National Library of Energy BETA

Sample records for 110-75-8 2-chloroethyl vinyl

  1. Protection against 2-chloroethyl ethyl sulfide (CEES) - induced cytotoxicity in human keratinocytes by an inducer of the glutathione detoxification pathway

    SciTech Connect (OSTI)

    Abel, Erika L.; Bubel, Jennifer D.; Simper, Melissa S.; Powell, Leslie; McClellan, S. Alex; Andreeff, Michael; MacLeod, Michael C.; DiGiovanni, John

    2011-09-01

    Sulfur mustard (SM or mustard gas) was first used as a chemical warfare agent almost 100 years ago. Due to its toxic effects on the eyes, lungs, and skin, and the relative ease with which it may be synthesized, mustard gas remains a potential chemical threat to the present day. SM exposed skin develops fluid filled bullae resulting from potent cytotoxicity of cells lining the basement membrane of the epidermis. Currently, there are no antidotes for SM exposure; therefore, chemopreventive measures for first responders following an SM attack are needed. Glutathione (GSH) is known to have a protective effect against SM toxicity, and detoxification of SM is believed to occur, in part, via GSH conjugation. Therefore, we screened 6 potential chemopreventive agents for ability to induce GSH synthesis and protect cultured human keratinocytes against the SM analog, 2-chloroethyl ethyl sulfide (CEES). Using NCTC2544 human keratinocytes, we found that both sulforaphane and methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me) stimulated nuclear localization of Nrf2 and induced expression of the GSH synthesis gene, GCLM. Additionally, we found that treatment with CDDO-Me elevated reduced GSH content of NCTC2544 cells and preserved their viability by {approx} 3-fold following exposure to CEES. Our data also suggested that CDDO-Me may act additively with 2,6-dithiopurine (DTP), a nucleophilic scavenging agent, to increase the viability of keratinocytes exposed to CEES. These results suggest that CDDO-Me is a promising chemopreventive agent for SM toxicity in the skin. - Highlights: > CDDO-Me treatment increased intracellular GSH in human keratinocytes. > CDDO-Me increased cell viability following exposure to the half-mustard, CEES. > The cytoprotective effect of CDDO-Me was likely due to scavenging with endogenous GSH.

  2. 2,6-Dithiopurine, a nucleophilic scavenger, protects against mutagenesis in mouse skin treated in vivo with 2-(chloroethyl) ethyl sulfide, a mustard gas analog

    SciTech Connect (OSTI)

    Boulware, Stephen; Fields, Tammy; McIvor, Elizabeth; Powell, K. Leslie; Abel, Erika L.; Vasquez, Karen M.; MacLeod, Michael C.

    2012-09-01

    Sulfur mustard [bis(2-chloroethyl)sulfide, SM] is a well-known DNA-damaging agent that has been used in chemical warfare since World War I, and is a weapon that could potentially be used in a terrorist attack on a civilian population. Dermal exposure to high concentrations of SM produces severe, long-lasting burns. Topical exposure to high concentrations of 2-(chloroethyl) ethyl sulfide (CEES), a monofunctional analog of SM, also produces severe skin lesions in mice. Utilizing a genetically engineered mouse strain, Big Blue, that allows measurement of mutation frequencies in mouse tissues, we now show that topical treatment with much lower concentrations of CEES induces significant dose- and time-dependent increases in mutation frequency in mouse skin; the mutagenic exposures produce minimal toxicity as determined by standard histopathology and immunohistochemical analysis for cytokeratin 6 and the DNA-damage induced phosphorylation of histone H2AX (γ-H2AX). We attempted to develop a therapeutic that would inhibit the CEES-induced increase in mutation frequency in the skin. We observe that multi-dose, topical treatment with 2,6-dithiopurine (DTP), a known chemical scavenger of CEES, beginning 1 h post-exposure to CEES, completely abolishes the CEES-induced increase in mutation frequency. These findings suggest the possibility that DTP, previously shown to be non-toxic in mice, may be useful as a therapeutic agent in accidental or malicious human exposures to SM. -- Highlights: ► 200 mM 2-(chloroethyl) ethyl sulfide (CEES) induces mutations in mouse skin. ► This dose of CEES is not overtly toxic, as assayed by histopathology. ► 2,6-Dithiopurine (DTP), applied after CEES-treatment, abolishes CEES-mutagenesis. ► This supports the idea that sulfur mustards exhibit long biological half-lives.

  3. Preparation of vinyl acetate

    DOE Patents [OSTI]

    Tustin, G.C.; Zoeller, J.R.; Depew, L.S.

    1998-03-24

    This invention pertains to the preparation of vinyl acetate by contacting a mixture of hydrogen and ketene with a heterogeneous catalyst containing a transition metal to produce acetaldehyde, which is then reacted with ketene in the presence of an acid catalyst to produce vinyl acetate.

  4. Synthesis and Rheological Characterization of Poly (vinyl acetate-b-vinyl

    Office of Scientific and Technical Information (OSTI)

    alcohol-b-vinyl acetate) Triblock Copolymer Hydrogels (Journal Article) | SciTech Connect Synthesis and Rheological Characterization of Poly (vinyl acetate-b-vinyl alcohol-b-vinyl acetate) Triblock Copolymer Hydrogels Citation Details In-Document Search Title: Synthesis and Rheological Characterization of Poly (vinyl acetate-b-vinyl alcohol-b-vinyl acetate) Triblock Copolymer Hydrogels Authors: SpeetjensII, Frank W. ; Mahanthappa, Mahesh K. [1] + Show Author Affiliations (UW) Publication

  5. Synthesis and Rheological Characterization of Poly (vinyl acetate...

    Office of Scientific and Technical Information (OSTI)

    alcohol-b-vinyl acetate) Triblock Copolymer Hydrogels Citation Details In-Document Search Title: Synthesis and Rheological Characterization of Poly (vinyl acetate-b-vinyl alcohol-...

  6. Microbial reductive dehalogenation of vinyl chloride

    DOE Patents [OSTI]

    Spormann, Alfred M [Stanford, CA; Muller, Jochen A [Baltimore, MD; Rosner, Bettina M [Berlin, DE; Von Abendroth, Gregory [Mannheim, DE; Meshulam-Simon, Galit [Los Angeles, CA; McCarty, Perry L [Stanford, CA

    2014-02-11

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  7. Microbial reductive dehalogenation of vinyl chloride

    DOE Patents [OSTI]

    Spormann, Alfred M.; Muller, Jochen A.; Rosner, Bettina M.; Von Abendroth, Gregory; Meshulam-Simon, Galit; McCarty, Perry L

    2011-11-22

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  8. Microbial reductive dehalogenation of vinyl chloride (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Microbial reductive dehalogenation of vinyl chloride Title: Microbial reductive dehalogenation of vinyl chloride Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride

  9. Microbial reductive dehalogenation of vinyl chloride (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Microbial reductive dehalogenation of vinyl chloride Title: Microbial reductive dehalogenation of vinyl chloride Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of

  10. Process for the preparation of vinyl acetate

    DOE Patents [OSTI]

    Tustin, G.C.; Zoeller, J.R.; Depew, L.S.

    1998-02-17

    This invention pertains to the preparation of vinyl acetate by contacting within a contact zone a mixture of ketene and acetaldehyde with an acid catalyst at about one bar pressure and between about 85 and 200 C and removing the reaction products from the contact zone.

  11. Process for the preparation of vinyl acetate

    DOE Patents [OSTI]

    Tustin, Gerald Charles; Zoeller, Joseph Robert; Depew, Leslie Sharon

    1998-01-01

    This invention pertains to the preparation of vinyl acetate by contacting within a contact zone a mixture of ketene and acetaldehyde with an acid catalyst at about one bar pressure and between about 85.degree. and 200.degree. C. and removing the reaction products from the contact zone.

  12. Localized Plasticity in the Streamlined Genomes of Vinyl Chloride...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Localized Plasticity in the Streamlined Genomes of Vinyl Chloride Respiring Dehalococcoides Citation ... Here we report the first, to our knowledge, complete genome ...

  13. Production of methyl-vinyl ketone from levulinic acid

    DOE Patents [OSTI]

    Dumesic, James A.; West; Ryan M.

    2011-06-14

    A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.

  14. Research Needs: Glass Solar Reflectance and Vinyl Siding

    SciTech Connect (OSTI)

    Hart, Robert; Curcija, Charlie; Arasteh, Dariush; Goudey, Howdy; Kohler, Christian; Selkowitz, Stephen

    2011-07-07

    The subject of glass solar reflectance and its contribution to permanent vinyl siding distortion has not been extensively studied, and some phenomena are not yet well understood. This white paper presents what is known regarding the issue and identifies where more research is needed. Three primary topics are discussed: environmental factors that control the transfer of heat to and from the siding surface; vinyl siding properties that may affect heat build-up and permanent distortion; and factors that determine the properties of reflected solar radiation from glass surfaces, including insulating window glass. Further research is needed to fully characterize the conditions associated with siding distortion, the scope of the problem, physical properties of vinyl siding, insulating window glass reflection characteristics, and possible mitigation or prevention strategies.

  15. The adsorption and reaction of vinyl acetate on Au/Pd(100) alloy surfaces

    SciTech Connect (OSTI)

    Li, Zhenjun [Pacific Northwest National Laboratory (PNNL); Calaza, Florencia C [ORNL; Tysoe, Wilfred [University of Wisconsin, Milwaukee

    2012-01-01

    The surface chemistry of vinyl acetate monomer (VAM) is studied on Au/Pd(100) alloys as a function of alloy composition using temperature-programmed desorption and reflection adsorption infrared spectroscopy. VAM adsorbs weakly on isolated palladium sites on the alloy with a heat of adsorption of ~55 kJ/mol, with the plane of the VAM adsorbed close to parallel to the surface. The majority of the VAM adsorbed on isolated sites desorbs molecularly with only a small portion decomposing. At lower gold coverages (below ~0.5 ML of gold), where palladium palladium bridge sites are present, VAM binds to the surface in a distorted geometry via a rehybridized vinyl group. A larger proportion of this VAM decomposes and this reaction is initiated by C\\O bond scission in the VAM to form adsorbed acetate and vinyl species. The implication of this surface chemistry for VAM synthesis on Au/Pd(100) alloys is discussed.

  16. sup 3 P Hg, Cd, and Zn photosensitized chemistry of vinyl halides in krypton matrix

    SciTech Connect (OSTI)

    Cartland, H.E.; Pimentel, G.C. )

    1990-01-25

    The reaction of group IIB metals in the {sup 3}P state with vinyl fluoride, chloride, and bromide is studied in krypton matrix. The primary process in all cases is hydrogen halide elimination to form a hydrogen halide/acetylene hydrogen-bonded complex. Insertion of metal atoms into C-Cl and C-Br bonds, but not into C-H and C-F bonds, is also observed. The insertion photochemistry can be explained by a mechanism which requires that the process occur on a triplet surface with the vinyl halide in the planar ground-state conformation.

  17. Ferroelectric PLZT thick films grown by poly(1-vinylpyrrolidone-co-vinyl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ferrin Moore, Senior Aviation Policy Officer - Bio Ferrin Moore, Senior Aviation Policy Officer - Bio PDF icon Ferrin_MoorePersonalProfile.pdf More Documents & Publications LopezPersonalProfile.pdf Patricia Hagerty, Aviation Program Analyst - Bio - FLIGHT - acetate) (PVP/VA)-modified sol-gel process | Argonne National Laboratory

    Ferroelectric PLZT thick films grown by poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA)-modified sol-gel process Title Ferroelectric PLZT thick films grown

  18. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)- co -chlorinated Poly(vinyl chloride) (PVC- co -CPVC) Fiber

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung; Mehio, Nada; Li, Meijun; Gill, Gary; Tsouris, Costas; Mayes, Richard T.; Saito, Tomonori; Dai, Sheng

    2016-03-11

    The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly-(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligandsmore » (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42 3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Lastly, adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.« less

  19. Reactive triblock polymers from tandem ring-opening polymerization for nanostructured vinyl thermosets

    SciTech Connect (OSTI)

    Amendt, Mark A.; Pitet, Louis M.; Moench, Sarah; Hillmyer, Marc A.

