National Library of Energy BETA

Sample records for 1996-2011 actual 2012-2013

  1. Distributed modeling of ablation (1996-2011) and climate sensitivity...

    Office of Scientific and Technical Information (OSTI)

    and climate sensitivity on the glaciers of Taylor Valley, Antarctica Citation Details In-Document Search Title: Distributed modeling of ablation (1996-2011) and climate ...

  2. Electricity Advisory Committee (EAC) 2012-2013 Membership Roster...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 20, 2012 Electricity Advisory Committee (EAC) 2012-2013 Membership Roster: December 20, 2012 2012-2013 Membership roster for the Electricity Advisory Committee as of ...

  3. 2012-2013 EAC Membership Roster

    Energy Savers [EERE]

    August 3, 2012 Electricity Advisory Committee 2012/2013 Membership Roster Richard Cowart Regulatory Assistance Project CHAIR Irwin Popowsky Pennsylvania Consumer Advocate VICE CHAIR William Ball Southern Company Linda Blair ITC Holdings Corporation Rick Bowen Alcoa Merwin Brown California Institute for Energy and Environment Ralph Cavanagh Natural Resources Defense Council The Honorable Paul Centolella Public Utilities Commission of Ohio David Crane NRG Energy, Inc. The Honorable Robert Curry

  4. Electricity Advisory Committee (EAC) 2012-2013 Membership Roster...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 3, 2012 Electricity Advisory Committee (EAC) 2012-2013 Membership Roster: August 3, 2012 2012-2013 Membership roster for the Electricity Advisory Committee as of August 3, ...

  5. Electricity Advisory Committee (EAC) 2012-2013 Membership Roster: December

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20, 2012 | Department of Energy December 20, 2012 Electricity Advisory Committee (EAC) 2012-2013 Membership Roster: December 20, 2012 2012-2013 Membership roster for the Electricity Advisory Committee as of December 20, 2012. PDF icon 2012-2013 EAC Membership Roster as of December 20, 2012 More Documents & Publications Electricity Advisory Committee (EAC) 2012-2013 Membership Roster: August 3,

  6. Data Intensive Computing Pilot Program 2012/2013 Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data 2012/2013 Awards Data Intensive Computing Pilot Program 2012/2013 Awards NERSC's new data-intensive science pilot program is aimed at helping scientists capture, analyze and store the increasing stream of scientific data coming out of experiments, simulations and instruments. Projects in this program have been allocated for 2012 and 2013. High Throughput Computational Screening of Energy Materials Gerbrand Ceder, Massachusetts Institute of Technology NERSC Repository: matdat NERSC Resources

  7. Distributed modeling of ablation (1996-2011) and climate sensitivity on

    Office of Scientific and Technical Information (OSTI)

    the glaciers of Taylor Valley, Antarctica (Journal Article) | SciTech Connect Distributed modeling of ablation (1996-2011) and climate sensitivity on the glaciers of Taylor Valley, Antarctica Citation Details In-Document Search Title: Distributed modeling of ablation (1996-2011) and climate sensitivity on the glaciers of Taylor Valley, Antarctica Here, the McMurdo Dry Valleys of Antarctica host the coldest and driest ecosystem on Earth, which is acutely sensitive to the availability of water

  8. Electricity Advisory Committee (EAC) 2012-2013 Membership Roster: August 3,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012 | Department of Energy August 3, 2012 Electricity Advisory Committee (EAC) 2012-2013 Membership Roster: August 3, 2012 2012-2013 Membership roster for the Electricity Advisory Committee as of August 3, 2012. This is superceded by the December 20, 2012 version. PDF icon 2012-2013 EAC Membership Roster as of August 3, 2012 More Documents & Publications Electricity Advisory Committee (EAC) 2012-2013 Membership Roster: December 20,

  9. Progress in 2012-2013 on HEDLP LAB 11-583 Eagle Nebula (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Progress in 2012-2013 on HEDLP LAB 11-583 Eagle Nebula Citation Details In-Document Search Title: Progress in 2012-2013 on HEDLP LAB 11-583 Eagle Nebula Authors: Kane, J O Publication Date: 2013-05-13 OSTI Identifier: 1080402 Report Number(s): LLNL-TR-636574 DOE Contract Number: W-7405-ENG-48 Resource Type: Technical Report Research Org: Lawrence Livermore National Laboratory (LLNL), Livermore, CA Sponsoring Org: USDOE Country of Publication: United States Language: English

  10. Table 8. Total Natural Gas Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 19.87 20.21 20.64 20.99 ...

  11. 2012-2013 Budget Update and ARRA Closeout Presentation by Joann Luczak

    Office of Environmental Management (EM)

    Site-Specific Advisory Board 2012-2013 Budget Update and ARRA Closeout www.em.doe.gov 1 10/20/11 Joann Luczak Special Assistant DOE-EM EM Priorities Activities to maintain a safe, secure, and compliant posture in the EM complex Radioactive tank waste stabilization, treatment, and disposal Spent (used) nuclear fuel storage, receipt, and disposition Programmatic support activities* 10% Radioactive tank waste "To-Go Life-Cycle Cost" ($185B - $218B as of the FY 2012 Request) www.em.doe.gov

  12. Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilson, Cathy; Newman, Brent; Heikoop, Jeff

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  13. Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilson, Cathy; Newman, Brent; Heikoop, Jeff

    2012-07-18

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  14. Table 13. Coal Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",999,1021,1041,1051,1056,1066,1073,1081,1087,1098,1107,1122,1121,1128,1143,1173,1201,1223 "AEO 1995",,1006,1010,1011,1016,1017,1021,1027,1033,1040,1051,1066,1076,1083,1090,1108,1122,1137 "AEO

  15. Table 22. Energy Intensity, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / $Billion 2005 Chained GDP)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",10.89145253,10.73335719,10.63428655,10.48440125,10.33479508,10.20669515,10.06546105,9.94541493,9.822393757,9.707148466,9.595465524,9.499032573,9.390723436,9.29474735,9.185496812,9.096176848,9.007677565,8.928276581 "AEO

  16. Table 4. Total Petroleum Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Petroleum Consumption, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",6449.55,6566.35,6643,6723.3,6810.9,6880.25,6956.9,7059.1,7124.8,7205.1,7296.35,7376.65,7446,7522.65,7595.65,7665,7712.45,7774.5 "AEO

  17. Table 6. Petroleum Net Imports, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Net Imports, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2934.6,3201.05,3361.65,3504,3657.3,3737.6,3879.95,3993.1,4098.95,4212.1,4303.35,4398.25,4474.9,4540.6,4584.4,4639.15,4668.35,4672 "AEO

  18. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  19. Table 3b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per barrel)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  20. "Table 2. Real Gross Domestic Product Growth Trends, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Gross Domestic Product Growth Trends, Projected vs. Actual" "Projected Real GDP Growth Trend" " (cumulative average percent growth in projected real GDP from first year shown for each AEO)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  1. Table 12. Total Coal Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Coal Consumption, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",920,928,933,938,943,948,953,958,962,967,978,990,987,992,1006,1035,1061,1079 "AEO 1995",,935,940,941,947,948,951,954,958,963,971,984,992,996,1002,1013,1025,1039 "AEO

  2. Table 12. Total Coal Consumption, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Coal Consumption, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 920 928 933 938 943 948 953 958 962 967 978 990 987 992 1006 1035 1061 1079 AEO 1995 935 940 941 947 948 951 954 958 963 971 984 992 996 1002 1013 1025 1039 AEO 1996 937 942 954 962 983 990 1004 1017 1027 1033 1046 1067 1070 1071 1074 1082 1087 1094 1103 AEO 1997 948 970 987 1003 1017 1020 1025 1034 1041

  3. Table 13. Coal Production, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 999 1021 1041 1051 1056 1066 1073 1081 1087 1098 1107 1122 1121 1128 1143 1173 1201 1223 AEO 1995 1006 1010 1011 1016 1017 1021 1027 1033 1040 1051 1066 1076 1083 1090 1108 1122 1137 AEO 1996 1037 1044 1041 1045 1061 1070 1086 1100 1112 1121 1135 1156 1161 1167 1173 1184 1190 1203 1215 AEO 1997 1028 1052 1072 1088

  4. Table 15. Total Electricity Sales, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electricity Sales, Projected vs. Actual" "Projected" " (billion kilowatt-hours)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2843,2891,2928,2962,3004,3039,3071,3112,3148,3185,3228,3263,3298,3332,3371,3406,3433,3469 "AEO 1995",,2951,2967,2983,3026,3058,3085,3108,3134,3166,3204,3248,3285,3321,3357,3396,3433,3475 "AEO

  5. Table 15. Total Electricity Sales, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electricity Sales, Projected vs. Actual Projected (billion kilowatt-hours) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2843 2891 2928 2962 3004 3039 3071 3112 3148 3185 3228 3263 3298 3332 3371 3406 3433 3469 AEO 1995 2951 2967 2983 3026 3058 3085 3108 3134 3166 3204 3248 3285 3321 3357 3396 3433 3475 AEO 1996 2973 2998 3039 3074 3106 3137 3173 3215 3262 3317 3363 3409 3454 3505 3553 3604 3660 3722 3775 AEO 1997 3075

  6. Table 4. Total Petroleum Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Petroleum Consumption, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6450 6566 6643 6723 6811 6880 6957 7059 7125 7205 7296 7377 7446 7523 7596 7665 7712 7775 AEO 1995 6398 6544 6555 6676 6745 6822 6888 6964 7048 7147 7245 7337 7406 7472 7537 7581 7621 AEO 1996 6490 6526 6607 6709 6782 6855 6942 7008 7085 7176 7260 7329 7384 7450 7501 7545 7581 7632 7676 AEO 1997 6636 6694

  7. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2507.55,2372.5,2255.7,2160.8,2087.8,2022.1,1952.75,1890.7,1850.55,1825,1799.45,1781.2,1766.6,1759.3,1777.55,1788.5,1806.75,1861.5 "AEO

  8. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 2018 2055 AEO 1997 2362 2307

  9. Table 6. Petroleum Net Imports, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Net Imports, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2935 3201 3362 3504 3657 3738 3880 3993 4099 4212 4303 4398 4475 4541 4584 4639 4668 4672 AEO 1995 2953 3157 3281 3489 3610 3741 3818 3920 4000 4103 4208 4303 4362 4420 4442 4460 4460 AEO 1996 3011 3106 3219 3398 3519 3679 3807 3891 3979 4070 4165 4212 4260 4289 4303 4322 4325 4347 4344 AEO 1997 3099 3245 3497

  10. "Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO

  11. Table 16. Total Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO

  12. Table 8. Total Natural Gas Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Consumption, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",19.87,20.21,20.64,20.99,21.2,21.42,21.6,21.99,22.37,22.63,22.95,23.22,23.58,23.82,24.09,24.13,24.02,24.14 "AEO 1995",,20.82,20.66,20.85,21.21,21.65,21.95,22.12,22.25,22.43,22.62,22.87,23.08,23.36,23.61,24.08,24.23,24.59 "AEO

  13. Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 5060 5130 5185 5240 5287 5335 5379 5438 5482 5529 5599 5658 5694 5738 5797 5874 5925 5984 AEO 1995 5137 5174 5188 5262 5309 5361 5394 5441 5489 5551 5621 5680 5727 5775 5841 5889 5944 AEO 1996 5182 5224 5295 5355 5417 5464 5525 5589 5660 5735 5812 5879 5925 5981 6030 6087 6142 6203

  14. Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per barrel in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,16.69,16.42999,16.9899,17.66,18.28,19.0599,19.89,20.72,21.65,22.61,23.51,24.29,24.9,25.6,26.3,27,27.64,28.16

  15. "Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO

  16. Form EIA-411 for 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    B.1. FRCC monthly peak hour demand, by North American Electric Reliability Corporation Assesment Area," "1996-2011 actual, 2012-2013 projected" "megawatts" "FRCC","Year","January","February","March","April","May","June","July","August","September","October","November","December"

  17. 2012-2013 CSTEC Seminars.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C. Daniel Frisbie (Location: HH Dow 1017) University of Minnesota Understanding the Factors Influencing Open Circuit Voltage in Polymer Solar Cells November 15 Dr. Lincoln J. ...

  18. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Average Electricity Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars, cents per kilowatt-hour in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 6.80 6.80 6.90 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20 7.20 7.20 7.30 7.30 7.40 7.50 7.60 AEO 1995 1993 6.80 6.80 6.70 6.70 6.70 6.70 6.70 6.80 6.80 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20

  19. Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 12.0 12.1

  20. Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.2 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9

  1. Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 29.4 29.6

  2. Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 29.3

  3. Table 22. Energy Intensity, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity, Projected vs. Actual Projected (quadrillion Btu / $Billion 2005 Chained GDP) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 10.9 10.7 10.6 10.5 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 AEO 1995 10.5 10.4 10.3 10.1 10.0 9.8 9.7 9.6 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 AEO 1996 10.4 10.3 10.1 10.0 9.8 9.7 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 8.7 8.6 8.5 AEO 1997 10.0 9.9 9.8 9.7 9.6 9.5 9.4

  4. Table 9. Natural Gas Production, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Production, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 17.71 17.68 17.84 18.12 18.25 18.43 18.58 18.93 19.28 19.51 19.80 19.92 20.13 20.18 20.38 20.35 20.16 20.19 AEO 1995 18.28 17.98 17.92 18.21 18.63 18.92 19.08 19.20 19.36 19.52 19.75 19.94 20.17 20.28 20.60 20.59 20.88 AEO 1996 18.90 19.15 19.52 19.59 19.59 19.65 19.73 19.97 20.36 20.82 21.25 21.37 21.68

  5. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,1.4699,1.4799,1.53,1.57,1.58,1.57,1.61,1.63,1.68,1.69,1.7,1.72,1.7,1.76,1.79,1.81,1.88,1.92 "AEO

  6. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47

  7. Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per barrel in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 16.69 16.43 16.99 17.66 18.28 19.06 19.89 20.72 21.65 22.61 23.51 24.29 24.90 25.60 26.30 27.00 27.64 28.16 AEO 1995 1993 14.90 16.41 16.90 17.45 18.00 18.53 19.13 19.65 20.16 20.63

  8. Table 3b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per barrel) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 17.06 17.21 18.24 19.43 20.64 22.12 23.76 25.52 27.51 29.67 31.86 34.00 36.05 38.36 40.78 43.29 45.88 48.37 AEO 1995 15.24 17.27 18.23 19.26 20.39 21.59 22.97 24.33 25.79 27.27 28.82 30.38 32.14 33.89 35.85 37.97 40.28 AEO 1996 17.16 17.74 18.59

  9. Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 2.44 2.48 2.57 2.66 2.70 2.79 2.84 2.92 3.04 3.16 3.25 3.36 3.51 3.60 3.77 3.91 3.97 4.08 AEO 1995 1993 2.39 2.48 2.42 2.45 2.45 2.53 2.59 2.78 2.91 3.10 3.24 3.38 3.47 3.53 3.61 3.68

  10. "Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Residential Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",10.31,10.36,10.36,10.37,10.38,10.4,10.4,10.41,10.43,10.43,10.44,10.45,10.46,10.49,10.51,10.53,10.56,10.6 "AEO 1995",,10.96,10.8,10.81,10.81,10.79,10.77,10.75,10.73,10.72,10.7,10.7,10.69,10.7,10.72,10.75,10.8,10.85 "AEO

  11. "Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",6.82,6.87,6.94,7,7.06,7.13,7.16,7.22,7.27,7.32,7.36,7.38,7.41,7.45,7.47,7.5,7.51,7.55 "AEO 1995",,6.94,6.9,6.95,6.99,7.02,7.05,7.08,7.09,7.11,7.13,7.15,7.17,7.19,7.22,7.26,7.3,7.34 "AEO

  12. "Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Transportation Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,25.86,26.15,26.5,26.88,27.28,27.66,27.99,28.25,28.51,28.72,28.94 "AEO

  13. "Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected"

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Natural Gas Price, Electric Power Sector, Actual vs. Projected" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,2.44,2.48,2.57,2.66,2.7,2.79,2.84,2.92,3.04,3.16,3.25,3.36,3.51,3.6,3.77,3.91,3.97,4.08 "AEO

  14. "January","NERC Regional Assesment Area"

    U.S. Energy Information Administration (EIA) Indexed Site

    A.1. January monthly peak hour demand, by North American Electric Reliability Corporation Assesment Area, " "1996-2011 actual, 2012-2013 projected" "megawatts" "January","NERC Regional Assesment Area" ,,"Actual" ,,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "Eastern Interconnection","FRCC",39860,37127,27122,38581,37521,40258,39675,45033,35545,41247,34464,38352,41705,44945,53093,46086

  15. Distributed modeling of ablation (1996-2011) and climate sensitivity...

    Office of Scientific and Technical Information (OSTI)

    Authors: Hoffman, Matthew J. 1 ; Fountain, Andrew G. 2 ; Liston, Glen E. 3 + Show Author Affiliations Los Alamos National Lab. (LANL), Los Alamos, NM (United States) Portland ...

  16. How People Actually Use Thermostats

    SciTech Connect (OSTI)

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  17. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1.50 1.55 1.64 1.73 1.78 1.82 1.92 2.01 2.13 2.22 2.30 2.41 2.46 2.64 2.78 2.90 3.12 3.30 AEO 1995 1.42 1.46 1.49 1.55 1.59 1.62 1.67 1.76 1.80 1.89 1.97 2.05 2.13 2.21 2.28 2.38 2.50 AEO 1996 1.35 1.35 1.37 1.39 1.42 1.46 1.50 1.56 1.62 1.67 1.75

  18. Table 2. Real Gross Domestic Product Growth Trends, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Gross Domestic Product Growth Trends, Projected vs. Actual Projected Real GDP Growth Trend (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 3.09 3.15 2.86 2.78 2.73 2.65 2.62 2.60 2.56 2.53 2.52 2.49 2.45 2.41 2.40 2.36 2.32 2.29 AEO 1995 3.66 2.77 2.53 2.71 2.67 2.61 2.55 2.48 2.46 2.45 2.45 2.43 2.39 2.35 2.31 2.27 2.24 AEO 1996 2.61

  19. Table 7b. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2.49 2.60 2.76 2.93 3.05 3.24 3.39 3.60 3.86 4.15 4.40 4.70 5.08 5.39 5.85 6.27 6.59 7.01 AEO 1995 2.44 2.61 2.61 2.70 2.78 2.95 3.11 3.44 3.72 4.10 4.43 4.78 5.07 5.33 5.64 5.95 6.23 AEO 1996 2.08 2.19 2.20 2.39 2.47 2.54 2.64 2.74 2.84 2.95 3.09

  20. Could Material Defects Actually Improve Solar Cells?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Could Material Defects Actually Improve Solar Cells? Could Material Defects Actually Improve Solar Cells? March 21, 2016 Contact: Kathy Kincade, kkincade@lbl.gov, +1 510 495 2124 NRELsolarcell Scientists at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) are using supercomputers to study what may seem paradoxical: certain defects in silicon solar cells may actually improve their performance. The findings, published January 11, 2016 in Applied Physics Letters,

  1. Sustainable NREL Biennial Report, FY 2012 - 2013 (Management Report)

    SciTech Connect (OSTI)

    Slovensky, M.

    2014-03-01

    NREL's Sustainability Program plays a vital role bridging research and operations - integrating energy efficiency, water and material resource conservation and cultural change - adding depth in the fulfillment of NREL's mission. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called "The Voice of NREL" gives an inside perspective of how to become more sustainable while at the same time addressing climate change.

  2. 2012_2013_HAB_Calender_Color&Symbols_FINAL.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2013 Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 March 2013 Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

  3. 2012-2013 SectionI V: Superconducting Cyclotron, Instrumentation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. E. Tribble, L. G. Sobotka, J. Elison, J. C. Blackmon, C. Rasco, M. Kurokawa, H. Baba, H. Otsu, K. Yoneda, and J. Zenihiro Status of STARLiTe beamline at Texas A&M Cyclotron...

  4. FY 2013 Real Property Deferred, Actual, and Required Maintenance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement PDF icon FY ...

  5. FY 2012 Real Property Deferred, Actual, and Required Maintenance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement PDF icon FY ...

  6. Caustic-Side Solvent Extraction: Prediction of Cesium Extraction for Actual Wastes and Actual Waste Simulants

    SciTech Connect (OSTI)

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.; Moyer, B.A.

    2003-02-01

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. It was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.

  7. FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting

    Energy Savers [EERE]

    Requirement | Department of Energy Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement PDF icon FY 2012 DARM Transmittal Letter and Attachment Final.pdf More Documents & Publications FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement Real Property Maintenance Reporting Requirement Memorandum (July 13, 2010)

  8. Next Update: November 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Next Update: November 2013 Table 3B.1. FRCC monthly peak hour demand, by North American Electric Reliability Corporation Assesment Area, 1996-2011 actual, 2012-2013 projected megawatts FRCC Year January February March April May June July August September October November December 1996 39,860 41,896 32,781 28,609 32,059 33,886 35,444 34,341 34,797 30,037 29,033 34,191 1997 37,127 28,144 27,998 28,458 33,859 34,125 35,356 35,375 33,620 31,798 27,669 31,189 1998 27,122 28,116 29,032 28,008 32,879

  9. No Slide Title

    Gasoline and Diesel Fuel Update (EIA)

    Next Update: November 2013 Table 3B.1. FRCC monthly peak hour demand, by North American Electric Reliability Corporation Assesment Area, 1996-2011 actual, 2012-2013 projected megawatts FRCC Year January February March April May June July August September October November December 1996 39,860 41,896 32,781 28,609 32,059 33,886 35,444 34,341 34,797 30,037 29,033 34,191 1997 37,127 28,144 27,998 28,458 33,859 34,125 35,356 35,375 33,620 31,798 27,669 31,189 1998 27,122 28,116 29,032 28,008 32,879

  10. FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting

    Energy Savers [EERE]

    Requirement | Department of Energy Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement PDF icon FY 2013 DARM Transmittal Letter and Attachment Final.pdf More Documents & Publications FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY_09_DM_RM_AM_Reporting_Memo_and_attachment_072009.pdf Real Property Maintenance Reporting Requirement

  11. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Average Electricity Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars, cents per kilowatt-hour in ""dollar year"" specific to each AEO)" ...

