approximately 50% compared to...

  2. Biomass Derivatives Competitive with Heating Oil Costs.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average *...

  3. Home Heating Systems | Department of Energy

    Office of Environmental Management (EM)

    separately, many homes use the following approaches: Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental heat source. Electric...

  4. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-01-01

    Generation with Heat Recovery and Storage ‡ Afzal Sgeneration unit with heat recovery for space and watergeneration unit with heat recovery for space and water

  5. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Distributed Generation with Heat Recovery and Storage AfzalGeneration with Heat Recovery and Storage Manuscript Numberhere in order to focus on heat recovery and storage) utility

  6. A mathematical model for infiltration heat recovery

    E-Print Network [OSTI]

    Buchanan, C.R.; Sherman, M.H.

    2000-01-01

    Simulation of Infiltration Heat Recovery”, 19 th AIVC Annualfor infiltration heat recovery could easily be incorporatedSimplified Infiltration Heat Recovery Model ……………………17

  7. HEAT AND MOISTURE TRANSFER THROUGH CLOTHING

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01

    R. C. Eberhart (ed), Heat transfer in medicine and biology.between convective heat transfer and mass transferConvective and radiative heat transfer coefficients for

  8. Heat and moisture transfer through clothing

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01

    R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forbetween convective heat transfer and mass transfer

  9. 21 January 2005: 13:00 Inhomogeneity as main source... -Robert Hack 1 Inhomogeneity as main source of

    E-Print Network [OSTI]

    Hack, Robert

    21 January 2005: 13:00 Inhomogeneity as main source... - Robert Hack 1 Inhomogeneity as main source of problems in engineering geology Robert Hack 21 January 2005 #12;21 January 2005: 13:00 Inhomogeneity as main source... - Robert Hack 2 What is inhomogeneity (or non- homogeneity) : Inhomogeneity

  10. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect (OSTI)

    None

    2010-09-01

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  11. Characterizing the Altered Cellular Proteome Induced by the Stress-Independent Activation of Heat Shock Factor 1

    E-Print Network [OSTI]

    Morimoto, Richard

    Characterizing the Altered Cellular Proteome Induced by the Stress- Independent Activation of Heat activation of heat shock factor 1 (HSF1), a stress-responsive transcription factor that induces-responsive signaling pathways such as the heat shock response (HSR).1,2 The HSR is an evolutionarily conserved, stress

  12. Heat transport within the Earth

    E-Print Network [OSTI]

    Herndon, J Marvin

    2011-01-01

    Numerous attempts have been made to interpret Earth's dynamic processes based upon heat transport concepts derived from ordinary experience. But, ordinary experience can be misleading, especially when underlain by false assumptions. Geodynamic considerations traditionally have embraced three modes of heat transport: conduction, convection, and radiation. Recently, I introduced a fourth, "mantle decompression thermal tsunami" that, I submit, is responsible for emplacing heat at the base of the Earth's crust. Here, I review thermal transport within the Earth and speculate that there might be a fifth mode: "heat channeling", involving heat transport from the core to "hot-spots" such as those that power the Hawaiian Islands and Iceland.

  13. Waste heat: Utilization and management

    SciTech Connect (OSTI)

    Sengupta, S.; Lee, S.S.

    1983-01-01

    This book is a presentation on waste heat management and utilization. Topics covered include cogeneration, recovery technology, low grade heat recovery, heat dispersion models, and ecological effects. The book focuses on the significant fraction of fuel energy that is rejected and expelled into the environment either as industrial waste or as a byproduct of installation/equipment operation. The feasibility of retrieving this heat and energy is covered, including technical aspects and potential applications. Illustrations demonstrate that recovery methods have become economical due to recent refinements. The book includes theory and practice concerning waste heat management and utilization.

  14. Absorption-heat-pump system

    DOE Patents [OSTI]

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  15. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect (OSTI)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  16. Heat Pump Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Water Heaters Heat Pump Water Heaters May 4, 2012 - 5:21pm Addthis A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for...

  17. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01

    solar heated, boosted, or heated entirely in the auxiliary heater)for the solar-heated hot water. This heater can be seen insolar heating and cooling system, showing plumbing runs containing solenoid valves, auxiliary heater (

  18. Heating System Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources....

  19. Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs 

    E-Print Network [OSTI]

    Huang, Y.; Sun, D.