    2013-03-07

    Multiply functional hydroxyl telechelic poly(cyclooctene-s-5-norbornene-2-methylene methacrylate) was synthesized by ring opening metathesis (co)polymerization of cis-cyclooctene and 5-norbornene-2-methylene methacrylate using the second generation Grubbs catalyst in combination with a symmetric chain transfer agent bearing hydroxyl functionality. The resulting hydroxyl-telechelic polymer was used as a macroinitiator for the ring opening transesterification polymerization of d,l-lactide to form reactive poly(lactide)-b-poly(cyclooctene-s-5-norbornene-2-methylene methacrylate)-b-poly(lactide) triblock polymers. Subsequently, the triblocks were crosslinked by free radical copolymerization with several vinyl monomers including styrene, divinylbenzene, methyl methacrylate, and ethyleneglycol dimethacrylate. Certain conditions led to optically transparent thermosets with mesoscale phase separation as evidenced by small angle X-ray scattering, differential scanning calorimetry and transmission electron microscopy. Disordered, bicontinuous structures with nanoscopic domains were generated in several cases, rendering the samples attractive for size-selective membrane applications.

  20. Volatile out gassing characteristics of highly filled ethylene vinyl acetate binder materials: Gas phase infra-red spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Patel, Mogon; Bowditch, Martin; Jones, Ben; Netherton, David; Khan, Niaz; Letant, Sonia; Maxwell, Robert S.; Birdsell, Stephen A.

    2012-12-08

    Gas phase Infra-red (IR) spectroscopy has been used to investigate volatile out gassing properties of highly filled poly (ethylene-co-vinyl acetate) materials. In these studies, a Scout-ENTM heated gas cell was interfaced to a vacuum FTIR spectrometer, and the quantification of evolved species was achieved through calibration of the gas cell with certified gas standards. The volatile out gassing properties were monitored as a function of time during storage at 75°C under vacuum conditions (< 1mbar). Acetic acid, carbon dioxide and water were identified as the major out gassing products through IR absorption peaks at 1797, 2354 and 3853 cm-1, respectively.more » We present a comparison of three highly filled poly (ethyleneco- vinyl acetate) resins.« less

  1. Volatile out gassing characteristics of highly filled ethylene vinyl acetate binder materials: Gas phase infra-red spectroscopy

    SciTech Connect (OSTI)

    Patel, Mogon; Bowditch, Martin; Jones, Ben; Netherton, David; Khan, Niaz; Letant, Sonia; Maxwell, Robert S.; Birdsell, Stephen A.

    2012-12-08

    Gas phase Infra-red (IR) spectroscopy has been used to investigate volatile out gassing properties of highly filled poly (ethylene-co-vinyl acetate) materials. In these studies, a Scout-ENTM heated gas cell was interfaced to a vacuum FTIR spectrometer, and the quantification of evolved species was achieved through calibration of the gas cell with certified gas standards. The volatile out gassing properties were monitored as a function of time during storage at 75°C under vacuum conditions (< 1mbar). Acetic acid, carbon dioxide and water were identified as the major out gassing products through IR absorption peaks at 1797, 2354 and 3853 cm-1, respectively. We present a comparison of three highly filled poly (ethyleneco- vinyl acetate) resins.

  2. PERFORMANCE ENHANCEMENT OF COMPRESSION MOLDED KENAF FIBER REINFORCED VINYL ESTER COMPOSITES THROUGH RESIN ADDITIVE

    SciTech Connect (OSTI)

    Fifield, Leonard S.; Simmons, Kevin L.; Laddha, Sachin; Kafentzis, Tyler A.

    2010-05-17

    Plant-based bio-fiber has the potential to achieve weight and cost savings over glass fiber in automotive polymer composites if moisture stability and fiber-resin compatibility issues can be solved. This paper describes the compression molding of 50vol% 2 inch random nonwoven mat kenaf fiber vinyl ester composites with and without chemical resin additives intended to improve moisture stability and resin compatibility. The 2wt% addition of n-undecanoyl chloride or 10-undecenoyl chloride to the styrene-based resin prior to molding of the kenaf composites was observed to decrease the 24hr, 25oC moisture uptake of the molded panels by more than 50%. The tensile stiffness and flexural stiffness of the soaked panels containing these additives were seen to increase by more than 30% and 70%, respectively, relative to panels made with no additives. While dry panel (50% relative humidity at 25oC) strengths did not significantly change in the presence of the additives, tensile strength was observed to increase by more than 40% and flexural strength more than doubled for the soaked panels.

  3. Thermal stability of poly(ethylene-co-vinyl acetate) based materials

    SciTech Connect (OSTI)

    Patel, Mogon; Pitts, Simon; Beavis, Peter; Robinson, Mathew; Morrell, Paul; Khan, Niaz; Khan, Imran; Pockett, Nicola; Letant, Sonia; Von White, Gregory; Labouriau, Andrea

    2013-03-26

    The thermal stability properties of poly (ethylene-co-vinyl acetate) composites have been studied in support of our core programmes in materials qualification and life assessment. The material is used as a binder phase for boron particles in highly filled (70 wt %) composites. Our studies show that the uncured resin readily accumulates acetic acid through hydrolysis of the pendent acetate groups which alters the acidity (pH) of the material. Thermal desorption studies in combination with gas-chromatography-mass spectrometry show that the resin readily evolves acetic acid when thermally aged to temperatures up to 75°C. Gel Permeation Chromatography (GPC) suggests that thermal ageing induces a gradual reduction in resin molecular weight and confirms the susceptibility of the material to chain scission. Heating at elevated temperatures in excess of 300oC is required to induce significant changes in the carbon skeleton through deacetylation and dehydration processes and the production of unsaturated main chain double bonds. Overall, the mechanical response of these filled composites are found to be relatively complex with the extent of polymer-filler interactions possibly playing an important role in determining key engineering properties. Mechanical property studies confirm a small but significant decrease in modulus presumably linked to thermally induced chain scission of the EVA binder.

  4. Mechanisms, Chemistry, and Kinetics of Anaerobic Biodegradation of cis-Dichloroethene and Vinyl Chloride

    SciTech Connect (OSTI)

    McCarty, P.L.; Spormann, A.M.

    2000-12-01

    Anaerobic biological processes can result in PCE and TCE destruction through conversion to cis-dichloroethene (cDCE) then to vinyl chloride (VC), and finally to ethene. Here, the chlorinated aliphatic hydrocarbons (CAHs) serve as electron acceptors in energy metabolism, requiring electron donors such as hydrogen from an external source. The purpose of this study was to learn more about the biochemistry of cDCE and VC conversion to ethene, to better understand the requirements for electron donors, and to determine factors affecting the rates of CAH degradation and organism growth. The biochemistry of reductive dehalogenation of VC was studied with an anaerobic mixed culture enriched on VC. In other studies on electron donor needs for dehalogenation of cDCE and VC, competition for hydrogen was found to occur between the dehalogenators and other microorganisms such as methanogens and homoacetogens in a benzoate-acclimated dehalogenating methanogenic mixed culture. Factors affecting the relative rates of destruction of the solvents and their intermediate products were evaluated. Studies using a mixed PCE-dehalogenating culture as well as the VC enrichment for biochemical studies suggested that the same species was involved in both cDCE and VC dechlorination, and that cDCE and VC competitively inhibited each other's dechlorination rate.

  5. Transsinusoidal Portal Vein Embolization with Ethylene Vinyl Alcohol Copolymer (Onyx): A Feasibility Study in Pigs

    SciTech Connect (OSTI)

    Smits, Maarten L. J.; Vanlangenhove, Peter Sturm, Emiel J. C.; Bosch, Maurice A. A. J. van den; Hav, Monirath Praet, Marleen; Vente, Maarten A. D.; Snaps, Frederic R.; Defreyne, Luc

    2012-10-15

    Purpose: Portal vein embolization is performed to increase the future liver remnant before liver surgery in patients with liver malignancies. This study assesses the feasibility of a transsinusoidal approach for portal vein embolization (PVE) with the ethylene vinyl alcohol copolymer, Onyx. Methods: Indirect portography through contrast injection in the cranial mesenteric artery was performed in eight healthy pigs. Onyx was slowly injected through a microcatheter from a wedged position in the hepatic vein and advanced through the liver lobules into the portal system. The progression of Onyx was followed under fluoroscopy, and the extent of embolization was monitored by indirect portography. The pigs were euthanized immediately (n = 2), at 7 days (n = 4), or at 21 days postprocedure (n = 2). All pigs underwent necropsy and the ex vivo livers were grossly and histopathologically analyzed. Results: Transsinusoidal PVE was successfully performed in five of eight pigs (63%). In 14 of 21 injections (67%), a segmental portal vein could be filled completely. A mean of 1.6 liver lobes per pig was embolized (range 1-2 lobes). There were no periprocedural adverse events. Focal capsular scarring was visible on the surface of two resected livers, yet the capsules remained intact. Histopathological examination showed no signs of recanalization or abscess formation. Mild inflammatory reaction to Onyx was observed in the perivascular parenchyma. Conclusions: The porcine portal vein can be embolized through injection of Onyx from a wedged position in the hepatic vein. Possible complications of transsinusoidal PVE and the effect on contralateral hypertrophy need further study.

  6. Characterization of poly(vinyl chloride) aged in a bromine containing electrolyte

    SciTech Connect (OSTI)

    Arnold, C. Jr.; Leo, A.; Tarjani, M.

    1988-01-01

    Poly(vinyl chloride) (PVC) is being considered for use as a flow frame material in a developmental zinc/bromine battery. The choice of PVC was based on its low cost and the ease with which it can be molded into complex parts. The electrolyte used in this battery is a highly corrosive mixture of bromine, zinc bromide, zinc chloride, potassium bromide, potassium chloride and a quaternary amine salt. The quaternary salt serves to reduce the concentration of free bromine in the electrolyte by virtue of its complexing capability. It is well known that aqueous bromine is capable of oxidizing organic compounds. The purpose of the current study was to investigate the effect of a bromine electrolyte on two PVC formulations, PVC-1 and PVC-4. PVC-1 is the designation given to one of B.F. Goodrich's commercial formulations and is the present baseline material for the flow frame. PVC-4 is an experimental B.F. Goodrich formulation that was developed especially for battery applications. We sought answers to such questions as (1) does oxidation and/or bromination take place. (2) does bromine penetrate into the sample and, if so, how far. (3) how are the mechanical and morphological properties affected. and (4) are there differences in stability between PVC-1 and PVC-4. To accelerate the aging processes we aged the PVC samples at an elevated temperature in an electrolyte which did not contain any complexing agent. 5 refs., 6 figs.

  7. Thermal stability of poly(ethylene-co-vinyl acetate) based materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Patel, Mogon; Pitts, Simon; Beavis, Peter; Robinson, Mathew; Morrell, Paul; Khan, Niaz; Khan, Imran; Pockett, Nicola; Letant, Sonia; Von White, Gregory; et al

    2013-03-26

    The thermal stability properties of poly (ethylene-co-vinyl acetate) composites have been studied in support of our core programmes in materials qualification and life assessment. The material is used as a binder phase for boron particles in highly filled (70 wt %) composites. Our studies show that the uncured resin readily accumulates acetic acid through hydrolysis of the pendent acetate groups which alters the acidity (pH) of the material. Thermal desorption studies in combination with gas-chromatography-mass spectrometry show that the resin readily evolves acetic acid when thermally aged to temperatures up to 75°C. Gel Permeation Chromatography (GPC) suggests that thermal ageingmore » induces a gradual reduction in resin molecular weight and confirms the susceptibility of the material to chain scission. Heating at elevated temperatures in excess of 300oC is required to induce significant changes in the carbon skeleton through deacetylation and dehydration processes and the production of unsaturated main chain double bonds. Overall, the mechanical response of these filled composites are found to be relatively complex with the extent of polymer-filler interactions possibly playing an important role in determining key engineering properties. Mechanical property studies confirm a small but significant decrease in modulus presumably linked to thermally induced chain scission of the EVA binder.« less

  8. Chemistry of enol ethers. LXXXIV. Condensation of acetals of saturated aldehydes with 2-trimethylsilyloxy-1,3-dienes. Synthesis of /beta/-alkoxy-alkyl vinyl and divinyl ketones

    SciTech Connect (OSTI)

    Makin, S.M.; Nazarova, O.N.; Dymshakova, G.M.; Kundryutskova, L.A.

