National Library of Energy BETA

Sample records for 1997-2013 alabama na

  1. Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama

  2. Alabama - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Alabama

  3. Alabama - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Alabama

  4. Alabama - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Alabama

  5. Calhoun County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Glencoe, Alabama Hobson City, Alabama Jacksonville, Alabama Ohatchee, Alabama Oxford, Alabama Piedmont, Alabama Saks, Alabama Southside, Alabama Weaver, Alabama West...

  6. Shelby County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Calera, Alabama Chelsea, Alabama Columbiana, Alabama Harpersville, Alabama Helena, Alabama Hoover, Alabama Indian Springs Village, Alabama Lake Purdy, Alabama Leeds,...

  7. Etowah County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Gadsden, Alabama Glencoe, Alabama Hokes Bluff, Alabama Mountainboro, Alabama Rainbow City, Alabama Reece City, Alabama Ridgeville, Alabama Sardis City, Alabama Southside,...

  8. Baldwin County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bay Minette, Alabama Daphne, Alabama Elberta, Alabama Fairhope, Alabama Foley, Alabama Gulf Shores, Alabama Loxley, Alabama Magnolia Springs, Alabama Orange Beach, Alabama Point...

  9. Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Processed in Alabama (Million Cubic Feet) Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 100,491 33,921 35,487 31,116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Processed

  10. Madison County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Huntsville, Alabama Madison, Alabama Meridianville, Alabama Moores Mill, Alabama New Hope, Alabama New Market, Alabama Owens Cross Roads, Alabama Redstone Arsenal, Alabama...

  11. Cullman County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cullman, Alabama Dodge City, Alabama Fairview, Alabama Garden City, Alabama Good Hope, Alabama Hanceville, Alabama Holly Pond, Alabama South Vinemont, Alabama West Point,...

  12. Jefferson County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Polymet Alloys Inc WBRC Places in Jefferson County, Alabama Adamsville, Alabama Argo, Alabama Bessemer, Alabama Birmingham, Alabama Brighton, Alabama Brookside, Alabama...

  13. Limestone County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ardmore, Alabama Athens, Alabama Decatur, Alabama Elkmont, Alabama Huntsville, Alabama Lester, Alabama Madison, Alabama Mooresville, Alabama Retrieved from "http:en.openei.orgw...

  14. Covington County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Horn Hill, Alabama Libertyville, Alabama Lockhart, Alabama Onycha, Alabama Opp, Alabama Red Level, Alabama River Falls, Alabama Sanford, Alabama Retrieved from "http:...

  15. Lamar County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Lamar County, Alabama Beaverton, Alabama Detroit, Alabama Kennedy, Alabama Millport, Alabama Sulligent, Alabama Vernon, Alabama...

  16. Blount County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nectar, Alabama Oneonta, Alabama Rosa, Alabama Smoke Rise, Alabama Snead, Alabama Susan Moore, Alabama Retrieved from "http:en.openei.orgwindex.php?titleBlountCounty,Alabama...

  17. Geneva County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Geneva, Alabama Hartford, Alabama Malvern, Alabama Samson, Alabama Slocomb, Alabama Taylor, Alabama Retrieved from "http:en.openei.orgwindex.php?titleGenevaCounty,Alabama...

  18. Fayette County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Alabama Belk, Alabama Berry, Alabama Fayette, Alabama Glen Allen, Alabama Gu-Win, Alabama Winfield, Alabama Retrieved from "http:en.openei.orgw...

  19. Monroe County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Pine Pulp Biomass Facility Places in Monroe County, Alabama Beatrice, Alabama Excel, Alabama Frisco City, Alabama Monroeville, Alabama Vredenburgh, Alabama Retrieved from...

  20. Barbour County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Barbour County, Alabama Bakerhill, Alabama Blue Springs, Alabama Clayton, Alabama Clio, Alabama Eufaula, Alabama Louisville, Alabama Retrieved from "http:en.openei.orgw...

  1. Houston County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Solar Hot Water and Power LLC Places in Houston County, Alabama Ashford, Alabama Avon, Alabama Columbia, Alabama Cottonwood, Alabama Cowarts, Alabama Dothan, Alabama Gordon,...

  2. Alabama Power Co (Alabama) EIA Revenue and Sales - February 2009...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for February...

  3. Alabama Power Co (Alabama) EIA Revenue and Sales - September...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for September...

  4. Alabama Power Co (Alabama) EIA Revenue and Sales - October 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for October...

  5. Alabama Power Co (Alabama) EIA Revenue and Sales - November 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for November...

  6. Alabama Power Co (Alabama) EIA Revenue and Sales - January 2009...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for January...

  7. Alabama Power Co (Alabama) EIA Revenue and Sales - January 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for January...

  8. Alabama Power Co (Alabama) EIA Revenue and Sales - December 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for December...

  9. Pickens County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Gordo, Alabama McMullen, Alabama Memphis, Alabama Pickensville, Alabama Reform, Alabama Retrieved from "http:en.openei.orgwindex.php?titlePickensCounty,Alabam...

  10. Talladega County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Talladega County, Alabama Bon Air, Alabama Childersburg, Alabama Lincoln, Alabama Mignon, Alabama Munford, Alabama...

  11. Sumter County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Sumter County, Alabama Cuba, Alabama Emelle, Alabama Epes, Alabama Gainesville, Alabama Geiger, Alabama Livingston,...

  12. St. Clair County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in St. Clair County, Alabama Argo, Alabama Ashville, Alabama Leeds, Alabama Margaret, Alabama Moody, Alabama Odenville,...

  13. Lauderdale County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Lauderdale County, Alabama Anderson, Alabama Florence, Alabama Killen, Alabama Lexington, Alabama Rogersville, Alabama...

  14. Clarke County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Clarke County, Alabama Coffeeville, Alabama Fulton, Alabama Grove Hill, Alabama Jackson, Alabama Thomasville, Alabama Retrieved from "http:en.openei.orgw...

  15. Winston County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arley, Alabama Double Springs, Alabama Haleyville, Alabama Lynn, Alabama Natural Bridge, Alabama Nauvoo, Alabama Retrieved from "http:en.openei.orgwindex.php?titleWinsto...

  16. Franklin County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype A. Places in Franklin County, Alabama Hodges, Alabama Phil Campbell, Alabama Red Bay, Alabama Russellville, Alabama Vina, Alabama Retrieved from "http:en.openei.org...

  17. Wilcox County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Wilcox County, Alabama Camden, Alabama Oak Hill, Alabama Pine Apple, Alabama Pine Hill, Alabama Yellow Bluff, Alabama Retrieved from "http:...

  18. Bibb County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Bibb County, Alabama Brent, Alabama Centreville, Alabama Vance, Alabama West Blocton, Alabama Woodstock, Alabama...

  19. Choctaw County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Choctaw County, Alabama Butler, Alabama Gilbertown, Alabama Lisman, Alabama Needham, Alabama Pennington, Alabama...

  20. Lowndes County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gordonville, Alabama Hayneville, Alabama Lowndesboro, Alabama Mosses, Alabama White Hall, Alabama Retrieved from "http:en.openei.orgwindex.php?titleLowndesCounty,Alabama...

  1. Colbert County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Colbert County, Alabama Cherokee, Alabama Leighton, Alabama Littleville, Alabama Muscle Shoals, Alabama Sheffield, Alabama Tuscumbia,...

  2. Alabama Power Co (Alabama) EIA Revenue and Sales - May 2008 ...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for May 2008....

  3. Alabama Power Co (Alabama) EIA Revenue and Sales - April 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for April 2008....

  4. Alabama Power Co (Alabama) EIA Revenue and Sales - August 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for August 2008....

  5. Alabama Power Co (Alabama) EIA Revenue and Sales - March 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for March 2008....

  6. Alabama Power Co (Alabama) EIA Revenue and Sales - March 2009...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for March 2009....

  7. Alabama Power Co (Alabama) EIA Revenue and Sales - June 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for June 2008....

  8. Alabama Power Co (Alabama) EIA Revenue and Sales - July 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for July 2008....

  9. Alabama Power Co (Alabama) EIA Revenue and Sales - February 2008...

    Open Energy Info (EERE)

    Power Co (Alabama) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for February 2008....

  10. Alabama Power- UESC Activities

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses Alabama Power and its utility energy service contract (UESC) projects and activities.

  11. Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Offshore--Alabama Natural Gas Gross Withdrawals (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 79,294 86,515 120,502 143,703 152,055 194,677 170,320 163,763 2000's 160,208 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  12. Alabama Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Shale Proved Reserves (Billion Cubic Feet) Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Alabama Shale Gas Proved Reserves,

  13. Alabama/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Program No Alabama Gas Corporation - Residential Natural Gas Rebate Program (Alabama) Utility Rebate Program Yes Alabama Power - Residential Heat Pump and Weatherization Loan...

  14. Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  15. Alabama Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    3.81 3.83 3.61 3.27 3.22 3.18 1989-2016 Residential 20.38 19.12 17.67 14.30 12.00 11.12 1989-2016 Commercial 11.75 11.40 11.47 10.73 9.81 9.70 1989-2016 Industrial 3.68 3.48 3.33 3.48 3.54 3.55 2001-2016 Electric Power 3.07 2.78 W W 2.95 W 2002-2016 Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA

  16. Birmingham, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Recovery Act Smart Grid Projects in Birmingham, Alabama Southern Company Services, Inc. Smart Grid Project Registered Energy Companies in Birmingham, Alabama Polymet Alloys Inc...

  17. Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Oil Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 0 0 3,194 350 0 0 0 0 2000's 0 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  18. Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Alabama Shale Gas Proved Reserves,

  19. Alabama (with State Offshore) Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Alabama (with State Offshore) Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production Alabama Shale Gas Proved Reserves, Reserves Changes, and Production Shale Gas

  20. Alabama Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 237 3 0 264 0 431 253 379 21 0 2010's 148 383 21 183 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Alabama Dry Natural Gas

  1. Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 140 1 6 246 29 419 188 302 10 2 2010's 263 573 11 357 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Alabama Dry Natural Gas Proved Reserves Dry

  2. Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 125,180 106,903 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Dry Production Alabama Onshore

  3. South Alabama Electric Cooperative- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    South Alabama Electric Cooperative (SAEC) is a part owner of Alabama Electric Cooperative which has a generation facility in Andalusia, Alabama. The Energy Resources Conservation Loan (ERC) helps...

  4. Alabama Offshore Natural Gas Plant Liquids Production Extracted...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0...

  5. Alabama Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the High School Coach page. Alabama Region High School Regional Alabama Alabama High School Regional Science...

  6. Alabama Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    for your school's state, county, city, or district. For more information, please visit the Middle School Coach page. Alabama Regions Middle School Regional Alabama Alabama...

  7. Alabama -- SEP Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of Reported Data Alabama -- SEP Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Alabama -- SEP. PDF icon Alabama Summary ...

  8. Energy Incentive Programs, Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alabama Energy Incentive Programs, Alabama Updated June 2015 Alabama utilities collectively budgeted $40 million for energy efficiency and load management programs in 2014. What public-purpose-funded energy efficiency programs are available in my state? Alabama has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Alabama Energy provides an on-line energy information system and various informational resources, but does not currently

  9. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7,442 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Gulf of Mexico-Alabama

  10. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    Alabama Alabama W 13.59 W 63.63 21.4% 3,612 W 100.0% Alabama Georgia W 19.58 W 82.89 23.6% 538 W 99.9% Alabama Illinois W - - - - - - - Alabama Kentucky - W - W W W - W Alabama...

  11. Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 2 2000's 2 4 1 2 2 2 0 0 0 0 2010's 0 1 2 2 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  12. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate,

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 2 2000's 2 4 1 2 2 2 0 0 0 0 2010's 0 1 2 2 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  13. North Alabama Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    Place: Alabama Phone Number: (256) 437-2281 or 800-572-2900 Website: www.naecoop.com Facebook: https:www.facebook.compagesNorth-Alabama-Electric-Cooperative159082070791105...

  14. Headland, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Headland is a city in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  15. Haleburg, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Haleburg is a town in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  16. Dothan, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Dothan is a city in Dale County and Henry County and Houston County, Alabama. It falls under Alabama's 2nd congressional...

  17. Abbeville, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Abbeville is a city in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  18. Newville, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Newville is a town in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  19. Avon, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Avon is a town in Houston County, Alabama. It falls under Alabama's 2nd congressional...

  20. Alabama -- SEP Data Dashboard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Dashboard Alabama -- SEP Data Dashboard The data dashboard for Alabama -- SEP, a partner in the Better Buildings Neighborhood Program. File Alabama -- SEP Data Dashboard More Documents & Publications Massachusetts -- SEP Data Dashboard Austin Energy Data Dashboard Washington -- SEP Data Dashboard

  1. Alabama Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.46 5.80 5.18 4.65 4.93 NA 1984-2015 Residential Price 15.79 15.08 16.20 15.47 14.59 13.95 1967-2015 Percentage of ...

  2. Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Fuels Education in Alabama to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Digg Find

  3. Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 79,294 86,515 117,308 143,353 152,055 194,677 170,320 163,763 2000's 160,208 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  4. Alabama Residential Energy Code Field Study

    Broader source: Energy.gov [DOE]

    Lead Performer: Institute for Market Transformation – Washington, DCPartners: Alabama Center for Excellence in Clean Energy Technology, Calhoun Community College – Decatur, ALDOE Total Funding: ...

  5. ,"Alabama Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  6. ,"Alabama Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  7. Clean Cities: Alabama Clean Fuels coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the United States. Bentley actively strives to lead efforts to build an alternative fuel industry in Alabama and leverages public-private partnerships to accomplish this goal....

  8. Taylor, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    dataset (All States, all geography) US Census Bureau Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleTaylor,Alabama&oldid25085...

  9. Alabama/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Alabama Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  10. South Alabama Electric Cooperative - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Residential Savings Category Geothermal Heat Pumps Heat Pumps Building Insulation Windows Doors Program Info Sector Name Utility Administrator South Alabama...

  11. City of Bessemer Utilities, Alabama | Open Energy Information

    Open Energy Info (EERE)

    Bessemer Utilities, Alabama Jump to: navigation, search Name: City of Bessemer Utilities Place: Alabama Phone Number: (205) 481-4333 Website: www.bessemerutilities.com Outage...

  12. Alabama Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Board Jump to: navigation, search Logo: Alabama Oil and Gas Board Name: Alabama Oil and Gas Board Abbreviation: OGB Address: 420 Hackberry Lane Place: Tuscaloosa,...

  13. Energy Secretary Bodman Tours Alabama Red Cross Facility and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tours Alabama Red Cross Facility and Attends National Day of Prayer and Remembrance Service with Governor Riley Energy Secretary Bodman Tours Alabama Red Cross Facility and Attends ...

  14. City of Huntsville, Alabama (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Huntsville, Alabama (Utility Company) (Redirected from Huntsville Utilities) Jump to: navigation, search Name: Huntsville City of Place: Alabama Phone Number: 1-866-478-8845 or...

  15. SEP Success Story: Local Program Helps Alabama Manufacturers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, ...

  16. Alabama Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    4.46 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 6.46 5.80 5.18 4.65 4.93 NA 1984-2015 Residential 15.79 15.08 16.20 15.47 14.59 13.95 1967-2015 Commercial 13.34 12.36 12.56 12.35 11.92 11.03 1967-2015 Industrial 6.64 5.57 4.35 4.98 5.49 3.94 1997-2015 Vehicle Fuel 16.24 11.45 17.99 1990-2012 Electric Power 4.85 W 3.09 4.14 4.74 3.06 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 2,629 2,475 2,228 1,597 2,036 1977-2014 Adjustments 32 -49 112 -274

  17. Alabama SEP Final Technical Report

    SciTech Connect (OSTI)

    Grimes, Elizabeth M.

    2014-06-30

    Executive Summary In the fall of 2010, the Alabama Department of Economic and Community Affairs (ADECA) launched the Multi-State Model for Catalyzing the National Home Energy Retrofit Market Project (Multi-State Project). This residential energy efficiency pilot program was a collaborative effort among the states of Alabama, Massachusetts, Virginia, and Washington, and was funded by competitive State Energy Program (SEP) awards through the U.S. Department of Energy (DOE). The objective of this project was to catalyze the home energy efficiency retrofit market in select areas within the state of Alabama. To achieve this goal, the project addressed a variety of marketplace elements that did not exist, or were underdeveloped, at the outset of the effort. These included establishing minimum standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency and addressing real or perceived financial barriers to investments in whole-home energy efficiency, among others. The anticipated effect of the activities would be increased market demand for retrofits, improved audit to retrofit conversion rates and growth in overall community understanding of energy efficiency. The four-state collaborative was created with the intent of accelerating market transformation by allowing each state to learn from their peers, each of whom possessed different starting points, resources, and strategies for achieving the overall objective. The four partner states engaged the National Association of State Energy Officials (NASEO) to oversee a project steering committee and to manage the project evaluation for all four states. The steering committee, comprised of key program partners, met on a regular basis to provide overall project coordination, guidance, and progress assessment. While there were variances in program design among the states, there were several common elements: use of the Energy Performance Score (EPS) platform; an audit and home energy rating tool; emphasis on community based coordination and partnerships; marketing and outreach to increase homeowner participation; training for market actors; access to financing options including rebates, incentives, and loan products; and an in depth process evaluation to support continual program improvement and analysis. In Alabama, Nexus Energy Center operated energy efficiency retrofit programs in Huntsville and Birmingham. In the Huntsville community the AlabamaWISE program was available in five Alabama counties: Cullman, Lawrence, Limestone, Madison, and Morgan. In Birmingham, the program was available to residents in Jefferson and Shelby Counties. In both communities, the program was similar in terms of program design but tailored marketing and partnerships to address the unique local conditions and population of each community. ADECA and the Southeast Energy Efficiency Alliance (SEEA) provided overall project management services and common resources to the local program administrator Nexus Energy Center, including contracted services for contractor training, quality assurance testing, data collection and reporting, and compliance. The fundamental components of the AlabamaWISE program included a vertical contractor-based business model; comprehensive energy assessments; third-party quality assurance; rebates for installation of energy saving measures; accessible, low-interest financing; targeted and inbound marketing; Energy Performance Score (EPS) tool to engage and educate homeowners; training for auditors, contractors, and real estate professionals; and online resources for education and program enrollment. Program participants were eligible to receive rebates or financing toward the assessments and upgrades to their home provided they reached at least 20 percent deemed or modeled energy savings. The design of each program focused on addressing several known barriers including: limited homeowner knowledge on the benefits of energy efficiency, lack of financing options, lack of community support for energy efficiency programs, and lack of trained market actors including contractors and real estate professionals. The programs were able to make progress on addressing all of these barriers and were most successful in offering financing options and training market actors. The most challenging barriers proved to be the act of building a market for energy efficiency where none previously existed, convincing homeowners of the value in investing in energy efficiency (and therefore completing retrofits), engaging electric and natural gas utilities to partner on delivery, and achieving the overall project target of 1,365 completed retrofits. The components that proved to be the most valuable to program success were engaged contractor networks that could promote and endorse the program, partnerships with local business and organizations, and the access to rebates, incentives and financing mechanisms. The programs were successful in building relationships with a variety of community participants including: local contractors, Associations of REALTORS, home builders associations, universities, utilities, local and state governments, and other non-profit organizations. Throughout this program, 933 building audits and 795 building retrofits were completed making homes in Alabama more comfortable, less expensive to operate, more valuable to the marketplace, and safer and healthier for families. Continuing on this momentum, Nexus Energy Center plans to continue operating and expanding operations in Alabama as a Home Performance with ENERGY STAR sponsor and will continue to provide energy services and education to communities in Alabama.

