National Library of Energy BETA

Sample records for 1997-2013 working gas

  1. Working Gas in Underground Storage Figure

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas in Underground Storage Figure Working Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph....

  2. New Mexico Natural Gas in Underground Storage (Working Gas) ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Working ... Underground Working Natural Gas in Storage - All Operators New Mexico Underground Natural ...

  3. New York Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) New York Natural Gas in Underground Storage (Working ... Underground Working Natural Gas in Storage - All Operators New York Underground Natural ...

  4. Virginia Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Virginia Natural Gas in Underground Storage (Working ... Underground Working Natural Gas in Storage - All Operators Virginia Underground Natural ...

  5. Working Gas in Underground Storage Figure

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph...

  6. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    of capacity that may understate the amount that can actually be stored. Working Gas Design Capacity: This measure estimates a natural gas facility's working gas capacity, as...

  7. California Working Natural Gas Underground Storage Capacity ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  8. Washington Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  9. Mississippi Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  10. Pennsylvania Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  11. Oregon Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Oregon Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,705 2,366 ...

  12. Pennsylvania Natural Gas in Underground Storage (Working Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  13. Oklahoma Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Oklahoma Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 129,245 ...

  14. Philadelphia Gas Works - Commercial and Industrial Equipment...

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Philadelphia Gas Works Website http:www.pgwenergysense.comdownloads.html State Pennsylvania Program Type Rebate Program Rebate Amount Commercial Boilers: 800 -...

  15. Peak Underground Working Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Capacity Peak Underground Working Natural Gas Storage Capacity Released: September 3, 2010 for data as of April 2010 Next Release: August 2011 References Methodology Definitions...

  16. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Previous Articles Previous Articles Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update (Released, 8312009) Estimates of Peak Underground...

  17. East Region Natural Gas in Underground Storage (Working Gas)...

    U.S. Energy Information Administration (EIA) Indexed Site

    East Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 451,335 271,801 167,715 213,475 349,739 ...

  18. How Gas Turbine Power Plants Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex ...

  19. West Virginia Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) West Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  20. Montana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Montana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  1. Kansas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  2. New York Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New York Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  3. New Mexico Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  4. Indiana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Indiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  5. Oregon Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oregon Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  6. Arkansas Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  7. Alaska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alaska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  8. Oklahoma Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  9. Nebraska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Nebraska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  10. Michigan Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Michigan Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  11. Minnesota Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  12. Utah Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  13. Missouri Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Missouri Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  14. Virginia Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  15. Maryland Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  16. Wyoming Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  17. Ohio Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Ohio Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  18. Illinois Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  19. Iowa Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  20. Kentucky Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  1. Texas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  2. Louisiana Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  3. Alabama Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  4. Pacific Region Natural Gas in Underground Storage (Working Gas) (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Working Gas) (Million Cubic Feet) Pacific Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 197,953 115,235 104,941 144,268 200,453 249,196 274,725 302,752 318,020 345,640 339,201 322,520 2015 275,977 273,151 275,677 293,557 325,456 335,995 344,215 347,827 358,941 379,501 368,875 319,740 2016 276,196 262,566 265,792 286,993 305,681 315,790 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 499 497 233 233 260 302 338 556 1,148 1,075 886 485 1996 431 364 202 356 493 971 1,164 1,553 1,891 2,008 1,879 1,119 1997 588 404 429 559 830 923 966 1,253 1,515 1,766 1,523 1,523 1998 773 585 337 582 727 1,350 1,341 1,540 1,139 1,752 1,753 1,615 1999 802 688 376 513 983 1,193 1,428 1,509 1,911 1,834 1,968 1,779 2000

  6. AGA Producing Region Natural Gas in Underground Storage (Working Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 549,759 455,591 416,294 457,969 533,496 599,582 638,359 634,297 713,319 766,411 700,456 552,458 1996 369,545 263,652 195,447 224,002 279,731 339,263 391,961 474,402 578,991 638,500 562,097

  7. California Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) California Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 125,898 106,575 111,248 132,203 157,569 170,689 174,950 177,753 182,291 196,681 196,382 153,841 1991 132,323 132,935 115,982 136,883 163,570 187,887 201,443 204,342 199,994 199,692 193,096 168,789 1992 125,777 109,000 93,277 107,330 134,128 156,158 170,112 182,680 197,049 207,253 197,696 140,662 1993 106,890 87,612

  8. Illinois Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Illinois Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 234,149 182,982 149,826 145,903 177,193 210,075 239,633 275,310 309,341 328,106 329,864 292,842 1991 224,217 175,723 150,281 152,048 183,462 213,723 242,377 276,319 309,328 336,048 317,183 283,100 1992 214,872 167,256 140,681 132,922 166,585 198,351 228,870 267,309 302,100 328,395 310,252 264,393 1993 163,300 114,381

  9. Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 459 343 283 199 199 199 333 467 579 682 786 787 1999 656 532 401 321 318 462 569 645 749 854 911 855 2000 691 515 452 389 371 371 371 371 371 420 534 619 2001 623 563 490 421 525 638 669 732 778 840 598 597 2002 647 648 650 650 625 622 609 605 602 600 512 512 2003 404 294 226 179 214 290

  10. West Virginia Natural Gas in Underground Storage (Working Gas) (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Working Gas) (Million Cubic Feet) West Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 95,718 84,444 80,152 86,360 105,201 122,470 139,486 155,506 168,801 172,513 172,198 155,477 1991 102,542 81,767 79,042 86,494 101,636 117,739 132,999 142,701 151,152 154,740 143,668 121,376 1992 87,088 60,200 32,379 33,725 57,641 75,309 97,090 115,537 128,969 141,790 135,853 143,960 1993 112,049 69,593

  11. Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 115,418 117,492 109,383 110,052 117,110 131,282 145,105 158,865 173,570 188,751 197,819 190,747 1991 141,417 109,568 96,781 103,300 122,648 146,143 159,533 169,329 190,953 211,395 197,661 165,940 1992 120,212 91,394 79,753 85,867 106,675 124,940 136,861 152,715 174,544 194,414 187,236 149,775 1993 103,287 66,616

  12. Michigan Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Michigan Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 311,360 252,796 228,986 221,127 269,595 333,981 410,982 481,628 534,303 553,823 542,931 472,150 1991 348,875 285,217 262,424 287,946 315,457 372,989 431,607 478,293 498,086 539,454 481,257 405,327 1992 320,447 244,921 179,503 179,306 224,257 292,516 367,408 435,817 504,312 532,896 486,495 397,280 1993 296,403 194,201

  13. Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 184,212 180,918 178,620 181,242 179,235 181,374 183,442 187,348 185,848 181,029 1991 179,697 178,285 176,975 176,918 178,145 179,386 181,094 182,534 182,653 181,271 178,539 174,986 1992 111,256 109,433 109,017 109,150 110,146 110,859 111,885 112,651 112,225 110,868 107,520 101,919 1993 96,819 92,399 89,640 87,930

  14. South Central Region Natural Gas in Underground Storage (Working Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Working Gas) (Million Cubic Feet) South Central Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 668,540 452,778 337,592 426,793 560,429 666,015 755,579 806,418 929,012 1,090,604 1,084,413 1,044,833 2015 831,268 576,019 574,918 749,668 920,727 1,002,252 1,050,004 1,095,812 1,206,329 1,321,297 1,332,421 1,303,737 2016 1,097,870 1,022,966 1,080,000 1,159,089 1,236,456 1,235,649 - = No

  15. Mountain Region Natural Gas in Underground Storage (Working Gas...

    Gasoline and Diesel Fuel Update (EIA)

    Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 137,378 102,507 83,983 82,058 98,717 121,623 140,461 157,716 174,610 187,375...

  16. Alaska Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Alaska Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 8,956 13,913 13,743 14,328 15,277 16,187 17,087 18,569 20,455 22,149 21,244 19,819 2014 20,043 19,668 20,566 20,447 20,705 22,252 22,508 23,254 23,820 23,714 24,272 24,997 2015 24,811 24,626 24,391 24,208 24,279 24,357 24,528 24,635 24,543 24,595 24,461 24,319 2016 24,295 24,790 25,241 26,682 28,639 29,961 - = No Data

  17. Arkansas Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Arkansas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,676 8,646 8,608 8,644 8,745 9,217 9,744 10,226 10,505 10,532 10,454 10,227 1991 8,296 7,930 7,609 7,414 7,545 7,884 8,371 8,385 8,385 8,385 7,756 7,093 1992 6,440 5,922 5,569 5,501 5,499 6,009 6,861 7,525 7,959 7,883 7,656 7,166 1993 6,541 5,752 5,314 5,204 4,696 4,969 4,969 4,969 4,969 4,897 4,421 3,711 1994 2,383

  18. Colorado Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,491 22,694 17,504 13,313 17,552 23,767 28,965 33,972 35,196 34,955 34,660 1991 26,266 24,505 17,544 16,115 17,196 21,173 25,452 30,548 35,254 36,813 37,882 36,892 1992 33,082 29,651 22,962 18,793 18,448 20,445 24,593 30,858 36,770 38,897 35,804 33,066 1993 28,629 23,523 21,015 17,590 20,302 24,947 28,113 31,946

  19. Indiana Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Indiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 22,371 18,661 17,042 17,387 20,796 23,060 26,751 30,924 33,456 34,200 30,588 1991 24,821 19,663 16,425 15,850 17,767 18,744 22,065 26,710 31,199 37,933 35,015 30,071 1992 23,328 18,843 14,762 14,340 15,414 17,948 23,103 27,216 32,427 35,283 32,732 29,149 1993 23,702 18,626 15,991 17,160 18,050 20,109 24,565 29,110

  20. Kansas Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Kansas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 65,683 55,509 49,604 47,540 48,128 53,233 64,817 76,933 92,574 99,253 115,704 93,290 1991 59,383 54,864 49,504 47,409 53,752 61,489 64,378 67,930 78,575 89,747 80,663 82,273 1992 76,311 63,152 53,718 48,998 51,053 53,700 57,987 69,653 79,756 82,541 73,094 61,456 1993 44,893 33,024 27,680 26,796 46,806 58,528 64,198

  1. Kentucky Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Kentucky Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 58,567 62,011 60,735 61,687 66,432 71,791 79,578 86,584 93,785 97,094 92,657 86,693 1991 79,816 76,289 72,654 77,239 79,610 82,915 88,262 91,449 94,895 94,470 87,950 85,249 1992 84,385 83,106 78,213 76,527 75,300 76,861 80,412 82,020 86,208 96,910 95,391 92,376 1993 87,306 76,381 66,748 66,019 72,407 80,245 87,794

  2. Washington Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Washington Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,882 5,257 3,304 2,365 1,893 5,005 7,942 10,880 11,949 12,154 12,235 9,008 1991 6,557 6,453 3,509 6,342 7,864 10,580 12,718 12,657 12,652 14,112 15,152 14,694 1992 12,765 9,785 9,204 8,327 9,679 10,854 11,879 13,337 14,533 13,974 13,312 9,515 1993 6,075 2,729 3,958 4,961 9,491 10,357 12,505 13,125 15,508 13,348

  3. Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 53,604 51,563 52,120 53,225 54,581 56,980 58,990 61,428 62,487 60,867 1991 54,085 53,423 53,465 53,581 54,205 56,193 58,416 60,163 61,280 61,366 59,373 57,246 1992 30,371 28,356 27,542 27,461 27,843 28,422 29,588 29,692 30,555 29,505 27,746 23,929 1993 20,529 18,137 17,769 18,265 19,253 21,322 23,372 24,929 26,122

  4. Maryland Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Maryland Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 4,303 1,142 2,247 2,979 5,536 6,593 8,693 11,353 13,788 15,025 12,900 11,909 1991 8,772 5,481 3,859 4,780 6,264 7,917 9,321 11,555 13,665 14,339 14,626 14,529 1992 9,672 4,736 2,075 1,178 4,484 7,172 8,993 11,380 13,446 14,695 15,205 13,098 1993 9,826 5,478 3,563 3,068 5,261 6,437 7,528 9,247 11,746 14,426 14,826

  5. Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,708 1,141 1,211 1,688 2,017 2,129 2,261 2,309 2,370 2,397 2,395 2,007 1991 1,551 1,313 1,207 1,362 1,619 1,931 2,222 2,214 2,307 2,273 2,191 2,134 1992 1,685 1,556 1,228 1,019 1,409 1,716 2,013 2,193 2,319 2,315 2,307 2,104 1993 1,708 1,290 872 824 1,141 1,485 1,894 2,022 2,260 2,344 2,268 1,957 1994 1,430 1,235

  6. Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 33,234 33,553 34,322 39,110 43,935 47,105 53,425 58,298 62,273 65,655 66,141 60,495 1991 43,838 39,280 39,196 45,157 48,814 50,833 52,841 54,954 60,062 64,120 56,034 50,591 1992 40,858 39,723 37,350 37,516 41,830 46,750 51,406 51,967 58,355 59,621 59,164 52,385 1993 46,427 38,859 32,754 35,256 42,524 46,737 51,884

  7. Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,081 5,796 6,047 7,156 7,151 7,146 7,140 7,421 7,927 8,148 8,157 7,869 1991 7,671 5,875 4,819 6,955 7,638 7,738 8,033 8,335 8,547 8,765 8,964 8,952 1992 7,454 6,256 5,927 7,497 7,924 8,071 8,337 8,555 8,763 8,954 8,946 8,939 1993 7,848 6,037 4,952 6,501 7,550 8,001 8,104 8,420 8,627 8,842 8,720 8,869 1994 7,602 7,073

  8. Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 55,226 54,179 53,869 54,783 56,160 57,690 56,165 56,611 57,708 58,012 57,606 54,005 1991 52,095 51,060 50,341 51,476 54,531 56,673 56,409 56,345 57,250 56,941 56,535 54,163 1992 52,576 51,568 51,525 52,136 53,768 56,396 58,446 59,656 60,842 60,541 57,948 54,512 1993 51,102 49,136 48,100 49,069 52,016 55,337 57,914

  9. Pennsylvania Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    from Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -2,863 -1,902 -2,297 -1,134 -1,671 -1,997 -907 -144 629 992 2,290 1,354 1991 30,778 27,964 37,141 36,920 15,424 -18,322 -46,969 -63,245 -61,004 -48,820 -54,587 -34,458 1992 6,870 -8,479 -43,753 -43,739 -33,236 -8,601 3,190 9,732 8,583 15,815

  10. Philadelphia Gas Works: Who’s on First?

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—about the Philadelphia Gas Works (PGW) and its federal projects.

  11. Pennsylvania Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    from Same Month Previous Year (Percent) Percent) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 18.8 22.4 37.0 33.4 9.7 -8.5 -17.7 -19.9 -17.0 -13.4 -15.2 -11.2 1992 3.5 -5.5 -31.8 -29.7 -19.1 -4.4 1.5 3.8 2.9 5.0 9.1 6.0 1993 8.3 -16.5 -29.1 -13.2 -5.0 -0.1 5.0 3.1 4.8 0.9 -1.5 -3.3 1994 -21.0 -19.2 13.5 27.9 24.0 18.3 16.9 15.8 5.8 6.1 2.3 5.6 1995 35.1 43.1 48.4 8.5

  12. ,"U.S. Natural Gas Non-Salt Underground Storage - Working Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Non-Salt Underground Storage - Working Gas (MMcf)",1,"Monthly","2...dnavnghistn5510us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  13. Two-tank working gas storage system for heat engine

    DOE Patents [OSTI]

    Hindes, Clyde J.

