Powered by Deep Web Technologies
Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Savannah River Site production reactor technical specifications. K Production Reactor  

SciTech Connect (OSTI)

These technical specifications are explicit restrictions on the operation of the Savannah River Site K Production Reactor. They are designed to preserve the validity of the plant safety analysis by ensuring that the plant is operated within the required conditions bounded by the analysis, and with the operable equipment that is assumed to mitigate the consequences of an accident. Technical specifications preserve the primary success path relied upon to detect and respond to accidents. This report describes requirements on thermal-hydraulic limits; limiting conditions for operation and surveillance for the reactor, power distribution control, instrumentation, process water system, emergency cooling and emergency shutdown systems, confinement systems, plant systems, electrical systems, components handling, and special test exceptions; design features; and administrative controls.

NONE

1996-02-01T23:59:59.000Z

2

Uncertainties in the Anti-neutrino Production at Nuclear Reactors  

E-Print Network [OSTI]

neutrino Production at Nuclear Reactors Z. Djurcic 1 , ?emission rates from nuclear reactors are determined fromlarge commercial nuclear reactors are playing an important

Djurcic, Zelimir

2009-01-01T23:59:59.000Z

3

The Modular Helium Reactor for Hydrogen Production  

SciTech Connect (OSTI)

For electricity and hydrogen production, an advanced reactor technology receiving considerable international interest is a modular, passively-safe version of the high-temperature, gas-cooled reactor (HTGR), known in the U.S. as the Modular Helium Reactor (MHR), which operates at a power level of 600 MW(t). For hydrogen production, the concept is referred to as the H2-MHR. Two concepts that make direct use of the MHR high-temperature process heat are being investigated in order to improve the efficiency and economics of hydrogen production. The first concept involves coupling the MHR to the Sulfur-Iodine (SI) thermochemical water splitting process and is referred to as the SI-Based H2-MHR. The second concept involves coupling the MHR to high-temperature electrolysis (HTE) and is referred to as the HTE-Based H2-MHR.

E. Harvego; M. Richards; A. Shenoy; K. Schultz; L. Brown; M. Fukuie

2006-10-01T23:59:59.000Z

4

Manhattan Project: Seaborg and Plutonium Chemistry, Met Lab, 1942-1944  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,LinksCP-1 GOESFJoe 1,REORGANIZATIONGlenn T.

5

Manhattan Project: The Plutonium Path to the Bomb, 1942-1944  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,LinksCP-1 GOESFJoeHiroshima,The first pageTHE

6

Manhattan Project: The Uranium Path to the Bomb, 1942-1944  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,LinksCP-1 GOESFJoeHiroshima,The firstAlpha

7

NPR (New Production Reactor) capacity cost evaluation  

SciTech Connect (OSTI)

The ORNL Cost Evaluation Technical Support Group (CETSG) has been assigned by DOE-HQ Defense Programs (DP) the task defining, obtaining, and evaluating the capital and life-cycle costs for each of the technology/proponent/site/revenue possibilities envisioned for the New Production Reactor (NPR). The first part of this exercise is largely one of accounting, since all NPR proponents use different accounting methodologies in preparing their costs. In order to address this problem of comparing ''apples and oranges,'' the proponent-provided costs must be partitioned into a framework suitable for all proponents and concepts. If this is done, major cost categories can then be compared between concepts and major cost differences identified. Since the technologies proposed for the NPR and its needed fuel and target support facilities vary considerably in level of technical and operational maturity, considerable care must be taken to evaluate the proponent-derived costs in an equitable manner. The use of cost-risk analysis along with derivation of single point or deterministic estimates allows one to take into account these very real differences in technical and operational maturity. Chapter 2 summarizes the results of this study in tabular and bar graph form. The remaining chapters discuss each generic reactor type as follows: Chapter 3, LWR concepts (SWR and WNP-1); Chapter 4, HWR concepts; Chapter 5, HTGR concept; and Chapter 6, LMR concept. Each of these chapters could be a stand-alone report. 39 refs., 36 figs., 115 tabs.

none,

1988-07-01T23:59:59.000Z

8

POTENTIAL BENCHMARKS FOR ACTINIDE PRODUCTION IN HANFORD REACTORS  

SciTech Connect (OSTI)

A significant experimental program was conducted in the early Hanford reactors to understand the reactor production of actinides. These experiments were conducted with sufficient rigor, in some cases, to provide useful information that can be utilized today in development of benchmark experiments that may be used for the validation of present computer codes for the production of these actinides in low enriched uranium fuel.

PUIGH RJ; TOFFER H

2011-10-19T23:59:59.000Z

9

Continuous production of tritium in an isotope-production reactor with a separate circulation system  

DOE Patents [OSTI]

A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium is allowed to flow through the reactor in separate loops in order to facilitate the production and removal of tritium.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

10

Aerosol reactor production of uniform submicron powders  

DOE Patents [OSTI]

A method of producing submicron nonagglomerated particles in a single stage reactor includes introducing a reactant or mixture of reactants at one end while varying the temperature along the reactor to initiate reactions at a low rate. As homogeneously small numbers of seed particles generated in the initial section of the reactor progress through the reactor, the reaction is gradually accelerated through programmed increases in temperature along the length of the reactor to promote particle growth by chemical vapor deposition while minimizing agglomerate formation by maintaining a sufficiently low number concentration of particles in the reactor such that coagulation is inhibited within the residence time of particles in the reactor. The maximum temperature and minimum residence time is defined by a combination of temperature and residence time that is necessary to bring the reaction to completion. In one embodiment, electronic grade silane and high purity nitrogen are introduced into the reactor and temperatures of approximately 770.degree. K. to 1550.degree. K. are employed. In another embodiment silane and ammonia are employed at temperatures from 750.degree. K. to 1800.degree. K.

Flagan, Richard C. (Pasadena, CA); Wu, Jin J. (Pasadena, CA)

1991-02-19T23:59:59.000Z

11

Method of producing gaseous products using a downflow reactor  

DOE Patents [OSTI]

Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C

2014-09-16T23:59:59.000Z

12

Homogeneous fast-flux isotope-production reactor  

DOE Patents [OSTI]

A method is described for producing tritium in a liquid metal fast breeder reactor. Lithium target material is dissolved in the liquid metal coolant in order to facilitate the production and removal of tritium.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

13

Production capabilities in US nuclear reactors for medical radioisotopes  

SciTech Connect (OSTI)

The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. (Oak Ridge National Lab., TN (United States)); Schenter, R.E. (Westinghouse Hanford Co., Richland, WA (United States))

1992-11-01T23:59:59.000Z

14

Modeling issues associated with production reactor safety assessment  

SciTech Connect (OSTI)

This paper describes several Probabilistic Safety Assessment (PSA) modeling issues that are related to the unique design and operation of the production reactors. The identification of initiating events and determination of a set of success criteria for the production reactors is of concern because of their unique design. The modeling of accident recovery must take into account the unique operation of these reactors. Finally, a more thorough search and evaluation of common-cause events is required to account for combinations of unique design features and operation that might otherwise not be included in the PSA. It is expected that most of these modeling issues also would be encountered when modeling some of the other more unique reactor and nonreactor facilities that are part of the DOE nuclear materials production complex. 9 refs., 2 figs.

Stack, D.W. (Los Alamos National Lab., NM (USA)); Thomas, W.R. (Science and Engineering Associates, Inc., Albuquerque, NM (USA))

1990-01-01T23:59:59.000Z

15

E-Print Network 3.0 - arsenal production reactor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Processing Based On Summary: Fabrication of Integrated Unit Operation of ACR Reactors Optimization of ACR Reactor Operation Production... of Continuous H2 Stream Shift and PrOx...

16

Moving bed reactor for solar thermochemical fuel production  

DOE Patents [OSTI]

Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

Ermanoski, Ivan

2013-04-16T23:59:59.000Z

17

NOVEL REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS  

SciTech Connect (OSTI)

Praxair investigated an advanced technology for producing synthesis gas from natural gas and oxygen This production process combined the use of a short-reaction time catalyst with Praxair's gas mixing technology to provide a novel reactor system. The program achieved all of the milestones contained in the development plan for Phase I. We were able to develop a reactor configuration that was able to operate at high pressures (up to 19atm). This new reactor technology was used as the basis for a new process for the conversion of natural gas to liquid products (Gas to Liquids or GTL). Economic analysis indicated that the new process could provide a 8-10% cost advantage over conventional technology. The economic prediction although favorable was not encouraging enough for a high risk program like this. Praxair decided to terminate development.

Vasilis Papavassiliou; Leo Bonnell; Dion Vlachos

2004-12-01T23:59:59.000Z

18

Reactor power history from fission product signatures  

E-Print Network [OSTI]

The purpose of this research was to identify fission product signatures that could be used to uniquely identify a specific spent fuel assembly in order to improve international safeguards. This capability would help prevent and deter potential...

Sweeney, David J.

2009-05-15T23:59:59.000Z

19

Optimal Production Planning Models for Parallel Batch Reactors with Sequence-dependent Changeovers  

E-Print Network [OSTI]

1 Optimal Production Planning Models for Parallel Batch Reactors with Sequence planning of parallel multi-product batch reactors with sequence-dependent changeovers, a challenging of number of products, reactors or length of the time horizon, we propose a decomposition technique based

Grossmann, Ignacio E.

20

Indication of anomalous heat energy production in a reactor device  

E-Print Network [OSTI]

An experimental investigation of possible anomalous heat production in a special type of reactor tube named E-Cat HT is carried out. The reactor tube is charged with a small amount of hydrogen loaded nickel powder plus some additives. The reaction is primarily initiated by heat from resistor coils inside the reactor tube. Measurement of the produced heat was performed with high-resolution thermal imaging cameras, recording data every second from the hot reactor tube. The measurements of electrical power input were performed with a large bandwidth three-phase power analyzer. Data were collected in two experimental runs lasting 96 and 116 hours, respectively. An anomalous heat production was indicated in both experiments. The 116-hour experiment also included a calibration of the experimental set-up without the active charge present in the E-Cat HT. In this case, no extra heat was generated beyond the expected heat from the electric input. Computed volumetric and gravimetric energy densities were found to be far above those of any known chemical source. Even by the most conservative assumptions as to the errors in the measurements, the result is still one order of magnitude greater than conventional energy sources.

Giuseppe Levi; Evelyn Foschi; Torbjörn Hartman; Bo Höistad; Roland Pettersson; Lars Tegnér; Hanno Essén

2013-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Indication of anomalous heat energy production in a reactor device  

E-Print Network [OSTI]

An experimental investigation of possible anomalous heat production in a special type of reactor tube named E-Cat HT is carried out. The reactor tube is charged with a small amount of hydrogen loaded nickel powder plus some additives. The reaction is primarily initiated by heat from resistor coils inside the reactor tube. Measurement of the produced heat was performed with high-resolution thermal imaging cameras, recording data every second from the hot reactor tube. The measurements of electrical power input were performed with a large bandwidth three-phase power analyzer. Data were collected in two experimental runs lasting 96 and 116 hours, respectively. An anomalous heat production was indicated in both experiments. The 116-hour experiment also included a calibration of the experimental set-up without the active charge present in the E-Cat HT. In this case, no extra heat was generated beyond the expected heat from the electric input. Computed volumetric and gravimetric energy densities were found to be fa...

Levi, Giuseppe; Hartman, Torbjörn; Höistad, Bo; Pettersson, Roland; Tegnér, Lars; Essén, Hanno

2013-01-01T23:59:59.000Z

22

A NOVEL MEMBRANE REACTOR FOR DIRECT HYDROGEN PRODUCTION FROM COAL  

SciTech Connect (OSTI)

Gas Technology Institute is developing a novel concept of membrane reactor coupled with a gasifier for high efficiency, clean and low cost production of hydrogen from coal. The concept incorporates a hydrogen-selective membrane within a gasification reactor for direct extraction of hydrogen from coal-derived synthesis gases. The objective of this project is to determine the technical and economic feasibility of this concept by screening, testing and identifying potential candidate membranes under high temperature, high pressure, and harsh environments of the coal gasification conditions. The best performing membranes will be selected for preliminary reactor design and cost estimates. Hydrogen permeation data for several perovskite membranes BCN (BaCe{sub 0.9}Nd{sub 0.1}O{sub 3-x}), SCE (SrCe{sub 0.9}Eu{sub 0.1}O{sub 3}) and SCTm (SrCe{sub 0.95}Tm{sub 0.05}O{sub 3}) have been successfully obtained for temperatures between 800 and 950 C and pressures from 1 to 12 bar in this project. However, it is known that the cerate-based perovskite materials can react with CO{sub 2}. Therefore, the stability issue of the proton conducting perovskite materials under CO{sub 2} or H{sub 2}S environments was examined. Tests were conducted in the Thermo Gravimetric Analyzer (TGA) unit for powder and disk forms of BCN and SCE. Perovskite materials doped with zirconium (Zr) are known to be resistant to CO{sub 2}. The results from the evaluation of the chemical stability for the Zr doped perovskite membranes are presented. During this reporting period, flowsheet simulation was also performed to calculate material and energy balance based on several hydrogen production processes from coal using high temperature membrane reactor (1000 C), low temperature membrane reactor (250 C), or conventional technologies. The results show that the coal to hydrogen process employing both the high temperature and the low temperature membrane reactors can increase the hydrogen production efficiency (cold gas efficiency) by more than 50% compared to the conventional process. Using either high temperature or low temperature membrane reactor process also results in an increase of the cold gas efficiencies as well as the thermal efficiencies of the overall process.

Shain Doong; Estela Ong; Mike Atroshenko; Francis Lau; Mike Roberts

2005-07-29T23:59:59.000Z

23

Uncertainties in the Anti-neutrino Production at Nuclear Reactors  

E-Print Network [OSTI]

reactors are determined from thermal power measure- ments and ?ssion rate calculations.of a reactor’s ther- mal power is given by a calculation ofCALCULATIONS During the power cycle of a nuclear reactor,

Djurcic, Zelimir

2009-01-01T23:59:59.000Z

24

Simultaneous Cyclic Scheduling and Control of Tubular Reactors: Parallel Production Lines  

E-Print Network [OSTI]

Simultaneous Cyclic Scheduling and Control of Tubular Reactors: Parallel Production Lines Antonio scheduling and control formulation is tested using three multiproduct continuous tubular reactors featuring on the simultaneous scheduling and control (SC) of tubular reactors in a single production line [1] to the case

Grossmann, Ignacio E.

25

Design, optimization and evaluation of a free-fall biomass fast pyrolysis reactor and its products.  

E-Print Network [OSTI]

??The focus of this work is a radiatively heated, free-fall, fast pyrolysis reactor. The reactor was designed and constructed for the production of bio-oil from… (more)

Ellens, Cody James

2009-01-01T23:59:59.000Z

26

Westinghouse independent safety review of Savannah River production reactors  

SciTech Connect (OSTI)

Westinghouse Electric Corporation has performed a safety assessment of the Savannah River production reactors (K,L, and P) as requested by the US Department of Energy. This assessment was performed between November 1, 1988, and April 1, 1989, under the transition contract for the Westinghouse Savannah River Company's preparations to succeed E.I. du Pont de Nemours Company as the US Department of Energy contractor for the Savannah River Project. The reviewers were drawn from several Westinghouse nuclear energy organizations, embody a combination of commercial and government reactor experience, and have backgrounds covering the range of technologies relevant to assessing nuclear safety. The report presents the rationale from which the overall judgment was drawn and the basis for the committee's opinion on the phased restart strategy proposed by E.I. du Pont de Nemours Company, Westinghouse, and the US Department of Energy-Savannah River. The committee concluded that it could recommend restart of one reactor at partial power upon completion of a list of recommended upgrades both to systems and their supporting analyses and after demonstration that the organization had assimilated the massive changes it will have undergone.

Leggett, W.D.; McShane, W.J. (Westinghouse Hanford Co., Richland, WA (USA)); Liparulo, N.J.; McAdoo, J.D.; Strawbridge, L.E. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Nuclear and Advanced Technology Div.); Toto, G. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Nuclear Services Div.); Fauske, H.K. (Fauske and Associates, Inc., Burr Ridge, IL (USA)); Call, D.W. (Westinghouse Savannah R

1989-04-01T23:59:59.000Z

27

Heat Transfer Limitations in Hydrogen Production Via Steam Reformation: The Effect of Reactor Geometry  

E-Print Network [OSTI]

for on- board hydrogen production for fuel-cell poweredSteam-Reforming Hydrogen production Reactors, M.S. Thesis,at the UC Davis Hydrogen Production and Utilization

Vernon, David R.; Davieau, David D.; Dudgeon, Bryce A.; Erickson, Paul A.

2006-01-01T23:59:59.000Z

28

(COMEDIE program review and fission product transport in MHTGR reactor)  

SciTech Connect (OSTI)

The subcontract between Martin Marietta Energy Systems, Inc., and the CEA provides for the refurbishment of the high pressure COMEDIE test loop in the SILOE reactor and a series of experiments to characterize fission product lift-off from MHTGR heat exchanger surfaces under several depressurization accident scenarios. The data will contribute to the validation of models and codes used to predict fission product transport in the MHTGR. In the meeting at CEA headquarters in Paris the program schedule and preparation for the DCAA and Quality Assurance audits were discussed. Long-range interest in expanded participation in the gas-cooled reactor technology Umbrella Agreement was also expressed by the CEA. At the CENG, in Grenoble, technical details on the loop design, fabrication components, development of test procedures, and preparation for the DOE quality assurance (QA) audit in May were discussed. After significant delays in CY 1989 it appears that good progress is being made in CY 1990 and the first major test will be initiated by December. An extensive list of agreements and commitments was generated to facilitate the coordination and planning of future work. 2 figs., 2 tabs.

Stansfield, O.M.

1990-03-15T23:59:59.000Z

29

Uncertainties in the Anti-neutrino Production at Nuclear Reactors  

E-Print Network [OSTI]

Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in electron anti-neutrino detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties and their relevance to reactor anti-neutrino experiments.

Z. Djurcic; J. A. Detwiler; A. Piepke; V. R. Foster Jr.; L. Miller; G. Gratta

2008-08-06T23:59:59.000Z

30

EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Harford Site, Richland, WA  

Broader source: Energy.gov [DOE]

This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

31

EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

32

Hydrogen Production via a Commerically Ready Inorganic membrane Reactor  

SciTech Connect (OSTI)

It has been known that use of the hydrogen selective membrane as a reactor (MR) could potentially improve the efficiency of the water shift reaction (WGS), one of the least efficient unit operations for production of high purity hydrogen from syngas. However, no membrane reactor technology has been reduced to industrial practice thus far, in particular for a large-scale operation. This implementation and commercialization barrier is attributed to the lack of a commercially viable hydrogen selective membrane with (1) material stability under the application environment and (2) suitability for large-scale operation. Thus, in this project, we have focused on (1) the deposition of the hydrogen selective carbon molecular sieve (CMS) membrane we have developed on commercially available membranes as substrate, and (2) the demonstration of the economic viability of the proposed WGS-MR for hydrogen production from coal-based syngas. The commercial stainless steel (SS) porous substrate (i.e., ZrO{sub 2}/SS from Pall Corp.) was evaluated comprehensively as the 1st choice for the deposition of the CMS membrane for hydrogen separation. The CMS membrane synthesis protocol we developed previously for the ceramic substrate was adapted here for the stainless steel substrate. Unfortunately no successful hydrogen selective membranes had been prepared during Yr I of this project. The characterization results indicated two major sources of defect present in the SS substrate, which may have contributed to the poor CMS membrane quality. Near the end of the project period, an improved batch of the SS substrate (as the 2nd generation product) was received from the supplier. Our characterization results confirm that leaking of the crimp boundary no longer exists. However, the thermal stability of the ZrO{sub 2}/SS substrate through the CMS membrane preparation condition must be re-evaluated in the future. In parallel with the SS membrane activity, the preparation of the CMS membranes supported on our commercial ceramic membrane for large-scale applications, such as coal-based power generation/hydrogen production, was also continued. A significant number (i.e., 98) of full-scale membrane tubes have been produced with an on-spec ratio of >76% during the first production trial. In addition, we have verified the functional performance and material stability of this hydrogen selective CMS membrane with a hydrocracker purge gas stream at a refinery pilot testing facility. No change in membrane performance was noted over the >100 hrs of testing conducted in the presence of >30% H{sub 2}S, >5,000 ppm NH{sub 3} (estimated), and heavy hydrocarbons on the order of 25%. The excellent stability of our hydrogen selective CMS membrane opens the door for its use in WGS-MR with a significantly reduced requirement of the feedstock pretreatment.

Paul Liu

2007-06-30T23:59:59.000Z

33

Evaluation of Buildup of Activated Corrosion Products for Highly Compact Marine Reactor DRX without Primary Coolant Water Purification System  

E-Print Network [OSTI]

Evaluation of Buildup of Activated Corrosion Products for Highly Compact Marine Reactor DRX without Primary Coolant Water Purification System

Odano, N

2000-01-01T23:59:59.000Z

34

Simultaneous Cyclic Scheduling and Control of Tubular Reactors: Single Production Lines  

E-Print Network [OSTI]

Simultaneous Cyclic Scheduling and Control of Tubular Reactors: Single Production Lines Antonio multiproduct tubular reactors. The simultaneous scheduling and control problem for continuous multiproduct.13.98.241/antonio 1 #12;Abstract In this work we propose a simultaneous scheduling and control optimization

Grossmann, Ignacio E.

35

Liquid phase methanol reactor staging process for the production of methanol  

DOE Patents [OSTI]

The present invention is a process for the production of methanol from a syngas feed containing carbon monoxide, carbon dioxide and hydrogen. Basically, the process is the combination of two liquid phase methanol reactors into a staging process, such that each reactor is operated to favor a particular reaction mechanism. In the first reactor, the operation is controlled to favor the hydrogenation of carbon monoxide, and in the second reactor, the operation is controlled so as to favor the hydrogenation of carbon dioxide. This staging process results in substantial increases in methanol yield.

Bonnell, Leo W. (Macungie, PA); Perka, Alan T. (Macungie, PA); Roberts, George W. (Emmaus, PA)

1988-01-01T23:59:59.000Z

36

Fuel pins with both target and fuel pellets in an isotope-production reactor  

DOE Patents [OSTI]

A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

37

Assemblies with both target and fuel pins in an isotope-production reactor  

DOE Patents [OSTI]

A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins adjacent to fuel pins in order to increase the tritium production rate.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

38

EIS-0288: Production of Tritium in a Commercial Light Water Reactor  

Broader source: Energy.gov [DOE]

This Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor (CLWR EIS) evaluates the environmental impacts associated with producing tritium at one or more...

39

A HYBRID ADSORBENT-MEMBRANE REACTOR (HAMR) SYSTEM FOR HYDROGEN PRODUCTION  

E-Print Network [OSTI]

hydrogen production for proton exchange membrane (PEM) fuel cells for various mobile and stationaryA HYBRID ADSORBENT-MEMBRANE REACTOR (HAMR) SYSTEM FOR HYDROGEN PRODUCTION A. Harale, H. Hwang, P recently our focus has been on new HAMR systems for hydrogen production, of potential interest to pure

Southern California, University of

40

Comparison of actinide production in traveling wave and pressurized water reactors  

SciTech Connect (OSTI)

The geopolitical problems associated with civilian nuclear energy production arise in part from the accumulation of transuranics in spent nuclear fuel. A traveling wave reactor is a type of breed-burn reactor that could, if feasible, reduce the overall production of transuranics. In one possible configuration, a cylinder of natural or depleted uranium would be subjected to a fast neutron flux at one end. The neutrons would transmute the uranium, producing plutonium and higher actinides. Under the right conditions, the reactor could become critical, at which point a self-stabilizing fission wave would form and propagate down the length of the reactor cylinder. The neutrons from the fission wave would burn the fissile nuclides and transmute uranium ahead of the wave to produce additional fuel. Fission waves in uranium are driven largely by the production and fission of {sup 239}Pu. Simulations have shown that the fuel burnup can reach values greater than 400 MWd/kgIHM, before fission products poison the reaction. In this work we compare the production of plutonium and minor actinides produced in a fission wave to that of a UOX fueled light water reactor, both on an energy normalized basis. The nuclide concentrations in the spent traveling wave reactor fuel are computed using a one-group diffusion model and are verified using Monte Carlo simulations. In the case of the pressurized water reactor, a multi-group collision probability model is used to generate the nuclide quantities. We find that the traveling wave reactor produces about 0.187 g/MWd/kgIHM of transuranics compared to 0.413 g/MWd/kgIHM for a pressurized water reactor running fuel enriched to 4.95 % and burned to 50 MWd/kgIHM. (authors)

Osborne, A.G.; Smith, T.A.; Deinert, M.R. [Department of Mechanical Engineering, University of Texas at Austin, Austin, TX (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Biological production of ethanol from coal. Task 4 report, Continuous reactor studies  

SciTech Connect (OSTI)

The production of ethanol from synthesis gas by the anaerobic bacterium C. ljungdahlii has been demonstrated in continuous stirred tank reactors (CSTRs), CSTRs with cell recycle and trickle bed reactors. Various liquid media were utilized in these studies including basal medium, basal media with 1/2 B-vitamins and no yeast extract and a medium specifically designed for the growth of C. ljungdahlii in the CSTR. Ethanol production was successful in each of the three reactor types, although trickle bed operation with C. ljungdahlii was not as good as with the stirred tank reactors. Operation in the CSTR with cell recycle was particularly promising, producing 47 g/L ethanol with only minor concentrations of the by-product acetate.

Not Available

1992-10-01T23:59:59.000Z

42

Method of Fission Product Beta Spectra Measurements for Predicting Reactor Anti-neutrino Emission  

E-Print Network [OSTI]

The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron rich fission products that subsequently beta decay and emit electron anti-neutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to current precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent re-considerations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

D. M. Asner; K. Burns; L. W. Campbell; B. Greenfield; M. S. Kos; J. L. Orrell; M. Schram; B. VanDevender; 1 L. S. Wood; D. W. Wootan

2014-03-01T23:59:59.000Z

43

Numerical Simulation of Titanium Production in the Plasma Quench Reactor  

E-Print Network [OSTI]

. The method is directly applicable to simulation of condensation of other metals in other gas flows. We is the condensation of nanoclusters from the gas phase, e.g. condensation of metal (or ceramic) vapors in a low the nucleation of condensates in the steady-state supersonic nozzle flow generated in a plasma quench reactor

44

Interim Safe Storage of Plutonium Production Reactors at the US DOE Hanford Site - 13438  

SciTech Connect (OSTI)

Nine plutonium production reactors located on DOE's Hanford Site are being placed into an Interim Safe Storage (ISS) period that extends to 2068. The Environmental Impact Statement (EIS) for ISS [1] was completed in 1993 and proposed a 75-year storage period that began when the EIS was finalized. Remote electronic monitoring of the temperature and water level alarms inside the safe storage enclosure (SSE) with visual inspection inside the SSE every 5 years are the only planned operational activities during this ISS period. At the end of the ISS period, the reactor cores will be removed intact and buried in a landfill on the Hanford Site. The ISS period allows for radioactive decay of isotopes, primarily Co-60 and Cs-137, to reduce the dose exposure during disposal of the reactor cores. Six of the nine reactors have been placed into ISS by having an SSE constructed around the reactor core. (authors)

Schilperoort, Daryl L.; Faulk, Darrin [Washington Closure Hanford, 2620 Fermi Avenue, Richland, Washington 99352 (United States)] [Washington Closure Hanford, 2620 Fermi Avenue, Richland, Washington 99352 (United States)

2013-07-01T23:59:59.000Z

45

Supplying the nuclear arsenal: Production reactor technology, management, and policy, 1942--1992  

SciTech Connect (OSTI)

This book focuses on the lineage of America`s production reactors, those three at Hanford and their descendants, the reactors behind America`s nuclear weapons. The work will take only occasional sideways glances at the collateral lines of descent, the reactor cousins designed for experimental purposes, ship propulsion, and electric power generation. Over the decades from 1942 through 1992, fourteen American production reactors made enough plutonium to fuel a formidable arsenal of more than twenty thousand weapons. In the last years of that period, planners, nuclear engineers, and managers struggled over designs for the next generation of production reactors. The story of fourteen individual machines and of the planning effort to replace them might appear relatively narrow. Yet these machines lay at the heart of the nation`s nuclear weapons complex. The story of these machines is the story of arming the winning weapon, supplying the nuclear arms race. This book is intended to capture the history of the first fourteen production reactors, and associated design work, in the face of the end of the Cold War.

Carlisle, R.P.; Zenzen, J.M.

1994-01-01T23:59:59.000Z

46

Fast-quench reactor for hydrogen and elemental carbon production from natural gas and other hydrocarbons  

DOE Patents [OSTI]

A fast-quench reactor for production of diatomic hydrogen and unsaturated carbons is provided. During the fast quench in the downstream diverging section of the nozzle, such as in a free expansion chamber, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

Detering, Brent A.; Kong, Peter C.

2006-08-29T23:59:59.000Z

47

Conceptual design of a new homogeneous reactor for medical radioisotope Mo-99/Tc-99m production  

SciTech Connect (OSTI)

To partly solve the global and regional shortages of Mo-99 supply, a conceptual design of a nitrate-fuel-solution based homogeneous reactor dedicated for Mo-99/Tc-99m medical radioisotope production is proposed. The modified LEU Cintichem process for Mo-99 extraction which has been licensed and demonstrated commercially for decades by BATAN is taken into account as a key design consideration. The design characteristics and main parameters are identified and the advantageous aspects are shown by comparing with the BATAN's existing Mo-99 supply chain which uses a heterogeneous reactor (RSG GAS multipurpose reactor)

Liem, Peng Hong [Nippon Advanced Information Service (NAIS Co., Inc.) Scientific Computational Division, 416 Muramatsu, Tokaimura, Ibaraki (Japan); Tran, Hoai Nam [Chalmers University of Technology, Dept. of Applied Physics, Div. of Nuclear Engineering, SE-412 96 Gothenburg (Sweden); Sembiring, Tagor Malem [National Nuclear Energy Agency (BATAN), Center for Reactor Technology and Nuclear Safety, Kawasan Puspiptek, Serpong, Tangerang Selatan, Banten (Indonesia); Arbie, Bakri [PT MOTAB Technology, Kedoya Elok Plaza Blok DA 12, Jl. Panjang, Kebun Jeruk, Jakarta Barat (Indonesia)

2014-09-30T23:59:59.000Z

48

Mo-99 production at the Annular Core Research Reactor - recent calculative results  

SciTech Connect (OSTI)

Significant progress has been made over the past year in understanding the chemistry and processing challenges associated with {sup 99}Mo production using Cintichem type targets. Targets fabricated at Los Alamos National Laboratory have been successfully irradiated in fuel element locations at the Annular Core Research Reactor (ACRR) and processed at the Sandia Hot Cell Facility. The next goal for the project is to remove the central cavity experiment tube from the reactor core, allowing for the irradiation of up to 37 targets. After the in-core work is complete, the reactor will be capable of producing significant quantities of {sup 99}Mo.