  18. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 182 1980's 193 167 158 166 152 143 139 132 130 130 1990's 122 110 118 103 91 72 67 59 50 50 2000's 46 32 29 27 21 30 15 21 14 16 2010's 18 19 18 14 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  19. Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 31 1980's 33 25 35 50 48 39 38 34 36 38 1990's 48 35 53 55 51 48 52 34 31 57 2000's 104 32 28 33 29 31 41 32 92 55 2010's 68 68 55 51 59 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 23 25 1990's 25 23 30 46 56 44 38 30 28 27 2000's 29 26 31 32 32 29 18 20 19 29 2010's 38 48 100 46 141 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (Million Cubic Feet) Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 185 30 66 -580 459 -459 132 -46 164 -422 1990's 456 -19 239 215 448 -164 -303 425 32 -219 2000's -285 -136 298 -47 19 114 -7 -209 -73 178 2010's -21 -75 -22 63 -206 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  2. Federal Offshore--Alabama Natural Gas Marketed Production (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Marketed Production (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 79,294 86,515 120,502 143,703 152,055 194,677 170,320 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Marketed Production

  3. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Condensate, Proved Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 256 230 223 223 278 1990's 258 253 226 235 233 305 422 433 435 430 2000's 433 325 300 251 205 196 185 163 151 134 2010's 129 129 98 88 108 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec.

  5. Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Proved Reserves (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 182 1980's 193 167 158 166 152 143 139 132 130 130 1990's 122 110 118 103 91 72 67 59 50 50 2000's 46 32 29 27 21 30 15 21 14 16 2010's 18 19 18 14 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  6. Alabama Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7 -12 -27 1980's 30 42 1990's 197 605 159 -644 27 -45 -44 -31 5 -17 2000's -56 36 72 -36 34 -27 -11 12 -71 46 2010's 32 -49 112 -274 502 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  7. Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 24 42 46 1980's 64 85 1990's 104 146 256 281 391 360 373 376 394 376 2000's 359 345 365 350 327 300 287 274 257 254 2010's 223 218 214 175 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  8. Alabama Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 50 42 44 1980's 64 12 1990's 1,014 229 35 378 80 118 177 34 19 1 2000's 175 169 289 315 131 85 146 123 59 20 2010's 28 3 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  9. Alabama Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 45 41 1980's 116 89 1990's 938 207 191 159 2,128 286 97 54 313 140 2000's 69 218 155 122 155 60 208 35 732 328 2010's 173 157 254 75 41 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  10. Alabama Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18 35 129 1980's 69 119 1990's 759 773 545 44 2,101 481 502 348 309 215 2000's 74 78 130 588 162 135 234 163 283 99 2010's 206 455 99 67 140 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  11. Alabama Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Alabama Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 655 908 754 353 838 512 581 465 607 512 1990's 893 511 501 612 944 524 979 960 501 564 2000's 729 504 871 655 509 493 704 868 1,003 1,676 2010's 946 754 562 822 1,664 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  12. Alabama Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Alabama Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 470 878 688 933 379 971 449 511 444 934 1990's 437 530 262 396 497 688 1,282 535 469 783 2000's 1,014 641 573 607 528 606 698 1,078 1,076 1,498 2010's 968 829 583 759 1,869 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  13. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Browns Ferry Unit 1, Unit 2, Unit 3","3,309","24,771",65.3,"Tennessee Valley Authority" "Joseph M Farley Unit 1, Unit 2","1,734","13,170",34.7,"Alabama Power

  14. Final Technical Report. Upgrades to Alabama Power Company Hydroelectric Developments

    SciTech Connect (OSTI)

    Crew, James F.; Johnson, Herbie N.

    2015-03-31

    From 2010 to 2014, Alabama Power Company (“Alabama Power”) performed upgrades on four units at three of the hydropower developments it operates in east-central Alabama under licenses issued by the Federal Energy Regulatory Commission (“FERC”). These three hydropower developments are located on the Coosa River in Coosa, Chilton, and Elmore counties in east-central Alabama.

  15. SEP Success Story: Alabama Institute for Deaf and Blind to Launch...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alabama Institute for Deaf and Blind to Launch Lighting Project SEP Success Story: Alabama ... SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and ...

  16. Alabama Onshore Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    46,751 139,215 134,305 128,312 120,666 110,226 1992-2014 From Gas Wells 33,294 29,961 32,602 27,009 27,182 24,726 1992-2014 From Oil Wells 5,758 6,195 5,975 10,978 8,794 7,937 1992-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 107,699 103,060 95,727 90,325 84,690 77,563 2007-2014 Repressuring 783 736 531 NA NA NA 1992-2014 Vented and Flared 1,972 2,085 3,012 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 9,239 8,200 13,830 NA NA NA 1992-2014 Marketed Production 134,757 128,194

  17. Alternative Fuels Data Center: Alabama City Leads With Biodiesel and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Alabama City Leads With Biodiesel and Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Twitter Bookmark Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Google Bookmark Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Delicious Rank Alternative Fuels Data

  18. Save Energy Now Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In Alabama, the project aimed to work with small, medium, and large industrial companies to reduce their energy intensity by a minimum of 2.5% each year and to increase their ...

  19. ,"Alabama Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas ...

  20. AlabamaSAVES Revolving Loan Program

    Broader source: Energy.gov [DOE]

    NOTE: Starting July 1, 2016, the AlabamaSAVES program will transition into a participating loan program. The program will continue to receive applications for the current program until March 31,...

  1. ALABAMA GETS WISE ABOUT SELLING UPGRADES

    Broader source: Energy.gov [DOE]

    With goal of sharing knowledge about each state’s efforts, the Alabama Department of Economic and Community Affairs (ADECA) teamed up with the National Association of State Energy Offices (NASEO)...

  2. Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  3. City of Muscle Shoals, Alabama (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Shoals, Alabama (Utility Company) Jump to: navigation, search Name: City of Muscle Shoals Place: Alabama Phone Number: (256) 386-9293 Website: www.mseb.net Outage Hotline: (256)...

  4. Domestic Coal Distribution 2009 Q1 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q1 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q1 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  5. Domestic Coal Distribution 2009 Q1 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) 1 64 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons)...

  6. Domestic Coal Distribution 2009 Q2 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q2 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  7. Domestic Coal Distribution 2009 Q2 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) 1 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons)...

  8. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZF North America used Alabama E3 funding to create a recycling program that saves more ... ZF North America used Alabama E3 funding to create a recycling program that saves more ...

  9. SEP Success Story: Local Program Helps Alabama Manufacturers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZF North America used Alabama E3 funding to create a recycling program that saves more ... ZF North America used Alabama E3 funding to create a recycling program that saves more ...

  10. City of Huntsville, Alabama (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Huntsville, Alabama (Utility Company) Jump to: navigation, search Name: Huntsville City of Place: Alabama Phone Number: 1-866-478-8845 or 256-535-1200 Website: www.hsvutil.org...

  11. City of Tuskegee, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Tuskegee, Alabama (Utility Company) Jump to: navigation, search Name: City of Tuskegee Place: Alabama Phone Number: (334) 720-0799 or (334) 720-0700 Website: www.yourubt.com...

  12. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:19 AM" "Back to Contents","Data 1: Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AL3" "Date","Alabama...

  13. Alabama State Historic Preservation Programmatic Agreement | Department of

    Energy Savers [EERE]

    Alabama Recovery Act State Memo Alabama Recovery Act State Memo Alabama has substantial natural resources, including gas, coal, biomass, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alabama are supporting a broad range of clean energy projects, from energy efficiency and the electric grid to renewable energy and carbon capture and

  14. Alabama Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alabama Recovery Act State Memo Alabama Recovery Act State Memo Alabama has substantial natural resources, including gas, coal, biomass, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alabama are supporting a broad range of clean energy projects, from energy efficiency and the electric grid to renewable energy and carbon capture and

  15. Energy Upgrades to Alabama Trauma Center Help Improve Patient Care

    Broader source: Energy.gov [DOE]

    In Alabama, a Recovery Act grant is helping a hospital save energy while providing better care to its patients.

  16. Categorical Exclusion Determination (Georgia-Alabama-SouthCarolina System)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Categorical Exclusion Determination (Georgia-Alabama-SouthCarolina System) Categorical Exclusion Determination (Georgia-Alabama-SouthCarolina System) PDF icon Proposed rate adjustment for the Georgia-Alabama-South Carolina System of Projects More Documents & Publications CX-001068: Categorical Exclusion Determination SOCO-4-E Wholesale Power Rate Schedule Regulation-1

  17. Alabama -- SEP Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of Reported Data Alabama -- SEP Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Alabama -- SEP. PDF icon Alabama Summary of Reported Data More Documents & Publications Virginia -- SEP Summary of Reported Data NYSERDA Summary of Reported Data Michigan -- SEP Summary of Reported Data

  18. Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 537 1990's 1,224 1,714 1,968 1,237 976 972 823 1,077 1,029 1,060 2000's 1,241 1,162 1,283 1,665 1,900 1,773 2,068 2,126 1,727 1,342 2010's 1,298 1,210 1,006 413 978 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  19. Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 530 514 652 1980's 636 648 1990's 4,125 5,414 5,802 5,140 4,830 4,868 5,033 4,968 4,604 4,287 2000's 4,149 3,915 3,884 4,301 4,120 3,965 3,911 3,994 3,290 2,871 2010's 2,629 2,475 2,228 1,597 2,036 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  20. Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 191,605 218,023 349,380 356,598 361,068 409,091 392,320 376,435 2000's 361,289 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  1. Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 693 1980's 682 683 1990's 4,184 5,460 5,870 5,212 4,898 4,930 5,100 5,013 4,643 4,365 2000's 4,269 3,958 3,922 4,345 4,159 4,006 3,963 4,036 3,379 2,948 2010's 2,724 2,570 2,304 1,670 2,121 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Alabama--State Offshore Natural Gas Marketed Production (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Marketed Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 106,586 125,302 220,233 202,559 198,509 203,021 209,752 202,475 2000's 191,550 191,188 193,448 183,621 156,097 143,349 136,805 125,828 117,483 101,272 2010's 94,738 78,649 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  3. Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 222,009 228,298 229,483 223,527 221,233 220,674 212,470 207,863 2000's 200,255 191,119 184,500 176,571 173,106 164,304 160,381 155,167 152,051 146,751 2010's 139,215 134,305 128,312 120,666 110,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  4. Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 169,220 176,208 174,537 173,399 180,277 185,574 182,641 179,227 2000's 171,917 165,622 162,613 162,524 159,924 153,179 149,415 144,579 140,401 134,757 2010's 128,194 116,932 128,312 120,666 110,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  5. Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Utility Deliveries (Percent) Alabama Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.13 0.23 0.23 0.29 0.60 0.53 2000's 0.81 1.29 1.98 1.68 2.14 1.79 2.34 2.57 2.46 3.30 2010's 3.81 4.53 4.40 4.08 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  6. Alabama Natural Gas % of Total Residential Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Deliveries (Percent) Alabama Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.04 1.03 1.02 1.08 0.97 1.03 0.90 2000's 0.95 1.03 0.95 0.92 0.90 0.87 0.87 0.75 0.77 0.75 2010's 0.88 0.78 0.66 0.72 0.77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  7. Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Deliveries (Percent) Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.44 0.20 0.15 0.08 0.71 0.57 0.57 2000's 0.57 0.52 0.52 0.52 0.52 0.67 0.47 0.36 0.32 0.29 2010's 0.37 0.64 0.64 0.63 0.63 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  8. Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 50 23 91 9 54 14 3 2 17 16 1990's 320 332 171 410 69 0 18 21 2 4 2000's 0 0 0 22 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  9. Alabama Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,600 4,154 4,227 4,139 5,314 5,021 4,277 1990's 6,171 4,907 8,391 8,912 9,381 10,468 10,492 7,020 7,650 9,954 2000's 10,410 9,593 9,521 11,470 11,809 11,291 12,045 11,345 11,136 10,460 2010's 10,163 10,367 12,389 12,456 10,055 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Alabama Natural Gas Percentage Total Commercial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Deliveries (Percent) Alabama Natural Gas Percentage Total Commercial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.90 0.88 0.87 0.92 1.01 0.86 0.91 2000's 0.80 0.87 0.80 0.80 0.85 0.84 0.86 0.78 0.80 0.78 2010's 0.87 0.80 0.74 0.77 0.79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  14. Alabama Natural Gas Percentage Total Industrial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Deliveries (Percent) Alabama Natural Gas Percentage Total Industrial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.28 2.23 2.38 2.27 2.36 2.39 2.53 2000's 2.46 2.11 2.13 2.22 2.25 2.29 2.30 2.26 2.13 2.13 2010's 2.12 2.19 2.38 2.42 2.46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  15. Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,689 19,948 22,109 2000's 22,626 19,978 21,760 18,917 15,911 14,982 14,879 15,690 16,413 18,849 2010's 22,124 23,091 25,349 22,166 18,688 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  16. Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,129 1,178 1,249 1,303 1,564 1,634 1,875 1990's 3,710 3,720 4,477 4,453 3,747 3,806 2,827 2,468 2,391 5,336 2000's 5,377 3,491 4,148 3,293 3,914 3,740 6,028 6,269 6,858 6,470 2010's 6,441 6,939 6,616 6,804 6,462 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  17. Alabama Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Alabama Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 324,158 329,134 337,270 2000's 353,614 332,693 379,343 350,345 382,367 353,156 391,093 418,512 404,157 454,456 2010's 534,779 598,514 666,712 615,407 634,678 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  18. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increase Profits | Department of Energy Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8, 2014 - 11:30am Addthis ZF North America used Alabama E3 funding to create a recycling program that saves more than $100,000 a year in trash pickup and landfill fees. Pictured here are workers in the Tuscaloosa location, which provides Mercedes with complete axle systems. |

  19. Alabama Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 32,417 100.0 Total Net Summer Renewable Capacity 3,855 11.9 Geothermal - - Hydro Conventional 3,272 10.1 Solar - - Wind - - Wood/Wood Waste 583 1.8 MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 152,151 100.0 Total

  20. Alabama Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore California State Offshore Federal Offshore California Colorado Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Kansas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Texas

  1. Alabama Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona Florida Illinois Indiana Kentucky Maryland Michigan Mississippi Missouri Nebraska Nevada New York Oregon South Dakota Tennessee Virginia Period-Unit: Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History

  2. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels)...

  3. FUPWG Meeting Agenda - Mobile, Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mobile, Alabama FUPWG Meeting Agenda - Mobile, Alabama October 16-17, 2012 Hosted by Alabama Power Tuesday, October 16, 2012 8:30 am Welcome Greg Reardon, Alabama Power Bob Chappelle, Mobile Area Chamber of Commerce 8:45 am Chairman's Corner David McAndrew, FEMP 9:00 am Washington Update Tim Unruh, FEMP 9:30 am Air Force Real Property Agency Enhanced Use Lease Program Brian Brown, Air Force Real Property Agency Strategic Asset Utilization Dave Swanson, Air Force Real Property Agency Strategic

  4. Chambers County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chambers County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9028048, -85.354965 Show Map Loading map... "minzoom":false,"mappi...

  5. Clay County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.279527, -85.8486236 Show Map Loading map... "minzoom":false,"mappingservice":"googl...

  6. Central Alabama Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a dual-fuel or geothermal heat pump qualify for...

  7. EECBG Success Story: Managing Storm Aftermath in Alabama

    Broader source: Energy.gov [DOE]

    Thanks to a $2.5 million Energy Efficiency Conservation Block Grant (EECBG), Montgomery, Alabama will revamp its landfill sorting efforts and retrofit its historical city. Learn more.

  8. ,"Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  9. Alabama Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  10. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Electricfil Corporation, located in Elkmont, Alabama, used E3 funding to implement energy-efficient lighting upgrades, start a recycling program for waste within the facility and ...

  11. Alabama Pine Pulp Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleAlabamaPinePulpBiomassFacility&oldid397129" Feedback Contact needs updating Image needs updating...

  12. Washington County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Washington County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3422346, -88.2461183 Show Map Loading map......

  13. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease...

  14. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014...

  15. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  16. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981"...

  17. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

  18. Walker County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Walker County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8563605, -87.3016132 Show Map Loading map... "minzoom":false,"mappin...

  19. Perry County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Perry County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.598888, -87.3016132 Show Map Loading map... "minzoom":false,"mappings...

  20. Alabama Family Staying Nice and Cozy This Fall

    Broader source: Energy.gov [DOE]

    Recovery Act money to weatherize homes has resulted in much lower energy bills for Alabama families, including Mary, whose bill is about $300 cheaper now.

  1. Alabama Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  2. Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.20 1970's 0.20 0.22 0.23 0.26 0.29 0.32 0.47 0.72 1.10 1.32 1980's 1.84 2.59 3.00 3.10 3.15 3.12 3.11 2.37 2.30 2.60 1990's 2.17 3.02 2.24 2.34 2.13 1.93 2.63 2.95 2.55 2.21 2000's 3.13 4.90 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  3. Reservoir characterization of the Smackover Formation in southwest Alabama

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  4. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected

    U.S. Energy Information Administration (EIA) Indexed Site

    Future Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 336 309 289 297 1990's 261 292 246 255 267 191 199 352 341 403 2000's 487 460 483 347 410 407 390 365 313 301 2010's 340 354 369 292 367 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  5. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Condensate Proved Reserves (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,704 2010's 4,043 4,567 4,602 4,591 4,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  6. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Future Production (Million Barrels) Expected Future Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 336 309 289 297 1990's 261 292 246 255 267 191 199 352 341 403 2000's 487 460 483 347 410 407 390 365 313 301 2010's 340 354 369 292 367 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  7. Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 40 4 13 1980's 1 5 1990's 433 35 95 0 1 0 0 0 10 0 2000's 0 42 0 0 3 0 0 0 2 0 2010's 3 2 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: New

  8. ,"Alabama Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","na1090_sal_2a.xls"

  9. ,"Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","na1060_ralsf_2a.xls"

  10. Alabama Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",32417,100 "Total Net Summer Renewable Capacity",3855,11.9 " Geothermal","-","-" " Hydro Conventional",3272,10.1 "

  11. Federal Offshore--Louisiana and Alabama Crude Oil Reserves in Nonproducing

    U.S. Energy Information Administration (EIA) Indexed Site

    Reservoirs (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--Louisiana and Alabama Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 1,128 1,133 2000's 1,267 2,352 2,530 2,801 2,581 2,591 1,816 2,231 2,229 2,013 2010's 1,595 2,597 2,130 2,406 2,204 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Federal Offshore Alabama Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA 0 0 0 1987-2014 From Gas Wells NA NA NA 0 0 0 1987-2014 From Oil Wells NA NA NA 0 0 0 1987-2014 Marketed Production 1992-1998

  13. Alabama Institute for Deaf and Blind Biodiesel Project Green

    SciTech Connect (OSTI)

    Edmiston, Jessica L

    2012-09-28

    Through extensive collaboration, Alabama Institute for Deaf and Blind (AIDB) is Alabama's first educational entity to initiate a biodiesel public education, student training and production program, Project Green. With state and national replication potential, Project Green benefits local businesses and city infrastructures within a 120-mile radius; provides alternative education to Alabama school systems and to schools for the deaf and blind in Appalachian States; trains students with sensory and/or multiple disabilities in the acquisition and production of biodiesel; and educates the external public on alternative fuels benefits.

  14. Alabama Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 9 8 9 9 9 9 9 9 9 9 9 9 2011 16 15 16 16 16 16 16 16 16 16 16 16 2012 16 15 16 16 16 16 16 16 16 16 16 16 2013 16 15 16 16 16 16 16 16 16 16 16 16 2014 19 17 19 18 19 18 19 19 18 19 18 19 2015 18 17 18 18 18 18 19 19 18 19 18 19 2016 21 19

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

  15. Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  16. Alabama--State Offshore Natural Gas Dry Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Natural Gas Dry Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  17. City of Evergreen, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Evergreen Place: Alabama Phone Number: 251-578-1574 Website: www.evergreenal.orgindex.php Outage Hotline: 251-578-1574 References: EIA Form EIA-861 Final Data File for 2010 -...