    1988-11-10

    The addition of the acetals of saturated aldehydes (formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, and isobutyraldehyde) to 2-trimethylsilyloxy-4-methyl-1,3-pentadiene in the presence of aprotic acids (ZnCl/sub 2/, ZnBr/sub 2/, FeCl/sub 3/, SnCl/sub 4/, BF/sub 3/ /times/ OEt/sub 2/) takes place at positions 1, 2 of the diene system with the formation of /beta/-alkoxyalkyl vinyl ketones. The most effective catalysts of this reaction were stannic chloride and zinc bromide. The alkyl derivatives of divinyl ketones are formed when the obtained /beta/-alkoxyalkyl vinyl ketones are heated with p-toluenesulfonic acid.

  9. Reactive Surfaces and Interfaces utilizing 2-Vinyl-4,4-Dimethylazlactone (VDMA): An Example of ??Click?? Chemistry

    SciTech Connect (OSTI)

    Messman, Jamie M; Kilbey, II, S Michael; Lokitz, Bradley S; Hinestrosa Salazar, Juan Pablo; Ankner, John Francis

    2009-01-01

    Creating polymer-modified interfaces decorated with biologically-relevant materials V so-called bio-interfaces V with precise control over the nanoscale structure and properties is of increasing technological importance for a large number of advanced materials applications, including adaptive and/or lubricious biomaterial coatings, electro-actuators (synthetic muscles), biosensors with amplified response, coatings for stealth drug delivery, supports for enzymatic catalysts, protein or antibody arrays, and high affinity separation agents. The ability to design and decorate interfaces with biologically-relevant molecules and understand synthesis-structure-function relationships remains a significant challenge. The overarching objective of this research program is to investigate the polymerization and functionalization of a new class of polymeric materials that are capable of serving as a versatile platform from which bio-interfaces for specific applications can be created and evaluated. Stimuli-responsive (co)polymers containing vinyl dimethyl azlactone (VDMA) have been prepared using free radical polymerization techniques (controlled and conventional). Subsequent immobilization of biomolecules (e.g., dansylcadaverine, N ,N -bis(carboxymethyl)-L-lysine hydrate) on PVDMA-containing surface scaffolds affords bio-interfaces. Reaction of nucleophiles with the azlactone moiety proceeds rapidly, quantitatively, and in the absence of byproducts, which are essential criteria governing the click-type nature of this procedure. The conversion of these materials into polyelectrolytes and bioconjugates can be monitored in real-time using infrared spectroscopy. Additionally, pVDMA polymers prepared using reversible addition fragmentation chain transfer (RAFT) polymerization are the basis for creating polymer brushes by a grafting to approach. We will describe how compositional differences and changes in molecular weight affect the solubility and responsiveness of pVDMA-based polymers and surface layers when functionalized with various biomolecules.

  10. The use of DRIFTS-MS and kinetic studies to determine the role of acetic acid in the palladium-catalyzed vapor-phase synthesis of vinyl acetate

    SciTech Connect (OSTI)

    Augustine, S.M.; Blitz, J.P. (Quantum Chemical Corp., Cincinnati, OH (United States))

    1993-07-01

    Supported palladium catalyzes the synthesis of vinyl acetate (VA) by oxyacetylation of ethylene. Alkali promoters increase activity and selectivity. The role of acetic acid (HOAc) in these processes is not well understood. Activation energy studies show that HOAc alters the catalyst site and lowers the reaction barrier to VA formation. After correction for this effect, the kinetics reveal that as a reagent HOAc is zero order. This is probably due to a strong adsorption of HOAc and Pd which forms the catalyst active phase. Detailed spectroscopic studies support this conclusion. The surface processes on a supported vinyl acetate catalyst were studied using a method which couples diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with mass spectrometry (MS). The DRIFTS-MS technique combines the capability of selectively analyzing IR-active surface species with sensitive detection of transient reaction products. By comparing the catalyst with mixtures of palladium acetate powder physically dispersed in potassium chloride, it is determined that the active phase on the catalyst is a form of palladium acetate. Compound formation is consistent with the strong chemisorption of HOAc on Pd. Kinetic analysis of temperature-programmed reaction(TPRxn) data suggests that Pd metal or metal oxide adjacent to the active site is important in the reaction mechanism. 25 refs., 10 figs., 2 tabs.

  11. Thermodynamic properties and ideal-gas enthalpies of formation for butyl vinyl ether, 1,2-dimethoxyethane, methyl glycolate, bicyclo[2.2.1]hept-2-ene, 5-vinylbicyclo[2.2.1]hept-2-ene, trans-azobenzene, butyl acrylate, di-tert-butyl ether, and hexane-1,6-diol

    SciTech Connect (OSTI)

    Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Smith, N.K.

    1996-11-01

    Ideal-gas enthalpies of formation of butyl vinyl ether, 1,2-dimethoxyethane, methyl glycolate, bicyclo-[2.2.1]hept-2-ene, 5-vinylbicyclo[2.2.1]hept-2-ene, trans-azobenzene, butyl acrylate, di-tert-butyl ether, and hexane-1,6-diol are reported. Enthalpies of fusion were determined for bicyclo[2.2.1]hept-2-ene and trans-azobenzene. Two-phase (solid + vapor) or (liquid + vapor) heat capacities were determined from 300 K to the critical region or earlier decomposition temperature for each compound studied. Liquid-phase densities along the saturation line were measured for bicyclo[2.2.1]hept-2-ene. For butyl vinyl ether and 1,2-dimethoxyethane, critical temperatures and critical densities were determined from the dsc results and corresponding critical pressures derived from the fitting procedures. Fitting procedures were used to derive critical temperatures, critical pressures, and critical densities for bicyclo[2.2.1]hept-2-ene, 5-vinylbicyclo[2.2.1]hept-2-ene, trans-azobenzene, butyl acrylate, and di-tert-butyl ether. Group-additivity parameters or ring-correction terms useful in the application of the Benson group-contribution correlations were derived.

  12. Vinyl Siding Institute (VSI) | Open Energy Information

    Open Energy Info (EERE)

    About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems...

  13. Microbial reductive dehalogenation of vinyl chloride (Patent...

    Office of Scientific and Technical Information (OSTI)

    Inventors: Spormann, Alfred M. 1 ; Muller, Jochen A. 2 ; Rosner, Bettina M. 3 ; Von Abendroth, Gregory 4 ; Meshulam-Simon, Galit 5 ; McCarty, Perry L 1 + Show Author ...

  14. Density functional theory study of the interaction of vinyl radical, ethyne, and ethene with benzene, aimed to define an affordable computational level to investigate stability trends in large van der Waals complexes

    SciTech Connect (OSTI)

    Maranzana, Andrea E-mail: anna.giordana@hotmail.com E-mail: mauro.causa@unina.it Giordana, Anna E-mail: anna.giordana@hotmail.com E-mail: mauro.causa@unina.it Indarto, Antonius Tonachini, Glauco; Barone, Vincenzo E-mail: anna.giordana@hotmail.com E-mail: mauro.causa@unina.it; Causà, Mauro E-mail: anna.giordana@hotmail.com E-mail: mauro.causa@unina.it; Pavone, Michele E-mail: anna.giordana@hotmail.com E-mail: mauro.causa@unina.it

    2013-12-28

    Our purpose is to identify a computational level sufficiently dependable and affordable to assess trends in the interaction of a variety of radical or closed shell unsaturated hydro-carbons A adsorbed on soot platelet models B. These systems, of environmental interest, would unavoidably have rather large sizes, thus prompting to explore in this paper the performances of relatively low-level computational methods and compare them with higher-level reference results. To this end, the interaction of three complexes between non-polar species, vinyl radical, ethyne, or ethene (A) with benzene (B) is studied, since these species, involved themselves in growth processes of polycyclic aromatic hydrocarbons (PAHs) and soot particles, are small enough to allow high-level reference calculations of the interaction energy ΔE{sub AB}. Counterpoise-corrected interaction energies ΔE{sub AB} are used at all stages. (1) Density Functional Theory (DFT) unconstrained optimizations of the A−B complexes are carried out, using the B3LYP-D, ωB97X-D, and M06-2X functionals, with six basis sets: 6-31G(d), 6-311 (2d,p), and 6-311++G(3df,3pd); aug-cc-pVDZ and aug-cc-pVTZ; N07T. (2) Then, unconstrained optimizations by Møller-Plesset second order Perturbation Theory (MP2), with each basis set, allow subsequent single point Coupled Cluster Singles Doubles and perturbative estimate of the Triples energy computations with the same basis sets [CCSD(T)//MP2]. (3) Based on an additivity assumption of (i) the estimated MP2 energy at the complete basis set limit [E{sub MP2/CBS}] and (ii) the higher-order correlation energy effects in passing from MP2 to CCSD(T) at the aug-cc-pVTZ basis set, ΔE{sub CC-MP}, a CCSD(T)/CBS estimate is obtained and taken as a computational energy reference. At DFT, variations in ΔE{sub AB} with basis set are not large for the title molecules, and the three functionals perform rather satisfactorily even with rather small basis sets [6-31G(d) and N07T], exhibiting deviation from the computational reference of less than 1 kcal mol{sup −1}. The zero-point vibrational energy corrected estimates Δ(E{sub AB}+ZPE), obtained with the three functionals and the 6-31G(d) and N07T basis sets, are compared with experimental D{sub 0} measures, when available. In particular, this comparison is finally extended to the naphthalene and coronene dimers and to three π−π associations of different PAHs (R, made by 10, 16, or 24 C atoms) and P (80 C atoms)

  15. Methods for the synthesis of deuterated vinyl pyridine monomers

    DOE Patents [OSTI]

    Hong, Kunlun; Yang, Jun; Bonnesen, Peter V

    2014-02-25

    Methods for synthesizing deuterated vinylpyridine compounds of the Formula (1), wherein the method includes: (i) deuterating an acyl pyridine of the Formula (2) in the presence of a metal catalyst and D.sub.2O, wherein the metal catalyst is active for hydrogen exchange in water, to produce a deuterated acyl compound of Formula (3); (ii) reducing the compound of Formula (3) with a deuterated reducing agent to convert the acyl group to an alcohol group, and (iii) dehydrating the compound produced in step (ii) with a dehydrating agent to afford the vinylpyridine compound of Formula (1). The resulting deuterated vinylpyridine compounds are also described.

  16. Methods for the synthesis of deuterated vinyl pyridine monomers

    DOE Patents [OSTI]

    Hong, Kunlun; Yang, Jun; Bonnesen, Peter V

    2015-01-13

    Methods for synthesizing deuterated vinylpyridine compounds of the Formula (1), wherein the method includes: (i) deuterating an acyl pyridine of the Formula (2) in the presence of a metal catalyst and D.sub.2O, wherein the metal catalyst is active for hydrogen exchange in water, to produce a deuterated acyl compound of Formula (3); (ii) reducing the compound of Formula (3) with a deuterated reducing agent to convert the acyl group to an alcohol group, and (iii) dehydrating the compound produced in step (ii) with a dehydrating agent to afford the vinylpyridine compound of Formula (1). The resulting deuterated vinylpyridine compounds are also described.

  17. Vinyl Kraft Windows and Doors | Open Energy Information

    Open Energy Info (EERE)

    Business and legal services;Consulting;Energy auditsweatherization; Installation; Maintenance and repair;Manufacturing; Retail product sales and distribution Phone Number:...

  18. Localized Plasticity in the Streamlined Genomes of Vinyl Chloride...

    Office of Scientific and Technical Information (OSTI)

    in distinct genomic islands (GEIs) with different predicted integration sites, suggesting that these genes were acquired horizontally and independently by distinct mechanisms. ...

  19. Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery...

    Office of Scientific and Technical Information (OSTI)

    The half-wave potential (E12) for oxidation of VEC is ca. 3.6 V producing a resistive film on the electrode surface. GPC analysis of the film on a gold electrode produced by ...

  20. Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery...