  12. Table 16. Total Energy Consumption, Projected vs. Actual Projected

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6. Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 ...

  13. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars, cents per kilowatt-hour)" ,1993,1994,1995,1996,1997,1998,1999,2000,200...

  14. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars, cents per kilowatt-hour) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 ...

  15. Table 9. Natural Gas Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Production, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2...

  16. Table 10. Natural Gas Net Imports, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Net Imports, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,...

  17. "Table 7b. Natural Gas Price, Electric Power Sector, Actual...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,200...

  18. Table 10. Natural Gas Net Imports, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Net Imports, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012...

  19. Progress in 2012-2013 on HEDLP LAB 11-583 Eagle Nebula (Technical...

    Office of Scientific and Technical Information (OSTI)

    the National Technical Information Service, Springfield, VA at www.ntis.gov. Authors: Kane, J O Publication Date: 2013-05-13 OSTI Identifier: 1080402 Report Number(s):...

  20. LBNL/NREL Analysis Predicts Record Low LCOE for Wind Energy in 2012-2013

    Broader source: Energy.gov [DOE]

    A recent analysis conducted by the Lawrence Berkley National Laboratory (LBNL) and the National Renewable Energy Laboratory (NREL) suggests that lower capital costs and continued increases in wind turbine productivity will drive down the levelized cost of wind energy for U.S. wind projects constructed in 2012 – 2013.

  1. Progress in Research 2012 - 2013 / Cyclotron Institute / Texas A&M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University 2 - March 31, 2013 INTRODUCTION R.E. Tribble

  2. 2012-2013 Budget Update and ARRA Closeout Presentation by Joann...

    Office of Environmental Management (EM)

    ... West Valley Demonstration Project 62,875,000 62,875,000 60,303,532 Title X UraniumThorium Reimbursements 70,000,000 69,996,978 54,994,235 Management & Oversight 27,920,000 ...

  3. 2012-2013 Research Communications Program | MIT-Harvard Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excitonics 2-2013 Research Communications Program Dylan Gleb and Geoffrey - outreach project Participants: Gleb Akselrod Dylan Arias Jordan Chesin Daniel Congreve Dorthe Eisele Joey Goodknight Vitor Manfrinato Phil Reusswig Geoffrey Supran Nick Thompson Stephanie Valleau Shane Yost Nano-day Photos Project Photos Video: How Solar Panels Work by Shane Yost and Jordan Chesin Video: The Exciting World of Excitons by Stephanie Valleau and Dan Congreve Video: Electron-Beam Lithography Toward the

  4. Eddy-Covariance and auxiliary measurements, NGEE-Barrow, 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Torn, Margaret; Billesbach, Dave; Raz-Yaseef, Naama

    2014-03-24

    The EC tower is operated as part of the Next Generation Ecosystem Experiment-Arctic (NGEE) at Barrow, Alaska. The tower is collecting flux data from the beginning of the thaw season, early June, and until conditions are completely frozen, early November. The tower is equipped with a Gill R3-50 Sonic Anemometer, LI-7700 (CH4) sensor, a LI-7500A (CO2/H2O) sensor, and radiation sensors (Kipp and Zonen CNR-4 (four component radiometer), two LiCor LI-190 quantum sensors (PAR upwelling and downwelling), and a down-looking Apogee SI-111 infrared radiometer (surface temperature)). The sensors are remotely controlled, and communication with the tower allows us to retrieve information in real time.

  5. 2012-2013 PathSci Kick-Off Event | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -2013 PathSci Kick-Off Event View larger image IMG 1944 View larger image IMG 1946 View larger image IMG 1949 View larger image IMG 1954 View larger image IMG 1955 View larger image IMG 1956 View larger image IMG 1969 View larger image IMG 1971

  6. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect (OSTI)

    HERTING, D.L.

    2007-04-13

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 2224 Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cesium-137 sulfate and sodium) were exceeded in all three of the flowsheet tests that were performed.

  7. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect (OSTI)

    HERTING, D.L.

    2006-10-18

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 222-S Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cs-137 sulfate, and sodium) were exceeded in all three of the flowsheet tests that were performed.

  8. Water Levels, Barrow, Alaska, NGEE Areas A, B, C and D for 2012, 2013, 2014, Final Version, 20150324

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Anna Liljedahl; Cathy Wilson

    2015-06-08

    Ice wedge polygonal tundra water levels were measured at a total of 45 locations representing polygon centers and troughs during three summers. Early season water levels, which were still affected by ice and snow, are represented by manual measurements only. Continuous (less than hourly) measurements followed through early fall (around mid-Sep). The data set contains inundation depth (cm), absolute water level and local ground surface elevation (masl).

  9. CO2 and CH4 Surface Flux, Soil Profile Concentrations, and Stable Isotope Composition, Barrow, Alaska, 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Curtis, J.B.; Vaughn, L.S.; Torn, M.S.; Conrad, M.S.; Chafe, O.; Bill, M.

    2015-12-31

    In August-October 2012 and June-October 2013, co-located measurements were made of surface CH4 and CO2 flux, soil pore space concentrations and stable isotope compositions of CH4 and CO2, and subsurface temperature and soil moisture. Measurements were made in intensive study site 1 areas A, B, and C, and from the site 0 and AB transects, from high-centered, flat-centered, and low-centered polygons, from the center, edge, and trough of each polygon.

  10. Water Levels, Barrow, Alaska, NGEE Areas A, B, C and D for 2012, 2013, 2014, Final Version, 20150324

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Anna Liljedahl; Cathy Wilson

    Ice wedge polygonal tundra water levels were measured at a total of 45 locations representing polygon centers and troughs during three summers. Early season water levels, which were still affected by ice and snow, are represented by manual measurements only. Continuous (less than hourly) measurements followed through early fall (around mid-Sep). The data set contains inundation depth (cm), absolute water level and local ground surface elevation (masl).

  11. Actual and Estimated Energy Savings Comparison for Deep Energy Retrofits in the Pacific Northwest

    SciTech Connect (OSTI)

    Blanchard, Jeremy; Widder, Sarah H.; Giever, Elisabeth L.; Baechler, Michael C.

    2012-10-01

    Seven homes from the Pacific Northwest were selected to evaluate the differences between estimated and actual energy savings achieved from deep energy retrofits. The energy savings resulting from these retrofits were estimated, using energy modeling software, to save at least 30% on a whole-house basis. The modeled pre-retrofit energy use was trued against monthly utility bills. After the retrofits were completed, each of the homes was extensively monitored, with the exception of one home which was monitored pre-retrofit. This work is being conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. This work found many discrepancies between actual and estimated energy savings and identified the potential causes for the discrepancies. The differences between actual energy use and modeled energy use also suggest improvements to improve model accuracy. The difference between monthly whole-house actual and estimated energy savings ranged from 75% more energy saved than predicted by the model to 16% less energy saved for all the monitored homes. Similarly, the annual energy savings difference was between 36% and -14%, which was estimated based on existing monitored savings because an entire year of data is not available. Thus, on average, for all six monitored homes the actual energy use is consistently less than estimates, indicating home owners are saving more energy than estimated. The average estimated savings for the eight month monitoring period is 43%, compared to an estimated savings average of 31%. Though this average difference is only 12%, the range of inaccuracies found for specific end-uses is far greater and are the values used to directly estimate energy savings from specific retrofits. Specifically, the monthly post-retrofit energy use differences for specific end-uses (i.e., heating, cooling, hot water, appliances, etc.) ranged from 131% under-predicted to 77% over-predicted by the model with respect to monitored energy use. Many of the discrepancies were associated with occupant behavior which influences energy use, dramatically in some cases, actual versus modeled weather differences, modeling input limitations, and complex homes that are difficult to model. The discrepancy between actual and estimated energy use indicates a need for better modeling tools and assumptions. Despite the best efforts of researchers, the estimated energy savings are too inaccurate to determine reliable paybacks for retrofit projects. While the monitored data allows researchers to understand why these differences exist, it is not cost effective to monitor each home with the level of detail presented here. Therefore an appropriate balance between modeling and monitoring must be determined for more widespread application in retrofit programs and the home performance industry. Recommendations to address these deficiencies include: (1) improved tuning process for pre-retrofit energy use, which currently utilized broad-based monthly utility bills; (2) developing simple occupant-based energy models that better address the many different occupant types and their impact on energy use; (3) incorporating actual weather inputs to increase accuracy of the tuning process, which uses utility bills from specific time period; and (4) developing simple, cost-effective monitoring solutions for improved model tuning.

  12. Reaction chemistry of nitrogen species in hydrothermal systems: Simple reactions, waste simulants, and actual wastes

    SciTech Connect (OSTI)

    Dell`Orco, P.; Luan, L.; Proesmans, P.; Wilmanns, E.

    1995-02-01

    Results are presented from hydrothermal reaction systems containing organic components, nitrogen components, and an oxidant. Reaction chemistry observed in simple systems and in simple waste simulants is used to develop a model which presents global nitrogen chemistry in these reactive systems. The global reaction path suggested is then compared with results obtained for the treatment of an actual waste stream containing only C-N-0-H species.

  13. Dose Rate Analysis Capability for Actual Spent Fuel Transportation Cask Contents

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Lefebvre, Robert A; Peplow, Douglas E.; Williams, Mark L; Scaglione, John M

    2014-01-01

    The approved contents for a U.S. Nuclear Regulatory Commission (NRC) licensed spent nuclear fuel casks are typically based on bounding used nuclear fuel (UNF) characteristics. However, the contents of the UNF canisters currently in storage at independent spent fuel storage installations are considerably heterogeneous in terms of fuel assembly burnup, initial enrichment, decay time, cladding integrity, etc. Used Nuclear Fuel Storage, Transportation & Disposal Analysis Resource and Data System (UNF ST&DARDS) is an integrated data and analysis system that facilitates automated cask-specific safety analyses based on actual characteristics of the as-loaded UNF. The UNF-ST&DARDS analysis capabilities have been recently expanded to include dose rate analysis of as-loaded transportation packages. Realistic dose rate values based on actual canister contents may be used in place of bounding dose rate values to support development of repackaging operations procedures, evaluation of radiation-related transportation risks, and communication with stakeholders. This paper describes the UNF-ST&DARDS dose rate analysis methodology based on actual UNF canister contents and presents sample dose rate calculation results.

  14. Treatability studies of actual listed waste sludges from the Oak Ridge Reservation (ORR)

    SciTech Connect (OSTI)

    Jantzen, C.M.; Peeler, D.K.; Gilliam, T.M.; Bleier, A.; Spence, R.D.

    1996-05-06

    Oak Ridge National Laboratory (ORNL) and Savannah River Technology Center (SRTC) are investigating vitrification for various low-level and mixed wastes on the Oak Ridge Reservation (ORR). Treatability studies have included surrogate waste formulations at the laboratory-, pilot-, and field-scales and actual waste testing at the laboratory- and pilot-scales. The initial waste to be processing through SRTC`s Transportable Vitrification System (TVS) is the K-1407-B and K-1407-C (B/C) Pond sludge waste which is a RCRA F-listed waste. The B/C ponds at the ORR K-25 site were used as holding and settling ponds for various waste water treatment streams. Laboratory-, pilot-, and field- scale ``proof-of-principle`` demonstrations are providing needed operating parameters for the planned field-scale demonstration with actual B/C Pond sludge waste at ORR. This report discusses the applied systems approach to optimize glass compositions for this particular waste stream through laboratory-, pilot-, and field-scale studies with surrogate and actual B/C waste. These glass compositions will maximize glass durability and waste loading while optimizing melt properties which affect melter operation, such as melt viscosity and melter refractory corrosion. Maximum waste loadings minimize storage volume of the final waste form translating into considerable cost savings.

  15. Actual versus predicted impacts of three ethanol plants on aquatic and terrestrial resources

    SciTech Connect (OSTI)

    Eddlemon, G.K.; Webb, J.W.; Hunsaker, D.B. Jr.; Miller, R.L.

    1993-03-15

    To help reduce US dependence on imported petroleum, Congress passed the Energy Security Act of 1980 (public Law 96-294). This legislation authorized the US Department of Energy (DOE) to promote expansion of the fuel alcohol industry through, among other measures, its Alcohol Fuels Loan Guarantee Program. Under this program, selected proposals for the conversion of plant biomass into fuel-grade ethanol would be granted loan guarantees. of 57 applications submitted for loan guarantees to build and operate ethanol fuel projects under this program, 11 were considered by DOE to have the greatest potential for satisfying DOE`s requirements and goals. In accordance with the National Environmental Policy Act (NEPA), DOE evaluated the potential impacts of proceeding with the Loan Guarantee Program in a programmatic environmental assessment (DOE 1981) that resulted in a finding of no significant impact (FANCY) (47 Federal Register 34, p. 7483). The following year, DOE conducted site-specific environmental assessments (EAs) for 10 of the proposed projects. These F-As predicted no significant environmental impacts from these projects. Eventually, three ethanol fuel projects received loan guarantees and were actually built: the Tennol Energy Company (Tennol; DOE 1982a) facility near Jasper in southeastern Tennessee; the Agrifuels Refining Corporation (Agrifuels; DOE 1985) facility near New Liberia in southern Louisiana; and the New Energy Company of Indiana (NECI; DOE 1982b) facility in South Bend, Indiana. As part of a larger retrospective examination of a wide range of environmental effects of ethanol fuel plants, we compared the actual effects of the three completed plants on aquatic and terrestrial resources with the effects predicted in the NEPA EAs several years earlier. A secondary purpose was to determine: Why were there differences, if any, between actual effects and predictions? How can assessments be improved and impacts reduced?

  16. TESTING OF THE SPINTEK ROTARY MICROFILTER USING ACTUAL HANFORD WASTE SAMPLES

    SciTech Connect (OSTI)

    HUBER HJ

    2010-04-13

    The SpinTek rotary microfilter was tested on actual Hanford tank waste. The samples were a composite of archived Tank 241-AN-105 material and a sample representing single-shell tanks (SST). Simulants of the two samples have been used in non-rad test runs at the 222-S laboratory and at Savannah River National Laboratory (SRNL). The results of these studies are compared in this report. Two different nominal pore sizes for the sintered steel rotating disk filter were chosen: 0.5 and 0.1 {micro}m. The results suggest that the 0.5-{micro}m disk is preferable for Hanford tank waste for the following reasons: (1) The filtrate clarity is within the same range (<<4 ntu for both disks); (2) The filtrate flux is in general higher for the 0.5-{micro}m disk; and (3) The 0.1-{micro}m disk showed a higher likelihood of fouling. The filtrate flux of the actual tank samples is generally in the range of 20-30% compared to the equivalent non-rad tests. The AN-105 slurries performed at about twice the filtrate flux of the SST slurries. The reason for this difference has not been identified. Particle size distributions in both cases are very similar; comparison of the chemical composition is not conclusive. The sole hint towards what material was stuck in the filter pore holes came from the analysis of the dried flakes from the surface of the fouled 0.1-{micro}m disk. A cleaning approach developed by SRNL personnel to deal with fouled disks has been found adaptable when using actual Hanford samples. The use of 1 M nitric acid improved the filtrate flux by approximately two times; using the same simulants as in the non-rad test runs showed that the filtrate flux was restored to 1/2 of its original amount.

  17. Method and apparatus for distinguishing actual sparse events from sparse event false alarms

    DOE Patents [OSTI]

    Spalding, Richard E. (Albuquerque, NM); Grotbeck, Carter L. (Albuquerque, NM)

    2000-01-01

    Remote sensing method and apparatus wherein sparse optical events are distinguished from false events. "Ghost" images of actual optical phenomena are generated using an optical beam splitter and optics configured to direct split beams to a single sensor or segmented sensor. True optical signals are distinguished from false signals or noise based on whether the ghost image is presence or absent. The invention obviates the need for dual sensor systems to effect a false target detection capability, thus significantly reducing system complexity and cost.

  18. ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM

    SciTech Connect (OSTI)

    Martino, C.

    2014-05-28

    Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following: ? Determine the extent to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed. ? Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration was independent of added glycolate concentration. The change in soluble plutonium content was dependent on the added glycolate concentration, with higher levels of glycolate (5 g/L and 10 g/L) appearing to suppress the plutonium solubility. The inclusion of glycolate did not change the dissolution of or sorption onto actual-waste 2H-evaporator pot scale to an extent that will impact Tank Farm storage and concentration. The effects that were noted involved dissolution of components from evaporator scale and precipitation of components onto evaporator scale that were independent of the level of added glycolate.

  19. PERFORMANCE TESTING OF THE NEXT-GENERATION CSSX SOLVENT WITH ACTUAL SRS TANK WASTE

    SciTech Connect (OSTI)

    Pierce, R.; Peters, T.; Crowder, M.; Fink, S.

    2011-11-01

    Efforts are underway to qualify the Next-Generation Solvent for the Caustic Side Solvent Extraction (CSSX) process. Researchers at multiple national laboratories have been involved in this effort. As part of the effort to qualify the solvent extraction system at the Savannah River Site (SRS), SRNL performed a number of tests at various scales. First, SRNL completed a series of batch equilibrium, or Extraction-Scrub-Strip (ESS), tests. These tests used {approx}30 mL of Next-Generation Solvent and either actual SRS tank waste, or waste simulant solutions. The results from these cesium mass transfer tests were used to predict solvent behavior under a number of conditions. At a larger scale, SRNL assembled 12 stages of 2-cm (diameter) centrifugal contactors. This rack of contactors is structurally similar to one tested in 2001 during the demonstration of the baseline CSSX process. Assembly and mechanical testing found no issues. SRNL performed a nonradiological test using 35 L of cesium-spiked caustic waste simulant and 39 L of actual tank waste. Test results are discussed; particularly those related to the effectiveness of extraction.

  20. Filtration and Leach Testing for REDOX Sludge and S-Saltcake Actual Waste Sample Composites

    SciTech Connect (OSTI)

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Geeting, John GH; Hallen, Richard T.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Snow, Lanee A.; Swoboda, Robert G.

    2009-02-20

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.( ) The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP-RPP-WTP-467, eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste-testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan • Characterizing the homogenized sample groups • Performing parametric leaching testing on each group for compounds of interest • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on filtration/leaching tests performed on two of the eight waste composite samples and follow-on parametric tests to support aluminum leaching results from those tests.

  1. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    SciTech Connect (OSTI)

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-02-28

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

  2. An insight into actual energy use and its drivers in high-performance buildings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accuratelymore » indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these findings are intended to help architects, engineers, operators, and policy makers improve the design and operation of HPBs.« less

  3. An insight into actual energy use and its drivers in high-performance buildings

    SciTech Connect (OSTI)

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accurately indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these findings are intended to help architects, engineers, operators, and policy makers improve the design and operation of HPBs.

  4. BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE

    SciTech Connect (OSTI)

    Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

    2008-09-25

    Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The radioactive Tank 48H DMR product was primarily made up of soluble carbonates. The three most abundant species were thermonatrite, [Na{sub 2}CO{sub 3} {center_dot} H{sub 2}O], sodium carbonate, [Na{sub 2}CO{sub 3}], and trona, [Na{sub 3}H(CO{sub 3}){sub 2} {center_dot} 2H{sub 2}O] the same as the ESTD FBSR. (6) Insoluble solids analyzed by X-Ray Diffraction (XRD) did not detect insoluble carbonate species. However, they still may be present at levels below 2 wt%, the sensitivity of the XRD methodology. Insoluble solids XRD characterization indicated that various Fe/Ni/Cr/Mn phases are present. These crystalline phases are associated with the insoluble sludge components of Tank 48H slurry and impurities in the Erwin coal ash. The percent insoluble solids, which mainly consist of un-burnt coal and coal ash, in the products were 4 to 11 wt% for the radioactive runs. (7) The Fe{sup +2}/Fe{sub total} REDOX measurements ranged from 0.58 to 1 for the three radioactive Bench-scale tests. REDOX measurements > 0.5 showed a reducing atmosphere was maintained in the DMR indicating that pyrolysis was occurring. (8) Greater than 90% of the radioactivity was captured in the product for all three runs. (9) The collective results from the FBSR simulant tests and the BSR simulant tests indicate that the same chemistry occurs in the two reactors. (10) The collective results from the BSR simulant runs and the BSR radioactive waste runs indicates that the same chemistry occurs in the simulant as in the real waste. The FBSR technology has been proven to destroy the organics and nitrates in the Tank 48H waste and form the anticipated solid carbonate phases as expected.

  5. Actual Versus Estimated Utility Factor of a Large Set of Privately Owned Chevrolet Volts

    SciTech Connect (OSTI)

    John Smart; Thomas Bradley; Stephen Schey

    2014-04-01

    In order to determine the overall fuel economy of a plug-in hybrid electric vehicle (PHEV), the amount of operation in charge depleting (CD) versus charge sustaining modes must be determined. Mode of operation is predominantly dependent on customer usage of the vehicle and is therefore highly variable. The utility factor (UF) concept was developed to quantify the distance a group of vehicles has traveled or may travel in CD mode. SAE J2841 presents a UF calculation method based on data collected from travel surveys of conventional vehicles. UF estimates have been used in a variety of areas, including the calculation of window sticker fuel economy, policy decisions, and vehicle design determination. The EV Project, a plug-in electric vehicle charging infrastructure demonstration being conducted across the United States, provides the opportunity to determine the real-world UF of a large group of privately owned Chevrolet Volt extended range electric vehicles. Using data collected from Volts enrolled in The EV Project, this paper compares the real-world UF of two groups of Chevrolet Volts to estimated UF's based on J2841. The actual observed fleet utility factors (FUF) for the MY2011/2012 and MY2013 Volt groups studied were observed to be 72% and 74%, respectively. Using the EPA CD ranges, the method prescribed by J2841 estimates a FUF of 65% and 68% for the MY2011/2012 and MY2013 Volt groups, respectively. Volt drivers achieved higher percentages of distance traveled in EV mode for two reasons. First, they had fewer long-distance travel days than drivers in the national travel survey referenced by J2841. Second, they charged more frequently than the J2841 assumption of once per day - drivers of Volts in this study averaged over 1.4 charging events per day. Although actual CD range varied widely as driving conditions varied, the average CD ranges for the two Volt groups studied matched the EPA CD range estimates, so CD range variation did not affect FUF results.