  18. Two Alabama Elementary Schools Get Cool with New HVAC Units

    Broader source: Energy.gov [DOE]

    Addison Elementary School and Double Springs Elementary School in northwestern Alabama were warm. Some classrooms just didn’t cool fast enough. The buildings, which were built almost 20 years ago, were in need of new HVAC units.

  19. Alabama Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 499 497 ...

  20. Alabama Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 880 880 880 880 ...

  1. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    81.4% Illinois Alabama W W W W W W W W Illinois Florida W W W W W W W W Transportation cost per short ton (nominal) Shipments with transportation rates over total shipments...

  2. Jackson County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in Alabama. Its FIPS County Code is 071. It is classified as...

  3. Alabama Power- Residential Heat Pump and Weatherization Loan Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Alabama Power offers low-interest loans to residential customers to purchase and install new heat pumps and a variety of weatherization measures. The loans require no money down and can be used to...

  4. Marion County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Marion County is a county in Alabama. Its FIPS County Code is 093. It is classified as ASHRAE...

  5. ,"Alabama Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:39 AM" "Back to Contents","Data 1: Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  6. Lee County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lee County is a county in Alabama. Its FIPS County Code is 081. It is classified as ASHRAE...

  7. Butler County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Butler County is a county in Alabama. Its FIPS County Code is 013. It is classified as ASHRAE...

  8. Henry County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Henry County is a county in Alabama. Its FIPS County Code is 067. It is classified as ASHRAE...

  9. Montgomery County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery County is a county in Alabama. Its FIPS County Code is 101. It is classified as...

  10. Pike County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pike County is a county in Alabama. Its FIPS County Code is 109. It is classified as ASHRAE...

  11. Alabama - State Energy Profile Overview - U.S. Energy Information...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska ...

  12. Managing Storm Aftermath in Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Storm Aftermath in Alabama Managing Storm Aftermath in Alabama June 18, 2010 - 3:19pm Addthis Montgomery's horizontal grinder has normal handling capacity of 108 tons per hour. | Photo Courtesy of Lynda Wool Montgomery's horizontal grinder has normal handling capacity of 108 tons per hour. | Photo Courtesy of Lynda Wool Lindsay Gsell Warm, humid climate and proximity to the Gulf of Mexico produce turbulent weather patterns that regularly bring tornadoes and hurricanes to Montgomery,

  13. Research and Services at the Alabama A&M University Research...

    Office of Environmental Management (EM)

    Research and Services at the Alabama A&M University Research Institute Research and Services at the Alabama A&M University Research Institute An overview of services and research...

  14. Alabama Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Alabama Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 57,208 1970's 0 0 0 0 0 0 25,517 31,610 32,806 1980's 38,572 41,914 38,810 42,181 45,662 48,382 49,341 52,511 55,939 1990's 58,136 76,739 126,910 132,222 136,195 118,688 112,868 114,411 107,334 309,492 2000's 372,136 285,953 290,164 237,377 263,426 255,157 287,278 257,443 253,028 248,232 2010's 242,444 230,546 87,269 89,258 80,590 -

  15. Integrated Distribution Management System for Alabama Principal Investigator

    SciTech Connect (OSTI)

    Schatz, Joe

    2013-03-31

    Southern Company Services, under contract with the Department of Energy, along with Alabama Power, Alstom Grid (formerly AREVA T&D) and others moved the work product developed in the first phase of the Integrated Distribution Management System (IDMS) from Proof of Concept to true deployment through the activity described in this Final Report. This Project Integrated Distribution Management Systems in Alabama advanced earlier developed proof of concept activities into actual implementation and furthermore completed additional requirements to fully realize the benefits of an IDMS. These tasks include development and implementation of a Distribution System based Model that enables data access and enterprise application integration.

  16. Heavy liquid beneficiation developed for Alabama tar sands

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    The tar sand deposits in the State of Alabama contain about 1.8 billion barrels of measured and more than 4 billion barrels of speculative in-place bitumen. A comprehensive research program is in progress for the separation of bitumen from these deposits. In general, Alabama tar sands are oil wetted, low grade and highly viscous in nature. In view of these facts, a beneficiation strategy has been developed to recover bitumen enriched concentrate which can be used as a feed material for further processing. Heavy liquid separation tests and results are discussed. A 77% zinc bromide solution, specific gravity of 2.4, was used for the tests. 2 figures.

  17. Alabama Justice Center Expands its Solar Capabilities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alabama Justice Center Expands its Solar Capabilities Alabama Justice Center Expands its Solar Capabilities March 22, 2010 - 4:56pm Addthis The roof-mounted solar array at the T.K. Davis Justice Center in Opelika, Ala. | Photo courtesy of Lee County Commission The roof-mounted solar array at the T.K. Davis Justice Center in Opelika, Ala. | Photo courtesy of Lee County Commission Joshua DeLung What are the key facts? A $162,000 EECBG grant awarded to Lee County through the Recovery Act

  18. Alabama--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alabama--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 112,311 131,508 228,878 212,895 209,013 214,414 222,000 212,673 2000's 201,081 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  19. Alabama Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 162 152 150 1970's 214 476 1,070 1,329 1,301 1,968 2,714 5,444 3,371 21,454 1980's 9,990 5,804 5,037 4,729 5,332 5,476 5,442 6,878 6,655 6,152 1990's 9,881 8,627 12,868 13,365 0 14,274 13,319 9,488 10,041 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,701 1990's 2,362 3,392 3,350 3,514 3,565 3,526 4,105 4,156 4,171 4,204 2000's 4,359 4,597 4,803 5,157 5,526 5,523 6,227 6,591 6,860 6,913 2010's 7,026 7,063 6,327 6,165 6,118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  1. Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.74 6.46 4.60 4.24 3.51 2.92 2.42 1.98 2000's -- -- -- -- 17.32 19.17 2010's 16.24 11.45 17.99 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  2. Alabama--State Offshore Natural Gas Withdrawals from Gas Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Withdrawals from Gas Wells (Million Cubic Feet) Alabama--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 112,311 131,508 228,878 212,895 209,013 214,414 222,000 212,673 2000's 201,081 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA

  3. DOE - Office of Legacy Management -- Alabama Ordnance Works ...

    Office of Legacy Management (LM)

    - Referred to DoD AL.02-1 Also see Documents Related to Alabama Ordnance Works AL.02-1 - DOE Letter; J.Fiore to C.Shafer; Subject: Information on various DoD Sites; May 29, 1987

  4. EECBG Success Story: Alabama Justice Center Expands its Solar Capabilities

    Broader source: Energy.gov [DOE]

    At the T.K. Davis Justice Center in Opelika, Alabama, the county is making an effort to reduce costs and help the environment by installing renewable energy projects, including solar panels on the center’s roof and on poles around the property, thanks to funding from an Energy Efficiency and Conservation Block Grant (EECBG). Learn more.

  5. Alabama Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alabama Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Alabama Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 59,051 56,685 42,925 34,164 35,674 45,488 41,614 1990's 37,229 35,972 51,219 75,474 70,489 54,964 493,069 583,370 560,414 544,020 2000's 521,215 376,241 370,753 348,722 304,212 285,237 274,176 259,062

  6. Alabama State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells 109,214 101,487 84,270 87,398 75,660 70,827 1987-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 0 0 2012-2014 Repressuring 0 NA NA NA 2011-2014 Vented and Flared 523 531 478 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 7,419 6,218 5,142 NA NA NA 1992-2014 Marketed Production 101,272 94,738 78,649 87,398 75,660 70,827 1992-2014 Dry Production 83,420 67,106 2012

  7. EECBG Success Story: Solar LED Light Pilot Project Illuminates the Way in Alabama

    Broader source: Energy.gov [DOE]

    A strip of new solar-powered LED streetlights in Boaz, Alabama were installed with grant funds from the Alabama Department of Economic and Community Affairs and $221,900 from the Energy Department through the Energy Efficiency and Conservation Block Grant (EECBG) program. Learn more.

  8. SEP Success Story: Alabama Institute for Deaf and Blind to Launch Lighting Project

    Broader source: Energy.gov [DOE]

    The Alabama Institute for Deaf and Blind is replacing almost 2,900 lights in 19 buildings across its Talladega, Alabama, campuses with energy-efficient fixtures, an upgrade expected to save the institute over $20,000 a year on utility bills. Learn more.

  9. Alabama Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",7252,4136,6136,12535,8704 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",3865,3784,3324,3035,2365 "MSW Biogenic/Landfill

  10. Alabama Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97827,101561,97376,87580,102762 " Coal",78109,77994,74605,55609,63050 " Petroleum",180,157,204,219,200 " Natural Gas",19407,23232,22363,31617,39235 " Other Gases",131,178,204,135,277 "Nuclear",31911,34325,38993,39716,37941 "Renewables",11136,7937,9493,15585,11081 "Pumped

  11. Gulf of Mexico Federal Offshore - Louisiana and Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,875 1990's 5,098 5,085 4,637 4,570 4,982 5,385 5,492

  12. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 22,897 1990's 17,952 16,943 15,369 15,181 16,226 16,279 16,627 16,241 15,427 14,950 2000's

  13. Alabama Institute for Deaf and Blind to Launch Lighting Project

    Broader source: Energy.gov [DOE]

    For over a century, students at the Alabama Institute for Deaf and Blind (AIDB) have proudly displayed the school colors—blue and red—in the hallways, classrooms and dorm rooms. But this school year, they’re “Going Green.” The 152-year-old institute is replacing almost 2,900 lights in 19 buildings across its Talladega, Ala., campuses with energy-efficient fixtures, an upgrade expected to save the institute over $20,000 a year on utility bills.

  14. Recent two-stage coal liquefaction results from Wilsonville, Alabama

    SciTech Connect (OSTI)

    Rao, A.K.; Udani, L.H.; Nalitham, R.V.

    1985-01-01

    This paper presents results from two recent runs conducted at the Advanced Coal Liquefaction R and D facility of Wilsonville, Alabama. The first run was an extended demonstration of sub-bituminous coal liquefaction using an integrated two-stage liquefaction (ITSL) process. The second run employed a bituminous coal in a reconfigured two-stage process (RITLS) wherein the undeashed products from the first stage were hydrotreated prior to separation of coal ash. Good operability and satisfactory yield structure were demonstrated in both the runs.

  15. Alabama Onshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    46,751 139,215 134,305 128,312 120,666 110,226 1992-2014 From Gas Wells 33,294 29,961 32,602 27,009 27,182 24,726 1992-2014 From Oil Wells 5,758 6,195 5,975 10,978 8,794 7,937 1992-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 107,699 103,060 95,727 90,325 84,690 77,563 2007-2014 Repressuring 783 736 531 NA NA NA 1992-2014 Vented and Flared 1,972 2,085 3,012 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 9,239 8,200 13,830 NA NA NA 1992-2014 Marketed Production 134,757 128,194

  16. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 680 1980's 659 658 1990's 4,159 5,437 5,840 5,166 4,842 4,886 5,062 4,983 4,615 4,338 2000's 4,241 3,931 3,891 4,313 4,127 3,977 3,945 4,016 3,360 2,919 2010's 2,686 2,522 2,204 1,624 1,980

  17. M.; /Bern U.; Auty, D.J.; /Alabama U.; Barbeau, P.S.; /Stanford...

    Office of Scientific and Technical Information (OSTI)

    Neutrinoless Double-Beta Decay in 136Xe with EXO-200 Auger, M.; Bern U.; Auty, D.J.; Alabama U.; Barbeau, P.S.; Stanford U., Phys. Dept.; Beauchamp, E.; Laurentian U.;...

  18. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Alabama

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Alabama.

  19. Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage

    Broader source: Energy.gov [DOE]

    Carbon dioxide injection -- an important part of carbon capture and storage technology -- is underway as part of a pilot study of CO2 enhanced oil recovery in the Citronelle Field of Mobile County, Alabama.

  20. Alabama Project Testing Potential for Combining CO2 Storage with Enhanced

    Energy Savers [EERE]

    Methane Recovery | Department of Energy Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery Alabama Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery June 16, 2010 - 1:00pm Addthis Washington, DC -- Field testing the potential for combining geologic carbon dioxide (CO2) storage with enhanced methane recovery is underway at a site in Alabama by a U.S. Department of Energy (DOE) team of regional partners. Members of the Southeast

  1. 20Na

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1969MAZT: 20Na; measured T12, -spectrum; deduced -branching. 20Ne deduced ... E, I, -coin; deduced neutrino spectrum. 2004MI51: 20Na(+), (EC); measured ...

  2. 18Na

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na Ground-State Decay Evaluated Data Measured Ground-State Γcm(T1/2) for 18Na Adopted value: < 200 keV (2012MU05) Measured Mass Excess for 18Na Adopted value: 25040 ± 110 keV (2012WA38) Measurements 2004ZE05: 9Be(20Mg, 18NaX), E = 43 MeV/nucleon; measured particle spectra, angular correlations, invariant mass following fragment proton decay. 18Na; deduced excited states proton decay features. 2011AS07: 1H(17Ne, 17Ne), 1H(17Ne, X)18Na, E = 4 MeV/nucleon; measured reaction products, proton

  3. Alabama Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (Million Cubic Feet) Alabama Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 1,379 1,377 1,113 1,113 1,140 1,182 1,218 1,436 2,028 1,955 1,766 1,365 1996 1,311 1,014 852 1,006 1,373 2,042 2,247 2,641 3,081 3,198 3,069 2,309 1997 1,778 1,594 1,619 1,749 2,020 2,113 2,156 2,443 2,705 2,956 2,713 2,713 1998 1,963 1,775 1,527 1,772 1,917 2,540 2,531 2,730 2,329 2,942 2,943 2,805 1999 1,992 1,878 1,566

  4. Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.13 1970's 0.14 0.15 0.35 0.38 0.74 0.87 0.99 1.47 1.50 2.04 1980's 3.19 4.77 3.44 4.28 3.73 3.71 2.89 2.97 2.65 2.72 1990's 2.75 2.33 2.29 2.46 2.17 1.82 2.62 2.67 2.21 2.32 2000's 3.99 4.23 3.48 5.93 6.66 9.28 7.57 7.44 9.65 4.32 2010's 4.46 - = No Data Reported; -- = Not Applicable;

  5. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  6. Alabama Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 NA NA NA NA NA NA NA NA NA NA NA NA 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA NA

  7. 19Na

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na Ground-State Decay Evaluated Data Measured Ground-State Γcm(T1/2) for 19Na Adopted value: < 40 ns (2003AU02) Measured Mass Excess for 19Na Adopted value: 12927 ± 12 keV (2003AU02) Measurements 1969CE01: 24Mg(p, 6He), E = 54.7 MeV; measured σ(E(6He)); deduced Q. 19Na deduced nuclear mass. 1975BE38: 24Mg(3He, 8Li), E = 76.8 MeV; measured σ(E(8Li)); deduced Q. 19Na deduced mass excess. 19Na deduced level. 1975BEZD: 24Mg(3He, 8Li), E = 76.3 MeV; measured σ(E(8Li)). 19Na deduced mass

  8. Assessment of the geothermal/geopressure potential of the Gulf Coastal Plan of Alabama. Final report

    SciTech Connect (OSTI)

    Wilson, G.V.; Wang, G.C.; Mancini, E.A.; Benson, D.J.

    1980-01-01

    Geothermal and geopressure as well as geologic and geophysical data were studied to evaluate the potential for future development of geothermal resources underlying the Alabama Coastal Plain. Wire-line log data compiled and interpreted from more than 1300 oil and gas test wells included maximum recorded temperatures, mud weights, rock resistivities as related to geopressure, formation tops, fault locations, and depths to basement rock. The Alabama Coastal Plain area is underlain by a conduction dominated, deep sedimentary basin where geothermal gradients are low to moderate (1.0 to 1.8/sup 0/F/100 feet). In some areas of southwest Alabama, abnormally high temperatures are found in association with geopressured zones within the Haynesville Formation of Jurassic age; however, rocks of poor reservoir quality dominate this formation, with the exception of a 200-square-mile area centered in southernmost Clarke County where a porous and permeable sand unit is encased within massive salt deposits of the lower Haynesville. The results of a petrograhic study of the Smackover Formation, which underlies the Haynesville, indicate that this carbonate rock unit has sufficient porosity in some areas to be considered a potential geothermal reservoir. Future development of geothermal resources in south Alabama will be restricted to low or moderate temperature, non-electric applications, which constitute a significant potential energy source for applications in space heating and cooling and certain agricultural and industrial processes.

  9. Evaluation of enhanced recovery operations in Smackover fields of southwest Alabama. Draft topical report on Subtasks 5 and 6

    SciTech Connect (OSTI)

    Hall, D.R.

    1992-06-01

    This report contains detailed geologic and engineering information on enhanced-recovery techniques used in unitized Smackover fields in Alabama. The report also makes recommendations on the applicability of these enhanced-recovery techniques to fields that are not now undergoing enhanced recovery. Eleven Smackover fields in Alabama have been unitized. Three fields were unitized specifically to allow the drilling of a strategically placed well to recover uncontacted oil. Two fields in Alabama are undergoing waterflood projects. Five fields are undergoing gas-injection programs to increase the ultimate recovery of hydrocarbons. Silas and Choctaw Ridge fields were unitized but no enhanced-recovery operations have been implemented.

  10. Energy Secretary Bodman Tours Alabama Red Cross Facility and Attends National Day of Prayer and Remembrance Service with Governor Riley

    Broader source: Energy.gov [DOE]

    MONTGOMERY, AL – Today, Secretary of Energy Samuel W. Bodman traveled to Montgomery, Alabama, to commemorate a National Day of Prayer and Remembrance in honor of victims of Hurricane Katrina.      ...

  11. Computerized economic and statistical investigation of the Alabama liquid asphalt market for public entities

    SciTech Connect (OSTI)

    Morgan, J.E. Jr.

    1986-01-01

    This study outlines the development of an economic data base and techniques utilized in identifying noncompetitive practices in the sealed bid market for liquid asphalt products purchased by public entities in the State of Alabama. It describes the organization of data and methods for displaying salient characteristics of market conduct and performance. Likely areas of anticompetitive activity are identified from an examination of conditional factors influencing collusion in a market and of circumstantial evidence of collusive behavior of the vendors. Methods of detecting and analyzing suspicious behavior are indicated and applied to selected data. The conclusion reached was that collusion was present in the Alabama liquid asphalt market during 1971-1978. An antitrust action was initiated by the State. Damages were calculated from the data base using a GLM regression model. An out-of-court settlement was negotiated by the defendant vendors.

  12. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA 5,027,623 4,511,942 4,406,450 3,969,450 3,132,089 2,901,969 2,798,718 2,314,342 2,428,916 2010's 2,245,062 1,812,328 1,420,087 1,238,955 1,179,714 Cubic Feet)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,242,169 5,110,327 5,052,936 2000's 4,967,694 5,066,015 4,547,627 4,447,348 4,000,685 3,150,818 2,914,131 2,813,197 2,329,955 2,444,102 2010's

  13. Alabama Share of Total U.S. Natural Gas Delivered to Consumers

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin

  14. Alabama Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.86 2.58 2.98 2000's 4.52 5.20 3.57 5.81 6.24 9.67 7.32 7.19 10.03 4.30 2010's 4.85 W 3.09 4.14 4.74 3.06

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 4.46 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.46 5.80 5.18 4.65 4.93 NA 1984-2015 Residential Price 15.79 15.08 16.20 15.47 14.59 13.95 1967-2015 Percentage of Total Residential Deliveries

  15. Alabama Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",3271,3272,3272,3272,3272 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",581,574,593,591,583 "MSW/Landfill

  16. Alabama Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",21804,21784,22372,22540,23519 " Coal",11557,11544,11506,11486,11441 " Petroleum",43,43,43,43,43 " Natural Gas",10104,10098,10724,10912,11936 " Other Gases",100,100,100,100,100 "Nuclear",5008,4985,4985,4985,5043 "Renewables",3852,3846,3865,3863,3855 "Pumped Storage","-","-","-","-","-"

  17. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    This reports presents the operating results for Run 252 at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. This run operated in the Close-Coupled Integrated Two-Stage Liquefaction mode (CC-ITSL) using Illinois No. 6 bituminous coal. The primary run objective was demonstration of unit and system operability in the CC-ITSL mode with catalytic-catalytic reactors and with ash recycle. Run 252 began on 26 November 1986 and continued through 3 February 1987. During this period 214.4 MF tons of Illinois No. 6 coal were fed in 1250 hours of operation. 3 refs., 29 figs., 18 tabs.