    Office of Scientific and Technical Information (OSTI)

    Authors: Chen, Guoying ; Zhuang, Guorong V. ; Richardson, Thomas J. ; Gao, Liu ; Ross Jr., Philip N. Publication Date: 2005-02-28 OSTI Identifier: 861305 Report Number(s): ...

  1. Building America Case Study: Insulated Siding Retrofit in a Cold...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... colder temperatures. 4. To overlap, slip vinyl edge of one panel beneath foam and vinyl of adjoining panel. Then slide together until foam ends touch. Illustration by CertainTeed

  2. Antithrombogenic and antibiotic composition and methods of preparation thereof

    DOE Patents [OSTI]

    Hermes, Robert E. (Los Alamos, NM)

    1990-01-01

    Antithrombogenic and antibiotic composition of matter and method of preparation thereof. A random copolymer of a component of garlic and a biocompatible polymer has been prepared and found to exhibit antithrombogenic and antibiotic properties. Polymerization occurs selectively at the vinyl moiety in 2-vinyl-4H-1,3-dithiin when copolymerized with N-vinyl pyrrolidone.

  3. Antithrombogenic and antibiotic compositions and methods of preparation thereof

    DOE Patents [OSTI]

    Hermes, R.E.

    1988-04-19

    Antithrombogenic and antibiotic composition of matter and method of preparation thereof. A random copolymer of a component of garlic and a biocompatible polymer has been prepared and found to exhibit antithrombogenic and antibiotic properties. Polymerization occurs selectively at the vinyl moiety in 2-vinyl-4H-1,3-dithiin when copolymerized with N-vinyl pyrrolidone. 4 figs., 2 tabs.

  4. Antithrombogenic and antibiotic composition and methods of preparation thereof

    DOE Patents [OSTI]

    Hermes, R.E.

    1990-04-17

    Antithrombogenic and antibiotic composition of matter and method of preparation are disclosed. A random copolymer of a component of garlic and a biocompatible polymer has been prepared and found to exhibit antithrombogenic and antibiotic properties. Polymerization occurs selectively at the vinyl moiety in 2-vinyl-4H-1,3-dithiin when copolymerized with N-vinyl pyrrolidone. 4 figs.

  5. Alkylation damage repair in mammalian genomes

    SciTech Connect (OSTI)

    Mitra, S.; Roy, R.; Kim, N.K. |; Tano, K. |; Ibeanu, G.C. |; Dunn, W.C.; Natarajan, A.T.; Hartenstein, B.; Kaina, B.

    1992-11-01

    The repair of O{sup 6} -alkylguanine in DNA involves only O{sup 6} -methyltransferase (MGMT) while the repair of N-alkylpurines requires multiple proteins including N-methylpurine-DNA glycosylase (MPG). While the biochemical properties human and mouse MGMTs are very similar, the mouse MPG removes 7-methylguanine more efficiently than the human protein. An increased level of MGMT, without a change in the level of MPG associated with gene amplification, was observed in a mouse cell line resistant to 2-chloroethyl-N-nitrosourea. In contrast, no correlation was observed between MPG level and resistance to methyl methanesulfonate in Chinese hamster ovary (CHO) cells. This result suggests a protein other than MPG limits the repair rate of N-alkylpurine in CHO cells.

  6. Alkylation damage repair in mammalian genomes

    SciTech Connect (OSTI)

    Mitra, S.; Roy, R.; Kim, N.K. . Sealy Center for Molecular Science Oak Ridge National Lab., TN ); Tano, K. Oak Ridge National Lab., TN ); Ibeanu, G.C. Oak Ridge National Lab., TN ); Dunn, W.C. (

    1992-01-01

    The repair of O{sup 6} -alkylguanine in DNA involves only O{sup 6} -methyltransferase (MGMT) while the repair of N-alkylpurines requires multiple proteins including N-methylpurine-DNA glycosylase (MPG). While the biochemical properties human and mouse MGMTs are very similar, the mouse MPG removes 7-methylguanine more efficiently than the human protein. An increased level of MGMT, without a change in the level of MPG associated with gene amplification, was observed in a mouse cell line resistant to 2-chloroethyl-N-nitrosourea. In contrast, no correlation was observed between MPG level and resistance to methyl methanesulfonate in Chinese hamster ovary (CHO) cells. This result suggests a protein other than MPG limits the repair rate of N-alkylpurine in CHO cells.

  7. Final report : multicomponent forensic signature development : interactions with common textiles; mustard precursors and simulants.

    SciTech Connect (OSTI)

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel; Borek, Theodore Thaddeus, III

    2010-02-01

    2-Chloroethyl phenyl sulfide (CEPS), a surrogate compound of the chemical warfare agent sulfur mustard, was examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a novel method of producing multiway data using a stepped thermal desorption. Various multivariate analysis schemes were employed to analyze the data. These methods may be able to discern different sources of CEPS. In addition, CEPS was applied to cotton, nylon, polyester, and silk swatches. These swatches were placed in controlled humidity chambers maintained at 23%, 56%, and 85% relative humidity. At regular intervals, samples were removed from each test swatch, and the samples analyzed using TD/GC-MS. The results were compared across fabric substrate and humidity.

  8. Synthesis and tribological behavior of silicon oxycarbonitride thin films

    Office of Scientific and Technical Information (OSTI)

    derived from poly(urea)methyl vinyl silazane. (Journal Article) | SciTech Connect Journal Article: Synthesis and tribological behavior of silicon oxycarbonitride thin films derived from poly(urea)methyl vinyl silazane. Citation Details In-Document Search Title: Synthesis and tribological behavior of silicon oxycarbonitride thin films derived from poly(urea)methyl vinyl silazane. No abstract prepared. Authors: Prasad, Somuri V. ; Tallant, David Robert ; Raj, Rishi [1] ; Cross, Tsali + Show

  9. Sandia National Laboratories: 13,051 lbs of Carpet Sent for Reuse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Previous shipments sent out for recycle were delivered to Interface Carpet in Atlanta, GA, where the manufacture has an extensive recycling program that recycles vinyl backed ...

  10. Ohio's 2nd congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    LLC The Utilities Group Inc Ultimate Best Buy LLC Vinyl Kraft Windows and Doors Vision Energy Energy Generation Facilities in Ohio's 2nd congressional district Melink Solar...

  11. Window Types | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    its U-factor. There are advantages and disadvantages to all types of frame materials, but vinyl, wood, fiberglass, and some composite frame materials provide greater...

  12. Weatherstripping | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (bronze, copper, stainless steel, and aluminum) last for years and are affordable. Metal weatherstripping can also provide a nice touch to older homes where vinyl might seem...

  13. Low pour crude oil compositions

    SciTech Connect (OSTI)

    Motz, K.L.; Latham, R.A.; Statz, R.J.

    1990-05-22

    This patent describes and improvement in the process of transporting waxy crude oils through a pipeline. It comprises: incorporating into the crude oil an effective pour point depressant amount of an additive comprising a polymer selected from the group consisting of copolymers of ethylene and acrylonitrile, and terpolymers of ethylene, acrylonitrile and a third monomer selected from the group consisting of vinyl acetate, carbon monoxide, alkyl acrylates, alkyl methacrylates, alkyl vinyl ethers, vinyl chloride, vinyl fluoride, acrylic acid, and methacrylic acid, wherein the amount of third monomer in the terpolymer ranges from about 0.1 to about 10.0 percent by weight.

  14. COMP-1h.EPS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tents Tires Toilet seats Tool boxes Tool racks Toothbrushes Toothpaste Transparent tape Trash bags TV cabinets Umbrellas Unbreakable dishes Upholstery Vaporizers Vinyl flooring...

  15. Moisture Performance of High-R Wall Systems

    Broader source: Energy.gov [DOE]

    Lead Performer: Home Innovation Research Labs—Upper Marlboro, MD Partners: -- American Chemistry Council -- National Association of Home Builders -- USDA Forest Products Lab -- Vinyl Siding Institute

  16. Synthesis and tribological behavior of silicon oxycarbonitride...

    Office of Scientific and Technical Information (OSTI)

    poly(urea)methyl vinyl silazane. Citation Details In-Document Search Title: Synthesis and tribological behavior of silicon oxycarbonitride thin films derived from poly(urea)methy...

  17. All-Weather Hydrogen Peroxide-Based Decontamination of CBRN Contaminants

    SciTech Connect (OSTI)

    Wagner, George W.; Procell, Lawrence R.; Sorrick, David C.; Lawson, Glenn E.; Wells, Claire M.; Reynolds, Charles M.; Ringelberg, D. B.; Foley, Karen L.; Lumetta, Gregg J.; Blanchard, David L.

    2010-03-11

    A hydrogen peroxide-based decontaminant, Decon Green, is efficacious for the decontamination of chemical agents VX (S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate), GD (Soman, pinacolyl methylphosphonofluoridate), and HD (mustard, bis(2-chloroethyl) sulfide); the biological agent anthrax (Bacillus anthracis); and radiological isotopes Cs-137 and Co-60; thus demonstrating the ability of this decontamination approach to ameliorate the aftermath of all three types of weapons of mass destruction (WMD). Reaction mechanisms afforded for the chemical agents are discussed as are rationales for the enhanced removal efficacy of recalcitrant 60Co on certain surfaces. Decontaminants of this nature can be deployed, and are effective, at very low temperatures (-32 °C), as shown for studies done with VX and HD simulants, without the need for external heat sources. Finally, the efficacy of a lower-logistics, dry decontaminant powder concentrate (utilizing the solid active-oxygen compounds peracetyl borate and Peroxydone) which can be reconstituted with water in the field prior to use, is presented.

  18. Technical support for recovery phase decision-making in the event of a chemical warfare agent release

    SciTech Connect (OSTI)

    Watson, A.; Kistner, S.; Halbrook, R.

    1995-12-31

    In late 1985, Congress mandated that the U.S. stockpile of lethal unitary chemical agents and munitions be destroyed by the Department of the Army in a manner that provides maximum protection to the environment, the general public and personnel involved in the disposal program (Public Law 99-1, Section 1412, Title 14, Part b). These unitary munitions were last manufactured in the late 1960`s. The stockpiled inventory is estimated to approximate 25,000-30,000 tons, an includes organophosphate ({open_quotes}nerves{close_quotes}) agents such as VX [O-ethylester of S-(diisopropyl aminoethyl) methyl phosphonothiolate, C{sub 11}H{sub 26}NO{sub 2}PS] and vesicant ({open_quotes}blister{close_quotes}) agents such as Hd [sulfur mustard; bis (2-chloroethyl sulfide), C{sub 4}H{sub 8}Cl{sub 2}S]. The method of agent destruction selected by the Department of the Army is combined high-temperature and high-residence time incineration at secured military installations where munitions are currently stockpiled. This program supports the research program to address: the biomonitoring of nerve agent exposure; agent detection limits in foods and milk; and permeation of agents through porous construction materials.

  19. Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents

    SciTech Connect (OSTI)

    Stengl, Vaclav; Houskova, Vendula; Bakardjieva, Snejana; Murafa, Nataliya; Marikova, Monika; Oplustil, Frantisek; Nemec, Tomas

    2010-11-15

    Zirconium doped nano dispersive oxides of Fe, Al and Zn were prepared by a homogeneous hydrolysis of the respective sulfate salts with urea in aqueous solutions. Synthesized metal oxide hydroxides were characterized using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). These oxides were taken for an experimental evaluation of their reactivity with sulfur mustard (HD or bis(2-chloroethyl)sulfide), soman (GD or (3,3'-Dimethylbutan-2-yl)-methylphosphonofluoridate) and VX agent (S-[2-(diisopropylamino)ethyl]-O-ethyl-methylphosphonothionate). The presence of Zr{sup 4+} dopant can increase both the surface area and the surface hydroxylation of the resulting doped oxides, decreases their crystallites' sizes thereby it may contribute in enabling the substrate adsorption at the oxide surface thus it can accelerate the rate of degradation of warfare agents. Addition of Zr{sup 4+} converts the product of the reaction of ferric sulphate with urea from ferrihydrite to goethite. We found out that doped oxo-hydroxides Zr-FeO(OH) - being prepared by a homogeneous hydrolysis of ferric and zirconium oxo-sulfates mixture in aqueous solutions - exhibit a comparatively higher degradation activity towards chemical warfare agents (CWAs). Degradation of soman or VX agent on Zr-doped FeO(OH) containing ca. 8.3 wt.% of zirconium proceeded to completion within 30 min.