  6. FRACTIONAL CRYSTALLIZATION LABORATORY TESTING FOR INCLUSION & COPRECIPITATION WITH ACTUAL TANK WASTE

    SciTech Connect (OSTI)

    WARRANT, R.W.

    2006-12-11

    Fractional crystallization is being considered as a pretreatment method to support supplemental treatment of retrieved single-shell tank (SST) saltcake waste at the Hanford Site. The goal of the fractional crystallization process is to optimize the separation of the radioactivity (radionuclides) from the saltcake waste and send it to the Waste Treatment and Immobilization Plant and send the bulk of the saltcake to the supplemental treatment plant (bulk vitrification). The primary factors that influence the separation efficiency are (1) solid/liquid separation efficiency, (2) contaminant inclusions, and (3) co-precipitation. This is a report of testing for factors (2) and (3) with actual tank waste samples. For the purposes of this report, contaminant inclusions are defined as the inclusion of supernatant, containing contaminating radionuclides, in a pocket within the precipitating saltcake crystals. Co-precipitation is defined as the simultaneous precipitation of a saltcake crystal with a contaminating radionuclide. These two factors were tested for various potential fractional crystallization product salts by spiking the composite tank waste samples (SST Early or SST Late, external letter CH2M-0600248, ''Preparation of Composite Tank Waste Samples for ME-21 Project'') with the desired target salt and then evaporating to precipitate that salt. SST Early represents the typical composition of dissolved saltcake early in the retrieval process, and SST Late represents the typical composition during the later stages of retrieval.

  7. Relationship between self-reported activity levels and actual heart rates in teenagers

    SciTech Connect (OSTI)

    Terblanche, A.P.S.; Ozkaynak, H.; Spengler, J.D.; Butler, D.A. )

    1991-08-01

    A study was designed to explore the relationship between self-reported activity levels and actual heart rate (HR) as measured by a portable heart rate monitor. Twenty-two teenagers (8 boys, 14 girls, median age of 16) from Watertown High School, Massachusetts participated in this pilot study which involved continuous monitoring of HR during normal daily activities and simultaneous completion of a time-activity diary. There were 31 successful monitoring sessions ranging from 1.9 to 17 hours with a median monitoring time of 12.6 hours. Four unsuccessful monitoring sessions were experienced due to equipment failure. Apart from participant cooperation, the single most important factor affecting the feasibility of continuous heart rate monitoring was found to be equipment design. Th overall average heart rate observed was 88.4 bpm (SD = 24.3). An individual's correlation coefficient for perceived activity level (documented in half-hour intervals) and heart rate (averaged over the half-hour intervals) varied from 0.24 to 0.89. More than half of the correlation coefficients were below 0.40. There was a significant difference between average heart rate for time spent indoors (90 bpm) versus outdoors (103 bpm) even after correcting for sleeping time. It is concluded that continuous HR monitoring with simultaneous completion of a time/activity dairy is feasible and is a promising source of information for studies on exposure to air pollutants.

  8. Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado

    SciTech Connect (OSTI)

    Arena, L.; Williamson, J.

    2013-11-01

    To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In this project, the Building America CARB team evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

  9. Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado

    SciTech Connect (OSTI)

    Arena, L.; Williamson, J.

    2013-11-01

    To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In NREL's report titled 'Assessing and Improving the Accuracy of Energy Analysis of Residential Buildings,' researchers propose a method for improving the accuracy of residential energy analysis methods. A key step in this process involves the comparisons of predicted versus metered energy use and savings. In support of this research need, CARB evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. In this study, CARB seeks to improve the accuracy of modeling software while assessing retrofit measures to specifically determine which are most effective for large multifamily complexes in the cold climate region. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

  10. ACTUAL-WASTE TESTING OF ULTRAVIOLET LIGHT TO AUGMENT THE ENHANCED CHEMICAL CLEANING OF SRS SLUDGE

    SciTech Connect (OSTI)

    Martino, C.; King, W.; Ketusky, E.

    2012-07-10

    In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate Enhanced Chemical Cleaning (ECC), an alternative to the baseline 8 wt% oxalic acid (OA) chemical cleaning technology for tank sludge heel removal. ECC utilizes a more dilute OA solution (2 wt%) and an oxalate destruction technology using ozonolysis with or without the application of ultraviolet (UV) light. SRNL conducted tests of the ECC process using actual SRS waste material from Tanks 5F and 12H. The previous phase of testing involved testing of all phases of the ECC process (sludge dissolution, OA decomposition, product evaporation, and deposition tank storage) but did not involve the use of UV light in OA decomposition. The new phase of testing documented in this report focused on the use of UV light to assist OA decomposition, but involved only the OA decomposition and deposition tank portions of the process. Compared with the previous testing at analogous conditions without UV light, OA decomposition with the use of UV light generally reduced time required to reach the target of <100 mg/L oxalate. This effect was the most pronounced during the initial part of the decomposition batches, when pH was <4. For the later stages of each OA decomposition batch, the increase in OA decomposition rate with use of the UV light appeared to be minimal. Testing of the deposition tank storage of the ECC product resulted in analogous soluble concentrations regardless of the use or non-use of UV light in the ECC reactor.

  11. STEAM REFORMING TECHNOLOGY DEMONSTRATION FOR THE DESTRUCTION OF ORGANICS ON ACTUAL DOE SAVANNAH RIVER SITE TANK 48H WASTE 9138

    SciTech Connect (OSTI)

    Burket, P

    2009-02-24

    This paper describes the design of the Bench-scale Steam Reformer (BSR); a processing unit for demonstrating steam reforming technology on actual radioactive waste [1]. It describes the operating conditions of the unit used for processing a sample of Savannah River Site (SRS) Tank 48H waste. Finally, it compares the results from processing the actual waste in the BSR to processing simulant waste in the BSR to processing simulant waste in a large pilot scale unit, the Fluidized Bed Steam Reformer (FBSR), operated at Hazen Research Inc. in Golden, CO. The purpose of this work was to prove that the actual waste reacted in the same manner as the simulant waste in order to validate the work performed in the pilot scale unit which could only use simulant waste.

  12. Final Report. LAW Glass Formulation to Support AP-101 Actual Waste Testing, VSL-03R3470-2, Rev. 0

    SciTech Connect (OSTI)

    Muller, I. S.; Pegg, I. L.; Rielley, Elizabeth; Carranza, Isidro; Hight, Kenneth; Lai, Shan-Tao T.; Mooers, Cavin; Bazemore, Gina; Cecil, Richard; Kruger, Albert A.

    2015-06-22

    The main objective of the work was to develop and select a glass formulation for vitrification testing of the actual waste sample of LAW AP-101 at Battelle - Pacific Northwest Division (PNWD). Other objectives of the work included preparation and characterization of glasses to demonstrate compliance with contract and processing requirements, evaluation of the ability to achieve waste loading requirements, testing to demonstrate compatibility of the glass melts with melter materials of construction, comparison of the properties of simulant and actual waste glasses, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  13. Ion exchange removal of cesium from simulated and actual supernate from Hanford tanks 241-SY-101 and 241-SY-103

    SciTech Connect (OSTI)

    Brown, G.N.; Bontha, J.R.; Carlson, C.D.

    1995-09-01

    Pacific Northwest Laboratory (PNL), in conjunction with the Process Chemistry and Statistics Section of Westinghouse Hanford Company (WHC), conducted this study as part of the Supernatant Treatment Development Task for the Initial Pretreatment Module (IPM) Applied Engineering Project. The study assesses the performance of the CS-100 ion exchange material for removing cesium from simulated and actual alkaline supernate from Hanford tanks 241-SY-101 and 241-SY-103. The objective of these experiments is to compare the cesium ion exchange loading and elution profiles of actual and simulated wastes. Specific experimental objectives include (1) demonstration of decontamination factors (DF) for cesium removal, 92) verification of simulant performance, (3) investigation of waste/exchanger chemistry, and (4) determination of the radionuclide content of the regenerated CS-100 resin prior to disposal.

  14. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Thousands of Megawatthours and 2006 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.) ","NPCC (U.S.)

  15. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2008 through 2012 " ,"(Thousands of Megawatthours and 2007 Base Year)",,,,,,,,,,,," " ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.)

  16. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    Jaunary 2010" ,"Next Update: October 2010" ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2013 " ,"(Thousands of Megawatthours and 2008 Base Year)",,,,,,,,,,,," " ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  17. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    . Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014" ,"(Thousands of Megawatthours and 2009 Base Year)",,,,,,,,,,,," " ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.)

  18. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 Base Year)" ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.) ","NPCC (U.S.)

  19. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2007 and Projected 2008 through 2012 " ,"(Megawatts and 2007 Base Year)" ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid",,,," " ,"Projected Year Base","Year",,"FRCC","MRO (U.S.)

  20. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    8" ,"Released: February 2010" ,"Next Update: October 2010" ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2013 " ,"(Megawatts and 2008 Base Year)" ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid",,,,"

  1. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    9" ,"Released: December 2010" ,"Next Update: December 2011" ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014 " ,"(Megawatts and 2009 Base Year)" ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid",,,,"

  2. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC"," MRO (U.S.) ","NPCC (U.S.)

  3. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2007 and Projected 2008 through 2012 " ,"(Megawatts and 2007 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC"," MRO (U.S.) ","NPCC (U.S.)

  4. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2013 " ,"(Megawatts and 2008 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC"," MRO (U.S.) ","NPCC (U.S.)

  5. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014 " ,"(Megawatts and 2009 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC"," MRO (U.S.) ","NPCC (U.S.)

  6. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    5" ,"Released: January 23, 2008" ,"Next Update: October 2007" ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, " ,"2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected

  7. Technique of estimation of actual strength of a gas pipeline section at its deformation in landslide action zone

    SciTech Connect (OSTI)

    Tcherni, V.P.

    1996-12-31

    The technique is given which permits determination of stress and strain state (SSS) and estimation of actual strength of a section of a buried main gas pipeline (GP) in the case of its deformation in a landslide action zone. The technique is based on the use of three-dimensional coordinates of axial points of the deformed GP section. These coordinates are received by a full-scale survey. The deformed axis of the surveyed GP section is described by the polynomial. The unknown coefficients of the polynomial can be determined from the boundary conditions at points of connection with contiguous undeformed sections as well as by use of minimization methods in mathematical processing of full-scale survey results. The resulting form of GP section`s axis allows one to determine curvatures and, accordingly, bending moments along all the length of the considered section. The influence of soil resistance to longitudinal displacements of a pipeline is used to determine longitudinal forces. Resulting values of bending moments and axial forces as well as the known value of internal pressure are used to analyze all necessary components of an actual SSS of pipeline section and to estimate its strength by elastic analysis.

  8. Next Update: December 2011 Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region,

    U.S. Energy Information Administration (EIA) Indexed Site

    . Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, 2009 and Projected 2010 through 2014 2009 3,832,180 225,966 213,797 285,625 880,377 997,142 202,301 308,278 718,694 Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP TRE WECC (U.S.) 3,969,750 223,174 225,167 291,540 961,436 1,027,470 211,438 310,444 719,081 4,084,175 225,498 229,258 292,816 1,024,183 1,051,645 215,333 316,194 729,248 4,203,875 229,393 240,817 295,623 1,081,320 1,072,124

  9. Next Update: October 2009 Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region,

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, 2006 and Projected 2008 through 2012 2007 4,012,728 232,405 217,602 301,766 954,700 1,049,298 210,875 307,064 739,018 Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP TRE (ERCOT) WECC (U.S.) 4,085,683 242,923 225,058 301,767 973,800 1,073,081 208,532 313,946 746,575 4,149,201 248,996 230,745 305,223 984,000 1,086,304 212,884 319,355 761,694 4,226,516 255,216 239,483 308,534 999,200

  10. Next Update: October 2010 Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region,

    U.S. Energy Information Administration (EIA) Indexed Site

    Jaunary 2010 Next Update: October 2010 Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, 2008 and Projected 2009 through 2013 2008 3,989,058 226,874 227,536 297,362 936,201 1,035,390 207,603 312,401 745,691 Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP TRE WECC (U.S.) 4,025,705 227,690 233,519 295,883 958,792 1,051,350 207,850 312,205 738,416 4,076,698 228,579 239,702 295,753 967,962 1,067,893 211,343 315,065 750,401

  11. Making appropriate comparisons of estimated and actual costs of reducing SO{sub 2} emissions under Title IV

    SciTech Connect (OSTI)

    Smith, A.E.

    1998-12-31

    A current sentiment within some parts of the environmental policy community is that market-based regulatory approaches such as emissions trading have proven so effective that actual costs will be only a small fraction of what ex ante cost estimation procedures would project. With this line of reasoning, some have dismissed available cost estimates for major proposed new regulations, such as the new PM and ozone NAAQS, as not meaningful for policy decisions. The most commonly used evidence in support of this position is the experience with SO{sub 2} reductions under Title IV of the 1990 Clean Air Act Amendments. In Title IV, a market for emissions allowances has been used to achieve reductions in sulfur dioxides (SO{sub 2}) to ameliorate acid rain. It is commonly asserted today that the cost of achieving the SO{sub 2} emissions reductions has been only one-tenth or less of what Title IV was originally expected to cost. This paper demonstrates that, to the contrary, actual costs for SO{sub 2} reductions remain roughly in line with original estimates associated with Title IV. Erroneous conclusions about Title IV`s costs are due to inappropriate comparisons of a variety of different measures that appear to be comparable only because they are all stated in dollars per ton. Program cost estimates include the total costs of a fully-implemented regulatory program. The very low costs of Title IV that are commonly cited today are neither directly reflective of a fully implemented Title IV, (which is still many years away) nor reflective of all the costs already incurred. Further, a careful review of history finds that the initial cost estimates that many cite were never associated with Title IV. Technically speaking, people are comparing the estimated control costs for the most-costly power plant associated with earlier acid rain regulatory proposals with prices from a market that do not directly reflect total costs.

  12. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Assessment Area,"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Assessment Area," ,"1990-2010 Actual, 2011-2015 Projected" ,"(Thousands of Megawatthours)" ,"Interconnection","NERC Regional Assesment Area" ,,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"2011E","2012E","2013E","2014E","2015E" ,"Eastern

  13. ACTUAL-WASTE TESTS OF ENHANCED CHEMICAL CLEANING FOR RETRIEVAL OF SRS HLW SLUDGE TANK HEELS AND DECOMPOSITION OF OXALIC ACID

    SciTech Connect (OSTI)

    Martino, C.; King, W.; Ketusky, E.

    2012-01-12

    Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge.

  14. Virginia Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 2013 View History Proved Reserves as of Dec. 31 135 126 2012-2013 Adjustments -1 3 2012-2013 Revision Increases 0 3 2012-2013 Revision Decreases 0 12 2012-2013 Sales 0 0...

  15. Mississippi Shale Gas Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 2013 View History Proved Reserves as of Dec. 31 19 37 2012-2013 Adjustments 21 23 2012-2013 Revision Increases 0 0 2012-2013 Revision Decreases 0 0 2012-2013 Sales 0 0...

  16. Characterization, Leaching, and Filtration Testing for Bismuth Phosphate Sludge (Group 1) and Bismuth Phosphate Saltcake (Group 2) Actual Waste Sample Composites

    SciTech Connect (OSTI)

    Lumetta, Gregg J.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn; Edwards, Matthew K.; Fiskum, Sandra K.; Hallen, Richard T.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.

    2009-02-19

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.() The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—bismuth phosphate sludge (Group 1) and bismuth phosphate saltcake (Group 2)—are the subjects of this report. The Group 1 waste was anticipated to be high in phosphorus and was implicitly assumed to be present as BiPO4 (however, results presented here indicate that the phosphate in Group 1 is actually present as amorphous iron(III) phosphate). The Group 2 waste was also anticipated to be high in phosphorus, but because of the relatively low bismuth content and higher aluminum content, it was anticipated that the Group 2 waste would contain a mixture of gibbsite, sodium phosphate, and aluminum phosphate. Thus, the focus of the Group 1 testing was on determining the behavior of P removal during caustic leaching, and the focus of the Group 2 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  17. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    January 2010" ,"Next Update: October 2010" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2010 " ,"(Megawatts and 2008 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  18. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, " ,"1996 through 2003 and Projected 2004 through 2005 " ,"(Megawatts and 2003 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

  19. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, " ,"2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  20. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    6" ,"Released: February 7, 2008" ,"Next Update: October 2008" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  1. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    7" ,"Released: February 2009" ,"Next Update: October 2009" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2007 and Projected 2008 through 2009 " ,"(Megawatts and 2007 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  2. SU-E-T-417: A Method for Predicting and Correcting the Dosimetric Effect of a Radiotherapy Treatment Couch in Actual Treatment Position

    SciTech Connect (OSTI)

    Duan, J; Shen, S; Wu, X; Huang, M; Benhabib, S; Cardan, R; Popple, R; Brezovich, I

    2014-06-01

    Purpose: Although radiation attenuation by the treatment couch can be included in the calculation of radiotherapy dose, difference between planned and actual treatment couch positions can generate significant dose discrepancies. We propose a method to predict and correct the dosimetric effect of the couch in actual treatment position. Methods: The couch transmission factor, T, varies with beam angle, G, couch lateral position, x, and vertical position, y, i.e., T=T(x,y,G). If T(x,y,G) is known for a fixed couch vertical position y=h, the transmission of central-axis beam (CAX) T(x,y,G) can be obtained by T(x,y,G)=T(x{sup +},h,G), where x{sup +}=x-(y-h)tan(G) and G is the angle between the beam and the vertical axis. Similarly, the transmission of any off-CAX point can be obtained using a similar formula. We measured CAX couch transmission at a fixed couch vertical position over the couch lateral motion range for all gantry angles by continuously scanning rotating arc beams. A 2D couch transmission correction matrix can thus be generated from T(x,h,G) for each treatment field for the actual couch position. By applying the transmission correction matrix to the planned field dose, the couch effect can be predicted and corrected. To verify this method, we measured couch transmission T(x, y=10cm, G=225)(225=IEC 135) and compared to that obtained from equivalent T(x{sup +}, y=3cm, G=225) over the range of lateral motion with a step size of 2 cm . Results: The measured couch transmission factors T(x, y=10cm, G=225) are in excellent agreement with those obtained from the equivalent T(x{sup +}, y=3cm, G=225). The mean difference is 0.004060.00135. Conclusion: The couch transmission correction matrix for any couch position and beam angle can be obtained from one set of scanning measurements at a fixed couch vertical position. The dosimetric effect of the treatment couch can be predicted and corrected by applying the couch transmission correction to the planned dose.

  3. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    SciTech Connect (OSTI)

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.

  4. Next Update: December 2011 Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region,

    U.S. Energy Information Administration (EIA) Indexed Site

    Released: December 2010 Next Update: December 2011 Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, 2009 and Projected 2010 through 2014 (Megawatts and 2009 Base Year) 2009 725,958 46,550 37,963 55,944 161,241 191,032 41,465 63,518 128,245 Contiguou s U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP TRE WECC (U.S.) 772,089 46,006 42,240 60,215 177,688 201,350 43,395 63,810 137,385 785,069 46,124 42,733 60,820 181,867 205,351

  5. Next Update: December 2011 Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region,

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, 2009 and Projected 2010 through 2014 (Megawatts and 2009 Base Year) 2009/2010 668,818 53,022 35,351 44,864 143,827 193,135 32,863 56,191 109,565 Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP TRE WECC (U.S.) 639,073 46,235 35,722 46,374 143,040 183,614 31,415 43,823 108,850 646,845 46,821 36,816 46,529 146,591 186,364 33,047 43,823 106,854 657,839 47,558 37,359 46,753

  6. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    SciTech Connect (OSTI)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small office; and 5) simulated energy savings and peak demand reduction by energy conservation measures using the TMY3 weather data can be significantly underestimated or overestimated. It is crucial to run multi-decade simulations with AMY weather data to fully assess the impact of weather on the long-term performance of buildings, and to evaluate the energy savings potential of energy conservation measures for new and existing buildings from a life cycle perspective.

  7. LA, South Onshore Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 View History Proved Reserves as of Dec. 31 0 0 10 2011-2013 Adjustments 0 2 2012-2013 Revision Increases 0 0 2012-2013 Revision Decreases 0 0 2012-2013 Sales 0 0...

  8. TX, RRC District 8A Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 View History Proved Reserves as of Dec. 31 0 0 2012-2013 Adjustments 0 0 2012-2013 Revision Increases 0 0 2012-2013 Revision Decreases 0 0 2012-2013 Sales 0 0 2012-2013...

  9. Kansas Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 View History Proved Reserves as of Dec. 31 2 3 2012-2013 Adjustments 0 0 2012-2013 Revision Increases 0 0 2012-2013 Revision Decreases 0 0 2012-2013 Sales 0 0 2012-2013...

  10. Discomfort Glare: What Do We Actually Know?

    SciTech Connect (OSTI)

    Clear, Robert

    2012-02-29

    Glare models were reviewed with an eye for missing conditions or inconsistencies. We found ambiguities as to when to use small source versus large source models, and as to what constitutes a glare source in a complex scene. We also found surprisingly little information validating the assumed independence of the factors driving glare. A barrier to progress in glare research is the lack of a standardized dependent measure of glare. We inverted the glare models to predict luminance, and compared model predictions against the 1949 Luckiesh & Guth data that form the basis of many of them. The models perform surprisingly poorly, particularly with regards to the luminance-size relationship and additivity. Evaluating glare in complex scenes may require fundamental changes to form of the glare models.