  18. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -67 -133 -30 123 233 669 826 998 743 933 994 633 1997 156 40 226 203 337 -48 -197 -301 -376 -242 -356 405 1998 185 181 -92 24 -103 427 374 288 -376 -14 230 91 1999 29 103 39 -69 257 -156 88 -31 772 82 214 164 2000 63 175 802 599 219 615 462 381 -131 -196

  19. ,"Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2010 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  20. ,"Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  1. ,"Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  2. ,"Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  3. ,"Alabama Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  4. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  5. ,"Alabama Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  6. ,"Alabama Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n5290al2m.xls"

  7. ,"Alabama Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  8. ,"Alabama Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n5030al2m.xls"

  9. ,"Alabama Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  10. ,"Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  11. ,"Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"Alabama Share of Total U.S. Natural Gas Delivered to Consumers"

    U.S. Energy Information Administration (EIA) Indexed Site

    Share of Total U.S. Natural Gas Delivered to Consumers" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Share of Total U.S. Natural Gas Delivered to Consumers",5,"Annual",2014,"6/30/1993" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016"

  13. ,"Alabama--State Offshore Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama--State Offshore Natural Gas Marketed Production (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  14. ,"Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  15. ,"Federal Offshore--Alabama Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Marketed Production (MMcf)",1,"Annual",1998 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  16. Alabama Profile

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Hunt Refining (Tuscaloosa), Shell Chemical (Saraland) find more Major Non-Nuclear ... sector combined.10 The automotive, chemical, metals manufacturing, technology, ...

  17. Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,260 1990's 22,679 21,611 19,653 19,383 20,835 21,392 21,856 21,934 20,774 19,598 2000's 19,788 19,721 18,500 16,728 14,685 13,665 11,824 11,090 10,450 9,362 2010's 8,896 8,156

  18. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,772 1990's 23,050 22,028 20,006 19,751 21,208 21,664 22,119 22,428 21,261 20,172 2000's 20,466 20,290 19,113 17,168 15,144 14,073 12,201

  19. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    SciTech Connect (OSTI)

    Alan M Kaplan

    2012-10-12

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  20. [High Energy Physics Program at the University of Alabama. Final report

    SciTech Connect (OSTI)

    Baksay, L.; Busenitz, J.K.

    1993-10-01

    The High Energy Physics group at University of Alabama is a member of the L3 collaboration studying e+e{minus} collisions near the Z{degree} pole at the LEP accelerator at CERN. About 2 million Z{degree} events have been accumulated and the experiment has been prolific in publishing results on the Z resonance parameters, the Z couplings to all leptons and quarks with mass less than half the Z mass, searches for new particles and interactions, and studies of strong interactions and/or weak charged current decays of the quarks and leptons abundantly produced in Z decays. The group is contributing to data analysis as well as to detector hardware. In particular, the authors are involved in a major hardware upgrade for the experiment, namely the design, construction and commissioning of a Silicon Microvertex Detector (SMD) which has successfully been installed for operation during the present grant period. The authors present here a report on their recent L3 activities and their plans for the next grant period of twelve months (April 1, 1994--March 31, 1995). Their main interests in data analysis are in the study of single photon final states and the physics made more accessible by the SMD, such as heavy flavor physics. Their hardware efforts continue to be concentrated on the high precision capacitive and optical alignment monitoring systems for the SMD and also includes gas monitoring for the muon system. They are also planning to participate in the coming upgrade of the L3 detector.

  1. Alabama Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,016 1,016 1,016 1,016 1,017 1,016 1,016 1,017 1,018 1,018 2014 1,018 1,017 1,019 1,021 1,024 1,025 1,026 1,027 1,029 1,027 1,029 1,028 2015 1,028 1,026 1,029 1,032 1,031 1,032 1,032 1,030 1,030 1,030 1,029 1,029 2016 1,029 1,025

    Residential Deliveries (Percent) Alabama Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.04

  2. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 221.1 244.8 179.6 64.8 86.8 112.2 130.5 1997 36.2 10.9 111.7 57.1 68.4 -5.0 -17.0 -19.4 -19.9 -12.1 -19.0 36.2 1998 31.5 45.0 -21.4 4.3 -12.4 46.2 38.7 23.0 -24.8 -0.8 15.1 6.0 1999 3.8 17.6 11.5 -11.9 35.3 -11.6 6.5 -2.0 67.7 4.7 12.2 10.2 2000 7.9 25.4 213.4 116.8 22.2 51.5 32.4 25.3

  3. Closeout Report: Experimental High Energy Physics Group at the University of South Alabama

    SciTech Connect (OSTI)

    Jenkins, Charles M; Godang, Romulus

    2013-06-25

    The High Energy Physics group at the University of South Alabama has been supported by this research grant (DE-FG02-96ER40970) since 1996. One researcher, Dr. Merrill Jenkins, has been supported on this grant during this time worked on fixed target experiments at the Fermi National Accelerator Laboratory, west of Chicago, Illinois. These experiments have been E-705, E-771, E-871 (HyperCP) and E-921 (CKM) before it was canceled for budgetary reasons. After the cancellation of CKM, Dr. Jenkins joined the Compact Muon Solenoid (CMS) experiment as an associate member via the High Energy Physics Group at the Florida State University. A second, recently tenured faculty member, Dr. Romulus Godang joined the group in 2009 and has been supported by this grant since then. Dr. Godang is working on the BaBaR experiment at SLAC and has joined the Belle-II experiment located in Japan at KEK. According to the instructions sent to us by our grant monitor, we are to concentrate on the activities over the last three years in this closeout report.

  4. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  5. Effect of increases in energy-related labor forces upon retailing in Alabama

    SciTech Connect (OSTI)

    Robicheaux, R.A.

    1983-06-01

    The heightened mining employment that will result from increased extraction of coal from Alabama's Warrior Coal Basin will boost retail sales and employment. The Warrior Coal Basin counties (Fayette, Jefferson, Tuscaloosa and Walker) are heavily dependent upon coal mining as a source of employment and wages. Further, since the counties' economies grew increasingly dependent upon coal mining activities throughout the 1970s, it was believed that it would be possible to measure, with some acceptable level of reliability, the impact of the steadily rising mining activity upon the area's retailing sector. Therefore, a small scale econometric model was developed which represents the interrelationships among income, mining and trade employment and retail sales in the four-county Warrior Coal Basin area. The results of two versions of the model are presented. In the first version, area-wide retail sales are treated in the aggregate. In the second version, retail sales are disaggregated into twelve categories (e.g., food, apparel, furniture, etc.). The models were specified using 1960 to 1976 data. The mining employment growth scenario used in this report called for steady increases in mining employment that culminated in an employment level that is 4000 above the baseline employment projections by 1985. Both versions of the model predicted that cumulative real regional income would increase by $1.39 billion over seven years with the added mining employment. The predicted impacts on trade employment and real retail sales varied between the two models, however. The aggregate model predicts the addition of 7500 trade workers and an additional $1.35 billion in real retail sales. The disaggregate model suggests that food stores, automobile dealers, general merchandise stores, gas stations and lumber and building materials retailers would enjoy the greatest positive benefits.

  6. ,"Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  7. ,"Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  8. ,"Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  9. ,"Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release

  10. ,"Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  11. ,"Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"Alabama Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","na1160_sal_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1160_sal_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"4/29/2016 7:03:21 AM" "Back to

  14. ,"Alabama Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2013" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","na1160_sal_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1160_sal_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"4/29/2016 7:03:21 AM"

  15. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic

  16. Geologic setting, petrophysical characteristics, and regional heterogeneity patterns of the Smackover in southwest Alabama. Draft topical report on Subtasks 2 and 3

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Mann, S.D.; Tew, B.H.

    1992-06-01

    This is the draft topical report on Subtasks 2 and 3 of DOE contract number DE-FG22-89BC14425, entitled ``Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity.`` This volume constitutes the final report on Subtask 3, which had as its primary goal the geological modeling of reservoir heterogeneity in Smackover reservoirs of southwest Alabama. This goal was interpreted to include a thorough analysis of Smackover reservoirs, which was required for an understanding of Smackover reservoir heterogeneity. This report is divided into six sections (including this brief introduction). Section two, entitled ``Geologic setting,`` presents a concise summary of Jurassic paleogeography, structural setting, and stratigraphy in southwest Alabama. This section also includes a brief review of sedimentologic characteristics and stratigraphic framework of the Smackover, and a summary of the diagenetic processes that strongly affected Smackover reservoirs in Alabama. Section three, entitled ``Analytical methods,`` summarizes all nonroutine aspects of the analytical procedures used in this project. The major topics are thin-section description, analysis of commercial porosity and permeability data, capillary-pressure analysis, and field characterization. ``Smackover reservoir characteristics`` are described in section four, which begins with a general summary of the petrographic characteristics of porous and permeable Smackover strata. This is followed by a more-detailed petrophysical description of Smackover reservoirs.

  17. Natural Gas Citygate Price in Alabama (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4.03 3.97 3.45 3.27 3.16 3.00 1990's 3.13 3.11 3.21 3.51 3.44 2.89 3.48 3.65 3.17 3.21 2000's 4.50 6.63 4.74 6.06 6.65 8.47 10.26 8.78 9.84 7.61 2010's 6.46 5.80 5.18 4.65 4.93 NA

  18. Natural Gas Gross Withdrawals from Shale Gas Wells (Summary)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2007-2015 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2007-2015 Alabama NA NA NA NA NA NA 2007-2015 Arizona NA NA NA NA NA NA 2007-2015 Arkansas NA NA NA NA NA NA 2007-2015...

  19. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 261 with Illinois No. 6 Burning Star Mine coal

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R & D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  20. Na onal Security Site?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mul ple Choice (circle the correct answer) 1. How many diff erent animal species can be found at the Nevada Na onal Security Site? a. Less than 500 b. Exactly 1,325 c. More than 1,500 d. Exactly 2,303 2. Nuclear research, development and tes ng caused radioac ve contamina on of: a. Buildings b. Clothes and tools c. Soil and water d. All of the above 3. One method used to check soil for the presence of radioac ve contamina on is: a. Use a black light to see if the soil glows b. Send soil samples

  1. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

  2. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next

  3. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  4. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014

  5. ,"Alabama Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","04292016" ,"Excel File Name:","ngprisumdcusalm.xls" ,"Available from Web Page:","http:www.eia.govdnavngngprisumdcusalm.htm" ,"Source:","Energy ...

  6. Domestic* Foreign* Total Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    754 6,007 Mississippi 3,603 - 3,603 Missouri 596 - 596 Montana 39,612 653 40,265 New Mexico 26,262 - 26,262 North Dakota 30,055 - 30,055 Ohio 21,155 635 21,790 Oklahoma 1,782...

  7. Alabama Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Citygate Price 3.81 3.83 3.61 3.27 3.22 3.18 1989-2016 Residential Price 20.38 19.12 17.67 14.30 12.00 11.12 1989-2016 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2016 Commercial Price 11.75 11.40 11.47 10.73 9.81 9.70 1989-2016 Percentage of Total Commercial Deliveries included in Prices 69.7 68.6 69.9 76.2 77.4 84.3 1989-2016 Industrial Price 3.68 3.48 3.33 3.48 3.54 3.55 2001-2016

  8. Alabama Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    0 1 2 2 15 1996-2014 Lease Condensate (million bbls) 0 0 0 0 1 0 1998-2014 Total Gas (billion cu ft) 126 162 102 40 73 36 1996-2014 Nonassociated Gas (billion cu ft) 126 162 101 38 71 26 1996-2014 Associated Gas (billion cu ft) 0 0 1 2 2 1

  9. ,"Alabama Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    5,"Monthly","22016","1151989" ,"Data 2","Production",10,"Monthly","22016","1151989" ,"Data 3","Underground Storage",7,"Monthly","22016","1151993" ,"Data ...

  10. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and reactivity of supercritical CO{sub 2} in coal-bearing strata is unknown, and potential exists for supercritical conditions to develop below a depth of 2,480 feet following abandonment of the coalbed methane fields. High-pressure adsorption isotherms confirm that coal sorbs approximately twice as much CO{sub 2} as CH{sub 4} and approximately four times as much CO{sub 2} as N{sub 2}. Analysis of isotherm data reveals that the sorption performance of each gas can vary by a factor of two depending on rank and ash content. Gas content data exhibit extreme vertical and lateral variability that is the product of a complex burial history involving an early phase of thermogenic gas generation and an ongoing stage of late biogenic gas generation. Production characteristics of coalbed methane wells are helpful for identifying areas that are candidates for carbon sequestration and enhanced coalbed methane recovery. Many geologic and engineering factors, including well construction, well spacing, and regional structure influence well performance. Close fault spacing limits areas where five-spot patterns may be developed for enhanced gas recovery, but large structural panels lacking normal faults are in several gas fields and can be given priority as areas to demonstrate and commercialize carbon sequestration technology in coalbed methane reservoirs.

  11. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    SciTech Connect (OSTI)

    Guo, Ya; Yu, Xiqian; You, Ya; Yin, Yaxia; Nam, Kyung -Wan

    2015-01-01

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmosphere during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. The Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.

  12. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    SciTech Connect (OSTI)

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; Nam, Kyung -Wan; Guo, Yu -Guo

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmosphere during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.

  13. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; Nam, Kyung -Wan; Guo, Yu -Guo

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  14. NaWoTec | Open Energy Information

    Open Energy Info (EERE)

    NaWoTec Jump to: navigation, search Name: NaWoTec Place: Rossdorf, Germany Zip: 64380 Product: Germany-based company developing 3-dimensional additive lithography using...

  15. A=14Na (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    86AJ01) (Not illustrated) 14Ne, 14Na and 14Mg have not been observed. See (1983ANZQ

  16. A=14Na (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    91AJ01) (Not illustrated) 14Ne, 14Na and 14Mg have not been observed. See (1986AN07

  17. Threshold electron excitation of Na

    SciTech Connect (OSTI)

    Marinkovic, B.; Wang, P.; Gallagher, A. )

    1992-09-01

    Electron collisional excitation of the 4{ital D}, 5{ital D}, 4{ital P}, and 6{ital S} states of Na has been measured with about 30-meV energy resolution. Very rapid, unresolved threshold onsets are seen for all but the 4{ital P} state, and a near-threshold resonance is suggested by the 5{ital D} data. However, only weak undulations in the cross sections are observed above threshold.

  18. A=20Na (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    72AJ02) (See Energy Level Diagrams for 20Na) GENERAL: See Table 20.35 Table of Energy Levels (in PDF or PS). Mass of 20Na: From the threshold energy of the 20Ne(p, n)20Na...

  19. A=19Na (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    72AJ02) (See the Isobar Diagram for 19Na) A study of the reaction 24Mg(p, 6He)19Na at Ep 54.7 MeV reveals a group of 6He particles corresponding to a state in 19Na with M - A ...

  20. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  1. "FERC423",2006,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",273020,22.846,0.62,6.4,192.4

    U.S. Energy Information Administration (EIA) Indexed Site

    6,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",273020,22.846,0.62,6.4,192.4 "FERC423",2006,1,195,"Alabama Power Co",3,"Barry","AL","I",,"Gas","NG",,,,,,"BAY GAS PIPELINE",597198,1.053,0,0,1185.7 "FERC423",2006,1,195,"Alabama Power

  2. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Alabama. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    The Alabama legislature has created the Public Service Commission which has general supervisory powers over utilities. The PSC consists of a president and two associates, who are elected to four-year terms. The PSC has no jurisdiction over municipal utilities and, as a result, local governments retain the power to regulate the operation of their municipally-owned utilities. Municipalities also retain their police power over streets and highways within their territory. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  3. New Improved Equations For Na-K, Na-Li And Sio2 Geothermometers...

    Open Energy Info (EERE)

    Improved Equations For Na-K, Na-Li And Sio2 Geothermometers By Outlier Detection And Rejection Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  4. A=18Na (1972AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2AJ02) (Not illustrated) A calculation using an isobaric mass formula predicts that the mass excess of 18Na is 25.4 ± 0.4 MeV (1966KE16): 18Na is then unbound with respect to proton emission by 1.6 MeV. See also (1965JA1C

  5. A=20Na (1998TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -)20Na Qm -140.611 Angular distributions and analyzing powers have been studied at Ep 199.6 MeV to 20Na*(0.74, 1.85, 3.01, 4.11) probably unresolved: it is suggested that...

  6. Site Characterization for CO{sub 2} Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama

    SciTech Connect (OSTI)

    Clark, Peter; Pashin, Jack; Carlson, Eric; Goodliffe, Andrew; McIntyre-Redden, Marcella; Mann, Steven; Thompson, Mason

    2012-08-31

    Coal-fired power plants produce large quantities of carbon dioxide. In order to mitigate the greenhouse gas emissions from these power plants, it is necessary to separate and store the carbon dioxide. Saline formations provide a potential sink for carbon dioxide and delineating the capacity of the various known saline formations is a key part of building a storage inventory. As part of this effort, a project was undertaken to access the storage capacity of saline reservoirs in the Black Warrior Basin of Alabama. This basin has been a productive oil and gas reservoir that is well characterized to the west of the two major coal-fired power plants that are north of Birmingham. The saline zones were thought to extend as far east as the Sequatchie Anticline which is just east of the power plants. There is no oil or gas production in the area surrounding the power plants so little is known about the formations in that area. A geologic characterization well was drilled on the Gorgas Power Plant site, which is the farthest west of two power plants in the area. The well was planned to be drilled to approximately 8,000 feet, but drilling was halted at approximately 5,000 feet when a prolific freshwater zone was penetrated. During drilling, a complete set of cores through all of the potential injection zones and the seals above these zones were acquired. A complete set of openhole logs were run along with a vertical seismic profile (VSP). Before drilling started two approximately perpendicular seismic lines were run and later correlated with the VSP. While the zones that were expected were found at approximately the predicted depths, the zones that are typically saline through the reservoir were found to be saturated with a light crude oil. Unfortunately, both the porosity and permeability of these zones were small enough that no meaningful hydrocarbon production would be expected even with carbon dioxide flooding. iv While this part of the basin was found to be unsuitable for carbon dioxide injection, there is still a large storage capacity in the basin to the west of the power plants. It will, however, require pipeline construction to transport the carbon dioxide to the injection sites.

  7. NA 80 - Associate Administrator for Counterterrorism andCounterprolif...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 80 - Associate Administrator for Counterterrorism ... NA 80 - Associate...

  8. NA 70 - Associate Administrator for Defense Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 70 - Associate Administrator for Defense ... NA 70 - Associate Administrator...

  9. NA 50 - Associate Administrator for Safety, Infrastructure and...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 50 - Associate Administrator for Safety, ... NA 50 - Associate Administrator...

  10. NA 1 - Immediate Office of the Administrator | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 1 - Immediate Office of the Administrator NA 1 - Immediate Office of the...

  11. NA 30 - Deputy Administrator for Naval Reactors | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 30 - Deputy Administrator for Naval Reactors NA 30 - Deputy Administrator for...

  12. NA EA - Associate Administrator for External Affairs | National...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA EA - Associate Administrator for External Affairs NA EA - Associate...

  13. NA 20 - Deputy Administrator for Defense Nuclear Nonproliferation...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 20 - Deputy Administrator for Defense ... NA 20 - Deputy Administrator for...

  14. NA 15 - Assistant Deputy Administrator for Secure Transportation...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 15 - Assistant Deputy Administrator for ... NA 15 - Assistant Deputy...