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  14. First AEO2015 Oil and Gas Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    GAS MARKETS TEAMS SUBJECT: First AEO2015 Oil and Gas Working Group Meeting Summary ... The shorter AEO2015 will have 6 cases - Reference case, HighLow Oil Price cases, HighLow ...

  15. Philadelphia Gas Works- Residential and Commercial Construction Incentives Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Philadelphia Gas Works (PGW) provides incentives to developers, home builders and building owners that build new facilities or undergo gut-rehab projects to conserve gas beyond the level consumed...

  16. Washington Natural Gas in Underground Storage - Change in Working...

    Gasoline and Diesel Fuel Update (EIA)

    Percent) Washington Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991...

  17. Washington Natural Gas in Underground Storage - Change in Working...

    Gasoline and Diesel Fuel Update (EIA)

    Million Cubic Feet) Washington Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  18. Virginia Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent) Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0.0 ...

  19. New Mexico Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent) New Mexico Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 ...

  20. New Mexico Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) New Mexico Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug ...

  1. Minnesota Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent) Minnesota Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -9.2 ...

  2. Minnesota Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Minnesota Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep ...

  3. Weekly Working Gas in Underground Storage

    Gasoline and Diesel Fuel Update (EIA)

    BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Appalachian Basin Boundary Appalachian Basin, Southern OH (Panel 4 of 7) Oil and Gas Fields By 2001 BOE Reserve Class Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Basin Fields (Mbbl) (MMcf) (Mbbl) Appalachian 3354 79,141 9,550,156 1,670,834 2001 Proved Reserves for Entire Applachian Basin OH WV The mapped oil and gas field

  4. Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and programma...

  5. Federal Utility Partnership Working Group: Atlanta Gas Light Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—lists Altanta Gas Light (AGL) resources and features a map of its footprint.

  6. Philadelphia Navy Yard: UESC Project with Philadelphia Gas Works

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—provides information on the Philadelphia Navy Yard's utility energy services contract (UESC) project with Philadelphia Gas Works (PGW).

  7. Philadelhia Gas Works (PGW) Doe Furnace Rule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Philadelhia Gas Works (PGW) Doe Furnace Rule Philadelhia Gas Works (PGW) Doe Furnace Rule DOE Furnace Rule (111.99 KB) More Documents & Publications Focus Series: Philadelphia Energyworks: In the City of Brotherly Love, Sharing Know-How Leads to Sustainability The Better Buildings Neighborhood View -- December 2013 Collaborating With Utilities on Residential Energy Efficiency

  8. Working Together to Address Natural Gas Storage Safety | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Address Natural Gas Storage Safety Working Together to Address Natural Gas Storage Safety April 1, 2016 - 11:15am Addthis Working Together to Address Natural Gas Storage Safety Franklin (Lynn) Orr Franklin (Lynn) Orr Under Secretary for Science and Energy Marie Therese Dominguez Marie Therese Dominguez Administrator, U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration As a part of the Administration's ongoing commitment to support state and

  9. ,"U.S. Natural Gas Salt Underground Storage - Working Gas (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    1","U.S. Natural Gas Salt Underground Storage - Working Gas (MMcf)",1,"Monthly","2...dnavnghistn5410us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  10. AEO2014 Oil and Gas Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    9 August 12, 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: ANGELINA LAROSE TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: First AEO2014 Oil and Gas Working Group Meeting Summary (presented on July 25, 2013) Attendees: Anas Alhajji (NGP)* Samuel Andrus (IHS)* Emil Attanasi (USGS)* Andre Barbe (Rice University) David J. Barden (self) Joseph

  11. Second AEO2014 Oil and Gas Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    7 November 12, 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: ANGELINA LAROSE TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: Second AEO2014 Oil and Gas Working Group Meeting Summary (presented September 26, 2013) Attendees: Robert Anderson (DOE) Peter Balash (NETL)* David Bardin (self) Joe Benneche (EIA) Philip Budzik (EIA) Kara Callahan

  12. Lower 48 States Natural Gas Working Underground Storage (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value...

  13. Philadelphia Gas Works- Commercial and Industrial Efficient Building Grant Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Commercial and Industrial Efficient Building Grant Program is part of PGW's EnergySense program. This program offers incentives up to $75,000 for multifamily,...

  14. Differences Between Monthly and Weekly Working Gas In Storage

    Weekly Natural Gas Storage Report (EIA)

    Differences Between Monthly and Weekly Working Gas In Storage Latest update: September 8, 2016 Note: The weekly storage estimates are based on a survey sample that does not include all companies that operate underground storage facilities. The sample was selected from the list of storage operators to achieve a target standard error of the estimate of working gas in storage which was no greater than 5 percent for each region. Based on a comparison of weekly estimates and monthly data from January

  15. AGA Eastern Consuming Region Natural Gas in Underground Storage (Working

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 905,018 584,386 467,210 599,207 831,273 1,086,355 1,342,894 1,578,648 1,775,994 1,885,465 1,819,517 1,589,500 1995 1,206,116 814,626 663,885 674,424 850,290 1,085,760 1,300,439 1,487,188 1,690,456 1,811,013 1,608,177 1,232,901 1996 812,303 520,053 341,177 397,770 612,572 890,243

  16. AGA Western Consuming Region Natural Gas in Underground Storage (Working

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Western Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 280,414 208,968 200,997 216,283 261,894 293,909 326,049 349,274 387,670 405,477 381,931 342,394 1995 288,908 270,955 251,410 246,654 284,291 328,371 362,156 372,718 398,444 418,605 419,849 366,944 1996 280,620 236,878 221,371 232,189 268,812 299,619 312,736 313,747 330,116

  17. Nonsalt South Central Region Natural Gas Working Underground Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Nonsalt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 826 01/08 763 01/15 702 01/22 687 01/29 671 2010-Feb 02/05 624 02/12 573 02/19 521 02/26 496 2010-Mar 03/05 472 03/12 477 03/19 487 03/26 492 2010-Apr 04/02

  18. Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet) Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 268 01/08 257 01/15 246 01/22 235 01/29 221 2010-Feb 02/05 211 02/12 197 02/19 193 02/26 184 2010-Mar 03/05 182 03/12 176 03/19 179 03/26 185 2010-Apr 04/02 189 04/09 193 04/16 199 04/23 209 04/30 220 2010-May

  19. Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet) Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 900 01/08 820 01/15 750 01/22 710 01/29 661 2010-Feb 02/05 604 02/12 552 02/19 502 02/26 464 2010-Mar 03/05 433 03/12 422 03/19 419 03/26 410 2010-Apr 04/02 410 04/09 429 04/16 444 04/23 462 04/30 480 2010-May

  20. Mountain Region Natural Gas Working Underground Storage (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Mountain Region Natural Gas Working Underground Storage (Billion Cubic Feet) Mountain Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 195 01/08 185 01/15 176 01/22 171 01/29 164 2010-Feb 02/05 157 02/12 148 02/19 141 02/26 133 2010-Mar 03/05 129 03/12 127 03/19 126 03/26 126 2010-Apr 04/02 126 04/09 126 04/16 129 04/23 134 04/30 138

  1. East Region Natural Gas Working Underground Storage (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    East Region Natural Gas Working Underground Storage (Billion Cubic Feet) East Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 769 01/08 703 01/15 642 01/22 616 01/29 582 2010-Feb 02/05 523 02/12 471 02/19 425 02/26 390 2010-Mar 03/05 349 03/12 341 03/19 334 03/26 336 2010-Apr 04/02 333 04/09 358 04/16 376 04/23 397 04/30 416 2010-May 05/07

  2. Salt South Central Region Natural Gas Working Underground Storage (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Salt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 159 01/08 123 01/15 91 01/22 102 01/29 108 2010-Feb 02/05 95 02/12 85 02/19 71 02/26 70 2010-Mar 03/05 63 03/12 71 03/19 80 03/26 89 2010-Apr 04/02 101 04/09 112 04/16 120

  3. South Central Region Natural Gas Working Underground Storage (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 985 01/08 886 01/15 793 01/22 789 01/29 779 2010-Feb 02/05 719 02/12 658 02/19 592 02/26 566 2010-Mar 03/05 535 03/12 548 03/19 567 03/26 581 2010-Apr 04/02 612 04/09 649 04/16 679 04/23 710

  4. Lower 48 Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Lower 48 Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 0.1 2.3 -4.6 -11.1 -9.6 -7.7 -6.4 -4.2 -2.6 -1.2 2.0 11.3 2012 36.5 53.4 73.5 61.5 46.1 34.6 25.3 19.5 15.0 11.5 7.7 8.2 2013 -7.6 -14.8 -31.0 -29.5 -21.9 -15.7 -10.0 -6.2 -4.0 -3.4 -5.7 -15.9

  5. U.S. Natural Gas Non-Salt Underground Storage - Working Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas (Million Cubic Feet) U.S. Natural Gas Non-Salt Underground Storage - Working Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,531,928 1,053,730 915,878 1,122,203 1,495,691 1,839,607 2,209,565 2,542,126 2,841,503 3,002,400 2,904,404 2,536,416 1995 1,972,316 1,477,193 1,273,311 1,313,255 1,594,809 1,935,579 2,225,266 2,431,646 2,721,269 2,908,317 2,644,778 2,081,635 1996 1,403,589 973,002 720,077 796,966 1,098,675 1,457,649 1,826,743

  6. U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 2,034,000 1974 NA NA NA NA NA NA NA NA NA 2,403,000 NA 2,050,000 1975 NA NA NA NA NA NA NA NA 2,468,000 2,599,000 2,541,000 2,212,000 1976 1,648,000 1,444,000 1,326,000 1,423,000 1,637,000 1,908,000 2,192,000 2,447,000 2,650,000 2,664,000 2,408,000 1,926,000 1977 1,287,000 1,163,000

  7. Pacific Region Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    from Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Pacific Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 -73,745 -134,228 -151,370 -126,913 -108,676 -88,833 -85,846 -63,506 -59,951 -41,003 -28,478 51,746 2015 78,024 157,916 170,736 149,288 125,002 86,799 69,490 45,075 40,921 33,861 29,674

  8. Texas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Texas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 321,678 314,918 308,955 347,344 357,995 370,534 383,549 377,753 378,495 396,071 402,265 365,396 1991 279,362 271,469 271,401 289,226 303,895 323,545 327,350 329,102 344,201 347,984 331,821 316,648 1992 284,571 270,262 264,884 267,778 286,318 298,901 320,885 338,320 341,156 345,459 324,873 288,098 1993 165,226 149,367 141,472

  9. Lower 48 States Total Natural Gas in Underground Storage (Working Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Working Gas) (Million Cubic Feet) Lower 48 States Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,305,843 1,721,875 1,577,007 1,788,480 2,186,855 2,529,647 2,775,346 3,019,155 3,415,698 3,803,828 3,842,882 3,462,021 2012 2,910,007 2,448,810 2,473,130 2,611,226 2,887,060 3,115,447 3,245,201 3,406,134 3,693,053 3,929,250 3,799,215 3,412,910 2013 2,690,271 2,085,441 1,706,102 1,840,859

  10. Midwest Region Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    from Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Midwest Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 -243,074 -255,871 -209,941 -189,692 -156,914 -124,375 -83,035 -47,387 -33,755 -8,053 -11,988 108,104 2015 168,709 107,663 110,005 130,381 120,962 93,959 58,782 43,062 37,218 47,788

  11. Mountain Region Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    from Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Mountain Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 -32,861 -42,199 -45,053 -42,581 -35,771 -26,278 -21,654 -24,388 -26,437 -26,669 -34,817 -21,557 2015 -6,412 13,374 29,357 34,073 36,475 32,988 31,353 29,400 28,615 27,317 32,540 33,887

  12. Ohio Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Ohio Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 100,467 79,364 70,578 73,582 96,173 115,927 135,350 154,385 171,798 182,858 181,763 157,536 1991 120,038 97,180 81,448 90,583 109,886 132,661 147,602 165,801 180,656 188,600 175,740 148,929 1992 105,511 70,674 36,141 38,587 63,604 95,665 121,378 143,128 158,570 169,712 164,562 132,576 1993 93,544 49,298 14,332 16,953 43,536 75,177

  13. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -67 -133 -30 123 233 669 826 998 743 933 994 633 1997 156 40 226 203 337 -48 -197 -301 -376 -242 -356 405 1998 185 181 -92 24 -103 427 374 288 -376 -14 230 91 1999 29 103 39 -69 257 -156 88 -31 772 82 214 164 2000 63 175 802 599 219 615 462 381 -131 -196

  14. Missouri Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Missouri Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -114 -943 -336 775 774 774 773 -107 103 55 -146 1,291 1991 -410 79 -1,227 -201 487 592 893 913 620 617 807 1,083 1992 -216 381 1,107 542 286 333 304 220 216 189 -18 -13 1993 393 -220 -975 -996 -374 -69 -233 -135 -136 -112 -226 -70 1994 -245 1,036 1,842

  15. Rapid gas hydrate formation processes: Will they work?

    SciTech Connect (OSTI)

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOEs National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETLs 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuous formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.

  16. Rapid gas hydrate formation processes: Will they work?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuousmore » formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.« less

  17. Assumptions and Expectations for Annual Energy Outlook 2014: Oil and Gas Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    4: Oil and Gas Working Group AEO2014 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis July 25, 2013 | Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Introduction/Background Office of Petroleum, Gas, and Biofuels Analysis Working Group Presentation for Discussion Purposes Washington, DC, July 25, 2013 DO NOT QUOTE OR CITE as results are

  18. Iowa Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Iowa Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 74,086 66,477 61,296 61,444 65,918 70,653 76,309 82,236 85,955 89,866 87,913 73,603 1991 71,390 60,921 57,278 59,014 63,510 74,146 79,723 86,294 97,761 109,281 101,166 86,996 1992 67,167 54,513 50,974 53,944 62,448 70,662 82,259 93,130 103,798 112,898 103,734 83,223 1993 18,126 8,099 5,896 10,189 16,993 25,093 35,988 46,332 58,949

  19. Utah Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 12,862 9,993 8,285 7,662 9,184 8,305 17,964 25,464 32,121 35,381 24,204 15,997 1991 19,120 11,915 6,118 7,419 9,193 10,977 15,226 20,591 26,089 27,689 23,281 16,335 1992 12,422 11,379 10,289 10,996 13,431 14,981 17,321 20,674 22,548 22,548 24,443 17,445 1993 11,572 6,509 2,846 1,790 6,910 14,321 17,591 21,416 25,209 30,558 28,654

  20. Nebraska Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Nebraska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -3,131 -3,119 -3,529 -3,306 -1,630 -1,017 244 -266 -458 -1,071 -1,072 157 1992 482 508 1,184 660 -762 -277 2,037 3,311 3,592 3,600 1,413 350 1993 -1,474 -2,431 -3,424 -3,068 -1,752 -1,058 -532 116 439 -49,834 -49,012 -47,951 1994 -47,626 -48,394 -47,215

  1. New York Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) New York Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -484 -13 300 294 -712 -349 -288 393 1,101 972 1,011 1,114 1991 3,318 2,144 1,258 2,592 3,476 1,343 977 614 2,324 4,252 -55 2,063 1992 11,224 5,214 -1,963 -2,306 527 2,182 5,330 6,430 3,719 2,374 3,894 -4,958 1993 -6,762 -8,650 -7,154 -6,031 -5,432

  2. Ohio Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Ohio Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,596 507 381 -2,931 -46 -596 -311 -234 178 167 7,030 9,898 1991 19,571 17,816 10,871 17,001 13,713 16,734 12,252 11,416 8,857 5,742 -6,023 -8,607 1992 -14,527 -26,506 -45,308 -51,996 -46,282 -36,996 -26,224 -22,672 -22,086 -18,888 -11,177 -16,353 1993 -11,967