Parma, E.J.

1997-11-01T23:59:59.000Z

49

Group Constants Generation of the Pseudo Fission Products for Fast Reactor Burnup Calculations  

SciTech Connect (OSTI)

The pseudo fission products for the burnup calculations of the liquid metal fast reactor were generated. The cross-section data and fission product yield data of ENDF/B-VI were used for the pseudo fission product data of U-235, U-238, Pu-239, Pu-240, Pu-241, and Pu-242. The pseudo fission product data can be used with the KAFAX-F22 or -E66, which are the MATXS-format libraries for analyses of the liquid metal fast reactor at KAERI and were distributed through the OECD/NEA. The 80-group MATXS-format libraries of the 172 fission products were generated and the burnup chains for generation of the pseudo fission products were prepared.

Gil, Choong-Sup; Kim, Do Heon; Chang, Jonghwa [Korea Atomic Energy Research Institute, 150 Dukjin-dong, Yusung-gu, Taejon (Korea, Republic of)

2005-05-24T23:59:59.000Z

50

MHTGR: New production reactor summary of experience base  

SciTech Connect (OSTI)

Worldwide interest in the Modular High-Temperature Gas-Cooled Reactor (MHTGR) stems from the capability of the system to retain the advanced fuel and thermal performance while providing unparalleled levels of safety. The small power level of the MHTGR and its passive systems give it a margin of safety not attained by other concepts being developed for power generation. This report covers the experience base for the key nuclear system, components, and processes related to the MHTGR-NPR. 9 refs., 39 figs., 9 tabs.

Not Available

1988-03-01T23:59:59.000Z

51

EIS-0288-S1: Production of Tritium in a Commercial Light Water Reactor (CLWR) Tritium Readiness Supplemental Environmental Impact Statement  

Broader source: Energy.gov [DOE]

This Supplemental EIS updates the environmental analyses in DOE’s 1999 EIS for the Production of Tritium in a Commercial Light Water Reactor (CLWR EIS). The CLWR EIS addressed the production of tritium in Tennessee Valley Authority reactors in Tennessee using tritium-producing burnable absorber rods.

52

Multiscale Modeling of TiO2 Nanoparticle Production in Flame Reactors: Effect of Chemical Mechanism  

E-Print Network [OSTI]

Multiscale Modeling of TiO2 Nanoparticle Production in Flame Reactors: Effect of Chemical Mechanism and Engineering Mechanics, The UniVersity of Texas, Austin, Texas 78712 For titanium dioxide (TiO2) nanoparticles, catalysis, energy, and semiconductors. Titanium dioxide (TiO2) nanoparticles are traditionally used

Raman, Venkat

53

Assessement of Codes and Standards Applicable to a Hydrogen Production Plant Coupled to a Nuclear Reactor  

SciTech Connect (OSTI)

This is an assessment of codes and standards applicable to a hydrogen production plant to be coupled to a nuclear reactor. The result of the assessment is a list of codes and standards that are expected to be applicable to the plant during its design and construction.

M. J. Russell

2006-06-01T23:59:59.000Z

54

Aerosol flow reactor production of superconducting ceramic powder  

SciTech Connect (OSTI)

Potential applications and basic studies of superconducting ceramics require the reproducible production of chemically homogeneous, ultrapure powders with controlled particle size distributions. Previous work has mainly examined the use of liquid and solid phase methods for superconducting powder production. In this work, it is shown that carbon-free, submicron powders based on the Y-Ba-Cu-O, La-Sr-Cu-O, Bi-Ca-Sr-Cu-O and Tl-Ca-Ba-Cu-O systems can be produced in a gaseous flow system by reacting aerosol particles containing the nitrate salts of the appropriate metals in flowing oxygen at temperatures of 900 - 1100C. It is also demonstrated that composite Cu/YBa/sub 2/Cu/sub 3/O/sub 7/ wires can be fabricated by thermophoretic deposition of the particles onto the inner surface of a Cu tube hby sintering/annealing.

Kodas, T. (New Mexico Univ., Albuquerque, NM (USA). Dept. of Nuclear Engineering); Engler, E.; Lee, V.; Parkin, L.S. (Research Div., Almaden Research Center, San Jose, CA (US))

1988-01-01T23:59:59.000Z

55

Response of structures to energetic events for the Savannah River Site production reactors probabilistic risk assessment  

SciTech Connect (OSTI)

The response of structures to energetic events postulated to arise in a probabilistic risk assessment (PRA) of a Savannah River Site (SRS) production reactor is addressed. Energetic events that arise in PRAs can damage structures and therefore have a significant influence on subsequent accident progression. Consequently, the structural response is important to the calculated risk of operating a plant. Difficulties are encountered, however, in the analysis of structural response of components to energetic loadings. First, the analysis of energetic events often does not provide well-defined static or dynamic loads acting on the structures. Secondly, risk assessments, by their nature, address a wide range of events that are not necessarily precisely defined. This paper describes an approach taken to develop the structural analysis required to support the PRA of the SRS production reactor, that overcomes these difficulties.

Santa Cruz, S.M.; Smith, D.C. (Science Applications International Corp., Albuquerque, NM (United States)); Yau, W.F. (Westinghouse Savannah River Co., Aiken, SC (United States))

1992-01-01T23:59:59.000Z

56

Response of structures to energetic events for the Savannah River Site production reactors probabilistic risk assessment  

SciTech Connect (OSTI)

The response of structures to energetic events postulated to arise in a probabilistic risk assessment (PRA) of a Savannah River Site (SRS) production reactor is addressed. Energetic events that arise in PRAs can damage structures and therefore have a significant influence on subsequent accident progression. Consequently, the structural response is important to the calculated risk of operating a plant. Difficulties are encountered, however, in the analysis of structural response of components to energetic loadings. First, the analysis of energetic events often does not provide well-defined static or dynamic loads acting on the structures. Secondly, risk assessments, by their nature, address a wide range of events that are not necessarily precisely defined. This paper describes an approach taken to develop the structural analysis required to support the PRA of the SRS production reactor, that overcomes these difficulties.

Santa Cruz, S.M.; Smith, D.C. [Science Applications International Corp., Albuquerque, NM (United States); Yau, W.F. [Westinghouse Savannah River Co., Aiken, SC (United States)

1992-10-01T23:59:59.000Z

57

Modeling requirements for full-scope reactor simulators of fission-product transport during severe accidents  

SciTech Connect (OSTI)

This paper describes in the needs and requirements to properly and efficiently model fission product transport on full scope reactor simulators. Current LWR simulators can be easily adapted to model severe accident phenomena and the transport of radionuclides. Once adapted these simulators can be used as a training tool during operator training exercises for training on severe accident guidelines, for training on containment venting procedures, or as training tool during site wide emergency training exercises.

Ellison, P.G.; Monson, P.R. (Westinghouse Savannah River Co., Aiken, SC (United States)); Mitchell, H.A. (Concord Associates, Inc., Knoxville, TN (United States))

1990-01-01T23:59:59.000Z

58

Modeling requirements for full-scope reactor simulators of fission-product transport during severe accidents  

SciTech Connect (OSTI)

This paper describes in the needs and requirements to properly and efficiently model fission product transport on full scope reactor simulators. Current LWR simulators can be easily adapted to model severe accident phenomena and the transport of radionuclides. Once adapted these simulators can be used as a training tool during operator training exercises for training on severe accident guidelines, for training on containment venting procedures, or as training tool during site wide emergency training exercises.

Ellison, P.G.; Monson, P.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Mitchell, H.A. [Concord Associates, Inc., Knoxville, TN (United States)

1990-12-31T23:59:59.000Z

59

Technical assumption for Mo-99 production in the MARIA reactor. Feasibility study  

SciTech Connect (OSTI)

The main objective of U-235 irradiation is to obtain the Tc-99m isotope which is widely used in the domain of medical diagnostics. The decisive factor determining its availability, despite its short life time, is a reaction of radioactive decay of Mo-99 into Tc- 99m. One of the possible sources of molybdenum can be achieved in course of the U-235 fission reaction. The paper presents activities and the calculations results obtained upon the feasibility study on irradiation of U-235 targets for production of molybdenum in the MARIA reactor. The activities including technical assumption were focused on performing calculation for modelling of the target and irradiation device as well as adequate equipment and tools for processing in reactor. It has been assumed that the basic component of fuel charge is an aluminium cladded plate with dimensions of 40x230x1.45 containing 4.7 g U-235. The presumed mode of the heat removal generated in the fuel charge of the reactor primary cooling circuit influences the construction of installation to be used for irradiation and the technological instrumentation. The outer channel construction for irradiation has to be identical as the standard fuel channel construction of the MARIA reactor. It enables to use the existing slab and reactor mounting sockets for the fastening of the molybdenum channel as well as the cooling water delivery system. The measurement of water temperature cooling a fuel charge and control of water flow rate in the channel can also be carried out be means of the standard instrumentation of the reactor. (author)

Jaroszewicz, J.; Pytel, K.; Dabkowski, L.; Krzysztoszek, G. [Institute of Atomic Energy, 05-400 Otwock-Swierk (Poland)

2008-07-15T23:59:59.000Z

60

Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A review of existing gas-cooled reactor circulators with application of the lessons learned to the new production reactor circulators  

SciTech Connect (OSTI)

This report presents the results of a study of the lessons learned during the design, testing, and operation of gas-cooled reactor coolant circulators. The intent of this study is to identify failure modes and problem areas of the existing circulators so this information can be incorporated into the design of the circulators for the New Production Reactor (NPR)-Modular High-Temperature Gas Cooled Reactor (MHTGR). The information for this study was obtained primarily from open literature and includes data on high-pressure, high-temperature helium test loop circulators as well as the existing gas cooled reactors worldwide. This investigation indicates that trouble free circulator performance can only be expected when the design program includes a comprehensive prototypical test program, with the results of this test program factored into the final circulator design. 43 refs., 7 tabs.

White, L.S.

1990-07-01T23:59:59.000Z

62

Trace Fission Product Ratios for Nuclear Forensics Attribution of Weapons-Grade Plutonium from Fast Breeder Reactor Blankets  

E-Print Network [OSTI]

), whereas that used in an FBR blanket fuel is depleted uranium (0.25 atom percent 235U). The energy production in the FBR core is from the seed fuel subassemblies containing mixed oxides (MOX) of PuO2 and UO2. A plot of fast and thermal neutron energy... of the program involves a fleet of fast breeder reactors. The stage two fast breeder reactors, beginning with the PFBR, will be fueled with reactor-grade plutonium and depleted uranium from the reprocessed spent fuel of stage one reactors and will breed more...

Osborn, Jeremy

2014-08-13T23:59:59.000Z

63

Fuel and core testing plan for a target fueled isotope production reactor.  

SciTech Connect (OSTI)

In recent years there has been an unstable supply of the critical diagnostic medical isotope 99Tc. Several concepts and designs have been proposed to produce 99Mo the parent nuclide of 99Tc, at a commercial scale sufficient to stabilize the world supply. This work lays out a testing and experiment plan for a proposed 2 MW open pool reactor fueled by Low Enriched Uranium (LEU) 99Mo targets. The experiments and tests necessary to support licensing of the reactor design are described and how these experiments and tests will help establish the safe operating envelop for a medical isotope production reactor is discussed. The experiments and tests will facilitate a focused and efficient licensing process in order to bring on line a needed production reactor dedicated to supplying medical isotopes. The Target Fuel Isotope Reactor (TFIR) design calls for an active core region that is approximately 40 cm in diameter and 40 cm in fuel height. It contains up to 150 cylindrical, 1-cm diameter, LEU oxide fuel pins clad with Zircaloy (zirconium alloy), in an annular hexagonal array on a {approx}2.0 cm pitch surrounded, radially, by a graphite or a Be reflector. The reactor is similar to U.S. university reactors in power, hardware, and safety/control systems. Fuel/target pin fabrication is based on existing light water reactor fuel fabrication processes. However, as part of licensing process, experiments must be conducted to confirm analytical predictions of steady-state power and accident conditions. The experiment and test plan will be conducted in phases and will utilize existing facilities at the U.S. Department of Energy's Sandia National Laboratories. The first phase is to validate the predicted reactor core neutronics at delayed critical, zero power and very low power. This will be accomplished by using the Sandia Critical Experiment (CX) platform. A full scale TFIR core will be built in the CX and delayed critical measurements will be taken. For low power experiments, fuel pins can be removed after the experiment and using Sandia's metrology lab, relative power profiles (radially and axially) can be determined. In addition to validating neutronic analyses, confirming heat transfer properties of the target/fuel pins and core will be conducted. Fuel/target pin power limits can be verified with out-of-pile (electrical heating) thermal-hydraulic experiments. This will yield data on the heat flux across the Zircaloy clad and establish safety margin and operating limits. Using Sandia's Annular Core Research Reactor (ACRR) a 4 MW TRIGA type research reactor, target/fuel pins can be driven to desired fission power levels for long durations. Post experiment inspection of the pins can be conducted in the Auxiliary Hot Cell Facility to observe changes in the mechanical properties of the LEU matrix and burn-up effects. Transient tests can also be conducted at the ACRR to observe target/fuel pin performance during accident conditions. Target/fuel pins will be placed in double experiment containment and driven by pulsing the ACRR until target/fuel failure is observed. This will allow for extrapolation of analytical work to confirm safety margins.

Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

2010-12-01T23:59:59.000Z

64

Feasibility study Part I - Thermal hydraulic analysis of LEU target for {sup 99}Mo production in Tajoura reactor  

SciTech Connect (OSTI)

The Renewable Energies and Water Desalination Research Center (REWDRC), Libya, will implement the technology for {sup 99}Mo isotope production using LEU foil target, to obtain new revenue streams for the Tajoura nuclear research reactor and desiring to serve the Libyan hospitals by providing the medical radioisotopes. Design information is presented for LEU target with irradiation device and irradiation Beryllium (Be) unit in the Tajoura reactor core. Calculated results for the reactor core with LEU target at different level of power are presented for steady state and several reactivity induced accident situations. This paper will present the steady state thermal hydraulic design and transient analysis of Tajoura reactor was loaded with LEU foil target for {sup 99}Mo production. The results of these calculations show that the reactor with LEU target during the several cases of transient are in safe and no problems will occur. (author)

Bsebsu, F.M.; Abotweirat, F. [Reactor Department, Renewable Energies and Water Desalination Research Cente, P.O. Box 30878 Tajoura, Tripoli (Libyan Arab Jamahiriya)], E-mail: Bsebso@yahoo.com, E-mail: abutweirat@yahoo.com; Elwaer, S. [Radiochemistry Department, Renewable Energies and Water Desalination Research Cente, P.O. Box 30878 Tajoura, Tripoli (Libyan Arab Jamahiriya)], E-mail: samiwer@yahoo.com

2008-07-15T23:59:59.000Z

65

Multi-Site Capacity, Production and Distribution Planning with Reactor Modifications: MILP Model, Bi-level Decomposition  

E-Print Network [OSTI]

-site production facilities to meet the demands of multiple geographically distributed markets. Potential capacityMulti-Site Capacity, Production and Distribution Planning with Reactor Modifications: MILP Model mixed-integer linear programming (MILP) model for the simultaneous capacity, production and distribution

Grossmann, Ignacio E.

66

Modular Hybrid Plasma Reactor for Low Cost Bulk Production of Nanomaterials  

SciTech Connect (OSTI)

INL developed a bench scale modular hybrid plasma system for gas phase nanomaterials synthesis. The system was being optimized for WO3 nanoparticles production and scale model projection to a 300 kW pilot system. During the course of technology development many modifications had been done to the system to resolve technical issues that had surfaced and also to improve the performance. All project tasks had been completed except 2 optimization subtasks. These 2 subtasks, a 4-hour and an 8-hour continuous powder production runs at 1 lb/hr powder feeding rate, were unable to complete due to technical issues developed with the reactor system. The 4-hour run had been attempted twice and both times the run was terminated prematurely. The modular electrode for the plasma system was significantly redesigned to address the technical issues. Fabrication of the redesigned modular electrodes and additional components had been completed at the end of the project life. However, not enough resource was available to perform tests to evaluate the performance of the new modifications. More development work would be needed to resolve these problems prior to scaling. The technology demonstrated a surprising capability of synthesizing a single phase of meta-stable delta-Al2O3 from pure alpha-phase large Al2O3 powder. The formation of delta-Al2O3 was surprising because this phase is meta-stable and only formed between 973-1073 K, and delta-Al2O3 is very difficult to synthesize as a single phase. Besides the specific temperature window to form this phase, this meta-stable phase may have been stabilized by nanoparticle size formed in a high temperature plasma process. This technology may possess the capability to produce unusual meta-stable nanophase materials that would be otherwise difficult to produce by conventional methods. A 300 kW INL modular hybrid plasma pilot scale model reactor had been projected using the experimental data from PPG Industries 300 kW hot wall plasma reactor. The projected size of the INL 300 kW pilot model reactor would be about 15% that of the PPG 300 kW hot wall plasma reactor. Including the safety net factor the projected INL pilot reactor size would be 25-30% of the PPG 300 kW hot wall plasma pilot reactor. Due to the modularity of the INL plasma reactor and the energy cascading effect from the upstream plasma to the downstream plasma the energy utilization is more efficient in material processing. It is envisioning that the material through put range for the INL pilot reactor would be comparable to the PPG 300 kW pilot reactor but the energy consumption would be lower. The INL hybrid plasma technology is rather close to being optimized for scaling to a pilot system. More near term development work is still needed to complete the process optimization before pilot scaling.

Peter C. Kong

2011-12-01T23:59:59.000Z

67

Fission-product aerosol sampling system for LWR experiments in the TREAT reactor  

SciTech Connect (OSTI)

This work summarizes the design and collection characteristics of a fission-product aerosol sampling system that was developed for a series of light water reactor (LWR) source-term experiments under consideration for performance in 1984 at Argonne National Laboratory's TREAT reactor. These tests would be performed using a bundle of four preirradiated, Zircaloy-clad LWR fuel pins. In these tests, fuel pin integrity would be breached under various simulated accident conditions. The aerosol sampling system was designed to efficiently extract and collect these aerosols such that time-averaged aerosol size distributions, number concentrations and mass loadings could be determined accurately for each experiment, using a combination of real-time and time-interval measurements and post-test analytical techniques. The entire system also was designed to be disassembled remotely because of potentially high levels of radioactivity.

Dunn, P.F.

1983-01-01T23:59:59.000Z

68

Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor  

SciTech Connect (OSTI)

Hydrogen production from coal gasification can be enhanced by driving the equilibrium limited Water Gas Shift reaction forward by incessantly removing the CO{sub 2} by-product via the carbonation of calcium oxide. This project aims at using the OSU patented high-reactivity mesoporous precipitated calcium carbonate sorbent for removing the CO{sub 2} product. Preliminary experiments demonstrate the show the superior performance of the PCC sorbent over other naturally occurring calcium sorbents. Gas composition analyses show the formation of 100% pure hydrogen. Novel calcination techniques could lead to smaller reactor footprint and single-stage reactors that can achieve maximum theoretical H{sub 2} production for multicyclic applications. Sub-atmospheric calcination studies reveal the effect of vacuum level, diluent gas flow rate, thermal properties of the diluent gas and the sorbent loading on the calcination kinetics which play an important role on the sorbent morphology. Steam, which can be easily separated from CO{sub 2}, is envisioned to be a potential diluent gas due to its enhanced thermal properties. Steam calcination studies at 700-850 C reveal improved sorbent morphology over regular nitrogen calcination. A mixture of 80% steam and 20% CO{sub 2} at ambient pressure was used to calcine the spent sorbent at 820 C thus lowering the calcination temperature. Regeneration of calcium sulfide to calcium carbonate was achieved by carbonating the calcium sulfide slurry by bubbling CO{sub 2} gas at room temperature.

Mahesh Iyer; Himanshu Gupta; Danny Wong; Liang-Shih Fan

2005-09-30T23:59:59.000Z

69

Drart environmental impact statement siting, construction, and operation of New Production Reactor capacity. Volume 4, Appendices D-R  

SciTech Connect (OSTI)

This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains 15 appendices.

Not Available

1991-04-01T23:59:59.000Z

70

Analysis of the magnetic corrosion product deposits on a boiling water reactor cladding  

SciTech Connect (OSTI)

The buildup of corrosion product deposits (CRUD) on the fuel cladding of the boiling water reactor (BWR) before and after zinc injection has been investigated by applying local experimental analytical techniques. Under the BWR water chemistry conditions, Zn addition together with the presence of Ni and Mn induce the formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}] spinel solid solutions. X-ray absorption spectroscopy (XAS) revealed inversion ratios of cation distribution in spinels deposited from the solid solution. Based on this information, a two-site ferrite spinel solid solution model is proposed. Electron probe microanalysis (EPMA) and extended X-ray absorption fine structure (EXAFS) findings suggest the zinc-rich ferrite spinels formation on BWR fuel cladding mainly at lower pin. - Graphical Abstract: Analysis of spinels in corrosion product deposits on boiling water reactor fuel rod. Combining EPMA and XAFS results: schematic representation of the ferrite spinels in terms of the end members and their extent of inversion. Note that the ferrites are represented as a surface between the normal (upper plane, M[Fe{sub 2}]O{sub 4}) and the inverse (lower plane, Fe[MFe]O{sub 4}). Actual compositions red Black-Small-Square for the specimen at low elevation (810 mm), blue Black-Small-Square for the specimen at mid elevation (1800 mm). The results have an impact on the properties of the CRUD material. Highlights: Black-Right-Pointing-Pointer Buildup of corrosion product deposits on fuel claddings of a boiling water reactor (BWR) are investigated. Black-Right-Pointing-Pointer Under BWR water conditions, Zn addition with Ni and Mn induced formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}]. Black-Right-Pointing-Pointer X-Ray Adsorption Spectroscopy (XAS) revealed inversion of cations in spinel solid solutions. Black-Right-Pointing-Pointer Zinc-rich ferrite spinels are formed on BWR fuel cladding mainly at lower pin elevations.

Orlov, Andrey [Paul Scherrer Institut, Villigen (Switzerland); Degueldre, Claude, E-mail: claude.degueldre@psi.ch [Paul Scherrer Institut, Villigen (Switzerland); Kaufmann, Wilfried [Kernkraftwerk Leibstadt, Leibstadt (Switzerland)

2013-01-15T23:59:59.000Z

71

Analysis of Reference Design for Nuclear-Assisted Hydrogen Production at 750°C Reactor Outlet Temperature  

SciTech Connect (OSTI)

The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using a high-temperature gas-cooled reactor (HTGR) to provide the process heat and electricity to drive the electrolysis process. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This report describes the resulting new INL reference design coupled to two alternative HTGR power conversion systems, a Steam Rankine Cycle and a Combined Cycle (a Helium Brayton Cycle with a Steam Rankine Bottoming Cycle). Results of system analyses performed to optimize the design and to determine required plant performance and operating conditions when coupled to the two different power cycles are also presented. A 600 MWt high temperature gas reactor coupled with a Rankine steam power cycle at a thermal efficiency of 44.4% can produce 1.85 kg/s of hydrogen and 14.6 kg/s of oxygen. The same capacity reactor coupled with a combined cycle at a thermal efficiency of 42.5% can produce 1.78 kg/s of hydrogen and 14.0 kg/s of oxygen.

Michael G. McKellar; Edwin A. Harvego

2010-05-01T23:59:59.000Z

72

Functionally gradient material for membrane reactors to convert methane gas into value-added products  

DOE Patents [OSTI]

A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

Balachandran, Uthamalingam (Hinsdale, IL); Dusek, Joseph T. (Lombard, IL); Kleefisch, Mark S. (Napersville, IL); Kobylinski, Thadeus P. (Lisle, IL)

1996-01-01T23:59:59.000Z

73

Functionally gradient material for membrane reactors to convert methane gas into value-added products  

DOE Patents [OSTI]

A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

1996-11-12T23:59:59.000Z

74

Environmental characterization of two potential locations at Hanford for a new production reactor  

SciTech Connect (OSTI)

This report describes various environmental aspects of two areas on the Hanford Site that are potential locations for a New Production Reactor (NPR). The area known as the Skagit Hanford Site is considered the primary or reference site. The second area, termed the Firehouse Site, is considered the alternate site. The report encompasses an environmental characterization of these two potential NPR locations. Eight subject areas are covered: geography and demography; ecology; meteorology; hydrology; geology; cultural resources assessment; economic and social effects of station construction and operation; and environmental monitoring. 80 refs., 68 figs., 109 tabs.

Watson, E.C.; Becker, C.D.; Fitzner, R.E.; Gano, K.A.; Imhoff, K.L.; McCallum, R.F.; Myers, D.A.; Page, T.L.; Price, K.R.; Ramsdell, J.V.; Rice D.G.; Schreiber D.L.; Skumatz L.A.; Sommer D.J.; Tawil J.J.; Wallace R.W.; Watson D.G.

1984-09-01T23:59:59.000Z

75

Method of production H/sub 2/ using a rotating drum reactor with a pulse jet heat source  

DOE Patents [OSTI]

A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300/degree/ to 1400/degree/F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices. 1 fig.

Paulson, L.E.

1988-05-13T23:59:59.000Z

76

Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor  

SciTech Connect (OSTI)

High purity hydrogen is commercially produced from syngas by the Water Gas Shift Reaction (WGSR) in high and low temperature shift reactors using iron oxide and copper catalysts respectively. However, the WGSR is thermodynamically limited at high temperatures towards hydrogen production necessitating excess steam addition and catalytic operation. In the calcium looping process, the equilibrium limited WGSR is driven forward by the incessant removal of CO{sub 2} by-product through the carbonation of calcium oxide. At high pressures, this process obviates the need for a catalyst and excess steam requirement, thereby removing the costs related to the procurement and deactivation of the catalyst and steam generation. Thermodynamic analysis for the combined WGS and carbonation reaction was conducted. The combined WGS and carbonation reaction was investigated at varying pressures, temperatures and S/C ratios using a bench scale reactor system. It was found that the purity of hydrogen increases with the increase in pressure and at a pressure of 300 psig, almost 100% hydrogen is produced. It was also found that at high pressures, high purity hydrogen can be produced using stoichiometric quantities of steam. On comparing the catalytic and non catalytic modes of operation in the presence of calcium oxide, it was found that there was no difference in the purity of hydrogen produced at elevated pressures. Multicyclic reaction and regeneration experiments were also conducted and it was found that the purity of hydrogen remains almost constant after a few cycles.

Shwetha Ramkumar; Mahesh Iyer; Danny Wong; Himanshu Gupta; Bartev Sakadjian; Liang-Lhih Fan

2008-09-30T23:59:59.000Z

77

Studies of Plutonium-238 Production at the High Flux Isotope Reactor  

SciTech Connect (OSTI)

The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) is a versatile 85 MW{sub th}, pressurized, light water-cooled and -moderated research reactor. The core consists of two fuel elements, an inner fuel element (IFE) and an outer fuel element (OFE), each constructed of involute fuel plates containing high-enriched-uranium (HEU) fuel ({approx}93 wt% {sup 235}U/U) in the form of U{sub 3}O{sub 8} in an Al matrix and encapsulated in Al-6061 clad. An over-moderated flux trap is located in the center of the core, a large beryllium reflector is located on the outside of the core, and two control elements (CE) are located between the fuel and the reflector. The flux trap and reflector house numerous experimental facilities which are used for isotope production, material irradiation, and cold/thermal neutron scattering. Over the past five decades, the US Department of Energy (DOE) and its agencies have been producing radioisotope power systems used by the National Aeronautics and Space Administration (NASA) for unmanned, long-term space exploration missions. Plutonium-238 is used to power Radioisotope Thermoelectric Generators (RTG) because it has a very long half-life (t{sub 1/2} {approx} 89 yr.) and it generates about 0.5 watts/gram when it decays via alpha emission. Due to the recent shortage and uncertainty of future production, the DOE has proposed a plan to the US Congress to produce {sup 238}Pu by irradiating {sup 237}Np as early as in fiscal year 2011. An annual production rate of 1.5 to 2.0 kg of {sup 238}Pu is expected to satisfy these needs and could be produced in existing national nuclear facilities like HFIR and the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Reactors at the Savannah River Site were used in the past for {sup 238}Pu production but were shut down after the last production in 1988. The nation's {sup 237}Np inventory is currently stored at INL. A plan for producing {sup 238}Pu at US research reactor facilities such as the High Flux Isotope Reactor at ORNL has been initiated by the US DOE and NASA for space exploration needs. Two Monte Carlo-based depletion codes, TRITON (ORNL) and VESTA (IRSN), were used to study the {sup 238}Pu production rates with varying target configurations in a typical HFIR fuel cycle. Preliminary studies have shown that approximately 11 grams and within 15 to 17 grams of {sup 238}Pu could be produced in the first irradiation cycle in one small and one large VXF facility, respectively, when irradiating fresh target arrays as those herein described. Important to note is that in this study we discovered that small differences in assumptions could affect the production rates of Pu-238 observed. The exact flux at a specific target location can have a significant impact upon production, so any differences in how the control elements are modeled as a function of exposure, will also cause differences in production rates. In fact, the surface plot of the large VXF target Pu-238 production shown in Figure 3 illustrates that the pins closest to the core can potentially have production rates as high as 3 times those of pins away from the core, thus implying that a cycle-to-cycle rotation of the targets may be well advised. A methodology for generating spatially-dependent, multi-group self-shielded cross sections and flux files with the KENO and CENTRM codes has been created so that standalone ORIGEN-S inputs can be quickly constructed to perform a variety of {sup 238}Pu production scenarios, i.e. combinations of the number of arrays loaded and the number of irradiation cycles. The studies herein shown with VESTA and TRITON/KENO will be used to benchmark the standalone ORIGEN.