  15. NA 10 - Deputy Administrator for Defense Programs | National...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 10 - Deputy Administrator for Defense Programs NA 10 - Deputy Administrator for...

  16. NA GC - Office of General Counsel | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Blog Home About Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA GC - Office of General Counsel NA GC - Office of General Counsel...

  17. A=20Na (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    87AJ02) (See Energy Level Diagrams for 20Na) GENERAL: See (1983AJ01) and Table 20.27 [Table of Energy Levels] (in PDF or PS). (1981WA1Q, 1983ANZQ, 1983BR29, 1985AN28, 1985HA1N, 1985RO1N, 1986AN07, 1986GA1I). 1. 20Na(β+)20Ne Qm = 13.887 20Na decays by positron emission to 20Ne*(1.63) and to a number of other excited states of 20Ne: see Table 20.26 (in PDF or PS) and reaction 53 in 20Ne. The half-life of 20Na is 447.9 ± 2.3 msec [weighted mean of values quoted in (1978AJ03) and in (1983CL01)];

  18. FEiNA SCP | Open Energy Information

    Open Energy Info (EERE)

    Place: Sant Marta de Torruella, Spain Product: Manufacturer of tracking systems for PV plants, and looking for STEG partners. References: FEiNA SCP1 This article is a stub. You...

  19. Alabama Offshore Natural Gas Processed in Alabama (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 9 0 -21 -70 -106 -95 -102 -92 -85 -54 -20 -4 1995 60 2 264 0 -27 -42 -35 -218 -592 73 189 400 1996 54 17 162 -153 -367 -670 -205 -395 -440 -117 129 761 1997 531 184 -25 -130 -271 -93 -43 -286 -262 -251 243 243 1998 396 187 248 -245 -144 -623 9 -200 401 -613 -1 139 1999 813 114 312 -137 -471 -210 -235 -81 -402 77 -134 189 2000 916 -307 -8 66 -90 -606 -82 0 110 142 203 85 2001 330 -241 604 -195 44 -576

  20. Alabama Offshore-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 53,348 53,771 49,474 2012-2014 Total Liquids Extracted (Thousand Barrels) 2,695 2,767 2,519 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,978 3,721

  1. Alabama Onshore-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 100,491 33,921 35,487 31,116 2011-2014 Total Liquids Extracted (Thousand Barrels) 2,614 2,781 2,620 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,132 3,323

  2. NA 15 - Assistant Deputy Administrator for Secure Transportation | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration NA 15 - Assistant Deputy Administrator for Secure Transportation

  3. Alabama Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","5,043",15.6,"37,941",24.9 "Coal","11,441",35.3,"63,050",41.4 "Hydro and Pumped

  4. Alabama Nuclear Profile - Browns Ferry

    U.S. Energy Information Administration (EIA) Indexed Site

    Browns Ferry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,101","8,072",83.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel"

  5. Recovery Act State Memos Alabama

    Broader source: Energy.gov (indexed) [DOE]

    ... They are upgrading four units at three different ... study of the Citronelle Oil Field to determine the ... and separates nails, heavy staples, door knobs and ...

  6. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

    1998-09-01

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

  7. "FERC423",2007,1,195,"Alabama Power Co",3,"Barry","AL","C","application/vnd.ms-excel","Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",289050,22.732,0.5,5.2,217.3

    U.S. Energy Information Administration (EIA) Indexed Site

    7,1,195,"Alabama Power Co",3,"Barry","AL","C","application/vnd.ms-excel","Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",289050,22.732,0.5,5.2,217.3 "FERC423",2007,1,195,"Alabama Power Co",3,"Barry","AL","C","application/vnd.ms-excel","Coal","BIT",45,"IM","SU","County

  8. A=20Na (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20Na) GENERAL: See also (1978AJ03) and Table 20.36 Table of Energy Levels (in PDF or PS). (1977SI1D, 1978WO1E, 1979BE1H, 1980OK01, 1981AY01). J 2 (1975SC20); 0.3694 ...

  9. A=19Na (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mass excess of 12.928 0.012 MeV for 19Na; it is then unstable with respect to breakup into 18Ne + p by 320 13 keV. An excited state at Ex 120 10 keV is also...

  10. A=19Na (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assuming the atomic mass excess listed above, 19Na(0) is unstable with respect to breakup into 18Ne + p by 320 13 keV. See also (1972CE1A, 1976BE1L, 1976JA23), (1975BE31,...

  11. A=19Na (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mass excess of 12.929 0.012 MeV for 19Na; it is then unstable with respect to breakup into 18Ne + p by 321 13 keV. An excited state at Ex 120 10 keV is also...

  12. A=19Na (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mass excess of 12.929 0.012 MeV for 19Na; it is then unstable with respect to breakup into 18Ne + p by 321 13 keV. An excited state at Ex 120 10 keV is also...

  13. A=20Na (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    78AJ03) (See Energy Level Diagrams for 20Na) GENERAL: See also (1972AJ02) and Table 20.39 Table of Energy Levels (in PDF or PS). (1973HA77, 1973SU1B, 1974HA17, 1976CH1T,...

  14. A=18Na (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ03) (Not illustrated) 18Na has not been observed: its atomic mass excess has been estimated to be 25.32 MeV: it is then unbound with respect to proton emission by 1.55 MeV (1977WA08). See also (1976JA23, 1976WA1E

  15. A=18Na (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3AJ01) (Not illustrated) 18Na has not been observed: its atomic mass excess has been estimated to be 25.32 MeV: it is then unbound with respect to proton emission by 1.55 MeV (1977WA08). See also (1978GU10

  16. A=18Na (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (Not observed) 18Na has not been observed; its atomic mass excess has been estimated to be 25.32 MeV; it is then unbound with respect to proton emission by 1.6 MeV: see (1978AJ03). See also (1986AN07) and (1983ANZQ

  17. A=18Na (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    95TI07) (Not observed) 18Na has not been observed; its atomic mass excess has been estimated to be 25.32 MeV (1993AU05); it is then unbound with respect to proton emission by 1.6 MeV: see (1978AJ03). See also (1986AN07) and (1983ANZQ

  18. "FERC423",2003,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",13,"AL","U","Jefferson",73,"SHOAL CREEK MINE",85080,24.098,0.8,13.2,183.1

    U.S. Energy Information Administration (EIA) Indexed Site

    3,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",13,"AL","U","Jefferson",73,"SHOAL CREEK MINE",85080,24.098,0.8,13.2,183.1 "FERC423",2003,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBEMOW",278810,23.498,0.56,4.3,141.7

  19. "FERC423",2005,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",358990,22.722,0.6,6.1,209.8

    U.S. Energy Information Administration (EIA) Indexed Site

    5,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",358990,22.722,0.6,6.1,209.8 "FERC423",2005,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",45260,22.926,0.59,5.7,196.8

  20. OR I GI NA L S I GNE D B Y OR I GI NA L S I GNE D B Y

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NA L S I GNE D B Y OR I GI NA L S I GNE D B Y

  1. 2011 Annual Planning Summary for Defense Nuclear Nonproliferation (NA-20)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within Defense Nuclear Nonproliferation (NA-20).

  2. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plan (Phase II)

    SciTech Connect (OSTI)

    Ernest A. Mancini; Joe Benson; David Hilton; David Cate; Lewis Brown

    2006-05-29

    The principal research efforts for Phase II of the project were drilling an infill well strategically located in Section 13, T. 10 N., R. 2 W., of the Womack Hill Field, Choctaw and Clarke Counties, Alabama, and obtaining fresh core from the upper Smackover reservoir to test the feasibility of implementing an immobilized enzyme technology project in this field. The Turner Land and Timber Company 13-10 No. 1 well was successfully drilled and tested at a daily rate of 132 barrels of oil in Section 13. The well has produced 27,720 barrels of oil, and is currently producing at a rate of 60 barrels of oil per day. The 13-10 well confirmed the presence of 175,000 barrels of attic (undrained) oil in Section 13. As predicted from reservoir characterization, modeling and simulation, the top of the Smackover reservoir in the 13-10 well is structurally high to the tops of the Smackover in offsetting wells, and the 13-10 well has significantly more net pay than the offsetting wells. The drilling and testing of the 13-10 well showed that the eastern part of the field continues to have a strong water drive and that there is no need to implement a pressure maintenance program in this part of the Womack Hill Field at this time. The success achieved in drilling and testing the 13-10 infill well demonstrates the benefits of building a geologic model to target areas in mature fields that have the potential to contain undrained oil, thus increasing the productivity and profitability of these fields. Microbial cultures that grew at 90 C and converted ethanol to acid were recovered from fresh cuttings from the Smackover carbonate reservoir in an analogous field to the Womack Hill Field in southwest Alabama; however, no viable microorganisms were found in the Smackover cores recovered from the drilling of the 13-10 well in Womack Hill Field. Further evaluation is, therefore, required prior to implementing an immobilized enzyme technology project in the Womack Hill Field.

  3. NNSA reorganizes Office of Emergency Operations (NA-40), Office of

    National Nuclear Security Administration (NNSA)

    Counterterrorism and Counterproliferation (NA-80) | National Nuclear Security Administration reorganizes Office of Emergency Operations (NA-40), Office of Counterterrorism and Counterproliferation (NA-80) Wednesday, December 9, 2015 - 11:00am Colleagues: The Department of Energy has adopted an enterprise-wide approach to strengthening its preparedness for and its capability to respond to a broad spectrum of potential emergencies, including those resulting from natural phenomena (e.g.,

  4. Office of Nuclear Material Integration (ONMI), NA-73

    National Nuclear Security Administration (NNSA)

    Office of Nuclear Material Integration (ONMI), NA-73 Over 420 Government & Commercial Nuclear Entities currently report to NMMSS Mission U.S. Government's Official Database to ...

  5. THERMAL CONDUCTIVITY OF AQUEOUS NaCl SOLUTIONS

    Office of Scientific and Technical Information (OSTI)

    ... This report covers a critical evaluation of the available literature on the thermal conductivity of aqueous NaCl solutions for regions of geo- thermal interest: temperatures to ...

  6. Electron scattering in graphene with adsorbed NaCl nanoparticles

    SciTech Connect (OSTI)

    Drabińska, Aneta Kaźmierczak, Piotr; Bożek, Rafał; Karpierz, Ewelina; Wysmołek, Andrzej; Kamińska, Maria; Wołoś, Agnieszka; Krajewska, Aleksandra

    2015-01-07

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The main inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer.

  7. EA-372 GDF Suez Energy Marketing NA, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 GDF Suez Energy Marketing NA, Inc. EA-372 GDF Suez Energy Marketing NA, Inc. Order authorizing GDF Suez Energy Marketing NA, Inc. to export electric energy to Canada PDF icon ...

  8. NNSA Corporate CPEP Process NNSA Honeywell FM&T PER NNSA/NA-00...

    National Nuclear Security Administration (NNSA)

    ... and ship all NA-242 International Non-proliferation Export Control Program (INECP) ... and ship all NA-242 International Non-proliferation Export Control Program (INECP) ...

  9. Analysis of NaOH releases for Hanford tank farms

    SciTech Connect (OSTI)

    Ryan, G.W., Westinghouse Hanford

    1996-09-12

    The information contained in the canceled document is now located in the document: Consequence Analysis of a NaOH Solution Spray Release During Addition to Waste Tank, WHC-SD-WM-CN-065.

  10. NaIrO3A Pentavalent Post-perovskite

    SciTech Connect (OSTI)

    M Bremholm; S Dutton; P Stephens; R Cava

    2011-12-31

    Sodium iridium (V) oxide, NaIrO{sub 3}, was synthesized by a high pressure solid state method and recovered to ambient conditions. It is found to be isostructural with CaIrO{sub 3}, the much-studied structural analog of the high-pressure post-perovskite phase of MgSiO{sub 3}. Among the oxide post-perovskites, NaIrO{sub 3} is the first example with a pentavalent cation. The structure consists of layers of corner- and edge-sharing IrO{sub 6} octahedra separated by layers of NaO{sub 8} bicapped trigonal prisms. NaIrO{sub 3} shows no magnetic ordering and resistivity measurements show non-metallic behavior. The crystal structure, electrical and magnetic properties are discussed and compared to known post-perovskites and pentavalent perovskite metal oxides.

  11. NA 30 - Deputy Administrator for Naval Reactors | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration 30 - Deputy Administrator for Naval Reactors NA 30 - Naval Reactors FY15 Year End Report Semi Annual Report FY14 Year End Report Semi Annual Report NX 3 - Naval Reactors Laboratory Field Office FY15 Year End

  12. Office of Nuclear Material Integration (ONMI), NA-73

    National Nuclear Security Administration (NNSA)

    Office of Nuclear Material Integration (ONMI), NA-73 Over 420 Government & Commercial Nuclear Entities currently report to NMMSS Mission U.S. Government's Official Database to Track Transactions, Movements and Inventories of Nuclear Materials throughout the U.S. as well as Imports and Exports Jointly funded by the NRC & NNSA - Managed by NA-73 Fuel Cycle Facilities  Conversion  Enrichment  Fuel Fabrication  Power Reactors, etc. DOE/NNSA  Defense Programs  Naval

  13. Magnetism in Na-filled Fe-based skutterudites

    SciTech Connect (OSTI)

    Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; Ma, Yanming; Shi, Hongliang; Singh, David J.

    2015-06-01

    The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. We investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe4Sb12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for a material near an itinerant ferromagnetic quantum critical point. NaFe4P12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe4Sb12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe4As12 shows intermediate behavior. We also present results for skutterudite FeSb3, which is a metastable phase that has been reported in thin film form.

  14. Magnetism in Na-filled Fe-based skutterudites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; Ma, Yanming; Shi, Hongliang; Singh, David J.

    2015-06-01

    The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. We investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe4Sb12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for a material nearmore » an itinerant ferromagnetic quantum critical point. NaFe4P12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe4Sb12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe4As12 shows intermediate behavior. We also present results for skutterudite FeSb3, which is a metastable phase that has been reported in thin film form.« less

  15. ,"Alabama Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...58,155143,148238,6905,,,17850,1356,18697,117241,112354 32324,175054,168484,6570,,,23444,1824,20262,129524,124750 32689,180300,174345,5955,,,28256,1503,22131,128411,123389 ...

  16. ,"Alabama Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 36814,32632,32087,545,,,884,98,1824,29825 36845,32139,31611,528,,,1003,88,1819...30352,467,,10111,339,145,1481,28854 37848,31824,31342,482,,10139,405,126,1772,29521 ...

  17. Alabama Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 20 28 3 0 0 2 1977-2014 New Field Discoveries 0 3 2 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 14 1977-2014 Estimated Production 254 223 218 214 ...

  18. Alabama Power Co | Open Energy Information

    Open Energy Info (EERE)

    Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes...

  19. Alabama Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  20. ,"Alabama Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusalm.xls" ...

  1. ,"Alabama Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  2. Alabama Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 35 99 241 1970's 452 1,085 2,860 2,718 3,383 1980's 3,134 3,805 8,304 11,042 12,557 14,769 18,238 17,850 23,444 28,256 1990's 28,540 30,689 29,996 31,179 33,961 30,949 22,601 17,724 14,002 13,793 2000's 13,988 12,758 10,050 4,062 1,307 478 301 311 475 783 2010's 736 531 0

  3. Alabama Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,458 2,389 2,720 2,493 2,406 2,588 2,821 2,744 2,725 1,738 2,719 2,889 1992 2,814 2,535 2,529 2,618 2,573 2,492 2,655 2,556 2,255 2,467 2,183 2,320 1993 2,339 2,156 2,542 2,270 2,745 2,742 2,772 2,790 2,755 2,719 2,632 2,717 1994 2,547 2,348 2,769 2,473 2,990 2,986 3,019 3,039 3,001 2,961 2,867 2,959 1995 2,321 2,140 2,523 2,254 2,725 2,722 2,751 2,770 2,735 2,699 2,613 2,697 1996 2,244 1,340 2,142 2,001 2,003 1,786 1,891 2,000 1,957

  4. Alabama Nuclear Profile - Joseph M Farley

    U.S. Energy Information Administration (EIA) Indexed Site

    Joseph M Farley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,874,"6,577",85.9,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" 2,860,"6,592",87.5,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  5. Alabama Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Primary Renewable Energy Generation Source Hydro ... Conventional 3,272 10.1 Solar - - Wind - - WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  6. Alabama Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    454,456 534,779 598,514 666,712 615,407 634,678 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 10,460 10,163 10,367 12,389 12,456 10,055 1983-2014 Plant Fuel 6,470 6,441 6,939...

  7. Alabama Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 8 12 26 71 106 95 103 93 85 55 25 14 1995 0 122 0 0 44 42 41 252 592 156 24 101 1996 231 185 141 192 390 670 318 395 440 166 63 160 1997 297 101 63 168 271 161 108 286 262 251 27 27 1998 26 0 81 245 188 623 25 203 139 613 76 0 1999 0 0 14 645 547 213 333 202 459 0 166 67 2000 48 534 44 51 232 606 166 0 0 42 12 286 2001 411 304 85 323 207 618 250 293 370 414 529 109 2002 711 278 182 349 240 54 357 139 106 318 515 536 2003 242 818

  8. Alabama Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1.13 1.10 1.09 1970's 1.13 1.19 1.27 1.37 1.55 1.57 1.99 2.31 2.71 3.65 1980's 4.04 4.77 5.58 6.22 6.26 6.41 6.52 6.64 6.51 6.27 1990's 6.57 7.05 6.74 7.10 7.41 6.86 7.22 8.35 8.21 8.34 2000's 9.19 12.06 10.53 11.82 13.34 15.82 18.80 18.14 18.30 18.12 2010's 15.79 15.08 16.20 15.47 14.59 13.95 Thousand Cubic Feet)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  9. Alabama Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6,900 26,900 32,900 35,400 35,400 35,400 1995-2013 Salt Caverns 15,900 15,900 21,900 21,900 21,900 21,900 1999-2013 Aquifers 0 1999-2012 Depleted Fields 11,000 11,000 11,000 13,500...

  10. Alabama Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    2,501 32,916 34,133 34,382 29,595 30,309 1995-2016 Base Gas 9,640 9,640 9,640 9,640 9,640 9,640 1995-2016 Working Gas 22,861 23,276 24,493 24,742 19,955 20,669 1995-2016 Net Withdrawals -2,416 -415 -1,217 -249 4,787 -713 1993-2016 Injections 3,800 1,746 3,084 1,867 1,260 3,081 1994-2016 Withdrawals 1,384 1,331 1,867 1,618 6,047 2,367 1994-2016 Change in Working Gas from Same Period Previous Year Volume 6,998 4,187 5,725 4,628 4,615 13,768 1996-2016 Percent 44.1 21.9 30.5 23.0 30.1 199.5 1

  11. Alabama Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    43,600 43,600 43,600 43,600 43,600 43,600 2002-2016 Total Working Gas Capacity 33,150 33,150 33,150 33,150 33,150 33,150 2012-2016 Total Number of Existing Fields 2 2 2 2 2 2

  12. Alabama Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    2,278 -6,286 -7,357 2,456 5,002 -5,603 1968-2014 Injections 21,020 23,026 22,766 21,195 17,966 34,286 1968-2014 Withdrawals 23,298 16,740 15,408 23,651 22,968 28,683 1968...

  13. Tuscaloosa, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    lse,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations":"text":"","title":"","link":null,"lat":33.2098407,"lon":-87.5691735,"alt":0,"address":"","i...

  14. ,"Alabama Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 39217,16077,3075,13002,-1929,2255,326 39248,16105,3075,13030,-28,815,78... 41014,28324,8050,20274,-11,1940,1929 41044,27960,8050,19910,364,1999,2363 ...

  15. Categorical Exclusion Determinations: Alabama | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... September 17, 2013 CX-010944: Categorical Exclusion Determination Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte CX(s) Applied: B3.6 Date: 09172013 ...