  3. Oklahoma Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Oklahoma Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -3,932 5,480 7,289 -2,690 234 1,959 -4,575 -3,502 -6,399 723 4,670 1991 -18,020 -11,848 -7,774 9,453 9,540 10,851 1,058 -1,981 846 -1,053 -36,391 -20,972 1992 4,433 1,077 -7,840 -16,283 -22,923 -22,043 -5,431 -2,118 584 4,227 9,780 -10,318 1993 -69,197

  4. Oregon Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Oregon Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -30,641 13,186 6,384 -1,434 1,227 -3,129 3,399 2,573 2,606 1,953 968 1,423 1991 1,986 2,360 1,291 -869 -1,664 -1,353 -659 -203 99 250 317 582 1992 89 -487 -305 231 1,089 1,075 811 730 509 343 -779 -872 1993 -1,222 -1,079 -221 -204 -131 -374 -387 -356 -231 86

  5. Utah Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,258 1,922 -2,167 -243 10 2,672 -2,738 -4,873 -6,032 -7,692 -923 338 1992 -6,698 -535 4,172 3,577 4,237 4,004 2,095 84 -3,541 -5,140 1,162 1,110 1993 -850 -4,870 -7,443 -9,206 -6,521 -660 270 742 2,661 8,010 4,211 6,489 1994 7,656 4,514 6,002 8,910 9,109 5,722

  6. Indiana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Indiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -3,295 -2,048 303 1,673 2,267 2,054 632 690 1,081 1,169 1,343 2,765 1991 2,450 1,002 -617 -1,537 -1,372 -2,052 -995 -41 274 4,477 815 -517 1992 -1,493 -820 -1,663 -1,510 -2,353 -796 1,038 506 1,229 -2,650 -2,283 -922 1993 374 -217 1,229 2,820 2,636 2,160

  7. Iowa Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Iowa Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -2,696 -5,556 -4,018 -2,430 -2,408 3,493 3,414 4,058 11,806 19,414 13,253 13,393 1992 -4,224 -6,407 -6,304 -5,070 -1,061 -3,484 2,536 6,836 6,037 3,618 2,568 -3,773 1993 -49,040 -46,415 -45,078 -43,755 -45,456 -45,569 -46,271 -46,798 -44,848 -48,360 -45,854

  8. Kansas Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Kansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -10,362 -8,989 -8,480 -6,853 -3,138 -3,221 -2,686 -2,091 824 166 -307 3,561 1991 -6,300 -645 -100 -132 5,625 8,255 -439 -9,003 -13,999 -9,506 -35,041 -11,017 1992 16,928 8,288 4,215 1,589 -2,700 -7,788 -6,391 1,723 1,181 -7,206 -7,569 -20,817 1993 -31,418

  9. Kentucky Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -1,772 682 336 86 308 -489 138 -272 -702 -351 130 2,383 1991 21,249 14,278 11,919 15,552 13,179 11,123 8,684 4,865 1,110 -2,624 -4,707 -1,444 1992 4,569 6,818 5,559 -712 -4,310 -6,053 -7,850 -9,429 -8,687 2,440 7,441 7,127 1993 2,921 -6,726 -11,466

  10. Maryland Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -862 -85 724 658 416 -1,091 -1,477 -807 2,724 -222 -1,505 5,333 1991 4,470 4,339 1,613 1,801 727 1,324 628 202 -123 -686 1,727 2,620 1992 900 -745 -1,784 -3,603 -1,779 -745 -328 -176 -219 356 579 -1,431 1993 153 742 1,488 1,891 777 -736 -1,464 -2,133

  11. Michigan Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Michigan Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -46,336 -12,518 16,386 37,537 39,350 53,475 75,155 66,399 51,354 56,272 78,572 103,458 1991 37,515 32,421 33,438 66,819 45,861 39,009 20,626 -3,335 -36,217 -14,370 -61,674 -66,823 1992 -28,428 -40,296 -82,921 -108,640 -91,199 -80,473 -64,200 -42,476

  12. Montana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 705 2,167 1,643 1,813 -2,403 355 272 -26 131 59 561 542 1991 -4,514 -2,633 -2,648 -1,702 -3,097 151 -280 -908 -3,437 -6,076 -7,308 -6,042 1992 -68,442 -68,852 -67,958 -67,769 -67,999 -68,527 -69,209 -69,883 -70,428 -70,404 -71,019 -73,067 1993 -14,437

  13. Wyoming Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -525 -558 -653 -568 -437 -289 -114 76 566 493 1,000 1,188 1991 482 1,359 1,901 1,461 980 1,611 1,437 1,173 -147 -1,122 -1,494 -1,591 1992 -23,715 -25,067 -25,923 -26,121 -26,362 -27,771 -28,829 -30,471 -30,725 -31,860 -31,627 -33,317 1993 -9,841 -10,219

  14. Alaska Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Alaska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 NA NA NA NA NA NA NA NA NA NA NA NA 2014 11,087 5,754 6,824 6,119 5,428 6,065 5,421 4,685 3,365 1,565 3,028 5,179 2015 4,768 4,958 3,824 3,761 3,574 2,105 2,020 1,381 723 881 189 -679 2016 -515 164 850 2,474 4,360 5,604 - = No Data Reported; -- = Not

  15. Alaska Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Alaska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 NA NA NA NA NA NA NA NA NA NA NA NA 2014 123.8 41.4 49.7 42.7 35.5 37.5 31.7 25.2 16.5 7.1 14.3 26.1 2015 23.8 25.2 18.6 18.4 17.3 9.5 9.0 5.9 3.0 3.7 0.8 -2.7 2016 -2.1 0.7 3.5 10.2 18.0 23.0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  16. Arkansas Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Arkansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -925 -513 -486 -557 -855 -813 -453 -125 98 112 82 297 1991 -381 -716 -999 -1,230 -1,199 -1,333 -1,373 -1,840 -2,119 -2,147 -2,697 -3,134 1992 -1,855 -2,008 -2,040 -1,913 -2,046 -1,875 -1,510 -861 -426 -502 -100 73 1993 100 -170 -256 -297 -803 -1,041

  17. California Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) California Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 13,690 18,121 8,849 5,853 7,132 14,219 18,130 10,561 13,390 31,974 19,181 9,703 1991 6,425 26,360 4,734 4,680 6,001 17,198 26,493 26,589 17,703 3,011 -3,286 14,947 1992 -6,546 -23,935 -22,706 -29,553 -29,442 -31,729 -31,331 -21,662 -2,945 7,561 4,600

  18. Colorado Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Colorado Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 701 995 446 26 639 1,368 2,249 3,219 1,102 2,496 892 1991 -1,225 1,811 40 2,493 3,883 3,621 1,685 1,583 1,282 1,616 2,927 2,233 1992 6,816 5,146 5,417 2,679 1,253 -728 -859 310 1,516 2,085 -2,078 -3,827 1993 -4,453 -6,128 -1,947 -1,204 1,853 4,502 3,520

  19. Illinois Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Illinois Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 9,275 18,043 13,193 1,851 5,255 9,637 5,108 8,495 9,773 7,534 9,475 11,984 1991 -9,933 -7,259 454 6,145 6,270 3,648 2,744 1,010 -13 7,942 -12,681 -9,742 1992 -9,345 -8,466 -9,599 -19,126 -16,878 -15,372 -13,507 -9,010 -7,228 -7,653 -6,931 -18,707 1993

  20. Tennessee Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Tennessee Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 184 1999 197 189 118 122 119 262 235 178 169 171 125 68 2000 34 -17 51 68 53 -90 -197 -274 -377 -433 -377 -236 2001 -68 48 38 32 153 266 298 360 407 420 65 -22 2002 24 85 159 228 100 -16 -60 -126 -176

  1. Texas Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Texas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 21,315 40,513 43,111 18,628 12,189 2,033 47 -10,549 -21,072 -9,288 -13,355 -8,946 1991 -42,316 -43,449 -37,554 -58,118 -54,100 -46,988 -56,199 -48,651 -34,294 -48,087 -70,444 -48,747 1992 5,209 -1,207 -6,517 -21,448 -17,577 -24,644 -6,465 9,218 -3,044 -2,525

  2. Underground Natural Gas Working Storage Capacity - U.S. Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Underground Natural Gas Working Storage Capacity With Data for November 2015 | Release Date: March 16, 2016 | Next Release Date: February 2017 Previous Issues Year: 2016 2015 2014 2013 2012 2011 prior issues Go Natural gas storage capacity nearly unchanged nationally, but regions vary U.S. natural gas working storage capacity (in terms of design capacity and demonstrated maximum working gas volumes) as of November 2015 was essentially flat compared to November 2014, with some

  3. Differences Between Monthly and Weekly Working Gas In Storage

    Weekly Natural Gas Storage Report (EIA)

    levels. These are estimated from volume data provided by a sample of operators that report on Form EIA-912, "Weekly Underground Natural Gas Storage Report." The EIA first...

  4. Assumptions and Expectations for Annual Energy Outlook 2015: Oil and Gas Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    Assumptions and Expectations for Annual Energy Outlook 2016: Oil and Gas Working Group AEO2016 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis December 1, 2015| Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE We welcome feedback on our assumptions and documentation * The AEO Assumptions report http://www.eia.gov/forecasts/aeo/assumptions/

  5. Nebraska Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Nebraska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -5.7 -5.8 -6.6 -6.0 -2.9 -1.8 0.4 -0.5 -0.8 -1.8 -1.9 0.3 1992 0.9 1.0 2.4 1.3 -1.4 -0.5 3.6 5.9 6.3 6.3 2.5 0.6 1993 -2.8 -4.7 -6.6 -5.9 -3.3 -1.9 -0.9 0.2 0.7 -82.3 -84.6 -88.0 1994 -93.2 -98.5 -98.2 -96.2 -92.3 -91.2 -88.8 -88.5 -85.3 -7.5 12.8 23.1 1995 74.4 582.5 367.3 113.6 15.1

  6. New York Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) New York Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9.4 7.6 5.1 9.8 10.8 3.2 1.9 1.0 3.5 6.1 -0.1 3.5 1992 29.1 17.2 -7.6 -7.9 1.5 5.0 10.3 10.6 5.4 3.2 5.6 -8.1 1993 -13.6 -24.4 -30.1 -22.5 -15.0 -8.4 -9.2 -18.9 -12.1 -13.4 -14.1 -5.6 1994 -5.8 -1.8 7.8 29.0 14.9 14.1 9.6 21.1 10.7 9.5 11.2 14.4 1995 15.8 23.8 49.4 1.6 0.9 -1.4 -4.4

  7. Ohio Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Ohio Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 19.5 22.4 15.4 23.1 14.3 14.4 9.1 7.4 5.2 3.1 -3.3 -5.5 1992 -12.1 -27.3 -55.6 -57.4 -42.1 -27.9 -17.8 -13.7 -12.2 -10.0 -6.4 -11.0 1993 -11.3 -30.2 -60.3 -56.1 -31.6 -21.4 -13.8 -8.2 -0.9 -3.4 -7.9 -16.2 1994 -41.7 -61.0 -63.3 24.5 16.2 6.8 8.5 6.1 2.5 4.6 10.6 27.3 1995 67.7 179.6 562.8 43.0

  8. Oklahoma Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Oklahoma Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.9 -10.0 -6.5 8.1 7.3 7.8 0.7 -1.3 0.5 -0.6 -20.1 -13.6 1992 4.0 1.0 -7.0 -12.9 -16.3 -14.6 -3.6 -1.4 0.4 2.5 6.8 -7.7 1993 -59.8 -75.3 -81.3 -71.8 -58.1 -47.8 -43.7 -38.0 -33.1 -31.7 -34.3 -29.9 1994 20.6 33.2 68.7 60.2 49.2 29.1 25.2 21.3 11.9 8.6 24.6 27.3 1995 54.1 106.0 91.5

  9. Oregon Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Oregon Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -0.1 1991 53.6 99.8 77.4 -30.5 -38.2 -24.2 -10.4 -2.9 1.3 3.3 4.2 8.6 1992 1.6 -10.3 -10.3 11.6 40.4 25.3 14.2 10.7 6.8 4.4 -9.9 -11.9 1993 -21.1 -25.4 -8.3 -9.2 -3.5 -7.0 -5.9 -4.7 -2.9 1.1 6.4 -1.1 1994 12.9 27.1 26.3 -67.7 -49.1 -32.2 -25.7 -21.5 -18.6 -20.3 -18.4 -14.3 1995 -25.9 -14.7

  10. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 221.1 244.8 179.6 64.8 86.8 112.2 130.5 1997 36.2 10.9 111.7 57.1 68.4 -5.0 -17.0 -19.4 -19.9 -12.1 -19.0 36.2 1998 31.5 45.0 -21.4 4.3 -12.4 46.2 38.7 23.0 -24.8 -0.8 15.1 6.0 1999 3.8 17.6 11.5 -11.9 35.3 -11.6 6.5 -2.0 67.7 4.7 12.2 10.2 2000 7.9 25.4 213.4 116.8 22.2 51.5 32.4 25.3

  11. Utah Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 48.7 19.2 -26.2 -3.2 0.1 32.2 -15.2 -19.1 -18.8 -21.7 -3.8 2.1 1992 -35.0 -4.5 68.2 48.2 46.1 36.5 13.8 0.4 -13.6 -18.6 5.0 6.8 1993 -6.8 -42.8 -72.3 -83.7 -48.5 -4.4 1.6 3.6 11.8 35.5 17.2 37.2 1994 66.2 69.4 210.9 497.9 131.8 40.0 34.2 32.4 40.9 25.7 26.4 36.0 1995 28.4 93.2 100.2 78.2 40.9

  12. West Virginia Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    from Same Month Previous Year (Percent) Percent) West Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 7.1 -3.2 -1.4 0.2 -3.4 -3.9 -4.7 -8.2 -10.5 -10.3 -16.6 -21.9 1992 -15.1 -26.4 -59.0 -61.0 -43.3 -36.0 -27.0 -19.0 -14.7 -8.4 -5.4 18.6 1993 28.7 15.6 28.7 37.5 46.9 48.1 35.0 30.1 32.3 24.3 19.9 -9.9 1994 -36.1 -44.0 -50.4 -9.9 -20.6 -12.2 -4.3 -1.7 -1.2 -1.0 2.5 8.2 1995

  13. Indiana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Indiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 11.0 5.4 -3.6 -8.8 -7.2 -9.9 -4.3 -0.2 0.9 13.4 2.4 -1.7 1992 -6.0 -4.2 -10.1 -9.5 -13.2 -4.2 4.7 1.9 3.9 -7.0 -6.5 -3.1 1993 1.6 -1.2 8.3 19.7 17.1 12.0 6.3 7.0 2.7 -1.9 -0.1 3.1 1994 -0.3 7.7 13.2 1.4 -4.7 -2.3 0.9 -0.1 -0.7 3.7 11.3 11.2 1995 17.4 9.6 8.0 8.6 11.8 7.0 -3.4 -5.3 -3.3

  14. Iowa Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Iowa Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -3.6 -8.4 -6.6 -4.0 -3.7 4.9 4.5 4.9 13.7 21.6 15.1 18.2 1992 -5.9 -10.5 -11.0 -8.6 -1.7 -4.7 3.2 7.9 6.2 3.3 2.5 -4.3 1993 -73.0 -85.1 -88.4 -81.1 -72.8 -64.5 -56.2 -50.3 -43.2 -42.8 -44.2 -51.6 1994 21.3 54.4 61.3 12.0 -0.1 -6.4 -6.3 -3.5 -4.3 1.5 5.3 7.2 1995 3.0 -5.8 -21.7 -39.9 -37.4 -20.3