  20. Sulforaphane induces phase II detoxication enzymes in mouse skin and prevents mutagenesis induced by a mustard gas analog

    SciTech Connect (OSTI)

    Abel, E.L.; Boulware, S.; Fields, T.; McIvor, E.; Powell, K.L.; DiGiovanni, J.; Vasquez, K.M.; MacLeod, M.C.

    2013-02-01

    Mustard gas, used in chemical warfare since 1917, is a mutagenic and carcinogenic agent that produces severe dermal lesions for which there are no effective therapeutics; it is currently seen as a potential terrorist threat to civilian populations. Sulforaphane, found in cruciferous vegetables, is known to induce enzymes that detoxify compounds such as the sulfur mustards that react through electrophilic intermediates. Here, we observe that a single topical treatment with sulforaphane induces mouse epidermal levels of the regulatory subunit of glutamate-cysteine ligase, the rate-limiting enzyme in glutathione biosynthesis, and also increases epidermal levels of reduced glutathione. Furthermore, a glutathione S-transferase, GSTA4, is also induced in mouse skin by sulforaphane. In an in vivo model in which mice are given a single mutagenic application of the sulfur mustard analog 2-(chloroethyl) ethyl sulfide (CEES), we now show that therapeutic treatment with sulforaphane abolishes the CEES-induced increase in mutation frequency in the skin, measured four days after exposure. Sulforaphane, a natural product currently in clinical trials, shows promise as an effective therapeutic against mustard gas. -- Highlights: ► Sulforaphane induces increased levels of glutathione in mouse skin. ► Sulforaphane induces increased levels of GSTA4 in mouse skin. ► Sulforaphane, applied after CEES-treatment, completely abolishes CEES-mutagenesis. ► The therapeutic effect may suggest a long biological half-life for CEES in vivo.

  1. Next Generation Non-particulate Dry Nonwoven Pad for Chemical Warfare Agent Decontamination

    SciTech Connect (OSTI)

    Ramkumar, S S; Love, A; Sata, U R; Koester, C J; Smith, W J; Keating, G A; Hobbs, L; Cox, S B; Lagna, W M; Kendall, R J

    2008-05-01

    New, non-particulate decontamination materials promise to reduce both military and civilian casualties by enabling individuals to decontaminate themselves and their equipment within minutes of exposure to chemical warfare agents or other toxic materials. One of the most promising new materials has been developed using a needlepunching nonwoven process to construct a novel and non-particulate composite fabric of multiple layers, including an inner layer of activated carbon fabric, which is well-suited for the decontamination of both personnel and equipment. This paper describes the development of a composite nonwoven pad and compares efficacy test results for this pad with results from testing other decontamination systems. The efficacy of the dry nonwoven fabric pad was demonstrated specifically for decontamination of the chemical warfare blister agent bis(2-chloroethyl)sulfide (H or sulfur mustard). GC/MS results indicate that the composite fabric was capable of significantly reducing the vapor hazard from mustard liquid absorbed into the nonwoven dry fabric pad. The mustard adsorption efficiency of the nonwoven pad was significantly higher than particulate activated carbon (p=0.041) and was similar to the currently fielded US military M291 kit (p=0.952). The nonwoven pad has several advantages over other materials, especially its non-particulate, yet flexible, construction. This composite fabric was also shown to be chemically compatible with potential toxic and hazardous liquids, which span a range of hydrophilic and hydrophobic chemicals, including a concentrated acid, an organic solvent and a mild oxidant, bleach.

  2. DOE Tour of Zero: The Illinois First Zero Energy Custom by Evolutionar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    helps this home comply with the EPA Indoor airPLUS guidelines for a healthier indoor environment. 4 of 9 Ultra-efficient triple-pane windows include insulated vinyl frames and...

  3. Colloidal polypyrrole

    DOE Patents [OSTI]

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized aromatic heterocyclic monomer, a stabilizing effective amount of a vinyl pyridine-containing polymer and dopant anions and a method of preparing such polymer compositions are disclosed.

  4. Ferroelectric PLZT thick films grown by poly(1-vinylpyrrolidone...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PLZT thick films grown by poly(1-vinylpyrrolidone-co-vinyl acetate) (PVPVA)-modified sol-gel process Title Ferroelectric PLZT thick films grown by poly(1-vinylpyrrolidone-co-vi...

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... R VCE is an ethylenevinyl acetatevinyl alcohol terpolymer binder for filled elastomers ... 34.9 and 37.9%, while the vinyl alcohol content is typically between 1.27 and 1.78%. ...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    R VCE is an ethylenevinyl acetatevinyl alcohol terpolymer binder for filled elastomers ... 34.9 and 37.9%, while the vinyl alcohol content is typically between 1.27 and 1.78%. ...

  7. Aging Studies of VCE Dismantlement Returns (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    VCE is an ethylenevinyl acetatevinyl alcohol terpolymer binder for filled elastomers ... 34.9 and 37.9%, while the vinyl alcohol content is typically between 1.27 and 1.78%. ...

  8. Nonaqueous composition for slip casting or cold forming refractory material into solid shapes

    SciTech Connect (OSTI)

    Montgomery, L.C.

    1993-08-24

    A composition is described for slip casting or cold forming non-oxide refractory material(s) into solid shape comprising finely divided solid refractory materials selected from the group consisting of metal boride, refractory carbide, nitride, silicide and a refractory metal of tungsten, molybdenum, tantalum and chromium suspended in a nonaqueous liquid slip composition consisting essentially of a deflocculent composed of a vinyl chloride-vinyl acetate resin dissolved in an organic solvent.

  9. Treatment of addiction and addiction-related behavior

    DOE Patents [OSTI]

    Dewey, Stephen L.; Brodie, Jonathan D.; Ashby, Jr., Charles R.

    2000-01-01

    The present invention provides a highly efficient method for treating substance addiction and for changing addiction-related behavior of a primate suffering from substance addiction. The method includes administering to a primate an effective amount of a pharmaceutical composition including gamma vinylGABA. The present invention also provides a method of treatment of nicotine addiction by treating a patient with an effective amount of a composition including gamma vinylGABA.

  10. Acidic Ion Exchange Membrane - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Acidic Ion Exchange Membrane Colorado School of Mines Contact CSM About This Technology Technology Marketing SummaryIn this invention we report the synthesis of a copolymer of vinyl phosphonic acid (VPA) and vinyl zirconium phosphorous (VZP) acid has been achieved for the production of ion exchange membranes. DescriptionCharacterization of the membrane has been accomplished using a

  11. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    SciTech Connect (OSTI)

    Sunil, Vasanthi R.; Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS ?/? mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS ?/? mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS ?/? mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS ?/? mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS ?/? mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ? Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ? RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ? iNOS ?/? mice are protected from CEES-induced lung toxicity and altered lung functioning.

  12. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    SciTech Connect (OSTI)

    Chang, Yoke-Chen; Wang, James D.; Svoboda, Kathy K.; Casillas, Robert P.; Laskin, Jeffrey D.; Gordon, Marion K.; Gerecke, Donald R.

    2013-04-15

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin ?2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin ?2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin ?2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. - Highlights: ? We demonstrated ER stress response in the mouse ear vesicant model. ? We described the asymmetrical nature of wound repair in the MEVM. ? We identified the distribution of various ER stress markers in the MEVM.

  13. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    SciTech Connect (OSTI)

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J.; Agarwal, Chapla; White, Carl W.; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of silibinin against SM-induced skin injury.

  14. Tissue factor pathway inhibitor prevents airway obstruction, respiratory failure and death due to sulfur mustard analog inhalation

    SciTech Connect (OSTI)

    Rancourt, Raymond C. Veress, Livia A. Ahmad, Aftab Hendry-Hofer, Tara B. Rioux, Jacqueline S. Garlick, Rhonda B. White, Carl W.

    2013-10-01

    Sulfur mustard (SM) inhalation causes airway injury, with enhanced vascular permeability, coagulation, and airway obstruction. The objective of this study was to determine whether recombinant tissue factor pathway inhibitor (TFPI) could inhibit this pathogenic sequence. Methods: Rats were exposed to the SM analog 2-chloroethyl ethyl sulfide (CEES) via nose-only aerosol inhalation. One hour later, TFPI (1.5 mg/kg) in vehicle, or vehicle alone, was instilled into the trachea. Arterial O{sub 2} saturation was monitored using pulse oximetry. Twelve hours after exposure, animals were euthanized and bronchoalveolar lavage fluid (BALF) and plasma were analyzed for prothrombin, thrombinantithrombin complex (TAT), active plasminogen activator inhibitor-1 (PAI-1) levels, and fluid fibrinolytic capacity. Lung steady-state PAI-1 mRNA was measured by RT-PCR analysis. Airway-capillary leak was estimated by BALF protein and IgM, and by pleural fluid measurement. In additional animals, airway cast formation was assessed by microdissection and immunohistochemical detection of airway fibrin. Results: Airway obstruction in the form of fibrin-containing casts was evident in central conducting airways of rats receiving CEES. TFPI decreased cast formation, and limited severe hypoxemia. Findings of reduced prothrombin consumption, and lower TAT complexes in BALF, demonstrated that TFPI acted to limit thrombin activation in airways. TFPI, however, did not appreciably affect CEES-induced airway protein leak, PAI-1 mRNA induction, or inhibition of the fibrinolytic activity present in airway surface liquid. Conclusions: Intratracheal administration of TFPI limits airway obstruction, improves gas exchange, and prevents mortality in rats with sulfur mustard-analog-induced acute lung injury. - Highlights: TFPI administration to rats after mustard inhalation reduces airway cast formation. Inhibition of thrombin activation is the likely mechanism for limiting casts. Rats given TFPI had improved tissue oxygenation, and mortality was prevented.

  15. Carbon Film Electrodes For Super Capacitor Applications

    DOE Patents [OSTI]

    Tan, Ming X.

    1999-07-20

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  16. Method for making carbon films

    DOE Patents [OSTI]

    Tan, Ming X.

    1999-01-01

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  17. Method for making carbon films

    DOE Patents [OSTI]

    Tan, M.X.

    1999-07-29

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

  18. Effect of ignition conditions on upward flame spread on a composite material in a corner configuration

    SciTech Connect (OSTI)

    Ohlemiller, T.; Cleary, T.; Shields, J.

    1996-12-31

    This paper focuses on the issue of fire growth on composite materials beyond the region immediately subjected to an ignition source. Suppression of this growth is one of the key issues in realizing the safe usage of composite structural materials. A vinyl ester/glass composite was tested in the form of a 90{degrees} comer configuration with an inert ceiling segment 2.44 m above the top of the fire source. The igniter was a propane burner, either 23 or 38 cm in width with power output varied from 30 to 150 Kw. Upward flame spread rate and heat release rate were measured mainly for a brominated vinyl ester resin but limited results were also obtained for a non-flame retarded vinyl ester and a similar composite coated with an intumescent paint. Rapid fire growth beyond the igniter region was seen for the largest igniter power case; the intumescent coating successfully prevented fire growth for this case.

  19. Treatment of addiction and addiction-related behavior

    DOE Patents [OSTI]

    Dewey, Stephen L.; Brodie, Jonathan D.; Ashby, Jr., Charles R.

    2004-12-07

    The present invention provides a highly efficient method for treating substance addiction and for changing addiction-related behavior of a mammal suffering from substance addiction. The method includes administering to a mammal an effective amount of gamma vinylGABA or a pharmaceutically acceptable salt thereof. The present invention also provides a method of treatment of cocaine, morphine, heroin, nicotine, amphetamine, methamphetamine, or ethanol addiction by treating a mammal with an effective amount of gamma vinylGABA or a pharmaceutically acceptable salt thereof.