  16. ,"Alabama Lease Condensate Proved Reserves, Reserve Changes,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  17. Tennessee Valley Authority (Alabama) | Open Energy Information

    Open Energy Info (EERE)

    396,141 24 22,005 396,141 24 2008-12 21,402 332,767 24 21,402 332,767 24 2008-11 23,132 375,492 22 23,132 375,492 22 2008-10 26,207 406,129 22 26,207 406,129 22 2008-09 20,896...

  18. Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 55,659,872 MWh Gas Power 32,369,863 MWh Petroleum Power 163,054 MWh Nuclear Power 39,716,204 MWh Other 7,137 MWh Total Energy Production 142,960,819 MWh...

  19. AlabamaWISE Home Energy Program

    Broader source: Energy.gov [DOE]

    The program also provides financing for energy efficiency measures identified in the assessment. To be eligible for the loan, the homeowner must have a minimum credit score of 660 and must be a...

  20. Alabama Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,018 1,018 1,016 1,017 1,025 1,030 2007-2015

  1. Alabama Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,030 1,030 1,029 1,029 1,029 1,025 2013-2016

  2. Two-frequency lidar technique for mesospheric Na temperature measurements

    SciTech Connect (OSTI)

    She, C.Y.; Latifi, H.; Yu, J.R.; Alvarez, R.J. II ); Bills, R.E.; Gardner, C.S. )

    1990-06-01

    The authors describe a new two-frequency lidar for measuring Na temperature profiles that uses a stabilized cw single-mode dye laser oscillator (rms frequency jitter < 1 MHz) followed by a pulsed-dye power amplifier (140 MHz FWHM linewidth) which is pumped by an injection-locked Nd:YAG laser. The laser oscillator is tuned to the two operating frequencies by observing the Doppler-free structure of the Na D{sub 2} fluorescence spectrum in a vapor cells. The lidar technique and the initial observations of the temperature profile between 82 and 102 km at Ft. Collins, CO (40.6{degree}N,105{degree}W) are described. Absolute temperature accuracies at the Na layer peak of better than {plus minus}3 K with a vertical resolution of 1 km and an integration period of approximately 5 min were achieved.

  3. A new low-voltage plateau of Na3V2(PO4)(3) as an anode for Na-ion batteries

    SciTech Connect (OSTI)

    Jian, ZL; Sun, Y; Ji, XL

    2015-01-01

    A low-voltage plateau at similar to 0.3 V is discovered for the deep sodiation of Na3V2(PO4)(3) by combined computational and experimental studies. This new low-voltage plateau doubles the sodiation capacity of Na3V2(PO4)(3), thus turning it into a promising anode for Na-ion batteries.

  4. Impact of Biodiesel-based Na on the Selective Catalytic Reduction...

    Office of Scientific and Technical Information (OSTI)

    of Biodiesel-based Na on the Selective Catalytic Reduction of NOx by NH3 Over Cu-zeolite Catalysts Citation Details In-Document Search Title: Impact of Biodiesel-based Na on the ...

  5. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using Cu-zeolite Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using ...

  6. Thermal conductivity of aqueous NaCl solutions from 20°C to...

    Office of Scientific and Technical Information (OSTI)

    Thermal conductivity of aqueous NaCl solutions from 20C to 330C Citation Details In-Document Search Title: Thermal conductivity of aqueous NaCl solutions from 20C to 330C ...

  7. Nuclear Design of Fissile Pu and HEU LIFE Engine - NA22 (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Nuclear Design of Fissile Pu and HEU LIFE Engine - NA22 Citation Details In-Document Search Title: Nuclear Design of Fissile Pu and HEU LIFE Engine - NA22 ...

  8. Electronic structure and magnetic properties of NaOsO3 (Journal...

    Office of Scientific and Technical Information (OSTI)

    Electronic structure and magnetic properties of NaOsO3 Title: Electronic structure and magnetic properties of NaOsO3 Authors: Du, Yongping ; Wan, Xiangang ; Sheng, Li ; Dong, ...

  9. Analysis of a graphite foam-NaCl latent heat storage system for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of a graphite foam-NaCl latent heat storage system for supercritical CO2 power cycles for concentrated solar power Title Analysis of a graphite foam-NaCl latent heat...

  10. Nuclear Design of Fissile Pu and HEU LIFE Engine - NA22 (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Nuclear Design of Fissile Pu and HEU LIFE Engine - NA22 Citation Details In-Document Search Title: Nuclear Design of Fissile Pu and HEU LIFE Engine - NA22 You ...

  11. APPENDIXN DE-NA0000622 LIST OF APPLICABLE DIRECTIVES

    National Nuclear Security Administration (NNSA)

    .I APPENDIXN DE-NA0000622 LIST OF APPLICABLE DIRECTIVES 09/17/2014 Directive Directive Title 10 CFR 824, Current Rule Procedural Rules for the Assessment of Civil Penalties for Classified Information Security Violations 1 O CFR 830 - Current Rule Nuclear Safety Management 1 O CFR 851 - Current Rule Worker Safety and Health Program ANSI B30.11 Monorails and Underhung Hoists ANSI N323A Radiation Protection Instrumentation Test and Calibration Portable Survey Instrumentation, 1997 ANSI N43.2

  12. Characterization of H, Na-Y using amine desorption

    SciTech Connect (OSTI)

    Biaglow, A.I.; Parrillo, D.J.; Gorte, R.J. )

    1993-11-01

    The authors have examined series of partially ion-exchanged H, Na-Y zeolites using temperature programmed desorption (TPD) and thermogravimetric analysis (TGA) of isopropylamine and n-propylamine in order to examine the acid sites in H-Y zeolites as a function of Na poisoning. Both amines desorbed from Na-Y, unreacted, below 500 K; however, samples containing protonic sites exhibited two additional desorption features. First, unreacted amine molecules were observed leaving the samples between [approximately] 500 and 600 K. Second, reaction features appeared which were observed as the simultaneous desorption of propene and ammonia between 575 and 650 K for isopropylamine and between 625 and 700 K for n-propylamine. For a given sample, the number of both isopropylene and n-propylamine molecules which desorbed in both features was identical. Furthermore, the number of molecules desorbing from the two high-temperature features was found to be equal to the number of protonic sites for the entire series, which indicates that both desorption features are associated with protonic sites. This finding was confirmed by infrared spectroscopy, which also demonstrated that the unreacting desorption feature was associated with the low-frequency, hydroxyl stretch at 3540 cm[sup [minus]1] and that the reacting amine molecules was adsorbed at the high-frequency, hydroxyl stretch near 3640 cm[sup [minus]1]. The implications of these results for understanding the use of TPD-TGA of amines for the characterization of acidity is discussed. 30 refs., 9 figs., 2 tabs.

  13. Standard Model Tests at the NA62 CERN Experiment

    SciTech Connect (OSTI)

    Bifani, Simone

    2010-02-10

    The physics program of the NA62 experiment aims to search for phenomena beyond the Standard Model by measuring the ratio R{sub K} (GammaK->ev{sub e}(gamma))/GAMMA(K->muv{sub mu}{sub (gamma)}) and studying the ultra rare decay K{sup +}->pi{sup +}vv-bar. The status of the R{sub K} analysis based on approx40% of the data collected during 2007 and 2008 is summarized and the proposed detector layout to measure the branching ratio of the K{sup +}->pi{sup +}vv-bar decay is described.

  14. Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment

    SciTech Connect (OSTI)

    Huang Jiquan; Cao Yongge; Deng Zhonghua; Tong Hao

    2011-03-15

    The effects of the concentration of NaOH on the formation and transformation of various titanate nanostructures were studied. With increasing NaOH concentration, three different formation mechanisms were proposed. Nanotubes can only be obtained under moderate NaOH conditions, and should transform into nanowires with prolonged hydrothermal treatment, and their formation rate is accelerated by increasing NaOH concentration. Low concentration of NaOH results in the direct formation of nanowires, while extra high concentration of NaOH leads to the formation of amorphous nanoparticles. Adsorption and photocatalysis studies show that titanate nanowires and nanotubes might be potential adsorbents for the removal of both heavy metal ions and dyes and photocatalysts for the removal of dyes from wastewater. -- Graphical abstract: The morphologies of the titanates depend deeply on the concentration of NaOH. With increasing NaOH concentration, three different formation mechanisms were proposed. The application of these titanate nanostructures in the wastewater treatment was studied. Display Omitted Research highlights: {yields} Effect of NaOH concentration on the structures of various titanates was reported. {yields} Three different formation mechanisms were presented with increasing NaOH concentration. {yields} Various titanates were used as adsorbents/photocatalysts in wastewater treatment.

  15. MINOS Calibration and NA49 Hadronic Production Studies

    SciTech Connect (OSTI)

    Morse, Robert James

    2003-08-01

    An overview of the current status of the Main Injector Neutrino Oscillation Search (MINOS) is presented. MINOS is a long-baseline experiment with two detectors situated in North America. The near detector is based at the emission point of the NuMI beam at Fermilab, Chicago, the far detector is 735 km downstream in a disused iron mine in Soudan, Minnesota. A third detector, the calibration detector, is used to cross-calibrate these detectors by sampling different particle beams at CERN. A detailed description of the design and construction of the light-injection calibration system is included. Also presented are experimental investigations into proton-carbon collisions at 158 GeV/c carried out with the NA49 experiment at CERN. The NA49 experiment is a Time Projection Chamber (TPC) based experiment situated at CERN's North Area. It is a well established experiment with well known characteristics. The data gained from this investigation are to be used to parameterize various hadronic production processes in accelerator and atmospheric neutrino production. These hadronic production parameters will be used to improve the neutrino generation models used in calculating the neutrino oscillation parameters in MINOS.

  16. Influence of NaA Zeolite Crystal Expansion/Contraction on Zeolite Membrane Separations

    SciTech Connect (OSTI)

    Sorenson, Stephanie G; Payzant, E Andrew; Gibbons, Will T; Soydas, Belma; Kita, Hidetoshi; Noble, Richard D; Falconer, John L.

    2011-01-01

    In-situ powder XRD measurements showed that the NaA zeolite unit cell contracts and expands upon adsorption, and these changes in zeolite crystal size correlate with permeation changes through NaA zeolite membranes. These membranes had high pervaporation selectivities, even though gas permeation was mainly through defects, as indicated by Knudsen selectivities for gases. At 300 K and a thermodynamic activity of 0.03, water contracted the NaA crystals by 0.22 vol%, and this contraction increased the helium flux through two NaA membranes by approximately 80%. Crystal contraction also increased the fluxes of i-butane during vapor permeation and i-propanol (IPA) during pervaporation (~ 0.03 wt% water). At activities above 0.07, water expanded NaA crystals and correspondingly decreased the membrane fluxes of helium, i-butane, and IPA. Similarly, methanol contracted NaA crystals by 0.05 vol% at an activity of 0.02, and this contraction slightly increased the helium and i-butane fluxes through a NaA membrane. Above an activity of 0.06, methanol expanded the crystals, and the fluxes of helium and i-butane through a NaA membrane decreased. The adsorbate-induced changes explain some pervaporation behavior reported by others, and they indicate that crystal expansion and contraction may increase or decrease zeolite NaA membrane selectivity by changing the defect sizes.

  17. 2011 Annual Planning Summary for NNSA, Infrastructure and Environment (NA-50)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within NNSA, Infrastructure and Environment (NA-50).

  18. Catalytic Effect of Ti for Hydrogen Cycling in NaAlH4

    Broader source: Energy.gov [DOE]

    A presentation about how hydrogen can be reversibly absorbed and desorbed from NaAlH4 under moderate conditions by the addition of catalysts.

  19. High Energy Density Na-S/NiCl2 Hybrid Battery

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Lemmon, John P.; Kim, Jin Yong; Sprenkle, Vincent L.; Yang, Zhenguo

    2013-02-15

    High temperature (250-350C) sodium-beta alumina batteries (NBBs) are attractive energy storage devices for renewable energy integration and other grid related applications. Currently, two technologies are commercially available in NBBs, e.g., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. In this study, we investigated the combination of these two chemistries with a mixed cathode. In particular, the cathode of the cell consisted of molten NaAlCl4 as a catholyte and a mixture of Ni, NaCl and Na2S as active materials. During cycling, two reversible plateaus were observed in cell voltage profiles, which matched electrochemical reactions for Na-S and Na-NiCl2 redox couples. An irreversible reaction between sulfur species and Ni was identified during initial charge at 280C, which caused a decrease in cell capacity. The final products on discharge included Na2Sn with 1< n < 3, which differed from Na2S3 found in traditional Na-S battery. Reduction of sulfur in the mixed cathode led to an increase in overall energy density over ZEBRA batteries. Despite of the initial drop in cell capacity, the mixed cathode demonstrated relatively stable cycling with more than 95% of capacity retained over 60 cycles under 10mA/cm2. Optimization of the cathode may lead to further improvements in battery performance.

  20. NaRec New and Renewable Energy Centre | Open Energy Information

    Open Energy Info (EERE)

    New and Renewable Energy Centre Jump to: navigation, search Name: NaRec New and Renewable Energy Centre Region: United Kingdom Sector: Marine and Hydrokinetic Website: http: This...

  1. The (111) Surface of NaAu2. Structure, Composition, and Stability

    SciTech Connect (OSTI)

    Kwolek, Emma J.; Widmer, Roland; Gröning, Oliver; Deniz, Okan; Walen, Holly; Yuen, Chad D.; Huang, Wenyu; Schlagel, Deborah L.; Wallingford, Mark; Thiel, Patricia A.

    2014-12-17

    The (111) surface of single-crystal NaAu2 is a model for catalytically active, powdered NaAu2. We prepare and characterize this surface with a broad suite of techniques. Preparation in ultrahigh vacuum consists of the traditional approach of ion bombardment (to remove impurities) and thermal annealing (to restore surface order). Both of these steps cause loss of sodium (Na), and repeated treatments eventually trigger conversion of the surface and near-surface regions to crystalline gold. The bulk has a limited ability to repopulate the surface Na. Under conditions where Na depletion is minimized, electron diffraction patterns are consistent with the bulk-terminated structure, and scanning tunneling microscopy reveals mesa-like features with lateral dimensions of a few tens of nanometers. The tops of the mesas do not possess fine structure characteristic of a periodic lattice, suggesting that the surface layer is disordered under the conditions of these experiments.

  2. NaIrO{sub 3}-A pentavalent post-perovskite

    SciTech Connect (OSTI)

    Bremholm, M.; Dutton, S.E.; Stephens, P.W.; Cava, R.J.

    2011-03-15

    Sodium iridium (V) oxide, NaIrO{sub 3,} was synthesized by a high pressure solid state method and recovered to ambient conditions. It is found to be isostructural with CaIrO{sub 3}, the much-studied structural analog of the high-pressure post-perovskite phase of MgSiO{sub 3}. Among the oxide post-perovskites, NaIrO{sub 3} is the first example with a pentavalent cation. The structure consists of layers of corner- and edge-sharing IrO{sub 6} octahedra separated by layers of NaO{sub 8} bicapped trigonal prisms. NaIrO{sub 3} shows no magnetic ordering and resistivity measurements show non-metallic behavior. The crystal structure, electrical and magnetic properties are discussed and compared to known post-perovskites and pentavalent perovskite metal oxides. -- Graphical abstract: Sodium iridium(V) oxide, NaIrO{sub 3}, synthesized by a high pressure solid state method and recovered to ambient conditions is found to crystallize as the post-perovskite structure and is the first example of a pentavalent ABO{sub 3} post-perovskite. Research highlights: {yields} NaIrO{sub 3} post-perovskite stabilized by pressure. {yields} First example of a pentavalent oxide post-perovskite. {yields} Non-metallic and non-magnetic behavior of NaIrO{sub 3}.

  3. Investigation of the Effects of Biodiesel-based Na on Emissions Control Components

    SciTech Connect (OSTI)

    Brookshear, D. William; Nguyen, Ke; Toops, Todd J; Bunting, Bruce G; Howe, Janet E

    2012-01-01

    A single-cylinder diesel engine was used to investigate the impact of biodiesel-based Na on emissions control components using specially blended 20% biodiesel fuel (B20). The emissions control components investigated were a diesel oxidation catalyst (DOC), a Cu-zeolite-based NH{sub 3}-SCR (selective catalytic reduction) catalyst, and a diesel particulate filter (DPF). Both light-duty vehicle, DOC-SCR-DPF, and heavy-duty vehicle, DOC-DPF-SCR, emissions control configurations were employed. The accelerated Na aging is achieved by introducing elevated Na levels in the fuel, to represent full useful life exposure, and periodically increasing the exhaust temperature to replicate DPF regeneration. To assess the validity of the implemented accelerated Na aging protocol, engine-aged lean NO{sub x} traps (LNTs), DOCs and DPFs are also evaluated. To fully characterize the impact on the catalytic activity the LNT, DOC and SCR catalysts were evaluated using a bench flow reactor. The evaluation of the aged DOC samples and LNT show little to no deactivation as a result of Na contamination. However, the SCR in the light-duty configuration (DOC-SCR-DPF) was severely affected by Na contamination, especially when NO was the only fed NO{sub x} source. In the heavy-duty configuration (DOC-DPF-SCR), no impact is observed in the SCR NO{sub x} reduction activity. Electron probe micro-analysis (EPMA) reveals that Na contamination on the LNT, DOC, and SCR samples is present throughout the length of the catalysts with a higher concentration on the washcoat surface. In both the long-term engine-aged DPF and the accelerated Na-aged DPFs, there is significant Na ash present in the upstream channels; however, in the engine-aged sample lube oil-based ash is the predominant constituent.

  4. Is Tritium over-regulated by DOE? Should the TFG support NA-1 SD G 1027

    Office of Environmental Management (EM)

    tritium values? | Department of Energy over-regulated by DOE? Should the TFG support NA-1 SD G 1027 tritium values? Is Tritium over-regulated by DOE? Should the TFG support NA-1 SD G 1027 tritium values? Presentation from the 32nd Tritium Focus Group Meeting held in Germantown, Maryland on April 23-25, 2013. PDF icon Is Tritium over-regulated by DOE? Should the TFG support NA-1 SD G 1027 tritium values? More Documents & Publications Is Tritium Over-Regulated, Part 2 Should The TFG

  5. Recent results from NA44 and a review of HBT

    SciTech Connect (OSTI)

    Jacak, B.V.

    1995-04-01

    High energy heavy ion collisions provide the opportunity to create hadronic matter at high energy density and study its properties. In order to do this, one must characterize the collisions, ascertain the size and density of the hot system in the central region of the nucleus-nucleus system, and determine the energy density achieved. Furthermore, one needs to determine whether or not the system approaches equilibrium so thermodynamic descriptions may be used. One of the experimental tools available is the study of two-particle correlations to map the space-time extent of the system when the hadrons decouple. Other observables include the flow of energy and charged particles transverse to the beam and the rapidity distribution of protons to indicate the amount of stopping and randomization of the incoming energy. The transverse mass distributions of hadrons reflect the temperature of the system at freezeout and effects of radial expansion. The production ratios of different particles are related to the extent of chemical equilibrium reached in the collision and subsequent evolution of the hadron gas. The NA44 Experiment at CERN can address all of these observables, though here the author focus mainly on correlation measurements. Kaons and pions are emitted rather late in the evolution of a heavy ion collision, at the time of {open_quotes}freezeout{close_quotes} when the hadrons cease to interact. Their correlations reflect the space-time evolution of the later part of the collision. In addition to characterizing the collision, correlations can signal a phase transition as they measure the duration of hadronization and particle emission, which should be long in both a first- or second-order phase transition. Furthermore, correlation measurements offer an important tool to help disentangle effects of expansion from the freezeout temperature reflected in the single particle spectra.

  6. " East North Central",9.3,"NA",10.1,10.7,11.6,11.85822

    U.S. Energy Information Administration (EIA) Indexed Site

    (Thousands) " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",9.4,9.9,10.2,10.6,11.4,12 "Household Characteristics" "Census Region and Division" " Northeast",9.5,"NA",10.3...