  15. Kansas Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Kansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -9.6 -1.2 -0.2 -0.3 11.7 15.5 -0.7 -11.7 -15.1 -9.6 -30.3 -11.8 1992 28.5 15.1 8.5 3.4 -5.0 -12.7 -9.9 2.5 1.5 -8.0 -9.4 -25.3 1993 -41.2 -47.7 -48.5 -45.3 -8.3 9.0 10.7 8.6 12.8 12.5 19.4 24.0 1994 18.1 26.1 43.8 52.2 5.8 -5.9 0.7 2.1 -3.5 -1.6 -3.1 -2.4 1995 11.9 13.5 -4.5 -4.2 -1.5 9.2 0.7

  16. Kentucky Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 36.3 23.0 19.6 25.2 19.8 15.5 10.9 5.6 1.2 -2.7 -5.1 -1.7 1992 5.7 8.9 7.7 -0.9 -5.4 -7.3 -8.9 -10.3 -9.2 2.6 8.5 8.4 1993 3.5 -8.1 -14.7 -13.7 -3.8 4.4 9.2 12.9 14.8 3.2 -1.2 -9.6 1994 -25.7 -31.2 -28.1 -20.1 -13.8 -10.6 -7.3 -4.7 -7.2 -4.8 1.4 4.5 1995 14.0 16.7 18.3 14.2 16.8 12.2

  17. Louisiana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Louisiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 22.5 -6.7 -11.5 -6.1 4.7 11.3 9.9 6.6 10.0 12.0 -0.1 -13.0 1992 -15.0 -16.6 -17.6 -16.9 -13.0 -14.5 -14.2 -9.8 -8.6 -8.0 -5.3 -9.7 1993 -14.1 -27.1 -40.9 -42.3 -18.5 -3.2 9.0 15.5 21.5 17.1 14.1 13.8 1994 8.5 40.4 69.8 104.5 54.4 28.4 23.9 17.6 8.8 5.4 10.4 15.6 1995 29.7 13.7 22.0

  18. Maryland Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 103.9 379.8 71.8 60.5 13.1 20.1 7.2 1.8 -0.9 -4.6 13.4 22.0 1992 10.3 -13.6 -46.2 -75.4 -28.4 -9.4 -3.5 -1.5 -1.6 2.5 4.0 -9.9 1993 1.6 15.7 71.7 160.6 17.3 -10.3 -16.3 -18.7 -12.6 -1.8 -2.5 -8.9 1994 -45.2 -46.8 -3.2 53.1 28.2 27.5 36.9 27.2 13.4 4.6 -3.5 10.5 1995 103.8 130.7 91.8

  19. Michigan Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Michigan Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 12.0 12.8 14.6 30.2 17.0 11.7 5.0 -0.7 -6.8 -2.6 -11.4 -14.2 1992 -8.1 -14.1 -31.6 -37.7 -28.9 -21.6 -14.9 -8.9 1.2 -1.2 1.1 -2.0 1993 -7.5 -20.7 -25.8 -17.2 -1.0 3.7 5.2 7.6 6.1 6.7 6.2 7.4 1994 -4.8 -0.4 22.1 37.4 24.6 15.8 10.2 7.2 6.2 5.4 12.3 21.2 1995 45.7 54.3 51.8 20.6 8.0 3.8

  20. Mississippi Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Mississippi Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 31.9 17.1 14.2 15.5 11.1 7.9 -1.1 -5.7 -3.6 -2.3 -15.3 -16.4 1992 -6.8 1.1 -4.7 -16.9 -14.3 -8.0 -2.7 -5.4 -2.8 -7.0 5.6 3.5 1993 13.6 -2.2 -12.3 -6.0 1.7 0.0 0.9 6.3 4.6 1.9 -35.2 -40.7 1994 -53.0 -55.0 -36.7 -28.8 -29.8 -34.1 -28.0 -22.8 -26.7 -21.5 26.7 39.2 1995 50.8 54.7 11.0

  1. Missouri Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Missouri Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -5.1 1.4 -20.3 -2.8 6.8 8.3 12.5 12.3 7.8 7.6 9.9 13.8 1992 -2.8 6.5 23.0 7.8 3.7 4.3 3.8 2.6 2.5 2.2 -0.2 -0.1 1993 5.3 -3.5 -16.4 -13.3 -4.7 -0.9 -2.8 -1.6 -1.6 -1.3 -2.5 -0.8 1994 -3.1 17.2 37.2 -28.6 -19.3 -6.9 -4.2 -4.1 -3.3 -3.3 0.7 -1.0 1995 7.9 12.0 16.0 64.0 35.0 10.4 5.7 6.0

  2. Montana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -2.5 -1.5 -1.5 -1.0 -1.7 0.1 -0.2 -0.5 -1.8 -3.2 -3.9 -3.3 1992 -38.1 -38.6 -38.4 -38.3 -38.2 -38.2 -38.2 -38.3 -38.6 -38.8 -39.8 -41.8 1993 -13.0 -15.6 -17.8 -19.4 -21.2 -22.4 -22.0 -22.3 -21.6 -20.7 -20.8 -19.6 1994 -19.3 -21.6 -20.5 -19.8 -17.7 -14.9 -14.5 -13.6 -12.0 -10.7 -9.8 -9.5

  3. Wyoming Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0.9 2.6 3.7 2.8 1.8 3.0 2.5 2.0 -0.2 -1.8 -2.5 -2.7 1992 -43.8 -46.9 -48.5 -48.7 -48.6 -49.4 -49.4 -50.6 -50.1 -51.9 -53.3 -58.2 1993 -32.4 -36.0 -35.5 -33.5 -30.9 -25.0 -21.0 -16.0 -14.5 -8.3 -12.5 -8.1 1994 4.1 2.9 8.2 10.1 12.7 5.3 0.8 0.6 1.5 1.5 11.2 14.0 1995 3.4 11.3 0.7 -7.6

  4. Arkansas Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Arkansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.4 -8.3 -11.6 -14.2 -13.7 -14.5 -14.1 -18.0 -20.2 -20.4 -25.8 -30.6 1992 -22.4 -25.3 -26.8 -25.8 -27.1 -23.8 -18.0 -10.3 -5.1 -6.0 -1.3 1.0 1993 1.6 -2.9 -4.6 -5.4 -14.6 -17.3 -27.6 -34.0 -37.6 -37.9 -42.3 -48.2 1994 -63.6 -74.6 -86.5 -87.0 -71.6 -60.3 -47.2 -35.4 -31.0 -29.2 -21.3

  5. California Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) California Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5.1 24.7 4.3 3.5 3.8 10.1 15.1 15.0 9.7 1.5 -1.7 9.7 1992 -4.9 -18.0 -19.6 -21.6 -18.0 -16.9 -15.6 -10.6 -1.5 3.8 2.4 -16.7 1993 -15.0 -19.6 8.1 2.5 3.1 -2.6 3.4 1.5 1.3 1.5 0.5 17.0 1994 13.4 -12.0 -24.5 -13.5 -10.9 -5.7 -8.4 -8.0 -4.2 -3.3 -6.0 -2.0 1995 7.4 63.0 54.5 20.8 14.6

  6. Colorado Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Colorado Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.5 8.0 0.2 18.3 29.2 20.6 7.1 5.5 3.8 4.6 8.4 6.4 1992 25.9 21.0 30.9 16.6 7.3 -3.4 -3.4 1.0 4.3 5.7 -5.5 -10.4 1993 -13.5 -20.7 -8.5 -6.4 10.0 22.0 14.3 3.5 -1.4 -12.0 -15.0 -11.5 1994 -15.3 -17.8 -21.0 -34.7 -16.3 -25.8 -16.1 -9.6 -6.1 0.2 7.4 0.2 1995 2.9 10.9 -0.8 5.3 -17.3 7.8

  7. Illinois Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Illinois Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.2 -4.0 0.3 4.2 3.5 1.7 1.1 0.4 0.0 2.4 -3.8 -3.3 1992 -4.2 -4.8 -6.4 -12.6 -9.2 -7.2 -5.6 -3.3 -2.3 -2.3 -2.2 -6.6 1993 -24.0 -31.6 -36.3 -30.7 -24.7 -20.2 -17.4 -16.7 -14.3 -13.7 -11.6 -12.9 1994 -3.7 -1.1 10.0 6.3 -2.8 -4.3 -2.6 -1.9 -1.2 -0.2 0.0 4.9 1995 13.3 6.3 -0.8 -4.1 -24.0

  8. Tennessee Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Tennessee Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1998 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1999 43.0 55.3 41.7 61.2 59.6 131.5 70.6 38.1 29.2 25.1 16.0 8.6 2000 5.3 -3.2 12.8 21.0 16.7 -19.5 -34.7 -42.4 -50.4 -50.8 -41.4 -27.6 2001 -9.8 9.3 8.4 8.3 41.3 71.7 80.1 97.0 109.6

  9. Texas Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Texas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.2 -13.8 -12.2 -16.7 -15.1 -12.7 -14.7 -12.9 -9.1 -12.1 -17.5 -13.3 1992 1.9 -0.4 -2.4 -7.4 -5.8 -7.6 -2.0 2.8 -0.9 -0.7 -2.1 -9.0 1993 -41.9 -44.7 -46.6 -41.3 -35.7 -33.7 -35.4 -35.0 -36.7 -35.5 -35.3 -32.7 1994 -13.0 -30.4 -20.9 -13.7 -8.3 -8.3 -0.1 3.0 15.2 17.2 27.0 21.5 1995 49.9 85.3

  10. Western Consuming Region Natural Gas Working Underground Storage (Billion

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) West Virginia Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 14 688 2010's 2,491 6,043 9,408 18,078 28,311 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 West Virginia Shale Gas Proved

  11. Government works with technology to boost gas output/usage

    SciTech Connect (OSTI)

    Nicoll, H.

    1996-10-01

    Specially treated ethane gas from fields of the Moomba area in the Cooper basin of South Australia now flows freely through 870 mi of interstate gas pipeline to an end-user in Sydney, New South Wales. This unprecedented usage of ethane is the result of a long-term cooperative agreement. The producer sought to provide the end-user with ethane gas for usage as a petrochemical feedstock to manufacture ethylene and plastic goods. The end-user had strict specifications for a low-CO{sub 2}, very dry ethane product with a small percentage of methane. In order to meet these, the producer committed millions of dollars to construct a high-technology, state-of-the-art ethane treatment facility in the Moomba area, and lay an extensive pipeline. Santos also contracted with the amines supplier to provide a high-performance, deep CO{sub 2} removal solvent with good corrosion prevention characteristics. The paper discusses the Moomba field overflow, gas treatment, government cooperation, and project completion.

  12. South Central Region Natural Gas in Underground Storage - Change in Working

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas from Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) South Central Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 -281,823 -324,789 -326,968 -286,719 -287,056 -272,324 -254,513 -242,345 -212,206 -137,887 -86,360 54,089 2015 162,728 123,241 237,326 322,874 360,298 336,237 294,425 289,394

  13. U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Acquifers Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 396,950 396,092 2010's 364,228 363,521 367,108 453,054 452,044 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Working Gas

  14. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect (OSTI)

    Egorov, V.N.; Anikin, G.J.; Gross, M.

    1995-12-01

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  15. U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Salt Caverns Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 230,456 271,785 2010's 312,003 351,017 488,268 455,729 488,698 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Working

  16. Method and apparatus for removing non-condensible gas from a working fluid in a binary power system

    DOE Patents [OSTI]

    Mohr, Charles M.; Mines, Gregory L.; Bloomfield, K. Kit

    2002-01-01

    Apparatus for removing non-condensible gas from a working fluid utilized in a thermodynamic system comprises a membrane having an upstream side operatively connected to the thermodynamic system so that the upstream side of the membrane receives a portion of the working fluid. The first membrane separates the non-condensible gas from the working fluid. A pump operatively associated with the membrane causes the portion of the working fluid to contact the membrane and to be returned to the thermodynamic system.

  17. U.S. Working Natural Gas Underground Storage Depleted Fields Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Depleted Fields Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,583,786 3,659,968 2010's 3,733,993 3,769,113 3,720,980 3,839,852 3,844,927 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  18. Blast furnace gas fired boiler for Eregli Iron and Steel Works (Erdemir), Turkey

    SciTech Connect (OSTI)

    Green, J.; Strickland, A.; Kimsesiz, E.; Temucin, I.

    1996-11-01

    Eregli Demir ve Celik Fabriklari T.A.S. (Eregli Iron and Steel Works Inc.), known as Erdemir, is a modern integrated iron and steel works on the Black Sea coast of Turkey, producing flat steel plate. Facilities include two blast furnaces, coke ovens, and hot and cold rolling mills, with a full supporting infrastructure. Four oil- and gas-fired steam boilers provide steam for electric power generation, and to drive steam turbine driven fans for Blast Furnace process air. Two of these boilers (Babcock and Wilcox Type FH) were first put into operation in 1965, and still reliably produce 100 tons/hour of steam at a pressure of 44 bar and a temperature of 410 C. In 1989 Erdemir initiated a Capacity Increase and Modernization Project to increase the steel production capability from two million to three million tons annually. This project also incorporates technology to improve the product quality. Its goals include a reduction in energy expenses to improve Erdemir`s competitiveness. The project`s scheduled completion is in late 1995. The by-product gases of the blast furnaces, coke ovens, and basic oxygen furnaces represent a considerable share of the consumed energy in an integrated iron and steel works. Efficient use of these fuels is an important factor in improving the overall efficiency of the operation.

  19. Huge natural gas reserves central to capacity work, construction plans in Iran

    SciTech Connect (OSTI)

    Not Available

    1994-07-11

    Questions about oil production capacity in Iran tend to mask the country's huge potential as a producer of natural gas. Iran is second only to Russia in gas reserves, which National Iranian Gas Co. estimates at 20.7 trillion cu m. Among hurdles to Iran's making greater use of its rich endowment of natural gas are where and how to sell gas not used inside the country. The marketing logistics problem is common to other Middle East holders of gas reserves and a reason behind the recent proliferation of proposals for pipeline and liquefied natural gas schemes targeting Europe and India. But Iran's challenges are greater than most in the region. Political uncertainties and Islamic rules complicate long-term financing of transportation projects and raise questions about security of supply. As a result, Iran has remained mostly in the background of discussions about international trade of Middle Eastern gas. The country's huge gas reserves, strategic location, and existing transport infrastructure nevertheless give it the potential to be a major gas trader if the other issues can be resolved. The paper discusses oil capacity plans, gas development, gas injection for enhanced oil recovery, proposals for exports of gas, and gas pipeline plans.

  20. Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update

    Reports and Publications (EIA)

    2007-01-01

    This report provides an update to an estimate for U.S. aggregate natural gas storage capacity that was released in 2006.

  1. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  2. Estimate of Maximum Underground Working Gas Storage Capacity in the United States

    Reports and Publications (EIA)

    2006-01-01

    This report examines the aggregate maximum capacity for U.S. natural gas storage. Although the concept of maximum capacity seems quite straightforward, there are numerous issues that preclude the determination of a definitive maximum volume. The report presents three alternative estimates for maximum capacity, indicating appropriate caveats for each.