    2006-01-01

    An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

  20. Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

  1. Industrial Heat Recovery - 1982 

    E-Print Network [OSTI]

    Csathy, D.

    1982-01-01

    Industrial Research HTFS Re search Programme HTFS/1S/R19, "Dryout and Flow in Horizontal and Horizontal Hairpin Tubes". 6 l\\rnerican Boiler I1anufacturers Assoc iation, "Lexicon, Boiler & Auxiliary Eauinment", 7 G:t=iffith P., book of I:eat senow N... RECOVERY - 1982 by Denis Csathy, Deltak Corn,oration, !1inneapolis, 11N Two years ago I summarized 20 years of ex perience on Industrial Heat Recovery for the Energy-source Technology Conference and Exhibition held in New Orleans, Louisiana. l...

  2. Solar heated rotary kiln

    DOE Patents [OSTI]

    Shell, Pamela K. (Tracy, CA)

    1984-01-01

    A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

  3. Heat transmission in Relativity

    E-Print Network [OSTI]

    A. Brotas; J. C. Fernandes

    2003-07-16

    The simultaneous study of deformation and heat transmission in a bar was ignored for about 150 years. The traditional Fourier equation just allows to study the evolution of temperature in a undeformable bar. The search for its relativistic variant is a task which must fail because in Relativity there are no undeformable bars. Rigid bodies, in the sense as rigid as possible, are deformables. In this work we show how to write in Relativity the system of equations necessary to study simultaneously deformation and temperature evolution along a rigid bar.

  4. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016Study (CHAPS)Archive CampaignListAtmospheric Heat

  5. Electron Heat Transport Measured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroicAward |Electron CorrelationHeat Transport

  6. Residential heating oil price

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015Administration (EIA) ‹heating

  7. Residential heating oil price

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015Administration (EIA)heating oil

  8. Residential heating oil price

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015Administration (EIA)heating

  9. ,"Maine Natural Gas Exports (No Intransit Deliveries) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet)",1,"Annual",2014...

  10. Application for presidential permit OE Docket No. PP-300 Maine...

    Broader source: Energy.gov (indexed) [DOE]

    Applicationfrom Maine Public Service Company to construct, operate, and maintain electric transmission facilities at the U.S-Canada border. Application for presidential permit OE...

  11. Efficiency Maine: Small Businesses Achive Big Energy Savings

    SciTech Connect (OSTI)

    2004-07-01

    This fact sheet details the state of Maine's energy-efficiency regulations, which focused on energy saving appliances and efficient HVAC.

  12. The Fermilab Main Injector: high intensity operation and beam...

    Office of Scientific and Technical Information (OSTI)

    The Fermilab Main Injector: high intensity operation and beam loss control Authors: Brown, Bruce C. ; Adamson, Philip ; Capista, David ; Chou, Weiren ; Kourbanis, Ioanis ;...

  13. Better Buildings: Financing and Incentives: Spotlight on Maine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    more successful and to read more from this Spotlight series, visit betterbuildings.energy.govneighborhoods. Spotlight on Maine: Transition to a Sustainable Level of...

  14. Better Buildings: Financing and Incentives: Spotlight on Maine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to a Sustainable Level of Incentives More Documents & Publications Spotlight on Maine: Transition to a Sustainable Level of Incentives Better Buildings: Workforce, Spotlight on...

  15. ,"Maine Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  16. North Village Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with Furmans Sustainability Goals.

  17. Geothermal Heat Pumps are Scoring High Marks

    SciTech Connect (OSTI)

    2000-08-01

    Geothermal Energy Program Office of Geothermal and Wind Technologies Geothermal Heat Pumps are Scoring High Marks Geothermal heat pumps, one of the clean energy technology stars Geothermal heat pumps (GHPs) are one of the most cost-effective heating, cooling, and water heating systems available for both residential and commercial buildings. GHPs extract heat from the ground during the heating season and discharge waste heat to the ground during the cooling season. The U.S. Environmental Protecti

  18. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  19. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  20. Quantum Heat Bath

    E-Print Network [OSTI]

    Dorje C. Brody; Lane P. Hughston

    2014-11-17

    A model for a quantum heat bath is introduced. When the bath molecules have finitely many degrees of freedom, it is shown that the assumption that the molecules are weakly interacting is sufficient to enable one to derive the canonical distribution for the energy of a small system immersed in the bath. While the specific form of the bath temperature, for which we provide an explicit formula, depends on (i) spectral properties of the bath molecules, and (ii) the choice of probability measure on the state space of the bath, we are in all cases able to establish the existence of a strictly positive lower bound on the temperature of the bath. The results can be used to test the merits of different hypotheses for the equilibrium states of quantum systems. Two examples of physically plausible choices for the probability measure on the state space of a quantum heat bath are considered in detail, and the associated lower bounds on the temperature of the bath are worked out.