  7. New and Renewable Energy Centre NaREC | Open Energy Information

    Open Energy Info (EERE)

    NE24 3AG Product: NaREC is a Centre of Excellence, fast-tracking concept evaluation, feasibility studies and prototype evaluation and testing through to early commercialisation....

  8. Europium (Z=63) n=3-3 lines in the extreme ultraviolet: Na- through...

    Office of Scientific and Technical Information (OSTI)

    Title: Europium (Z63) n3-3 lines in the extreme ultraviolet: Na- through Si-like ions Authors: Trabert, E ; Beiersdorfer, P ; Hell, N ; Brown, G V Publication Date: 2014-08-22 ...

  9. Thermoelectric Enhancement in PbTe with K or Na codoping from...

    Office of Scientific and Technical Information (OSTI)

    Thermoelectric Enhancement in PbTe with K or Na codoping from tuning the interaction of the light- and heavy-hole valence bands Citation Details In-Document Search Title: ...

  10. Effects of Point Defects and Impurities on Kinetics in NaAlH4

    Broader source: Energy.gov [DOE]

    A presentation showing that point defects play an important role in the kinetics of NaAlH4 including vacancies and interstitials consistent with observed effects of Ti.

  11. MHK Projects/University of Manchester Phase 1 and 2 NaREC | Open...

    Open Energy Info (EERE)

    University of Manchester Phase 1 and 2 NaREC < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"goo...

  12. NaI (Tl) Calorimeter Calibration and Simulation for Coulomb Sum...

    Office of Scientific and Technical Information (OSTI)

    and Simulation for Coulomb Sum Rule Experiment in Hall-A at Jefferson Lab Citation Details In-Document Search Title: NaI (Tl) Calorimeter Calibration and Simulation for ...

  13. Antiferromagnetism in the spin-gap system NaV2O5: Muon spin rotation

    Office of Scientific and Technical Information (OSTI)

    measurements (Journal Article) | SciTech Connect Journal Article: Antiferromagnetism in the spin-gap system NaV2O5: Muon spin rotation measurements Citation Details In-Document Search Title: Antiferromagnetism in the spin-gap system NaV2O5: Muon spin rotation measurements Authors: Storchak, Vyacheslav G. ; Parfenov, Oleg E. ; Eshchenko, Dmitry G. ; Lichti, Roger L. ; Mengyan, Patrick W. ; Isobe, Masahiko ; Ueda, Yutaka Publication Date: 2012-03-05 OSTI Identifier: 1099289 Type: Publisher's

  14. Phase transitions and compressibility of NaMgF[subscript 3] (Neighborite)

    Office of Scientific and Technical Information (OSTI)

    in perovskite- and post perovskite-related structures (Journal Article) | SciTech Connect transitions and compressibility of NaMgF[subscript 3] (Neighborite) in perovskite- and post perovskite-related structures Citation Details In-Document Search Title: Phase transitions and compressibility of NaMgF[subscript 3] (Neighborite) in perovskite- and post perovskite-related structures Authors: Martin, C. David ; Crichton, Wilson A. ; Liu, Haozhe ; Prakapenka, Vitali ; Chen, Jiuhua ; Parise, John

  15. FT-IR Study of CO2 Interaction with Na-rich Montmorillonite

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Krukowski, Elizabeth G; Goodman, Angela; Rother, Gernot; Ilton, Eugene; Guthrie, George; Bodnar, Robert

    2015-01-01

    Carbon capture, utilization and storage (CCUS) in saline reservoirs in sedimentary formations has the potential to reduce the impact of fossil fuel combustion on climate change by reducing CO2 emissions to the atmosphere and storing the CO2 in geologic formations in perpetuity. At pressure and temperature (PT) conditions relevant to CCUS, CO2 is less dense than the pre-existing brine in the formation, and the more buoyant CO2 will migrate to the top of the formation where it will be in contact with cap rock. Interactions between clay-rich shale cap rocks and CO2 are poorly understood at PT conditions appropriate formore » CCUS in saline formations. In this study, the interaction of CO2 with clay minerals in the cap rock overlying a saline formation has been examined using Na+ exchanged montmorillonite (Mt) (Na+-STx-1) (Na+ Mt) as an analog for clay-rich shale. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) was used to discern mechanistic information for CO2 interaction with hydrated (both one- and two-water layers) and relatively dehydrated (both dehydrated layers and one-water layers) Na+-STx-1 at 35 C and 50 C and CO2 pressure from 0 5.9 MPa. CO2-induced perturbations associated with the water layer and Na+-STx-1 vibrational modes such as AlAlOH and AlMgOH were examined. Data indicate that CO2 is preferentially incorporated into the interlayer space, with relatively dehydrated Na+-STx-1 capable of incorporating more CO2 compared to hydrated Na+-STx-1. Spectroscopic data provide no evidence of formation of carbonate minerals or the interaction of CO2 with sodium cations in the Na+-STx-1 structure.« less

  16. FT-IR Study of CO2 Interaction with Na-rich Montmorillonite

    SciTech Connect (OSTI)

    Krukowski, Elizabeth G; Goodman, Angela; Rother, Gernot; Ilton, Eugene; Guthrie, George; Bodnar, Robert

    2015-01-01

    Carbon capture, utilization and storage (CCUS) in saline reservoirs in sedimentary formations has the potential to reduce the impact of fossil fuel combustion on climate change by reducing CO2 emissions to the atmosphere and storing the CO2 in geologic formations in perpetuity. At pressure and temperature (PT) conditions relevant to CCUS, CO2 is less dense than the pre-existing brine in the formation, and the more buoyant CO2 will migrate to the top of the formation where it will be in contact with cap rock. Interactions between clay-rich shale cap rocks and CO2 are poorly understood at PT conditions appropriate for CCUS in saline formations. In this study, the interaction of CO2 with clay minerals in the cap rock overlying a saline formation has been examined using Na+ exchanged montmorillonite (Mt) (Na+-STx-1) (Na+ Mt) as an analog for clay-rich shale. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) was used to discern mechanistic information for CO2 interaction with hydrated (both one- and two-water layers) and relatively dehydrated (both dehydrated layers and one-water layers) Na+-STx-1 at 35 C and 50 C and CO2 pressure from 0 5.9 MPa. CO2-induced perturbations associated with the water layer and Na+-STx-1 vibrational modes such as AlAlOH and AlMgOH were examined. Data indicate that CO2 is preferentially incorporated into the interlayer space, with relatively dehydrated Na+-STx-1 capable of incorporating more CO2 compared to hydrated Na+-STx-1. Spectroscopic data provide no evidence of formation of carbonate minerals or the interaction of CO2 with sodium cations in the Na+-STx-1 structure.

  17. Band gap engineering for graphene by using Na{sup +} ions

    SciTech Connect (OSTI)

    Sung, S. J.; Lee, P. R.; Kim, J. G.; Ryu, M. T.; Park, H. M.; Chung, J. W.

    2014-08-25

    Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E{sub g}) at DP in a controlled way by depositing positively charged Na{sup +} ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na{sup +} ions is found to deplete the ?* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E{sub g}. The band gap increases with increasing Na{sup +} coverage with a maximum E{sub g}?0.70?eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na{sup +} ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na{sup +} ions, which may play a vital role in utilizing graphene in future nano-electronic devices.

  18. Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O₂: Honeycomb-ordered cathodes for Na-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Jeffrey; Wu, Lijun; Bo, Shou -Hang; Khalifah, Peter G.; Grey, Clare P.; Zhu, Yimei

    2015-04-14

    Na-ion batteries are appealing alternatives to Li-ion battery systems for large-scale energy storage applications in which elemental cost and abundance are important. Although it is difficult to find Na-ion batteries which achieve substantial specific capacities at voltages above 3 V (vs Na⁺/Na), the honeycomb-layered compound Na(Ni2/3Sb1/3)O₂ can deliver up to 130 mAh/g of capacity at voltages above 3 V with this capacity concentrated in plateaus at 3.27 and 3.64 V. Comprehensive crystallographic studies have been carried out in order to understand the role of disorder in this system which can be prepared in both “disordered” and “ordered” forms, depending onmore » the synthesis conditions. The average structure of Na(Ni2/3Sb1/3)O₂ is always found to adopt an O3-type stacking sequence, though different structures for the disordered (R3¯m, #166, a = b = 3.06253(3) Å and c = 16.05192(7) Å) and ordered variants (C2/m, #12, a = 5.30458(1) Å, b = 9.18432(1) Å, c = 5.62742(1) Å and β = 108.2797(2)°) are demonstrated through the combined Rietveld refinement of synchrotron X-ray and time-of-flight neutron powder diffraction data. However, pair distribution function studies find that the local structure of disordered Na(Ni2/3Sb1/3)O₂ is more correctly described using the honeycomb-ordered structural model, and solid state NMR studies confirm that the well-developed honeycomb ordering of Ni and Sb cations within the transition metal layers is indistinguishable from that of the ordered phase. The disorder is instead found to mainly occur perpendicular to the honeycomb layers with an observed coherence length of not much more than 1 nm seen in electron diffraction studies. When the Na environment is probed through ²³Na solid state NMR, no evidence is found for prismatic Na environments, and a bulk diffraction analysis finds no evidence of conventional stacking faults. The lack of long range coherence is instead attributed to disorder among the three possible choices for distributing Ni and Sb cations into a honeycomb lattice in each transition metal layer. It is observed that the full theoretical discharge capacity expected for a Ni³⁺/²⁺ redox couple (133 mAh/g) can be achieved for the ordered variant but not for the disordered variant (~110 mAh/g). The first 3.27 V plateau during charging is found to be associated with a two-phase O3 ↔ P3 structural transition, with the P3 stacking sequence persisting throughout all further stages of desodiation.« less

  19. The (111) Surface of NaAu2. Structure, Composition, and Stability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kwolek, Emma J.; Widmer, Roland; Gröning, Oliver; Deniz, Okan; Walen, Holly; Yuen, Chad D.; Huang, Wenyu; Schlagel, Deborah L.; Wallingford, Mark; Thiel, Patricia A.

    2014-12-17

    The (111) surface of single-crystal NaAu2 is a model for catalytically active, powdered NaAu2. We prepare and characterize this surface with a broad suite of techniques. Preparation in ultrahigh vacuum consists of the traditional approach of ion bombardment (to remove impurities) and thermal annealing (to restore surface order). Both of these steps cause loss of sodium (Na), and repeated treatments eventually trigger conversion of the surface and near-surface regions to crystalline gold. The bulk has a limited ability to repopulate the surface Na. Under conditions where Na depletion is minimized, electron diffraction patterns are consistent with the bulk-terminated structure, andmore » scanning tunneling microscopy reveals mesa-like features with lateral dimensions of a few tens of nanometers. The tops of the mesas do not possess fine structure characteristic of a periodic lattice, suggesting that the surface layer is disordered under the conditions of these experiments.« less

  20. Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application

    SciTech Connect (OSTI)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Viswanathan, Vilayanur V.; Meinhardt, Kerry D.; Engelhard, Mark H.; Sprenkle, Vincent L.

    2015-06-17

    Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can be assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.

  1. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    SciTech Connect (OSTI)

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01

    This decontamination and decommissioning (D D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunker currently stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.

  2. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    SciTech Connect (OSTI)

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01

    This decontamination and decommissioning (D&D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunker currently stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D&D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.

  3. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using Cu-zeolite

    Broader source: Energy.gov [DOE]

    Discusses the impact of Na in biodiesel on three emission control devices: the diesel particulate filter, diesel oxidation catalyst, and zeolyte-based SCR catalyst

  4. POST-OPERATIONAL TREATMENT OF RESIDUAL NA COOLLANT IN EBR-2 USING CARBONATION

    SciTech Connect (OSTI)

    Sherman, S.; Knight, C.

    2011-03-08

    At the end of 2002, the Experimental Breeder Reactor Two (EBR-II) facility became a U.S. Resource Conservation and Recovery Act (RCRA) permitted site, and the RCRA permit1 compelled further treatment of the residual sodium in order to convert it into a less reactive chemical form and remove the by-products from the facility, so that a state of RCRA 'closure' for the facility may be achieved (42 U.S.C. 6901-6992k, 2002). In response to this regulatory driver, and in recognition of project budgetary and safety constraints, it was decided to treat the residual sodium in the EBR-II primary and secondary sodium systems using a process known as 'carbonation.' In early EBR-II post-operation documentation, this process is also called 'passivation.' In the carbonation process (Sherman and Henslee, 2005), the system containing residual sodium is flushed with humidified carbon dioxide (CO{sub 2}). The water vapor in the flush gas reacts with residual sodium to form sodium hydroxide (NaOH), and the CO{sub 2} in the flush gas reacts with the newly formed NaOH to make sodium bicarbonate (NaHCO{sub 3}). Hydrogen gas (H{sub 2}) is produced as a by-product. The chemical reactions occur at the exposed surface of the residual sodium. The NaHCO{sub 3} layer that forms is porous, and humidified carbon dioxide can penetrate the NaHCO{sub 3} layer to continue reacting residual sodium underneath. The rate of reaction is controlled by the thickness of the NaHCO{sub 3} surface layer, the moisture input rate, and the residual sodium exposed surface area. At the end of carbonation, approximately 780 liters of residual sodium in the EBR-II primary tank ({approx}70% of original inventory), and just under 190 liters of residual sodium in the EBR-II secondary sodium system ({approx}50% of original inventory), were converted into NaHCO{sub 3}. No bare surfaces of residual sodium remained after treatment, and all remaining residual sodium deposits are covered by a layer of NaHCO{sub 3}. From a safety standpoint, the inventory of residual sodium in these systems was greatly reduced by using the carbonation process. From a regulatory standpoint, the process was not able to achieve deactivation of all residual sodium, and other more aggressive measures will be needed if the remaining residual sodium must also be deactivated to meet the requirements of the existing environmental permit. This chapter provides a project history and technical summary of the carbonation of EBR-II residual sodium. Options for future treatment are also discussed.

  5. Erratum: Coulomb excitation of the proton-dripline nucleus {sup 20}Na

    Office of Scientific and Technical Information (OSTI)

    [Phys. Rev. C 80, 044325 (2009)] (Journal Article) | SciTech Connect Erratum: Coulomb excitation of the proton-dripline nucleus {sup 20}Na [Phys. Rev. C 80, 044325 (2009)] Citation Details In-Document Search Title: Erratum: Coulomb excitation of the proton-dripline nucleus {sup 20}Na [Phys. Rev. C 80, 044325 (2009)] No abstract prepared. Authors: Schumaker, M. A. ; Cline, D. ; Hackman, G. ; Pearson, C. J. ; Svensson, C. E. ; Wu, C. Y. ; Andreyev, A. ; Austin, R. A. E. ; Ball, G. C. ;

  6. New tetragonal derivatives of cubic NaZn{sub 13}-type structure: RNi{sub

    Office of Scientific and Technical Information (OSTI)

    6}Si{sub 6} compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd-Yb) (Journal Article) | SciTech Connect New tetragonal derivatives of cubic NaZn{sub 13}-type structure: RNi{sub 6}Si{sub 6} compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd-Yb) Citation Details In-Document Search Title: New tetragonal derivatives of cubic NaZn{sub 13}-type structure: RNi{sub 6}Si{sub 6} compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd-Yb) Novel

  7. NaI (Tl) Calorimeter Calibration and Simulation for Coulomb Sum Rule

    Office of Scientific and Technical Information (OSTI)

    Experiment in Hall-A at Jefferson Lab (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: NaI (Tl) Calorimeter Calibration and Simulation for Coulomb Sum Rule Experiment in Hall-A at Jefferson Lab Citation Details In-Document Search Title: NaI (Tl) Calorimeter Calibration and Simulation for Coulomb Sum Rule Experiment in Hall-A at Jefferson Lab A precision measurement of inclusive electron scattering cross sections was carried out at Jefferson Lab in the

  8. Analysis of a graphite foam-NaCl latent heat storage system for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supercritical CO2 power cycles for concentrated solar power | Argonne National Laboratory Analysis of a graphite foam-NaCl latent heat storage system for supercritical CO2 power cycles for concentrated solar power Title Analysis of a graphite foam-NaCl latent heat storage system for supercritical CO2 power cycles for concentrated solar power Publication Type Journal Article Year of Publication 2015 Authors Singh, D, Zhao, W, Yu, W, France, DM, Kim, T Journal Solar Energy Volume 118 Start

  9. Alternative Fuels Data Center: Alabama Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Gasoline Diesel Propane Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of petroleum (GGEs) ...

  10. Pioneer Electric Coop, Inc (Alabama) | Open Energy Information

    Open Energy Info (EERE)

    Twitter: @ConnectionsCard Facebook: https:www.facebook.comPECconnect?refbookmarks Outage Hotline: (800) 533-0323 Outage Map: www.pioneerelectric.comconten...

  11. Alabama Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 0 2009-2010 Extensions 0 0 2009-2010 New Field Discoveries 0 0 2009-2010 New Reservoir Discoveries in Old Fields 0 0 2009-2010 Estimated Production 0 0 0 0 2007-2010

  12. Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 0 20 0 0 0 2000-2014 Extensions 0 0 0 0 0 2 1979-2014 New Field Discoveries 0 2 2 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 14 1979-2014 ...

  13. Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 21 29 3 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 105 102 98 91 62 ...

  14. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 0 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 ...

  15. Alabama Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 0 20 0 0 1 2009-2014 Extensions 0 0 0 0 0 1 2009-2014 New Field Discoveries 0 1 1 0 0 1 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 4 2009-2014 ...

  16. Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

    Gasoline and Diesel Fuel Update (EIA)

    1,727 1,342 1,298 1,210 1,006 413 1989-2013 Adjustments 0 61 -45 21 -166 2009-2013 Revision Increases 17 134 23 16 33 2009-2013 Revision Decreases 316 51 86 150 54 2009-2013 Sales...

  17. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 0 0 0 0 0 2005-2013 Adjustments 0 0 0 0 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  18. Alabama Liquefied Natural Gas Additions to and Withdrawals from...

    U.S. Energy Information Administration (EIA) Indexed Site

    178 -21 -75 -22 63 -206 1980-2014 Additions 1,676 946 754 562 822 1,664 1980-2014 Withdrawals 1,498 968 829 583 759 1,869...

  19. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Proved Nonproducing

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves 2,013 1,595 2,597 2,130 2,406 2,204 1996-2014 Lease Condensate (million bbls) 66 60 57 39 47 42 1998-2014 Total Gas (billion cu ft) 4,446 3,882 4,290 3,466 3,360 3,275 1996-2014 Nonassociated Gas (billion cu ft) 2,660 2,367 1,975 1,515 1,238 1,308 1996-2014 Associated Gas (billion cu ft) 1,786 1,515 2,315 1,951 2,122 1,967

  20. Natural Gas Delivered to Consumers in Alabama (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 36,984 28,384 27,217 23,714 21,027 21,010 22,537 23,488 21,619 24,186 23,647 25,742 2002 36,559 33,467 32,355 26,061 23,580 27,901 29,889 30,615 26,781 22,744 22,838 31,044 2003 39,779 34,222 26,412 23,422 20,310 22,858 27,147 32,162 21,482 18,885 20,502 29,389 2004 38,499 36,343 31,829 27,460 26,994 26,923 32,691 29,710 24,787 23,688 22,042 29,661 2005 32,785 29,012 29,689 22,622 22,525 26,381 30,759 31,841

  1. Alabama, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, New York.1 References US Census Bureau Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:...

  2. Alabama Natural Gas Plant Liquids Production (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1960's 236 1970's 225 281 243 199 501 694 661 933 1,967 4,845 1980's 4,371 4,484 4,727 4,709 5,123 5,236 4,836 4,887 4,774 5,022 1990's 4,939 4,997 5,490 5,589 5,647 5,273 5,361...