  11. Form EIA-411 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    2013" "Next Update: November 2013" "Table 5A.1. FRCC summer historical and projected demand and capacity, data year 2011" "megawatts" ,,,,,,,"Actual","Projected" "Data Year","Country","Season","Area","Subarea","Line#","DESCRIPTION",2011,2012,2013,2014,2015,,2016,2017,2018,2019,2020,2021

  12. Form EIA-411 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    2013" "Next Update: November 2013" "Table 5B.1. FRCC winter historical and projected demand and capacity, data year 2011" "megawatts" ,,,,,,,"Actual","Projected" "Data Year","Country","Season","Area","Subarea","Line#","DESCRIPTION",2011,2012,2013,2014,2015,,2016,2017,2018,2019,2020,2021

  13. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    A.1. FRCC Summer Historical and Projected Demand and Capacity, Data Year 2010" ,"(Megawatts)" ,,,,,,,,"Actual","Projected" ,"Data Year","Country","Season","Area","Subarea","Line#","DESCRIPTION",2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020 ,2010,"US","SUM","FRCC","-",1,"Unrestricted Non-coincident Peak

  14. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    B.1. FRCC Winter Historical and Projected Demand and Capacity, Data Year 2010" ,"(Megawatts)" ,,,,,,,,"Actual","Projected" ,"Data Year","Country","Season","Area","Subarea","Line#","DESCRIPTION",2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020 ,2010,"US","WIN","FRCC","-",1,"Unrestricted Non-coincident Peak

  15. Texas Onshore-New Mexico Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 View History Natural Gas Processed (Million Cubic Feet) 29,056 869 2012-2013 Total Liquids Extracted (Thousand Barrels) 3,262 90 2012-2013

  16. Next Update: November 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy for load, actual and projected by North American Electric Reliability Corporation Assessment Area, 1990-2014 actual, 2015-2016 projected thousands of megawatthours Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015E 2016E FRCC 142,502 146,903 147,464 153,468 159,861 169,021 173,377 175,557 188,384 188,598 196,561 200,134 211,116 219,021 220,335 226,544 230,115

  17. Texas Liquefied Natural Gas Additions to and Withdrawals from Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 2013 2014 View History Net Withdrawals 0 2013-2013 Additions 0 * 0 2012

  18. DOE Research and Development Accomplishments RSS Archive

    Office of Scientific and Technical Information (OSTI)

    RSS Archive 2005 - 2006 * 2007 * 2008 * 2009 * 2010 * 2011 * 2012 * 2013 * 2014

  19. SUMMER

    U.S. Energy Information Administration (EIA) Indexed Site

    SUMMER Released: February 2010 Next Update: October 2010 Table 5a . Summer (FRCC) Historical and Projected Demand and Capacity, Calendar Year 2008 (Megawatts) Region FRCC Subregion Country U SUMMER Actual Projected Line# DESCRIPTION 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 1 Unrestricted Non-coincident Peak Demand = 2+1a+1b-1c-1d 44836 45734 45794 46410 47423 48304 49219 50280 51345 52431 53689 1a New Conservation (Energy Efficiency) 0 0 0 0 0 0 0 0 0 0 0 1b Estimated Diversity 0 0

  20. WINTER

    U.S. Energy Information Administration (EIA) Indexed Site

    WINTER Released: February 2010 Next Update: October 2010 Table 5a . Winter (FRCC) Historical and Projected Demand and Capacity, Calendar Year 2008 (Megawatts) Region FRCC Subregion Country U WINTER Actual Projected Line# DESCRIPTION 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 1 Unrestricted Non-coincident Peak Demand = 2+1a+1b-1c-1d 45275 44446 45099 46140 46971 47709 48888 49850 50861 51942 53065 1a New Conservation (Energy Efficiency) 0 0 0 0 0 0 0 0 0 0 0 1b Estimated Diversity 0 0

  1. Next Update: November 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    4.A. Summer net internal demand, capacity resources, and capacity margins by North American Electric Reliability Corporation Region 1999 through 2014 actual, 2015-2016 projected megawatts and percent Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015E 2016E FRCC 27,162 27,773 28,898 29,435 30,537 31,649 31,868 32,874 34,562 34,832 35,666 38,932 37,951 40,387 42,243 45,950

  2. Next Update: November 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    4.B Winter net internal demand, capacity resources, and capacity margins by North American Electric Reliability Corporation Region, 2001/2002-2014/2015 actual, 2015-2017 projected megawatts and percent Interconnection NERC Regional Assesment Area 2001/ 2002 2002/ 2003 2003/ 2004 2004/ 2005 2005/ 2006 2006/ 2007 2007/ 2008 2008/ 2009 2009/ 2010 2010/ 2011 2011/ 2012 2012/ 2013 2013/ 2014 2014/ 2015 2015/ 2016E 2016/ 2017E FRCC 39,699 42,001 36,229 41,449 42,493 45,993 46,093 45,042 51,703 45,954

  3. Electric Power Annual 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2001-2011 Actual, 2012-2016 Projected megawatts and percent Interconnection NERC Regional Assesment Area 2001/ 2002 2002/ 2003 2003/ 2004 2004/ 2005 2005/ 2006 2006/ 2007 2007/ 2008 2008/ 2009 2009/ 2010 2010/ 2011 2011/ 2012 2012/ 2013E 2013/ 2014E 2014/ 2015E 2015/ 2016E 2016/ 2017E FRCC 39,699 42,001 36,229 41,449 42,493 45,993 46,093 45,042 51,703 45,954 39,924

  4. Form EIA-411 for 2007",,"SUMMER

    U.S. Energy Information Administration (EIA) Indexed Site

    SUMMER" ,"Released: February 2009" ,"Next Update: October 2009" "Table 5a. Summer (FRCC) Historical and Projected Demand and Capacity, Calendar Year 2007" "(Megawatts)" "Region","FRCC" "Subregion", "Country","U"," " ,"SUMMER",,"Actual","Projected" ,"Line#","DESCRIPTION",2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017

  5. Form EIA-411 for 2008",,"SUMMER

    U.S. Energy Information Administration (EIA) Indexed Site

    SUMMER" ,"Released: February 2010" ,"Next Update: October 2010" "Table 5a. Summer (FRCC) Historical and Projected Demand and Capacity, Calendar Year 2008" "(Megawatts)" "Region","FRCC" "Subregion", "Country","U"," " ,"SUMMER",,"Actual","Projected" ,"Line#","DESCRIPTION",2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018

  6. Form EIA-411 for 2008",,"WINTER

    U.S. Energy Information Administration (EIA) Indexed Site

    WINTER" ,"Released: February 2010" ,"Next Update: October 2010" "Table 5a. Winter (FRCC) Historical and Projected Demand and Capacity, Calendar Year 2008" "(Megawatts)" "Region","FRCC"," " "Subregion", "Country","U"," " ,"WINTER",,"Actual","Projected" ,"Line#","DESCRIPTION",2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018

  7. Form EIA-411 for 2009",,"SUMMER

    U.S. Energy Information Administration (EIA) Indexed Site

    SUMMER" ,"Released: December 2010" ,"Next Update: December 2011" "Table 5a. Summer (FRCC) Historical and Projected Demand and Capacity, Calendar Year 2009" "(Megawatts)" "Region","FRCC" "Subregion", "Country","U"," " ,"SUMMER",,"Actual","Projected" ,"Line#","DESCRIPTION",2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019

  8. Form EIA-411 for 2009",,"WINTER

    U.S. Energy Information Administration (EIA) Indexed Site

    WINTER" ,"Released: December 2010" ,"Next Update: December 2011" "Table 5a. Summer (FRCC) Historical and Projected Demand and Capacity, Calendar Year 2009" "(Megawatts)" "Region","FRCC" "Subregion", "Country","U"," " ,,"WINTER","Actual","Projected" ,"Line#","DESCRIPTION",2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019

  9. summer_schedule3_2006.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    SUMMER Released: February 7, 2008 Next Update: October 2008 Table 5a . Summer (FRCC) Historical and Projected Demand and Capacity, Calendar Year 2006 (Megawatts) Region FRCC Subregion Country U SUMMER Actual Projected Line# DESCRIPTION 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 1 Internal Demand 45,751 46,878 48,037 49,280 50,249 51,407 52,464 53,548 54,622 55,896 57,189 2 Standby Demand - - - - - - - - - - 3 TOTAL INTERNAL DEMAND 45,751 46,878 48,037 49,280 50,249 51,407 52,464

  10. summer_schedule3_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    A.1. FRCC Summer Historical and Projected Demand and Capacity, Data Year 2010 (Megawatts) Actual Data Year Country Season Area Subarea Line# DESCRIPTION 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2010 US SUM FRCC - 1 Unrestricted Non-coincident Peak Demand 45,722 46,091 46,658 47,446 48,228 49,278 50,036 50,833 51,377 52,186 53,083 2010 US SUM FRCC - 1a New Conservation (Energy Efficiency) - - - - - - - - - - 2010 US SUM FRCC - 1b Estimated Diversity - - - - - - - - - - 2010 US SUM

  11. winter_schedule3_2010.xls

    Gasoline and Diesel Fuel Update (EIA)

    B.1. FRCC Winter Historical and Projected Demand and Capacity, Data Year 2010 (Megawatts) Actual Data Year Country Season Area Subarea Line# DESCRIPTION 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2010 US WIN FRCC - 1 Unrestricted Non-coincident Peak Demand 46,135 47,613 48,276 48,889 49,534 50,148 50,812 51,408 52,088 52,784 53,415 2010 US WIN FRCC - 1a New Conservation (Energy Efficiency) - - - - - - - - - - 2010 US WIN FRCC - 1b Estimated Diversity - - - - - - - - - - 2010 US WIN

  12. CCP_FinalActual_2011_11_06.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 TROJAN DECOMMISSIONING (26,485) 1,500 (27,985) 16 WNP-1&3 DECOMMISSIONING 607 448 159 17 Sub-Total (25,878) 1,948 (27,826) 18 Gross Contracted Power...

  13. Meteorological field measurements at potential and actual wind turbine sites

    SciTech Connect (OSTI)

    Renne, D.S.; Sandusky, W.F.; Hadley, D.L.

    1982-09-01

    An overview of experiences gained in a meteorological measurement program conducted at a number of locations around the United States for the purpose of site evaluation for wind energy utilization is provided. The evolution of the measurement program from its inception in 1976 to the present day is discussed. Some of the major accomplishments and areas for improvement are outlined. Some conclusions on research using data from this program are presented.

  14. Dissolution Studies With Pilot Plant and Actual INTEC Calcines

    SciTech Connect (OSTI)

    Herbst, Ronald Scott; Garn, Troy Gerry

    1999-04-01

    The dissolution of Idaho Nuclear Technology and Engineering Center (INTEC) pilot plant calcines was examined to determine solubility of calcine matrix components in acidic media. Two representatives pilot plant calcine types were studied: Zirconia calcine and Zirconia/ Sodium calcine. Dissolution of these calcines was evaluated using lower initial concentrations of nitric acid than used in previous tests to decrease the [H+] concentration in the final solutions. Lower [H+] concentrations contribute to more favorable TRUEX/SREX solvent extraction flowsheet performance. Dissolution and analytical results were also obtained for radioactive calcines produced using high sodium feeds blended with non-radioactive A1(NO3)3 solutions to dilute the sodium concentration and prevent bed agglomeration during the calcination process. Dissolution tests indicated >95 wt. % of the initial calcine mass can be dissolved using the baseline dissolution procedure, with the exception that higher initial nitric acid concentrations are required. The higher initial acid concentration is required for stoichiometric dissolution of the oxides, primarily aluminum oxide. Statistically designed experiments using pilot plant calcine were performed to determine the effect of mixing rate on dissolution efficiency. Mixing rate was determined to provide minimal effects on wt. % dissolution. The acid/calcine ratio and temperature were the predominate variables affecting the wt. % dissolution, a result consistent with previous studies using other similar types of pilot plant calcines.

  15. Microsoft Word - HABAdv#244_FY12_13_BudgetPrioritiesb.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Priorities for FY 2012, 2013 & Ensuing Years Adopted: April 1, 2011 Page 1 April 1, ... Priorities for Fiscal Year 2012, 2013 and Ensuing Years Dear Ms. Triay, Mr. McCormick, Ms. ...

  16. FY 12-13 ASC Utility Filings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASC Reports FY 2012-2013 Appendix 1 Template (revised 5-19-2010) FY 2012-2013 Forecast Model (4-30-2010, 6MB) Rules of Business Procedures for BPA's ASC Review Process...

  17. SUMMER

    U.S. Energy Information Administration (EIA) Indexed Site

    SUMMER Released: December 2010 Next Update: December 2011 Table 5a . Summer (FRCC) Historical and Projected Demand and Capacity, Calendar Year 2009 (Megawatts) Region FRCC Subregion Country U SUMMER Actual Projected Line# DESCRIPTION 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 1 Unrestricted Non-coincident Peak Demand = 2+1a+1b-1c-1d 46,550 46,006 46,124 46,825 47,469 48,059 48,699 49,421 50,201 51,131 51,982 1a New Conservation (Energy Efficiency) 0 0 0 0 0 0 0 0 0 0 0 1b Estimated

  18. WINTER

    U.S. Energy Information Administration (EIA) Indexed Site

    WINTER Released: December 2010 Next Update: December 2011 Table 5a . Summer (FRCC) Historical and Projected Demand and Capacity, Calendar Year 2009 (Megawatts) Region FRCC Subregion Country U WINTER Actual Projected Line# DESCRIPTION 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 1 Unrestricted Non-coincident Peak Demand = 2+1a+1b-1c-1d 53,022 46,235 46,821 47,558 48,219 48,992 49,750 50,560 51,423 52,320 53,216 1a New Conservation (Energy Efficiency) 0 0 0 0 0 0 0 0 0 0 0 1b Estimated

  19. Next Update: November 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Noncoincident peak load, by North American Electric Reliability Corporation Assessment Area, 1990-2014 actual, 2015-2016 projected megawatts Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015E 2016E FRCC 27,266 28,818 30,601 32,823 32,904 34,524 35,444 35,375 38,730 37,493 37,194 39,062 40,696 40,475 42,383 46,396 45,751 46,676 44,836 46,550 45,722 44,968 44,338 44,653

  20. EIA - Annual Energy Outlook 2016 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table 4.B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2001-2010 Actual, 2011-2015 Projected (Megawatts and Percent) Interconnection NERC Regional Assesment Area 2001/2002 2002/2003 2003/2004 2004/2005 2005/2006 2006/2007 2007/2008 2008/2009 2009/2010 2010/ 2011 2011/2012E 2012/2013E 2013/2014E 2014/2015E 2015/2016E FRCC 39,699 42,001 36,229 41,449 42,493 45,993 46,093 45,042 51,703 45,954 44,196 44,750 45,350

  1. Next Update: November 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    2013 Next Update: November 2013 Table 5A.1. FRCC summer historical and projected demand and capacity, data year 2011 megawatts Actual Data Year Country Season Area Subarea Line# DESCRIPTION 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2011 US SUM FRCC FRCC 1 Unrestricted Non-coincident Peak Demand 45,761 46,573 47,318 48,375 49,363 50,164 50,709 51,567 52,526 53,376 2011 US SUM FRCC FRCC 1a New Conservation (Energy Efficiency) 148 303 461 617 769 920 1,066 1,211 1,335 1,443 2011 US

  2. Next Update: November 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    2013 Next Update: November 2013 Table 5B.1. FRCC winter historical and projected demand and capacity, data year 2011 megawatts Actual Data Year Country Season Area Subarea Line# DESCRIPTION 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2011 US WIN FRCC FRCC 1 Unrestricted Non-coincident Peak Demand 46,994 46,703 48,117 48,941 49,766 50,471 51,282 52,140 52,955 53,808 2011 US WIN FRCC FRCC 1a New Conservation (Energy Efficiency) 130 336 549 769 969 1,173 1,374 1,570 1,737 1,887 2011 US

  3. winter_capacity_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 4.B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2001-2010 Actual, 2011-2015 Projected (Megawatts and Percent) Interconnection NERC Regional Assesment Area 2001/2002 2002/2003 2003/2004 2004/2005 2005/2006 2006/2007 2007/2008 2008/2009 2009/2010 2010/ 2011 2011/2012E 2012/2013E 2013/2014E 2014/2015E 2015/2016E FRCC 39,699 42,001 36,229 41,449 42,493 45,993 46,093 45,042 51,703 45,954 44,196 44,750 45,350

  4. File:Theoretical vs Actual Data Lesson Plan .pdf | Open Energy...

    Open Energy Info (EERE)

    this file. Metadata This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from...

  5. What do the DOE Zero Energy Ready Home Program Specs Actually...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... conditioners, air-source heat pumps, and water-source (i.e., geothermal) heat pumps up to ... In other words, under Revision 07, if a home's heatingcooling system happens to be a ...

  6. CCP_FinalActual_FY_2015_crlPrintArea1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PLANNING 6,787 7,948 (1,161) 56 Sub-Total 15,145 18,569 (3,425) 57 Power Services Marketing and Business Support 58 POWER R&D 6,772 5,936 836 59 SALES & SUPPORT 18,293...

  7. Sugars Can Actually Be Good For Your Health (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Bertozzi, Carolyn

    2011-10-04

    Like peanut M&Ms, all cells are coated with sugars but the functions of these sugar coatings were a mystery until very recently. This presentation will highlight recent fascinating discoveries regarding why cells are coated with sugars, as well as new tools for cancer detection that take advantage of the cells sugar coating. Professor Bertozzis lab focuses on profiling changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and exploiting this information for development of diagnostic and therapeutic approaches. In addition, her group develops nanoscience-based technologies for probing cell function and for medical diagnostics.

  8. Analysis of Actual Operating Conditions of an Off-grid Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Dennis Witmer; Thomas Johnson; Jack Schmid

    2008-12-31

    Fuel cells have been proposed as ideal replacements for other technologies in remote locations such as Rural Alaska. A number of suppliers have developed systems that might be applicable in these locations, but there are several requirements that must be met before they can be deployed: they must be able to operate on portable fuels, and be able to operate with little operator assistance for long periods of time. This project was intended to demonstrate the operation of a 5 kW fuel cell on propane at a remote site (defined as one without access to grid power, internet, or cell phone, but on the road system). A fuel cell was purchased by the National Park Service for installation in their newly constructed visitor center at Exit Glacier in the Kenai Fjords National Park. The DOE participation in this project as initially scoped was for independent verification of the operation of this demonstration. This project met with mixed success. The fuel cell has operated over 6 seasons at the facility with varying degrees of success, with one very good run of about 1049 hours late in the summer of 2006, but in general the operation has been below expectations. There have been numerous stack failures, the efficiency of electrical generation has been lower than expected, and the field support effort required has been far higher than expected. Based on the results to date, it appears that this technology has not developed to the point where demonstrations in off road sites are justified.

  9. Do we get actual vendor name while we searched with zip code...

    Open Energy Info (EERE)

    let me know? Submitted by SUTHARI on 29 September, 2014 - 08:02 1 answer Points: 0 Hi SUTHARI, we had a bug in the U.S. Utility Rate Database affecting zip codes with leading...

  10. Internship Program Mentors | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internship Program Mentors SULI: Anderson, Iver (2005, 2011, 2012) Bakac, Andreja (2005, 2006) Baldwin, David (2010, 2011, 2012, 2013) Benjegerdes, Troy (2006, 2008, 2009) - no longer at Ames Laboratory Biswas, Rana (2011, 2013) Bowler, Nicola (2005) Bryden, Mark (2008) Cademartiri, Ludovico (2013) Canfield, Paul (2007) Cochran, Eric (2007) Cook, Bruce (2009) - no longer at Ames Laboratory Evans, Jim (2010) Fang, Ning (2010, 2012, 2013) Ganapathysubramanian, Baskar (2011, 2012, 2013) Gordon,

  11. Microsoft Word - Andrews_SREL-CV-Nov-2013-no-in-prep_no-refs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Field module on urban herpetology on Jekyll Island (Undergraduate; Emory College - Atlanta, GA; 2012-2013) Invited lecture in Conservation of Amphibians and Reptiles Class ...

  12. Bibliography, Bioenergy Technologies Office Multi-Year Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bibliography-1 Last revised: March 2016 Bibliography Advanced Ethanol Council (2012). Cellulosic Biofuels Industry Progress Report 2012-2013. http:ethanolrfa.3cdn.net...

  13. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Deliveries 2011 2012 2013 2014 2015 Purchases of ...

  14. Frontiers in Energy Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The following CEES members have served as co-editors for the newsletter: 2011-2012 Scott Kirklin, Northwestern University 2012-2013 Lynn Trahey, Argonne National Laboratory...

  15. A Roadmap for Strategic Development of Geothermal Exploration...

    Broader source: Energy.gov (indexed) [DOE]

    an EGS demonstration project. 2013 Annual Report -- Geothermal Technologies Office Geothermal Technologies Office Annual Report 2012 2013 Peer Review Opening Plenary Presentation...

  16. Energy & Financial Markets - U.S. Energy Information Administration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... losses and provide an insurance-like instrument against adverse commodity price movements. ... 2010 2011 2012 2013 2014 2015 2016 Natural Gas Gold Copper Silver Soybeans Corn Wheat < ...

  17. Featured Announcements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2012 2013 Allocation Request Submissions Due September 28 August 1, 2012 by Francesca Verdier The deadline for submissions for 2013 NERSC allocation requests is September 28...

  18. BPA-2011-01579-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Address * Currently Proposed Utility ECA Implementation Budget for the fiscal year 2012-2013 rate period I declare under penalty of perjury that the foregoing is true and...

  19. Hawaii Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,040 1,040 1,048 1,046 983 959 2007-2014...

  20. Webinar: "Upgrading Renewable and Sustainable Carbohydrates for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications FPD's Perspective Photos - Los Alamos National Labratory - NISA Monthly Newsblast December 2012 2013 Peer Review Presentations-Algae

  1. "Table 2. Real Average Annual Coal Transportation Costs, By Primary...

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Average Annual Coal Transportation Costs, By Primary Transport Mode and Supply Region" "(2013 dollars per ton)" "Coal Supply Region",2008,2009,2010,2011,2012,2013 "Railroad"...

  2. Gulf of Mexico Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View ...

  3. U.S. Natural Gas Plant Processing

    U.S. Energy Information Administration (EIA) Indexed Site

    Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2008 2009 2010 2011 2012 2013 View History ...

  4. Marysville, MI Natural Gas Exports to Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013...

  5. Massena, NY Natural Gas Exports to Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2011 2012 2013 2014 View History Pipeline Volumes 0 472 0 0 2011-2014 Pipeline Prices -- 2.96 -- -- 2011...

  6. Hawaii Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,040 1,048 1,046 983 958 981 2007-2015

  7. MicroPact icomplaints » No Fear Reporting

    National Nuclear Security Administration (NNSA)

    Data 2016Thru03-31 2011 2012 2013 2014 2015 Number of Complaints Filed 7 15 13 14 15 2 ... complaints filed. 2011 2012 2013 2014 2015 Race 1 1 5 4 2 0 Color 0 0 1 3 2 0 ...