Lastres, Oscar [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Chandler, David [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)] [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Jarrell, Joshua J [ORNL] [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

78

EVALUATION OF ACTIVATION PRODUCTS IN REMAINING IN REMAINING K-, L- AND C-REACTOR STRUCTURES  

SciTech Connect (OSTI)

An analytic model and calculational methodology was previously developed for P-reactor and R-reactor to quantify the radioisotopes present in Savannah River Site (SRS) reactor tanks and the surrounding structural materials as a result of neutron activation of the materials during reactor operation. That methodology has been extended to K-reactor, L-reactor, and C-reactor. The analysis was performed to provide a best-estimate source term input to the Performance Assessment for an in-situ disposition strategy by Site Decommissioning and Demolition (SDD). The reactor structure model developed earlier for the P-reactor and R-reactor analyses was also used for the K-reactor and L-reactor. The model was suitably modified to handle the larger Creactor tank and associated structures. For all reactors, the structure model consisted of 3 annular zones, homogenized by the amount of structural materials in the zone, and 5 horizontal layers. The curie content on an individual radioisotope basis and total basis for each of the regions was determined. A summary of these results are provided herein. The efficacy of this methodology to accurately predict the radioisotopic content of the reactor systems in question has been demonstrated and is documented in Reference 1. As noted in that report, results for one reactor facility cannot be directly extrapolated to other SRS reactors.

Vinson, D.; Webb, R.

2010-09-30T23:59:59.000Z

79

ENHANCED HYDROGEN PRODUCTION INTEGRATED WITH CO2 SEPARATION IN A SINGLE-STAGE REACTOR  

SciTech Connect (OSTI)

The water gas shift reaction (WGSR) plays a major role in increasing the hydrogen production from fossil fuels. However, the enhanced hydrogen production is limited by thermodynamic constrains posed by equilibrium limitations of WGSR. This project aims at using a mesoporous, tailored, highly reactive calcium based sorbent system for incessantly removing the CO{sub 2} product which drives the equilibrium limited WGSR forward. In addition, a pure sequestration ready CO{sub 2} stream is produced simultaneously. A detailed project vision with the description of integration of this concept with an existing coal gasification process for hydrogen production is presented. Conceptual reactor designs for investigating the simultaneous water gas shift and the CaO carbonation reactions are presented. In addition, the options for conducting in-situ sorbent regeneration under vacuum or steam are also reported. Preliminary, water gas shift reactions using high temperature shift catalyst and without any sorbent confirmed the equilibrium limitation beyond 600 C demonstrating a carbon monoxide conversion of about 80%. From detailed thermodynamic analyses performed for fuel gas streams from typical gasifiers the optimal operating temperature range to prevent CaO hydration and to effect its carbonation is between 575-830 C.

Himanshu Gupta; Mahesh Iyer; Bartev Sakadjian; Liang-Shih Fan

2005-03-10T23:59:59.000Z

80

Fission Product Impact Reduction via Protracted In-core Retention in Very High Temperature Reactor (VHTR) Transmutation Scenarios  

E-Print Network [OSTI]

is performed, the spent fuel can be partitioned and separated into 3 streams: depleted uranium (to be recycled with plutonium in reactors), TRU and FP. The TRU content of spent fuel is potentially a useable material. TRU can be recycled in advanced reactors... percent depleted uranium and 1.1 percent higher actinides [25]. Based on the 4.6w/o fission product content, it can be estimated that 10GWd/MTU burnup corresponds to about 1.0w/o of fission products in the spent fuel. Given the burnup of U.S. legacy...

Alajo, Ayodeji Babatunde

2011-08-08T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Geologic setting of the New Production Reactor within the Savannah River Site  

SciTech Connect (OSTI)

The geology and hydrology of the reference New Production Reactor (NPR) site at Savannah River Site (SRS) have been summarized using the available information from the NPR site and areas adjacent to the site, particularly the away from reactor spent fuel storage site (AFR site). Lithologic and geophysical logs from wells drilled near the NPR site do not indicate any faults in the upper several hundred feet of the Coastal Plain sediments. However, the Pen Branch Fault is located about 1 mile south of the site and extends into the upper 100 ft of the Coastal Plain sequence. Subsurface voids, resulting from the dissolution of calcareous portions of the sediments, may be present within 200 ft of the surface at the NPR site. The water table is located within 30 to 70 ft of the surface. The NPR site is located on a groundwater divide, and groundwater flow for the shallowest hydraulic zones is predominantly toward local streams. Groundwater flow in deeper Tertiary sediments is north to Upper Three Runs Creek or west to the Savannah River Swamp. Groundwater flow in the Cretaceous sediments is west to the Savannah River.

Price, V. [Westinghouse Savannah River Co., Aiken, SC (United States); Fallaw, W.C. [Furman Univ., Greenville, SC (United States). Dept. of Geology; McKinney, J.B. [Exploration Resources, Inc., Athens, GA (United States)

1991-12-31T23:59:59.000Z

82

Computer analyses for the design, operation and safety of new isotope production reactors: A technology status review  

SciTech Connect (OSTI)

A review is presented on the currently available technologies for nuclear reactor analyses by computer. The important distinction is made between traditional computer calculation and advanced computer simulation. Simulation needs are defined to support the design, operation, maintenance and safety of isotope production reactors. Existing methods of computer analyses are categorized in accordance with the type of computer involved in their execution: micro, mini, mainframe and supercomputers. Both general and special-purpose computers are discussed. Major computer codes are described, with regard for their use in analyzing isotope production reactors. It has been determined in this review that conventional systems codes (TRAC, RELAP5, RETRAN, etc.) cannot meet four essential conditions for viable reactor simulation: simulation fidelity, on-line interactive operation with convenient graphics, high simulation speed, and at low cost. These conditions can be met by special-purpose computers (such as the AD100 of ADI), which are specifically designed for high-speed simulation of complex systems. The greatest shortcoming of existing systems codes (TRAC, RELAP5) is their mismatch between very high computational efforts and low simulation fidelity. The drift flux formulation (HIPA) is the viable alternative to the complicated two-fluid model. No existing computer code has the capability of accommodating all important processes in the core geometry of isotope production reactors. Experiments are needed (heat transfer measurements) to provide necessary correlations. It is important for the nuclear community, both in government, industry and universities, to begin to take advantage of modern simulation technologies and equipment. 41 refs.

Wulff, W.

1990-01-01T23:59:59.000Z

83

Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge Reactor  

E-Print Network [OSTI]

that the water- gas shift and rev Reactor David W. Larkin, Lance L. Lobban, and Richard G. Mallinson* Institute for Gas Utilization discharge uses an annular reactor consisting of two metal electrodes separated by a gas gap and a glass

Mallinson, Richard

84

Hybrid adsorptive membrane reactor  

DOE Patents [OSTI]

A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

2011-03-01T23:59:59.000Z

85

Feasibility Study of Supercritical Light Water Cooled Reactors for Electrical Power Production, 5th Quarterly Report, October - December 2002  

SciTech Connect (OSTI)

The overall objective of this project is to evaluate the feasibility of supercritical light water cooled reactors for electric power production. The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies for the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR that can also burn actinides. The project is organized into three tasks:

Philip MacDonald; Jacopo Buongiorno; Cliff Davis; J. Stephen Herring; Kevan Weaver; Ron Latanision; Bryce Mitton; Gary Was; Luca Oriani; Mario Carelli; Dmitry Paramonov; Lawrence Conway

2003-01-01T23:59:59.000Z

86

Separation Requirements for a Hydrogen Production Plant and High-Temperature Nuclear Reactor  

SciTech Connect (OSTI)

This report provides the methods, models, and results of an evaluation for locating a hydrogen production facility near a nuclear power plant. In order to answer the risk-related questions for this combined nuclear and chemical facility, we utilized standard probabilistic safety assessment methodologies to answer three questions: what can happen, how likely is it, and what are the consequences? As part of answering these questions, we developed a model suitable to determine separation distances for hydrogen process structures and the nuclear plant structures. Our objective of the model-development and analysis is to answer key safety questions related to the placement of one or more hydrogen production plants in the vicinity of a high-temperature nuclear reactor. From a thermal-hydraulic standpoint we would like the two facilities to be quite close. However, safety and regulatory implications force the separation distance to be increased, perhaps substantially. Without answering these safety questions, the likelihood for obtaining a permit to construct and build such as facility in the U.S. would be questionable. The quantitative analysis performed for this report provides us with a scoping mechanism to determine key parameters related to the development of a nuclear-based hydrogen production facility. From our calculations, we estimate that when the separation distance is less than 100m, the core damage frequency is large enough (greater than 1E-6/yr) to become problematic in a risk-informed environment. However, a variety of design modifications, for example blast-deflection barriers, were explored to determine the impact of potential mitigating strategies. We found that these mitigating cases may significantly reduce risk and should be explored as the design for the hydrogen production facility evolves.

Curtis Smith; Scott Beck; Bill Galyean

2005-09-01T23:59:59.000Z

87

Radioactive Fission Product Release from Defective Light Water Reactor Fuel Elements  

SciTech Connect (OSTI)

Results are provided of the experimental investigation of radioactive fission product (RFP) release, i.e., krypton, xenon, and iodine radionuclides from fuel elements with initial defects during long-term (3 to 5 yr) irradiation under low linear power (5 to 12 kW/m) and during special experiments in the VK-50 vessel-type boiling water reactor.The calculation model for the RFP release from the fuel-to-cladding gap of the defective fuel element into coolant was developed. It takes into account the convective transport in the fuel-to-cladding gap and RFP sorption on the internal cladding surface and is in good agreement with the available experimental data. An approximate analytical solution of the transport equation is given. The calculation dependencies of the RFP release coefficients on the main parameters such as defect size, fuel-to-cladding gap, temperature of the internal cladding surface, and radioactive decay constant were analyzed.It is shown that the change of the RFP release from the fuel elements with the initial defects during long-term irradiation is, mainly, caused by fuel swelling followed by reduction of the fuel-to-cladding gap and the fuel temperature. The calculation model for the RFP release from defective fuel elements applicable to light water reactors (LWRs) was developed. It takes into account the change of the defective fuel element parameters during long-term irradiation. The calculation error according to the program does not exceed 30% over all the linear power change range of the LWR fuel elements (from 5 to 26 kW/m)

Konyashov, Vadim V.; Krasnov, Alexander M. [State Scientific Centre of Russian Federation-Research Institute of Atomic Reactors (Russian Federation)

2002-04-15T23:59:59.000Z

88

ESTABLISHING FINAL END STATE FOR A RETIRED NUCLEAR WEAPONS PRODUCTION REACTOR; COLLABORATION BETWEEN STAKEHOLDERS, REGULATORS, AND THE FEDERAL GOVERNMENT - 11052  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River (SRS) near Aiken, South Carolina. Nuclear weapons material production began in the early 1950s, utilizing five production reactors. In the early 1990s all SRS production reactor operations were terminated. The first reactor closure end state declaration was recently institutionalized in a Comprehensive Environmental Response and Compensation and Liability Act (CERCLA) Early Action Record of Decision. The decision for the final closure of the 318,000 square foot 105-P Reactor was determined to be in situ decommissioning (ISD). ISD is an acceptable and cost effective alternative to off-site disposal for the reactor building, which will allow for consolidation of remedial action wastes generated from other cleanup activities within the P Area. ISD is considered protective by the regulators, U. S. Environmental Protection Agency (US EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), public and stakeholders as waste materials are stabilized/immobilized, and radioactivity is allowed to naturally decay, thus preventing future exposure to the environment. Stakeholder buy-in was critical in the upfront planning in order to achieve this monumental final decision. Numerous public meetings and workshops were held in two different states (covering a 200 mile radius) with stakeholder and SRS Citizens Advisory Board participation. These meetings were conducted over an eight month period as the end state decision making progressed. Information provided to the public evolved from workshop to workshop as data became available and public input from the public meetings were gathered. ISD is being considered for the balance of the four SRS reactors and other hardened facilities such as the chemical Separation Facilities (canyons).

Bergren, C.; Flora, M.; Belencan, H.

2010-11-17T23:59:59.000Z

89

ESTABLISHING FINAL END STATE FOR A RETIRED NUCLEAR WEAPONS PRODUCTION REACTOR; COLLABORATION BETWEEN STAKEHOLDERS, REGULATORS AND THE FEDERAL GOVERNMENT  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River (SRS) near Aiken, South Carolina. Nuclear weapons material production began in the early 1950s, utilizing five production reactors. In the early 1990s all SRS production reactor operations were terminated. The first reactor closure end state declaration was recently institutionalized in a Comprehensive Environmental Response and Compensation and Liability Act (CERCLA) Early Action Record of Decision. The decision for the final closure of the 318,000 square foot 105-P Reactor was determined to be in situ decommissioning (ISD). ISD is an acceptable and cost effective alternative to off-site disposal for the reactor building, which will allow for consolidation of remedial action wastes generated from other cleanup activities within the P Area. ISD is considered protective by the regulators, U. S. Environmental Protection Agency (US EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), public and stakeholders as waste materials are stabilized/immobilized, and radioactivity is allowed to naturally decay, thus preventing future exposure to the environment. Stakeholder buy-in was critical in the upfront planning in order to achieve this monumental final decision. Numerous public meetings and workshops were held in two different states (covering a 200 mile radius) with stakeholder and SRS Citizens Advisory Board participation. These meetings were conducted over an eight month period as the end state decision making progressed. Information provided to the public evolved from workshop to workshop as data became available and public input from the public meetings were gathered. ISD is being considered for the balance of the four SRS reactors and other hardened facilities such as the chemical processing canyons.

Bergren, C

2009-01-16T23:59:59.000Z

90

Production of 37Ar in The University of Texas TRIGA reactor facility  

SciTech Connect (OSTI)

The detection of {sup 37}Ar is important for on-site inspections for the Comprehensive Nuclear-Test-Ban Treaty monitoring. In an underground nuclear explosion this radionuclide is produced by {sup 40}Ca(n,{alpha}){sup 37}Ar reaction in surrounding soil and rock. With a half-life of 35 days, {sup 37}Ar provides a signal useful for confirming the location of an underground nuclear event. An ultra-low-background proportional counter developed by Pacific Northwest National Laboratory is used to detect {sup 37}Ar, which decays via electron capture. The irradiation of Ar gas at natural enrichment in the 3L facility within the Mark II TRIGA reactor facility at The University of Texas at Austin provides a source of {sup 37}Ar for the calibration of the detector. The {sup 41}Ar activity is measured by the gamma activity using an HPGe detector after the sample is removed from the core. Using the {sup 41}Ar/{sup 37}Ar production ratio and the {sup 41}Ar activity, the amount of {sup 37}Ar created is calculated. The {sup 41}Ar decays quickly (half-life of 109.34 minutes) leaving a radioactive sample of high purity {sup 37}Ar and only trace levels of {sup 39}Ar.

Egnatuk, Christine M.; Lowrey, Justin; Biegalski, S.; Bowyer, Ted W.; Haas, Derek A.; Orrell, John L.; Woods, Vincent T.; Keillor, Martin E.

2011-06-19T23:59:59.000Z

91

Uncertainties in source term calculations generated by the ORIGEN2 computer code for Hanford Production Reactors  

SciTech Connect (OSTI)

The ORIGEN2 computer code is the primary calculational tool for computing isotopic source terms for the Hanford Environmental Dose Reconstruction (HEDR) Project. The ORIGEN2 code computes the amounts of radionuclides that are created or remain in spent nuclear fuel after neutron irradiation and radioactive decay have occurred as a result of nuclear reactor operation. ORIGEN2 was chosen as the primary code for these calculations because it is widely used and accepted by the nuclear industry, both in the United States and the rest of the world. Its comprehensive library of over 1,600 nuclides includes any possible isotope of interest to the HEDR Project. It is important to evaluate the uncertainties expected from use of ORIGEN2 in the HEDR Project because these uncertainties may have a pivotal impact on the final accuracy and credibility of the results of the project. There are three primary sources of uncertainty in an ORIGEN2 calculation: basic nuclear data uncertainty in neutron cross sections, radioactive decay constants, energy per fission, and fission product yields; calculational uncertainty due to input data; and code uncertainties (i.e., numerical approximations, and neutron spectrum-averaged cross-section values from the code library). 15 refs., 5 figs., 5 tabs.

Heeb, C.M.

1991-03-01T23:59:59.000Z

92

Vented target elements for use in an isotope-production reactor. [LMFBR  

DOE Patents [OSTI]

A method is described for producing tritium gas in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins equipped with vents, and tritium gas is recovered from the coolant.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

93

Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production  

SciTech Connect (OSTI)

The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor.

Philip MacDonald; Jacopo Buongiorno; James Sterbentz; Cliff Davis; Robert Witt; Gary Was; J. McKinley; S. Teysseyre; Luca Oriani; Vefa Kucukboyaci; Lawrence Conway; N. Jonsson: Bin Liu

2005-02-13T23:59:59.000Z

94

Final report on LDRD project : biodiesel production from vegetable oils using slit-channel reactors.  

SciTech Connect (OSTI)

This report documents work done for a late-start LDRD project, which was carried out during the last quarter of FY07. The objective of this project was to experimentally explore the feasibility of converting vegetable (e.g., soybean) oils to biodiesel by employing slit-channel reactors and solid catalysts. We first designed and fabricated several slit-channel reactors with varying channel depths, and employed them to investigate the improved performance of slit-channel reactors over traditional batch reactors using a NaOH liquid catalyst. We then evaluated the effectiveness of several solid catalysts, including CaO, ZnO, MgO, ZrO{sub 2}, calcium gluconate, and heteropolyacid or HPA (Cs{sub 2.5}H{sub 0.5}PW{sub 12}O{sub 40}), for catalyzing the soybean oil-to-biodiesel transesterification reaction. We found that the slit-channel reactor performance improves as channel depth decreases, as expected; and the conversion efficiency of a slit-channel reactor is significantly higher when its channel is very shallow. We further confirmed CaO as having the highest catalytic activity among the solid catalysts tested, and we demonstrated for the first time calcium gluconate as a promising solid catalyst for converting soybean oil to biodiesel, based on our preliminary batch-mode conversion experiments.

Kalu, E. Eric (FAMU-FSU College of Engineering, Tallahassee, FL); Chen, Ken Shuang

2008-01-01T23:59:59.000Z

95

Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields  

SciTech Connect (OSTI)

In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

2011-07-01T23:59:59.000Z

96

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production  

SciTech Connect (OSTI)

The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

2002-01-01T23:59:59.000Z

97

Tokamak reactor for treating fertile material or waste nuclear by-products  

DOE Patents [OSTI]

Disclosed is a tokamak reactor. The reactor includes a first toroidal chamber, current carrying conductors, at least one divertor plate within the first toroidal chamber and a second chamber adjacent to the first toroidal chamber surrounded by a section that insulates the reactor from neutrons. The current carrying conductors are configured to confine a core plasma within enclosed walls of the first toroidal chamber such that the core plasma has an elongation of 1.5 to 4 and produce within the first toroidal chamber at least one stagnation point at a perpendicular distance from an equatorial plane through the core plasma that is greater than the plasma minor radius. The at least one divertor plate and current carrying conductors are configured relative to one another such that the current carrying conductors expand the open magnetic field lines at the divertor plate.

Kotschenreuther, Michael T.; Mahajan, Swadesh M.; Valanju, Prashant M.

2012-10-02T23:59:59.000Z

98

Novel Magnetically Fluidized Bed Reactor Development for the Looping Process: Coal to Hydrogen Production R&D  

SciTech Connect (OSTI)

The coal to hydrogen project utilizes the iron/iron oxide looping process to produce high purity hydrogen. The input energy for the process is provided by syngas coming from gasification process of coal. The reaction pathways for this process have been studied and favorable conditions for energy efficient operation have been identified. The Magnetically Stabilized Porous Structure (MSPS) is invented. It is fabricated from iron and silica particles and its repeatable high performance has been demonstrated through many experiments under various conditions in thermogravimetric analyzer, a lab-scale reactor, and a large scale reactor. The chemical reaction kinetics for both oxidation and reduction steps has been investigated thoroughly inside MSPS as well as on the surface of very smooth iron rod. Hydrogen, CO, and syngas have been tested individually as the reducing agent in reduction step and their performance is compared. Syngas is found to be the most pragmatic reducing agent for the two-step water splitting process. The transport properties of MSPS including porosity, permeability, and effective thermal conductivity are determined based on high resolution 3D CT x-ray images obtained at Argonne National Laboratory and pore-level simulations using a lattice Boltzmann Equation (LBE)-based mesoscopic model developed during this investigation. The results of those measurements and simulations provide necessary inputs to the development of a reliable volume-averaging-based continuum model that is used to simulate the dynamics of the redox process in MSPS. Extensive efforts have been devoted to simulate the redox process in MSPS by developing a continuum model consist of various modules for conductive and radiative heat transfer, fluid flow, species transport, and reaction kinetics. Both the Lagrangian and Eulerian approaches for species transport of chemically reacting flow in porous media have been investigated and verified numerically. Both approaches lead to correct prediction of hydrogen production rates over a large range of experimental conditions in the laboratory scale reactor and the bench-scale reactor. In the economic analysis, a comparison of the hydrogen production plants using iron/iron oxide looping cycle and the conventional process has been presented. Plant configurations are developed for the iron/iron oxide looping cycle. The study suggests a higher electric power generation but a lower hydrogen production efficiency comparing with the conventional process. Additionally, it was shown that the price of H{sub 2} obtained from our reactor can be as low as $1.7/kg, which is 22% lower than the current price of the H{sub 2} obtained from reforming plants.

Mei, Renwei; Hahn, David; Klausner, James; Petrasch, Jorg; Mehdizadeh, Ayyoub; Allen, Kyle; Rahmatian, Nima; Stehle, Richard; Bobek, Mike; Al-Raqom, Fotouh; Greek, Ben; Li, Like; Chen, Chen; Singh, Abhishek; Takagi, Midori; Barde, Amey; Nili, Saman

2013-09-30T23:59:59.000Z

99

Draft environmental impact statement for the siting, construction, and operation of New Production Reactor capacity. Volume 3, Sections 7-12, Appendices A-C  

SciTech Connect (OSTI)

This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains references; a list of preparers and recipients; acronyms, abbreviations, and units of measure; a glossary; an index and three appendices.

Not Available

1991-04-01T23:59:59.000Z

100

Draft environmental impact statement for the siting, construction, and operation of New Production Reactor capacity. Volume 2, Sections 1-6  

SciTech Connect (OSTI)

This (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains the analysis of programmatic alternatives, project alternatives, affected environment of alternative sites, environmental consequences, and environmental regulations and permit requirements.

Not Available

1991-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS  

SciTech Connect (OSTI)

Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

Gorensek, M.

2011-07-06T23:59:59.000Z

102

Tritium production analysis and management strategies for a Fluoride-salt-cooled high-temperature test reactor (FHTR)  

E-Print Network [OSTI]

The Fluoride-salt-cooled High-temperature Test Reactor (FHTR) is a test reactor concept that aims to demonstrate the neutronics, thermal-hydraulics, materials, tritium management, and to address other reactor operational ...

Rodriguez, Judy N

2013-01-01T23:59:59.000Z

103

ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION  

SciTech Connect (OSTI)

A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

Gorensek, M.; Edwards, T.

2009-06-11T23:59:59.000Z

104

An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor  

SciTech Connect (OSTI)

Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

2014-03-01T23:59:59.000Z

105

Fuel assembly for the production of tritium in light water reactors  

DOE Patents [OSTI]

A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.

Cawley, William E. (Richland, WA); Trapp, Turner J. (Richland, WA)

1985-01-01T23:59:59.000Z

106

Fuel assembly for the production of tritium in light water reactors  

DOE Patents [OSTI]

A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.

Cawley, W.E.; Trapp, T.J.

1983-06-10T23:59:59.000Z

107

Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor  

SciTech Connect (OSTI)

The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac No. 8532, Col. Progreso, C.P. 62550, Jiutepec, Morelos (Mexico)

2012-07-01T23:59:59.000Z

108

Method for fabricating wrought components for high-temperature gas-cooled reactors and product  

DOE Patents [OSTI]

A method and alloys for fabricating wrought components of a high-temperature gas-cooled reactor are disclosed. These wrought, nickel-based alloys, which exhibit strength and excellent resistance to carburization at elevated temperatures, include aluminum and titanium in amounts and ratios to promote the growth of carburization resistant films while preserving the wrought character of the alloys. These alloys also include substantial amounts of molybdenum and/or tungsten as solid-solution strengtheners. Chromium may be included in concentrations less than 10% to assist in fabrication. Minor amounts of carbon and one or more carbide-forming metals also contribute to high-temperature strength.

Thompson, Larry D. (San Diego, CA); Johnson, Jr., William R. (San Diego, CA)

1985-01-01T23:59:59.000Z

109

High solids fermentation reactor  

DOE Patents [OSTI]

A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

1993-03-02T23:59:59.000Z

110

High solids fermentation reactor  

DOE Patents [OSTI]

A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

1993-01-01T23:59:59.000Z

111

Interfacing the tandem mirror reactor to the sulfur-iodine process for hydrogen production  

SciTech Connect (OSTI)

The blanket is linked to the H/sub 2/SO/sub 4/ vaporization units and SO/sub 3/ decomposition reactor with either sodium or helium. The engineering and safety problems associated with these choices are discussed. This H/sub 2/SO/sub 4/ step uses about 90% of the TMR heat and is best close-coupled to the nuclear island. The rest of the process we propose to be driven by steam and does not require close-coupling. The sodium loop coupling seems to be preferable at this time. We can operate with a blanket around 1200 K and the SO/sub 3/ decomposer around 1050 K. This configuration offers double-barrier protection between Li-Na and the SO/sub 3/ process gases. Heat pipes offer an attractive alternate to provide an additional barrier, added modularity for increased reliability, and tritium concentration and isolation operations with very little thermal penalty.

Galloway, T.R.

1980-06-02T23:59:59.000Z

112

Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA  

E-Print Network [OSTI]

We report results of air monitoring started due to the recent natural catastrophe on 11 March 2011 in Japan and the severe ensuing damage to the Fukushima Dai-ichi nuclear reactor complex. On 17-18 March 2011, we registered the first arrival of the airborne fission products 131-I, 132-I, 132-Te, 134-Cs, and 137-Cs in Seattle, WA, USA, by identifying their characteristic gamma rays using a germanium detector. We measured the evolution of the activities over a period of 23 days at the end of which the activities had mostly fallen below our detection limit. The highest detected activity amounted to 4.4 +/- 1.3 mBq/m^3 of 131-I on 19-20 March.

J. Diaz Leon; D. A. Jaffe; J. Kaspar; A. Knecht; M. L. Miller; R. G. H. Robertson; A. G. Schubert

2011-08-23T23:59:59.000Z

113

Biofuels from Pyrolysis: Catalytic Biocrude Production in a Novel, Short-Contact Time Reactor  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: RTI is developing a new pyrolysis process to convert second-generation biomass into biofuels in one simple step. Pyrolysis is the decomposition of substances by heating—the same process used to render wood into charcoal, caramelize sugar, and dry roast coffee and beans. RTI’s catalytic biomass pyrolysis differs from conventional flash pyrolysis in that its end product contains less oxygen, metals, and nitrogen—all of which contribute to corrosion, instability, and inefficiency in the fuel-production process. This technology is expected to easily integrate into the existing domestic petroleum refining infrastructure, making it an economically attractive option for biofuels production.

None

2010-01-01T23:59:59.000Z

114

High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor  

SciTech Connect (OSTI)

Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

2011-07-31T23:59:59.000Z

115

Impact of Fission Products Impurity on the Plutonium Content of Metal- and Oxide- Fuels in Sodium Cooled Fast Reactors  

SciTech Connect (OSTI)

This short report presents the neutronic analysis to evaluate the impact of fission product impurity on the Pu content of Sodium-cooled Fast Reactor (SFR) metal- and oxide- fuel fabrication. The similar work has been previously done for PWR MOX fuel [1]. The analysis will be performed based on the assumption that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate SFR fuels. Only non-gaseous FPs have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1 of Reference 1). Throughout of this report, we define the mixture of Pu and FPs as PuFP. The main objective of this analysis is to quantify the increase of the Pu content of SFR fuels necessary to maintain the same average burnup at discharge independently of the amount of FP in the Pu stream, i.e. independently of the PuFP composition. The FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

Hikaru Hiruta; Gilles Youinou

2013-09-01T23:59:59.000Z

116

Measurement of airborne fission products in Chapel Hill, NC, USA from the Fukushima I reactor accident  

E-Print Network [OSTI]

We present measurements of airborne fission products in Chapel Hill, NC, USA, from 62 days following the March 11, 2011, accident at the Fukushima I Nuclear Power Plant. Airborne particle samples were collected daily in air filters and radio-assayed with two high-purity germanium (HPGe) detectors. The fission products I-131 and Cs-137 were measured with maximum activities of 4.2 +/- 0.6 mBq/m^2 and 0.42 +/- 0.07 mBq/m^2 respectively. Additional activity from I-131, I-132, Cs-134, Cs-136, Cs-137 and Te-132 were measured in the same air filters using a low-background HPGe detector at the Kimballton Underground Research Facility (KURF).

MacMullin, S; Green, M P; Henning, R; Holmes, R; Vorren, K; Wilkerson, J F

2011-01-01T23:59:59.000Z

117

Installation and Final Testing of an On-Line, Multi-Spectrometer Fission Product Monitoring System (FPMS) to Support Advanced Gas Reactor (AGR) Fuel Testing and Qualification in the Advanced Test Reactor  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is initiating tests of reactor fuel for use in an Advanced Gas Reactor (AGR). The AGR will use helium coolant, a low-power-density ceramic core, and coated-particle fuel. A series of eight (8) fuel irradiation tests are planned for the Idaho National Laboratory’s (INL’s) Advanced Test Reactor (ATR). One important measure of fuel performance in these tests is quantification of the fission gas releases over the nominal 2-year duration of each irradiation experiment. This test objective will be met using the AGR Fission Product Monitoring System (FPMS) which includes seven (7) on-line detection stations viewing each of the six test capsule effluent lines (plus one spare). Each station incorporates both a heavily-shielded high-purity germanium (HPGe) gamma-ray spectrometer for quantification of the isotopic releases, and a NaI(Tl) scintillation detector to monitor the total count rate and identify the timing of the releases. The AGR-1 experiment will begin irradiation after October 1, 2006. To support this experiment, the FPMS has been completely assembled, tested, and calibrated in a laboratory at the INL, and then reassembled and tested in its final location in the ATR reactor basement. This paper presents the details of the equipment performance, the control and acquisition software, the test plan for the irradiation monitoring, and the installation in the ATR basement. Preliminary on-line data may be available by the Conference date.