  3. Alabama Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,200 1,802 2,585 1970's 2,987 663 4,610 13,161 29,357 38,921 43,600 61,267 90,012 90,695 1980's 111,836 125,624 133,298 125,889 136,427 143,420 145,625 155,143 175,054 180,300 1990's 186,542 223,876 413,614 446,321 578,863 580,125 582,301 435,088 434,470 420,535 2000's 401,336 391,981 386,502 370,910 338,735 317,206 306,144 289,618 277,553 255,965 2010's 240,703 218,574 215,710 196,326 181,054

  4. Alabama Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 17,691 16,173 17,747 17,335 18,260 17,389 19,267 19,773 16,752 18,029 20,084 25,375 1992 33,868 32,773 33,371 33,712 33,880 34,185 35,896 34,273 34,038 36,327 35,078 36,215 1993 37,694 33,242 34,276 32,802 34,612 33,671 36,283 36,872 36,610 38,606 43,464 48,188 1994 49,348 45,585 49,910 48,530 48,932 43,483 50,975 50,604 41,760 50,104 49,878 49,753 1995 48,470 44,046 48,638 47,380 48,674 47,150 51,028 50,838 42,702 50,350 50,441 50,408

  5. ALABAMA GETS WISE ABOUT SELLING UPGRADES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency programs with shared commonalities, including: the use of the EPS platform, community-based partnerships, financing products, and stakeholder education and training. ...

  6. Deep porosity preservation in the Norphlet Formation, Mobil Bay, Alabama

    SciTech Connect (OSTI)

    Ajdukiewicz, J.M.; Paxton, S.T.; Szabvo, J.O. )

    1991-03-01

    Compaction and pressure solution have commonly been assumed to destroy primary intergranular porosity in deeply buried sandstones. However, primary porosities of up to 20% are preserved at depths greater than 20,000 feet in the Norphlet Formation of Mobile Bay. Previous workers have called upon a number of mechanisms to preserve these high porosities in the Norphlet, specifically chlorite rim cements, gas emplacement, overpressuring, and decementation. In contrast, our study of data from 23 Norphlet wells, including 450 thin sections, indicates that these suggested mechanisms are not the primary cause of porosity preservation in the Norphlet. The authors propose an alternative interpretation: that in the Norphlet, as in other well-sorted, ductile-grain-poor sandstones, porosity loss from compaction did not go to completion under reservoir (premetamorphic) conditions, but stabilized at depths of about 5,000-8,000 feet and porosity values of about 26%. Porosity loss below these values is due to cementation. For cementation to occur, both an adequate source of cement and geochemical conditions favoring cement precipitation must be present. Computer simulations of Norphlet burial history, including post-depositional fluid-flow patterns, suggest that conditions favorable to quartz cementation never occurred in the bulk of the Norphlet because of the formation's stratigraphic position and isolation from a basinward source of silica-saturated fluids.

  7. Alabama Natural Gas Deliveries to Electric Power Consumers (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11,835 27,660 25,326 2000's 42,215 68,868 112,403 86,129 117,056 104,786 145,528 175,736 164,266...

  8. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    134 129 129 98 88 108 1981-2014 Adjustments -4 3 0 -3 -1 18 2009-2014 Revision Increases 40 44 30 30 23 23 2009-2014 Revision Decreases 31 28 26 43 14 16 2009-2014 Sales 5 13 8 7 ...

  9. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    9,362 8,896 8,156 7,291 6,482 6,890 1981-2014 Adjustments 2 -106 -28 -429 76 548 1981-2014 Revision Increases 1,637 2,617 2,050 2,229 1,017 1,299 1981-2014 Revision Decreases 1,417 ...

  10. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    5,802 5,457 4,359 3,346 2,502 3,027 1981-2014 Adjustments -3 -25 72 -296 111 499 1981-2014 Revision Increases 997 1,814 740 866 443 561 1981-2014 Revision Decreases 1,021 1,000 ...

  11. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,863 3,793 4,196 4,358 4,293 4,253 1981-2014 Adjustments 7 -14 -21 -94 -94 135 1981-2014 Revision Increases 693 907 1,410 1,489 623 812 1981-2014 Revision Decreases 442 841 1,152 ...

  12. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    9,665 9,250 8,555 7,704 6,795 7,280 1981-2014 Natural Gas Nonassociated, Wet After Lease Separation 5,802 5,457 4,359 3,346 2,502 3,027 1981-2014 Natural Gas Associated-Dissolved, Wet ...

  13. Alabama Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 70,276 86,092 96,699 102,106 102,348 112,354 124,750 123,389 1990's 130,337 165,850 349,609 382,435 509,625 514,388 525,480 578,635 558,451 527,385 2000's 499,589 343,056 341,235 334,852 300,888 282,769 265,155 250,576 240,662 218,797 2010's 203,873 178,310 208,577 188,651 174,010

  14. Alabama Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 23,068 20,965 23,528 22,673 23,113 21,276 21,886 22,309 21,248 22,084 21,095 21,911 2007 21,865 19,575 21,444 20,217 20,863 19,763 20,509 21,924 20,846 21,254 20,587 21,727 2008 21,121 20,048 20,966 19,692 21,009 19,988 19,910 19,888 18,102 20,394 19,451 20,092 2009 18,047 18,112 19,722 18,630 19,546 18,558 19,364 18,677 17,622 16,696 15,613 18,209 2010 17,486 15,942 18,526 17,561 18,129 17,268 16,365 16,426 15,058 18,000 17,015 16,097

  15. Alabama Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3,691 1,856 3,634 3,342 4,651 6,493 8,348 8,892 7,157 7,473 7,007 6,324 2002 9,105 8,006 7,301 7,217 7,316 12,396 15,228 15,892 11,855 7,064 5,415 5,608 2003 9,428 5,069 4,057 5,528 4,274 8,673 12,971 17,126 6,906 2,735 3,573 5,791 2004 9,038 8,270 8,672 8,552 10,409 11,388 17,481 14,662 9,689 7,254 4,995 6,647 2005 6,019 4,524 6,532 3,991 6,678 11,921 15,974 17,573 9,582 5,720 6,523 9,749 2006 4,041 5,197 7,726 9,059 11,642

  16. Alabama Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 118,755 120,784 115,899 115,990 114,994 112,222 107,699 2010's 103,060 95,727 90,325 84,690 77,563

  17. Alabama Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 9,639 8,887 9,929 9,711 10,105 9,883 10,111 10,139 9,919 10,290 9,985 10,156 2004 10,120 9,374 10,123 9,920 10,341 10,003 10,332 10,386 9,921 10,371 9,896 9,997 2005 9,828 9,012 9,974 9,668 9,940 9,642 9,752 9,630 9,408 9,847 9,641 9,558 2006 9,607 8,800 9,788 9,466 9,940 9,585 9,955 10,110 9,605 9,822 9,528 9,783 2007 9,767 8,821 9,767 9,452 9,767 9,452 9,767 9,767 9,452 9,767 9,452 9,767 2008 9,505

  18. Alabama Natural Gas Industrial Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 14,252 13,534 14,746 13,227 12,911 11,989 11,891 12,319 12,134 13,613 11,767 12,672 2002 14,069 13,875 14,404 13,433 13,224 12,875 12,442 12,540 12,721 13,268 12,690 14,398 2003 15,463 14,505 13,359 12,784 12,651 11,707 11,923 12,800 12,339 13,365 13,235 14,381 2004 15,170 14,489 13,878 13,567 12,955 12,878 12,557 12,722 12,800 13,906 13,521 14,812 2005 14,959 13,377 14,398 12,900 12,229 11,710 12,259 11,816 11,009 11,518 11,913 13,013

  19. Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.55 8.54 6.61 7.01 6.53 5.81 5.66 5.30 4.75 4.56 4.83 4.72 2002 5.87 5.70 5.22 5.22 5.82 4.82 4.75 4.54 4.82 4.58 5.69 5.55 2003 6.70 6.78 8.91 6.57 6.51 6.87 6.49 5.95 6.06 5.85 5.87 6.64 2004 7.54 7.38 6.81 6.79 7.14 7.63 7.41 7.26 6.77 6.58 7.56 8.95 2005 7.74 7.79 7.93 8.35 7.79 7.52 6.98 9.20 9.72 14.41 13.99 13.11 2006 13.35 11.26 10.17 9.52 8.93 8.33 7.90 8.96 8.58 6.80 9.28 10.11 2007 8.32 9.37 9.53 9.22 8.81 8.88 8.52 8.31 7.39

  20. Alabama Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 8 12 26 71 106 95 103 93 85 55 25 14 1995 0 122 0 0 44 42 41 252 592 156 24 101 1996 231 185 141 192 390 670 318 395 440 166 63 160 1997 297 101 63 168 271 161 108 286 262 251 27 27 1998 26 0 81 245 188 623 25 203 139 613 76 0 1999 0 0 14 645 547 213 333 202 459 0 166 67 2000 48 534 44 51 232 606 166 0 0 42 12 286 2001 411 304 85 323 207 618 250 293 370 414 529 109 2002 711 278 182 349 240 54 357 139 106 318 515 536 2003 242 818

  1. Alabama Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 248 230 180 1970's 627 355 3,644 11,271 27,865 37,814 41,427 57,227 85,599 85,815 1980's 65,294 79,244 75,003 90,801 101,821 107,342 107,184 117,241 129,524 128,411 1990's 135,276 170,847 355,099 388,024 515,272 519,661 530,841 388,596 392,394 381,701 2000's 363,467 356,810 356,061 346,145 316,021 296,528 286,220 270,407 257,884 236,029 2010's 222,932 195,581 215,710 196,326 181,054

  2. Alabama Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 12,166 10,588 11,626 11,028 11,340 10,914 11,212 10,599 10,119 9,709 9,137 9,973 1990 10,650 10,097 11,223 11,165 11,736 10,988 11,670 11,462 11,672 11,343 10,306 12,964 1991 13,267 11,866 13,131 13,020 13,906 13,174 14,400 15,273 11,850 15,207 15,502 20,250 1992 28,638 28,093 28,699 28,690 28,920 29,312 30,718 29,338 29,402 31,435 30,470 31,386 1993 32,873 29,095 29,508 28,430 30,361 29,058 31,132 31,622 31,465 33,401 38,311 42,767 1994

  3. Alabama Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,406 7,044 7,392 4,722 2,856 1,709 1,457 1,383 1,404 1,862 3,646 7,240 1990 10,893 6,493 5,254 4,143 2,657 1,625 1,411 1,334 1,356 1,529 3,360 5,355 1991 7,299 8,327 6,724 3,891 2,059 1,583 1,434 1,368 1,389 1,793 3,886 6,396 1992 8,777 9,267 5,605 5,012 2,714 1,772 1,423 1,311 1,373 1,728 3,402 7,261 1993 8,110 8,189 8,716 5,668 2,848 1,641 1,430 1,328 1,330 1,526 3,853 6,727 1994 10,714 10,653 6,935 4,557 2,208 1,542 1,361 1,323 1,325

  4. Alabama Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 2003 5,280 5,280 5,280 5,280 5,280 8,520 8,520 8,520 8,520 8,520 8,520 8,520 2004 8,520 8,520 8,520 8,520 8,520 8,520 8,520 8,520 8,520 11,015 11,015 11,015 2005 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 2006 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 2007 11,015 11,015 11,015 11,015

  5. Alabama Natural Gas Underground Storage Net Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 9 0 -21 -70 -106 -95 -102 -92 -85 -54 -20 -4 1995 60 2 264 0 -27 -42 -35 -218 -592 73 189 400 1996 54 17 162 -153 -367 -670 -205 -395 -440 -117 129 761 1997 531 184 -25 -130 -271 -93 -43 -286 -262 -251 243 243 1998 396 187 248 -245 -144 -623 9 -200 401 -613 -1 139 1999 813 114 312 -137 -471 -210 -235 -81 -402 77 -134 189 2000 916 -307 -8 66 -90 -606 -82 0 110 142 203 85 2001 330 -241 604 -195 44 -576

  6. Alabama Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 17 12 5 2 1 1 1 1 0 1 4 10 1995 60 124 264 0 17 0 5 34 0 229 214 501 1996 285 202 303 39 23 - 113 - - 49 192 921 1997 828 285 38 38 0 68 64 0 0 0 270 270 1998 422 187 329 0 44 0 34 3 540 0 75 139 1999 813 114 326 508 76 3 99 121 57 77 32 256 2000 964 227 37 117 142 0 84 0 110 184 216 371 2001 741 62 690 128 251 42 95 180 3 120 7 95 2002 1,123 593 452 92 140 56 107 42 42 190 118 677 2003 2,031 398 108 141 99 79 191 489 44 399 626 1,421

  7. Alabama Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 9 8 9 9 9 9 9 9 9 9 9 9 2011 16 15 16 16 16 16 16 16 16 16 16 16 2012 16 15 16 16 16 16 16 16 16 16 16 16 2013 16 15 16 16 16 16 16 16 16 16 16 16 2014 19 17 19 18 19 18 19 19 18 19 18 19 2015 18 17 18 18 18 18 19 19 18 19 18 19 2016 21 19

  8. Alabama Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 360 422 795 1970's 656 308 966 1,890 1,492 1,107 1,088 1,180 1,695 1,497 1980's 3,175 2,485 2,806 1,793 1,829 1,426 1,310 1,356 1,824 1,503 1990's 1,933 2,193 1,799 1,798 2,650 2,935 1,853 1,563 1,462 1,085 2000's 1,262 1,039 1,331 1,611 2,316 2,485 3,525 2,372 1,801 2,495 2010's 2,617 3,491 0

  9. Alabama Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 194 200 140 132 106 82 205 152 157 192 159 134 1997 134 110 90 112 98 125 119 114 118 91 227 224 1998 125 101 87 104 91 117 114 112 112 86 206 206 1999 92 73 67 77 67 87 87 90 85 64 145 150 2000 130 149 130 112 75 80 120 97 78 98 88 105 2001 91 72 78 76 87 81 73 94 108 86 93 101 2002 122 135 99 106 129 94 107 98 103 100 103 134 2003 116 143 147 108 141 141 145 126 127 139 138 140 2004 171 119 130 154 201 208 395 182 179 207 188 181 2005

  10. Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,233 40,090 47,185 22,252 20,220 19,882 18,893 18,697 20,262 22,131 1990's 20,792 20,146 26,719 25,320 26,980 26,580 27,006 27,205 26,612 23,956 2000's 22,618 21,374 19,060 19,092 19,092 17,715 16,097 16,529 17,394 16,658 2010's 14,418 18,972 0

  11. Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,825 1,776 1,759 1,668 1,765 1,492 1,869 1,541 2,011 857 1,610 1,972 1992 2,247 1,940 1,988 2,248 2,249 2,233 2,381 2,259 2,222 2,290 2,277 2,387 1993 2,340 1,872 2,111 1,945 1,407 1,747 2,269 2,331 2,270 2,338 2,232 2,457 1994 2,473 2,025 2,223 2,147 1,562 1,554 2,551 2,616 2,287 2,375 2,593 2,575 1995 2,412 2,008 2,181 2,136 1,597 1,475 2,496 2,591 2,213 2,314 2,581 2,576 1996 2,211 2,030 2,287 2,270 2,346 2,216 2,232 2,297 2,257 2,293

  12. Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 5.65 5.71 5.55 6.01 6.73 7.83 8.32 8.47 8.52 7.87 6.72 5.88 1990 5.62 6.01 6.22 6.48 7.22 8.27 8.62 8.71 8.71 8.45 6.85 6.43 1991 6.50 6.47 6.72 7.44 8.58 8.89 8.77 8.82 8.82 8.06 6.71 6.34 1992 6.19 6.01 6.67 6.24 6.98 8.00 8.93 9.06 8.94 8.36 7.36 6.42 1993 6.54 6.50 6.16 6.60 7.75 9.37 9.82 9.91 9.95 9.63 7.43 6.85 1994 6.40 6.38 7.16 7.46 8.90 9.74 9.95 9.91 9.82 9.67 8.58 7.40 1995 6.53 6.22 6.18 7.67

  13. Alabama Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    987,571 1,038,133 1,094,359 1,132,711 1,047,981 1,027,777 1984-2014 Residential 3,971 4,895 432 750 639 722 1984-2014 Commercial 39,802 46,009 48,475 46,654 30,536 27,874 1984-2014 Industrial 90,659 77,542 81,120 120,347 77,119 65,322 1984-2014 Oil Company 0 328 1,035 2,640 2,929 2,985 1984-2014 Farm 17,882 19,881 24,518 24,503 24,651 20,459 1984-2014 Electric Power 8,276 10,372 22,490 9,375 6,514 10,071 1984-2014 Railroad 44,546 42,465 97,177 125,439 63,570 56,873 1984-2014 Vessel Bunkering

  14. Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3,691 1,856 3,634 3,342 4,651 6,493 8,348 8,892 7,157 7,473 7,007 6,324 2002 9,105 8,006 7,301 7,217 7,316 12,396 15,228 15,892 11,855 7,064 5,415 5,608 2003 9,428 5,069 4,057 5,528 4,274 8,673 12,971 17,126 6,906 2,735 3,573 5,791 2004 9,038 8,270 8,672 8,552 10,409 11,388 17,481 14,662 9,689 7,254 4,995 6,647 2005 6,019 4,524 6,532 3,991 6,678 11,921 15,974 17,573 9,582 5,720 6,523 9,749 2006 4,041 5,197 7,726 9,059 11,642

  15. Alabama Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W W W W 2003 5.54 W 7.00 6.28 W 6.35 5.61 5.30 W W 4.75 6.48 2004 5.76 W W 6.12 6.88 6.56 6.28 6.08 5.44 W W 7.50 2005 6.67 W W W W 7.61 7.80 9.49 13.52 14.90 12.76 14.05 2006 10.47 9.13 7.73 7.96 6.98 6.81 7.12 7.74 6.56 6.25 6.99 7.37 2007 6.75 8.00 6.97 7.38 7.45 7.76 6.81 7.01 6.44 6.77 7.75 7.64 2008 8.83 10.01 W W W 13.64 12.44 9.52 9.16 6.03 8.45 7.29 2009 5.89 5.20 4.46 3.93 4.03 4.00 3.69

  16. Natural Gas Delivered to Consumers in Alabama (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 293,981 299,146 299,872 2000's 315,202 299,631 343,913 316,665 350,734 323,143 358,141 385,209 369,750 418,677 2010's 496,051 558,116 622,359 573,981 599,473 640,70

  17. City of Florence, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    6,811 3,622.191 37,134.884 717 8,914.564 87,636.606 47,442 2008-09 5,069.531 58,666.446 39,743 988.076 10,071.714 6,812 3,477.51 43,293.875 718 9,535.117 112,032.035...

  18. Alabama Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,030 1,030 1,029 1,029 1,029 1,025 2013-2016

    6 18 19 18 14 13 1979-2014 Adjustments 1 0 3 1 -2 1 2009-2014 Revision Increases 3 4 1 1 1 0 2009-2014 Revision Decreases 0 0 1 1 1 1 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 2 2 2

  19. Alabama Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11,835 27,660 25,326 2000's 42,215 68,868 112,403 86,129 117,056 104,786 145,528 175,736 164,266 227,015 2010's 281,722 342,841 401,306 333,897 345,102 397,961

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 201,240 199,192 204,261 2000's 199,904 155,054 159,938 158,512 163,255 151,102 149,973 150,484 142,389 131,228 2010's 144,938 153,358 171,729 179,511 187,661

  20. Alabama Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -27 -142 1970's -566 -183 -129 -554 211 98 1990's 0 -639 73 -1,224 -162 -447 -164 2000's 430 -1,499 -154 -4,165 1,133 -216 -8,477 -140 -4,452 2,278 2010's -6,286 -7,357 2,456 5,002 -5,603 -3,817

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 509 435 1970's 587 809 439 516 621 532 1990's 55 1,448 2,125 1,860 1,774 2,482 2000's 2,452 2,414 3,631 6,025 13,867 15,356