  3. Control of SOx emission in tail gas of the Claus Plant at Kwangyang Steel Works

    SciTech Connect (OSTI)

    Kang, H.S.; Park, J.W.; Hyun, H.D.; Lee, D.S.; Paik, S.C.; Chung, J.S.

    1995-12-01

    Pilot and/or laboratory studies were conducted in order to find methods for reducing the SOx emission in the Claus tail gas of the cokes unit. The TGT process which is based on the complete hydrogenation of the sulfur-containing compounds (SO{sub 2}, S) into H{sub 2}S and returning to the COG main line can reduce the SOx emission to zero. In case the return to the COG main is impossible, the SPOR process (Sulfur removal based on Partial Oxidation and Reduction) can be successfully applied to reduce the SOx emission.

  4. U.S. Working Natural Gas Total Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    586,953 575,601 549,151 489,505 505,318 514,809 1978-2014 From Gas Wells 259,848 234,236 208,970 204,667 186,887 159,337 1978-2014 From Oil Wells 327,105 341,365 340,182 284,838 318,431 355,472 1978

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's NA NA NA NA NA NA NA 1980's 155 176 145 132 110 126 113 101 101 107 1990's 123 113 118 119 111 110 109 103 102 98 2000's 90 86 68 68 60 64 66 63 61 65 2010's 65 60 61 55 60 59 - = No Data Reported; -- = Not

  5. Total Working Gas Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History U.S. 4,327,844 4,410,224 4,483,650 4,576,356 4,748,636 4,785,669 2008-2014 Alaska 67,915 67,915 2013-2014 Alabama 20,900 25,150 27,350 27,350 27,350 33,150 2008-2014 Arkansas 13,898 13,898 12,036 12,178 12,178 12,178 2008-2014 California 296,096 311,096 335,396 349,296 374,296 374,296 2008-2014

  6. Burden distribution control for maintaining the central gas flow at No. 1 blast furnace in Pohang Works

    SciTech Connect (OSTI)

    Jung, S.K.; Lee, Y.J.; Suh, Y.K.; Ahn, T.J.; Kim, S.M.

    1995-12-01

    The causes for temperature lowering at the upper shaft center in Pohang No. 1 blast furnace were investigated. The test operation with charging notch change in the actual blast furnace and with a 1/12 scale model to Pohang No. 1 blast furnace were carried out in order to improve central gas flow in the shaft. Finally, rebuilding of the lower bunker interior was performed using the results of model experiments. It was confirmed that the main reason for the gas temperature lowering at the upper shaft center was the smaller particle size at center than the wall according to the discharging characteristics of center feed bunker with stone box. The central gas flow could be secured through modifying the stone box in the bunker.

  7. Underwater robotic work systems for Russian arctic offshore oil/gas industry: Final report. Export trade information

    SciTech Connect (OSTI)

    1997-12-15

    The study was performed in association with Rosshelf, a shelf developing company located in Moscow. This volume involves developing an underwater robotic work system for oil exploration in Russia`s Arctic waters, Sea of Okhotsk and the Caspian Sea. The contents include: (1) Executive Summary; (2) Study Background; (3) Study Outline and Results; (4) Conclusions; (5) Separately Published Elements; (6) List of Subcontractors.

  8. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  9. Working Gas Capacity of Aquifers

    Gasoline and Diesel Fuel Update (EIA)

    3,274,385 3,074,251 2,818,148 3,701,510 3,585,867 3,100,594 1944-2015 Alaska 7,259 6,523 9,943 2013-2015 Lower 48 States 3,074,251 2,818,148 3,694,251 3,579,344 3,090,651 2011-2015 Alabama 16,740 15,408 23,651 22,968 28,683 29,187 1968-2015 Arkansas 4,368 4,409 2,960 3,964 3,866 2,272 1967-2015 California 203,653 242,477 170,586 268,548 235,181 204,077 1967-2015 Colorado 45,010 48,341 56,525 63,531 70,692 64,053 1967-2015 Connecticut 1973-1996 Delaware 1967-1975 Georgia 1974-1975 Illinois

  10. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration

    SciTech Connect (OSTI)

    Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio

    2013-02-15

    A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

  11. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 2,414 Bcf as of Friday, January 9,...

  12. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 821 Bcf as of May 2, according to...

  13. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage as of September 2 totaled 2,669 Bcf,...

  14. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

  15. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in...

  16. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

  17. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    gas in storage, as well as decreases in the price of crude oil. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,905 Bcf as of...

  18. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in...

  19. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of natural gas into storage, despite robust inventories. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 3,258 Bcf as of...

  20. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

  1. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas inventories...

  2. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Working gas in storage was 3,121 Bcf as of Friday, Oct 24, 2003, according to the Energy Information Administration (EIA) Weekly Natural Gas Storage Report. This is 2.7...

  3. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    withdrawal from working gas storage reported last Thursday. A contributing factor to the run-up in natural gas prices could be climbing crude oil prices, which rallied late last...

  4. Natural Gas Futures Prices (NYMEX)

    U.S. Energy Information Administration (EIA) Indexed Site

    2.75 3.73 1997-2013 NGPL Composite 8.99 11.83 15.12 10.98 9.94 9.56 2007-2014 Futures Prices Contract 1 4.159 4.382 4.03 2.83 3.73 1994-2013 Contract 2 4.428 4.471 4.09 2.93 3.77...

  5. Reversible Acid Gas Capture

    ScienceCinema (OSTI)

    Dave Heldebrant

    2012-12-31

    Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

  6. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    on December 9, falling from somewhat higher intraweek levels. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage dropped 64 Bcf during the...

  7. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    and October 2010 contracts all fell by less than 1 cent. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas inventories set a new record,...

  8. Breathable gas distribution apparatus

    DOE Patents [OSTI]

    Garcia, Elmer D.

    1985-01-01

    The disclosure is directed to an apparatus for safely supplying breathable gas or air through individual respirators to personnel working in a contaminated area.

  9. Breathable gas distribution apparatus

    DOE Patents [OSTI]

    Garcia, E.D.

    The disclosure is directed to an apparatus for safely supplying breathable gas or air through individual respirators to personnel working in a contaminated area.

  10. REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    COUNCIL - WORK PLANNING FORMAT: Natural Gas Use in Transportation PDF icon RCC Workplan NGV.PDF More Documents & Publications REGULATORY COOPERATION COUNCIL - WORK PLANNING ...

  11. EIA - Natural Gas Pipeline Network - Regional/State Underground Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage Summary Regional/State Underground Natural Gas Storage Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Underground Natural Gas Storage, Close of 2007 Depleted-Reservoir Storage Aquifer Storage Salt-Cavern Storage Total Region/ State # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas

  12. EIA - Analysis of Natural Gas Storage

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry....

  13. EIA - Natural Gas Storage Data & Analysis

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground...

  14. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F.

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  15. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  16. Work Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work Plan NSSAB Members Vote on Work Plan Tasks; The Nevada Site Specific Advisory Board operates on a fiscal year basis and conducts work according to a NSSAB generated and U.S. Department of Energy (DOE) approved work plan. FY 2016 Work Plan Work plan items focus on providing recommendations to the DOE regarding the following subjects: soil contamination from historic atmospheric nuclear testing, remediation of contaminated facilities used to support historic testing, groundwater studies

  17. Philadelphia Gas Works- Home Rebates Program

    Broader source: Energy.gov [DOE]

    PGW’s Home Rebate program is available for residential customers within the PGW service territory. To participate in the program, the homeowner must first obtain a discounted home energy audit from...

  18. Weekly Working Gas in Underground Storage

    Gasoline and Diesel Fuel Update (EIA)

    Storage-test (Billion Cubic Feet) Period: Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Region 031816 032516 ...

  19. Working Gas Capacity of Depleted Fields

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    296,096 311,096 335,396 349,296 364,296 364,296 2008-2014 Colorado 48,129 49,119 48,709 60,582 60,582 63,774 2008-2014 Illinois 51,418 87,368 87,368 87,368 11,768 11,768...

  20. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly...

  1. Weekly Working Gas in Underground Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Region 042916 050616 051316 052016 052716 060316 View History Total Lower 48 States 2,625 2,681 2,754 2,825 2,907 2,972 2010-2016 East 454 468 490 511 537 559 2010-2016 ...

  2. Working Gas Capacity of Salt Caverns

    Gasoline and Diesel Fuel Update (EIA)

    271,785 312,003 351,017 488,268 455,729 488,698 2008-2014 Alabama 11,900 16,150 16,150 16,150 16,150 21,950 2008-2014 Arkansas 0 0 2012-2014 California 0 0 2012-2014 Colorado 0 0...

  3. Working Gas % Change from Year Ago

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington -0.6 -10.8 -20.6 -8.7 -21.2 -20.7 1991-2016 West Virginia 2.7 10.1 16.0 21.3 45.6 87.6 1991-2016 Wyoming 0.6 4.3 3.1 -0.8 -0.8 5.1 1991-2016 AGA Producing Region ...

  4. Working Gas Volume Change from Year Ago

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia 5,456 18,992 25,179 21,224 26,766 34,404 1990-2016 Wyoming 173 1,291 872 -218 -200 1,161 1990-2016 AGA Producing Region 1994-2014 AGA Eastern Consuming Region ...

  5. Underground Natural Gas Working Storage Capacity - Methodology

    Gasoline and Diesel Fuel Update (EIA)

    2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since 2008 and is up by 1.0 million b/d (14%) since April of 2013 U.S. crude oil production million barrels of oil per day Source: U.S. Energy Information Administration Lynn Westfall, 2014 EIA Energy Conference, U.S. Crude Oil Exports, July 14, 2014 2 0 2 4 6 8 10 12 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990

  6. Working Natural Gas in Underground Storage (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama 23,276 24,493 24,742 19,955 20,669 20,992 1995-2016 Alaska 24,595 24,461 24,319 24,295 24,790 25,241 2013-2016 Arkansas 2,222 2,132 1,808 1,374 1,057 619 1990-2016 ...

  7. Midwest Region Natural Gas in Underground Storage (Working Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 449,673 237,999 142,513 179,338 317,901 471,765 625,764 788,930 935,822 1,047,609 972,803 854,545 2015 617,716 345,091 ...

  8. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    since last Wednesday in every region of the country except in the West. Working gas in storage was 623 Bcf as of April 11, which was 49 percent below the previous 5-year...

  9. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    a decrease of about 0.36, or 6.9 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage totaled 2,213 Bcf as...

  10. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    by 0.409 or 8 percent per MMBtu to 4.850 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,796 Bcf as of...

  11. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    supply disruptions during the remainder of the hurricane season. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage was 2,461 Bcf as of Friday,...

  12. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    (August 5) and the low price of 2.804 (August 21) per MMBtu. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 3,323 Bcf as of...

  13. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    2009 contract, which closed at 12.987 per MMBtu on May 28. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 1,701 Bcf as of...

  14. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7.02 per MMBtu, an increase of about 0.24 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage totaled 3,488 Bcf as of...

  15. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    5.06 per MMBtu, a decrease of only 0.01 per MMBtu on the week. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 2,762...

  16. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    a decrease of about 0.09, or 1.7 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 1,737 Bcf as of...

  17. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    decreasing about 0.23, or 4.4 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 2,840...

  18. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    MMBtu lower than the final price of the November 2009 contract. Wellhead Prices Annual Energy Review More Price Data Storage As of Friday, September 24, working natural gas in...

  19. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    fell 31 cents, from 5.554 last Wednesday to 5.239 yesterday. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 2,165...

  20. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    expectations of robust storage inventories in the coming months. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,886 Bcf as of...

  1. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    38 cents per MMBtu, or about 7 percent, during the report week. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 1,996 Bcf as of...

  2. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    January 2009 contract, which closed at 12.74 per MMBtu on May 14. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 1,529 Bcf as of...

  3. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 to September 2009 posting declines of more than 30 cents. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,116 Bcf as of...

  4. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    a decrease of about 0.25, or 5.1 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage totaled 1,823 Bcf as of...

  5. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    since last week, ending trading yesterday at 5.084 per MMBtu. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage totaled 2,089 Bcf as of...

  6. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    was 62 percent below the level reported last year at this time. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,013 Bcf as of...

  7. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    at 7.39 per MMBtu, which is 76 cents lower than last week. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 3,198 Bcf as of...

  8. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9.08 per MMBtu, an increase of about 0.32 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,757 Bcf as of...

  9. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    per MMBtu, 22 cents or 4.3 percent lower than last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 1,615 Bcf as of...

  10. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    2009 contract, which closed at 13.84 per MMBtu on June 25. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,033 Bcf as of...

  11. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    response was somewhat more pronounced (down 5.3 percent) with the September 2011 natural gas contract losing ground over the week, closing at 4.090 per MMBtu on Wednesday. Working...

  12. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    a large estimate of net injections of working gas into storage put downward pressure on spot and futures prices. Some parts of New England saw high temperatures only in the 70s for...

  13. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9.34 per MMBtu, a decrease of about 0.32 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,517 Bcf as of...

  14. Natural Gas Underground Storage Capacity (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  15. AEO2012 Preliminary Assumptions: Oil and Gas Supply

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis ... for Annual Energy Outlook 2013: Oil and Gas Working Group Overview 2 Office of ...

  16. Working Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At DOE Working At DOE Working At DOE Only Here...Will you Define the Future of Energy The people of DOE are engaged in a wide range of challenging and innovative work - from participating in groundbreaking international initiatives like the Global Nuclear Partnership, to solar power demonstration projects, to projects that convert captured carbon dioxide (CO2) emissions from industrial sources into fuel, plastics, and fertilizers. Only here can the diversity of activities throughout our

  17. How Carbon Capture Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    How Carbon Capture Works Nearly 70 percent of America's electricity is generated from fossil fuels like coal, oil and natural gas. And fossil fuels also account for almost...

  18. Gas venting

    DOE Patents [OSTI]

    Johnson, Edwin F.

    1976-01-01

    Improved gas venting from radioactive-material containers which utilizes the passageways between interbonded impervious laminae.

  19. Gas pump with movable gas pumping panels

    DOE Patents [OSTI]

    Osher, John E.

    1984-01-01

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  20. Gas pump with movable gas pumping panels

    DOE Patents [OSTI]

    Osher, J.L.

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  1. Water-saving liquid-gas conditioning system

    DOE Patents [OSTI]

    Martin, Christopher; Zhuang, Ye

    2014-01-14

    A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

  2. CFCC working group meeting: Proceedings

    SciTech Connect (OSTI)

    1997-12-31

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

  3. Working Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Effective Date: 02/03/14 WP 12-IS.01-6 Revision 11 Industrial Safety Program - Visitor, Vendor, User, Tenant, and Subcontractor Safety Controls Cognizant Section: Industrial Safety/Industrial Hygiene Approved By: Tom Ferguson Working Copy Industrial Safety Program - Visitor, Vendor, User, Tenant, and Subcontractor Safety Controls WP 12-IS.01-6, Rev. 11 2 TABLE OF CONTENTS CHANGE HISTORY SUMMARY ..................................................................................... 7 ACRONYMS AND

  4. Working Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE/WIPP-99-2286 Waste Isolation Pilot Plant Environmental Notification or Reporting Implementation Plan Revision 7 U.S. Department of Energy December 2013 This document supersedes DOE/WIPP-99-2286, Rev. 6. Working Copy Waste Isolation Pilot Plant Environmental Notification or Reporting Implementation Plan DOE/WIPP-99-2286, Rev. 7 2 TABLE OF CONTENTSCHANGE HISTORY SUMMARY .............................................. 3 ACRONYMS AND ABBREVIATIONS

  5. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  6. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  7. Fundamentals of gas measurement II

    SciTech Connect (OSTI)

    Smith, J.P.