J. K. Hartwell; D. M. Scates; M. W. Drigert; J. B. Walter

2006-10-01T23:59:59.000Z

118

Health physics considerations in 131I production at a one megawatt TRIGA reactor  

E-Print Network [OSTI]

neutron irradiation of an enriched target of tellurium dioxide and tellurium trioxide. A 500 g sample of this mixture was studied for placemencjn location A-5 of thzTeactor core ehavmg a thermal neutron flux of 1. 0 x 10" n cm' s '. Calculations.... 3. Neutron activation of tellurium involves the capture of a neutron and the emission of prompt gamma rays. Production of "'I by irradiation of ' Te is depicted in Fig. 4 (Constant 1970). Yield of "'I is proportional to the enrichment of '"Te...

Flora, Jason Todd

1993-01-01T23:59:59.000Z

119

Development of a PIRT (phenomena identification and ranking table) for a postulated double-ended guillotine break in a production reactor  

SciTech Connect (OSTI)

The US Nuclear Regulatory Commission has developed a generic methodology to quantify the uncertainty in best estimate computer codes used to license commercial light water reactors. This same methodology is equally applicable to other reactor designs with regards to providing a technical basis which supports the establishment and demonstration of compliance with safe operating margins. One of the cornerstones of the method is the identification and ranking of phenomena that are important to the postulated scenario. This paper references descriptions of the total methodology, describes the first three steps (i.e, through the identification and ranking of phenomena), and summarizes the results of the application of the methodology to a double-ended guillotine break loss of coolant accident in a production reactor. 6 refs., 8 figs., 5 tabs.

Hanson, R.G.; Wilson, G.E.; Ortiz, M.G. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Griggs, D.P. (Savannah River Lab., Aiken, SC (USA))

1989-01-01T23:59:59.000Z

120

A laboratory and pilot plant scaled continuous stirred reactor separator for the production of ethanol from sugars, corn grits/starch or biomass streams  

SciTech Connect (OSTI)

An improved bio-reactor has been developed to allow the high speed, continues, low energy conversion of various substrates to ethanol. The Continuous Stirred Reactor Separator (CSRS) incorporates gas stripping of the ethanol using a recalculating gas stream between cascading stirred reactors in series. We have operated a 4 liter lab scale unit, and built and operated a 24,000 liter pilot scale version of the bioreactor. High rates of fermentation are maintained in the reactor stages using a highly flocculent yeast strain. Ethanol is recovered from the stripping gas using a hydrophobic solvent absorber (isothermal), after which the gas is returned to the bioreactor. Ethanol can then be removed from the solvent to recover a highly concentrated ethanol product. We have applied the lab scale CSRS to sugars (glucose/sucrose), molasses, and raw starch with simultaneous saccharification and fermentation of the starch granules (SSF). The pilot scale CSRS has been operated as a cascade reactor using dextrins as a feed. Operating data from both the lab and pilot scale CSRS are presented. Details of how the system might be applied to cellulosics, with some preliminary data are also given.

Dale, M.C.; Lei, Shuiwang; Zhou, Chongde

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nanocrystalline SiC and Ti3SiC2 Alloys for Reactor Materials: Diffusion of Fission Product Surrogates  

SciTech Connect (OSTI)

MAX phases, such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been suggested in the literature as a possible fuel cladding material. Prior to the application, it is necessary to investigate diffusivities of fission products in the ternary compound at elevated temperatures. This study attempts to obtain relevant data and make an initial assessment for Ti3SiC2. Ion implantation was used to introduce fission product surrogates (Ag and Cs) and a noble metal (Au) in Ti3SiC2, SiC, and a dual-phase nanocomposite of Ti3SiC2/SiC synthesized at PNNL. Thermal annealing and in-situ Rutherford backscattering spectrometry (RBS) were employed to study the diffusivity of the various implanted species in the materials. In-situ RBS study of Ti3SiC2 implanted with Au ions at various temperatures was also performed. The experimental results indicate that the implanted Ag in SiC is immobile up to the highest temperature (1273 K) applied in this study; in contrast, significant out-diffusion of both Ag and Au in MAX phase Ti3SiC2 occurs during ion implantation at 873 K. Cs in Ti3SiC2 is found to diffuse during post-irradiation annealing at 973 K, and noticeable Cs release from the sample is observed. This study may suggest caution in using Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures. Further studies of the related materials are recommended.

Henager, Charles H.; Jiang, Weilin

2014-11-01T23:59:59.000Z

122

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report  

SciTech Connect (OSTI)

The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

Mac Donald, Philip Elsworth

2002-06-01T23:59:59.000Z

123

Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor  

SciTech Connect (OSTI)

The Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the hightemperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant, may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. Seven possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermalhydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermalhydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The evaluations determined which configurations and coolants are the most promising from thermal-hydraulic and efficiency points of view. These evaluations also determined which configurations and options do not appear to be feasible at the current time.

C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

2005-06-01T23:59:59.000Z

124

Reactor Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactor Physics Reactor and nuclear physics is a key area of research at INL. Much of the research done in reactor physics can be separated into one of three categories:...

125

Solvent refined coal reactor quench system  

DOE Patents [OSTI]

There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

Thorogood, Robert M. (Macungie, PA)

1983-01-01T23:59:59.000Z

126

Solvent refined coal reactor quench system  

DOE Patents [OSTI]

There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.

Thorogood, R.M.

1983-11-08T23:59:59.000Z

127

Microchannel Reactor System Design & Demonstration For On-Site H2O2 Production by Controlled H2/O2 Reaction  

SciTech Connect (OSTI)

We successfully demonstrated an innovative hydrogen peroxide (H2O2) production concept which involved the development of flame- and explosion-resistant microchannel reactor system for energy efficient, cost-saving, on-site H2O2 production. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for controlled direct combination of H2 and O2 in all proportions including explosive regime, at a low pressure and a low temperature to produce about 1.5 wt% H2O2 as proposed. In the second phase of the program, as a prelude to full-scale commercialization, we demonstrated our H2O2 production approach by ‘numbering up’ the channels in a multi-channel microreactor-based pilot plant to produce 1 kg/h of H2O2 at 1.5 wt% as demanded by end-users of the developed technology. To our knowledge, we are the first group to accomplish this significant milestone. We identified the reaction pathways that comprise the process, and implemented rigorous mechanistic kinetic studies to obtain the kinetics of the three main dominant reactions. We are not aware of any such comprehensive kinetic studies for the direct combination process, either in a microreactor or any other reactor system. We showed that the mass transfer parameter in our microreactor system is several orders of magnitude higher than what obtains in the macroreactor, attesting to the superior performance of microreactor. A one-dimensional reactor model incorporating the kinetics information enabled us to clarify certain important aspects of the chemistry of the direct combination process as detailed in section 5 of this report. Also, through mathematical modeling and simulation using sophisticated and robust commercial software packages, we were able to elucidate the hydrodynamics of the complex multiphase flows that take place in the microchannel. In conjunction with the kinetics information, we were able to validate the experimental data. If fully implemented across the whole industry as a result of our technology demonstration, our production concept is expected to save >5 trillion Btu/year of steam usage and >3 trillion Btu/year in electric power consumption. Our analysis also indicates >50 % reduction in waste disposal cost and ~10% reduction in feedstock energy. These savings translate to ~30% reduction in overall production and transportation costs for the $1B annual H2O2 market.

Adeniyi Lawal

2008-12-09T23:59:59.000Z

128

Nuclear reactor safeguards and monitoring with antineutrino detectors A. Bernsteina)  

E-Print Network [OSTI]

Nuclear reactor safeguards and monitoring with antineutrino detectors A. Bernsteina) Sandia of nuclear reactor types, including power reactors, research reactors, and plutonium production reactors-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being

Gratta, Giorgio

129

Preliminary Results of an On-Line, Multi-Spectrometer Fission Product Monitoring System to Support Advanced Gas Reactor Fuel Testing and Qualification in the Advanced Test Reactor at the Idaho National Laboratory  

SciTech Connect (OSTI)

The Advanced Gas Reactor -1 (AGR-1) experiment is the first experiment in a series of eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments scheduled for placement in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and will continue irradiation for about 2.5 years. During this time six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The goals of the irradiation experiment is to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. This paper presents the preliminary test details of the fuel performance, as measured by the control and acquisition software.

Dawn M. Scates; John K. Hartwell; John B. Walter; Mark W. Drigert

2007-10-01T23:59:59.000Z

130

Reactor operation environmental information document  

SciTech Connect (OSTI)

The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

1989-12-01T23:59:59.000Z

131

Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char  

SciTech Connect (OSTI)

Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Kraiem, T. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia); Naoui, S. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Belayouni, H. [Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia)

2014-01-15T23:59:59.000Z

132

E-Print Network 3.0 - atr reactor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(ITM) Reactor - Air Products and Chemicals, Inc. Autothermal Reforming (ATR) - Praxair Inc. 12... day H2 Ion Transport Membrane Reactor (ITM) production unit...

133

ELIXYS - a fully automated, three-reactor high-pressure radiosynthesizer for development and routine production of diverse PET tracers.  

E-Print Network [OSTI]

cancer treatment with PET/CT: does it make a difference? Jfor decentralized production of PET tracers. In Positronprobes FMAU, FHBG, and FHPG as PET imaging agents for HSV1-

2013-01-01T23:59:59.000Z

134

Product Selectivity Control and Organic Oxygenate Pathways from Partial Oxidation of Methane in a Silent Electric Discharge Reactor  

E-Print Network [OSTI]

distribution from organic oxygenate products to ethane, ethylene, and acetylene. This is because the energy, are located in remote areas, so that it is economically infeasible to transport the gas via pipeline. One

Mallinson, Richard

135

Modular Pebble Bed Reactor High Temperature Gas Reactor  

E-Print Network [OSTI]

Modular Pebble Bed Reactor High Temperature Gas Reactor Andrew C Kadak Massachusetts Institute For 1150 MW Combined Heat and Power Station Oil Refinery Hydrogen Production Desalinization Plant VHTR/Graphite Discrimination system Damaged Sphere ContainerGraphiteReturn FuelReturn Fresh Fuel Container Spent Fuel Tank #12

136

TRITIUM PERMEATION AND TRANSPORT IN THE GASOLINE PRODUCTION SYSTEM COUPLED WITH HIGH TEMPERATURE GAS-COOLED REACTORS (HTGRS)  

SciTech Connect (OSTI)

This paper describes scoping analyses on tritium behaviors in the HTGR-integrated gasoline production system, which is based on a methanol-to-gasoline (MTG) plant. In this system, the HTGR transfers heat and electricity to the MTG system. This system was analyzed using the TPAC code, which was recently developed by Idaho National Laboratory. The global sensitivity analyses were performed to understand and characterize tritium behaviors in the coupled HTGR/MTG system. This Monte Carlo based random sampling method was used to evaluate maximum 17,408 numbers of samples with different input values. According to the analyses, the average tritium concentration in the product gasoline is about 3.05×10-3 Bq/cm3, and 62 % cases are within the tritium effluent limit (= 3.7x10-3 Bq/cm3[STP]). About 0.19% of released tritium is finally transported from the core to the gasoline product through permeations. This study also identified that the following four parameters are important concerning tritium behaviors in the HTGR/MTG system: (1) tritium source, (2) wall thickness of process heat exchanger, (3) operating temperature, and (4) tritium permeation coefficient of process heat exchanger. These four parameters contribute about 95 % of the total output uncertainties. This study strongly recommends focusing our future research on these four parameters to improve modeling accuracy and to mitigate tritium permeation into the gasol ine product. If the permeation barrier is included in the future study, the tritium concentration will be significantly reduced.

Chang H. Oh; Eung S. Kim; Mike Patterson

2011-05-01T23:59:59.000Z

137

Design and Testing of a Labview- Controlled Catalytic Packed- Bed Reactor System For Production of Hydrocarbon Fuels  

SciTech Connect (OSTI)

Gasified woody biomass (producer gas) was converted over a Mo/H+ZSM-5 catalyst to produce gasolinerange hydrocarbons. The effect of contaminants in the producer gas showed that key retardants in the system included ammonia and oxygen. The production of gasoline-range hydrocarbons derived from producer gas was studied and compared with gasoline-range hydrocarbon production from two control syngas mixes. Certain mole ratios of syngas mixes were introduced into the system to evaluate whether or not the heat created from the exothermic reaction could be properly controlled. Contaminant-free syngas was used to determine hydrocarbon production with similar mole values of the producer gas from the gasifier. Contaminant-free syngas was also used to test an ideal contaminant-free synthesis gas situation to mimic our particular downdraft gasifier. Producer gas was used in this study to determine the feasibility of using producer gas to create gasoline-range hydrocarbons on an industrial scale using a specific Mo/H+ZSM-5 catalyst. It was determined that after removing the ammonia, other contaminants poisoned the catalyst and retarded the hydrocarbon production process as well.

Street, J.; Yu, F.; Warnock, J.; Wooten, J.; Columbus, E.; White, M. G.

2012-05-01T23:59:59.000Z

138

REACTOR GROUT THERMAL PROPERTIES  

SciTech Connect (OSTI)

Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

2011-01-28T23:59:59.000Z

139

Measurement of airborne fission products in Chapel Hill, NC, USA from the Fukushima Dai-ichi reactor accident  

E-Print Network [OSTI]

We present measurements of airborne fission products in Chapel Hill, NC, USA, from 62 days following the March 11, 2011, accident at the Fukushima Dai-ichi nuclear power plant. Airborne particle samples were collected daily in air filters and radio-assayed with two high-purity germanium (HPGe) detectors. The fission products I-131 and Cs-137 were measured with maximum activities of 4.2 +/- 0.6 mBq/m^3 and 0.42 +/- 0.07 mBq/m^3 respectively. Additional activity from I-131, I-132, Cs-134, Cs-136, Cs-137 and Te-132 were measured in the same air filters using a low-background HPGe detector at the Kimballton Underground Research Facility (KURF).

S. MacMullin; G. K. Giovanetti; M. P. Green; R. Henning; R. Holmes; K. Vorren; J. F. Wilkerson

2012-10-03T23:59:59.000Z

140

Fast quench reactor and method  

DOE Patents [OSTI]

A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fast quench reactor method  

DOE Patents [OSTI]

A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID); Berry, Ray A. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

142

Fast quench reactor method  

DOE Patents [OSTI]

A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

1999-08-10T23:59:59.000Z

143

Status of cross-section data for gas production from vanadium and {sup 26}AL from silicon carbide in a D-T fusion reactor.  

SciTech Connect (OSTI)

Current designs of fusion-reactor systems seek to use radiation-resistant, low-activation materials that support long service lifetimes and minimize radioactive-waste problems after decommissioning. Reliable assessment of fusion materials performance requires accurate neutron-reaction cross sections and radioactive-decay constants. The problem areas usually involve cross sections since decay parameters tend to be better known. The present study was motivated by two specific questions: (i) Why are the {sup 51}V(n,np){sup 50}Ti cross section values in the ENDF/B-VI library so large (a gas production issue)? (ii) How well known are the cross sections associated with producing 7.4 x 10{sup 5} y {sup 26}Al in silicon carbide by the process {sup 28}Si(n,np+d){sup 27} Al(n,2n){sup 26}Al (a long-lived radioactivity issue)? The energy range 14-15 MeV of the D-T fusion neutrons is emphasized. Cross-section error bars are needed so that uncertainties in the gas and radioactivity generated over the lifetime of a reactor can be estimated. We address this issue by comparing values obtained from prominent evaluated cross-section libraries. Small differences between independent evaluations indicate that a physical quantity is well known while the opposite signals a problem. Hydrogen from {sup 51}V(n,p){sup 51}Ti and helium from {sup 51}V(n,{alpha}){sup 48}Sc are also important sources of gas in vanadium, so they too were examined. We conclude that {sup 51}V(n,p){sup 51}Ti is adequately known but {sup 51}V(n,np+d){sup 50}Ti is not. The status for helium generation data is quite good. Due to recent experimental work, {sup 27}Al(n,2n){sup 26}Al seems to be fairly well known. However, the situation for {sup 28}Si(n,np+d){sup 27}Al remains unsatisfactory.

Gomes, I. C.

1998-08-11T23:59:59.000Z

144

Inexpensive Mini Thermonuclear Reactor  

E-Print Network [OSTI]

This proposed design for a mini thermonuclear reactor uses a method based upon a series of important innovations. A cumulative explosion presses a capsule with nuclear fuel up to 100 thousands of atmospheres, the explosive electric generator heats the capsule/pellet up to 100 million degrees and a special capsule and a special cover which keeps these pressure and temperature in capsule up to 0.001 sec. which is sufficient for Lawson criteria for ignition of thermonuclear fuel. Major advantages of these reactors/bombs is its very low cost, dimension, weight and easy production, which does not require a complex industry. The mini thermonuclear bomb can be delivered as a shell by conventional gun (from 155 mm), small civil aircraft, boat or even by an individual. The same method may be used for thermonuclear engine for electric energy plants, ships, aircrafts, tracks and rockets. Key words: Thermonuclear mini bomb, thermonuclear reactor, nuclear energy, nuclear engine,

Alexander Bolonkin; Alexander Bolonkin

145

Fusion reactor control  

SciTech Connect (OSTI)

The plasma kinetic temperature and density changes, each per an injected fuel density rate increment, control the energy supplied by a thermonuclear fusion reactor in a power production cycle. This could include simultaneously coupled control objectives for plasma current, horizontal and vertical position, shape and burn control. The minimum number of measurements required, use of indirect (not plasma parameters) system measurements, and distributed control procedures for burn control are to be verifiable in a time dependent systems code. The International Thermonuclear Experimental Reactor (ITER) has the need to feedback control both the fusion output power and the driven plasma current, while avoiding damage to diverter plates. The system engineering of fusion reactors must be performed to assure their development expeditiously and effectively by considering reliability, availability, maintainability, environmental impact, health and safety, and cost.

Plummer, D.A.

1995-12-31T23:59:59.000Z

146

Nuclear reactor engineering  

SciTech Connect (OSTI)

Chapters are presented concerning energy from nuclear fission; nuclear reactions and radiations; diffusion and slowing-down of neutrons; principles of reactor analysis; nuclear reactor kinetics and control; energy removal; non-fuel reactor materials; the reactor fuel system; radiation protection and environmental effects; nuclear reactor shielding; nuclear reactor safety; and power reactor systems.

Glasstone, S.; Sesonske, A.

1981-01-01T23:59:59.000Z

147

Research reactors - an overview  

SciTech Connect (OSTI)

A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

West, C.D.

1997-03-01T23:59:59.000Z

148

Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report  

SciTech Connect (OSTI)

The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

Philip E. MacDonald

2003-09-01T23:59:59.000Z

149

Light Water Reactor Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Light Water Reactor Sustainability Program ACCOMPLISHMENTS REPORT 2013 Accomplishments Report | Light Water Reactor Sustainability 2 T he mission of the Light Water Reactor...

150

Light Water Reactor Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Light Water Reactor Sustainability ACCOMPLISHMENTS REPORT 2014 Accomplishments Report | Light Water Reactor Sustainability 2 T he mission of the Light Water Reactor...

151

Hydrolysis reactor for hydrogen production  

DOE Patents [OSTI]

In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

Davis, Thomas A.; Matthews, Michael A.

2012-12-04T23:59:59.000Z

152

Modularity of the MIT Pebble Bed Reactor for use by the commercial power industry  

E-Print Network [OSTI]

The Modular Pebble Bed Reactor is a small high temperature helium cooled reactor that is being considered for both electric power and hydrogen production. Pebble bed reactors are being developed in South Africa, China and ...

Hanlon-Hyssong, Jaime E

2008-01-01T23:59:59.000Z

153

Catalytic reactor  

DOE Patents [OSTI]

A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

2009-03-10T23:59:59.000Z

154

Bioconversion reactor  

DOE Patents [OSTI]

A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

McCarty, Perry L. (Stanford, CA); Bachmann, Andre (Palo Alto, CA)

1992-01-01T23:59:59.000Z

155

Biparticle fluidized bed reactor  

DOE Patents [OSTI]

A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

Scott, C.D.

1993-12-14T23:59:59.000Z

156

Biparticle fluidized bed reactor  

DOE Patents [OSTI]

A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

Scott, C.D.; Marasco, J.A.

1995-04-25T23:59:59.000Z

157

Neutronic reactor  

DOE Patents [OSTI]

A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

1983-01-01T23:59:59.000Z

158

Production  

Broader source: Energy.gov [DOE]

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

159

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report  

SciTech Connect (OSTI)

The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

Mac Donald, Philip Elsworth

2002-09-01T23:59:59.000Z

160

Production  

Broader source: Energy.gov [DOE]

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Transposition of an exothermic raction to a continuous intensifie! reactor  

E-Print Network [OSTI]

of reactors can offer large production volumes and are quite flexible. However controlling thé températureTransposition of an exothermic réaction to a continuous intensifiée! reactor W Benaissaab The aim of this study is thé transposition of an exothermic réaction carried out in a batch reactor

Boyer, Edmond

162

An Account of Oak Ridge National Laboratory's Thirteen Research Reactors  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

Rosenthal, Murray Wilford [ORNL

2009-08-01T23:59:59.000Z

163

Integral reactor system and method for fuel cells  

DOE Patents [OSTI]

A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

2013-11-19T23:59:59.000Z

164

TRANSP simulations of International Thermonuclear Experimental Reactor plasmas  

E-Print Network [OSTI]

TRANSP simulations of International Thermonuclear Experimental Reactor plasmas R. V. Budny, D. C-consistent models for plasmas within the separatrix surface in the International Thermonuclear Experimental Reactor. INTRODUCTION One of the goals for the International Thermonuclear Experimental Reactor ITER is the production

Budny, Robert

165

R- AND P- REACTOR BUILDING IN-SITU DECOMISSIONING VISUALIZATION  

SciTech Connect (OSTI)

During the early 1950s, five production reactor facilities were built at the Savannah River Site. These facilities were built to produce materials to support the building of the nation's nuclear weapons stockpile in response to the Cold War. R-Reactor and P-Reactor were the first two facilities completed in 1953 and 1954.

Bobbitt, J.; Vrettos, N.; Howard, M.

2010-06-15T23:59:59.000Z

166

Producing tritium in a homogenous reactor  

DOE Patents [OSTI]

A method and apparatus are described for the joint production and separation of tritium. Tritium is produced in an aqueous homogenous reactor and heat from the nuclear reaction is used to distill tritium from the lower isotopes of hydrogen.

Cawley, William E. (Richland, WA)

1985-01-01T23:59:59.000Z

167

Critical assessment of thorium reactor technology  

E-Print Network [OSTI]

Thorium-based fuels for nuclear reactors are being considered for use with current and future designs in both large and small-scale energy production. Thorium-232 is as abundant on Earth as lead, far more common than all ...

Drenkhahn, Robert (Robert A.)

2012-01-01T23:59:59.000Z

168

Critical assessment of thorium reactor technology .  

E-Print Network [OSTI]

??Thorium-based fuels for nuclear reactors are being considered for use with current and future designs in both large and small-scale energy production. Thorium-232 is as… (more)

Drenkhahn, Robert (Robert A.)

2012-01-01T23:59:59.000Z

169

A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling  

SciTech Connect (OSTI)

Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

Koch, M.; Kazimi, M.S.

1991-04-01T23:59:59.000Z

170

Reference worldwide model for antineutrinos from reactors  

E-Print Network [OSTI]

Antineutrinos produced at nuclear reactors constitute a severe source of background for the detection of geoneutrinos, which bring to the Earth's surface information about natural radioactivity in the whole planet. In this framework we provide a reference worldwide model for antineutrinos from reactors, in view of reactors operational records yearly published by the International Atomic Energy Agency (IAEA). We evaluate the expected signal from commercial reactors for ongoing (KamLAND and Borexino), planned (SNO+) and proposed (Juno, RENO-50, LENA and Hanohano) experimental sites. Uncertainties related to reactor antineutrino production, propagation and detection processes are estimated using a Monte Carlo based approach, which provides an overall site dependent uncertainty on the signal in the geoneutrino energy window on the order of 3%. We also implement the off-equilibrium correction to the reference reactor spectra associated with the long-lived isotopes and we estimate a 2.4% increase of the unoscillated event rate in the geoneutrino energy window due to the storage of spent nuclear fuels in the cooling pools. We predict that the research reactors contribute to less than 0.2% to the commercial reactor signal in the investigated 14 sites. We perform a multitemporal analysis of the expected reactor signal over a time lapse of 10 years using reactor operational records collected in a comprehensive database published at www.fe.infn.it/antineutrino.

Marica Baldoncini; Ivan Callegari; Giovanni Fiorentini; Fabio Mantovani; Barbara Ricci; Virginia Strati; Gerti Xhixha

2015-02-16T23:59:59.000Z

171

Environmental Information Document: L-reactor reactivation  

SciTech Connect (OSTI)

Purpose of this Environmental Information Document is to provide background for assessing environmental impacts associated with the renovation, restartup, and operation of L Reactor at the Savannah River Plant (SRP). SRP is a major US Department of Energy installation for the production of nuclear materials for national defense. The purpose of the restart of L Reactor is to increase the production of nuclear weapons materials, such as plutonium and tritium, to meet projected needs in the nuclear weapons program.

Mackey, H.E. Jr. (comp.)

1982-04-01T23:59:59.000Z

172

Nuclear reactor engineering  

SciTech Connect (OSTI)

A book is reviewed which emphasizes topics directly related to the light water reactor power plant and the fast reactor power system. Current real-world problems are addressed throughout the text, and a chapter on safety includes much of the postThree Mile Island impact on operating systems. Topics covered include Doppler broadening, neutron resonances, multigroup diffusion theory, reactor kinetics, reactor control, energy removal, nonfuel materials, reactor fuel, radiation protection, environmental effects, and reactor safety.

Glasstone, S.; Sesonske, A.

1982-07-01T23:59:59.000Z

173

Reactor safety method  

DOE Patents [OSTI]

This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

Vachon, Lawrence J. (Clairton, PA)

1980-03-11T23:59:59.000Z

174

SRS Small Modular Reactors  

SciTech Connect (OSTI)

The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

None

2012-04-27T23:59:59.000Z

175

SRS Small Modular Reactors  

ScienceCinema (OSTI)

The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

None

2014-05-21T23:59:59.000Z

176

Twenty-First Water Reactor Safety Information Meeting. Volume 3, Primary system integrity; Aging research, products and applications; Structural and seismic engineering; Seismology and geology: Proceedings  

SciTech Connect (OSTI)

This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25-27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)] [comp.; Brookhaven National Lab., Upton, NY (United States)

1994-04-01T23:59:59.000Z

177

Nuclear reactor  

DOE Patents [OSTI]

A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

Thomson, Wallace B. (Severna Park, MD)

2004-03-16T23:59:59.000Z

178

ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY  

SciTech Connect (OSTI)

The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors. The past three months of research have been focused on two major areas of bubble column hydrodynamics: (1) pressure and temperature effects on gas holdup and (2) region transition using a sparger as a gas distributor.

Bernard A. Toseland, Ph.D.

1999-03-01T23:59:59.000Z

179

Engineering Development of Slurry Bubble Column Reactor (SBCR) Technology  

SciTech Connect (OSTI)

The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

Toseland, B.A.

1998-10-29T23:59:59.000Z

180

Microsoft Word - Tritium Production and Environmental Impacts...  

National Nuclear Security Administration (NNSA)

Production and Environmental Impacts The production of tritium in a commercial light water reactor (CLWR) is technically straightforward. Most existing CLWRs utilize...

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CHARACTERIZATION OF RADIOACTIVITY IN THE REACTOR VESSEL OF THE HEAVY WATER COMPONENT TEST REACTOR  

SciTech Connect (OSTI)

The Heavy Water Component Test Reactor (HWCTR) facility is a pressurized heavy water reactor that was used to test candidate fuel designs for heavy water power reactors. The reactor operated at nominal power of 50 MW{sub th}. The reactor coolant loop operated at 1200 psig and 250 C. Two isolated test loop were designed into the reactor to provide special test conditions. Fig. 1 shows a cut-away view of the reactor. The two loops are contained in four inch diameter stainless steel piping. The HWCTR was operated for only a short duration, from March 1962 to December 1964 in order to test the viability of test fuel elements and other reactor components for use in a heavy water power reactor. The reactor achieved 13,882 MWd of total power while testing 36 different fuel assemblies. In the course of operation, HWCTR experienced the cladding failures of 10 separate test fuel assemblies. In each case, the cladding was breached with some release of fuel core material into the isolated test loop, causing fission product and actinide contamination in the main coolant loop and the liquid and boiling test loops. Despite the contribution of the contamination from the failed fuel, the primary source of radioactivity in the HWCTR vessel and internals is the activation products in the thermal shields, and to a lesser degree, activation products in the reactor vessel walls and liner. A detailed facility characterization report of the HWCTR facility was completed in 1996. Many of the inputs and assumptions in the 1996 characterization report were derived from the HWCTR decommissioning plan published in 1975. The current paper provides an updated assessment of the radioisotopic characteristics of the HWCTR vessel and internals to support decommissioning activities on the facility.

Vinson, Dennis

2010-06-01T23:59:59.000Z

182

EIS-0144: Siting, Construction, and Operation of New Production Reactor Capacity; Hanford Site, Idaho National Engineering Laboratory, and Savannah River Site  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this statement to assess the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation's nuclear defense requirements well into the 21st century.

183

Novel Catalytic Membrane Reactors  

SciTech Connect (OSTI)

There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

Stuart Nemser, PhD

2010-10-01T23:59:59.000Z

184

Undergraduate reactor control experiment  

SciTech Connect (OSTI)

A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise.

Edwards, R.M.; Power, M.A.; Bryan, M. (Pennsylvania State Univ., University Park (United States))

1992-01-01T23:59:59.000Z

185

Attrition reactor system  

DOE Patents [OSTI]

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

Scott, Charles D. (Oak Ridge, TN); Davison, Brian H. (Knoxvile, TN)

1993-01-01T23:59:59.000Z

186

Attrition reactor system  

DOE Patents [OSTI]

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

Scott, C.D.; Davison, B.H.

1993-09-28T23:59:59.000Z

187

Reactor Sharing Program  

SciTech Connect (OSTI)

Progress achieved at the University of Florida Training Reactor (UFTR) facility through the US Department of Energy's University Reactor Sharing Program is reported for the period of 1991--1992.

Vernetson, W.G.

1993-01-01T23:59:59.000Z

188

Pollution prevention through reactor design  

SciTech Connect (OSTI)

Generation of waste in the chemical processing industries has its beginning in the heart of the process--the reaction system. Pollution prevention will have the greatest impact in minimizing the generation of waste through the design and operation of chemical reactors by reducing generation at the source--source reduction. Pollution prevention by modification of reaction parameters is defined as changing the selectivity of the reaction so that undesirable reactions which produce waste products are minimized while at the same time producing the desirable products.