  8. TESTING OF ENHANCED CHEMICAL CLEANING OF SRS ACTUAL WASTE TANK 5F AND TANK 12H SLUDGES

    SciTech Connect (OSTI)

    Martino, C.; King, W.

    2011-08-22

    Forty three of the High Level Waste (HLW) tanks at the Savannah River Site (SRS) have internal structures that hinder removal of the last approximately five thousand gallons of waste sludge solely by mechanical means. Chemical cleaning can be utilized to dissolve the sludge heel with oxalic acid (OA) and pump the material to a separate waste tank in preparation for final disposition. This dissolved sludge material is pH adjusted downstream of the dissolution process, precipitating the sludge components along with sodium oxalate solids. The large quantities of sodium oxalate and other metal oxalates formed impact downstream processes by requiring additional washing during sludge batch preparation and increase the amount of material that must be processed in the tank farm evaporator systems and the Saltstone Processing Facility. Enhanced Chemical Cleaning (ECC) was identified as a potential method for greatly reducing the impact of oxalate additions to the SRS Tank Farms without adding additional components to the waste that would extend processing or increase waste form volumes. In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate an alternative to the baseline 8 wt. % OA chemical cleaning technology for tank sludge heel removal. The baseline OA technology results in the addition of significant volumes of oxalate salts to the SRS tank farm and there is insufficient space to accommodate the neutralized streams resulting from the treatment of the multiple remaining waste tanks requiring closure. ECC is a promising alternative to bulk OA cleaning, which utilizes a more dilute OA (nominally 2 wt. % at a pH of around 2) and an oxalate destruction technology. The technology is being adapted by AREVA from their decontamination technology for Nuclear Power Plant secondary side scale removal. This report contains results from the SRNL small scale testing of the ECC process using SRS sludge tank sample material. A Task Technical and Quality Assurance Plan (TTQAP) details the experimental plan as outlined by the Technical Task Request (TTR). The TTR identifies that the data produced by this testing and results included in this report will support the technical baseline with portions having a safety class functional classification. The primary goals for SRNL RWT are as follows: (1) to confirm ECC performance with real tank sludge samples, (2) to determine the impact of ECC on fate of actinides and the other sludge metals, and (3) to determine changes, if any, in solids flow and settling behavior.

  9. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 " ,"(Thousands of Megawatthours and 2003 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"ECAR","FRCC","MAAC","MAIN","MAPP (U.S.) ","NPCC (U.S.)

  10. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 " ,"(Thousands of Megawatthours and 2004 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"ECAR","FRCC","MAAC","MAIN","MAPP/MRO (U.S.) ","NPCC (U.S.)

  11. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    2005 and Projected 2006 through 2010 " ,"(Thousands of Megawatthours and 2005 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.) ","NPCC (U.S.) ","RFC","SERC","SPP","ERCOT","WECC (U.S.) "

  12. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 " ,"(Megawatts and 2003 Base Year)",,,," " ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"ECAR","FRCC","MAAC","MAIN","MAPP (U.S.) ","NPCC (U.S.)

  13. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 " ,"(Megawatts and 2004 Base Year)",,,," " ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"ECAR","FRCC","MAAC","MAIN","MAPP/MRO (U.S.) ","NPCC (U.S.)

  14. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base Year)" ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.) ","NPCC (U.S.) ","RFC","SERC","SPP","ERCOT","WECC (U.S.) "

  15. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 " ,"(Megawatts and 2003 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"ECAR","FRCC","MAAC","MAIN","MAPP (U.S.) ","NPCC (U.S.) ","SERC","SPP","ERCOT","WECC (U.S.)

  16. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 " ,"(Megawatts and 2004 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"ECAR","FRCC","MAAC","MAIN","MAPP/MRO (U.S.) ","NPCC (U.S.) ","SERC","SPP","ERCOT","WECC (U.S.)

  17. Lipopolysaccharide density and structure govern the extent and distance of nanoparticle interaction with actual and model bacterial outer membranes

    SciTech Connect (OSTI)

    Jacobson, Kurt H.; Gunsolus, Ian L.; Kuech, Thomas R.; Troiano, Julianne M.; Melby, Eric S.; Lohse, Samuel E.; Hu, Dehong; Chrisler, William B.; Murphy, Catherine; Orr, Galya; Geiger, Franz M.; Haynes, Christy L.; Pedersen, Joel A.

    2015-07-24

    Design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations, and assessment of the potential implications of nanoparticle release into the environment require understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the lipid-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) and second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. Association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides.

  18. U. S. Energy Information Administration | Drilling Productivity...

    U.S. Energy Information Administration (EIA) Indexed Site

    2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Oil production thousand barrelsday Niobrara Region -30 -20 -10 0 10 20 30 May 406 Mbbld Production from new wells Legacy ...

  19. New Mexico Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,028 1,021 1,022 1,024 1,030 1,035 2007-2014...

  20. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Minnesota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet ... Summary statistics for natural gas - Minnesota, 2010-2014 2010 2011 2012 2013 2014 ...

  1. Microsoft Word - figure_16.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    2 4 6 8 10 2010 2011 2012 2013 2014 Residential Commercial Industrial Electric Po wer Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and ...

  2. Price of U.S. Liquefied Natural Gas Imports From Equatorial Guinea (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 -- -- -- -- -- 7.46 6.04 6.18 -- -- -- -- 2008 -- -- -- -- -- -- -- -- -- -- -- -- 2009 -- -- -- -- -- -- -- -- -- -- -- -- 2010 -- -- -- -- -- -- -- -- -- -- -- -- 2011 -- -- -- -- -- -- -- -- -- -- -- -- 2012 -- -- -- -- -- -- -- -- -- -- -- -- 2013 -- -- -- -- -- -- -- -- -- -- -- -- 2014 -- -- -- -- -- -- -- -- -- -- -- -- 2015 -- -- -- -- -- -- -- -- -- -- -- -- 2016

  3. BPA Power Rates (pbl/main)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial Choices (2003-06) Power Function Review (PFR) Firstgov BPA Fuel Mix 2012 2013 2014...

  4. South Carolina Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,026 1,026 1,023 1,019 1,024 1,030 2007-2015

  5. South Dakota Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,005 1,005 1,018 1,023 1,035 1,051 2007-2015

  6. South Dakota-North Dakota Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 113 86 71 2012-2014 Total Liquids Extracted (Thousand Barrels) 23 19 16 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 21 2014

  7. 2012 Annual Plan | Department of Energy

    Energy Savers [EERE]

    Annual Plan 2012 Annual Plan Section 999: 2012 Annual Plan PDF icon Section 999 - 2012 Annual Plan More Documents & Publications 2011 Annual Plan Sec. 999 Annual Plan 2012 2013 Annual Plan

  8. Maine Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,046 1,044 1,047 1,032 1,030 1,029 2007-2014...

  9. NREL Fuel Cell and Hydrogen Technologies Program Introduction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    24,000 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Thousand Fiscal Year NREL Fuel Cell and Hydrogen Technologies Program Budget Authority ARRA ...

  10. Wind Program Newsletter: First Quarter 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Wind Energy in 2012-2013 PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms - Technology Hybrids Show Best Potential NREL Releases Alpha-Version of MLife ...

  11. Presentation title: This can be up to 2 lines

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 2010 2011 2012 2013 2014 2015 change from prior year forecast Source: Short-Term Energy Outlook, April 2015 16 2015 Summer Fuels Outlook Dashed line represents prior 10-year ...

  12. Presentation title: This can be up to 2 lines

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 2009 2010 2011 2012 2013 2014 change from prior year Forecast Source: Short-Term Energy Outlook, April 2014 15 2014 Summer Fuels Outlook Dashed line represents prior 10-year ...

  13. Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. U.S. uranium concentrate production, shipments, and sales, 2003-14 Activity at U.S. mills and In-Situ-Leach plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014...

  14. MicroPact icomplaints No Fear Reporting

    National Nuclear Security Administration (NNSA)

    5 for period ending March 31, 2015 Complaint Activity Comparative Data Previous Fiscal Year Data 2015Thru03-31 2010 2011 2012 2013 2014 Number of Complaints Filed 10 7 15 13 14 3...

  15. MicroPact icomplaints No Fear Reporting

    National Nuclear Security Administration (NNSA)

    3rd Quarter 2014 for period ending June 30, 2014 Complaint Activity Comparative Data Previous Fiscal Year Data 2014Thru06-30 2009 2010 2011 2012 2013 Number of Complaints Filed 8...

  16. MicroPact icomplaints No Fear Reporting

    National Nuclear Security Administration (NNSA)

    4 for period ending March 31, 2014 Complaint Activity Comparative Data Previous Fiscal Year Data 2014Thru03-31 2009 2010 2011 2012 2013 Number of Complaints Filed 8 10 7 15 13 8...

  17. MicroPact icomplaints No Fear Reporting

    National Nuclear Security Administration (NNSA)

    4 for period ending December 31, 2013 Complaint Activity Comparative Data Previous Fiscal Year Data 2014Thru12-31 2009 2010 2011 2012 2013 Number of Complaints Filed 8 10 7 15 13 6...

  18. MicroPact icomplaints No Fear Reporting

    National Nuclear Security Administration (NNSA)

    5 for period ending December 31, 2014 Complaint Activity Comparative Data Previous Fiscal Year Data 2015Thru12-31 2010 2011 2012 2013 2014 Number of Complaints Filed 10 7 15 13 14...

  19. Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7. Employment in the U.S. uranium production industry by state, 2003-14 person-years State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Wyoming 134 139 181 195...

  20. Residual Fuel Oil Prices, Average - Sales to End Users

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History U.S. 1.729 - - - - - 1983-2015 East Coast (PADD 1) 1.809 - - - - - 1983-2015 New England (PADD 1A) 1.900 - - - - - 1983-2015 Connecticut ...

  1. U.S. Total No. 2 Distillate Prices by Sales Type

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History No. 2 Distillate Sales to End Users, Average 2.449 - - - - - 1983-2015 Residential 2.798 - - - - - 1978-2015 CommercialInstitutional ...

  2. U.S. Total Shell Storage Capacity at Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Product Area 2010 2011 2012 2013 2014 2015 View History Total 710,413 -- -- -- -- -- 1982-2015 Crude Oil 180,846 -- -- -- -- -- 1985-2015 Liquefied Petroleum Gases 33,842 -- -- -- ...

  3. New York Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,021 1,022 1,025 1,031 1,033 1,031 2007-2014...

  4. Presentation title: This can be up to 2 lines

    U.S. Energy Information Administration (EIA) Indexed Site

    to continued declines in profits. * Capital expenditure per barrel produced was the ... Q1 Q2 Q3 Q4 2011 2012 2013 2014 2015 Capital expenditure decreased 11 billion since ...

  5. Fact #918: March 28, 2016 Global Plug-in Light Vehicle Sales...

    Broader source: Energy.gov (indexed) [DOE]

    States declined by 3% in 2015, sales in China more than doubled, surpassing all other ... CountryRegion 2011 2012 2013 2014 2015 China 5,202 10,699 15,004 61,984 214,283 Western ...

  6. CONSORTIUM FOR ADVANCED SIMULATION OF LIGHT WATER REACTORS (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of the VERA C in late 2013. * Invite ANSYS and Studsvik ... benefit * Expected focus first five years and will ... the path forward 22 2010 2011 2012 2013 2014 2015 ...

  7. North Carolina Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,023 1,015 1,011 1,011 1,013 1,018 2007-2014...

  8. U. S. Energy Information Administration | Drilling Productivity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Haynesville Region +86 -150 -64 0 50 100 150 200 250 300 0 200 400 600 800 1,000 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 new-well oil production per rig rig count ...

  9. U. S. Energy Information Administration | Drilling Productivity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Eagle Ford Region +127 -322 -195 0 50 100 150 200 250 300 350 0 200 400 600 800 1000 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 new-well oil production per rig rig count ...

  10. New Hampshire Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,037 1,040 1,032 1,030 1,032 1,031 2007-2015

  11. Microsoft PowerPoint - Crozat NEAC Final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Derived from IAEA, EIA and NRC 3 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 NEAC Meeting 12192013 Declining Electricity Demand Forecasts ...

  12. Washington Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,030 1,032 1,029 1,028 1,030 1,044 2007-2014...

  13. LANL Data Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012-2013 Total: 10,407 Quick Facts FY2013 Operating Budget ..... 1.95 billion Operating costs 54% NNSA Weapons Programs 12% Work for other agencies 10% Nonproliferation programs...

  14. U.S. Natural Gas Wellhead Value and Marketed Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series Area 2010 2011 2012 2013 2014 2015 View History Quantity of Production Associated with Reported Wellhead Value (Million Cubic Ft.) 1980-2006 Imputed Wellhead Value of ...

  15. CA, San Joaquin Basin Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 View History Proved Reserves as of Dec. 31 855 777 756 2011-2013 Adjustments 1 1 -1 2011-2013 Revision Increases 912 258 68 2011-2013 Revision Decreases 0 248 0...

  16. TX, RRC District 7C Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 13 27 81 409 2010-2013 Adjustments 0 -1 1 -1 2010-2013 Revision Increases 0 13 20 217 2010-2013 Revision Decreases 0...

  17. California Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 View History Proved Reserves as of Dec. 31 855 777 756 2011-2013 Adjustments 1 1 -1 2011-2013 Revision Increases 912 258 68 2011-2013 Revision Decreases 0 248 0...

  18. Transition Strategies: Government Options and Market Penetration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Strategy 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 TOTAL NUMBER OF HFVs A. Hydrogen Fuel Initiative Legend: ...

  19. Rhode Island Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,023 1,017 1,020 1,031 1,032 1,028 2007-2014...

  20. U.S. Compressed Natural Gas Exports by Point of Exit

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 2012 2013 2014 View History U.S. Total 0 115 217 2012-2014 To Canada 0 0 115 217 2011-2014 Calais, ME 0 115 217 2012...

  1. Presentation title: This can be up to 2 lines

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 2009 2010 2011 2012 2013 Year of Annual Energy Outlook Unproved Alaska (1) Unproved L48 ... 2,303 Denver Niobrara 1,444 599 Greater Green River 103 Montana Thrust Belt 602 652 ...

  2. Kansas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 370,670 341,778 322,944 259,565 190,503 191,034 1967-2014 Total Liquids Extracted (Thousand...

  3. Detroit, MI Natural Gas Exports to Canada

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 21 79 19 0 165 188 1996-2014 Pipeline Prices 4.53 8.37 5.17 -- 4.44 5.26 1996...

  4. Alabama Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,018 1,018 1,016 1,017 1,025 1,030 2007-2015

  5. Missouri Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,007 1,010 1,012 1,014 1,015 1,023 2007-2015

  6. Idaho Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,021 1,017 1,015 1,015 1,025 1,029 2007-2015

  7. Illinois Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,008 1,011 1,011 1,016 1,021 1,029 2007-2015

  8. Colorado Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,019 1,032 1,039 1,042 1,043 1,058 2007-2015

  9. Pennsylvania Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,034 1,036 1,040 1,049 1,047 1,047 2007-2015

  10. Nevada Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,033 1,024 1,029 1,033 1,034 1,043 2007-2015

  11. Ohio Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,034 1,031 1,032 1,046 1,045 1,067 2007-2015

  12. Oklahoma Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,032 1,032 1,030 1,036 1,040 1,047 2007-2015

  13. Florida Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,019 1,015 1,015 1,016 1,021 1,024 2007-2015

  14. Georgia Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,022 1,018 1,015 1,016 1,022 1,028 2007-2015

  15. Iowa Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,006 1,009 1,014 1,016 1,038 1,052 2007-2015

  16. Arkansas Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,012 1,017 1,015 1,015 1,024 1,028 2007-2015

  17. Massachusetts Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,035 1,033 1,035 1,033 1,031 1,030 2007-2015

  18. Washington Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,032 1,029 1,028 1,030 1,043 1,065 2007-2015

  19. Kentucky Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,030 1,027 1,030 1,028 1,028 1,025 2007-2015

  20. Maryland Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,027 1,027 1,037 1,051 1,050 1,055 2007-2015

  1. Kansas Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,019 1,020 1,022 1,020 1,021 1,037 2007-2015

  2. Michigan Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,016 1,014 1,017 1,017 1,021 1,031 2007-2015

  3. Vermont Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,007 1,008 1,012 1,015 1,016 1,026 2007-2015

  4. Mississippi Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,014 1,010 1,012 1,016 1,029 1,031 2007-2015

  5. Nebraska Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,004 1,011 1,019 1,031 1,039 1,055 2007-2015

  6. Minnesota Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,010 1,010 1,019 1,015 1,033 1,041 2007-2015

  7. Texas Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,028 1,025 1,026 1,027 1,030 1,033 2007-2015

  8. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,044 1,047 1,032 1,030 1,028 1,026 2007-2015

  9. Tennessee Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,023 1,014 1,014 1,021 1,026 1,027 2007-2015

  10. Virginia Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,028 1,027 1,034 1,040 1,041 1,053 2007-2015

  11. Wisconsin Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,010 1,014 1,019 1,025 1,032 1,039 2007-2015

  12. Utah Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,045 1,038 1,043 1,047 1,041 1,044 2007-2015

  13. Alaska Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,005 1,013 1,012 1,002 1,002 1,001 2007-2015

  14. Louisiana Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,024 1,019 1,015 1,014 1,030 1,032 2007-2015

  15. Indiana Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,012 1,012 1,012 1,015 1,021 1,036 2007-2015

  16. Delaware Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,023 1,025 1,027 1,043 1,054 1,050 2007-2015

  17. Oregon Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,015 1,021 1,022 1,015 1,025 1,037 2007-2015

  18. California Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,023 1,020 1,022 1,028 1,028 1,035 2007-2015

  19. Montana Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,012 1,016 1,025 1,028 1,026 1,029 2007-2015

  20. Arizona Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,016 1,015 1,021 1,025 1,029 1,039 2007-2015

  1. Connecticut Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,022 1,026 1,031 1,030 1,020 1,027 2007-2015

  2. Oil and gas outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2011 2012 2013 2014 2015 non-OECD consumption growth non-OECD GDP growth* Prices and economic growth are important, but policy, preferences, and technology may have a bigger...

  3. Buildings Energy Data Book: 9.1 ENERGY STAR

    Buildings Energy Data Book [EERE]

    6 Specification Dates for ENERGY STAR-Labeled HVAC and Residential Appliances Heating and Cooling Equipment Dates of updated specification Central AC 1995 2002, 2006, 2009 Air-Source Heat Pumps 1995 2002, 2006, 2009 Oil Furnaces 1995 2006, 2008, 2012, 2013 Gas Furnaces 1995 2006, 2008, 2012, 2013 Programable Thermostats - Gas Boilers 1996 2002 Oil Boilers 1996 2002 Gas-Fired Heat Pumps - Geothermal Heat Pumps 2001 2009, 2011, 2012 Ventilating Fans 2001 2003, 2009, 2012 Ceiling Fans 2001 2003,

  4. Results of fracture mechanics analyses of the Adorer cranes in the device assembly facility using actual, rather than conservative, stress-components

    SciTech Connect (OSTI)

    Dalder, E.N.C.

    1996-12-26

    Fracture mechanics analyses were done on 3 critical locations on the lower flange of the load beam of the Ederer 5 ton and 4 ton cranes in the D.A.F. Facility. This was done to determine appropriate flaw sizes for NDE detection during periodic inspection, and appropriate inspection intervals.

  5. CENTIMETER CONTINUUM OBSERVATIONS OF THE NORTHERN HEAD OF THE HH 80/81/80N JET: REVISING THE ACTUAL DIMENSIONS OF A PARSEC-SCALE JET

    SciTech Connect (OSTI)

    Masque, Josep M.; Estalella, Robert; Girart, Josep M.; Rodriguez, Luis F.; Beltran, Maria T.

    2012-10-10

    We present 6 and 20 cm Jansky Very Large Array/Very Large Array observations of the northern head of the HH 80/81/80N jet, one of the largest collimated jet systems known so far, aimed to look for knots farther than HH 80N, the northern head of the jet. Aligned with the jet and 10' northeast of HH 80N, we found a radio source not reported before, with a negative spectral index similar to that of HH 80, HH 81, and HH 80N. The fit of a precessing jet model to the knots of the HH 80/81/80N jet, including the new source, shows that the position of this source is close to the jet path resulting from the modeling. If the new source belongs to the HH 80/81/80N jet, its derived size and dynamical age are 18.4 pc and >9 Multiplication-Sign 10{sup 3} yr, respectively. If the jet is symmetric, its southern lobe would expand beyond the cloud edge resulting in an asymmetric appearance of the jet. Based on the updated dynamical age, we speculate on the possibility that the HH 80/81/80N jet triggered the star formation observed in a dense core found ahead of HH 80N, which shows signposts of interaction with the jet. These results indicate that parsec-scale radio jets can play a role in the stability of dense clumps and the regulation of star formation in the molecular cloud.

  6. Table 13. Shale natural gas proved reserves and production, 2011-14

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale natural gas proved reserves and production, 2011-14" "billion cubic feet" ,,"Reserves",,,,,"Production" "State and Subdivision",,2011,2012,2013,2014," ",2011,2012,2013,2014 "Alaska",,0,0,0,0," ",0,0,0,0 "Lower 48 States",,131616,129369,159115,199684," ",7994,10371,11415,13447 "Arkansas",,14808,9779,12231,11695," ",940,1027,1026,1038

  7. Table 15. Coalbed methane proved reserves and production, 2010-14

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed methane proved reserves and production, 2010-14" "billion cubic feet" ,,"Reserves",,,,,,"Production" "State and Subdivision",,2010,2011,2012,2013,2014,,2010,2011,2012,2013,2014 "Alaska",,0,0,0,0,0,,0,0,0,0,0 "Lower 48 States",,17508,16817,13591,12392,15696,,1886,1763,1655,1466,1404 "Alabama",,1298,1210,1006,413,978,,102,98,91,62,78 "Arkansas",,28,21,10,13,15,,3,4,2,2,2

  8. Microsoft PowerPoint - uncertainty_wti_2011_2012.ppt [Compatibility Mode]

    U.S. Energy Information Administration (EIA) Indexed Site

    11 - December 2012 January 2011 December 2012 Historical WTI price and 95% NYMEX Confidence Interval, January 2011 $250 $150 $200 $100 $150 $50 $0 Jan Jul Jan Jul Jan Jul Jan Jul 1 2010 2010 2011 2011 2012 2012 2013 2013 Historical WTI price and 95% NYMEX Confidence Interval, February 2011 $250 $150 $200 $100 $150 $50 $0 Jan Jul Jan Jul Jan Jul Jan Jul 2 2010 2010 2011 2011 2012 2012 2013 2013 Historical WTI price and 95% NYMEX Confidence Interval, March 2011 $250 $150 $200 $100 $150 $50 $0 Jan

  9. U. S. Energy Information Administration | Drilling Productivity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marcellus Region 0 500 1,000 1,500 2,000 2,500 3,000 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Oil production thousand barrelsday Marcellus Region -1.0 0.0 1.0 2.0 May 41 ...