    1995-12-01

    A knowledge of the Fundamentals of Gas Measurement is essential for all technicians and engineers that are called upon to perform gas volume calculations. These same people must have at least a working knowledge of the fundamentals to perform their everyday jobs including equipment calibrations, specific gravity tests, collecting gas samples, etc. To understand the fundamentals, one must be familiar with the definitions of the terms that are used in day-to- day gas measurement operations. They also must know how to convert some values from one quantity as measured to another quantity that is called for in the gas purchase or sales contracts or transportation agreements.

  8. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  9. Gas Swimming Pool Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and pool use, they may not be the most energy-efficient option when compared to heat pump and solar pool heaters. How They Work Gas pool heaters use either natural gas or...

  10. Gas Swimming Pool Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How They Work Gas pool heaters use either natural gas or propane. As the pump circulates the pool's water, the water drawn from the pool passes through a filter and then to the ...

  11. Natural Gas Transmission and Distribution Module

    U.S. Energy Information Administration (EIA) Indexed Site

    www.eia.gov Joe Benneche July 31, 2012, Washington, DC Major assumption changes for AEO2013 Oil and Gas Working Group Natural Gas Transmission and Distribution Module DRAFT WORKING GROUP PRESENTATION DO NOT QUOTE OR CITE Overview 2 Joe Benneche, Washington, DC, July 31, 2012 * Replace regional natural gas wellhead price projections with regional spot price projections * Pricing of natural gas vehicles fuels (CNG and LNG) * Methodology for modeling exports of LNG * Assumptions on charges related

  12. Natural gas monthly, August 1996

    SciTech Connect (OSTI)

    1996-08-01

    This analysis presents the most recent data on natural gas prices, supply, and consumption from the Energy Information Administration (EIA). The presentation of the latest monthly data is followed by an update on natural gas markets. The markets section examines the behavior of daily spot and futures prices based on information from trade press, as well as regional, weekly data on natural gas storage from the American Gas Association (AGA). This {open_quotes}Highlights{close_quotes} closes with a special section comparing and contrasting EIA and AGA storage data on a monthly and regional basis. The regions used are those defined by the AGA for their weekly data collection effort: the Producing Region, the Consuming Region East, and the Consuming Region West. While data on working gas levels have tracked fairly closely between the two data sources, differences have developed recently. The largest difference is in estimates of working gas levels in the East consuming region during the heating season.

  13. Method of Liquifying a gas

    DOE Patents [OSTI]

    Zollinger, William T.; Bingham, Dennis N.; McKellar, Michael G.; Wilding, Bruce M.; Klingler, Kerry M.

    2006-02-14

    A method of liquefying a gas is disclosed and which includes the steps of pressurizing a liquid; mixing a reactant composition with the pressurized liquid to generate a high pressure gas; supplying the high pressure gas to an expansion engine which produces a gas having a reduced pressure and temperature, and which further generates a power and/or work output; coupling the expansion engine in fluid flowing relation relative to a refrigeration assembly, and wherein the gas having the reduced temperature is provided to the refrigeration assembly; and energizing and/or actuating the refrigeration assembly, at least in part, by supplying the power and/or work output generated by the expansion engine to the refrigeration assembly, the refrigeration assembly further reducing the temperature of the gas to liquefy same.

  14. Gas turbine engine

    DOE Patents [OSTI]

    Lawlor, Shawn P.; Roberts, II, William Byron

    2016-03-08

    A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.

  15. Gas magnetometer

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2016-05-03

    Measurement of a precessional rate of a gas, such as an alkali gas, in a magnetic field is made by promoting a non-uniform precession of the gas in which substantially no net magnetic field affects the gas during a majority of the precession cycle. This allows sensitive gases that would be subject to spin-exchange collision de-phasing to be effectively used for extremely sensitive measurements in the presence of an environmental magnetic field such as the Earth's magnetic field.

  16. Gas separating

    DOE Patents [OSTI]

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  17. Gas separating

    DOE Patents [OSTI]

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  18. Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... Grid Integration & Advanced Inverters Materials & Fabrication Microsystems Enabled ...

  19. Gas-phase chemical dynamics

    SciTech Connect (OSTI)

    Weston, R.E. Jr.; Sears, T.J.; Preses, J.M.

    1993-12-01

    Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

  20. North American Natural Gas Markets

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  1. North American Natural Gas Markets

    SciTech Connect (OSTI)

    Not Available

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  2. How NIF Works

    ScienceCinema (OSTI)

    None

    2010-09-01

    The National Ignition Facility, located at Lawrence Livermore National Laboratory, is the world's largest laser system... 192 huge laser beams in a massive building, all focused down at the last moment at a 2 millimeter ball containing frozen hydrogen gas. The goal is to achieve fusion... getting more energy out than was used to create it. It's never been done before under controlled conditions, just in nuclear weapons and in stars. We expect to do it within the next 2-3 years. The purpose is threefold: to create an almost limitless supply of safe, carbon-free, proliferation-free electricity; examine new regimes of astrophysics as well as basic science; and study the inner-workings of the U.S. stockpile of nuclear weapons to ensure they remain safe, secure and reliable without the need for underground testing. More information about NIF can be found at:

  3. Power control system for a hot gas engine

    DOE Patents [OSTI]

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  4. The Gas Flow from the Gas Attenuator to the Beam Line

    SciTech Connect (OSTI)

    Ryutov, D.D.

    2010-12-03

    The gas leak from the gas attenuator to the main beam line of the Linac Coherent Light Source has been evaluated, with the effect of the Knudsen molecular beam included. It has been found that the gas leak from the gas attenuator of the present design, with nitrogen as a working gas, does not exceed 10{sup -5} torr x l/s even at the highest pressure in the main attenuation cell (20 torr).

  5. Bio-Derived Liquids to Hydrogen Distributed Reforming Working...

    Broader source: Energy.gov (indexed) [DOE]

    The Working Group is addressing technical challenges to distributed reforming of biomass-derived, renewable liquid fuels to hydrogen, including the reforming, water-gas shift, and ...

  6. DOE - Office of Legacy Management -- Morgantown Ordnance Works...

    Office of Legacy Management (LM)

    NETL historically has focused on the development of advanced technologies related to coal and natural gas. Also see Documents Related to Morgantown Ordnance Works Historical ...

  7. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-10-18

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing

  8. The efficient use of natural gas in transportation

    SciTech Connect (OSTI)

    Stodolsky, F.; Santini, D.J.

    1992-04-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  9. The efficient use of natural gas in transportation

    SciTech Connect (OSTI)

    Stodolsky, F.; Santini, D.J.

    1992-01-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  10. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-07-15

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with

  11. GAS STORAGE TECHNOLGOY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-23

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  12. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-17

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  13. Hydrogen Production: Natural Gas Reforming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Reforming Hydrogen Production: Natural Gas Reforming Photo of Petroleum Refinery Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This is an important technology pathway for near-term hydrogen production. How Does It Work? Natural gas contains methane (CH4) that can be used to

  14. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  15. AEO2015 Liquid Fuels Markets Working Group Presentation

    U.S. Energy Information Administration (EIA) Indexed Site

    Assumptions for Annual Energy Outlook 2015: Liquid Fuels Markets Working Group AEO2015 Liquid Fuels Markets Working Group Meeting Office of Petroleum, Natural Gas & Biofuels Analysis July 17, 2014 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Discussion topics Office of Petroleum, Natural Gas, & Biofuels Analysis Working Group Presentation for Discussion Purposes Washington DC, July 17, 2014 DO NOT QUOTE OR CITE

  16. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L.

    1995-12-01

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  17. Natural Gas Applications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Applications. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Natural Gas > Natural Gas Applications...

  18. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    natural gas demand, thereby contributing to larger net injections of natural gas into storage. Other Market Trends: EIA Releases The Natural Gas Annual 2006: The Energy...

  19. GAS SEAL

    DOE Patents [OSTI]

    Monson, H.; Hutter, E.

    1961-07-11

    A seal is described for a cover closing an opening in the top of a pressure vessel that may house a nuclear reactor. The seal comprises a U-shaped trough formed on the pressure vessel around the opening therein, a mass of metal in the trough, and an edge flange on the cover extending loosely into the trough and dipping into the metal mass. The lower portion of the metal mass is kept melted, and the upper portion, solid. The solid pontion of the metal mass prevents pressure surges in the vessel from expelling the liquid portion of the metal mass from the trough; the liquld portion, thus held in place by the solid portion, does not allow gas to go through, and so gas cannot escape through shrinkage holes in the solid portion.

  20. New Mexico Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Base Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Base Gas) ... Underground Base Natural Gas in Storage - All Operators New Mexico Underground Natural Gas ...

  1. New York Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) New York Natural Gas in Underground Storage (Base Gas) ... Underground Base Natural Gas in Storage - All Operators New York Underground Natural Gas ...

  2. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  3. Shale gas is natural gas trapped inside

    Broader source: Energy.gov (indexed) [DOE]

    Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary ... Fossil Energy Research Benefits FE's early investments in shale research in the 1970s ...

  4. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage increased to 3,254 Bcf as of Friday,...

  5. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 2,414 Bcf as of Friday, January 9,...

  6. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in underground storage was 2,521 Bcf as of June...

  7. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage as of September 2 totaled 2,669 Bcf,...

  8. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage totaled 2,347 Bcf as of Friday,...

  9. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 821 Bcf as of May 2, according to...

  10. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas inventories increased to 1,904 Bcf as of Friday,...

  11. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    working gas stocks are at their second-highest level for the report week in the 11-year history of the weekly natural gas storage database. The implied net injection during the...

  12. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Office of Oil and Gas. Storage: Estimated working gas in underground storage was 3,299 Bcf as of November 26, which is 11.2 percent, or 331 Bcf, above the 5-year average...

  13. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in...

  14. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

  15. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

  16. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

  17. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Working gas in storage was 3,121 Bcf as of Friday, Oct 24, 2003, according to the Energy Information Administration (EIA) Weekly Natural Gas Storage Report. This is 2.7...

  18. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    gas in storage, as well as decreases in the price of crude oil. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,905 Bcf as of...

  19. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    economic incentive to inject natural gas into underground storage. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage totaled 1,943 Bcf as of...

  20. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    to replenish inventory levels of natural gas held in storage. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 3,052...

  1. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in...

  2. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    withdrawal from working gas storage reported last Thursday. A contributing factor to the run-up in natural gas prices could be climbing crude oil prices, which rallied late last...

  3. AGA Producing Region Natural Gas in Underground Storage - Change...

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas ... Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -32.80 -42.10 -53.10 -51.10 ...

  4. Natural Gas Basics

    SciTech Connect (OSTI)

    NREL Clean Cities

    2010-04-01

    Fact sheet answers questions about natural gas production and use in transportation. Natural gas vehicles are also described.

  5. Students Innovate to Address Gas Shortages Following Hurricane Sandy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Innovate to Address Gas Shortages Following Hurricane Sandy Students Innovate to Address Gas Shortages Following Hurricane Sandy November 9, 2012 - 3:43pm Addthis Franklin High School students working on their online map of gas and charging stations. | Photo courtesy Dayana Bustamante Franklin High School students working on their online map of gas and charging stations. | Photo courtesy Dayana Bustamante Ian Kalin Director of the Energy Data Initiative What are the key

  6. RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY

    SciTech Connect (OSTI)

    LANCE HAYS

    2007-02-27

    A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

  7. The Compelling Case for Natural Gas Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Compelling Case for Natural Gas Vehicles The Compelling Case for Natural Gas Vehicles Presentation-given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting-covers the natural gas vehicle (NGV) market, the benefits of NGVs, the growing selection of NGVs, and more. Download the The Compelling Case for Natural Gas Vehicles presentation. (2.92 MB) More Documents & Publications QER - Comment of American Gas Association 3 Growth of the NGV Market: Lessons Learned

  8. Penitas, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas from Same Month Previous Year (Percent) Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Pacific Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 39.40 137.00 162.70 103.50 62.40 34.80 25.30 14.90 12.90 9.80 8.70 -0.90 2016 0.10 -3.90 -3.60 -2.20 -6.10 -6.00 - = No Data Reported; -- = Not

  9. Nebraska Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas from Same Month Previous Year (Percent) Mountain Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Mountain Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 -4.70 13.00 35.00 41.50 36.90 27.10 22.30 18.60 16.40 14.60 18.60 22.30 2016 19.40 24.20 27.80 31.30 30.50 - = No Data Reported; -- =

  10. South Dakota Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    in Working Gas from Same Month Previous Year (Percent) Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) South Central Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 24.30 27.20 70.30 75.70 64.30 50.50 39.00 35.90 29.90 21.20 22.90 24.80 2016 32.10 77.60 87.90 54.60 34.30 - = No Data Reported; -- = Not

  11. Eastport, ID Natural Gas Exports to Canada

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas from Same Month Previous Year (Percent) East Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) East Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 18.20 24.60 42.70 44.60 29.20 20.70 13.20 10.60 6.30 2.60 9.50 14.90 2016 18.10 42.70 82.40 49.90 23.20 14.30 - = No Data Reported; -- = Not

  12. NM, East Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas from Same Month Previous Year (Percent) Mountain Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Mountain Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 -4.70 13.00 35.00 41.50 36.90 27.10 22.30 18.60 16.40 14.60 18.60 22.30 2016 19.40 24.20 27.80 31.30 31.00 27.50 - = No Data Reported;

  13. New York Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) New York Natural Gas ...

  14. Underground natural gas storage reservoir management

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  15. Michigan Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas 394,117 394,117 394,117 386,427 387,027 385,038 1990-2015 Working Gas 241,221 323,709 398,647 488,022 563,188 622,544 1990-2015 Net Withdrawals -82,150 -82,493 -74,938...

  16. Arkansas Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas 10,841 11,213 11,664 11,664 11,652 11,652 1990-2016 Working Gas 2,222 2,132 1,808 1,374 1,057 619 1990-2016 Net Withdrawals -212 -283 -127 434 328 438 1990-2016 Injections ...

  17. Missouri Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas 7,845 7,845 7,845 7,845 7,845 7,845 1990-2016 Working Gas 6,341 6,537 6,493 6,045 6,198 6,063 1990-2016 Net Withdrawals -268 -212 28 433 -168 119 1990-2016 Injections 268 ...

  18. Minnesota Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    43 3.65 3.77 2.94 2.98 3.49 1989-2016 Residential 7.05 6.93 7.96 7.59 10.52 12.21 1989-2016 Commercial 6.53 6.08 6.49 6.10 NA 7.37 1989-2016 Industrial 4.43 4.28 3.68 3.36 4.27 3.76 2001-2016 Electric Power W W W W W W 2002-2016 Underground Storage (Million Cubic Feet) Total Capacity 7,000 7,000 7,000 7,000 7,000 7,000 2002-2016 Gas in Storage 6,658 6,531 6,016 6,009 6,085 6,259 1990-2016 Base Gas 4,848 4,848 4,848 4,848 4,848 4,848 1990-2016 Working Gas 1,810 1,683 1,168 1,161 1,237 1,411

  19. Mississippi Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) Indexed Site

    8,335 13,283 2009 13,864 4,222 12,013 22,839 24,117 25,695 29,900 29,138 34,146 21,818 24,358 7,096 2010 4,902 1,262 6,394 7,350 10,135 7,975 1,284 1,863 7,042 14,373 9,281...