  20. Surface-functionalized mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Gorka, Joanna; Mayes, Richard T.

    2016-02-02

    A functionalized mesoporous carbon composition comprising a mesoporous carbon scaffold having mesopores in which polyvinyl polymer grafts are covalently attached, wherein said mesopores have a size of at least 2 nm and up to 50 nm. Also described is a method for producing the functionalized mesoporous composition, wherein a reaction medium comprising a precursor mesoporous carbon, vinyl monomer, initiator, and solvent is subjected to sonication of sufficient power to result in grafting and polymerization of the vinyl monomer into mesopores of the precursor mesoporous carbon. Also described are methods for using the functionalized mesoporous carbon, particularly in extracting metal ions from metal-containing solutions.

  1. Process for radiation grafting hydrogels onto organic polymeric substrates

    DOE Patents [OSTI]

    Ratner, Buddy D.; Hoffman, Allan S.

    1976-01-01

    An improved process for radiation grafting of hydrogels onto organic polymeric substrates is provided comprising the steps of incorporating an effective amount of cupric or ferric ions in an aqueous graft solution consisting of N-vinyl-2 - pyrrolidone or mixture of N-vinyl-2 - pyrrolidone and other monomers, e.g., 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, propylene glycol acrylate, acrylamide, methacrylic acid and methacrylamide, immersing an organic polymeric substrate in the aqueous graft solution and thereafter subjecting the contacted substrate with ionizing radiation.

  2. Passivation-free solid state battery

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M.; Peramunage, Dharmasena

    1998-01-01

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li.sub.4 Ti.sub.5 O.sub.12 anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn.sub.2 O.sub.4, LiCoO.sub.2, LiNiO.sub.2 and LiV.sub.2 O.sub.5 and their derivatives.

  3. In-situ stabilization of radioactive zirconium swarf

    DOE Patents [OSTI]

    Hess, Clay C.

    1999-01-01

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes.

  4. Separation of gases through gas enrichment membrane composites

    DOE Patents [OSTI]

    Swedo, Raymond J.; Kurek, Paul R.

    1988-01-01

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  5. Separation of gases through gas enrichment membrane composites

    DOE Patents [OSTI]

    Swedo, R.J.; Kurek, P.R.

    1988-07-19

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  6. Passivation-free solid state battery

    DOE Patents [OSTI]

    Abraham, K.M.; Peramunage, D.

    1998-06-16

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li{sub 4}Ti{sub 5}O{sub 12} anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn{sub 2}O{sub 4}, LiCoO{sub 2}, LiNiO{sub 2} and LiV{sub 2}O{sub 5} and their derivatives. 5 figs.

  7. In-situ stabilization of radioactive zirconium swarf

    DOE Patents [OSTI]

    Hess, C.C.

    1999-08-31

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes. 6 figs.

  8. Accelerated Leach Test(s) Program: Annual report

    SciTech Connect (OSTI)

    Dougherty, D.R.; Pietrzak, R.F.; Fuhrmann, M.; Colombo, P.

    1986-09-01

    A computerized data base of LLW leaching data has been developed. Long-term tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms containing simulated wastes are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms.

  9. Treatment for obsessive-compulsive disorder (OCD) and OCD-related disorders using GVG

    DOE Patents [OSTI]

    Dewey, Stephen L.; Brodie, Jonathan D.; Ashby, Jr., Charles R.

    2002-01-01

    The present invention relates to the use of gamma vinyl-GABA (GVG) to treat obsessive-compulsive disorder (OCD) and OCD-related disorders, and to reduce or eliminate behaviors associated with obsessive-compulsive disorder (OCD) and OCD-related disorders.

  10. Prevention of addiction in pain management

    DOE Patents [OSTI]

    Dewey, Stephen L.; Brodie, Jonathan D.; Ashby, Jr., Charles R.

    2005-09-06

    The present invention provides a composition for treating pain. The composition includes a pharmaceutically acceptable analgesic and a GABAergic agent, such as gamma vinyl GABA, effective in reducing or eliminating the addictive liability of the analgesic. The invention also includes a method for reducing or eliminating the addictive

  11. High temperature polymer concrete

    DOE Patents [OSTI]

    Fontana, J.J.; Reams, W.

    1984-05-29

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system.

  12. Nonaqueous polypyrrole colloids

    DOE Patents [OSTI]

    Armes, Steven P. (Los Alamos, NM); Aldissi, Mahmoud (Santa Fe, NM)

    1991-01-01

    Processable conductive polymers including an oxidized, polymerized aromatic heterocyclic monomer, e.g., pyrrole, an stabilizing effective amount of a poly(vinyl acetate) and dopant anions, and a process of preparing said processable conductive polymers directly in a nonaqueous medium such as methyl acetate, methyl formate, ethyl formate, and propyl formate are disclosed.

  13. Carbon nanotube composite materials

    DOE Patents [OSTI]

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  14. Polymerizable 2(2-hydroxynaphthyl)2H-benzotriazole compounds

    DOE Patents [OSTI]

    Gomez, P.M.; Neidlinger, H.H.

    1991-07-16

    Benzotriazole compounds having the formula: ##STR1## wherein R.sub.1 is H, Cl, or OCH.sub.3 ; R.sub.2 is a hydroxynaphthyl group; and R.sub.3 is a vinyl unsaturated polymerizable group. Homopolymers or copolymers thereof are effective as UV light stabilizers and absorbers.

  15. Polymerizable 2(2-hydroxynaphthyl)2H-benzotriazole compounds

    DOE Patents [OSTI]

    Gomez, Peter M.; Neidlinger, Hermann H.

    1991-01-01

    Benzotriazole compounds having the formula: ##STR1## wherein R.sub.1 is H, Cl, or OCH.sub.3 ; R.sub.2 is a hydroxynaphthyl group; and R.sub.3 is a vinyl unsaturated polymerizable group. Homopolymers or copolymers thereof are effective as UV light stabilizers and absorbers.

  16. Radioiodinated glucose analogues for use as imaging agents

    DOE Patents [OSTI]

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1988-01-01

    A radioiodinated branched carbohydrate for tissue imaging. Iodine-123 is stabilized in the compound by attaching it to a vinyl functional group that is on the carbohydrate. The compound exhibits good uptake and retention and is promising in the development of radiopharmaceuticals for brain, heart and tumor imaging.

  17. Radioiodinated branched carbohydrates

    DOE Patents [OSTI]

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1989-01-01

    A radioiodinated branched carbohydrate for tissue imaging. Iodine-123 is stabilized in the compound by attaching it to a vinyl functional group that is on the carbohydrate. The compound exhibits good uptake and retention and is promising in the development of radiopharmaceuticals for brain, heart and tumor imaging.

  18. Buildings Energy Data Book: 2.6 Residential Home Improvement

    Buildings Energy Data Book [EERE]

    6 2010-2011 National Professional Remodeling Cost and Amount Recouped in Resale Value Envelope Siding Replacement - Vinyl 11.4 8.2 72% Window Replacement - Vinyl 11.1 7.9 72% Window Replacement - Wood 12.0 8.7 72% Roofing Replacement 21.5 12.8 60% Entry Door Replacement - Fiberglass 3.6 2.1 60% Entry Door Replacement - Steel 1.2 1.2 102% Remodel Minor Kitchen Remodel 21.7 15.8 73% Major Kitchen Remodel 58.4 40.1 69% Bathroom Remodel 16.6 10.7 64% Attic Bedroom Remodel 51.4 37.1 72% Basement

  19. High temperature chemically resistant polymer concrete

    DOE Patents [OSTI]

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  20. The glass transition temperature of glassy polymers using dynamic mechanical analysis

    SciTech Connect (OSTI)

    Rodriguez, E.L.

    1994-09-01

    Dynamic Mechanical Analysis (DMA) is presented for four glassy polymers. Poly(vinyl acetate), poly(vinyl chloride), poly(styrene), and poly(carbonate) were studied as a function of the heating rate using ramp and step heating programs and a constant frequency of 1 Hz. The effect of frequency on the dynamic mechanical parameters was also examined from 0.01 Hz to 10 Hz. The dynamic elastic storage modulus (E{double_prime}), the dynamic elastic loss modulus (E{double_prime}) and the tan{delta} (E{double_prime}/E{prime}) were affected by both the heating rate and the frequency. Apparent activation energies for the glass transition were also determined for the four polymers which were in the range from 98 of 194 kcal/mol.

  1. Radiation-hardened polymeric films

    DOE Patents [OSTI]

    Arnold, C. Jr.; Hughes, R.C.; Kepler, R.G.; Kurtz, S.R.

    1984-07-16

    The radiation-induced conductivity of polymeric dielectrics with low electronic mobility is reduced by doping with electron donor or electron acceptor compounds at a level of 10/sup 15/ to 10/sup 21/ molecules of dopant/cm/sup 3/. Polyesters, polyolefins, perfluoropolyolefins, vinyl polymers, vinylidene polymers, polycarbonates, polysulfones and polyimides can benefit from such a treatment. Usable dopants include 2,4,7-trinitro-9-fluorenone, tetracyanethylene, 7,7,8,8-tetracyanoquinodimethane, m-dinitrobenzene, 2-isopropylcarbazole, and triphenylamine.

  2. Neutron absorbing room temperature vulcanizable silicone rubber compositions

    DOE Patents [OSTI]

    Zoch, Harold L.

    1979-11-27

    A neutron absorbing composition comprising a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide.

  3. X-ray Photoelectron Spectroscopy study of the compatibility of the explosive PETN with candidate plastic bonding materials

    SciTech Connect (OSTI)

    Vannet, M.D.; Wang, P.S.; Moddeman, W.E.; Bowling, W.C.

    1985-01-01

    The compatibility of the explosive PETN with two plastic bonding materials, ethyl cellulose and a halogenated vinyl polymer (FPC 461), was determined by X-ray Photoelectron Spectroscopy (XPS). Both were found to coat the PETN crystals, and no change in chemical composition was found in the PETN or the plastic due to either the process or their mutual presence. 3 refs., 1 fig., 1 tab.

  4. Treatment of addiction and addiction-related behavior

    DOE Patents [OSTI]

    Dewey, Stephen L.; Brodie, Jonathan D.; Ashby, Jr., Charles R.

    2003-07-15

    The present invention provides a method for changing addiction-related behavior of a mammal suffering from addiction to a combination of abused drugs. The method includes administering to the mammal an effective amount of gamma vinylGABA (GVG) or a pharmaceutically acceptable salt thereof, or an enantiomer or a racemic mixture thereof, wherein the effective amount is sufficient to diminish, inhibit or eliminate behavior associated with craving or use of the combination of abused drugs.

  5. Treatment of PCP addiction and PCP addiction-related behavior

    DOE Patents [OSTI]

    Dewey, Stephen L.; Brodie, Jonathan D.; Ashby, Jr., Charles R.

    2002-01-01

    The present invention provides a method for changing addiction-related behavior of a mammal suffering from addiction to phencyclidine (PCP). The method includes administering to the mammal an effective amount of gamma vinylGABA (GVG) or a pharmaceutically acceptable salt thereof, or an enantiomer or a racemic mixture thereof, wherein the effective amount is sufficient to diminish, inhibit or eliminate behavior associated with craving or use of PCP.

  6. Cyanoethylated compounds as additives in lithium/lithium batteries

    DOE Patents [OSTI]

    Nagasubramanian, Ganesan

    1999-01-01

    The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

  7. Neutron Absorbing Alloys

    DOE Patents [OSTI]

    Zhong, Yuanzhen , Parikh, Hemant; Smith, Terry E.

    2002-05-28

    A process for making homogeneous copolymers of vinylpyrrolidone (VP) and vinyl acetate (VA) which form clear aqueous solutions and have high cloud points. The process involves precharging VP and VA monomers in a predetermined ratio, and then feeding VP and VA at a predetermined rate, the ratio of the components in the initial charge and the feeding rates for the monomer being selected in accordance with the reactivity rates of the monomers towards copolymerization as opposed to homopolymerization.

  8. Composite bipolar plate for electrochemical cells

    DOE Patents [OSTI]

    Wilson, Mahlon S.; Busick, Deanna N.

    2001-01-01

    A bipolar separator plate for fuel cells consists of a molded mixture of a vinyl ester resin and graphite powder. The plate serves as a current collector and may contain fluid flow fields for the distribution of reactant gases. The material is inexpensive, electrically conductive, lightweight, strong, corrosion resistant, easily mass produced, and relatively impermeable to hydrogen gas. The addition of certain fiber reinforcements and other additives can improve the properties of the composite material without significantly increasing its overall cost.