  10. U. S. Energy Information Administration | Drilling Productivity...

    U.S. Energy Information Administration (EIA) Indexed Site

    200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Oil production thousand barrelsday Permian Region -25 0 25 50 75 100 ...

  11. U. S. Energy Information Administration | Drilling Productivity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utica Region 0 100 200 300 400 500 600 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Oil production thousand barrelsday Utica Region -2.0 0.0 2.0 4.0 6.0 May 79 Mbbld ...

  12. New Mexico Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 1,341,475 1,287,682 1,276,296 1,247,394 1,265,579 1,289,908 1967-2015 From Gas Wells 616,134 556,024 653,057 588,127 ...

  13. Federal Offshore Louisiana Natural Gas Gross Withdrawals and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series Area 2009 2010 2011 2012 2013 2014 View History Gross Withdrawals NA NA NA 0 0 0 1977-2014 From Gas Wells NA NA NA 0 0 0 1977-2014 From Oil Wells NA NA NA 0 0 0 ...

  14. Oregon Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 2013 2014 View History Gross Withdrawals 821 1,407 1,344 770 770 950 1979-2014 From Gas Wells 821 1,407 1,344 770 770 950 1979-2014 From Oil Wells 0 0 0 0 0 0 1996-2014 From ...

  15. U.S. Total Refiner Acquisition Cost of Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Composite 76.69 101.87 100.93 100.49 92.02 48.40 1968-2015 Domestic 78.01 100.71 100.72 102.91 94.05 49.95 1968-2015 Imported 75.86 ...

  16. Landed Costs of Imported Crude for Selected Crude Streams

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 2010 2011 2012 2013 2014 View History Algerian Saharan Blend 65.95 81.78 115.82 114.02 113.45 2009-2013 Angolan Cabinda 1978-2008 Brazilian Marlim 58.94 76.63 107.13 114.32...

  17. Price of U.S. Liquefied Natural Gas Imports From Peru (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0.00 7.09 7.79 6.81 6.62 2011 6.92 7.25 7.58 7.76 2012 -- -- -- -- -- -- -- -- -- -- -- -- 2013 -- -- -- -- -- -- -- -- -- -- -- -- 2014 -- -- -- -- -- -- -- -- -- -- -- -- 2015 -- -- -- -- -- -- -- -- -- -- -- -- 2016

  18. West Virginia-West Virginia Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 116,955 189,278 315,229 867,111 2011-2014 Total Liquids Extracted (Thousand Barrels) 8,010 14,195 41,116 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 57,582 2014

  19. Wyoming-Colorado Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 69,827 75,855 136,964 2012-2014 Total Liquids Extracted (Thousand Barrels) 5,481 5,903 12,130 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 16,070

  20. Wyoming-Wyoming Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 1,622,025 1,544,493 1,442,021 1,389,782 2011-2014 Total Liquids Extracted (Thousand Barrels) 65,256 47,096 42,803 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 60,873

  1. Microsoft PowerPoint - Terry EIA [Compatibility Mode

    Gasoline and Diesel Fuel Update (EIA)

    ... 24.0 26.0 28.0 30.0 33.0 36.0 0.0 5.0 10.0 Billions of Gallons US Ethanol Blend Wall Scenario E10 E15 (winter only) 2011 2012 2013 2014 2015 2022 * E15 used in Model Year 2001 + ...

  2. Pennsylvania-Pennsylvania Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 131,959 226,544 159,840 194,075 2011-2014 Total Liquids Extracted (Thousand Barrels) 8,687 8,346 17,765 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 25,308

  3. Pennsylvania-West Virginia Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 10,273 236,886 101,613 2012-2014 Total Liquids Extracted (Thousand Barrels) 195 7,150 9,890 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 14,335

  4. South Dakota Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 113 86 71 2012-2014 Total Liquids Extracted (Thousand Barrels) 23 19 16 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 0 0 0 30 25 21 1977

  5. Tennessee-Tennessee Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 6,200 6,304 5,721 5,000 2011-2014 Total Liquids Extracted (Thousand Barrels) 343 340 281 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 382 2014

  6. Natural Gas Total Liquids Extracted

    Gasoline and Diesel Fuel Update (EIA)

    Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History U.S. 720,612 749,095 792,481 873,563 937,591 1,124,416 1983-2014 Alabama...

  7. Microsoft Word - figure_07-2015.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Source: Office of Fossil Energy, U.S. Department of Energy, Natural Gas Imports and Exports. Figure 7. U.S. natural gas trade summary, 2010-2014 0 0.5 1 1.5 2 2.5 3 3.5 4 2010 2011 2012 2013 2014 Total Imports Total Exports Net Imports trillion cubic feet

  8. California Onshore-California Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 180,648 169,203 164,401 162,413 2011-2014 Total Liquids Extracted (Thousand Barrels) 9,923 10,641 9,597 ...

  9. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    work units (SWU) Country of enrichment service (SWU-origin) 2010 2011 2012 2013 2014 China 0 W W W 636 France W W 0 0 0 Germany 681 1,539 1,075 753 1,005 Netherlands 2,292 1,506 ...

  10. April 2012 Biomass Program News Blast | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Biomass Program News Blast April 2012 Biomass Program News Blast April 2012 monthly news blast from the Biomass Program, highlighting news items, funding opportunities, and events. PDF icon april2012_newsblast.pdf More Documents & Publications Biomass Program Monthly News Blast - May 2012 Biomass Program Monthly News Blast - March 2012 2013 Peer Review Presnentations-Plenaries

  11. Forecast Change

    U.S. Energy Information Administration (EIA) Indexed Site

    Forecast Change 2011 2012 2013 2014 2015 2016 from 2015 United States Usage (kWh) 3,444 3,354 3,129 3,037 3,153 3,143 -0.3% Price (centskWh) 12.06 12.09 12.58 13.04 12.95 12.96 ...

  12. Prices of Refiner Kerosene-Type Jet Fuel Sales to End Users

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History U.S. 2.201 3.054 3.104 2.979 2.772 1.629 1978-2015 East Coast (PADD 1) 2.201 3.064 3.126 2.993 2.803 1.632 1983-2015 New England (PADD ...

  13. Refinery & Blender Net Production of Finished Motor Gasoline

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History U.S. 3,306,400 3,306,028 3,267,022 3,370,460 3,493,224 3,568,871 1945-2015 PADD 1 993,681 1,055,660 1,044,853 1,062,487 1,087,368 ...

  14. Retail Prices for Gasoline, All Grades

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History U.S. 2.835 3.576 3.680 3.575 3.437 2.520 1993-2015 East Coast (PADD1) 2.824 3.587 3.695 3.599 3.470 2.483 1993-2015 New England (PADD 1A) ...

  15. Natural Gas Industrial Price

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 5.49 5.13 3.88 4.64 5.55 3.84 1997-2015 Alabama 6.64 5.57 4.35 4.98 5.49 3.94 1997-2015 Alaska ...

  16. U.S. Refiner Gasoline Prices by Grade and Sales Type

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Gasoline, All Grades Sales to End Users (Average) 2.301 3.050 3.154 3.049 2.855 2.003 1978-2015 Through Retail Outlets 2.306 3.058 3.168 ...

  17. U.S. Total Refiner Petroleum Product Prices

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Sales to End Users Motor Gasoline 2.301 3.050 3.154 3.049 2.855 2.003 1978-2015 Aviation Gasoline 3.028 3.803 3.971 3.932 3.986 W ...

  18. U.S. Refinery Yield

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Liquefied Refinery Gases 4.3 4.0 4.1 3.9 4.0 3.7 1993-2015 Finished Motor Gasoline 45.7 44.9 45.0 45.0 45.0 45.3 1993-2015 Finished ...

  19. Microsoft Word - nofear_4QFY15.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    total complaints filed. 2010 2011 2012 2013 2014 Race 1 1 3 6 1 3 Color 0 1 1 4 2 2 Religion 0 2 1 0 0 0 Reprisal 6 7 4 13 7 6 Sex 3 5 3 10 4 1 PDA 0 0 0 0 0 0 National Origin 0...

  20. MicroPact icomplaints No Fear Reporting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    total complaints filed. 2010 2011 2012 2013 2014 Race 3 1 1 5 4 2 Color 2 0 0 1 3 2 Religion 2 0 1 1 0 0 Reprisal 5 4 10 8 7 11 Sex 2 1 6 6 5 6 PDA 0 0 0 0 0 1 National Origin 0...

  1. U.S. Propane (Consumer Grade) Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 2010 2011 2012 2013 2014 View History Sales to End Users, Average 1.777 1.976 - - - - 1994-2014 Residential 2.025 2.224 - - - - 1994-2014 CommercialInstitutional 1.698 1.873...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    -9.09% YEAR 2012 2013 SES 1 1 0.00% EN 05 1 1 0.00% EN 04 11 11 0.00% NN (Engineering) 8 8 0.00% NQ (ProfTechAdmin) 17 14 -17.65% NU (TechAdmin Support) 2 2...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    2012 2013 SES 2 1 -50.00% EJEK 10 9 -10.00% EN 04 27 24 -11.11% NN (Engineering) 28 24 -14.29% NQ (ProfTechAdmin) 31 29 -6.45% NU (TechAdmin Support) 4...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2012 2013 SES 2 1 -50.00% EN 05 0 1 100.00% EN 04 4 4 0.00% NN (Engineering) 13 12 -7.69% NQ (ProfTechAdmin) 13 9 -30.77% NU (TechAdmin Support) 1 1...

  5. U.S. Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 2010 2011 2012 2013 2014 View History Proved Reserves as of Dec. 31 60,644 97,449 131,616 129,396 159,115 199,684 2007-2014 Adjustments 1,690 7,579 1,584 526 4,855 12,113 ...

  6. Alabama Offshore-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 53,348 53,771 49,474 2012-2014 Total Liquids Extracted (Thousand Barrels) 2,695 2,767 2,519 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,978 3,721

  7. Alabama Onshore-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 100,491 33,921 35,487 31,116 2011-2014 Total Liquids Extracted (Thousand Barrels) 2,614 2,781 2,620 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,132 3,323

  8. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 13,279 4,685 0 0 0 0 1998-2014 Pipeline Prices 4.10 4.30 -- -- -- -- 1998-2014

  9. Arkansas-Arkansas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 5,611 6,872 7,781 8,058 2011-2014 Total Liquids Extracted (Thousand Barrels) 336 378 457 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 582 2014

  10. Commercial % Sold by Local Distribution Companies

    Gasoline and Diesel Fuel Update (EIA)

    Residential Price - Local Distribution Companies Residential Price - Marketers Residential % Sold by Local Distribution Companies Average Commercial Price Commercial Price - Local Distribution Companies Commerical Price - Marketers Commercial % Sold by Local Distribution Companies Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 View History District of

  11. Hidalgo, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 284 62 0 0 0 0 1996-2014 Pipeline Prices 4.40 4.21 -- -- -- -- 1996-2014

  12. Illinois Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 164 5,393 294 1967-2014 Total Liquids Extracted (Thousand Barrels) 24 231 40 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 31 345 1,043 0 0 47 1967

  13. Louisiana Offshore-Louisiana Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 151,301 99,910 94,790 2012-2014 Total Liquids Extracted (Thousand Barrels) 3,378 2,694 2,454 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 5,100 3,585 2012

  14. McAllen, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 12,535 2,520 0 0 0 0 1998-2014 Pipeline Prices 3.89 4.20 -- -- -- -- 1998-2014

  15. Michigan-Michigan Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 21,518 21,243 21,416 18,654 2011-2014 Total Liquids Extracted (Thousand Barrels) 2,046 2,005 1,593 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 1,922 2014

  16. Mississippi-Mississippi Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 5,415 5,021 4,527 5,633 2011-2014 Total Liquids Extracted (Thousand Barrels) 350 359 365 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 495 2014

  17. Ohio Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 2,211 33,031 344,073 1981-2014 Total Liquids Extracted (Thousand Barrels) 118 1,367 24,411 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 0 0 0 155 2,116 33,332 1981

  18. Ohio-Ohio Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 2,211 32,760 344,073 2012-2014 Total Liquids Extracted (Thousand Barrels) 118 1,353 24,411 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 33,332 2014-2014

  19. CX-006599: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Environmental Restoration and Waste Management Activities, Fiscal Year 2012-2013CX(s) Applied: B6.1, B6.2Date: 08/23/2011Location(s): Amarillo, TexasOffice(s): NNSA-Headquarters, Pantex Site Office

  20. Apply to the Cyclotron Institute REU Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs from Previous Years The Cyclotron Institute has hosted REU programs every year since the Summer of 2004. Click on the links below to view a recap of each year's program. Recaps include the project summaries, posters, and presentations of former participants. 2004 / 2005 / 2006 / 2007 / 2008 / 2009 / 2010 / 2011 / 2012 / 2013 / 2014 / 2015

  1. Refiner Acquisition Cost of Crude Oil - Composite

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 2010 2011 2012 2013 2014 View History U.S. 59.29 76.69 101.87 100.93 100.49 92.02 1968-2014 East Coast (PADD 1) 61.63 79.91 111.01 111.50 106.80 96.70 2004-2014 Midwest (PADD...

  2. North Louisiana Shale Gas Proved Reserves, Reserves Changes,...

    Gasoline and Diesel Fuel Update (EIA)

    2008 2009 2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 858 9,307 20,070 21,950 13,523 11,473 2007-2013 Adjustments 131 2,347 -172 241 70 2009-2013 Revision...

  3. Colorado Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    2008 2009 2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 0 4 4 10 53 136 2007-2013 Adjustments 1 -1 0 31 49 2009-2013 Revision Increases 0 1 4 13 56 2009-2013...

  4. Alaska Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    2008 2009 2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 0 0 0 0 0 0 2007-2013 Adjustments 0 0 0 0 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision...

  5. TX, RRC District 2 Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 395 1,692 4,743 5,595 2010-2013 Adjustments 6 237 494 40 2010-2013 Revision Increases 6 388 326 839 2010-2013...

  6. Natural Gas Dry Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History U.S. 21,315,507 22,901,879 24,033,266 24,205,523 25,728,496 27,095,010 1930-2015 Alaska 353,391 334,671 329,789 317,503 326,897 1982-2014 ...

  7. Lower 48 States Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 2012 2013 2014 2015 View History Net Withdrawals -347,562 -7,279 553,644 -247,806 -539,517 2011-2015 Injections 3,421,813 2,825,427 3,047,153 3,827,150 3,629,792 2011-2015 ...

  8. Refiner Prices of Gasoline, All Grades - Through Retail Outlets

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 2010 2011 2012 2013 2014 View History U.S. 1.892 2.306 3.058 3.168 3.068 2.876 1978-2014 East Coast (PADD 1) 1.871 2.291 3.054 3.172 3.058 2.716 1983-2014 New England (PADD...

  9. U.S. Price of Compressedd Natural Gas Exports by Point of Exit

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 2012 2013 2014 View History U.S. Total -- -- 6.20 12.40 2011-2014 To Canada -- -- 6.20 12.40 2011-2014 Calais, ME -- 6.20 12.40 2012-2014...

  10. Former Nonproliferation Graduate Fellow Served at U.S. Mission

    SciTech Connect (OSTI)

    Brim, Cornelia P.

    2014-10-01

    Because of her training and professional experiences, Rosalyn Leitch, a Security Specialist at Pacific Northwest National Laboratory and former Nonproliferation Graduate Fellow with NIS (2012-2013) was able to transition into temporary assignment as UNVIE Acting Nuclear Security Attaché from November 2013 through February 2014.

  11. CX-006598: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Site Characterization, Monitoring, and General Research Activities, Fiscal Year 2012-2013CX(s) Applied: B3.1, B3.6, B3.8Date: 08/23/2011Location(s): Amarillo, TexasOffice(s): NNSA-Headquarters, Pantex Site Office

  12. U.S. Blender Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total Input 2,166,784 2,331,109 2,399,318 2,539,812 2,824,480 2,987,634 2005-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases ...

  13. F.O.B. Costs of Imported Crude Oil by Area

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 2010 2011 2012 2013 2014 View History Average 57.78 74.19 101.66 99.78 96.56 85.65 1973-2014 Persian Gulf 59.53 75.65 106.47 105.45 100.62 94.03 1973-2014 Total OPEC 58.53...

  14. F.O.B. Costs of Imported Crude Oil for Selected Crude Streams

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 2010 2011 2012 2013 2014 View History Angolan Cabinda 1978-2008 Canadian Bow River 1978-2008 Canadian Light Sour Blend 74.59 93.75 83.54 87.67 81.71 2010-2014 Canadian...

  15. Texas Onshore-Kansas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 57,971 63,053 144,573 112,694 2011-2014 Total Liquids Extracted (Thousand Barrels) 2,727 5,881 5,145...

  16. Fernald Attendance

    Office of Legacy Management (LM)

    2,000 4,000 6,000 8,000 10,000 12,000 14,000 VISITORS CENTER AND PROGRAM ATTENDANCE 2008 2009 2010 2011 2012 2013 2014 Annual attendance is determined by combining Visitors Center...

  17. Stereotactic, Single-Dose Irradiation of Lung Tumors: A Comparison of Absolute Dose and Dose Distribution Between Pencil Beam and Monte Carlo Algorithms Based on Actual Patient CT Scans

    SciTech Connect (OSTI)

    Chen Huixiao; Lohr, Frank; Fritz, Peter; Wenz, Frederik; Dobler, Barbara; Lorenz, Friedlieb; Muehlnickel, Werner

    2010-11-01

    Purpose: Dose calculation based on pencil beam (PB) algorithms has its shortcomings predicting dose in tissue heterogeneities. The aim of this study was to compare dose distributions of clinically applied non-intensity-modulated radiotherapy 15-MV plans for stereotactic body radiotherapy between voxel Monte Carlo (XVMC) calculation and PB calculation for lung lesions. Methods and Materials: To validate XVMC, one treatment plan was verified in an inhomogeneous thorax phantom with EDR2 film (Eastman Kodak, Rochester, NY). Both measured and calculated (PB and XVMC) dose distributions were compared regarding profiles and isodoses. Then, 35 lung plans originally created for clinical treatment by PB calculation with the Eclipse planning system (Varian Medical Systems, Palo Alto, CA) were recalculated by XVMC (investigational implementation in PrecisePLAN [Elekta AB, Stockholm, Sweden]). Clinically relevant dose-volume parameters for target and lung tissue were compared and analyzed statistically. Results: The XVMC calculation agreed well with film measurements (<1% difference in lateral profile), whereas the deviation between PB calculation and film measurements was up to +15%. On analysis of 35 clinical cases, the mean dose, minimal dose and coverage dose value for 95% volume of gross tumor volume were 1.14 {+-} 1.72 Gy, 1.68 {+-} 1.47 Gy, and 1.24 {+-} 1.04 Gy lower by XVMC compared with PB, respectively (prescription dose, 30 Gy). The volume covered by the 9 Gy isodose of lung was 2.73% {+-} 3.12% higher when calculated by XVMC compared with PB. The largest differences were observed for small lesions circumferentially encompassed by lung tissue. Conclusions: Pencil beam dose calculation overestimates dose to the tumor and underestimates lung volumes exposed to a given dose consistently for 15-MV photons. The degree of difference between XVMC and PB is tumor size and location dependent. Therefore XVMC calculation is helpful to further optimize treatment planning.