  1. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    SciTech Connect (OSTI)

    Munk, Jeffrey D.; Jackson, Roderick K.; Odukomaiya, Adewale; Gehl, Anthony C.

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in the cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.

  2. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN); Murphy, Richard W. (Knoxville, TN)

    1998-01-01

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

  3. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  4. Heat Pump Markets UK in Europe

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Heat Pump Markets UK in Europe IEA Heat Pump Workshop 13. November 2012 Zoltan Karpathy #12;2 Excellence in Market Intelligence Agenda About BSRIA WMI UK in the European Heat Pump Market Heating BSRIA WMI UK in the European Heat Pump Market Heating Technologies in New and Existing Buildings Hybrid

  5. Heat extraction from salinity-gradient solar ponds using heat pipe heat exchangers

    SciTech Connect (OSTI)

    Tundee, Sura; Terdtoon, Pradit; Sakulchangsatjatai, Phrut; Singh, Randeep; Akbarzadeh, Aliakbar

    2010-09-15

    This paper presents the results of experimental and theoretical analysis on the heat extraction process from solar pond by using the heat pipe heat exchanger. In order to conduct research work, a small scale experimental solar pond with an area of 7.0 m{sup 2} and a depth of 1.5 m was built at Khon Kaen in North-Eastern Thailand (16 27'N102 E). Heat was successfully extracted from the lower convective zone (LCZ) of the solar pond by using a heat pipe heat exchanger made from 60 copper tubes with 21 mm inside diameter and 22 mm outside diameter. The length of the evaporator and condenser section was 800 mm and 200 mm respectively. R134a was used as the heat transfer fluid in the experiment. The theoretical model was formulated for the solar pond heat extraction on the basis of the energy conservation equations and by using the solar radiation data for the above location. Numerical methods were used to solve the modeling equations. In the analysis, the performance of heat exchanger is investigated by varying the velocity of inlet air used to extract heat from the condenser end of the heat pipe heat exchanger (HPHE). Air velocity was found to have a significant influence on the effectiveness of heat pipe heat exchanger. In the present investigation, there was an increase in effectiveness by 43% as the air velocity was decreased from 5 m/s to 1 m/s. The results obtained from the theoretical model showed good agreement with the experimental data. (author)

  6. Combined Heat and Power, Waste Heat, and District Energy

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) technologies and their applications.

  7. In helicopters the tail mainly serves to keep the aircraft

    E-Print Network [OSTI]

    Langendoen, Koen

    In helicopters the tail mainly serves to keep the aircraft stable. The rotors are used to maneuver the helicopter. But a study at TU Delft revealed that involving the tail in commanding the helicopter not only reduces the structural load on the main rotor, but also makes the helicopter easier to handle

  8. Disambiguating Main POS tags for Turkish Razieh Ehsani

    E-Print Network [OSTI]

    [ Disambiguating Main POS tags for Turkish Razieh Ehsani Istanbul Technical University Faculty for part-of-speech (POS) tagging, Turkish poses interesting challenges to be modeled with them to computational complexity and scaling. In this paper, we propose a novel model for main-POS tagging in Turkish

  9. 2013/1/4 1 / 21 1 Main Campus

    E-Print Network [OSTI]

    Wu, Yih-Min

    2013/1/4 1 / 21 1 Main Campus 2 North Area 3 New Moon Pavilion 4 Sports Center 5 Core Middle Area 38 Agricultural Exhibition Hall 39 Old Main Library 40 Lesyue Building 41 College. of Agronomy 50 Building No.1 51 Herbarium of National Taiwan University 52 1st Women's Dorm 53 3rd Women

  10. Bicyclic graphs with exactly two main signless Laplacian eigenvalues

    E-Print Network [OSTI]

    Huang, He

    2012-01-01

    A signless Laplacian eigenvalue of a graph $G$ is called a main signless Laplacian eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. In this paper, all connected bicyclic graphs with exactly two main eigenvalues are determined.