Hopper, J.R. [Lamar Univ., Beaumont, TX (United States)

1995-09-01T23:59:59.000Z

189

Improved vortex reactor system  

DOE Patents [OSTI]

An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

1995-01-01T23:59:59.000Z

190

Advanced Test Reactor Tour  

SciTech Connect (OSTI)

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2011-01-01T23:59:59.000Z

191

Advanced Test Reactor Tour  

ScienceCinema (OSTI)

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2013-05-28T23:59:59.000Z

192

Hypothetical Reactor Accident Study  

E-Print Network [OSTI]

- W 4 DfcSkoollo Rise-R-427 CARNSORE: Hypothetical Reactor Accident Study O. Walmod-Larsen, N. O: HYPOTHETICAL REACTOR ACCIDENT STUDY O. Walmod-Larsen, N.O. Jensen, L. Kristensen, A. Heide, K.L. Nedergård, P-basis accident and a series of hypothetical core-melt accidents to a 600 MWe reactor are de- scribed

193

Proceedings of the international ANS/ENS topical meeting on thermal reactor safety  

SciTech Connect (OSTI)

This book presents the papers given at a conference on reactor safety. Topics considered at the conference included containment, fission product release, safety injection, reactor instrumentation, thermal-hydraulic analyses, reactor safety experiments, meltdowns, gas production rates, computerized simulation, occupational safety, human factors engineering, emergency plans, emergency core cooling systems, reactor licensing, after-heat removal, RHR systems, risk assessment, probability, fuel-cladding interactions, safety standards, and molten metal-water interactions.

Not Available

1986-01-01T23:59:59.000Z

194

Production of Depleted UO2Kernels for the Advanced Gas-Cooled Reactor Program for Use in TRISO Coating Development  

SciTech Connect (OSTI)

The main objective of the Depleted UO{sub 2} Kernels Production Task at Oak Ridge National Laboratory (ORNL) was to conduct two small-scale production campaigns to produce 2 kg of UO{sub 2} kernels with diameters of 500 {+-} 20 {micro}m and 3.5 kg of UO{sub 2} kernels with diameters of 350 {+-} 10 {micro}m for the U.S. Department of Energy Advanced Fuel Cycle Initiative Program. The final acceptance requirements for the UO{sub 2} kernels are provided in the first section of this report. The kernels were prepared for use by the ORNL Metals and Ceramics Division in a development study to perfect the triisotropic (TRISO) coating process. It was important that the kernels be strong and near theoretical density, with excellent sphericity, minimal surface roughness, and no cracking. This report gives a detailed description of the production efforts and results as well as an in-depth description of the internal gelation process and its chemistry. It describes the laboratory-scale gel-forming apparatus, optimum broth formulation and operating conditions, preparation of the acid-deficient uranyl nitrate stock solution, the system used to provide uniform broth droplet formation and control, and the process of calcining and sintering UO{sub 3} {center_dot} 2H{sub 2}O microspheres to form dense UO{sub 2} kernels. The report also describes improvements and best past practices for uranium kernel formation via the internal gelation process, which utilizes hexamethylenetetramine and urea. Improvements were made in broth formulation and broth droplet formation and control that made it possible in many of the runs in the campaign to produce the desired 350 {+-} 10-{micro}m-diameter kernels, and to obtain very high yields.

Collins, J.L.

2004-12-02T23:59:59.000Z

195

Neutron behavior, reactor control, and reactor heat transfer. Volume four  

SciTech Connect (OSTI)

Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant).

Not Available

1986-01-01T23:59:59.000Z

196

Nuclear reactors built, being built, or planned, 1991  

SciTech Connect (OSTI)

This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

Simpson, B.

1992-07-01T23:59:59.000Z

197

ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY  

SciTech Connect (OSTI)

The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column rector to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

Bernard A. Toseland

1998-06-30T23:59:59.000Z

198

Reactor vessel support system  

DOE Patents [OSTI]

A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

1982-01-01T23:59:59.000Z

199

Spinning fluids reactor  

DOE Patents [OSTI]

A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

Miller, Jan D; Hupka, Jan; Aranowski, Robert

2012-11-20T23:59:59.000Z

200

Determining Reactor Neutrino Flux  

E-Print Network [OSTI]

Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

Jun Cao

2012-03-08T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Reactor water cleanup system  

DOE Patents [OSTI]

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

Gluntz, D.M.; Taft, W.E.

1994-12-20T23:59:59.000Z

202

Reactor water cleanup system  

DOE Patents [OSTI]

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1994-01-01T23:59:59.000Z

203

MANHATTAN PROJECT B REACTOR HANFORD WASHINGTON [HANFORD'S HISTORIC B REACTOR (12-PAGE BOOKLET)  

SciTech Connect (OSTI)

The Hanford Site began as part of the United States Manhattan Project to research, test and build atomic weapons during World War II. The original 670-square mile Hanford Site, then known as the Hanford Engineer Works, was the last of three top-secret sites constructed in order to produce enriched uranium and plutonium for the world's first nuclear weapons. B Reactor, located about 45 miles northwest of Richland, Washington, is the world's first full-scale nuclear reactor. Not only was B Reactor a first-of-a-kind engineering structure, it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in southeastern Washington State held nine nuclear reactors at the height of Hanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department of Energy began removing B Reactor's support facilities. The reactor building, the river pumphouse and the reactor stack are the only facilities that remain. Today, the U.S. Department of Energy (DOE) Richland Operations Office offers escorted public access to B Reactor along a designated tour route. The National Park Service (NPS) is studying preservation and interpretation options for sites associated with the Manhattan Project. A draft is expected in summer 2009. A final report will recommend whether the B Reactor, along with other Manhattan Project facilities, should be preserved, and if so, what roles the DOE, the NPS and community partners will play in preservation and public education. In August 2008, the DOE announced plans to open B Reactor for additional public tours. Potential hazards still exist within the building. However, the approved tour route is safe for visitors and workers. DOE may open additional areas once it can assure public safety by mitigating hazards.

GERBER MS

2009-04-28T23:59:59.000Z

204

Improved vortex reactor system  

DOE Patents [OSTI]

An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

Diebold, J.P.; Scahill, J.W.

1995-05-09T23:59:59.000Z

205

Pressurized fluidized bed reactor  

DOE Patents [OSTI]

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

Isaksson, J.

1996-03-19T23:59:59.000Z

206

Pressurized fluidized bed reactor  

DOE Patents [OSTI]

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

Isaksson, Juhani (Karhula, FI)

1996-01-01T23:59:59.000Z

207

Tokamak reactor first wall  

DOE Patents [OSTI]

This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

1984-11-20T23:59:59.000Z

208

Next Generation Reactors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Advances We are coordinating the Generation IV Nuclear Systems Initiative - an international effort to develop the next generation of nuclear power reactors. Skip...

209

A NOVEL MICROMEGAS DETECTOR FOR IN-CORE NUCLEAR REACTOR NEUTRON FLUX MEASUREMENTS  

E-Print Network [OSTI]

1 A NOVEL MICROMEGAS DETECTOR FOR IN-CORE NUCLEAR REACTOR NEUTRON FLUX MEASUREMENTS S. ANDRIAMONJE Talence Cedex, France Future fast nuclear reactors designed for energy production and transmutation to neutron detection inside nuclear reactor is given. The advantage of this detector over conventional

Paris-Sud XI, Université de

210

Control of Reactor and Separator, with Recycle T. Larsson, S. Skogestadand Cheng-Ching Yu  

E-Print Network [OSTI]

Control of Reactor and Separator, with Recycle T. Larsson, S. Skogestad£and Cheng-Ching Yu This paper looks at control of a plant that consists of a reactor, separator and recycle of unreacted reactor where component A is converted to a product and the amount converted is given by ´�µ�� ��Ð

Skogestad, Sigurd

211

CAD Technique for Microwave Chemistry Reactors with Energy Efficiency Optimized for Different Reactants  

E-Print Network [OSTI]

CAD Technique for Microwave Chemistry Reactors with Energy Efficiency Optimized for Different in experimental development of large- scale and highly-productive reactors. This paper proposes to address this issue by developing microwave chemistry reactors as microwave systems, rather than as black

Yakovlev, Vadim

212

High Flux Isotope Reactor named Nuclear Historic Landmark | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

late 1950s as a production reactor to meet anticipated demand for transuranic isotopes ("heavy" elements such as plutonium and curium). HFIR today is a DOE Office of Science User...

213

!#"%$#&('#)10 )32"3$ Operational Power Reactor Regime, ignited CTF,  

E-Print Network [OSTI]

.4 Pellet fueling of low recycling IST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 £ ¨ ' 4 2. ¢¤EGF ¨ ! $ -- DT power of the fusion reactor (high ¥ 1.5 sec is bad for power production

Zakharov, Leonid E.

214

Microsoft Word - 911136_0 SSC-4b Reactor Graphite Test Plan_rel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Revision 0 Engineering Services for the Next Generation Nuclear Plant (NGNP) with Hydrogen Production Test Plan for Reactor Graphite Elements Prepared by General Atomics for the...

215

Microsoft Word - 911135_0 SSC-4a Reactor Core Test Plan_rel.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Revision 0 ENGINEERING SERVICES FOR THE NEXT GENERATION NUCLEAR PLANT (NGNP) WITH HYDROGEN PRODUCTION Test Plan for the Reactor Core Assembly Prepared by General Atomics For the...

216

Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them  

DOE Patents [OSTI]

A process for production of synthesis gas employing a catalytic membrane reactor wherein the membrane comprises a mixed metal oxide material.

Schwartz, Michael (Boulder, CO); White, James H. (Boulder, CO); Sammells, Anthony F. (Boulder, CO)

2001-01-01T23:59:59.000Z

217

Light-water-reactor safety research program. Quarterly progress report, July to September 1981  

SciTech Connect (OSTI)

Information is presented concerning environmentally assisted cracking in light water reactors; transient fuel response and fission-product release; and clad properties for code verification.

Not Available

1982-02-01T23:59:59.000Z

218

E-Print Network 3.0 - argentina 5f reactor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MARKET AND DEVELOPMENT STRATEGY WITH INTERNATIONAL THERMONUCLEAR EXPERIMENTAL Summary: THERMONUCLEAR EXPERIMENTAL REACTOR Rle de l'nergie de fusion dans la production...

219

Microsoft Word - 20.1 Special Study Reactor Type Comparison_VS...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

process heat applications. For process heat applications and specifically for hydrogen production, Reactor designs are optimized that take advantage of the above...

220

Antineutrino reactor safeguards - a case study  

E-Print Network [OSTI]

Antineutrinos have been proposed as a means of reactor safeguards for more than 30 years and there has been impressive experimental progress in neutrino detection. In this paper we conduct, for the first time, a case study of the application of antineutrino safeguards to a real-world scenario - the North Korean nuclear crisis in 1994. We derive detection limits to a partial or full core discharge in 1989 based on actual IAEA safeguards access and find that two independent methods would have yielded positive evidence for a second core with very high confidence. To generalize our results, we provide detailed estimates for the sensitivity to the plutonium content of various types of reactors, including most types of plutonium production reactors, based on detailed reactor simulations. A key finding of this study is that a wide class of reactors with a thermal power of less than 0.1-1 GWth can be safeguarded achieving IAEA goals for quantitative sensitivity and timeliness with detectors right outside the reactor building. This type of safeguards does not rely on the continuity of knowledge and provides information about core inventory and power status in real-time.

Eric Christensen; Patrick Huber; Patrick Jaffke

2014-02-13T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor...  

Office of Scientific and Technical Information (OSTI)

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor Design and Feasibility Problem Re-direct Destination: Temp Data Fields Rosen, M. A.; Coburn, D. B.; Flynn, T....

222

Nuclear Reactor Safeguards and Monitoring with Antineutrino Detectors  

E-Print Network [OSTI]

Cubic-meter-sized antineutrino detectors can be used to non-intrusively, robustly and automatically monitor and safeguard a wide variety of nuclear reactor types, including power reactors, research reactors, and plutonium production reactors. Since the antineutrino spectra and relative yields of fissioning isotopes depend on the isotopic composition of the core, changes in composition can be observed without ever directly accessing the core itself. Information from a modest-sized antineutrino detector, coupled with the well-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being operated in an illegitimate way. A group at Sandia is currently constructing a one cubic meter antineutrino detector at the San Onofre reactor site in California to demonstrate these principles.

Adam Bernstein; Yifang Wang; Giorgio Gratta; Todd West

2001-08-01T23:59:59.000Z

223

Probabilistic risk assessment of N Reactor using NUREG-1150 methods  

SciTech Connect (OSTI)

A Level III probabilistic risk assessment (PRA) has been performed for N Reactor, a US Department of Energy (DOE) Category A production reactor. The main contractor is Westinghouse Hanford Company (Westinghouse Hanford). The PRA methodology developed for the US Nuclear Regulatory Commission (NRC) by Sandia National Laboratories (SNL) in support of the NUREG-1150 (Reference 1) effort were used for this analysis. N Reactor is a graphite-moderated pressurized water reactor designed by General Electric. The dual-purpose 4000 MWt nuclear plant is located within the Hanford Site in the south-central part of the State of Washington. In addition to producing special materials for the DOE, N Reactor generates 860 MWe for the Washington Public Power Supply System. The reactor has been operated successfully and safely since 1963, and was put into standby status in 1988 due to the changing need in special nuclear material. 3 refs., 4 tabs.

Wang, O.S.; Baxter, J.T.; Coles, G.A.; Powers, T.B.; Zentner, M.D.

1989-11-01T23:59:59.000Z

224

Brookhaven Graphite Research Reactor Workshop  

Broader source: Energy.gov [DOE]

The Brookhaven Graphite Research Reactor (BGRR) was the first reactor built in the U.S. for peacetime atomic research following World War II.  Construction began in 1947 and the reactor started...

225

Portfolio for fast reactor collaboration  

SciTech Connect (OSTI)

The development of the LMFBR type reactor in the United Kingdom is reviewed. Design characteristics of a commercial demonstration fast reactor are presented and compared with the Super Phenix reactor.

Rippon, S.

1981-12-01T23:59:59.000Z

226

The behavior of constant rate aerosol reactors  

SciTech Connect (OSTI)

An aerosol reactor is a gaseous system in which fine particles are formed by chemical reaction in either a batch or flow process. The particle sizes of interest range from less than 10 angstrom (molecular clusters) to 10 ..mu..m. Such reactors may be operated to study the aerosol formation process, as in a smog reactor, or to generate a product such as a pigment or a catalytic aerosol. Aerosol reactors can be characterized by three temporal or spatial zones or regions of operation for batch and flow reactors, respectively. In zone I, chemical reaction results in the formation of condensable molecular products which nucleate and form very high concentrations of small particles. The number density depends on the concentration of preexisting aerosol. Zone II is a transition region in which the aerosol number concentration levels off as a result of hetergeneous condensation by the stable aerosol. In zone III coagulation becomes sufficiently rapid to reduce the particle number concentration. There may be a zone IV in which agglomerates form.

Friedlander, S.K.

1982-01-01T23:59:59.000Z

227

Hybrid energy systems (HESs) using small modular reactors (SMRs)  

SciTech Connect (OSTI)

Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, small modular reactors (SMRs) offer new opportunities for increased use of clean nuclear energy for both electric and thermal ap plications in more locations – while still accommodating the desire to support renewable production sources.

S. Bragg-Sitton

2014-10-01T23:59:59.000Z

228

REACTOR OPERATIONS AND CONTROL  

E-Print Network [OSTI]

REACTOR OPERATIONS AND CONTROL KEYWORDS: core calculations, neural networks, control rod elevation of a control rod, or a group of control rods, is an important parameter from the viewpoint of reactor control DETERMINATION OF PWR CONTROL ROD POSITION BY CORE PHYSICS AND NEURAL NETWORK METHODS NINOS S. GARIS* and IMRE

Pázsit, Imre

229

Antineutrino monitoring for the Iranian heavy water reactor  

E-Print Network [OSTI]

In this note we discuss the potential application of antineutrino monitoring to the Iranian heavy water reactor at Arak, the IR-40, as a non-proliferation measure. We demonstrate that an above ground detector positioned right outside the IR-40 reactor building could meet and in some cases significantly exceed the verification goals identified by IAEA for plutonium production or diversion from declared inventories. In addition to monitoring the reactor during operation, observing antineutrino emissions from long-lived fission products could also allow monitoring the reactor when it is shutdown. Antineutrino monitoring could also be used to distinguish different levels of fuel enrichment. Most importantly, these capabilities would not require a complete reactor operational history and could provide a means to re-establish continuity of knowledge in safeguards conclusions should this become necessary.

Christensen, Eric; Jaffke, Patrick; Shea, Thomas

2014-01-01T23:59:59.000Z

230

Antineutrino monitoring for the Iranian heavy water reactor  

E-Print Network [OSTI]

In this note we discuss the potential application of antineutrino monitoring to the Iranian heavy water reactor at Arak, the IR-40, as a non-proliferation measure. We demonstrate that an above ground detector positioned right outside the IR-40 reactor building could meet and in some cases significantly exceed the verification goals identified by IAEA for plutonium production or diversion from declared inventories. In addition to monitoring the reactor during operation, observing antineutrino emissions from long-lived fission products could also allow monitoring the reactor when it is shutdown. Antineutrino monitoring could also be used to distinguish different levels of fuel enrichment. Most importantly, these capabilities would not require a complete reactor operational history and could provide a means to re-establish continuity of knowledge in safeguards conclusions should this become necessary.

Eric Christensen; Patrick Huber; Patrick Jaffke; Thomas Shea

2014-03-27T23:59:59.000Z

231

Reactor & Nuclear Systems Publications | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Science Home | Science & Discovery | Nuclear Science | Publications and Reports | Reactor and Nuclear Systems Publications SHARE Reactor and Nuclear Systems Publications...

232

Reed Reactor Facility. Final report  

SciTech Connect (OSTI)

This report discusses the operation and maintenance of the Reed Reactor Facility. The Reed reactor is mostly used for education and train purposes.

Frantz, S.G.

1994-12-31T23:59:59.000Z

233

Tritium Formation and Mitigation in High Temperature Reactors  

SciTech Connect (OSTI)

Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. In order to prevent the tritium contamination of proposed reactor buildings and surrounding sites, this paper examines the root causes and potential solutions for the production of this radionuclide, including materials selection and inert gas sparging. A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750°C. Results of the diffusion model are presented for one steadystate value of tritium production in the reactor.

Piyush Sabharwall; Carl Stoots

2012-08-01T23:59:59.000Z

234

Nuclear reactor control column  

DOE Patents [OSTI]

The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

Bachovchin, Dennis M. (Plum Borough, PA)

1982-01-01T23:59:59.000Z

235

Nuclear reactor control column  

SciTech Connect (OSTI)

The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

Bachovchin, D.M.

1982-08-10T23:59:59.000Z

236

Reactor Safety Research Programs  

SciTech Connect (OSTI)

This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

Edler, S. K.

1981-07-01T23:59:59.000Z

237

Nuclear reactor reflector  

DOE Patents [OSTI]

A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

Hopkins, Ronald J. (Pensacola, FL); Land, John T. (Pensacola, FL); Misvel, Michael C. (Pensacola, FL)

1994-01-01T23:59:59.000Z

238

Nuclear reactor reflector  

DOE Patents [OSTI]

A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

Hopkins, R.J.; Land, J.T.; Misvel, M.C.

1994-06-07T23:59:59.000Z

239

Fast Breeder Reactor studies  

SciTech Connect (OSTI)

This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

1980-07-01T23:59:59.000Z

240

Spherical torus fusion reactor  

DOE Patents [OSTI]

The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

Martin Peng, Y.K.M.

1985-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Microfluidic electrochemical reactors  

DOE Patents [OSTI]

A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

Nuzzo, Ralph G. (Champaign, IL); Mitrovski, Svetlana M. (Urbana, IL)

2011-03-22T23:59:59.000Z

242

Reactor hot spot analysis  

SciTech Connect (OSTI)

The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

Vilim, R.B.

1985-08-01T23:59:59.000Z

243

P Reactor Grouting  

SciTech Connect (OSTI)

Filling the P Reactor with grout. This seals the radioactive material and reduces the environmental footprint left from the Cold War. Project sponsored by the Recovery Act at the Savannah River Site.

None

2010-01-01T23:59:59.000Z

244

Nuclear reactor control  

SciTech Connect (OSTI)

A liquid metal cooled fast breeder nuclear reactor has power setback means for use in an emergency. On initiation of a trip-signal a control rod is injected into the core in two stages, firstly, by free fall to effect an immediate power-set back to a safe level and, secondly, by controlled insertion. Total shut-down of the reactor under all emergencies is avoided. 4 claims.

Ingham, R.V.

1980-01-01T23:59:59.000Z

245

Polymerization reactor control  

SciTech Connect (OSTI)

The principal difficulties in achieving good control of polymerization reactors are related to inadequate on-line measurement, a lack of understanding of the dynamics of the process, the highly sensitive and nonlinear behavior of these reactors, and the lack of well-developed techniques for the control of nonlinear processes. Some illustrations of these problems and a discussion of potential techniques for overcoming some of these difficulties is provided.

Ray, W.H.

1985-01-01T23:59:59.000Z

246

Molten metal reactors  

DOE Patents [OSTI]

A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

2013-11-05T23:59:59.000Z

247

OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS  

SciTech Connect (OSTI)

The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

1998-04-01T23:59:59.000Z

248

F Reactor Inspection  

SciTech Connect (OSTI)

Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

2014-10-29T23:59:59.000Z

249

Reactor Safety Research Programs  

SciTech Connect (OSTI)

This document summarizes the work performed by Pacific Northwest laboratory from October 1 through December 31, 1979, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission. Evaluation of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibilty of determining structural graphite strength, evaluating the feasibilty of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include the loss-of-coolant accident simulation tests at the NRU reactor, Chalk River, Canada; the fuel rod deformation and post-accident coolability tests for the ESSOR Test Reactor Program, lspra, Italy; the blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and the experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

Dotson, CW

1980-08-01T23:59:59.000Z

250

F Reactor Inspection  

ScienceCinema (OSTI)

Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

2014-11-24T23:59:59.000Z

251

POTENTIAL OF THORIUM MOLTEN SALT REACTORS : DETAILED CALCULATIONS AND CONCEPT EVOLUTIONS  

E-Print Network [OSTI]

OF A LARGE NUCLEAR ENERGY PRODUCTION A. NUTTIN, D. HEUER, A. BILLEBAUD, R. BRISSOT, C. LE BRUN, E. LIATARD, J the concept of Thorium Molten Salt Reactor dedicated to future nuclear energy production. The fuel thorium fuel, Molten Salt Reactor, MCNP, radiotoxicity, pyrochemistry #12;1. INTRODUCTION Nuclear energy

Boyer, Edmond

252

Solar coal gasification reactor with pyrolysis gas recycle  

DOE Patents [OSTI]

Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

Aiman, William R. (Livermore, CA); Gregg, David W. (Morago, CA)

1983-01-01T23:59:59.000Z

253

Design of the Advanced Gas Reactor Fuel Experiments for Irradiation in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight particle fuel tests in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL) to support development of the next generation Very High Temperature Reactor (VHTR) in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments will be irradiated in an inert sweep gas atmosphere with on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The final design phase has just been completed on the first experiment (AGR-1) in this series and the support systems and fission product monitoring system that will monitor and control the experiment during irradiation. This paper discusses the development of the experimental hardware and support system designs and the status of the experiment.

S. Blaine Grover

2005-10-01T23:59:59.000Z

254

Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Nuclear Energy Research Initiative Project 2001-001, Westinghouse Electric Co. Grant Number: DE-FG07-02SF22533, Final Report  

SciTech Connect (OSTI)

The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The purpose of this NERI project was to assess the reference U.S. Generation IV SCWR design and explore alternatives to determine feasibility. The project was organized into three tasks: Task 1. Fuel-cycle Neutronic Analysis and Reactor Core Design Task 2. Fuel Cladding and Structural Material Corrosion and Stress Corrosion Cracking Task 3. Plant Engineering and Reactor Safety Analysis. moderator rods. materials.

Philip E. MacDonald

2005-01-01T23:59:59.000Z

255

Methanation assembly using multiple reactors  

DOE Patents [OSTI]

A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

Jahnke, Fred C.; Parab, Sanjay C.

2007-07-24T23:59:59.000Z

256

Power Burst Facility (PBF) Reactor Reactor Decommissioning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,Reactor Decommissioning Click here to view

257

Nuclear reactors built, being built, or planned: 1995  

SciTech Connect (OSTI)

This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

NONE

1996-08-01T23:59:59.000Z

258

Nuclear reactors built, being built, or planned, 1994  

SciTech Connect (OSTI)

This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

NONE

1995-07-01T23:59:59.000Z

259

Model prediction for reactor control  

SciTech Connect (OSTI)

Model prediction is offered as a substitute to lengthy analysis of sample procedures to control product properties not amendable to direct measurement during chemical processing. A computer model of a reactor is set up, and control actions, based on current predicted values, are established. The control is based on predicted ''measurements'' which are derived using a dynamic process model solved on-line. The model is corrected by real measurements in the process operation. A two phase exothermic catalyzed reaction, with the objective of producing material with specified properties, is tested in this paper. The model prediction performance was very good. Model systems enable a more effective control to be exercised than the sample method.

Ardell, G.G.; Gumowski, B.

1983-06-01T23:59:59.000Z

260

Reactor operation environmental information document  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a large United States Department of Energy installation on the upper Atlantic Coastal Plain of South Carolina. The SRS contains diverse habitats, flora, and fauna. Habitats include upland terrestrial areas, varied wetlands including Carolina Bays, the Savannah River swamp system, and impoundment related and riparian wetlands, and the aquatic habitats of several stream systems, two large cooling reservoirs, and the Savannah River. These diverse habitats support a large variety of plants and animals including many commercially or recreational valuable species and several rare, threatened or endangered species. This volume describes the major habitats and their biota found on the SRS, and discuss the impacts of continued operation of the K, L, and P production reactors.

Wike, L.D.; Specht, W.L.; Mackey, H.E.; Paller, M.H.; Wilde, E.W.; Dicks, A.S.

1989-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solar Thermal Reactor Materials Characterization  

SciTech Connect (OSTI)

Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

2008-03-01T23:59:59.000Z

262

SRS reactor control rod cooling without normal forced convection cooling  

SciTech Connect (OSTI)

This paper describes an analytical study of the coolability of the control rods in the Savannah River site (SRS) K production reactor under conditions of loss of normal forced convection cooling. The study was performed as part of the overall safety analysis of the reactor supporting its restart. The analysis addresses the buoyancy-driven boiling flow over the control rods that occurs when forced cooling is lost. The objective of the study was to demonstrate that the control rods will remain cooled (i.e., no melting) at powers representative of those anticipated for restart of the reactor.

Smith, D.C. (SAIC, Albuquerque, NM (United States)); Easterling, T.C. (Westinghouse Savannah River Co., Aiken, SC (United States))

1993-01-01T23:59:59.000Z

263

Ceramic membrane reactor with two reactant gases at different pressures  

DOE Patents [OSTI]

The invention is a ceramic membrane reactor for syngas production having a reaction chamber, an inlet in the reactor for natural gas intake, a plurality of oxygen permeating ceramic slabs inside the reaction chamber with each slab having a plurality of passages paralleling the gas flow for transporting air through the reaction chamber, a manifold affixed to one end of the reaction chamber for intake of air connected to the slabs, a second manifold affixed to the reactor for removing the oxygen depleted air, and an outlet in the reaction chamber for removing syngas.

Balachandran, Uthamalingam (Hinsdale, IL); Mieville, Rodney L. (Glen Ellyn, IL)

2001-01-01T23:59:59.000Z

264

Nuclear reactors built, being built, or planned 1992  

SciTech Connect (OSTI)

Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1992. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. Information is presented on five parts: Civilian, Production, Military, Export and Critical Assembly.

Not Available

1993-07-01T23:59:59.000Z

265

Control of Reactor and Separator, with Recycle T. Larsson, S. Skogestad and ChengChing Yu y  

E-Print Network [OSTI]

Control of Reactor and Separator, with Recycle T. Larsson, S. Skogestad #3; and Cheng­Ching Yu y This paper looks at control of a plant that consists of a reactor, separator and recycle of unreacted reactor where component A is converted to a product and the amount converted is given by k(T )Mz [mole

Skogestad, Sigurd

266

Treatment of methyl t-butyl ether contaminated water using a dense medium plasma reactor, a mechanistic and kinetic investigation  

E-Print Network [OSTI]

and oxidation mechanisms of methyl t-butyl ether (MTBE) in a dense medium plasma (DMP) reactor utilizing gas for the removal of MTBE from an aqueous solution in the DMP reactor. Rate constants are also derived for three reactor configurations and two pin array spin rates. The oxidation products from the treatment of MTBE

Dandy, David

267

Certification plan for reactor analysis computer codes  

SciTech Connect (OSTI)

A certification plan for reactor analysis computer codes used in Technical Specifications development and for other safety and production support calculations has been prepared. An action matrix, checklists, a time schedule, and a resource commitment table have been included in the plan. These items identify what is required to achieve certification of the codes, the time table that this will be accomplished on, and the resources needed to support such an effort.

Toffer, H.; Crowe, R.D.; Schwinkendorf, K.N. [Westinghouse Hanford Co., Richland, WA (United States); Pevey, R.E. [Westinghouse Savannah River Co., Aiken, SC (United States)

1990-01-01T23:59:59.000Z

268

Dynamic simulation of nuclear hydrogen production systems  

E-Print Network [OSTI]

Nuclear hydrogen production processes have been proposed as a solution to rising CO 2 emissions and low fuel yields in the production of liquid transportation fuels. In these processes, the heat of a nuclear reactor is ...

Ramírez Muñoz, Patricio D. (Patricio Dario)

2011-01-01T23:59:59.000Z

269

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor...  

Office of Scientific and Technical Information (OSTI)

A reactor and associated power plant designed to produce 1.05 Mwh and 3.535 Mwh of steam for heating purposes are described. The total thermal output of the reactor is 10 Mwh....

270

Materials Science Division light-water-reactor safety research program. Quarterly progress report, January-March 1982  

SciTech Connect (OSTI)

Information is presented concerning environmentally assisted cracking in light water reactors; transient fuel response and fission product release; and clad properties for code verification.

Shack, W.J.; Rest, J.; Kassner, T.F.

1982-10-01T23:59:59.000Z

271

Heat dissipating nuclear reactor  

DOE Patents [OSTI]

Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extends from the metal base plate downwardly and outwardly into the earth.

Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

1987-01-01T23:59:59.000Z

272

Nuclear reactor safety device  

DOE Patents [OSTI]

A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

Hutter, Ernest (Wilmette, IL)

1986-01-01T23:59:59.000Z

273

Thermionic Reactor Design Studies  

SciTech Connect (OSTI)

Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

Schock, Alfred

1994-08-01T23:59:59.000Z

274

Reactor for exothermic reactions  

DOE Patents [OSTI]

A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

Smith, Jr., Lawrence A. (Bellaire, TX); Hearn, Dennis (Houston, TX); Jones, Jr., Edward M. (Friendswood, TX)

1993-01-01T23:59:59.000Z

275

Heat dissipating nuclear reactor  

DOE Patents [OSTI]

Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

Hunsbedt, A.; Lazarus, J.D.

1985-11-21T23:59:59.000Z

276

Reactor for exothermic reactions  

DOE Patents [OSTI]

A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

1993-03-02T23:59:59.000Z

277

Fusion reactor pumped laser  

DOE Patents [OSTI]

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

Jassby, Daniel L. (Princeton, NJ)

1988-01-01T23:59:59.000Z

278

Diagnostics for hybrid reactors  

SciTech Connect (OSTI)

The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

Orsitto, Francesco Paolo [ENEA Unita' Tecnica Fusione , Associazione ENEA-EURATOM sulla Fusione C R Frascati v E Fermi 45 00044 Frascati (Italy)

2012-06-19T23:59:59.000Z

279

Perspectives on reactor safety  

SciTech Connect (OSTI)

The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

1994-03-01T23:59:59.000Z

280

Aerosol engineering: design and stability of aerosol reactors  

SciTech Connect (OSTI)

A theoretical study of the performance of aerosol reactors is presented. The goals of this study are (1) to identify the appropriate reactor types (batch, CSTR, and tubular) for production of aerosol with specific properties (for example, uniform size particles, high aerosol surface area, etc.) and (2) to investigate the effect of various process parameters on product aerosol characteristics and on the stability of operation of aerosol reactors. In all the reactors considered, the aerosol dynamics were detemined by chemical reaction, nucleation, and aerosol growth in the free molecule regime in the absence of coagulation at isothermal conditions. Formulation of the aerosol dynamics in terms of moments of the aerosol size distribution facilitated the numerical solution of the resulting systems of ordinary or partial differential equations. The stability characteristics of a continuous stirred tank aerosol reactor (CSTAR) were investigated since experimental data in the literature indicate that under certain conditions this reactor exhibits oscillatory behavior with respect to product aerosol concentration and size distribution.

Pratsinis, S.E.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C  

SciTech Connect (OSTI)

This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750°C and provides electricity and/or process heat at 700°C to conventional process applications, including the production of hydrogen.

Ian Mckirdy

2010-12-01T23:59:59.000Z

282

Innovative design of uranium startup fast reactors  

E-Print Network [OSTI]

Sodium Fast Reactors are one of the three candidates of GEN-IV fast reactors. Fast reactors play an important role in saving uranium resources and reducing nuclear wastes. Conventional fast reactors rely on transuranic ...

Fei, Tingzhou

2012-01-01T23:59:59.000Z

283

Reactor operation safety information document  

SciTech Connect (OSTI)

The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

Not Available

1990-01-01T23:59:59.000Z

284

Reed Reactor Facility Annual Report  

SciTech Connect (OSTI)

This is the report of the operations, experiments, modifications, and other aspects of the Reed Reactor Facility for the year.

Frantz, Stephen G.

2000-09-01T23:59:59.000Z

285

Report on the American Nuclear Society International Topical Meeting: {open_quotes}The safety, status, and future of non-commercial reactors and irradiation Facilities{close_quotes}  

SciTech Connect (OSTI)

The American Nuclear Society`s International Topical Meeting, The Safety, Status, and Future of Non-Commercial Reactors and Irradiation Facilities, also known as SAFOR 90, was held in Boise, Idaho, September 30 to October 4, 1990. In 19 half-day sessions, 102 papers were presented which covered operating research reactors, production reactors, the use of reactors for training and research, probabilistic risk assessments applied to research reactors, plans for new facilities, and new fuels and reactor types. A special session on space reactor safety was also presented. 11 refs., 1 tab.

Silver, E.G. [Oak Ridge National Laboratory, TN (United States)

1991-01-01T23:59:59.000Z

286

Thermal Reactor Safety  

SciTech Connect (OSTI)

Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

Not Available

1980-06-01T23:59:59.000Z

287

Nuclear reactor building  

DOE Patents [OSTI]

A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.

Gou, Perng-Fei (Saratoga, CA); Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Sirtori, IT)

1994-01-01T23:59:59.000Z

288

Nuclear reactor building  

DOE Patents [OSTI]

A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.

Gou, P.F.; Townsend, H.E.; Barbanti, G.

1994-04-05T23:59:59.000Z

289

NETL - Chemical Looping Reactor  

ScienceCinema (OSTI)

NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

None

2014-06-26T23:59:59.000Z

290

Nuclear Reactors and Technology  

SciTech Connect (OSTI)

This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

Cason, D.L.; Hicks, S.C. [eds.

1992-01-01T23:59:59.000Z

291

Fossil fuel furnace reactor  

DOE Patents [OSTI]

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

292

Predicting Reactor Antineutrino Emissions Using New Precision Beta Spectroscopy  

SciTech Connect (OSTI)

Neutrino experiments at nuclear reactors are currently vital to the study of neutrino oscillations. The observed antineutrino rates at reactors are typically lower than model expectations. This observed deficit is called the “reactor neutrino anomaly”. A new understanding of neutrino physics may be required to explain this deficit, though model estimation uncertainties may also play a role in the apparent discrepancy. PNNL is currently investigating an experimental technique that promises reduced uncertainties for measured data to support these hypotheses and interpret reactor antineutrino measurements. The experimental approach is to 1) direct a proton accelerator beam on a metal target to produce a source of neutrons, 2) use spectral tailoring to modify the neutron spectrum to closely simulate the energy distribution of a power reactor neutron spectrum, 3) irradiate isotopic fission foils (235U, 238U, 239Pu, 241Pu) in this neutron spectrum so that fissions occur at energies representative of a reactor, 4) transport the beta particles released by the fission products in the foils to a beta spectrometer, 5) measure the beta energy spectrum, and 6) invert the measured beta energy spectrum to an antineutrino energy spectrum. A similar technique using a beta spectrometer and isotopic fission foils was pioneered in the 1980’s at the ILL thermal reactor. Those measurements have been the basis for interpreting all subsequent antineutrino measurements at reactors. A basic constraint in efforts to reduce uncertainties in predicting the antineutrino emission from reactor cores is any underlying limitation of the original measurements. This may include beta spectrum energy resolution, the absolute normalization of beta emission to number of fission, statistical counting uncertainties, lack of 238U data, the purely thermal nature of the IIL reactor neutrons used, etc. An accelerator-based neutron source that can be tailored to match various reactor neutron spectra provides an advantage for control in studying how changes in the neutron spectra (i.e. "in the reactor core") affects the resulting fission product beta spectrum. Furthermore, the 238U antineutrino spectrum, which has not been measured, can be studied directly because of the enhanced 1 MeV fast neutron flux available at the accelerator source. A facility such as the Project X Injector Experiment (PXIE) 30 MeV proton linear accelerator at Fermilab is being considered for this experiment. The hypothesis is that a new approach utilizing the flexibility of an accelerator neutron source with spectral tailoring coupled with a careful design of an isotopic fission target and beta spectrometer and the inversion of the beta spectrum to the neutrino spectrum will allow further reduction in the uncertainties associated with prediction of the reactor antineutrino spectrum.

Asner, David M.; Burns, Kimberly A.; Greenfield, Bryce A.; Kos, Marek S.; Orrell, John L.; Schram, Malachi; VanDevender, Brent A.; Wootan, David W.

2013-05-01T23:59:59.000Z

293

Beryllium Use in the Advanced Test Reactor  

SciTech Connect (OSTI)

The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) began operation in 1967. It makes use of a unique serpentine fuel core design and a beryllium reflector. Reactor control is achieved with rotating beryllium cylinders to which have been fastened plates of hafnium. Over time, the beryllium develops rather high helium content because of nuclear transmutations and begins to swell. The beryllium must be replaced at nominally 10-year intervals. Determination of when the replacement is made is by visual observation using a periscope to examine the beryllium surface for cracking and swelling. Disposition of the irradiated beryllium was once accomplished in the INL’s Radioactive Waste Management Complex, but that is no longer possible. Among contributing reasons are high levels of specific radioactive contaminants including transuranics. The INL is presently considering disposition pathways for this irradiated beryllium, but presently is storing it in the canal adjacent to the reactor. Numerous issues are associated with this situation including (1) Is there a need for ultra-low uranium material? (2) Is there a need to recover tritium from irradiated beryllium either because this is a strategic material resource or in preparation for disposal? (3) Is there a need to remove activation and fission products from irradiated beryllium? (4) Will there be enough material available to meet requirements for research reactors (fission and fusion)? In this paper will be discussed the present status of considerations on these issues.

Glen R. Longhurst

2007-12-01T23:59:59.000Z

294

Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes  

SciTech Connect (OSTI)

This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

Lee O. Nelson

2011-04-01T23:59:59.000Z

295

Eastern Europe Research Reactor Initiative nuclear education and training courses - Current activities and future challenges  

SciTech Connect (OSTI)

The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three different research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)

Snoj, L. [Josef Stefan Inst., Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Sklenka, L.; Rataj, J. [Dept. of Nuclear Reactor, Czech Technical Univ. in Prague, V Holesovickach 2, 180 00 Prague 8 (Czech Republic); Boeck, H. [Vienna Univ. of Technology/Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

2012-07-01T23:59:59.000Z

296

Reactor vessel support system. [LMFBR  

DOE Patents [OSTI]

A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

Golden, M.P.; Holley, J.C.

1980-05-09T23:59:59.000Z

297

U.S. Department of Energy Program of International Technical Cooperation for Research Reactor Utilization  

SciTech Connect (OSTI)

The U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) has initiated collaborations with the national nuclear authorities of Egypt, Peru, and Romania for the purpose of advancing the commercial potential and utilization of their respective research reactors. Under its Office of International Safeguards ''Sister Laboratory'' program, DOE/NNSA has undertaken numerous technical collaborations over the past decade intended to promote peaceful applications of nuclear technology. Among these has been technical assistance in research reactor applications, such as neutron activation analysis, nuclear analysis, reactor physics, and medical radioisotope production. The current collaborations are intended to provide the subject countries with a methodology for greater commercialization of research reactor products and services. Our primary goal is the transfer of knowledge, both in administrative and technical issues, needed for the establishment of an effective business plan and utilization strategy for the continued operation of the countries' research reactors. Technical consultation, cooperation, and the information transfer provided are related to: identification, evaluation, and assessment of current research reactor capabilities for products and services; identification of opportunities for technical upgrades for new or expanded products and services; advice and consultation on research reactor upgrades and technical modifications; characterization of markets for reactor products and services; identification of competition and estimation of potential for market penetration; integration of technical constraints; estimation of cash flow streams; and case studies.

Chong, D.; Manning, M.; Ellis, R.; Apt, K.; Flaim, S.; Sylvester, K.

2004-10-03T23:59:59.000Z

298

Nuclear reactor construction with bottom supported reactor vessel  

DOE Patents [OSTI]

An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

Sharbaugh, John E. (Bullskin Township, Fayette County, PA)

1987-01-01T23:59:59.000Z

299

Design study of the deep-sea reactor X  

SciTech Connect (OSTI)

The deep-sea reactor X (DRX) is a small nuclear plant designed to provide undersea power sources. It has the full advantages of nuclear reactors and can provide large power capacity and does not require oxygen for power production. An application conceivable in the near future is that for a submersible. The Japan Atomic Energy Research Institute is conducting a design study of a 150-kW(electric) DRX plant for a deep-sea research vessel. It has a so-called integrated pressurized water reactor,'' having a steam generator inside the reactor vessel. A pressure shell includes a turbine and a generator as well as a reactor vessel, resulting in a very compact electricity producing plant. It should be easy to operate and have high passive safety characteristics; namely, a short startup time, good reactor response to power demand changes, and passive core flooding and decay heat removal in case of an accident. Transient analyses including those for load follow-up, reactor startup, and accidents have been conducted. The results show that the DRX has excellent inherent characteristics satisfying those requirements.

Iida, Hiromasa (Japan Atomic Energy Research Inst., Ibaraki (Japan)); Ishizaka, Yuichi (Mitsubishi Atomic Power Industries, Inc., Tokyo (Japan)); Kim, Y.C.; Yamaguchi, Chouichi (Japan Research Inst., Ltd., Tokyo (Japan))

1994-07-01T23:59:59.000Z

300

Modifications to the NRAD Reactor, 1977 to present  

SciTech Connect (OSTI)

Argonne National Laboratory-West, operated by the University of Chicago, is located near Idaho Falls, ID, on the Idaho National Engineering laboratory Site. ANL-West performs work in support of the Liquid Metal Fast Breeder Reactor Program (LMFBR) sponsored by the United States Department of Energy. The NRAD reactor is located at the Argonne Site within the Hot Fuel Examination Facility/North, a large hot cell facility where both non-destructive and destructive examinations are performed on highly irradiated reactor fuels and materials in support of the LMFBR program. The NRAD facility utilizes a 250-kW TRIGA reactor and is completely dedicated to neutron radiography and the development of radiography techniques. Criticality was first achieved at the NRAD reactor in October of 1977. Since that time, a number of modifications have been implemented to improve operational efficiency and radiography production. This paper describes the modifications and changes that significantly improved operational efficiency and reliability of the reactor and the essential auxiliary reactor systems.

Weeks, A.A.; Pruett, D.P.; Heidel, C.C.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced Reactors Thermal Energy Transport for Process Industries  

SciTech Connect (OSTI)

The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

2014-07-01T23:59:59.000Z

302

Neutronic analysis of a fusion hybrid reactor  

SciTech Connect (OSTI)

In a PHYSOR 2010 paper(1) we introduced a fusion hybrid reactor whose fusion component is the gasdynamic mirror (GDM), and whose blanket was made of thorium - 232. The thrust of that study was to demonstrate the performance of such a reactor by establishing the breeding of uranium - 233 in the blanket, and the burning thereof to produce power. In that analysis, we utilized the diffusion equation for one-energy neutron group, namely, those produced by the fusion reactions, to establish the power distribution and density in the system. Those results should be viewed as a first approximation since the high energy neutrons are not effective in inducing fission, but contribute primarily to the production of actinides. In the presence of a coolant, however, such as water, these neutrons tend to thermalize rather quickly, hence a better assessment of the reactor performance would require at least a two group analysis, namely the fast and thermal groups. We follow that approach and write an approximate set of equations for the fluxes of these groups. From these relations we deduce the all-important quantity, k{sub eff}, which we utilize to compute the multiplication factor, and subsequently, the power density in the reactor. We show that k{sub eff} can be made to have a value of 0.99, thus indicating that 100 thermal neutrons are generated per fusion neutron, while allowing the system to function as 'subcritical.' Moreover, we show that such a hybrid reactor can generate hundreds of megawatts of thermal power per cm of length depending on the flux of the fusion neutrons impinging on the blanket. (authors)

Kammash, T. [Univ. of Michigan, NERS, 2355 Bonisteel Blvd., Ann Arbor, MI 48109 (United States)

2012-07-01T23:59:59.000Z

303

Spherical torus fusion reactor  

DOE Patents [OSTI]

A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

Peng, Yueng-Kay M. (Oak Ridge, TN)

1989-01-01T23:59:59.000Z

304

Nuclear divisional reactor  

SciTech Connect (OSTI)

A nuclear divisional reactor including a reactor core having side and top walls, a heat exchanger substantially surrounding the core, the heat exchanger including a plurality of separate fluid holding and circulating chambers each in contact with a portion of the core, control rod means associated with the core and external of the heat exchanger including control rods and means for moving said control rods, each of the chambers having separate means for delivering and removing fluid therefrom, separate means associated with each of the delivering and removing means for producing useable energy external of the chambers, each of the means for producing useable energy having separate variable capacity energy outputs thereby making available a plurality of individual sources of useable energy of varying degrees.

Administratrix, A.P.; Rugh, J.L.

1982-11-02T23:59:59.000Z

305

Nuclear reactor safety device  

DOE Patents [OSTI]

A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

Hutter, E.

1983-08-15T23:59:59.000Z

306

Fusion reactor pumped laser  

DOE Patents [OSTI]

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

Jassby, D.L.

1987-09-04T23:59:59.000Z

307

The BGU/CERN solar hydrothermal reactor  

E-Print Network [OSTI]

We describe a novel solar hydrothermal reactor (SHR) under development by Ben Gurion University (BGU) and the European Organization for Nuclear Research CERN. We describe in broad terms the several novel aspects of the device and, by extension, of the niche it occupies: in particular, enabling direct off-grid conversion of a range of organic feedstocks to sterile useable (solid, liquid) fuels, nutrients, products using only solar energy and water. We then provide a brief description of the high temperature high efficiency panels that provide process heat to the hydrothermal reactor, and review the basics of hydrothermal processes and conversion taking place in this. We conclude with a description of a simulation of the pilot system that will begin operation later this year.

Bertolucci, Sergio; Caspers, Fritz; Garb, Yaakov; Gross, Amit; Pauletta, Stefano

2014-01-01T23:59:59.000Z

308

SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY  

E-Print Network [OSTI]

Bed Solids Waste Gasifier," Forest Products Journal, Vol.BASIS IV. SUMMARY APPENDIX A - Gasifier Liquefaction Design1 - Modified Lurgi Gasifier with Liquefaction Reactor 2 -

Figueroa, C.

2012-01-01T23:59:59.000Z

309

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

Hydrogen Production Plant Heat Exchangers Turbines Electrolyzer Pumps and Compressors NaCl Storage Separators Thermochemical Reactors + Chemical Absorber Figure 6.2: Equipment Cost

Luc, Wesley Wai

310

Method for loading, operating, and unloading a ball-bed nuclear reactor  

SciTech Connect (OSTI)

This patent describes a method of operating a ball-bed nuclear reactor with fuel element balls. Some have a fissionable material content different from that of others of the balls. It consists of: initially partly filling a reactor core with fuel balls of sufficient fissionable material content for establishing criticality and a desired level of power production at the completion of the partial filling and then, without any further filling of the reactor cavern, starting reactor operation; thereafter without any removal of fuel balls from the reactor cavern, filling fuel balls continually or in groups at relatively short intervals into the reactor cavern during increasing burning up of the fuel balls already, for compensation of the diminishing fissionable material content of the reactor core constituted by the fuel balls until a final total quantity of filling is reached; after the final filling quantity is reached and burning up has occurred, shutting down the reactor, cooling it off, releasing the pressure in the cavern, and thereafter unloading all the fuel balls from the reactor cavern, unloading being begun when the reactor is shut down and being completed before the reactor is restarted.

Teuchert, E.; Haas, K.A.; Gerwin, H.

1987-09-22T23:59:59.000Z

311

A review of experiments and results from the transient reactor test (TREAT) facility.  

SciTech Connect (OSTI)

The TREAT Facility was designed and built in the late 1950s at Argonne National Laboratory to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally, for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light-water reactor (LWR) elements in a steam environment to obtain fission-product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop.

Deitrich, L. W.

1998-07-28T23:59:59.000Z

312

Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor  

SciTech Connect (OSTI)

The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

2009-10-01T23:59:59.000Z

313

Materials Science Division light-water-reactor safety research program. Quarterly progress report, July-September 1982  

SciTech Connect (OSTI)

This progress report summarizes the Argonne National Laboratory work performed during July, August, and September 1982 on water reactor safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light Water Reactors, Transient Fuel Response and Fission Product Release, Clad Properties for Code Verification, Posttest Fuel Examination of the ORNL Fission Product Release Tests, and Examination of TMI-2 Fuel Specimens.

Shack, W.J.; Rest, J.; Kassner, T.F.; Neimark, L.A.; Chung, H.M.; Claytor, T.N.; Kupperman, D.S.; Maiya, P.S.; Nichols, F.A.; Park, J.Y.

1983-08-01T23:59:59.000Z

314

A vectorized heat transfer model for solid reactor cores  

SciTech Connect (OSTI)

The new generation of nuclear reactors includes designs that are significantly different from light water reactors. Among these new reactor designs is the Modular High-Temperature Gas-Cooled Reactor (MHTGR). In addition, nuclear thermal rockets share a number of similarities with terrestrial HTGRs and would be amenable to similar types of analyses. In these reactors, the heat transfer in the solid core mass is of primary interest in design and safety assessment. One significant safety feature of these reactors is the capability to withstand a loss of pressure and forced cooling in the primary system and still maintain peak fuel temperatures below the safe threshold for retaining the fission products. To accurately assess the performance of gas-cooled reactors during these types of transients, a Helium/Hydrogen Cooled Reactor Analysis (HERA) computer code has been developed. HERA has the ability to model arbitrary geometries in three dimensions, which allows the user to easily analyze reactor cores constructed of prismatic graphite elements. The code accounts for heat generation in the fuel, control rods and other structures; conduction and radiation across gaps; convection to the coolant; and a variety of boundary conditions. The numerical solution scheme has been optimized for vector computers, making long transient analyses economical. Time integration is either explicit or implicit, which allows the use of the model to accurately calculate both short- or long-term transients with an efficient use of computer time. Both the basic spatial and temporal integration schemes have been benchmarked against analytical solutions. Also, HERA has been used to analyze a depressurized loss of forced cooling transient in a HTGR with a very detailed three-dimensional input model. The results compare favorably with other means of analysis and provide further validation of the models and methods. 18 refs., 11 figs.

Rider, W.J.; Cappiello, M.W.; Liles, D.R.

1990-01-01T23:59:59.000Z

315

Thermionic Reactor Design Studies  

SciTech Connect (OSTI)

During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic losses in the electrodes of full-core-height diodes. Moreover, placing the fuel on the outside of the diode makes possible reactors with much higher fuel volume fractions, which enable power-flattened fast reactors scalable to very low power levels without the need for life-limiting hydride moderators or the use of efficiency-limiting driver fuel. In addition, with the fuel on the outside its swelling does not increase the emitter diameter or reduce the interelectrode gap. This should permit long lifetimes even with closer spacings, which can significantly improve the system efficiences. This was confirmed by coupled neutronic, thermal, thermionic, and electrical system analyses - some of which are presented in this paper - and by subsequent experiments. A companion paper presented next describes the fabrication and testing of full-scale converter elements, both fueled and unfueled, and summarizes the test results obtained. There is a duplicate copy in the file.

Schock, Alfred

1994-06-01T23:59:59.000Z

316

Macroscopic Mechanistic Modeling and Optimization of a Self-Initiated High-Temperature Polymerization Reactor  

E-Print Network [OSTI]

and optimization study of a batch polymerization reactor in which self-initiated free-radical poly- merization of n to calculate an optimal batch-reactor temperature profile that yields an end-batch polymer product with desiredMacroscopic Mechanistic Modeling and Optimization of a Self-Initiated High

Rappe, Andrew M.

317

Materials science division light-water-reactor safety research program. Quarterly progress report, October - December 1981  

SciTech Connect (OSTI)

This progress report summarizes the Argonne National Laboratory work performed during October, November, and December 1981 on water-reactor-safety problems. The research and development areas covered are environmentally assisted cracking in light water reactors, transient fuel response and fission-product release, and clad properties for code verification.

Not Available

1982-05-01T23:59:59.000Z

318

Light-water-reactor safety research program. Quarterly progress report, April-June 1981  

SciTech Connect (OSTI)

This progress report summarizes the Argonne National Laboratory work performed during April, May, and June 1981 on water-reactor-safety problems. The research and development areas covered are transient fuel response and fission-product release and environmentally assisted cracking in light water reactors.

Not Available

1981-01-01T23:59:59.000Z

319

Nuclear reactor engineering: Reactor systems engineering. Fourth edition, Volume Two  

SciTech Connect (OSTI)

This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in the design and operation of nuclear power plants. Extensively updated, the fourth edition includes new materials on reactor safety and risk analysis, regulation, fuel management, waste management and operational aspects of nuclear power. This volume contains the following: the systems concept, design decisions, and information tools; energy transport; reactor fuel management and energy cost considerations; environmental effects of nuclear power and waste management; nuclear reactor safety and regulation; power reactor systems; plant operations; and advanced plants and the future.

Glasstone, S.; Sesonske, A.

1994-12-31T23:59:59.000Z

320

Designing Reactors to Facilitate Decommissioning  

SciTech Connect (OSTI)

Critics of nuclear power often cite issues with tail-end-of-the-fuel-cycle activities as reasons to oppose the building of new reactors. In fact, waste disposal and the decommissioning of large nuclear reactors have proven more challenging than anticipated. In the early days of the nuclear power industry the design and operation of various reactor systems was given a great deal of attention. Little effort, however, was expended on end-of-the-cycle activities, such as decommissioning and disposal of wastes. As early power and test reactors have been decommissioned difficulties with end-of-the-fuel-cycle activities have become evident. Even the small test reactors common at the INEEL were not designed to facilitate their eventual decontamination, decommissioning, and dismantlement. The results are that decommissioning of these facilities is expensive, time consuming, relatively hazardous, and generates large volumes of waste. This situation clearly supports critics concerns about building a new generation of power reactors.

Richard H. Meservey

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Progress Update: Reactor Disassembly Grouting  

SciTech Connect (OSTI)

Grouting the P&R reactors in order to remove these basins as an environmental threat. This will end the Cold War legacy and end the environmental footprint.

Cody, Tom

2010-01-01T23:59:59.000Z

322

Neutrino Oscillation Studies with Reactors  

E-Print Network [OSTI]

Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

Petr Vogel; Liangjian Wen; Chao Zhang

2015-03-03T23:59:59.000Z

323

Neutrino Oscillation Studies with Reactors  

E-Print Network [OSTI]

Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

Vogel, Petr; Zhang, Chao

2015-01-01T23:59:59.000Z

324

Thermonuclear Reflect AB-Reactor  

E-Print Network [OSTI]

The author offers a new kind of thermonuclear reflect reactor. The remarkable feature of this new reactor is a three net AB reflector, which confines the high temperature plasma. The plasma loses part of its energy when it contacts with the net but this loss can be compensated by an additional permanent plasma heating. When the plasma is rarefied (has a small density), the heat flow to the AB reflector is not large and the temperature in the triple reflector net is lower than 2000 - 3000 K. This offered AB-reactor has significantly less power then the currently contemplated power reactors with magnetic or inertial confinement (hundreds-thousands of kW, not millions of kW). But it is enough for many vehicles and ships and particularly valuable for tunnelers, subs and space apparatus, where air to burn chemical fuel is at a premium or simply not available. The author has made a number of innovations in this reactor, researched its theory, developed methods of computation, made a sample computation of typical project. The main point of preference for the offered reactor is its likely cheapness as a power source. Key words: Micro-thermonuclear reactor, Multi-reflex AB-thermonuclear reactor, Self-magnetic AB-thermonuclear reactor, aerospace thermonuclear engine.

Alexander Bolonkin

2008-03-26T23:59:59.000Z

325

Light Water Reactor Sustainability Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydraulics software RELAP-7 (which is under development in the Light Water Reactor Sustainability LWRS Program). A novel interaction between the probabilistic part (i.e., RAVEN)...

326

Light Water Reactor Sustainability Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

30-35, August 2012. Clayton, D. A. and M. S. Hileman, 2012, Light Water Reactor Sustainability Non-Destructive Evaluation for Concrete Research and Development Roadmap, ORNLTM-...

327

Progress Update: Reactor Disassembly Grouting  

ScienceCinema (OSTI)

Grouting the P&R reactors in order to remove these basins as an environmental threat. This will end the Cold War legacy and end the environmental footprint.

Cody, Tom

2012-06-14T23:59:59.000Z

328

Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials  

SciTech Connect (OSTI)

Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water rea

Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

2008-08-01T23:59:59.000Z

329

Reactor coolant pump flywheel  

DOE Patents [OSTI]

A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

2013-11-26T23:59:59.000Z

330

Reactor refueling containment system  

DOE Patents [OSTI]

A method of refueling a nuclear reactor is disclosed whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced. 2 figs.

Gillett, J.E.; Meuschke, R.E.

1995-05-02T23:59:59.000Z

331

Reactor refueling containment system  

DOE Patents [OSTI]

A method of refueling a nuclear reactor whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced.

Gillett, James E. (Greensburg, PA); Meuschke, Robert E. (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

332

Nuclear reactor control assembly  

SciTech Connect (OSTI)

This patent describes an assembly for providing global power control in a nuclear reactor having the core split into two halves. It comprises a disk assembly formed from at least two disks each machined with an identical surface hole pattern such that rotation of one disk relative to the other causes the hole pattern to open or close, the disk assembly being positioned substantially at the longitudinal center of and coaxial with the core halves; and means for rotating at least one of the disks relative to the other.

Negron, S.B.

1991-06-11T23:59:59.000Z

333

Nuclear reactor control apparatus  

SciTech Connect (OSTI)

Nuclear reactor core safety rod release apparatus comprises a control rod having a detent notch in the form of an annular peripheral recess at its upper end, a control rod support tube for raising and lowering the control rod under normal conditions, latches pivotally mounted on the control support tube with free ends thereof normally disposed in the recess in the control rod, and cam means for pivoting the latches out of the recess in the control rod when a scram condition occurs. One embodiment of the invention comprises an additonal magnetically-operated latch for releasing the control rod under two different conditions, one involving seismic shock.

Sridhar, B.N.

1981-08-28T23:59:59.000Z

334

Nuclear reactor control apparatus  

DOE Patents [OSTI]

Nuclear reactor core safety rod release apparatus comprises a control rod having a detent notch in the form of an annular peripheral recess at its upper end, a control rod support tube for raising and lowering the control rod under normal conditions, latches pivotally mounted on the control support tube with free ends thereof normally disposed in the recess in the control rod, and cam means for pivoting the latches out of the recess in the control rod when a scram condition occurs. One embodiment of the invention comprises an additional magnetically-operated latch for releasing the control rod under two different conditions, one involving seismic shock.