  18. Alaska

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale natural gas proved reserves and production, 2011-14 billion cubic feet State and Subdivision 2011 2012 2013 2014 2011 2012 2013 2014 Alaska 0 0 0 0 0 0 0 0 Lower 48 States 131,616 129,369 159,115 199,684 7,994 10,371 11,415 13,447 Arkansas 14,808 9,779 12,231 11,695 940 1,027 1,026 1,038 California 855 777 756 44 101 90 89 3 Coastal Region Onshore 0 0 0 9 0 0 0 1 San Joaquin Basin Onshore 855 777 756 15 101 90 89 1 State Offshore 0 0 0 20 0 0 0 1 Colorado 10 53 136 3,775 3 9 18 236 Florida

  19. Alaska

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed methane proved reserves and production, 2010-14 billion cubic feet State and Subdivision 2010 2011 2012 2013 2014 2010 2011 2012 2013 2014 Alaska 0 0 0 0 0 0 0 0 0 0 Lower 48 States 17,508 16,817 13,591 12,392 15,696 1,886 1,763 1,655 1,466 1,404 Alabama 1,298 1,210 1,006 413 978 102 98 91 62 78 Arkansas 28 21 10 13 15 3 4 2 2 2 California 0 0 0 0 0 0 0 0 0 0 Colorado 6,485 6,580 5,074 4,391 5,103 533 516 486 444 412 Florida 0 0 0 0 0 0 0 0 0 0 Kansas 258 228 183 189 211 41 37 34 30 27

  20. Alastair Gardiner | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shale natural gas proved reserves and production, 2011-14 billion cubic feet State and Subdivision 2011 2012 2013 2014 2011 2012 2013 2014 Alaska 0 0 0 0 0 0 0 0 Lower 48 States 131,616 129,369 159,115 199,684 7,994 10,371 11,415 13,447 Arkansas 14,808 9,779 12,231 11,695 940 1,027 1,026 1,038 California 855 777 756 44 101 90 89 3 Coastal Region Onshore 0 0 0 9 0 0 0 1 San Joaquin Basin Onshore 855 777 756 15 101 90 89 1 State Offshore 0 0 0 20 0 0 0 1 Colorado 10 53 136 3,775 3 9 18 236 Florida

  1. Science at ALCF | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three-dimensional view of shock reflection in a square tube First-Principles Simulations of High-Speed Combustion and Detonation Alexei Khokhlov Allocation Program: INCITE Allocation Hours: 140 Million Science at ALCF Allocation Program - Any - INCITE ALCC ESP Director's Discretionary Year Year -Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 Research Domain - Any - Physics Mathematics Computer Science Chemistry Earth Science Energy Technologies Materials Science Engineering Biological

  2. Proved Reserves as of 12/31

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Proved Reserves as of 12/31 Adjustments (+,-) Revision Increases (+) Revision Decreases (-) Sales (-) Acquisitions (+) Extensions (+) New Field Discoveries (+) New Reservoir Discoveries in Old Fields (+) Estimated Production (-) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History U.S. Total 20,682 23,267 26,544 30,529 33,371 36,385

  3. Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2009 2010 2011 2012 2013 2014 View History U.S. 0 0 0 0 0 0 1986-2014 East Coast (PADD 1) 0 0 0 0

  4. Microsoft Word - figure_19.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    63 dollars per thousand cubic feet 0 2 4 6 8 10 12 2010 2011 2012 2013 2014 Residential Commercial Industrial Electric Power Notes: Coverage for prices varies by consumer sector. Prices are in nominal dollars. See Appendix A for further discussion on consumer prices. Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Washington - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  10. Building America Case Study:Cladding Attachment Over Mineral Fiber Insulation Board (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cladding Attachment Over Mineral Fiber Insulation Board Ontario, Canada PROJECT INFORMATION Project Name: Climate-Exposed Long- Term Testing of Mineral Fiber Insulation Board Under Cladding Attachment Load Location: Ontario, Canada Partners: Building Science Laboratories, buildingsciencelabs.com Building Science Corporation, buildingscience.com Building Component: Above-grade frame wall Application: Both new construction and retrofit; wood-framed buildings Year Tested: 2012-2013 Applicable

  11. Archived EAC Charters, Rosters & News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Archived EAC Charters, Rosters & News Archived EAC Charters, Rosters & News Previous charters, rosters, and news for the Electricity Advisory Committee. Charters 2012 Charter (August 9, 2012) 2010 Charter (August 9, 2010) 2008 Charter (March 13, 2008) Membership Rosters 2014 Membership Roster (December 4, 2014) 2014-2015 Membership Roster (September 9, 2014) 2014 Membership Roster (June 10, 2014) 2013 Membership Roster (December 15, 2013) 2012-2013 Membership Roster (December 20,

  12. Arizona - Natural Gas 2014 Million Cu. Feet Percent of

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Arizona - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S3. Summary statistics for natural gas - Arizona, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 5 5 5 5 5 Production (million cubic feet) Gross Withdrawals From Gas Wells 183 168 117 72 106 From

  13. Natural Gas Imports Price

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History U.S. 4.52 4.24 2.88 3.83 5.30 2.99 1985-2015 California 4.76 3.57 -- 3.59 -- 2007-2014 Georgia 4.39 4.20 2.78 3.36 4.33 1999-2014 Idaho ...

  14. Natural Gas Exports Price

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History U.S. 5.02 4.64 3.25 4.08 5.51 3.07 1985-2015 Alaska 12.19 12.88 15.71 -- 15.74 1989-2014 Arizona 4.57 4.28 3.07 4.17 5.15 1989-2014 ...

  15. Final For-Profit Audit Guidance (FY 2011 - FY 2014) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final For-Profit Audit Guidance (FY 2011 - FY 2014) Final For-Profit Audit Guidance (FY 2011 - FY 2014) NOTE THE ATTACHED APPLIES TO AUDITS FOR RECIPIENT'S FYS 2011, 2012, 2013, and 2014. The following General Audit Program provides requirements and guidance for independent audit organizations in conducting program compliance audits of for-profit recipients of federal financial assistance from the Department of Energy (DOE) under DOE's Financial Assistance regulations at 10 CFR 600.316. The

  16. Pilot Demonstration of Phased Retrofits in Florida Homes (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Pilot Demonstration of Phased Retrofits in Florida Homes PROJECT INFORMATION Project Name: Pilot Demonstration of Phased Retrofits in Existing Florida Homes Partners: Building America Partnership for Improved Residential Construction, www.ba-pirc.org Florida Power & Light, www.fpl.com Location: Brevard, Collier, and Palm Beach Counties, Florida Application: Retrofit; Single-family Number of Homes: 60 Age Range: 1958-2006 Applicable Climate Zone(s): Hot-humid Year Tested: 2012-2013

  17. Natural Gas Dry Production (Annual Supply & Disposition)

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Dry Production Supplemental Gaseous Fuels Interstate Receipts Receipts Across U.S. Borders Withdrawals from Underground Storage Consumption Interstate Deliveries Deliveries Across U.S. Borders Injections into Storage Balancing Item Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 21,315,507 22,901,879 24,033,266

  18. Gulf of Mexico Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 1,317,031 1,002,608 1,000,964 2012-2014 Total Liquids Extracted (Thousand Barrels) 60,320 49,143 52,331 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 0 0 0 87,478 70,292 75,648 2007

  19. Mississippi Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 215,951 218,840 126,859 6,865 4,527 5,633 1967-2014 Total Liquids Extracted (Thousand Barrels) 12,591 12,618 7,732 377 359 365 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 18,354 18,405 11,221 486 466 495 1967

  20. Montana Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 12,415 12,391 11,185 12,727 14,575 14,751 1967-2014 Total Liquids Extracted (Thousand Barrels) 1,409 989 927 1,115 1,235 1,254 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 1,853 1,367 1,252 1,491 1,645 1,670 1967

  1. Registration Open for Winter Fuels Outlook Conference on October 10, 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0, 2012 Registration Open for Winter Fuels Outlook Conference on October 10, 2012 September 12, 2012 - 11:16am Addthis The U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability, U.S. Energy Information Administration (EIA), and the National Association of State Energy Officials are hosting the 2012 - 2013 Winter Fuels Outlook Conference on Wednesday, October 10, 2012 in Washington, DC. This important supply and demand forecast event will

  2. Building America Case Study: Evaluation of the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate, New Orleans, Louisiana (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate New Orleans, Louisiana PROJECT INFORMATION Project Name: New Orleans Dehumidification Study Location: New Orleans, LA Partners: Project Home Again Building Science Corporation, buildingscience.com National Renewable Energy Laboratory, nrel.gov Mountain Energy Partnership Building Component: Supplemental dehumidification Application: New; single- and multifamily homes Year Tested: 2012-2013 Applicable

  3. Landed Costs of Imported Crude by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 2010 2011 2012 2013 2014 View History 20.0 or Less 56.38 71.54 96.89 97.49 95.87 85.31 1978-2014 20.1 to 25.0 55.68 71.07 93.32 91.32 88.35 81.44 1978-2014 25.1 to...

  4. Residual Fuel Oil Sales to End Users Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 2010 2011 2012 2013 2014 View History U.S. 8,544.1 7,556.6 6,422.8 5,516.8 5,179.4 4,602.6 1983-2014 PADD 1 2,890.4 2,080.3 1,414.7 1,057.0 961.0 646.3 1983-2014 New England W...

  5. Domestic Crude Oil First Purchase Prices by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 2010 2011 2012 2013 2014 View History 20.0 or Less 54.05 72.40 101.30 102.79 99.40 87.83 1993-2014 20.1 to 25.0 55.66 75.04 103.07 101.56 100.70 91.05 1993-2014 25.1...

  6. Percentages of Total Imported Crude Oil by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 2010 2011 2012 2013 2014 View History 20.0 or Less 14.08 15.13 17.20 16.66 16.20 18.49 1978-2014 20.1 to 25.0 26.11 26.01 27.47 29.77 33.87 36.73 1978-2014 25.1 to...

  7. Q1 1998 STEO Docs

    Gasoline and Diesel Fuel Update (EIA)

    Data Series: Proved Reserves as of 12/31 Adjustments (+,-) Revision Increases (+) Revision Decreases (-) Sales (-) Acquisitions (+) Extensions (+) New Field Discoveries (+) New Reservoir Discoveries in Old Fields (+) Estimated Production (-) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History U.S. Total 20,682 23,267 26,544 30,529 33,371 36,385

  8. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2012-14 2012 2013 2014 Advance Uranium Asset Management Ltd. (was Uranium Asset Management) American Fuel Resources, LLC Advance Uranium Asset Management Ltd. American Fuel Resources, LLC AREVA NC, Inc. AREVA / AREVA NC, Inc. AREVA NC, Inc. BHP Billiton Olympic Dam Corporation Pty Ltd ARMZ (AtomRedMetZoloto) BHP Billiton Olympic Dam Corporation Pty Ltd CAMECO BHP Billiton Olympic Dam Corporation Pty Ltd CAMECO

  9. LANL Data Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Profile 2012-2013 Total: 10,407 Quick Facts FY2013 Operating Budget ..... $1.95 billion Operating costs 54% NNSA Weapons Programs 12% Work for other agencies 10% Nonproliferation programs 9% Environmental management 6% Safeguards and security 5% DOE Office of Science 4% Energy and related programs Workforce Demographics Average Age: 46 67% male, 33% female 45% ethnic minorities 67% university degrees -28% undergraduate degrees -17% graduate degrees -22% PhD degrees Capital/Construction

  10. DOE Research and Development Accomplishments RSS Archive 2007

    Office of Scientific and Technical Information (OSTI)

    7 2005 - 2006 * 2007 * 2008 * 2009 * 2010 * 2011 * 2012 * 2013 * 2014 Roger D. Kornberg Credit: Linda A. Cicero/ Stanford News Service DNA given a "voice"; award-winning research featured at OSTI Nobel Laureate research that helps read the instructions of life is now featured at OSTI. Roger D. Kornberg of Stanford University won the 2006 Nobel Prize in Chemistry for his studies in transcribing DNA, the storehouse of molecular information. Dr. Kornberg noted in a PBS interview,

  11. F.O.B. Costs of Imported Crude Oil by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 2010 2011 2012 2013 2014 View History 20.0 or Less 54.76 69.51 94.66 96.07 93.91 82.40 1978-2014 20.1 to 25.0 54.36 69.72 94.15 94.35 91.27 80.16 1978-2014 25.1 to...

  12. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    2 Reference case Table A10. Electricity trade (billion kilowatthours, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2015 Table A10. Electricity trade (billion kilowatthours, unless otherwise noted) Electricity trade Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Interregional electricity trade Gross domestic sales Firm power .......................................................... 156 157 122 63 28 28 28 -6.2% Economy

  13. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Table A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2015 Table A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Key indicators

  14. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Table A5. Commercial sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2015 Table A5. Commercial sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Key indicators

  15. 2014_cipsea_report.pdf

    Gasoline and Diesel Fuel Update (EIA)

    3 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 2012 2013 2014 Advance Uranium Asset Management Ltd. AREVA NC, Inc. AREVA Enrichment Services, LLC / AREVA NC, Inc. AREVA NC, Inc. CNEIC (China Nuclear Energy Industry Corporation) CNEIC (China Nuclear Energy Industry Corporation) CNEIC (China Nuclear Energy Industry Corporation) LES, LLC (Louisiana Energy Services) LES, LLC (Louisiana Energy Services) LES, LLC (Louisiana Energy Services) NUKEM, Inc.

  16. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    A-3 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2015 Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Sector and source Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Energy consumption Residential Propane

  17. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    23 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Table A11. Petroleum and other liquids supply and disposition (million barrels per day, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2015 Table A11. Petroleum and other liquids supply and disposition (million barrels per day, unless otherwise noted) Supply and disposition Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Crude oil Domestic

  18. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Table A13. Natural gas supply, disposition, and prices (trillion cubic feet per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2015 Table A13. Natural gas supply, disposition, and prices (trillion cubic feet, unless otherwise noted) Supply, disposition, and prices Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Supply Dry gas production

  19. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    8 Reference case Table A14. Oil and gas supply Energy Information Administration / Annual Energy Outlook 2015 Table A14. Oil and gas supply Production and supply Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Crude oil Lower 48 average wellhead price 1 (2013 dollars per barrel) ...................................... 96 97 75 87 101 117 136 1.3% Production (million barrels per day) 2 United States total ............................................... 6.50 7.44

  20. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    5 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Energy Information Administration / Annual Energy Outlook 2015 Table A18. Energy-related carbon dioxide emissions by sector and source (million metric tons, unless otherwise noted) Sector and source Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Residential Petroleum .............................................................. 61 64 50 45 41 37 33 -2.4% Natural gas

  1. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    6 Reference case Table A19. Energy-related carbon dioxide emissions by end use (million metric tons) Energy Information Administration / Annual Energy Outlook 2015 Table A19. Energy-related carbon dioxide emissions by end use (million metric tons) Sector and end use Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Residential Space heating ........................................................ 228 293 248 236 228 218 207 -1.3% Space cooling

  2. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Energy Information Administration / Annual Energy Outlook 2015 Table A21. International petroleum and other liquids supply, disposition, and prices (million barrels per day, unless otherwise noted) Supply, disposition, and prices Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Crude oil spot prices (2013 dollars per barrel) Brent

  3. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 2011 2012 2013 2014 2015 AUC LLC Reno Creek Campbell, Wyoming 2,000,000 - - Developing Developing Partially Permitted and Licensed Azarga Uranium Corp Dewey Burdock Project Fall River and Custer, South Dakota 1,000,000 Undeveloped Developing Developing Partially Permitted And Licensed Partially Permitted And Licensed Cameco Crow Butte Operation Dawes, Nebraska

  4. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    7 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Capacity (short tons of ore per day) 2011 2012 2013 2014 2015 Anfield Resources Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby Standby Standby EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating- Processing Alternate Feed Operating- Processing Alternate Feed Operating- Processing Alternate Feed Energy Fuels Wyoming Inc Sheep Mountain

  5. Microsoft PowerPoint - 9_ANDY_IMBODEN_NMMSS_2014_Powerpoint_Waste Confidence Update Imboden.ppt [Compatibility Mode]

    National Nuclear Security Administration (NNSA)

    Update on NRC's Waste Confidence Rulemaking Andy Imboden, NRC, Office of Nuclear Material Safety and Safeguards Outline  Schedule  Completed Activities  Public Participation  Public Input to Policy Issues  Path Forward 2 Schedule 3 2012 2012 2013 2013 2014 2014 Scoping for GEIS (Generic Environmental Impact Statement) Develop Draft GEIS and Proposed Rule Public Comment Develop Final GEIS and Final Rule Completed Activities  EIS scoping October 25, 2012 - January 2, 2013 

  6. Archived Publications and Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    » Archived EAC Charters, Rosters & News Archived EAC Charters, Rosters & News Previous charters, rosters, and news for the Electricity Advisory Committee. Charters 2012 Charter (August 9, 2012) 2010 Charter (August 9, 2010) 2008 Charter (March 13, 2008) Membership Rosters 2014 Membership Roster (December 4, 2014) 2014-2015 Membership Roster (September 9, 2014) 2014 Membership Roster (June 10, 2014) 2013 Membership Roster (December 15, 2013) 2012-2013 Membership Roster (December 20,

  7. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    2 Net Internal Demand, Capacity Resources, and Capacity Margins in the Contiguous United States (GW) Net Internal Capacity Capacity Demand (1) Resources (2) Margin (3) 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Note(s): Source(s): 778.5 980.3 20.6% 1) Net internal demand represents the system demand that is planned for by the electric power industry`s reliability authority and is equal to internal demand less direct control load

  8. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    3.3 Commercial Sector Expenditures March 2012 3.3.3 Commercial Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Natural Gas Petroleum (2) Total 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 148.6 37.0 17.0 202.6 148.9 37.2 17.1 203.2 145.9 36.2

  9. NUG Teleconference Aug. 2, 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aug. 2, 2012 NUG Teleconference Aug. 2, 2012 August 2, 2012 Topics "Improving MPI-IO performance to the /project and /global scratch file systems from Hopper" - A presentation and discussion led by Dr. Yushu Yao, NERSC User Services ERCAP : Opens: Aug. 14, 2012 Due: Sep. 21, 2012 Decisions: Dec. 14, 2012 2013 AY: Jan 8, 2013 to Jan 13, 2014 Other questions: ERCAP special topic at Sep. NUG telecon Next NUG face-to-face: The preferred date is late January or early February 2013. Site

  10. TX, RRC District 8A Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 2012 2013 2014 View History Proved Reserves as of Dec. 31 0 0 10 2012-2014 Adjustments 0 0 123 2012-2014 Revision Increases 0 0 0 2012-2014 Revision Decreases 0 0 156 2012-2014 Sales 0 0 0 2012-2014 Acquisitions 0 0 0 2012-2014 Extensions 0 0 44 2012-2014 New Field Discoveries 0 0 0 2012-2014 New Reservoir Discoveries in Old Fields 0 0 0 2012-2014 Estimated Production 0 0 1 2012

  11. Total Adjusted Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 55,664,448 58,258,830 59,769,444 57,512,994 58,675,008 61,890,990 1984-2014 East Coast (PADD 1) 18,219,180 17,965,794 17,864,868 16,754,388

  12. Total Adjusted Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 7,835,436 8,203,062 7,068,306 5,668,530 4,883,466 3,942,750 1984-2014 East Coast (PADD 1) 3,339,162 3,359,265 2,667,576 1,906,700 1,699,418 1,393,068 1984-2014 New England (PADD 1A) 318,184

  13. Total Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 East Coast (PADD 1) 17,821,973 18,136,965 17,757,005 17,382,566

  14. Total Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 6,908,028 7,233,765 6,358,120 6,022,115 5,283,350 4,919,255 1984-2014 East Coast (PADD 1) 2,972,575 2,994,245 2,397,932 2,019,294 1,839,237 1,724,167 1984-2014 New England (PADD 1A) 281,895

  15. Virginia Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 2013 2014 View History Proved Reserves as of Dec. 31 135 126 84 2012-2014 Adjustments -1 3 14 2012-2014 Revision Increases 0 3 0 2012-2014 Revision Decreases 0 12 76 2012-2014 Sales 0 0 0 2012-2014 Acquisitions 0 0 18 2012-2014 Extensions 139 0 5 2012-2014 New Field Discoveries 0 0 0 2012-2014 New Reservoir Discoveries in Old Fields 0 0 0 2012-2014 Estimated Production 3 3 3 2012

  16. Shale Natural Gas Proved Reserves as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History U.S. 60,644 97,449 131,616 129,396 159,115 199,684 2007-2014 Alaska 0 0 0 0 0 0 2007-2014

  17. Seminar Series | Event Types | MIT-Harvard Center for Excitonics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seminar Series Browse by Year 2016-2017 Seminar Series 2015-2016 Seminar Series 2014-2015 Seminar Series 2013-2014 Seminar Series 2012-2013 Seminar Series 2011-2012 Seminar Series 2010-2011 Seminar Series 2009-2010 Seminar Series 2008-2009 Seminar Series 2016-2017 Seminar Series DATE SPEAKER TITLE TIME/LOCATION September 21, 2016 2016-2017 Seminar Series 2015-2016 Seminar Series DATE SPEAKER TITLE TIME/LOCATION April 19, 2016 Sean Roberts Department of Chemistry, The University of Texas at

  18. The MicroBooNE Experiment - About the Detector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Detector Cryostat delivered Assembly Photos The MicroBooNE time projection chamber (TPC) was assembled at Fermilab in 2012-2013, sealed in the cryostat at the end of 2013, and installed in the Liquid Argon Test Facilty (LArTF) in the Booster neutrino beamline in June 2014. Watch a video of the MicroBooNE detector move! Please check Assembly Photos for a slide-show of the effort These same photos are posted here in a simpler format Photos of Wires Taken from inside the cryostat in April 2015

  19. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Table 10. Sales of natural gas plant liquids production from federal and Indian lands by state/area, FY 2003-14 million barrels State 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Alabama 0 0 0 0 1 1 1 1 1 1 1 1 Alaska 0 0 0 0 0 0 0 0 - - - 0 Arizona - - - - - - 0 0 0 0 - - Arkansas - - - - - - - - - - - - California 0 0 0 0 0 0 0 0 0 0 0 0 Colorado 1 1 1 1 1 3 5 8 9 11 6 7 Florida - - - - - - - - - - - - Illinois - - - - - - - - - - - - Indiana - - - - - - - - - - - - Kansas 0 0

  20. Utah Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 412,639 454,832 490,233 535,365 448,687 419,773 1967-2014 Total Liquids Extracted (Thousand Barrels) 6,527 7,648 10,805 11,441 11,279 13,343 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 8,489 9,978 14,910 15,637 15,409 18,652 1967

  1. West Virginia Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 143,468 137,740 139,592 189,278 315,229 867,111 1967-2014 Total Liquids Extracted (Thousand Barrels) 6,514 6,384 6,407 8,010 14,195 41,116 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 8,786 8,607 8,627 10,888 19,564 57,582 1967

  2. Wyoming Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 1,507,142 1,642,190 1,634,364 1,614,320 1,517,876 1,526,746 1967-2014 Total Liquids Extracted (Thousand Barrels) 64,581 63,857 66,839 70,737 52,999 54,933 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 93,796 92,777 97,588 102,549 74,409 76,943 1967

  3. Alkylate

    U.S. Energy Information Administration (EIA) Indexed Site

    Day) Product: Alkylate Aromatics Asphalt & Road Oil Isomers Isobutane Isopentane & Isohexane Isooctane Lubricants Marketable Petroleum Coke Hydrogen Sulfur Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 1,248,514 1,262,443 1,246,875 1,269,361 1,266,352 1,267,246 1982-2015 PAD District 1 95,500 108,629 79,429 91,429

  4. CA, San Joaquin Basin Onshore Shale Gas Proved Reserves, Reserves Changes,

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production 2011 2012 2013 2014 View History Proved Reserves as of Dec. 31 855 777 756 15 2011-2014 Adjustments 1 1 -1 -740 2011-2014 Revision Increases 912 258 68 1 2011-2014 Revision Decreases 0 248 0 3 2011-2014 Sales 0 0 0 12 2011-2014 Acquisitions 0 0 0 14 2011-2014 Extensions 43 1 1 0 2011-2014 New Field Discoveries 0 0 0 0 2011-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 2011-2014 Estimated Production 101 90 89 1 2011