  11. Main Campus Emissions In 2007, Yale purchased the

    E-Print Network [OSTI]

    Main Campus Emissions In 2007, Yale purchased the Bayer Pharmaceutical campus to expand the University's science and medical research. The 2005 baseline represents emissions when Bayer was operating,899 4,623 31,280 39,260 MAIN CAMPUS EMISSIONS WEST CAMPUS EMISSIONS 2014 2005 2014 2005 University Fleet

  12. Heat pump with freeze-up prevention

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX)

    1981-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

  13. Heat exchanger and related methods

    DOE Patents [OSTI]

    Turner, Terry D.; McKellar, Michael G.

    2015-12-22

    Heat exchangers include a housing having an inlet and an outlet and forming a portion of a transition chamber. A heating member may form another portion of the transition chamber. The heating member includes a first end having a first opening and a second end having a second opening larger than the first opening. Methods of conveying a fluid include supplying a first fluid into a transition chamber of a heat exchanger, supplying a second fluid into the transition chamber, and altering a state of a portion of the first fluid with the second fluid. Methods of sublimating solid particles include conveying a first fluid comprising a material in a solid state into a transition chamber, heating the material to a gaseous state by directing a second fluid through a heating member and mixing the first fluid and the second fluid.

  14. Micro thrust and heat generator

    DOE Patents [OSTI]

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  15. Enhanced heat transfer using nanofluids

    DOE Patents [OSTI]

    Choi, Stephen U. S. (Lisle, IL); Eastman, Jeffrey A. (Naperville, IL)

    2001-01-01

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  16. Heat sinking for printed circuitry

    DOE Patents [OSTI]

    Wilson, S.K.; Richardson, G.; Pinkerton, A.L.

    1984-09-11

    A flat pak or other solid-state device mounted on a printed circuit board directly over a hole extends therethrough so that the bottom of the pak or device extends beyond the bottom of the circuit board. A heat sink disposed beneath the circuit board contacts the bottom of the pak or device and provides direct heat sinking thereto. Pressure may be applied to the top of the pak or device to assure good mechanical and thermal contact with the heat sink.

  17. Spring 2014 Heat Transfer -2

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 Heat Transfer - 2 A thin electronic chip is in the shape of a square wafer, b = 1 cm surface of the chip with a heat transfer coefficient of h = 100 W/m2 -K. Assume the chip has a uniform per side with a mass of m = 0.3 grams and specific heat of C = 103 J/kg-K. The chip is mounted

  18. Triple integrated heat pump system

    SciTech Connect (OSTI)

    Blackshaw, A.L.; Robinson, G.P. Jr.

    1987-03-03

    A heat pump system is described comprising: a first heat exchange means having first and second refrigerant connections; a second heat exchange means having first and second refrigerant connections; a third heat exchange means having first and second refrigerant connections; a refrigerant pressurizing device having a suction inlet and a high pressure outlet; a reversible refrigerant expansion means for expanding refrigerant from condenser to evaporator pressure connected between the second refrigerant connections on the first and second heat exchange means; an alternate refrigerant expansion means for expanding refrigerant from condenser to evaporator pressure connected to the second refrigerant connection on the third heat exchange means; check valve means connecting the alternate refrigerant expansion means to the common points between the reversible expansion means and each of the first and second heat exchange means so that refrigerant can flow from the alternate expansion means to the first and second heat exchange means but flow of refrigerant from the first and second heat exchange means is prevented; and control valve means.

  19. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01

    Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.

  20. Cyclotron subharmonics resonant (CSR) heating

    SciTech Connect (OSTI)

    Abe, H.

    1994-01-01

    The cyclotron subharmonics resonant (CSR) heating mechanism is studied using particle simulation codes with an emphasis on the relationship between CSR and the nonlinear Landua damping.

  1. Sodium heat engine electrical feedthrough

    DOE Patents [OSTI]

    Weber, Neill (Dearborn, MI)

    1985-01-01

    A thermoelectric generator device which converts heat energy to electrical energy. An alkali metal is used with a solid electrolyte and a hermetically sealed feedthrough structure.