Sridhar, Bettadapur N. (Cupertino, CA)

1983-11-01T23:59:59.000Z

335

Comments on the report "Indications of anomalous heat energy production in a reactor device containing hydrogen loaded nickel powder" [arXiv:1305.3913] by G.Levi, E.Foschi, T.Hartman, B.Höistad, R.Pettersson, L.Tegnér, H.Essén  

E-Print Network [OSTI]

In a recent report titled "Indications of anomalous heat energy production in a reactor device containing hydrogen loaded nickel powder" and published on arXiv, G. Levi and co-workers put forth several claims concerning the operations and performance of the so-called E-Cat of inventor Andrea Rossi. We note first of all that the circumstances and people involved in the test make it far from being an independent one. We examine the claims put forth by the authors and note that in many cases they are not supported by the facts given in the report. We present results from thermal calculations showing that alternative explanations are possible were the authors seem to jump to conclusions fitting pre-conceived ideas. In general we find that much attention is drawn to trivialities, while important pieces of information and investigation are lacking and seem not to have been conducted or considered. We also note that the proposed claims would require new physics in not only one but several areas. Besides a cold-fusion like process without production of any radiation also extreme new material properties would be needed to explain what rather seems to be a problem of correct measurement. Therefore, it is clear to us that a truly independent and scientific investigation of the so called E-Cat device, convincingly demonstrating an "anomalous heat energy production" has not been presented in the arXiv report and is thus, to-date, still lacking.

Göran Ericsson; Stephan Pomp

2013-09-17T23:59:59.000Z

336

Licensed reactor nuclear safety criteria applicable to DOE reactors  

SciTech Connect (OSTI)

The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

Not Available

1991-04-01T23:59:59.000Z

337

Solid oxide electrochemical reactor science.  

SciTech Connect (OSTI)

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

2010-09-01T23:59:59.000Z

338

Pressurized molten ferrous metal chemical reactor  

SciTech Connect (OSTI)

Research is in progress to develop a liquid ferrous metal chemical reactor to produce valuable products from petroleum refining waste and to achieve totally contained destruction of toxic chemicals. The work is an extension of the Hymelt{trademark} Process (patent pending) developed by the Ashland Petroleum Company. Materials to be processed, such as hydrocarbons, are fed into a crucible of molten iron at 1,600 C. The material decomposes, evolving hydrogen gas and combining carbon with the iron to form molten steel. Research is being pursued as a collaborative effort to Ashland Petroleum Company, Westinghouse Savannah River Company, Houston Advanced Research Center, and others.

Randolph, H.W.; Malone, D.P.; Margrave, J.L. [Westinghouse Savannah River Technology Center, Aiken, SC (United States)]|[Ashland Petroleum Co., Houston, TX (United States)]|[Rice Univ., Houston, TX (United States). Dept. of Chemistry

1995-04-01T23:59:59.000Z

339

International Conference on the Physics of Reactors "Nuclear Power: A Sustainable Resource" Casino-Kursaal Conference Center, Interlaken, Switzerland, September 14-19, 2008  

E-Print Network [OSTI]

International Conference on the Physics of Reactors "Nuclear Power: A Sustainable Resource" Casino International Forum for the new nuclear energy systems, we have developed a new concept of molten salt reactor Products which poison the core can be extracted without stopping reactor operation; nuclear waste

Boyer, Edmond

340

Method of controlling crystallite size in nuclear-reactor fuels  

DOE Patents [OSTI]

Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

Lloyd, Milton H. (Oak Ridge, TN); Collins, Jack L. (Knoxville, TN); Shell, Sam E. (Oak Ridge, TN)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Post-doc: Modelling & Control of Continuous Reactors  

E-Print Network [OSTI]

development in mechatronics and microsystems, sustainable industrial processes, transportation systems scope is a demonstration of continuous reactors with in-line analytics for fine chemical production for improvement of operation and actuation and will provide data for sensor development and control guidelines. 4

Langendoen, Koen

342

THORIUM FUEL CYCLES: A GRAPHITE-MODERATED MOLTEN SALT REACTOR  

E-Print Network [OSTI]

THORIUM FUEL CYCLES: A GRAPHITE-MODERATED MOLTEN SALT REACTOR VERSUS A FAST SPECTRUM SOLID FUEL is to compare two main options dedicated to long-term energy production with Thorium: solid fuel with fast its be- haviour until it reaches the 232Th/233U equilibrium from two di erent starting fuels: 232Th

Paris-Sud XI, Université de

343

Micromachined thin-film gas flow sensor for microchemical reactors  

E-Print Network [OSTI]

Micromachined thin-film gas flow sensor for microchemical reactors W C Shin and R S Besser New applications not practical before such as highly compact, non-invasive pressure sensors, accelerometers and gas power consumption, fast response, and low-cost batch production [1-4]. Spurred by the development

Besser, Ronald S.

344

Fast Reactor Fuel Type and Reactor Safety Performance  

SciTech Connect (OSTI)

Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and thermophysical properties of the fuel and their compatibility with the reactor coolant, with corresponding differences in the challenges presented to the reactor developers. Accident phenomena are discussed for the sodium-cooled fast reactor based on the mechanistic progression of conditions from accident initiation to accident termination, whether a benign state is achieved or more severe consequences are expected. General principles connecting accident phenomena and fuel properties are developed from the oxide and metal fuel safety analyses, providing guidelines that can be used as part of the evaluation for selection of fuel type for the sodium-cooled fast reactor.

R. Wigeland; J. Cahalan

2009-09-01T23:59:59.000Z

345

Applying risk informed methodologies to improve the economics of sodium-cooled fast reactors  

E-Print Network [OSTI]

In order to support the increasing demand for clean sustainable electricity production and for nuclear waste management, the Sodium-Cooled Fast Reactor (SFR) is being developed. The main drawback has been its high capital ...

Nitta, Christopher C

2010-01-01T23:59:59.000Z

346

Development of a High Temperature Gas-Cooled Reactor TRISO-coated particle fuel chemistry model  

E-Print Network [OSTI]

The first portion of this work is a comprehensive analysis of the chemical environment in a High Temperature Gas-Cooled Reactor TRISO fuel particle. Fission product inventory versus burnup is calculated. Based on those ...

Diecker, Jane T

2005-01-01T23:59:59.000Z

347

Light-water-reactor safety research program. Quarterly progress report, January-March 1980  

SciTech Connect (OSTI)

This progress report summarizes the Argonne National Laboratory work performed during January, February, and March 1980 on water-reactor-safety problems. The research and development area covered is Transient Fuel Response and Fission-Product Release.

Massey, W.E.; Kyger, J.A.

1980-08-01T23:59:59.000Z

348

Light-water-reactor safety research program: quarterly progress report, July-September, 1980  

SciTech Connect (OSTI)

The progress report summarizes the Argonne National Laboratory work performed during July, August, and September 1980 on water-reactor-safety problems. The research and development area covered is Transient Fuel Response and Fission-product Release.

Massey, W.E.; Till, C.E.

1981-04-01T23:59:59.000Z

349

Reduced-Enrichment Research and Test Reactor Program: Environmental assessment  

SciTech Connect (OSTI)

The principal program objective and principal part of the proposed action is to improve the proliferation resistance of nuclear fuels used in research and test reactors by providing the technical means (through technical development, design, and testing) for reducing the uranium enrichment requirements of these fuels to substantially less than the 90 to 93% enrichment currently used. Operator acceptance of the reduced-enrichment-uranium (REU) fuel alternative will require minimizing of reactor performance reduction, fuel cycle cost increases, the number of new safety and licensing issues raised, and reactor and facility modifications. The other part of the proposed action is to assure the capability for commercial production and supply of REU fuel for use both in the US and abroad. The RERTR Program scope is limited to generic design studies, technical support to reactor operating organizations in preparing for conversions to REU fuels, fuel development, fuel demonstrations, and technical support for commercialization of REU fuels. This environmental assessment addresses the environmental consequences of RERTR Program activities and of specific conversions of typical reactors (the Ford Nuclear Reactor and one or two other to-be-designated demonstrations) to REU-fuel cycles, including domestic and international shipments of enriched uranium pertinent to the conduct of RERTR Program activities.

Not Available

1980-05-01T23:59:59.000Z

350

Fuel and cladding nano-technologies based solutions for long life heat-pipe based reactors  

SciTech Connect (OSTI)

A novel nuclear reactor concept, unifying the fuel pipe with fuel tube functionality has been developed. The structure is a quasi-spherical modular reactor, designed for a very long life. The reactor module unifies the fuel tube with the heat pipe and a graphite beryllium reflector. It also uses a micro-hetero-structure that allows the fission products to be removed in the heat pipe flow and deposited in a getter area in the cold zone of the heat pipe, but outside the neutron flux. The reactor operates as a breed and burn reactor - it contains the fuel pipe with a variable enrichment, starting from the hot-end of the pipe, meant to assure the initial criticality, and reactor start-up followed by area with depleted uranium or thorium that get enriched during the consumption of the first part of the enriched uranium. (authors)

Popa-Simil, L. [LAVM LLC, Los Alamos (United States)

2012-07-01T23:59:59.000Z

351

Axi-symmetrical flow reactor for [sup 196]Hg photochemical enrichment  

DOE Patents [OSTI]

The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, [sup 196]Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired [sup 196]Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith. 10 figures.

Grossman, M.W.

1991-04-30T23:59:59.000Z

352

Gaseous reactor control system  

SciTech Connect (OSTI)

This paper describes a nuclear reactor control system for controlling the reactivity of the core of a nuclear reactor. It includes a control gas having a high neutron cross-section; a first tank containing a first supply of the control gas; a first conduit providing a first fluid passage extending into the core, the first conduit being operatively connected to communicate with the first tank; a first valve operatively connected to regulate the flow of the control gas between the first tank and the first conduit; a second conduit concentrically disposed around the first conduit such that a second fluid passage is defined between the outer surface of the first conduit and the inner surface of the second conduit; a second tank containing a second supply of the control gas, the second tank being operatively connected to communicate with the second fluid passage; a second supply valve operatively connected to regulate the flow of the control gas between the second tank and the second fluid passage.

Abdel-Khalik, S.

1991-09-03T23:59:59.000Z

353

Overview of the US stellarator reactor study  

SciTech Connect (OSTI)

This study, which uses a cost-minimization code that incorporates the ARIES costing and reactor component models with a I-D energy transport calculation, shows that a torsatron reactor could be competitive with a tokamak reactor.

Lyon, J.F. [Oak Ridge National Lab., TN (United States); Gulec, K. [Univ. of Tennessee, Knoxville, TN (United States); Miller, R.L. [Los Alamos National Lab., NM (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States)

1993-12-31T23:59:59.000Z

354

Reactor Cost Analysis Brian James  

E-Print Network [OSTI]

Reactor Cost Analysis Brian James Directed Technologies, Inc. 6-7 November 2007 This presentation specification & optimization · Capital cost estimation · Projected hydrogen $/kg #12;Directed Technologies, Inc/WGS Membrane Reactor OTM/ Water-Splitting ANL With WGS #12;Directed Technologies, Inc. 6-7 November 2007 BILIWG

355

ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY  

SciTech Connect (OSTI)

The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large-diameter reactors. Washington University's work during the reporting period involved the implementation of the automated calibration device, which will provide an advanced method of determining liquid and slurry velocities at high pressures. This new calibration device is intended to replace the original calibration setup, which depended on fishing lines and hooks to position the radioactive particle. The report submitted by Washington University contains a complete description of the new calibration device and its operation. Improvements to the calibration program are also discussed. Iowa State University utilized air-water bubble column simulations in an effort to determine the domain size needed to represent all of the flow scales in a gas-liquid column at a high superficial velocity. Ohio State's report summarizes conclusions drawn from the completion of gas injection phenomena studies, specifically with respect to the characteristics of bubbling-jetting at submerged single orifices in liquid-solid suspensions.

Bernard A. Toseland

2000-12-31T23:59:59.000Z

356

INITIAL IRRADIATION OF THE FIRST ADVANCED GAS REACTOR FUEL DEVELOPMENT AND QUALIFICATION EXPERIMENT IN THE ADVANCED TEST REACTOR  

SciTech Connect (OSTI)

The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

S. Blaine Grover; David A. Petti

2007-09-01T23:59:59.000Z

357

Fast reactors and nuclear nonproliferation  

SciTech Connect (OSTI)

Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (authors)

Avrorin, E.N. [Russian Federal Nuclear Center - Zababakhin Institute of Applied Physics, Snezhinsk (Russian Federation); Rachkov, V.I.; Chebeskov, A.N. [State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering, Bondarenko Square, 1, Obninsk, Kaluga region, 249033 (Russian Federation)

2013-07-01T23:59:59.000Z

358

MOOSE simulating nuclear reactor CRUD buildup  

SciTech Connect (OSTI)

This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

None

2014-02-06T23:59:59.000Z

359

THE MATERIALS OF FAST BREEDER REACTORS  

E-Print Network [OSTI]

metal fast breeder reactor (LMFBR) concern the behavior ofmetal fast breeder reactor (LMFBR). Despite the simplicityinduced by irradiation. LMFBR funding is the largest single

Olander, Donald R.

2013-01-01T23:59:59.000Z

360

MOOSE simulating nuclear reactor CRUD buildup  

ScienceCinema (OSTI)

This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

None

2014-07-21T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM: INTRODUCTION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM: INTRODUCTION The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1...

362

Granular Dynamics in Pebble Bed Reactor Cores  

E-Print Network [OSTI]

gas reactors with the effective heat transfer of a molten salt coolant and the passive natural circulation safety systems of sodium fast reactors.

Laufer, Michael Robert

2013-01-01T23:59:59.000Z

363

Granular Dynamics in Pebble Bed Reactor Cores  

E-Print Network [OSTI]

pebble bed reactor,” Nuclear Engineering and Design, vol.the AVR reactor,” Nuclear Engineering and Design, vol. 121,Operating Experience,” Nuclear Engineering and Design, vol.

Laufer, Michael Robert

2013-01-01T23:59:59.000Z

364

Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source—Insights from a three dimensional particle-in-cell Monte Carlo collisions model  

SciTech Connect (OSTI)

Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%)

Fubiani, G.; Boeuf, J. P. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France) [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, LAPLACE, F-31062 Toulouse (France)

2013-11-15T23:59:59.000Z

365

Automatic reactor power control for a pressurized water reactor  

SciTech Connect (OSTI)

An automatic reactor power control system is presented for a pressurized water reactor (PWR). The associated reactor control strategy is called mode K.' The new system implements a heavy-worth bank dedicated to axial shape control, independent of the existing regulating banks. The heavy bank provides a monotonic relationship between its motion and the axial shape change, which allows automatic control of the axial power distribution. Thus, the mode K enables precise regulation of both the reactivity and the power distribution, by using double closed-loop control of the reactor coolant temperature and the axial power difference. Automatic reactor power control permits the nuclear power plant to accommodate the load-follow operations, including frequency control, to respond to the grid requirements. The mode K reactor control concepts were tested using simulation responses of a Korean standardized 1,000-MW (electric) PWR. The simulation results illustrate that the mode K would be a practical reactor power control strategy for the increased automation of nuclear plants.

Jungin Choi (Kyungwon Univ. (Korea, Republic of)); Yungjoon Hah (Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)); Unchul Lee (Seoul National Univ. (Korea, Republic of))

1993-05-01T23:59:59.000Z

366

A Basic LEGO Reactor Design for the Provision of Lunar Surface Power  

SciTech Connect (OSTI)

A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces.

John Darrell Bess

2008-06-01T23:59:59.000Z

367

Nuclear reactor control apparatus  

DOE Patents [OSTI]

Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod.

Sridhar, Bettadapur N. (Cupertino, CA)

1983-10-25T23:59:59.000Z

368

Nuclear reactor control  

DOE Patents [OSTI]

1. In a nuclear reactor incorporating a plurality of columns of tubular fuel elements disposed in horizontal tubes in a mass of graphite wherein water flows through the tubes to cool the fuel elements, the improvement comprising at least one control column disposed in a horizontal tube including fewer fuel elements than in a normal column of fuel elements and tubular control elements disposed at both ends of said control column, and means for varying the horizontal displacement of the control column comprising a winch at the upstream end of the control column and a cable extending through the fuel and control elements and attached to the element at the downstream end of the column.

Cawley, William E. (Phoenix, AZ); Warnick, Robert F. (Pasco, WA)

1982-01-01T23:59:59.000Z

369

Nuclear reactor control  

SciTech Connect (OSTI)

In a nuclear reactor incorporating a plurality of columns of tubular fuel elements disposed in horizontal tubes in a mass of graphite wherein water flows through the tubes to cool the fuel elements, the improvement comprising at least one control column disposed in a horizontal tube including fewer fuel elements than in a normal column of fuel elements and tubular control elements disposed at both ends of said control column, and means for varying the horizontal displacement of the control column comprising a winch at the upstream end of the control column and a cable extending through the fuel and control elements and attached to the element at the downstream end of the column.

Cawley, W.E.; Warnick, R.F.

1982-03-30T23:59:59.000Z

370

Representative Source Terms and the Influence of Reactor Attributes on Functional Containment in Modular High-Temperature Gas-Cooled Reactors  

SciTech Connect (OSTI)

Modular high-temperature gas-cooled reactors (MHTGRs) offer a high degree of passive safety. The low power density of the reactor and the high heat capacity of the graphite core result in slow transients that do not challenge the integrity of the robust TRISO fuel. Another benefit of this fuel form and the surrounding graphite is their superior ability to retain fission products under all anticipated normal and off-normal conditions, which limits reactor accident source terms to very low values. In this paper, we develop estimates of the source term for a generic MHTGR to illustrate the performance of the radionuclide barriers that comprise the MHTGR functional containment. We also examine the influence of initial fuel quality, fuel performance/failure, reactor outlet temperature, and retention outside of the reactor core on the resultant source term to the environment.

D. A. Petti; Hans Gougar; Dick Hobbins; Pete Lowry

2013-11-01T23:59:59.000Z

371

Nuclear reactor engineering: Reactor design basics. Fourth edition, Volume One  

SciTech Connect (OSTI)

This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in design and operation of nuclear power plants. Extensively updated, the fourth edition includes new material on reactor safety and risk analysis, regulation, fuel management, waste management, and operational aspects of nuclear power. This volume contains the following: energy from nuclear fission; nuclear reactions and radiations; neutron transport; nuclear design basics; nuclear reactor kinetics and control; radiation protection and shielding; and reactor materials.

Glasstone, S.; Sesonske, A.

1994-12-31T23:59:59.000Z

372

University Reactor Conversion Lessons Learned Workshop for Purdue University Reactor  

SciTech Connect (OSTI)

The Department of Energy’s Idaho National Laboratory, under its programmatic responsibility for managing the University Research Reactor Conversions, has completed the conversion of the reactor at Purdue University Reactor. With this work completed and in anticipation of other impending conversion projects, the INL convened and engaged the project participants in a structured discussion to capture the lessons learned. The lessons learned process has allowed us to capture gaps, opportunities, and good practices, drawing from the project team’s experiences. These lessons will be used to raise the standard of excellence, effectiveness, and efficiency in all future conversion projects.

Eric C. Woolstenhulme; Dana M. Hewit

2008-09-01T23:59:59.000Z

373

Licensed reactor nuclear safety criteria applicable to DOE reactors  

SciTech Connect (OSTI)

This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

Not Available

1993-11-01T23:59:59.000Z

374

Tritium Formation and Mitigation in High-Temperature Reactors  

SciTech Connect (OSTI)

Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

Piyush Sabharwall; Carl Stoots

2012-10-01T23:59:59.000Z

375

Tritium Formation and Mitigation in High-Temperature Reactor Systems  

SciTech Connect (OSTI)

Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

Piyush Sabharwall; Carl Stoots; Hans A. Schmutz

2013-03-01T23:59:59.000Z

376

Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy’s Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

A. Joseph Palmer; David A. Petti; S. Blaine Grover

2014-04-01T23:59:59.000Z

377

Thermomagnetic burn control for magnetic fusion reactor  

DOE Patents [OSTI]

Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

Rawls, John M. (Del Mar, CA); Peuron, Unto A. (Solana Beach, CA)

1982-01-01T23:59:59.000Z

378

Thermomagnetic burn control for magnetic fusion reactor  

DOE Patents [OSTI]

Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

Rawls, J.M.; Peuron, A.U.

1980-07-01T23:59:59.000Z

379

Biological production of ethanol from coal  

SciTech Connect (OSTI)

Research is continuing in an attempt to increase both the ethanol concentration and product ratio using C. ljungdahlii. The purpose of this report is to present data utilizing a medium prepared especially for C. ljungdahlii. Medium development studies are presented, as well as reactor studies with the new medium in batch reactors. CSTRs and CSTRs with cell recycle. The use of this new medium has resulted in significant improvements in cell concentration, ethanol concentration and product ratio.

Not Available

1992-01-01T23:59:59.000Z

380

Reactor physics design of supercritical CO?-cooled fast reactors  

E-Print Network [OSTI]

Gas-Cooled Fast Reactors (GFRs) are among the GEN-IV designs proposed for future deployment. Driven by anticipated plant cost reduction, the use of supercritical CO? (S-CO?) as a Brayton cycle working fluid in a direct ...

Pope, Michael A. (Michael Alexander)

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Reactor protection system design alternatives for sodium fast reactors  

E-Print Network [OSTI]

Historically, unprotected transients have been viewed as design basis events that can significantly challenge sodium-cooled fast reactors. The perceived potential consequences of a severe unprotected transient in a ...

DeWitte, Jacob D. (Jacob Dominic)

2011-01-01T23:59:59.000Z

382

United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support  

SciTech Connect (OSTI)

The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

Douglas Morrell

2011-03-01T23:59:59.000Z

383

Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors  

SciTech Connect (OSTI)

Wet macroalgal slurries can be converted into a biocrude by hydrothermal liquefaction (HTL). High levels of carbon conversion to gravity-separable oil product were accomplished at relatively low temperature (350 ?C) in a pressurized (sub-critical liquid water) environment (20 MPa). As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification was effectively applied for HTL byproduct water cleanup and fuel gas production from water soluble organics. As a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guritno; Zacher, Alan H.; Magnuson, Jon K.

2014-02-18T23:59:59.000Z

384

Nuclear reactor downcomer flow deflector  

DOE Patents [OSTI]

A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

Gilmore, Charles B. (Greensburg, PA); Altman, David A. (Pittsburgh, PA); Singleton, Norman R. (Murrysville, PA)

2011-02-15T23:59:59.000Z

385

Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230  

SciTech Connect (OSTI)

Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle Plates to the Baffle Former Plates. The FaST is designed to remove the Baffle Former Plates from the Core Barrel. The VRS further volume reduces segmented components using multiple configurations of the 38i and horizontal reciprocating saws. After the successful removal and volume reduction of the Internals, the RV will be segmented using a 'First in the US' thermal cutting process through a co-operative effort with Siempelkamp NIS Ingenieurgesellschaft mbH using their experience at the Stade NPP and Karlsruhe in Germany. SNS mobilized in the fall of 2011 to commence execution of the project in order to complete the RVI segmentation, removal and packaging activities for the first unit (Unit 2) by end of the 2012/beginning 2013 and then mobilize to the second unit, Unit 1. Parallel to the completion of the segmentation of the reactor vessel internals at Unit 1, SNS will segment the Unit 2 pressure vessel and at completion move to Unit 1. (authors)

Cooke, Conrad; Spann, Holger [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)] [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)

2013-07-01T23:59:59.000Z

386

Proliferation Resistant Nuclear Reactor Fuel  

SciTech Connect (OSTI)

Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and we posit that the exploration, development, and implementation of intrinsic mechanisms such as discussed here are part of a balanced approach aimed at preventing the misuse of nuclear material for nuclear-energy applications.

Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

2011-02-18T23:59:59.000Z

387

Software reliability and safety in nuclear reactor protection systems  

SciTech Connect (OSTI)

Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and Reliability Group, Lawrence Livermore that investigates different aspects of computer software in reactor National Laboratory, that investigates different aspects of computer software in reactor protection systems. There are two central themes in the report, First, software considerations cannot be fully understood in isolation from computer hardware and application considerations. Second, the process of engineering reliability and safety into a computer system requires activities to be carried out throughout the software life cycle. The report discusses the many activities that can be carried out during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is primarily that of the assessor, or auditor.

Lawrence, J.D. [Lawrence Livermore National Lab., CA (United States)

1993-11-01T23:59:59.000Z

388

Advances in process intensification through multifunctional reactor engineering.  

SciTech Connect (OSTI)

A multifunctional reactor is a chemical engineering device that exploits enhanced heat and mass transfer to promote production of a desired chemical, combining more than one unit operation in a single system. The main component of the reactor system under study here is a vertical column containing packing material through which liquid(s) and gas flow cocurrently downward. Under certain conditions, a range of hydrodynamic regimes can be achieved within the column that can either enhance or inhibit a desired chemical reaction. To study such reactors in a controlled laboratory environment, two experimental facilities were constructed at Sandia National Laboratories. One experiment, referred to as the Two-Phase Experiment, operates with two phases (air and water). The second experiment, referred to as the Three-Phase Experiment, operates with three phases (immiscible organic liquid and aqueous liquid, and nitrogen). This report describes the motivation, design, construction, operational hazards, and operation of the both of these experiments. Data and conclusions are included.

Cooper, Marcia A.; Miller, James Edward; O'Hern, Timothy John; Gill, Walter; Evans, Lindsey R.

2011-02-01T23:59:59.000Z

389

Method for producing H.sub.2 using a rotating drum reactor with a pulse jet heat source  

DOE Patents [OSTI]

A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300.degree. to 1400.degree. F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices.

Paulson, Leland E. (Morgantown, WV)

1990-01-01T23:59:59.000Z

390

2012 Annual Report Research Reactor Infrastructure Program  

SciTech Connect (OSTI)

The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

Douglas Morrell

2012-11-01T23:59:59.000Z

391

Comparative Analysis of Carbon Plasma in Arc and RF Reactors  

SciTech Connect (OSTI)

Results on studies of molecular spectra emitted in the initial stages of fullerene formation during the processing of graphite powder in induction RF reactor and evaporation of graphite electrodes in arc reactor are presented in this paper. It was found that C2 radicals were dominant molecular species in both plasmas. C2 radicals have an important role in the process of fullerene synthesis. The rotational-vibrational temperatures of C2 and CN species were calculated by fitting the experimental spectra to the simulated ones. The results of optical emission study of C2 radicals generated in carbon arc plasma have shown that rotational temperature of C2 species depends on carbon concentration and current intensity significantly. The optical emission study of induction RF plasma and SEM analysis of graphite powder before and after plasma treatment have shown that evaporation of the processed graphite powder depends on feed rate and composition of gas phase significantly. Based on the obtained results, it was concluded that in the plasma region CN radicals could be formed by the reaction of C2 species with atomic nitrogen at smaller loads. At larger feed rate of graphite powder, CN species were produced by surface reaction of the hot carbon particles with nitrogen atoms. The presence of nitrogen in induction RF plasma reduces the fullerene yield significantly. The fullerene yield obtained in two different reactors was: 13% in arc reactor and 4.1% in induction RF reactor. However, the fullerene production rate was higher in induction RF reactor-6.4 g/h versus 1.7 g/h in arc reactor.

Todorovic-Markovic, B.; Markovic, Z. ['Vinca' Institute of Nuclear Sciences, P.O.B. 522, 11001 Belgrade (Serbia and Montenegro); Mohai, I.; Szepvolgyi, J. [Research Laboratory of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences H-1525 Budapest, POB 17 (Hungary)

2004-12-01T23:59:59.000Z

392

Unique features of space reactors  

SciTech Connect (OSTI)

Space reactors are designed to meet a unique set of requirements; they must be sufficiently compact to be launched in a rocket to their operational location, operate for many years without maintenance and servicing, operate in extreme environments, and reject heat by radiation to space. To meet these restrictions, operating temperatures are much greater than in terrestrial power plants, and the reactors tend to have a fast neutron spectrum. Currently, a new generation of space reactor power plants is being developed. The major effort is in the SP-100 program, where the power plant is being designed for seven years of full power, and no maintenance operation at a reactor outlet operating temperature of 1350 K. 8 refs., 3 figs., 1 tab.

Buden, D.

1990-01-01T23:59:59.000Z

393

Nuclear Reactors and Technology; (USA)  

SciTech Connect (OSTI)

Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

Cason, D.L.; Hicks, S.C. (eds.)

1991-01-01T23:59:59.000Z

394

Spectral shift reactor control method  

SciTech Connect (OSTI)

The method is described of closely controlling the reactor water coolant temperature of an operating spectral-shift nuclear reactor, the reactor comprising a core formed of fuel assemblies through which the reactor water coolant flows; different types of elongated elements operable to be controllably moved into and out of the core; one type of the elongated elements comprising control rods formed of neutron absorbing material and operable to decrease reactivity through neutron absorption when inserted into the core; another of the types of elongated elements comprising displacer rods formed of material which has a low absorption for neutrons and which have overall neutron-absorbing and moderating characteristics essentially not exceeding those of hollow tubular Zircaloy members with a filling zirconium oxide or aluminum oxide, the displacer rods operating to displace an equivalent volume of water coolant fluid from the core when inserted therein to decrease reactivity and to increase reactivity when moved from the core.

Impink, A.J. Jr.

1987-08-18T23:59:59.000Z

395

Reactor core isolation cooling system  

DOE Patents [OSTI]

A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

Cooke, F.E.

1992-12-08T23:59:59.000Z

396

University Reactor Matching Grants Program  

SciTech Connect (OSTI)

During the 2002 Fiscal year, funds from the DOE matching grant program, along with matching funds from the industrial sponsors, have been used to support research in the area of thermal-hydraulics. Both experimental and numerical research projects have been performed. Experimental research focused on two areas: (1) Identification of the root cause mechanism for axial offset anomaly in pressurized water reactors under prototypical reactor conditions, and (2) Fluid dynamic aspects of thin liquid film protection schemes for inertial fusion reactor chambers. Numerical research focused on two areas: (1) Multi-fluid modeling of both two-phase and two-component flows for steam conditioning and mist cooling applications, and (2) Modeling of bounded Rayleigh-Taylor instability with interfacial mass transfer and fluid injection through a porous wall simulating the ''wetted wall'' protection scheme in inertial fusion reactor chambers. Details of activities in these areas are given.

John Valentine; Farzad Rahnema; Said Abdel-Khalik

2003-02-14T23:59:59.000Z

397

Interfacial effects in fast reactors  

E-Print Network [OSTI]

The problem of increased resonance capture rates near zone interfaces in fast reactor media has been examined both theoretically and experimentally. An interface traversing assembly was designed, constructed and employed ...