  20. Colorado Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 48,709 48,709 48,709 60,209 60,209 60,209 60,209 60,209 60,209 60,209 60,582 60,582 2013...

  1. Nonsalt Producing Region Natural Gas Working Underground Storage...

    Gasoline and Diesel Fuel Update (EIA)

    Value 2006-Dec 1229 841 2007-Jan 0105 823 0112 806 0119 755 0126 716 2007-Feb 0202 666 0209 613 0216 564 0223 538 2007-Mar 0302 527 0309 506 0316 519 0323 528 0330...

  2. Producing Region Natural Gas Working Underground Storage (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    518 0708 549 0715 569 0722 586 0729 598 1994-Aug 0805 621 0812 637 0819 652 0826 666 1994-Sep 0902 686 0909 701 0916 719 0923 735 0930 748 1994-Oct 1007 765 1014 773...

  3. Mountain Region Natural Gas Working Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 461,243 461,243 461,243 461,243 461,243 461,243 461,243 464,435 464,435...

  4. Pacific Region Natural Gas Working Underground Storage Capacity...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 414,831 414,831 414,831 414,831 414,831 414,831 414,831 414,831 414,831...

  5. Louisiana Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -16,163 -3,291 4,933 5,735 6,541 3,761 1,457 -2,718 333 6,361 22,218 1991 25,998 -7,924 -12,602 -6,752 5,539 14,861 14,428 ...

  6. Virginia Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 1,533 1999 210 227 211 187 147 49 88 -64 30 8 -80 -189 2000 -521 -228 ...

  7. Eastern Consuming Region Natural Gas Working Underground Storage (Billion

    Gasoline and Diesel Fuel Update (EIA)

    11 11 10 9 9 1982-2016 Operating 10 8 10 9 9 9 1982-2016 Idle 4 3 1 1 0 0 1982-2016 Atmospheric Crude Oil Distillation Capacity Operable (Barrels per Calendar Day) 1,617,500 1,188,200 1,293,200 1,296,500 1,268,500 1,277,500 1982-2016 Operating 1,205,000 1,010,200 1,265,200 1,268,500 1,236,500 1,245,500 1982-2016 Idle 412,500 178,000 28,000 28,000 32,000 32,000 1982-2016 Operable (Barrels per Stream Day) 1,708,500 1,254,700 1,361,700 1,364,000 1,332,000 1,353,000 1982-2016 Operating 1,273,500

  8. Lower 48 States Natural Gas Working Underground Storage (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 798,985 584,421 146,319 -212,194 -399,411 -340,172 -243,618 -244,191 -398,130 -385,221 -37,590 383,241 2012 544,477 459,574 -34,987 -137,493 -284,231 -232,226 -134,343 -165,879 -290,456 -241,849 125,379 384,754 2013 721,687 605,009 380,314 -136,310 -417,919 -370,907 -273,815 -270,544 -352,576 -254,021 209,916 712,811 2014 970,871 727,603 353,651 -216,741 -477,379 -461,091 -399,247 -372,803 -420,968 -400,405 161,568 287,134

  9. Salt Producing Region Natural Gas Working Underground Storage (Billion

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA NA 8,986 39,588 40,466 60,432 54,660 49,073 56,035 2010's 62,914 74,790 75,026 78,196 76,154 81,837

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 8,045 310,96

    Electricity: 30 Years of Electricity: 30 Years of Industry Change Industry Change David K. Owens Executive Vice President Edison Electric Institute 30 Years of Energy Information and Analysis

  10. Underground Working Natural Gas in Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia 209,662 206,862 182,973 120,986 85,437 73,683 1990-2016 Wyoming 30,991 31,246 29,240 26,249 23,871 24,033 1990-2016 AGA Producing Region 1994-2014 AGA Eastern ...

  11. East Region Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) Indexed Site

    70,000 74,719 98,542 105,414 101,643 79,834 76,371 53,666 26,264 82,451 113,777 2016 93,945 141,451 - No Data Reported; -- Not Applicable; NA Not Available; W ...

  12. ConocoPhillips Gas Hydrate Production Test

    SciTech Connect (OSTI)

    Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  13. Weekly Natural Gas Storage Report - EIA

    Weekly Natural Gas Storage Report (EIA)

    August 14, 2015 | Released: August 20, 2015 at 10:30 a.m. | Next Release: August 27, 2015 Working gas in underground storage, Lower 48 states Summary text CSV JSN Historical...

  14. Oil & Gas Research | Department of Energy

    Energy Savers [EERE]

    and utilizing CO2 from industrial sources. Natural GasLNG Regulatory Activities Research. ... DOE is working to ensure that LNG can be safely, securely, and reliably imported into the ...

  15. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  16. OSCARS Collaborative Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSCARS Collaborative Work Engineering Services The Network OSCARS How It Works Who's Using OSCARS? OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers...

  17. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host

  18. Natural Gas Market Digest (formerly Year in Review) - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Natural Gas Reports Market Digest: Natural Gas (2013-2014) Updated: June 12, 2014 For prior report data see Natural Gas Year-in-Review archives EIA's Natural Gas Market Digest highlights the latest information and analyses on all aspects of the natural gas markets. Storage Record winter withdrawals create summer storage challenges, June 12, 2014 Natural gas storage working capacity grows 2% in 2012 - Today in Energy, July 24, 2013 High natural gas inventory last

  19. ,"U.S. Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Underground Storage",6,"Monthly","72015","01151973" ,"Data 2","Change in Working Gas from Same Period Previous Year",2,"Monthly","72015","01151973" ,"Release...

  20. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    and October 2010 contracts all fell by less than 1 cent. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas inventories set a new record,...

  1. FE Oil and Natural Gas News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE will continue to work together to ensure safe, sustainable offshore production of oil and natural gas. August 7, 2013 Energy Department Authorizes Third Proposed Facility to...

  2. Demo Projects Introduce New Class of Natural Gas Vehicles (Fact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the National Renewable Energy Laboratory (NREL) is working with stakeholders to increase product availability for natural gas-powered medium- and heavy-duty commercial vehicles. ...

  3. The Office of Fossil Energy Natural Gas Regulatory Activities

    Energy Savers [EERE]

    ... fire and gas detection, and the supervision of refrigeration compressors installation. ... Train 4 worked on completing the refrigeration compressor table top foundation and ...

  4. Service and Repair Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    service and repair work Service and Repair Work Whenever on-site service or repair work needs to be done, a Procurement Work Sheet (PWS) must be completed, and possibly an IWS, authorized and released. PWS is required for service work even if there are no apparent hazards. PWS is required for work in Jupiter Laser Facility even if you have a PWS for service/repairs in another location. To complete a PWS for service work in Jupiter Laser Facility, please contact Sean Holte (2-3905, pager #05312).

  5. North American Natural Gas Markets. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  6. North American Natural Gas Markets. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  7. Natural Gas Regulation - Other Gas-Related Information Sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Regulation - Other Gas-Related Information Sources Natural Gas Regulation - Other Gas-Related Information Sources The single largest source of energy information...

  8. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    of the Alaska gas pipeline. The opening of ANWR might reduce the gas resource risk of building an Alaska gas pipeline, as the area has an estimated 3.6 trillion cubic...

  9. Gas amplified ionization detector for gas chromatography

    DOE Patents [OSTI]

    Huston, Gregg C.

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  10. New Mexico Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) New Mexico Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) New Mexico Natural ...

  11. North Dakota Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) North Dakota Natural ...

  12. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    SciTech Connect (OSTI)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  13. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    of natural gas vehicles. The Department of Energys Office of Energy Efficiency and Renewable Energy reports that there were 841 compressed natural gas (CNG) fuel stations and 41...

  14. Oil and Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business ...

  15. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Market Trends: MMS Announces New Incentives for Gulf Gas Production: The Minerals Management Service (MMS) unveiled proposed new incentives to increase deep gas production...

  16. Gas scrubbing liquids

    DOE Patents [OSTI]

    Lackey, Walter J.; Lowrie, Robert S.; Sease, John D.

    1981-01-01

    Fully chlorinated and/or fluorinated hydrocarbons are used as gas scrubbing liquids for preventing noxious gas emissions to the atmosphere.

  17. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    ability to process gas. The company's Main Pass 260 line to Pascagoula Gas Plant in Jackson, Mississippi, will not be available for transportation services. While the plant is...

  18. CONTINUOUS GAS ANALYZER

    DOE Patents [OSTI]

    Katz, S.; Weber, C.W.

    1960-02-16

    A reagent gas and a sample gas are chemically combined on a continuous basis in a reaction zone maintained at a selected temperature. The reagent gas and the sample gas are introduced to the reaction zone at preselected. constant molar rates of flow. The reagent gas and the selected gas in the sample mixture combine in the reaction zone to form a product gas having a different number of moles from the sum of the moles of the reactants. The difference in the total molar rates of flow into and out of the reaction zone is measured and indicated to determine the concentration of the selected gas.

  19. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Weekly Underground Natural Gas Storage Report. The sample change occurred over a transition period that began with the release of the Weekly Natural Gas Storage Report (WNGSR)...

  20. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    strong price contango during the report week, mitigated withdrawals of natural gas from storage. Other Market Trends: EIA Releases New Report on U.S. Greenhouse Gas Emissions:...

  1. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 12, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Spot gas at most market locations (outside the Rocky Mountain Region) traded...

  2. Historical Natural Gas Annual

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  3. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  4. Historical Natural Gas Annual

    Gasoline and Diesel Fuel Update (EIA)

    8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  5. Imported resources - gas

    SciTech Connect (OSTI)

    Marxt, J.

    1995-12-01

    This paper examines aspects of the supply and demand of natural gas and natural gas products such as LNG in the Czech Republic.

  6. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5, 2009 Next Release: July 2, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 24, 2009) Natural gas...

  7. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    , 2008 Next Release: July 10, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, June 25, natural gas spot prices...

  8. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas...

  9. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  10. Natural gas dehydration apparatus

    DOE Patents [OSTI]

    Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

    2006-11-07

    A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

  11. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008 Next Release: November 6, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, October 29) Natural gas...

  12. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9, 2008 Next Release: June 26, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, June 11, natural gas spot prices...

  13. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prices using spot prices from producing areas, plus an allowance for interstate natural gas pipeline and local distribution company charges to transport the gas to market. Such a...

  14. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    cooling demand for natural gas. Meanwhile, it became increasingly clear that Hurricane Frances likely would not pose a significant threat to natural gas production in the Gulf of...

  15. Oil & Gas Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional ... quantify potential risks associated with oil and gas resources in shale reservoirs that ...

  16. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    more from the system than they nominate. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  17. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    that had been in place since February 1. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  18. Unconventional Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... lb Pound LCA Life cycle analysis LNG Liquefied natural gas M Magnitude (Richter ... reversed plans to import liquefied natural gas (LNG), and many are now proposing exports. ...

  19. Preliminary Reference Case Results for Oil and Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Preliminary Reference Case Results for Oil and Natural Gas AEO2014 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis September 26, 2013 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE AEO2014P uses ref2014.d092413a AEO2013 uses ref2013.d102312a Changes for AEO2014 2 * Revised shale & tight play resources (EURs, type curves) * Updated classification of shale gas, tight gas, &

  20. UFD Working Group 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group 2015 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare UFD Working Group 2015 HomeStationary ...

  1. Administering Work Force Discipline

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-05-14

    The order provides requirements and responsibilities for administering work force discipline and corrective actions. Supersedes DOE O 3750.1.

  2. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  3. Thermoacoustic natural gas liquefier

    SciTech Connect (OSTI)

    Swift, G.W.

    1995-06-01

    In collaboration with Cryenco Inc. and NIST-Boulder, we intend to develop a natural gas-powered natural-gas liquefier which has absolutely no moving parts and requires no electrical power. It will have high efficiency, remarkable reliability, and low cost. Progress on the liquefier to be constructed at Cryenco continues satisfactorily. The thermoacoustic driver is still ahead of the pulse tube refrigerator, because of NIST`s schedule. We completed the thermoacoustics design in the fall of 1994, with Los Alamos providing physics input and checks of all aspects, and Cryenco providing engineering to ASME code, drafting, etc. Completion of this design represents a significant amount of work, especially in view of the many unexpected problems encountered. Meanwhile, Cryenco and NIST have almost completed the design of the pulse tube refrigerator. At Los Alamos, we have assembled a half-size scale model of the thermoacoustic portion of the 500 gal/day TANGL. This scale model will enable easy experimentation in harmonic suppression techniques, new stack geometries, new heat-exchanger geometries, resonator coiling, and other areas. As of March 1995, the scale model is complete and we are performing routine debugging tests and modifications.

  4. Weapons assessment efficiencies through use of nondestructive laser gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sampling Weapons assessment efficiencies through use of nondestructive laser gas sampling Weapons assessment efficiencies through use of nondestructive laser gas sampling Nondestructive laser welding process far less expensive, no underground testing. June 8, 2012 Nondestructive Laser Gas Sampling Nondestructive Laser Gas Sampling is expected to save several million dollars per year and requires no underground testing. "We're continually innovating and working to improve the way we do

  5. Notice of Changes to the Weekly Natural Gas Storage Report

    Office of Environmental Management (EM)

    Notice of Changes to the Weekly Natural Gas Storage Report Released: August 31, 2015 EIA will change the Weekly Natural Gas Storage Report regions and revision threshold To enhance the transparency and utility of the Weekly Natural Gas Storage Report (WNGSR), the U.S. Energy Information Administration (EIA) will make several important changes later in 2015: The regional breakdown of the data will now include five regions for working gas in the Lower 48 states. The threshold for published

  6. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  7. Compressed gas manifold

    DOE Patents [OSTI]

    Hildebrand, Richard J.; Wozniak, John J.

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  8. Hydrate Control for Gas Storage Operations

    SciTech Connect (OSTI)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  9. Asian natural gas

    SciTech Connect (OSTI)

    Klass, D.L. ); Ohashi, T. )

    1989-01-01

    This book presents an overview of the present status and future development in Asia of domestic and export markets for natural gas and to describes gas utilization technologies that will help these markets grow. A perspective of natural gas transmission, transport, distribution, and utilization is presented. The papers in this book are organized under several topics. The topics are : Asian natural gas markets, Technology of natural gas export projects, Technology of domestic natural gas projects, and Natural gas utilization in power generation, air conditioning, and other applications.

  10. NETL: Natural Gas Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Resources Useful for heating, manufacturing, and as chemical feedstock, natural gas has the added benefit of producing fewer greenhouse gas emissions than other fossil fuels used in power production.The United States is endowed with an abundance of natural gas resources, so increasing use of natural gas power can help strengthen domestic energy security. NETL research efforts enhance technologies that reduce the cost, increase the efficiency, and reduce the environmental risk of

  11. ORISE: Working with ORISE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge Institute for Science Education Working with ORISE If you are interested in learning about how your agency can utilize the capabilities of the Oak Ridge Institute for Science and Education (ORISE) through a Work for Others agreement or a procurement contract, or if you are looking for career opportunities, the following information provides an explanation of how to work with ORISE. If you do not see an option that applies to your needs, please contact ORISE General Information.

  12. Work/Life Balance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab » Work/Life Balance Work/Life Balance Explore the multiple dimensions of a career at Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Complete suite of benefits to balance your career Enlarge poster enlarge Enlarge poster enlarge Enlarge poster enlarge Enlarge poster enlarge Enlarge poster enlarge Enlarge poster enlarge Enlarge poster enlarge Enlarge poster enlarge Enlarge poster enlarge

  13. Interview: LaborWorks@NeighborWorks Provides Vermont Contractors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interview: LaborWorks@NeighborWorks Provides Vermont Contractors With Help When They Need It Interview: LaborWorks@NeighborWorks Provides Vermont Contractors With Help When They ...