  2. Heat flux solarimeter

    SciTech Connect (OSTI)

    Sartarelli, A.; Vera, S.; Cyrulies, E.; Echarri, R.; Samson, I.

    2010-12-15

    The solarimeter presented in this work is easy to assemble. It is calibrated and its performance is validated by means of Hottel's method. Finally, the curves obtained with this solarimeter are compared to the ones obtained with a commercial solarimeter. This device is based on the evaluation of the heat flow in a metal rod. In consequence, measurements are not affected by ambient temperature variations. On the other hand, there is a linear relationship between the temperatures measured at the rod ends and the incident radiation, as can be concluded both from the theory of its operation and the calibration lines obtained. The results obtained from the global irradiance measurements in the area of Los Polvorines (Buenos Aires Province), together with a preliminary evaluation of the solarimeter's response time, are presented in this work. (author)

  3. Holographic Heat Engines

    E-Print Network [OSTI]

    Clifford V. Johnson

    2014-09-04

    It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.

  4. Ceramic heat exchanger

    DOE Patents [OSTI]

    LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.

    1998-06-16

    A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.

  5. Ceramic heat exchanger

    DOE Patents [OSTI]

    LaHaye, Paul G. (Kennebunk, ME); Rahman, Faress H. (Portland, ME); Lebeau, Thomas P. E. (Portland, ME); Severin, Barbara K. (Biddeford, ME)

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  6. A Comparison of Domestic Water Heating Options in the Austin Electric Service Area 

    E-Print Network [OSTI]

    Vliet, G. C.; Hood, D. B.

    1985-01-01

    the operation of (1) a conventional electric resistance water heater (ERWH), (2) a heat pump water heater (HPWH), and (3) a heat recovery water heater (HRWH). Data from a previously conducted field test of solar water heaters (SWH) in the Austin area was used...

  7. Kolmogorov versus IroshnikovKraichnan spectra: Consequences for ion heating in the solar wind

    E-Print Network [OSTI]

    Ng, Chung-Sang

    heating in the solar wind C. S. Ng,1 A. Bhattacharjee,2 D. Munsi,2 P. A. Isenberg,2 and C. W. Smith2 wind provides a quantitative, if indirect, observational constraint on the relevant phenomenology. Recently, a solar wind heating model based on Kolmogorov spectral scaling has produced reasonably good

  8. Heat engine Device that transforms heat into work.

    E-Print Network [OSTI]

    Winokur, Michael

    adiabats Stirling engines The SES solar Stirling system isotherms the Stirling cycle 1 2 3 4 #12;6 Power less work than -Ws, because when the gas cooled its pressure also dropped. Stirling Engine (Beta1 Heat engine Device that transforms heat into work. It requires two energy reservoirs at different

  9. Characterization of local heat fluxes around ICRF antennas on JET

    SciTech Connect (OSTI)

    Campergue, A.-L.; Jacquet, P.; Monakhov, I.; Arnoux, G.; Brix, M.; Sirinelli, A.; Milanesio, D.; Colas, L.; Collaboration: JET-EFDA Contributors

    2014-02-12

    When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography measurement. The measured heat flux patterns along the poloidal limiters surrounding powered antennas were compared to predictions from a simple RF sheath rectification model. The RF electric field, parallel to the static magnetic field in front of the antenna, was evaluated using the TOPICA code, integrating a 3D flattened model of the JET A2 antennas. The poloidal density variation in front of the limiters was obtained from the mapping of the Li-beam or edge reflectometry measurements using the flux surface geometry provided by EFIT equilibrium reconstruction. In many cases, this simple model can well explain the position of the maximum heat flux on the different protection limiters and the heat-flux magnitude, confirming that the parallel RF electric field and the electron plasma density in front of the antenna are the main driving parameters for ICRF-induced local heat fluxes.