  5. California Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 2012 2013 2014 View History Proved Reserves as of Dec. 31 855 777 756 44 2011-2014 Adjustments 1 1 -1 -710 2011-2014 Revision Increases 912 258 68 3 2011-2014 Revision Decreases 0 248 0 4 2011-2014 Sales 0 0 0 19 2011-2014 Acquisitions 0 0 0 21 2011-2014 Extensions 43 1 1 0 2011-2014 New Field Discoveries 0 0 0 0 2011-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 2011-2014 Estimated Production 101 90 89 3 2011

  6. Kansas Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 2013 2014 View History Proved Reserves as of Dec. 31 2 3 4 2012-2014 Adjustments 0 0 8 2012-2014 Revision Increases 0 0 3 2012-2014 Revision Decreases 0 0 6 2012-2014 Sales 0 0 3 2012-2014 Acquisitions 0 0 0 2012-2014 Extensions 0 4 0 2012-2014 New Field Discoveries 3 0 0 2012-2014 New Reservoir Discoveries in Old Fields 0 0 0 2012-2014 Estimated Production 1 3 1 2012

  7. Electronic_Doc._Online_Corrospondence_and_Concurrence.pdf

    Energy Savers [EERE]

    Electronic Docket Room (e-Docket Room) Electronic Docket Room (e-Docket Room) E-Docket -- Browse Searchable Database of Current and Historical Applications Submitted to DOE (click SHOW for drop down menu) Authorizations/Orders Granted by the Department -- NOTE: 1977 thru 2013 will take you to an external link. 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

  8. Location of Natural Gas Production Facilities in the Gulf of Mexico

    U.S. Energy Information Administration (EIA) Indexed Site

    Location of Natural Gas Production Facilities in the Gulf of Mexico 2014 U.S. Energy Information Administration | Natural Gas Annual 102 1,179,714 4.6 Gulf of Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Dry Production: Table S12. Summary statistics for natural gas - Gulf of Mexico, 2010-2014 Gulf of Mexico - Table S12 Federal Offshore Production trillion cubic feet 0 1 2 3 4 5 6 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

  9. Microsoft Word - Figure_01.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Figure 1. Selected average prices of natural gas in the United States, 2010-2014 0 1 2 3 4 5 6 7 2010 2011 2012 2013 2014 E xports Im ports C itygate dollars per thousand cubic feet Note: Prices are in nominal dollars. Sources: Energy Information Administration (EIA), Form EIA-895, "Annual Quantity and Value of Natural Gas Report"; Form EIA-914, "Monthly Natural Gas Production Report"; Office of Fossil Energy, U.S. Department of Energy, Natural Gas Imports and Exports; Form

  10. Microsoft Word - Figure_05-2015new.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    14 Figure 5. Gross withdrawals of natural gas in the United States, by type of well, 2010-2014 0 2000 4000 6000 8000 10000 12000 14000 16000 2010 2011 2012 2013 2014 From Gas Wells From Oil W ells From C oalbed Wells From Shale Gas Wells billion cubic feet Sources: Energy Information Administration (EIA), Form EIA-895, "Annual Quantity and Value of Natural Gas Report"; Form EIA-914, "Monthly Natural Gas Production Report"; Form EIA-816, "Monthly Natural Gas Liquids

  11. Microsoft Word - figure_08_2015.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    2 10.8 8.0 5.9 5.0 4.4 0 2 4 6 8 10 12 2010 2011 2012 2013 2014 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-64A, "Annual Report of the Origin of Natural Gas Liquids Production"; Office of Fossil Energy, U.S. Department of Energy, Natural Gas Imports and Exports; Form EIA-895, "Annual Quantity and Value of Natural Gas Production Report"; Form EIA-914, "Monthly

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Hawaii - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S13. Summary statistics for natural gas - Hawaii, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Idaho - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  18. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  19. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  1. Natural Gas Wellhead Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Production Imputed Wellhead Value Wellhead Price Marketed Production Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 4.48 3.95 2.66 NA NA NA 1922-2015 Alabama 4.46 1967-2010 Alaska 3.17 1967-2010 Arizona 4.11 1967-2010 Arkansas 3.84 1967-2010 California 4.87 1967-2010 Colorado 3.96 1967-2010 Florida NA 1967-2010

  2. None Currently | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Dec. 31 Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History U.S. 250,496 281,901 305,986 269,514 295,504 319,724 1979-2014 Federal

  3. The Status of Clean Energy in the United States

    Energy Savers [EERE]

    The Status of Clean Energy in the United States Tribal Energy Program Review May 6, 2015 Travis Lowder, NREL 2 Lazard's Levelized Cost of Energy (LCOE) Estimates Source: Lazard 2013 3 Lazard's Capital Cost Estimates Source: Lazard 2013 4 EIA Estimates (2012 data) 5 Solar PV 6 Solar PV Installed Capacity and Weighted Average System Cost $0 $2 $4 $6 $8 $10 $12 0 1000 2000 3000 4000 5000 6000 7000 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Wtd. Avg. System Price ($/W)

  4. Slide 0

    Energy Savers [EERE]

    Executive Service (SES) Performance Cycle Results Historical Performance Ratings Distribution 50% 53% 17% 48% 49% 46% 34% 0% 10% 20% 30% 40% 50% 60% 2011 2012 2013 Percentage of SES All SES (Career, Non-Career and Limited Term) Ratings Distribution FY 11 - FY 13 Fully Successful Highly Successful Outstanding FY 13 is the first year operating under OPM's 5 level rating system - previously no "Highly Successful" Rating May not add to 100% due to not including Minimally Satisfactory or

  5. Slide 0

    Energy Savers [EERE]

    Professional Performance Cycle Results Historical Performance Ratings Distribution 17% 33% 27% 58% 54% 64% 25% 8% 9% 0% 10% 20% 30% 40% 50% 60% 70% 2011 2012 2013 Percentage of SL/ST SL/ST Ratings FY11 - FY13 Outstanding Exceeds Meets Expectations May not add to 100% due to not including Minimally Satisfactory or below ratings FY 13 SL/ST Compensation Philosophy * Award pool funding set at 0.97% of SL/ST salary - Award Distribution Factor assigned based on rating level - Optimized based on

  6. District of Columbia Average Price of Natural Gas Delivered to Residential

    U.S. Energy Information Administration (EIA) Indexed Site

    and Commercial Consumers by Local Distributio Area: District of Columbia Florida Georgia Maryland Michigan New Jersey New York Ohio Pennsylvania Virginia Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Residential Average Price 13.53 13.06 12.10 12.45 13.05 12.52 1980-2015 Commercial Average Price 12.26 12.24 11.19 11.64 12.18

  7. All 2015 Tables_2014 Dollars.xlsx

    Gasoline and Diesel Fuel Update (EIA)

    c. Real Average Annual Coal Transportation Costs from Coal Basin to State by Railroad (2014 dollars per ton) Coal Supply Basin Destination State 2008 2009 2010 2011 2012 2013 2014 Northern Appalachia Delaware W - W W - W W Northern Appalachia Florida - W W W - - W Northern Appalachia Georgia - W - W - - W Northern Appalachia Indiana 21.53 17.54 17.87 20.00 W 20.82 21.39 Northern Appalachia Kentucky - - W W W - - Northern Appalachia Maine - - - - W - - Northern Appalachia Maryland 21.36 21.14

  8. All 2015 Tables_2014 Dollars.xlsx

    Gasoline and Diesel Fuel Update (EIA)

    b. Real Average Annual Coal Transportation Costs from State to State by Waterway (2014 dollars per ton) Origin State Destination State 2008 2009 2010 2011 2012 2013 2014 Alabama Alabama 4.65 4.66 5.08 3.84 W 4.58 W Alabama Ohio W - - - - - - Colorado Alabama W - - - - - - Colorado Florida 12.14 13.75 14.25 W - - - Colorado Indiana W W - W - - - Colorado Iowa W - - - - - - Colorado Kentucky W - - - - - - Colorado Mississippi - - W - - - - Colorado Ohio - W - - - - - Illinois Alabama W W W W W W W

  9. Louisiana (with State Offshore) Coalbed Methane Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Location of Natural Gas Production Facilities in the Gulf of Mexico 2014 U.S. Energy Information Administration | Natural Gas Annual 102 1,179,714 4.6 Gulf of Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Dry Production: Table S12. Summary statistics for natural gas - Gulf of Mexico, 2010-2014 Gulf of Mexico - Table S12 Federal Offshore Production trillion cubic feet 0 1 2 3 4 5 6 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

  10. Liquid Fuels and Natural Gas in the Americas

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquid Fuels and Natural Gas in the Americas EIA Conference July 14, 2014 | Washington, DC Liquid fuels production in the Americas surpassed the Middle East in 2013 liquid fuels production by region million barrels per day Source: EIA, International Energy Statistics 2 0 5 10 15 20 25 30 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Americas Middle East Former Soviet Union Africa Asia and Oceania Europe EIA Conference July 14, 2014 The Americas are the second largest region in oil reserves

  11. Natural Gas Plant Liquids Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Plant Liquids contained in Total Natural Gas Proved Reserves (Million Barrels) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 8,557 9,809 10,825 10,777 11,943 15,029 1979-2014 Alabama 55 68 68 55 51 59 1979-2014 Alaska 299 288 288 288 288 241 1979-2014 Arkansas 2 2 3 3 4 5 1979-2014 California 129 114 94 99 102 112 1979-2014 Coastal Region Onshore 10 11 12

  12. LA, South Onshore Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 2011 2012 2013 2014 View History Proved Reserves as of Dec. 31 0 0 10 181 2011-2014 Adjustments 0 2 91 2012-2014 Revision Increases 0 0 22 2012-2014 Revision Decreases 0 0 6 2012-2014 Sales 0 0 0 2012-2014 Acquisitions 0 0 0 2012-2014 Extensions 0 9 86 2012-2014 New Field Discoveries 0 0 0 2012-2014 New Reservoir Discoveries in Old Fields 0 0 0 2012-2014 Estimated Production 0 0 1 22 2011

  13. Mississippi Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 2013 2014 View History Proved Reserves as of Dec. 31 19 37 19 2012-2014 Adjustments 21 23 -26 2012-2014 Revision Increases 0 0 4 2012-2014 Revision Decreases 0 0 3 2012-2014 Sales 0 0 0 2012-2014 Acquisitions 0 0 0 2012-2014 Extensions 0 0 7 2012-2014 New Field Discoveries 0 0 1 2012-2014 New Reservoir Discoveries in Old Fields 0 0 1 2012-2014 Estimated Production 2 5 2 2012

  14. Natural Gas Delivered to Commercial Consumers for the Account of Others

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Residential Deliveries % of All Resi. Deliveries for the Acct. of Others Commercial Deliveries % of All Comm. Deliveries for the Acct. of Others Industrial Deliveries % of All Ind. Deliveries for the Acct. of Others Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History U.S. 1,273,058 1,317,138 1,394,183 1,354,780 1,519,352 1,600,048

  15. Fellows' Officers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Officers Fellows' Officers Current officers and listing of coordinators from 1982 to present. Current and past officers, coordinators 2015-2016 Dipen Sinha, Coordinator Chuck Farrar, Deputy Coordinator Secretary (vacant) Past coordinators 2014-2015: Brad Meyer 2013-2014: Toni Taylor 2012-2013: Pat Colestock 2011-2012:Quanxi Jia 2010-2011: Joyce Guzik 2009-2010: Darryl L. Smith 2008-2009: S. Peter Gary 2007-2008: R. S. Hixson 2006-2007: W. C. Priedhorsky 2005-2006: G. T. Gray III 2004-2005: M. M.

  16. U.S. Uranium Reserves Estimates

    Gasoline and Diesel Fuel Update (EIA)

    Alaska Arizona California Georgia Idaho Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Montana New Hampshire New York North Dakota Texas Vermont Washington Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Import Volume 3,740,757 3,468,693 3,137,789 2,883,355 2,695,378 2,718,349 1973-2015 Import Price 4.52 4.24

  17. Colorado Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 1,233,260 1,434,003 1,507,467 1,464,261 1,373,046 1,495,360 1967-2014 Total Liquids Extracted (Thousand Barrels) 47,705 57,924 63,075 57,379 51,978 60,850 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 67,607 82,637 90,801 82,042 87,513 85,198 1967

  18. District of Columbia Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    and Commercial Consumers by Local Distributio 18.17 16.21 12.60 10.70 9.96 9.53 1989-2016 Commercial Average Price 11.50 11.68 11.28 10.01 9.50 9.30

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,014 1,016 1,029 1,048 1,037 1,044 2007-2015

  19. Federal Offshore U.S. Coalbed Methane Proved Reserves, Reserves Changes,

    Gasoline and Diesel Fuel Update (EIA)

    Annual-Million Cubic Feet Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Gross Withdrawals NA NA NA 0 0 0 1977-2014 From Gas Wells NA NA NA 0 0 0 1977-2014 From Oil Wells NA NA NA 0 0 0 1977-2014 Repressuring 1992-1998 Marketed Production 1992-1998

    NA NA NA 0 0 0 1977-2014 From Gas Wells NA NA NA 0 0 0 1977-2014 From Oil Wells NA NA NA 0 0 0 1977-2014

  20. Michigan Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 23,819 22,405 21,518 21,243 21,416 18,654 1967-2014 Total Liquids Extracted (Thousand Barrels) 2,409 2,207 2,132 2,046 2,005 1,593 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 2,334 2,943 2,465 2,480 2,345 1,922 1967

  1. New Jersey Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers by Local Distribution and Mark 2.38 10.30 9.08 7.85 6.55 6.86 1989-2016 Commercial Average Price 8.03 8.10 8.66 8.24 7.76 7.66

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,026 1,026 1,029 1,045 1,042 1,046 2007-2015

  2. New Mexico Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 769,783 737,187 795,069 777,099 746,010 802,343 1967-2014 Total Liquids Extracted (Thousand Barrels) 64,965 62,965 61,857 57,949 59,475 61,295 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 94,840 91,963 90,291 84,562 86,795 88,894 1967

  3. North Dakota Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 87,977 91,539 112,206 208,598 270,001 337,490 1967-2014 Total Liquids Extracted (Thousand Barrels) 7,852 8,842 10,199 19,186 26,000 36,276 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 10,140 11,381 14,182 26,114 36,840 50,590 1967

  4. Oklahoma Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 1,112,510 1,110,236 1,218,855 1,310,331 1,377,119 1,696,107 1967-2014 Total Liquids Extracted (Thousand Barrels) 77,140 83,174 91,963 96,237 98,976 117,057 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 112,891 120,631 134,032 139,928 142,595 169,864 1967

  5. Pennsylvania Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 22,364 56,162 131,959 236,817 396,726 301,514 1967-2014 Total Liquids Extracted (Thousand Barrels) 975 3,421 6,721 8,882 15,496 27,903 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 1,295 4,578 8,931 12,003 20,936 39,989 1967

  6. Richard Gerber & Clayton Bagwell! NUG Business Meeting!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 - Allocations Summary * How the NERSC pie is distributed - A li'le history * DOE Offices & Programs * NERSC reserves * The ERCAP process * How user accounts and allocaBons work * What happens when user/repo run out of Bme * Q & A - 2 - Allocations History 0 500000000 1E+09 1.5E+09 2E+09 2.5E+09 3E+09 3.5E+09 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 NERSC DOE ProducEon - 3 - 3 Billion Hrs 55 Million Hrs - 4 - 2017 Outlook * Cori Phase 2 will arrive this

  7. Meeting Agenda for October 20, 2011

    Office of Environmental Management (EM)

    0 ENVIRONMENTAL MANAGEMENT SITE-SPECIFIC ADVISORY BOARD CHAIRS MEETING Thursday, October 20, 2011 11:00 am - 11:45 am* EM Update, Acting Assistant Secretary David Huizenga 11:45 am - 12:30 pm Chairs' Round Robin 12:30 pm - 1:00 pm 2012-2013 Budget Update and ARRA Closeout, Joann Luczak, Special Assistant to Deputy Assistant Secretary 1:00 pm - 1:15 pm Break 1:15 pm - 1:45pm Waste Disposition Update, Doug Tonkay, Office of Disposal Operations 1:45 pm - 2:15 pm Asset Revitalization Initiative

  8. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Jan.-Feb.,2012 Mar.-Apr.,2012 May -June,2012 Jul -Aug,2012 Sep -Oct,2012 Nov.-Dec.,2012 2013 Jan.-Feb.,2013 Mar.-Apr.,2013 May -June,2013 Jul -Aug,2013 Sep -Oct,2013 Nov.-Dec.,2013 2014 Jan.-Feb.,2014 Mar.-Apr.,2014 May -June,2014 Jul -Aug,2014 Sep -Oct,2014 Nov.-Dec.,2014 2015 Jan.-Feb.,2015 Mar.-Apr.,2015 May -June,2015 Jul -Aug,2015 Sep -Oct,2015 Nov.-Dec.,2015 2016 Jan.-Feb.,2016 Mar.-Apr.,2016 May -June,2016 Jul -Aug,2016 Sep -Oct,2016 Nov.-Dec.,2016

  9. Lease Option Increases Rooftop Solar's Appeal, Study Says - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Condensate Production (Million Barrels) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 178 224 231 274 311 326 1979-2014 Alabama 2 2 2 2 2 1 1979-2014 Alaska 0 0 20 20 16 0 1979-2014 Arkansas 0 0 0 0 0 0 1979-2014 California 0 0 0 0 0 1 1979-2014 Coastal Region Onshore 0 0 0 0 0 0 1979-2014 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2014 San Joaquin Basin Onshore 0 0

  10. Meetings | Event Types | MIT-Harvard Center for Excitonics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meetings Browse by Year 2015-2016 Meetings 2014-2015 Meetings 2013-2014 Meetings 2012-2013 Meetings 2011-2012 Meetings 2015-2016 Meetings DATE TITLE TIME/LOCATION May 24, 2016 Faculty Review Meeting 9 am - 4 pm, MIT Endicott House, Dedham, MA January 27, 2016 All Hands Meeting 9 am -4 pm, MIT Endicott House, Dedham, MA January 22, 25, 26, 2016 Research Communications Laboratory, Museum of Science Immersion Internship 9am-4pm/ MIT December 4, 2015 2-D Materials Group Meeting 12-2 pm/ Physics

  11. DOE Research and Development Accomplishments RSS Archive 2005-2006

    Office of Scientific and Technical Information (OSTI)

    5-2006 2005 - 2006 * 2007 * 2008 * 2009 * 2010 * 2011 * 2012 * 2013 * 2014 George Smoot Courtesy of Lawrence Berkeley National Laboratory "Blackbody Form" Research Yields 2006 Nobel Prize George Smoot made an announcement in 1992 that "essentially silenced all the scientific critics of the Big Bang theory." (See the October 3, 2006 edition of Today at Berkeley Lab.) For research leading up to that announcement, Smoot was awarded the Nobel Prize in Physics 2006. Smoot, an

  12. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    6 Reference case Table A7. Transportation sector key indicators and delivered energy consumption Energy Information Administration / Annual Energy Outlook 2015 Table A7. Transportation sector key indicators and delivered energy consumption Key indicators and consumption Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Key indicators Travel indicators (billion vehicle miles traveled) Light-duty vehicles less than 8,501 pounds .... 2,578 2,644 2,917 3,090 3,287

  13. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Energy Information Administration / Annual Energy Outlook 2015 Table A16. Renewable energy generating capacity and generation (gigawatts, unless otherwise noted) Net summer capacity and generation Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Electric power sector 1 Net summer capacity Conventional hydroelectric power ...................... 78.1 78.3 79.2 79.6 79.7 79.8 80.1

  14. Do financial investors destabilize the oil price?

    Gasoline and Diesel Fuel Update (EIA)

    and Commercial Consumers by Local Distributio Area: District of Columbia Florida Georgia Maryland Michigan New Jersey New York Ohio Pennsylvania Virginia Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Residential Average Price 13.53 13.06 12.10 12.45 13.05 12.52 1980-2015 Commercial Average Price 12.26 12.24 11.19 11.64 12.18

  15. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2011-15 In-Situ-Leach plant owner In-Situ-Leach plant name County, state (existing and planned locations) Production capacity (pounds U3O8 per year) Operating status at end of the year 2011 2012 2013 2014 2015 AUC LLC Reno Creek Campbell, Wyoming 2,000,000 - - Developing Developing Partially Permitted and Licensed Azarga Uranium Corp Dewey Burdock Project Fall River and Custer, South

  16. U. of West Virginia | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1,200 1,400 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Oil production thousand barrels/day Bakken Region -50 -25 0 25 50 Apr 1,078 Mbbl/d Production from new wells Legacy production change Net change May 1,047 Mbbl/d thousand barrels/day Bakken Region +24 -55 -31 Indicated change in oil production (May vs. Apr) -50 -25 0 25 50 Apr 1,633 MMcf/d Production from new wells Legacy production change Net change May 1,601 MMcf/d Indicated change in natural gas production (May vs. Apr) million

  17. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2011-15" "In-Situ-Leach Plant Owner","In-Situ-Leach Plant Name","County, State (existing and planned locations)","Production Capacity (pounds U3O8 per year)","Operating Status at End of the Year" ,,,,2011,2012,2013,2014,2015 "AUC LLC","Reno Creek","Campbell,

  18. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Wyoming 134 139 181 195 245 301 308 348 424 512 531 416 343 Colorado and Texas 48 140 269 263 557 696 340 292 331 248 198 105 79 Nebraska and New Mexico 92 102 123 160 149 160 159 134 127 W W W W Arizona, Utah, and Washington 47 40 75 120 245 360 273 281 W W W W W Alaska, Michigan, Nevada, and

  19. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    May 5, 2016" "Next Release Date: May 2017" "Table 4. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status at end of the year, 2011-15" "Owner","Mill and Heap Leach1 Facility Name","County, State (existing and planned locations)"," Capacity","Operating Status at End of the Year" ,,,"(short tons of ore per day)",2011,2012,2013,2014,2015 "Anfield

  20. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    2. U.S. uranium mine production and number of mines and sources, 2003-15" "Production / Mining Method",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015 "Underground" "(estimated contained thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W","W","W","W" "Open Pit" "(estimated contained thousand