  14. Democratic Republic of Congo-ClimateWorks Low Carbon Growth Planning...

    Open Energy Info (EERE)

    Organization ClimateWorks, Project Catalyst, McKinsey and Company Sector Energy, Land Focus Area Forestry, Greenhouse Gas Topics Background analysis, Low emission...

  15. Quality Work Plan Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * No national standards for work quality * No portable and nationally recognized credentials for experienced WAP workers 3 NaConal Issues and Interests Supported the QWP * White ...

  16. INL @ work: Archaeologist

    ScienceCinema (OSTI)

    Lowrey, Dino

    2013-05-28

    INL @ work features jobs performed at the lab. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  17. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  18. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  19. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  20. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells, viruses), plant or soil samples (USDA quarantines), recombinant DNA, or blood-borne pathogen. Biological Use Authorization The great majority of biological work at...

  1. INL @ work: Archaeologist

    SciTech Connect (OSTI)

    Lowrey, Dino

    2008-01-01

    INL @ work features jobs performed at the lab. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  2. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for proper development and review time. Training All resident LBNL users (those whose work authorization includes a JHA) must take the standard LBNL training courses for...

  3. SCM Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Working Group Translator Update Shaocheng Xie Lawrence Livermore National Laboratory Outline 1. Data development in support of CMWG * Climate modeling best estimate data * ...

  4. U.S. Natural Gas in Underground Storage - Change in Working Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    5.7 4.0 3.1 3.6 3.4 9.0 1983 21.2 31.8 33.9 23.7 9.2 3.6 -0.3 -3.0 -3.4 -2.8 -4.0 -15.5 1984 -20.9 -20.4 -26.8 -21.9 -17.1 -12.8 -8.9 -5.8 -4.6 -2.9 -5.0 10.8 1985 7.2 -1.2 10.9 ...

  5. U.S. Natural Gas in Underground Storage - Change in Working Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    544,000 398,000 188,000 85,000 -8,000 -90,000 -110,000 -94,000 -134,000 -476,000 1984 -553,000 -480,000 -576,000 -454,000 -379,000 -313,000 -240,000 -168,000 -145,000 ...

  6. U.S. Natural Gas Salt Underground Storage - Working Gas (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    95,180 82,610 1998 69,390 68,851 63,549 80,476 82,711 83,080 90,544 92,319 83,365 115,709 118,521 104,104 1999 82,043 77,133 67,758 77,908 94,436 101,788 95,521 102,210 111,680...

  7. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  8. West Virginia Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  9. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's (DOE's) Planning, Programming, Budgeting, and Evaluation process. Cancels DOE O 412.1.

  10. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-20

    It establishes a work authorization and control process for work performed by designated management and operating (M&O), management and integrating (M&I), environmental restoration management contracts (ERMC) and other contracts determined by the Procurement Executive (hereafter referred to as M&O contractors). Cancels DOE O 5700.7C. Canceled by DOE O 412.1A.

  11. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's Planning, Programming, Budgeting, and Evaluation process. Admin Chg 1, dated 5-21-2014, cancels DOE O 412.1A.

  12. 2016 Used Fuel Disposition Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Used Fuel Disposition Working Group - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  13. How Carbon Capture Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Program Peer Exchange Call: How Can the Network Meet Your Needs? Call Slides and Meeting Summary, February 27, 2014. Call Slides and Meeting Summary (1.02 MB) More Documents & Publications Better Buildings Residential Network Orientation Key Opportunities and Challenges for Program Sustainability Better Buildings Residential Network Membership Form

    4 likes How Carbon Capture Works Nearly 70 percent of America's electricity is generated from fossil fuels like coal, oil and natural gas. And

  14. Working with SRNL - Technology Transfer - Tech Briefs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0/2016 SEARCH SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL - Technology Transfer Tech Briefs Examples of SRNL technologies available for collaboration (CRADA) and licensing. Environmental Stewardship Elemental Mercury Probe Environmental Biocatalyst - BioTiger(tm) Microbial Based Chlorinated Ethene Destruction Microwave Off-Gas Treatment System Groundwater and Wastewater Remediation Using Agricultural Oils In Situ Generation of Oxygen-Releasing Metal Peroxides

  15. Natural gas information 1996 (1997 edition)

    SciTech Connect (OSTI)

    1997-09-16

    A detailed reference work on gas supply and demand covering not only the OECD countries but also the rest of the world, this publication contains essential information on LNG and pipeline trade, gas reserves, storage capacity, and prices. The main part of the book concentrates on OECD countries, showing a detailed gas supply and demand balance for each country and for three OECD regions: North America, Europe, and Asia-Pacific, as well as a breakdown of gas consumption by end-user. Import and export data are reported by source and destination. Also included are maps of the pipeline systems in 25 IEA countries and information on their ownership and operations, transit of gas, regulatory features, and transportation tariffs.

  16. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Peter J. Tijrn

    2000-03-31

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  17. Alternative Fuels and Chemicals from Synthesis Gas

    SciTech Connect (OSTI)

    Peter Tijrn

    2003-01-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  18. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    1999-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  19. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Unknown

    1999-04-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  20. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Unknown

    1999-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  1. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Unknown

    2000-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  2. Minnesota Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    6,573 6,835 6,984 6,973 6,658 6,531 1990-2016 Base Gas 4,848 4,848 4,848 4,848 4,848 4,848 1990-2016 Working Gas 1,725 1,987 2,136 2,125 1,810 1,683 1990-2016 Net Withdrawals -219 ...

  3. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Peter J. Tijrn

    2000-09-30

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  4. Alternative fuels and chemicals from synthesis gas

    SciTech Connect (OSTI)

    Unknown

    1998-08-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  5. Wyoming Underground Natural Gas Storage - All Operators

    Gasoline and Diesel Fuel Update (EIA)

    91,886 90,669 90,354 91,501 92,834 94,020 1990-2015 Base Gas 67,815 67,798 67,815 67,815 67,815 67,815 1990-2015 Working Gas 24,071 22,871 22,539 23,686 25,018 26,205 1990-2015 Net...

  6. Maryland Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    ,818 62,080 61,590 61,074 57,082 54,789 1990-2016 Base Gas 45,677 45,677 45,677 45,677 45,677 45,677 1990-2016 Working Gas 16,141 16,403 15,913 15,396 11,405 9,111 1990-2016 Net ...

  7. Washington Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    5,053 45,877 42,090 39,380 37,900 32,046 1990-2016 Base Gas 22,300 22,300 22,300 22,300 22,300 22,300 1990-2016 Working Gas 22,753 23,577 19,790 17,080 15,600 9,746 1990-2016 Net ...

  8. Variable leak gas source

    DOE Patents [OSTI]

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A variable leak gas source and a method for obtaining the same which includes filling a quantity of hollow glass micro-spheres with a gas, storing said quantity in a confined chamber having a controllable outlet, heating said chamber above room temperature, and controlling the temperature of said chamber to control the quantity of gas passing out of said controllable outlet. Individual gas filled spheres may be utilized for calibration purposes by breaking a sphere having a known quantity of a known gas to calibrate a gas detection apparatus.

  9. EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation

    U.S. Energy Information Administration (EIA) Indexed Site

    Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown

  10. Multiple volume compressor for hot gas engine

    DOE Patents [OSTI]

    Stotts, Robert E.

    1986-01-01

    A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

  11. Compressed Gas Safety for Experimental Fusion Facilities

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    2005-05-15

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard associated with compressed gas cylinders and methods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  12. Control apparatus for hot gas engine

    DOE Patents [OSTI]

    Stotts, Robert E.

    1986-01-01

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  13. Sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  14. ,"West Virginia Natural Gas Gross Withdrawals from Shale Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  15. ,"Tennessee Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  16. ,"Missouri Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  17. ,"Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  18. ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  19. ,"Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  20. ,"Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  1. ,"Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  2. ,"Oregon Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  3. ,"Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  4. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  5. ,"Ohio Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  6. ,"Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  7. ,"South Dakota Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  8. Texas--State Offshore Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  9. Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  10. US--Federal Offshore Natural Gas Withdrawals from Gas Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) US--Federal Offshore Natural Gas Withdrawals from Gas Wells ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  11. Alaska--State Offshore Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Alaska--State Offshore Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  12. Louisiana--State Offshore Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  13. Federal Offshore--Texas Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Federal Offshore--Texas Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  14. World Natural Gas Model

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    RAMSGAS, the Research and Development Analysis Modeling System World Natural Gas Model, was developed to support planning of unconventional gaseoues fuels research and development. The model is a scenario analysis tool that can simulate the penetration of unconventional gas into world markets for oil and gas. Given a set of parameter values, the model estimates the natural gas supply and demand for the world for the period from 1980 to 2030. RAMSGAS is based onmore » a supply/demand framwork and also accounts for the non-renewable nature of gas resources. The model has three fundamental components: a demand module, a wellhead production cost module, and a supply/demand interface module. The demand for gas is a product of total demand for oil and gas in each of 9 demand regions and the gas share. Demand for oil and gas is forecast from the base year of 1980 through 2030 for each demand region, based on energy growth rates and price-induced conservation. For each of 11 conventional and 19 unconventional gas supply regions, wellhead production costs are calculated. To these are added transportation and distribution costs estimates associated with moving gas from the supply region to each of the demand regions and any economic rents. Based on a weighted average of these costs and the world price of oil, fuel shares for gas and oil are computed for each demand region. The gas demand is the gas fuel share multiplied by the total demand for oil plus gas. This demand is then met from the available supply regions in inverse proportion to the cost of gas from each region. The user has almost complete control over the cost estimates for each unconventional gas source in each year and thus can compare contributions from unconventional resources under different cost/price/demand scenarios.« less

  15. Trails Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group Trails Working Group Our mission is to inventory, map, and prepare historical reports on the many trails used at LANL. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The LANL Trails Working Group inventories, maps, and prepares historical reports on the many trails used at LANL. Some of these trails are ancient pueblo footpaths that continue to be used for recreational hiking today. Some serve as quiet

  16. Enhanced membrane gas separations

    SciTech Connect (OSTI)

    Prasad, R.

    1993-07-13

    An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

  17. Clean Energy Works

    Broader source: Energy.gov [DOE]

    Through Clean Energy Works, homeowners can finance up to $30,000 at a fixed interest rate for home energy efficiency retrofits for a variety of measures. Customers have varying lender and loan op...

  18. Strategic Initiatives Work Group

    Broader source: Energy.gov [DOE]

    The Work Group, comprised of members representing DOE, contractor and worker representatives, provides a forum for information sharing; data collection and analysis; as well as, identifying best practices and initiatives to enhance safety performance and safety culture across the Complex.

  19. Mon Valley work plan

    Office of Legacy Management (LM)

    GWSHP 1.8 U.S. Department of Energy UMTRA Ground Water Project Work Plan for ... . . . . . . . . 1-1 1.3 Sources of Ground-Water Contamination from Milling Operations . . ...

  20. Exhibit G / working draft

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... DEAR 952.204-73 Facility Clearance (May 2002) Applies when Subcontractor employeesworkers ... work requires workers to hold a clearance and have a need to know to perform in ...

  1. Site clearance working group

    SciTech Connect (OSTI)

    1997-03-01

    The Gulf of Mexico and Louisiana continue to be areas with a high level of facility removal, and the pace of removal is projected to increase. Regulations were promulgated for the Gulf of Mexico and Louisiana requiring that abandoned sites be cleared of debris that could interfere with fishing and shrimping activities. The site clearance regulations also required verification that the sites were clear. Additionally, government programs were established to compensate fishermen for losses associated with snagging their equipment on oil and gas related objects that remained on the water bottoms in areas other than active producing sites and sites that had been verified as clear of obstructions and snags. The oil and gas industry funds the compensation programs. This paper reviews the regulations and evolving operating practices in the Gulf of Mexico and Louisiana where site clearance and fisherman`s gear compensation regulations have been in place for a number of years. Although regulations and guidelines may be in place elsewhere in the world, this paper focuses on the Gulf of Mexico and Louisiana. Workshop participants are encouraged to bring up international issues during the course of the workshop. Additionally, this paper raises questions and focuses on issues that are of concern to the various Gulf of Mexico and Louisiana water surface and water bottom stakeholders. This paper does not have answers to the questions or issues. During the workshop participants will debate the questions and issues in an attempt to develop consensus opinions and/or make suggestions that can be provided to the appropriate organizations, both private and government, for possible future research or policy adjustments. Site clearance and facility removal are different activities. Facility removal deals with removal of the structures used to produce oil and gas including platforms, wells, casing, piles, pipelines, well protection structures, etc.

  2. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    delivery volumes. Northern Natural Gas Company issued a system overrun limitation (SOL) for all market-area zones for gas day February 21, 2008. The SOL was the result of...

  3. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Natural gas stocks stood at 2,155 Bcf as of Friday, July 9,...

  4. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    The report provides an overview of U.S. international trade in 2008 as well as historical data on natural gas imports and exports. Net natural gas imports accounted for only 13...

  5. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    by 14.4 percent. During this period, U.S. manufacturers used less petroleum and coal in manufacturing processes. This expansion of gas use occurred although natural gas prices to...

  6. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heating-related demand for natural gas that limited the size of the net addition to storage. The economic incentives for storing natural gas for next winter are considerably...

  7. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    week's gas markets. As of Friday, May 11, 2001, the spot price of natural gas at the Henry Hub dropped 0.24 from the previous Friday to 4.25 per MMBtu. The NYMEX price of...

  8. EIA - Natural Gas Publications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    these data from 2005 to 2009 are presented for each State. (12282010) U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves: 2009 National and State...

  9. Natural gas annual 1996

    SciTech Connect (OSTI)

    1997-09-01

    This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

  10. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    while the OFO was in effect. Pacific Gas and Electric Company extended a systemwide high-inventory OFO on its California Gas Transmission system through Saturday, July 5. It was...

  11. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    the OFO customers who delivered more than 110 percent of their actual gas usage into the system would be assessed for charges. Pacific Gas and Electric Company issued a...

  12. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    the Northeast were expected to be in the single digits. Prices off Transcontinental Gas Pipe Line in New York and Algonquin Gas Transmission in the New England region yesterday...

  13. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    gas in combination with water. Gas hydrate is thought to exist in great abundance in nature and has the potential to be a significant new energy source to meet future energy...

  14. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, C.M.

    1996-12-10

    A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

  15. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, Conrad M.

    1996-01-01

    A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

  16. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of 1 Tcf from the 1994 estimate of 51 Tcf. Ultimate potential for natural gas is a science-based estimate of the total amount of conventional gas in the province and is an...

  17. offshore_gas.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    Source: Energy Information Administration based on data from MMS, HPDI, CA Dept of Oil , Gas & Geothermal Updated: April 8, 2009 Alabama 20 0 m Gas Production, Last Reported Year ...

  18. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    on Thursday, May 9, 2002. A sample of EIA's report can be seen at: Weekly Gas Storage Test Page. The Natural Gas Weekly Market Update report will convert to the new data series...

  19. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    of natural gas into storage. However, shut-in natural gas production in the Gulf of Mexico reduced available current supplies, and so limited net injections during the report...

  20. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    York Mercantile Exchange (NYMEX), the August 2011 natural gas contract price also lost ground over the week, closing at 4.217 per MMBtu on Wednesday. The natural gas rotary rig...