Saidi, Mohammad Said

1979-01-01T23:59:59.000Z

398

Teaching About Nature's Nuclear Reactors  

E-Print Network [OSTI]

Naturally occurring nuclear reactors existed in uranium deposits on Earth long before Enrico Fermi built the first man-made nuclear reactor beneath Staggs Field in 1942. In the story of their discovery, there are important lessons to be learned about scientific inquiry and scientific discovery. Now, there is evidence to suggest that the Earth's magnetic field and Jupiter's atmospheric turbulence are driven by planetary-scale nuclear reactors. The subject of planetocentric nuclear fission reactors can be a jumping off point for stimulating classroom discussions about the nature and implications of planetary energy sources and about the geomagnetic field. But more importantly, the subject can help to bring into focus the importance of discussing, debating, and challenging current thinking in a variety of areas.

Herndon, J M

2005-01-01T23:59:59.000Z

399

Reactor core isolation cooling system  

DOE Patents [OSTI]

A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

Cooke, Franklin E. (San Jose, CA)

1992-01-01T23:59:59.000Z

400

Reactor physics project final report  

E-Print Network [OSTI]

This is the final report in an experimental and theoretical program to develop and apply single- and few-element methods for the determination of reactor lattice parameters. The period covered by the report is January 1, ...

Driscoll, Michael J.

1970-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Heavy Water Components Test Reactor Decommissioning - Major Component Removal  

SciTech Connect (OSTI)

The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these experienced cladding failures as operational capabilities of the different designs were being established. In addition, numerous spills of heavy water occurred within the facility. Currently, radiation and radioactive contamination levels are low within HWCTR with most of the radioactivity contained within the reactor vessel. There are no known insults to the environment, however with the increasing deterioration of the facility, the possibility exists that contamination could spread outside the facility if it is not decommissioned. An interior panoramic view of the ground floor elevation taken in August 2009 is shown in Figure 2. The foreground shows the transfer coffin followed by the reactor vessel and control rod drive platform in the center. Behind the reactor vessel is the fuel pool. Above the ground level are the polar crane and the emergency deluge tank at the top of the dome. Note the considerable rust and degradation of the components and the interior of the containment building. Alternative studies have concluded that the most environmentally safe, cost effective option for final decommissioning is to remove the reactor vessel, steam generators, and all equipment above grade including the dome. Characterization studies along with transport models have concluded that the remaining below grade equipment that is left in place including the transfer coffin will not contribute any significant contamination to the environment in the future. The below grade space will be grouted in place. A concrete cover will be placed over the remaining footprint and the groundwater will be monitored for an indefinite period to ensure compliance with environmental regulations. The schedule for completion of decommissioning is late FY2011. This paper describes the concepts planned in order to remove the major components including the dome, the reactor vessel (RV), the two steam generators (SG), and relocating the transfer coffin (TC).

Austin, W.; Brinkley, D.

2010-05-05T23:59:59.000Z

402

Automatic safety rod for reactors  

DOE Patents [OSTI]

An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

Germer, John H. (San Jose, CA)

1988-01-01T23:59:59.000Z

403

Computer aided nuclear reactor modeling  

E-Print Network [OSTI]

CHAPTER Page IV ALPHA ARCHITECTURE Design Philosophy Abstract Data Type Based Modules Grouping by Functions Miscellaneous Design Influences Architecture . . X Window System . Editor Library Model Library User Interface Library . V CONCLUSIONS... Connected Model . . . . , . . . 31 12 13 Header Section Editor Editing a "Choice" Attribute A Table of Vectors . 32 33 . 34 14 15 16 Current Reactor Modeling Schematic Reactor Modeling Schematic with Alpha Public Header File of Vertex Module...

Warraich, Khalid Sarwar

1995-01-01T23:59:59.000Z

404

Solar solids reactor  

DOE Patents [OSTI]

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, B.D.

1986-02-24T23:59:59.000Z

405

Solar solids reactor  

DOE Patents [OSTI]

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, Bernard D. (Chicago, IL)

1987-01-01T23:59:59.000Z

406

Nuclear reactor control rod  

SciTech Connect (OSTI)

This patent describes a vertically oriented bottom entry control rod from a nuclear reactor: a frame including an elongated central spine of cruciform cross section connected between an upper support member and a lower support member both of cruciform shape having four laterally extending arms. The arms are in alignment with the arms of the lower support member and each aligned upper and lower support members has a sheath extending between; absorber plates of neutron absorber material, different from the material of the frame, one of the absorber plates is positioned within a sheath beneath each of the arms; attachment means suspends the absorber plates from the arms of the upper support member within a sheath; elongated absorber members positioned within a sheath between each of the suspended absorber plates and an arm of the lower support member; and joint means between the upper ends of the absorber members and the lower ends of the suspended absorber plates for minimizing gaps; the sheath means encloses the suspended absorber plates and the absorber members extending between aligned arms of the upper and lower support members and secured.

Cearley, J.E.; Izzo, K.R.

1987-06-30T23:59:59.000Z

407

Reactor pressure vessel nozzle  

DOE Patents [OSTI]

A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough. 2 figs.

Challberg, R.C.; Upton, H.A.

1994-10-04T23:59:59.000Z

408

Propellant actuated nuclear reactor steam depressurization valve  

DOE Patents [OSTI]

A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

Ehrke, Alan C. (San Jose, CA); Knepp, John B. (San Jose, CA); Skoda, George I. (Santa Clara, CA)

1992-01-01T23:59:59.000Z

409

When Do Commercial Reactors Permanently Shut Down?  

Reports and Publications (EIA)

For those wishing to obtain current data, the following resources are available: U.S. reactors, go to the Energy Information Administration's nuclear reactor shutdown list. (Note: As of April 30, 2010, the last U.S. reactor to permanently shut down was Big Rock Point in 1997.) Foreign Reactors, go to the Power Reactor Information System (PRIS) on the International Atomic Energy Agency's website.

2011-01-01T23:59:59.000Z

410

Completing the Design of the Advanced Gas Reactor Fuel Development and Qualification Experiments for Irradiation in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

S. Blaine Grover

2006-10-01T23:59:59.000Z

411

Resonance enhanced multiphoton ionization probing of H atoms and CH3 radicals in a hot lament chemical vapour deposition reactor  

E-Print Network [OSTI]

- lished route for forming polycrystalline diamond ®lms, which are ®nding ever increasing roles reactor used for diamond chemical vapour deposition (CVD). Parameters varied include the hydrocarbon (CH4 to reinforce the consensus view that H atom production during diamond CVD in a hot ®lament reactor arises

Bristol, University of

412

Materials Science and Technology Division light-water-reactor safety research program: quarterly progress report, January-March 1983  

SciTech Connect (OSTI)

This progress report summarizes the Argonne National Laboratory work performed during January, February and March 1983 on water reactor safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light Water Reactors, Transient Fuel Response and Fission Product Release, Clad Properties for Code Verification, and Long-Term Embrittlement of Cast Duplex Stainless Steels in LWR Systems.

Not Available

1984-04-01T23:59:59.000Z

413

Materials Science Division light-water-reactor safety-research program. Quarterly progress report, April-June 1982. Volume 2  

SciTech Connect (OSTI)

This progress report summarizes the Argonne National Laboratory work performed during April, May, and June 1982 on water-reactor-safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light Water Reactors, Transient Fuel Response and Fission Product Release, and Clad Properties for Code Verification.

Shack, W.J.; Rest, J.; Kassner, T.F.; Chung, H.M.; Claytor, T.N.; Kupperman, D.S.; Maiya, P.S.; Nichols, F.A.; Park, J.Y.; Ruther, W.E.; Yaggee, F.L.

1983-05-01T23:59:59.000Z

414

DOE reactor-pumped laser program  

SciTech Connect (OSTI)

FALCON is a high-power, steady-state, nuclear reactor-pumped laser (RPL) concept that is being developed by the Department of Energy. The FALCON program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. The major strengths of a reactor-pumped laser are continuous high-power operation, modular construction, self-contained power, compact size, and a variety of wavelengths (from visible to infrared). These characteristics suggest numerous applications not easily accessible to other laser types. A ground-based RPL could beam its power to space for such activities as illuminating geosynchronous communication satellites in the earth`s shadow to extend their lives, beaming power to orbital transfer vehicles, removing space debris, and providing power (from earth) to a lunar base during the long lunar night. The compact size and self-contained power also makes an RPL very suitable for ship basing so that power-beaming activities could be situated around the globe. The continuous high power of an RPL opens many potential manufacturing applications such as deep-penetration welding and cutting of thick structures, wide-area hardening of metal surfaces by heat treatment or cladding application, wide-area vapor deposition of ceramics onto metal surfaces, production of sub-micron sized particles for manufacturing of ceramics, wide-area deposition of diamond-like coatings, and 3-D ceramic lithography.

Felty, J.R. [USDOE, Germantown, MD (United States). Defense Programs; Lipinski, R.J.; McArthur, D.A.; Pickard, P.S. [Sandia National Labs., Albuquerque, NM (United States)

1993-12-31T23:59:59.000Z

415

Reactor Technology Options Study for Near-Term Deployment of GNEP Grid-Appropriate Reactors  

SciTech Connect (OSTI)

World energy demand is projected to significantly increase over the coming decades. The International Energy Agency projects that electricity demand will increase 50% by 2015 and double by 2030, with most of the increase coming in developing countries as they experience double-digit rates of economic growth and seek to improve their standards of living. Energy is the necessary driver for human development, and the demand for energy in these countries will be met using whatever production technologies are available. Recognizing this inevitable energy demand and its implications for the United States, the U.S. National Security Strategy has proposed the Global Nuclear Energy Partnership (GNEP) to work with other nations to develop and deploy advanced nuclear recycling and reactor technologies. This initiative will help provide reliable, emission-free energy with less of the waste burden of older technologies and without making available separated plutonium that could be used by rogue states or terrorists for nuclear weapons. These new technologies will make possible a dramatic expansion of safe, clean nuclear energy to help meet the growing global energy demand. In other words, GNEP seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy without increasing the risk of nuclear weapon proliferation. This global expansion of nuclear power is strategically important to the United States for several reasons, including the following: (1) National security, by reducing the competition and potential for conflict over increasingly scarce fossil energy resources; (2) Economic security, by helping maintain stable prices for nonrenewable resources such as oil, gas, and coal; (3) Environmental security, by replacing or off-setting large-scale burning of greenhouse gas-emitting fuels for electricity production; and (4) Regaining technical leadership, through deployment of innovative U.S. technology-based reactors. Fully meeting the GNEP vision may require the deployment of thousands of reactors during the next century in dozens of countries, many of which are in the developing world where nuclear energy is not used currently. Such a large-scale deployment will have significant implications related to both fuel supply and spent fuel/waste management, both domestically and worldwide. Consequently, GNEP must address the development and demonstration of proliferation-resistant technologies to ensure both a safe and sustainable nuclear fuel cycle, and reactor designs that are appropriate for the range of needs across the global community. The focus of this report is the latter need, that is, the development and demonstration of proliferation-resistant reactors that are well matched to the needs and capabilities of developing countries.

Ingersoll, Daniel T [ORNL; Poore III, Willis P [ORNL

2007-09-01T23:59:59.000Z

416

Overview of environmental control aspects for the gas-cooled fast reactor  

SciTech Connect (OSTI)

Environmental control aspects relating to release of radionuclides have been analyzed for the Gas-Cooled Fast Reactor (GCFR). Information on environmental control systems was obtained for the most recent GCFR designs, and was used to evaluate the adequacy of these systems. The GCFR has been designed by the General Atomic Company as an alternative to other fast breeder reactor designs, such as the Liquid Metal Fast Breeder Reactor (LMFBR). The GCFR design includes mixed oxide fuel and helium coolant. The environmental impact of expected radionuclide releases from normal operation of the GCFR was evaluated using estimated collective dose equivalent commitments resulting from 1 year of plant operation. The results were compared to equivalent estimates for the Light Water Reactor (LWR) and High-Temperature Gas-Cooled Reactor (HTGR). A discussion of uncertainties in system performances, tritium production rates, and radiation quality factors for tritium is included.

Nolan, A.M.

1981-05-01T23:59:59.000Z

417

Comments on the report "Indications of anomalous heat energy production in a reactor device containing hydrogen loaded nickel powder" [arXiv:1305.3913] by G.Levi, E.Foschi, T.Hartman, B.H\\"oistad, R.Pettersson, L.Tegn\\'er, H.Ess\\'en  

E-Print Network [OSTI]

In a recent report titled "Indications of anomalous heat energy production in a reactor device containing hydrogen loaded nickel powder" [arXiv:1305.3913], G. Levi and co-workers put forth several claims concerning the operations and performance of the so-called E-Cat of Andrea Rossi. We note first of all that the circumstances and people involved in the test make if far from being an independent one. We examine the claims put forth by the authors and note that in many cases they are not supported by the facts given in the report. The authors seem to jump to conclusions fitting pre-conceived ideas where alternative explanations are possible. In general we find that much attention is drawn to trivialities while important pieces of information and investigation are lacking and seem not to have been conducted or considered. These are characteristics more typically found in pseudo-scientific texts and have no place in a technical/scientific report on this level. We also note that the proposed claims would require...

Ericsson, Göran

2013-01-01T23:59:59.000Z

418

ASME Material Challenges for Advanced Reactor Concepts  

SciTech Connect (OSTI)

This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

Piyush Sabharwall; Ali Siahpush

2013-07-01T23:59:59.000Z

419

E-Print Network 3.0 - anaerobic biosurfactant production Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(1990) Received 25th January Summary: ). High Solids Anaerobic Fermentation for Biogas and Compost Production. Biomass 16, 173-182. Owen, W... Reactor for Anaerobic...

420

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network [OSTI]

Fundamental aspects of nuclear reactor fuel elements.Unlike permanent nuclear reactor core components, nuclearof the first nuclear reactors, commercial nuclear fuel still

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

PIA - Advanced Test Reactor National Scientific User Facility...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

422

Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation  

E-Print Network [OSTI]

selected as part of the Generation IV reactors .. - 4 -The development of Generation IV fast reactors can make aconcepts selected for the Generation IV reactors, three,

Heidet, Florent

2010-01-01T23:59:59.000Z

423

Global Optimization of Chemical Reactors and Kinetic Optimization  

E-Print Network [OSTI]

Model; 3-D; Monolith; Reactor; Optimization Introduction TheAngeles Global Optimization of Chemical Reactors and KineticGlobal Optimization of Chemical Reactors and Kinetic

ALHUSSEINI, ZAYNA ISHAQ

2013-01-01T23:59:59.000Z

424

Thermal reactor safety  

SciTech Connect (OSTI)

Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

Not Available

1980-06-01T23:59:59.000Z

425

UCLA program in reactor studies: The ARIES tokamak reactor study  

SciTech Connect (OSTI)

The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D-{sup 3}He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs.

Not Available

1991-01-01T23:59:59.000Z

426

International Research Reactor Decommissioning Project  

SciTech Connect (OSTI)

Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

Leopando, Leonardo [Philippine Nuclear Research Institute, Quezon City (Philippines); Warnecke, Ernst [International Atomic Energy Agency, Vienna (Austria)

2008-01-15T23:59:59.000Z

427

Rapid starting methanol reactor system  

DOE Patents [OSTI]

The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

Chludzinski, Paul J. (38 Berkshire St., Swampscott, MA 01907); Dantowitz, Philip (39 Nancy Ave., Peabody, MA 01960); McElroy, James F. (12 Old Cart Rd., Hamilton, MA 01936)

1984-01-01T23:59:59.000Z

428

Oxygen transport membrane system and method for transferring heat to catalytic/process reactors  

DOE Patents [OSTI]

A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

2014-01-07T23:59:59.000Z

429

Cooling molten salt reactors using “gas-lift”  

SciTech Connect (OSTI)

This study briefly describes the selection of a type of two-phase flow, suitable for intensifying the natural flow of nuclear reactors with liquid fuel - cooling mixture molten salts and the description of a “Two-phase flow demonstrator” (TFD) used for experimental study of the “gas-lift” system and its influence on the support of natural convection. The measuring device and the application of the TDF device is described. The work serves as a model system for “gas-lift” (replacing the classic pump in the primary circuit) for high temperature MSR planned for hydrogen production. An experimental facility was proposed on the basis of which is currently being built an experimental loop containing the generator, separator bubbles and necessary accessories. This loop will model the removal of gaseous fission products and tritium. The cleaning of the fuel mixture of fluoride salts eliminates problems from Xenon poisoning in classical reactors.

Zitek, Pavel, E-mail: zitek@kke.zcu.cz, E-mail: klimko@kke.zcu.cz; Valenta, Vaclav, E-mail: zitek@kke.zcu.cz, E-mail: klimko@kke.zcu.cz; Klimko, Marek, E-mail: zitek@kke.zcu.cz, E-mail: klimko@kke.zcu.cz [University of West Bohemia in Pilsen, Univerzitní 8, 306 14 Pilsen (Czech Republic)

2014-08-06T23:59:59.000Z

430

Implications of Fast Reactor Transuranic Conversion Ratio  

SciTech Connect (OSTI)

Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 (“burners”) do not have blankets; the cases above CR=1 (“breeders”) have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is “attractive” for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR<1, the heat, gamma, and neutron emission increase as material is recycled. The uranium utilization is at or below 1%, just as it is in thermal reactors as both types of reactors require continuing fissile support. For CR>1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.

Steven J. Piet; Edward A. Hoffman; Samuel E. Bays

2010-11-01T23:59:59.000Z

431

Imaging Fukushima Daiichi reactors with muons  

SciTech Connect (OSTI)

A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lukic, Zarija [Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Masuda, Koji [University of New Mexico, Albuquerque, NM 87131 (United States); Perry, John O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of New Mexico, Albuquerque, NM 87131 (United States)

2013-05-15T23:59:59.000Z

432

SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary  

SciTech Connect (OSTI)

U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.

None

2013-09-25T23:59:59.000Z

433

N Reactor external events probabilistic risk assessment using NUREG-1150 methods  

SciTech Connect (OSTI)

This is the first full-scope Level-III PRA completed for the DOE Category A reactor using the updated NUREG-1150 methods. The comparisons to the quantitative NRC safety objectives and DOE nuclear safety guidelines also set analytical precedent for DOE production reactors. Generally speaking, the risks of operating N Reactor are low because of a combination of factors such as low power density, large confinement volume, effective redundant scram systems and core cooling systems, remote location, etc. This work has been a major effort to evaluate the N Reactor risk using state-of-the-art PRA technology. It is believed that this PRA has resulted in realistic, or slightly conservative, results (as opposed to unduly conservative or nonconservative results). The study concluded that the risk to the public and to nearby DOE workers from the operation of N Reactor is very low. This analysis also found that N Reactor meets all the quantitative NRC safety objectives and DOE nuclear safety guidelines, and is generally as safe as, or safer than most commercial reactors in terms of societal and individual risks. The calculated risk to Hanford onsite workers is comparable to public risk from commercial reactors in the NUREG-1150 study. As a result of these low-risk estimates, only a small effort has been devoted to identifying significant risk reduction alternatives. 22 refs., 2 figs., 10 tabs.

Wang, O.S.; Baxter, J.T.; Coles, G.A.; Zentner, M.D.; Powers, T.B.; Collard, L.B.; Rainey, T.E.

1990-01-01T23:59:59.000Z

434

SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary  

ScienceCinema (OSTI)

U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.

None

2014-03-11T23:59:59.000Z

435

Chemical reactor for converting a first material into a second material  

DOE Patents [OSTI]

A chemical reactor and method for converting a first material into a second material is disclosed and wherein the chemical reactor is provided with a feed stream of a first material which is to be converted into a second material; and wherein the first material is combusted in the chemical reactor to produce a combustion flame, and a resulting gas; and an electrical arc is provided which is passed through or superimposed upon the combustion flame and the resulting gas to facilitate the production of the second material.

Kong, Peter C

2012-10-16T23:59:59.000Z

436

GLOBAL THREAT REDUCTION INITIATIVE REACTOR CONVERSION PROGRAM: STATUS AND CURRENT PLANS  

SciTech Connect (OSTI)

The U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Reactor Conversion Program supports the minimization, and to the extent possible, elimination of the use of high enriched uranium (HEU) in civilian nuclear applications by working to convert research and test reactors and radioisotope production processes to the use of low enriched uranium (LEU). The Reactor Conversion Program is a technical pillar of the NNSA Global Threat Reduction Initiative (GTRI) which is a key organization for implementing U.S. HEU minimization policy and works to reduce and protect vulnerable nuclear and radiological material domestically and abroad.

Staples, Parrish A.; Leach, Wayne; Lacey, Jennifer M.

2009-10-07T23:59:59.000Z

437

Chemical reactor and method for chemically converting a first material into a second material  

DOE Patents [OSTI]

A chemical reactor and method for converting a first material into a second material is disclosed and wherein the chemical reactor is provided with a feed stream of a first material which is to be converted into a second material; and wherein the first material is combusted in the chemical reactor to produce a combustion flame, and a resulting gas; and an electrical arc is provided which is passed through or superimposed upon the combustion flame and the resulting gas to facilitate the production of the second material.

Kong, Peter C. (Idaho Falls, ID)

2008-04-08T23:59:59.000Z

438

Materials Science and Technology Division, light-water-reactor safety research program. Quarterly progress report, October-December 1982  

SciTech Connect (OSTI)

The research and development areas covered are Environmentally Assisted Cracking in Light Water Reactors, Transient Fuel Response and Fission Product Release, Clad Properties for Code Verification, and Long-Term Embrittlement of Cast Duplex Stainless Steels in LWR Systems.

Shack, W.J.; Rest, J.; Kassner, T.F.; Ayrault, G.; Chopra, O.K.; Chung, H.M.; Kupperman, D.S.; Maiya, P.S.; Nichols, F.A.; Park, J.Y.

1983-11-01T23:59:59.000Z

439

EIS-0085-S: Liquid-Metal Fast Breeder Reactor Program, Supplemental  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this supplemental statement to examine the reduced scope of the Liquid Metal Fast Breeder Reactor (LMFBR) program and the environmental impacts associated therewith, including a re-examination of the purpose, need and timing of the program, the present program structure, including reasonable program alternatives, and alternative electricity production technologies anticipated to be available within the same timeframe as the LMFBR technology option. This statement supplements ERDA-1535, Liquid Metal Fast Breeder Reactor Program.

440

EIS-0108: L-Reactor Operation, Savannah River Plant, Aiken, South Carolina  

Broader source: Energy.gov [DOE]

This Environmental Impact Statement (EIS) was prepared to provide environmental input into the proposed decision to restart L-Reactor operation at the Savannah River Plant (SRP). The Savannah River Plant is a major U.S. Department of Energy (DOE) installation for the production of defense nuclear materials. The proposed restart of L–Reactor would provide defense nuclear materials (i.e. , plutonium) to wet current and near-term needs for national defense purposes.

Note: This page contains sample records for the topic "1942-1944 production reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Reactor control rod timing system  

SciTech Connect (OSTI)

A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (Above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

Wu, P.T.

1982-02-09T23:59:59.000Z

442

Reactor control rod timing system  

DOE Patents [OSTI]

A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

Wu, Peter T. K. (Clifton Park, NY)

1982-01-01T23:59:59.000Z

443

Computational fluid dynamic modeling of fluidized-bed polymerization reactors  

SciTech Connect (OSTI)

Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

Rokkam, Ram [Ames Laboratory

2012-11-02T23:59:59.000Z

444

High conduction neutron absorber to simulate fast reactor environment in an existing test reactor  

SciTech Connect (OSTI)

A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluence monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.

Donna Post Guillen; Larry R. Greenwood; James R. Parry

2014-10-01T23:59:59.000Z

445

Accident Performance of Light Water Reactor Cladding Materials  

SciTech Connect (OSTI)

During a loss of coolant accident as experienced at Fukushima, inadequate cooling of the reactor core forces component temperatures ever higher where they must withstand aggressive chemical environments. Conventional zirconium cladding alloys will readily oxidize in the presence of water vapor at elevated temperatures, rapidly degrading and likely failing. A cladding breach removes the critical barrier between actinides and fission products and the coolant, greatly increasing the probability of the release of radioactivity in the event of a containment failure. These factors have driven renewed international interest in both study and improvement of the materials used in commercial light water reactors. Characterization of a candidate cladding alloy or oxidation mitigation technique requires understanding of both the oxidation kinetics and hydrogen production as a function of temperature and atmosphere conditions. Researchers in the MST division supported by the DOE-NE Fuel Cycle Research and Development program are working to evaluate and quantify these parameters across a wide range of proposed cladding materials. The primary instrument employed is a simultaneous thermal analyzer (STA) equipped with a specialized water vapor furnace capable of maintaining temperatures above 1200 C in a range of atmospheres and water vapor contents. The STA utilizes thermogravimetric analysis and a coupled mass spectrometer to measure in situ oxidation and hydrogen production of candidate materials. This capability is unprecedented in study of materials under consideration for reactor cladding use, and is currently being expanded to investigate proposed coating techniques as well as the effect of coating defects on corrosion resistance.

Nelson, Andrew T. [Los Alamos National Laboratory

2012-07-24T23:59:59.000Z

446

Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types  

SciTech Connect (OSTI)

This report presents results of system analyses that have been developed to assess the hydrogen production performance of commercial-scale high-temperature electrolysis (HTE) plants driven by three different advanced reactor – power-cycle combinations: a high-temperature helium cooled reactor coupled to a direct Brayton power cycle, a supercritical CO2-cooled reactor coupled to a direct recompression cycle, and a sodium-cooled fast reactor coupled to a Rankine cycle. The system analyses were performed using UniSim software. The work described in this report represents a refinement of previous analyses in that the process flow diagrams include realistic representations of the three advanced reactors directly coupled to the power cycles and integrated with the high-temperature electrolysis process loops. In addition, this report includes parametric studies in which the performance of each HTE concept is determined over a wide range of operating conditions. Results of the study indicate that overall thermal-to- hydrogen production efficiencies (based on the low heating value of the produced hydrogen) in the 45 - 50% range can be achieved at reasonable production rates with the high-temperature helium cooled reactor concept, 42 - 44% with the supercritical CO2-cooled reactor and about 33 - 34% with the sodium-cooled reactor.

M. G. McKellar; J. E. O'Brien; J. S. Herring

2007-09-01T23:59:59.000Z

447

DOE's way-out reactors  

SciTech Connect (OSTI)

The SP-100 reactor, envisioned long before Star Wars, was to power civilian structures such as the space station and orbiting commercial labs. According to the SDI Organization, it will be the cornerstone for SDI, used as a no-maintenance, general source of energy for the military's infrastructure - weapons scale power will come later. DOE wants to spend $72 in FY 1977 to design and build these reactors. Funding problems with Congress, as well as some of the technology and timetables are discussed here.

Marshall, E.

1986-03-21T23:59:59.000Z

448

Nuclear reactor safety heat transfer  

SciTech Connect (OSTI)

Reviewed is a book which has 5 parts: Overview, Fundamental Concepts, Design Basis Accident-Light Water Reactors (LWRs), Design Basis Accident-Liquid-Metal Fast Breeder Reactors (LMFBRs), and Special Topics. It combines a historical overview, textbook material, handbook information, and the editor's personal philosophy on safety of nuclear power plants. Topics include thermal-hydraulic considerations; transient response of LWRs and LMFBRs following initiating events; various accident scenarios; single- and two-phase flow; single- and two-phase heat transfer; nuclear systems safety modeling; startup and shutdown; transient response during normal and upset conditions; vapor explosions, natural convection cooling; blockages in LMFBR subassemblies; sodium boiling; and Three Mile Island.

Jones, O.C.

1982-07-01T23:59:59.000Z

449

Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation  

E-Print Network [OSTI]

Gas Expansion Module Gas-cooled Fast Reactor High Enrichedfast reactors: gas-cooled fast reactor (GFR), sodium-cooledderived from the Gas cooled Fast Reactor (GFR). This core

Heidet, Florent

2010-01-01T23:59:59.000Z

450

Computational Analysis of Fluid Flow in Pebble Bed Modular Reactor  

E-Print Network [OSTI]

High Temperature Gas-cooled Reactor (HTGR) is a Generation IV reactor under consideration by Department of Energy and in the nuclear industry. There are two categories of HTGRs, namely, Pebble Bed Modular Reactor (PBMR) and Prismatic reactor. Pebble...

Gandhir, Akshay

2012-10-19T23:59:59.000Z

451

Reactivity control assembly for nuclear reactor  

DOE Patents [OSTI]

Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

Bollinger, Lawrence R. (Schenectady, NY)

1984-01-01T23:59:59.000Z

452

Reactor accelerator coupling experiments: a feasability study  

E-Print Network [OSTI]

The Reactor Accelerator Coupling Experiments (RACE) are a set of neutron source driven subcritical experiments under temperature feedback conditions. These experiments will involve coupling an accelerator driven neutron source to a TRIGA reactor...

Woddi Venkat Krishna, Taraknath

2006-08-16T23:59:59.000Z

453

New fast-reactor approach. [LMFBR  

SciTech Connect (OSTI)

The design parameters for a 1000 MW LMFBR type reactor are presented. The design requires the multiple primary coolant pumps and heat exchangers to be located around the core within the reactor vessel.

Folkrod, J.R.; Kann, W.J.; Klocksieben, R.H.

1983-01-01T23:59:59.000Z

454

Stability analysis of supercritical water cooled reactors  

E-Print Network [OSTI]

The Supercritical Water-Cooled Reactor (SCWR) is a concept for an advanced reactor that will operate at high pressure (25MPa) and high temperature (500°C average core exit). The high coolant temperature as it leaves the ...

Zhao, Jiyun, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

455

Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The design of the first experiment (designated AGR-1) was completed in 2005, and the fabrication and assembly of the test train as well as the support systems and fission product monitoring system that monitor and control the experiment during irradiation were completed in September 2006. The experiment was inserted in the ATR in December 2006, and is serving as a shakedown test of the multi-capsule experiment design that will be used in the subsequent irradiations as well as a test of the early variants of the fuel produced under this program. The experiment test train as well as the monitoring, control, and data collection systems are discussed and the status of the experiment is provided.

S. Blaine Grover; David A. Petti

2008-10-01T23:59:59.000Z

456

Digital computer operation of a nuclear reactor  

DOE Patents [OSTI]

A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

Colley, Robert W. (Richland, WA)

1984-01-01T23:59:59.000Z

457

Digital computer operation of a nuclear reactor  

DOE Patents [OSTI]

A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

Colley, R.W.

1982-06-29T23:59:59.000Z

458

Liquid metal cooled nuclear reactor plant system  

DOE Patents [OSTI]

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

459

Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories  

Office of Legacy Management (LM)

Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department...

460

Light Water Reactor Sustainability (LWRS) Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light Water Reactor Sustainability (LWRS) Program Login Instructions go here. User ID: Password: Log In Forgot your password?...