  9. Techniques and Technologies for Field Detection of Asbestos Containing

    Energy Savers [EERE]

    Materials | Department of Energy Techniques and Technologies for Field Detection of Asbestos Containing Materials Techniques and Technologies for Field Detection of Asbestos Containing Materials Asbestos has been used in numerous applications at DOE sites including sprayed-on fireproofing, asphalt and vinyl floor tile, and asbestos-cement (transite) siding. PDF icon Techniques and Technologies for Field Detection of Asbestos Containing Materials More Documents & Publications Chemical and

  10. Microbial based chlorinated ethene destruction

    DOE Patents [OSTI]

    Bagwell, Christopher E.; Freedman, David L.; Brigmon, Robin L.; Bratt, William B.; Wood, Elizabeth A.

    2009-11-10

    A mixed culture of Dehalococcoides species is provided that has an ability to catalyze the complete dechlorination of polychlorinated ethenes such as PCE, TCE, cDCE, 1,1-DCE and vinyl chloride as well as halogenated ethanes such as 1,2-DCA and EDB. The mixed culture demonstrates the ability to achieve dechlorination even in the presence of high source concentrations of chlorinated ethenes.

  11. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  12. Biomimetic hydrogel materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  13. Biomimetic Hydrogel Materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn , Mukkamala, Ravindranath , Chen, Oing , Hu, Hopin , Baude, Dominique

    2003-04-22

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  14. Radiation-hardened polymeric films

    DOE Patents [OSTI]

    Arnold, Jr., Charles; Hughes, Robert C.; Kepler, R. Glen; Kurtz, Steven R.

    1986-01-01

    The radiation-induced conductivity of polymeric dielectrics with low electronic mobility is reduced by doping with electron donor or electron acceptor compounds at a level of 10.sup.15 to 10.sup.21 molecules of dopant/cm.sup.3. Polyesters, polyolefins, perfluoropolyolefins, vinyl polymers, vinylidene polymers, polycarbonates, polysulfones and polyimides can benefit from such a treatment. Usable dopants include 2,4,7-trinitro-9-fluorenone, tetracyanethylene, 7,7,8,8-tetracyanoquinodimethane, m-dinitrobenzene, 2-isopropylcarbazole, and triphenylamine.

  15. Method of making carbon nanotube composite materials

    DOE Patents [OSTI]

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  16. CuC1 thermochemical cycle for hydrogen production

    DOE Patents [OSTI]

    Fan, Qinbai; Liu, Renxuan

    2012-01-03

    An electrochemical cell for producing copper having a dense graphite anode electrode and a dense graphite cathode electrode disposed in a CuCl solution. An anion exchange membrane made of poly(ethylene vinyl alcohol) and polyethylenimine cross-linked with a cross-linking agent selected from the group consisting of acetone, formaldehyde, glyoxal, glutaraldehyde, and mixtures thereof is disposed between the two electrodes.

  17. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  18. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  19. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  20. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  1. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  2. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  3. Solgel auto-combustion synthesis of PVP/CoFe{sub 2}O{sub 4} nanocomposite and its magnetic characterization

    SciTech Connect (OSTI)

    Kurtan, U.; Topkaya, R.; Baykal, A.

    2013-11-15

    Graphical abstract: - Highlights: The Poly(vinyl pyrrolidone) (PVP) was used as a surface capping agent. PVP/CoFe{sub 2}O{sub 4} nanocomposite was synthesized by a sol-gel auto-combustion method. The existence of the spin-disordered surface layer was established. - Abstract: Poly(vinyl pyrrolidone)/CoFe{sub 2}O{sub 4} nanocomposite has been fabricated by a solgel auto-combustion method. Poly(vinyl pyrrolidone) was used as a reducing agent as well as a surface capping agent to prevent particle aggregation and stabilize the particles. The average crystallite size estimated from X-ray line profile fitting was found to be 20 7 nm. The high field irreversibility and unsaturated magnetization behaviours indicate the presence of the coreshell structure in the sample. The exchange bias effect observed at 10 K suggests the existence of the magnetically aligned core surrounded by spin-disordered surface layer. The reduced remanent magnetization value of 0.6 at 10 K (higher than the theoretical value of 0.5) shows the PVP/CoFe{sub 2}O{sub 4} nanocomposite to have cubic magnetocrystalline anisotropy according to the StonerWohlfarth model.

  4. Recovery Efficiency, False Negative Rate, and Limit of Detection Performance of a Validated Macrofoam-Swab Sampling Method with Low Surface Concentrations of Two Bacillus anthracis Surrogates

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Hutchison, Janine R.; Deatherage Kaiser, Brooke L; Amidan, Brett G.; Sydor, Michael A.; Barrett, Christopher A.

    2015-03-31

    The performance of a macrofoam-swab sampling method was evaluated using Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus Nakamura (BG) spores applied at nine low target amounts (2-500 spores) to positive-control plates and test coupons (2 in. × 2 in.) of four surface materials (glass, stainless steel, vinyl tile, and plastic). Test results from cultured samples were used to evaluate the effects of surrogate, surface concentration, and surface material on recovery efficiency (RE), false negative rate (FNR), and limit of detection. For RE, surrogate and surface material had statistically significant effects, but concentration did not. Mean REs were the lowest for vinyl tile (50.8% with BAS, 40.2% with BG) and the highest for glass (92.8% with BAS, 71.4% with BG). FNR values ranged from 0 to 0.833 for BAS and 0 to 0.806 for BG, with values increasing as concentration decreased in the range tested (0.078 to 19.375 CFU/cm2, where CFU denotes ‘colony forming units’). Surface material also had a statistically significant effect. A FNR-concentration curve was fit for each combination of surrogate and surface material. For both surrogates, the FNR curves tended to be the lowest for glass and highest for vinyl title. The FNR curves for BG tended to be higher than for BAS at lower concentrations, especially for glass. Results using a modified Rapid Viability-Polymerase Chain Reaction (mRV-PCR) analysis method were also obtained. The mRV-PCR results and comparisons to the culture results will be discussed in a subsequent report.

  5. Method for detecting trace impurities in gases

    DOE Patents [OSTI]

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1981-01-01

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (.about.2 ppm) present in commercial Xe and ppm levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  6. Method for detecting trace impurities in gases

    DOE Patents [OSTI]

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  7. Buildings Energy Data Book: 1.4 Environmental Data

    Buildings Energy Data Book [EERE]

    3 "Typical" Construction Waste Estimated for a 2,000-Square-Foot Home (1) Material Solid Sawn Wood 20% 6 Engineered Wood 18% 5 Drywall 25% 6 Cardboard (OCC) 8% 20 Metals 2% 1 Vinyl (PVC) (3) 2% 1 Masonry (4) 13% 1 Hazardous Materials 1% - Other 13% 11 Total (5) 100% 50 Note(s): Source(s): 1) See Table 2.2.7 for materials used in the construction of a new single-family home. 2) Volumes are highly variable due to compressibility and captured air space in waste materials. 3) Assuming 3

  8. Buildings Energy Data Book: 1.6 Embodied Energy of Building Assemblies

    Buildings Energy Data Book [EERE]

    1 Embodied Energy of Commercial Windows in the U.S. Embodied Energy CO2 Equivalent Window Type (MMBtu/SF) (1) Emissions (lbs/SF) Aluminium 0.973 190.1 PVC-clad Wood 0.447 88.3 Wood 0.435 90.9 Vinyl (PVC) 0.557 111.7 Curtainwall Viewable Glazing 0.233 66.1 Note(s): Source(s): 1) Embodied Energy: Energy use includes extraction, processing, transportation, construction, and disposal of each material. Assumptions: Low rise building. Values are general estimations for the U.S. 60 year building

  9. Radiation-induced grafting of sulfonates on polyethylene

    SciTech Connect (OSTI)

    Shkolnik, S.; Behar, D.

    1982-06-01

    Indirect methods for introducing sulfonate groups into polyethylene, using the preirradiation technique, were studied. One of the methods involved graft polymerization of 2,3-epoxypropylacrylate into polyethylene followed by sulfonation of the epoxy ring with bisulfite. The hydroxy sulfonate thus obtained was unstable in an acid or base environment and hydrolyzed at the esteric bond. The second method involved hydrophylization of the polyethylene by forming a pregraft of polyacrylic acid or polyvinyl alcohol, followed by preirradiation grafting with sodium styrene sulfonate or, less successfully, with sodium vinyl sulfonate. The sulfonates thus obtained were resistant to acids and bases. The acid capacity, water absorption, and water permeability of the grafted films were determined.

  10. Fume Hood Sash Stickers Increases Laboratory Safety and Efficiency at Minimal Cost

    Energy Savers [EERE]

    confused by labels placed at 18 inches that say "Place Sash here for Maximum Safety." The authors of these labels have confused "maximum" and "minimum", not realizing that a hood is least safe when fully open. A Basic Solution To address the confusion at the University of California, a lab manager and a hood safety specialist designed a bold vinyl sticker to attach on the exterior sidewall of a fume hood (Figure 1). The sticker cleverly uses the ubiquitous traffc

  11. Cyclotron Road: Visolis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepak Dugar, Co-founder, Visolis 2 MIT (MS, MBA, PhD, Chemical Engg.) IIT Delhi (B.Tech, M.Tech, Biochemcial Engg.) Master's thesis: Algal photo-bioreactor design PhD thesis: High octane biofuels (Prof. Greg Stephanopoulos) Gourav Enterprises 3 Visolis is a platform technology for cost competitive production of bio- products Fuel Additives &Structural Materials $100B+ Specialty Chemicals & Polymers $20B Isoprene $ 3B  Drop-in products: Methyl isopropyl ketone (MIPK), Methyl vinyl

  12. High temperature polymer concrete compositions

    DOE Patents [OSTI]

    Fontana, Jack J.; Reams, Walter

    1985-01-01

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system. A preferred formulation emphasizing the major necessary components is as follows: ______________________________________ Component A: Silica sand 60-77 wt. % Silica flour 5-10 wt. % Portland cement 15-25 wt. % Acrylamide 1-5 wt. % Component B: Styrene 50-60 wt. % Trimethylolpropane 35-40 wt. % trimethacrylate ______________________________________ and necessary initiators, accelerators, and surfactants.

  13. Polystyrene-poly(vinylphenol) copolymers as compatibilzers for organic-inorganic composites

    SciTech Connect (OSTI)

    Landry, C.J.T.; Coltrain, B.K.; Teegarden, D.M.

    1996-12-31

    Random, graft, and block copolymers of polystyrene (PS) and poly(4-vinylphenol) (PVPh), and PVPh homopolymer are shown to act as compatibilizers for incompatible organic-inorganic composite materials. The VPh component reacts, or interacts strongly with the polymerizing inorganic (titanium or zirconium) alkoxide. The organic components studied were PS, poly(vinyl methyl ether), and poly(styrene-co-acrylonitrile). The use of such compatibilizers provides a means of combining in situ polymerized inorganic oxides and hydrophobic polymers. This is seen as a reduction in the size of the dispersed inorganic phase and results in improved optical and mechanical properties.

  14. Method for controlling clathrate hydrates in fluid systems

    DOE Patents [OSTI]

    Sloan, Jr., Earle D.

    1995-01-01

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member and/or six member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone.

  15. Electrically controlled polymeric gel actuators

    DOE Patents [OSTI]

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  16. Electrically controlled polymeric gel actuators

    DOE Patents [OSTI]

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  17. Superfund Record of Decision (EPA Region 7): Des Moines TCE Site, Operable Unit 3, Des Moines, IA. (Second remedial action), September 1992. Final report

    SciTech Connect (OSTI)

    Not Available

    1992-09-18

    The Des Moines TCE site is located southwest of downtown Des Moines, Polk County, Iowa. Land use in the area is predominantly industrial and commercial, and part of the site lies within the floodplain of the Raccoon River. Water from the Des Moines Water Works north infiltration gallery was found to be contaminated with trichloroethylene (TCE), dichloroethylene (DCE), and vinyl chloride at levels above accepted drinking water standards. The ROD addresses OU3, which encompasses potential sources of ground water contamination in an area north of the Raccoon River. The selected remedial action for OU3 includes no action with periodic groundwater monitoring.