  10. Beam dynamics at the main LEBT of RAON accelerator

    E-Print Network [OSTI]

    Jin, Hyunchang

    2015-01-01

    The high-intensity rare-isotope accelerator (RAON) of the Rare Isotope Science Project (RISP) in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams. The ion beams, which are generated by Electron Cyclotron Resonance Ion Source (ECR-IS), will be transported through the main Low Energy Beam Transport (LEBT) system to the Radio Frequency Quadrupole (RFQ). While passing the beams through LEBT, we should keep the transverse beam size and longitudinal emittance small. Furthermore, the matching of required twiss parameter at the RFQ entrance will be performed by using electro-static quadrupoles at the main LEBT matching section which is from the multi-harmonic buncher (MHB) to the entrance of RFQ. We will briefly review the new aspects of main LEBT lattice and the beam matching at the main LEBT matching section will be presented. In addition, the effects of various errors on the beam orbit and the correction of distorted orbit will be discussed.

  11. Stormwater on the University of Kansas Main Campus

    E-Print Network [OSTI]

    Walsh, Marcia K.

    2012-05-31

    Beginning with a discussion of the combined acreage of the all the impervious surfaces on the main campus of the University of Kansas in Lawrence, Kansas, together with the average annual precipitation there, the HSG soil ...

  12. MAIN-BELT COMET P/2012 T1 (PANSTARRS)

    E-Print Network [OSTI]

    Hsieh, Henry H.

    We present initial results from observations and numerical analyses aimed at characterizing the main-belt comet P/2012 T1 (PANSTARRS). Optical monitoring observations were made between 2012 October and 2013 February using ...

  13. Gulf of Maine Strategic Regional Ocean Science Plan

    E-Print Network [OSTI]

    Pederson, Judith

    The Gulf of Maine Regional Ocean Science Initiative evolved from an awareness of the importance of integrated approaches to addressing ecological, environmental, and social influences in coastal and marine ecosystems at ...

  14. Physical controls on copepod aggregations in the Gulf of Maine

    E-Print Network [OSTI]

    Woods, Nicholas W

    2013-01-01

    This thesis explores the role that the circulation in the Gulf of Maine (GOM) plays in determining the distribution of dense aggregations of copepods. These aggregations are an important part of the marine ecosystem, ...

  15. An internal seal for repairing natural gas mains

    E-Print Network [OSTI]

    Cooper, Samuel A.

    1984-01-01

    Joint leakage from low pressure natural gas distribution mains (typical value: 0.25 ft[superscript 3] at 6 inwg gas pressure) is a persistent source of maintenance problems for utitlites. External encapsulation is the usual ...

  16. Lean implementation across value stream in main rotor blade area

    E-Print Network [OSTI]

    Phoenix, Casey J. (Casey John)

    2007-01-01

    The primary goal for this project was to help expand the existing capability of Sikorsky's main rotor blade business from raw material (titanium) through final assembly. The project helped to facilitate the ongoing lean ...

  17. Maine: Energy Efficiency Program Helps Generate Town's Electricity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Efficiency program helps municipalities with their energy bills. Thomaston, Maine, was able to install solar panels to generate 13% of the electricity used by the wastewater treatment facility.

  18. Small Wind Electric Systems: A Maine Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    The purpose of the Small Wind Electric Systems Consumer's: A Maine Consumer's Guide is to provide consumers with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains a wind resource map for the state of Maine and information about state incentives and contacts for more information.

  19. Joule heating at high latitudes

    SciTech Connect (OSTI)

    Foster, J.C.; St.-Maurice, J.; Abreu, V.J.

    1983-06-01

    High latitude Joule heating has been calculated from simultaneous observations of the electric field magnitude and the Pedersen conductivity calculated from individual measurements of the ion drift velocity and particle precipitation observed over the lifetime of the AE-C satellite. The data were sorted by latitude, local time, hemisphere, season, and Kp index and separate averages of the electric field magnitude, Pedersen conductivity and Joule heating was prepared. Conductivities produced by an averaged seasonal solar illumination were included with those calculated from the particle precipitation. We found that high-latitude Joule heating occurs in a roughly oval pattern and consists of three distinct heating regions: the dayside cleft, the region of sunward convection at dawn and dusk, and the midnight sector. On the average, heating in the cleft and dawn-dusk regions contributes the largest heat input. There is no apparent difference between hemispheres for similar seasons. Hemisphere averaged Joule heating at equinox amounts to approximately 25 GW for Kp = 1 conditions, 85G GW for Kp = 4, and varies linearly as a function of Kp. The Joule heat input is 50% greater during the summer than during winter primarily due to the increased conductivity caused by solar production.

  20. Heat treating of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN)

    2012-05-22

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.