  18. Nanopatterns by phase separation of patterned mixed polymer monolayers

    DOE Patents [OSTI]

    Huber, Dale L; Frischknecht, Amalie

    2014-02-18

    Micron-size and sub-micron-size patterns on a substrate can direct the self-assembly of surface-bonded mixed polymer brushes to create nanoscale patterns in the phase-separated mixed polymer brush. The larger scale features, or patterns, can be defined by a variety of lithographic techniques, as well as other physical and chemical processes including but not limited to etching, grinding, and polishing. The polymer brushes preferably comprise vinyl polymers, such as polystyrene and poly(methyl methacrylate).

  19. Decomposition of chlorinated ethylenes and ethanes in an electron beam generated plasma reactor

    SciTech Connect (OSTI)

    Vitale, S.A.

    1996-02-01

    An electron beam generated plasma reactor (EBGPR) is used to determine the plasma chemistry kinetics, energetics and decomposition pathways of six chlorinated ethylenes and ethanes: 1,1,1-trichloroethane, 1,1-dichloroethane, ethyl chloride, trichloroethylene, 1,1-dichloroethylene, and vinyl chloride. A traditional chemical kinetic and chemical engineering analysis of the data from the EBGPR is performed, and the following hypothesis was verified: The specific energy required for chlorinated VOC decomposition in the electron beam generated plasma reactor is determined by the electron attachment coefficient of the VOC and the susceptibility of the molecule to radical attack. The technology was demonstrated at the Hanford Reservation to remove VOCs from soils.

  20. New Barrier Coating Materials for PV Module Backsheets: Preprint

    SciTech Connect (OSTI)

    Barber, G. D.; Jorgensen, G. J.; Terwilliger, K.; Glick, S. H.; Pern, J.; McMahon, T. J.

    2002-05-01

    This conference paper describes the high moisture barrier high resistivity coatings on polyethylene terepthalate (PET) have been fabricated and characterized for use in PV module back sheet applications. These thin film barriers exhibit water vapor transmission rates (WVTR) as low as 0.1 g/m2-day at 37.8 C and have shown excellent adhesion (> 10 N/mm) to both ethylene vinyl acetate (EVA) and PET even after filtered xenon arc lamp UV exposure. The WVTR and adhesion values for this construction are compared to and shown to be superior to candidate polymeric backsheet materials.

  1. Treatment of addiction to ethanol and addictive-related behavior

    DOE Patents [OSTI]

    Dewey, Stephen L.; Brodie, Jonathan D.; Ashby, Jr., Charles R.

    2001-01-01

    The present invention provides a highly efficient method for treating alcohol addiction and for changing addiction-related behavior of a mammal suffering from alcohol addiction. The method includes administering to a mammal an effective amount of gamma vinylGABA or a pharmaceutically acceptable salt thereof. In one embodiment, the method of the present invention includes administering to the mammal an effective amount of a composition which increase central nervous system GABA levels wherein the effective amount is sufficient to diminish, inhibit or eliminate behavior associated with craving or use of alcohol.

  2. Treatment of addiction and addiction-related behavior

    DOE Patents [OSTI]

    Dewey, Stephen L.; Brodie, Jonathan D.; Ashby, Jr., Charles R.

    2003-01-01

    The present invention provides a highly efficient method for treating substance addiction and for changing addiction-related behavior of a mammal suffering from substance addiction. The method includes administering to a mammal an effective amount of gamma vinylGABA or a pharmaceutically acceptable salt thereof. The present invention also provides a method of treatment of cocaine, morphine, heroin, nicotine, amphetamine, methamphetamine, or ethanol addiction by treating a mammal with an effective amount of gamma vinylGABA or a pharmaceutically acceptable salt thereof. In one embodiment, the method of the present invention includes administering to the mammal an effective amount of a composition which increases central nervous system GABA levels wherein the effective amount is sufficient to diminish, inhibit or eliminate behavior associated with craving or use of drugs of abuse. The composition includes GVG, gabapentin, valproic acid, progabide, gamma-hydroxybutyric acid, fengabine, cetylGABA, topiramate or tiagabine or a pharmaceutically acceptable salt thereof, or an enantiomer or a racemic mixture thereof.

  3. Final Technical Report for DOE Grant, number DE-FG02-05ER15701; Probing Surface Chemistry Under Catalytic Conditions: Olefin Hydrogenation,Cyclization and Functionalization.

    SciTech Connect (OSTI)

    Neurock, Matthew

    2011-05-26

    The specific goal of this work was to understanding the catalytic reactions pathways for the synthesis of vinyl acetate over Pd, Au and PdAu alloys. A combination of both experimental methods (X-ray and Auger spectroscopies, low-energy ion scattering (LEIS), low-energy electron diffraction (LEED) and theory (Density Functional Theory (DFT) calculations and Monte Carlo methods under various different reactions) were used to track the surface chemistry and the influence of alloying. The surface intermediates involved in the various reactions were characterized using reflection-absorption infrared spectroscopy and LEED to identify the nature of the surface species and temperature-programmed desorption (TPD) to follow the decomposition pathways and measure heats of adsorption. These results along with those from density functional theoretical calculations were used determine the kinetics for elementary steps. The results from this work showed that the reaction proceeds via the Samanos mechanism over Pd surfaces whereby the ethylene directly couples with acetate to form an acetoxyethyl intermediate that subsequently undergoes a beta-hydride elimination to form the vinyl acetate monomer. The presence of Au was found to modify the adsorption energies and surface coverages of important surface intermediates including acetate, ethylidyne and ethylene which ultimately influences the critical C-H activation and coupling steps. By controlling the surface alloy composition or structure one can begin to control the steps that control the rate and even the mechanism.

  4. Kinetically Trapped Co-Continuous Polymer Morphologies through Intraphase Gelation of Nanoparticles

    SciTech Connect (OSTI)

    Li, Le; Miesch, Caroline; Sudeep, P. K.; Balazs, Anna C.; Emrick, Todd; Russell, Thomas P.; Hayward, Ryan C.

    2011-05-11

    We describe an approach to prepare co-continuous microstructured blends of polymers and nanoparticles by formation of a percolating network of particles within one phase of a polymer mixture undergoing spinodal decomposition. Nanorods or nanospheres of CdSe were added to near-critical blends of polystyrene and poly(vinyl methyl ether) quenched to above their lower critical solution temperature. Beyond a critical loading of nanoparticles, phase separation is arrested due to the aggregation of particles into a network (or colloidal gel) within the poly(vinyl methyl ether) phase, yielding a co-continuous spinodal-like structure with a characteristic length scale of several micrometers. The critical concentration of nanorods to achieve kinetic arrest is found to be smaller than for nanospheres, which is in qualitative agreement with the expected dependence of the nanoparticle percolation threshold on aspect ratio. Compared to structural arrest by interfacial jamming, our approach avoids the necessity for neutral wetting of particles by the two phases, providing a general pathway to co-continuous micro- and nanoscopic structures.

  5. Hydrogenation of Acetylene-Ethylene Mixtures over Pd and Pd-Ag Alloys: First-Principles Based Kinetic Monte Carlo Simulations

    SciTech Connect (OSTI)

    Mei, Donghai; Neurock, Matthew; Smith, C Michael

    2009-10-22

    The kinetics for the selective hydrogenation of acetylene-ethylene mixtures over model Pd(111) and bimetallic Pd-Ag alloy surfaces were examined using first principles based kinetic Monte Carlo (KMC) simulations to elucidate the effects of alloying as well as process conditions (temperature and hydrogen partial pressure). The mechanisms that control the selective and unselective routes which included hydrogenation, dehydrogenation and C-?C bond breaking pathways were analyzed using first-principle density functional theory (DFT) calculations. The results were used to construct an intrinsic kinetic database that was used in a variable time step kinetic Monte Carlo simulation to follow the kinetics and the molecular transformations in the selective hydrogenation of acetylene-ethylene feeds over Pd and Pd-Ag surfaces. The lateral interactions between coadsorbates that occur through-surface and through-space were estimated using DFT-parameterized bond order conservation and van der Waal interaction models respectively. The simulation results show that the rate of acetylene hydrogenation as well as the ethylene selectivity increase with temperature over both the Pd(111) and the Pd-Ag/Pd(111) alloy surfaces. The selective hydrogenation of acetylene to ethylene proceeds via the formation of a vinyl intermediate. The unselective formation of ethane is the result of the over-hydrogenation of ethylene as well as over-hydrogenation of vinyl to form ethylidene. Ethylidene further hydrogenates to form ethane and dehydrogenates to form ethylidyne. While ethylidyne is not reactive, it can block adsorption sites which limit the availability of hydrogen on the surface and thus act to enhance the selectivity. Alloying Ag into the Pd surface decreases the overall rated but increases the ethylene selectivity significantly by promoting the selective hydrogenation of vinyl to ethylene and concomitantly suppressing the unselective path involving the hydrogenation of vinyl to ethylidene and the dehydrogenation ethylidene to ethylidyne. This is consistent with experimental results which suggest only the predominant hydrogenation path involving the sequential addition of hydrogen to form vinyl and ethylene exists over the Pd-Ag alloys. Ag enhances the desorption of ethylene and hydrogen from the surface thus limiting their ability to undergo subsequent reactions. The simulated apparent activation barriers were calculated to be 32-44 kJ/mol on Pd(111) and 26-31 kJ/mol on Pd-Ag/Pd(111) respectively. The reaction was found to be essentially first order in hydrogen over Pd(111) and Pd-Ag/Pd(111) surfaces. The results reveal that increases in the hydrogen partial pressure increase the activity but decrease ethylene selectivity over both Pd and Pd-Ag/Pd(111) surfaces. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  6. False Negative Rates of a Macrofoam-Swab Sampling Method with Low Surface Concentrations of Two Bacillus anthracis Surrogates via Real-Time PCR

    SciTech Connect (OSTI)

    Hutchison, Janine R.; Piepel, Gregory F.; Amidan, Brett G.; Sydor, Michael A.; Deatherage Kaiser, Brooke L

    2015-05-01

    Surface sampling for Bacillus anthracis spores has traditionally relied on detection via bacterial cultivation methods. Although effective, this approach does not provide the level of organism specificity that can be gained through molecular techniques. False negative rates (FNR) and limits of detection (LOD) were determined for two B. anthracis surrogates with modified rapid viability-polymerase chain reaction (mRV-PCR) following macrofoam-swab sampling. This study was conducted in parallel with a previously reported study that analyzed spores using a plate-culture method. B. anthracis Sterne (BAS) or B. atrophaeus Nakamura (BG) spores were deposited onto four surface materials (glass, stainless steel, vinyl tile, and plastic) at nine target concentrations (2 to 500 spores/coupon; 0.078 to 19.375 colony-forming units [CFU] per cm²). Mean FNR values for mRV-PCR analysis ranged from 0 to 0.917 for BAS and 0 to 0.875 for BG and increased as spore concentration decreased (over the concentrations investigated) for each surface material. FNRs based on mRV-PCR data were not statistically different for BAS and BG, but were significantly lower for glass than for vinyl tile. FNRs also tended to be lower for the mRV-PCR method compared to the culture method. The mRV-PCR LOD₉₅ was lowest for glass (0.429 CFU/cm² with BAS and 0.341 CFU/cm² with BG) and highest for vinyl tile (0.919 CFU/cm² with BAS and 0.917 CFU/cm² with BG). These mRV-PCR LOD₉₅ values were lower than the culture values (BAS: 0.678 to 1.023 CFU/cm² and BG: 0.820 to 1.489 CFU/cm²). The FNR and LOD₉₅ values reported in this work provide guidance for environmental sampling of Bacillus spores at low concentrations.

  7. Nuclear Medicine Program progress report for quarter ending June 30, 1993

    SciTech Connect (OSTI)

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Callahan, A.P.; Hsieh, B.T.; McPherson, D.W.; Mirzadeh, S.; Lambert, C.R.

    1993-07-01

    The ``IQNP`` agent is an antagonist for the cholinergic-muscarinic receptor. Since the IQNP molecule has two asymmetric centers and either cis or trans isomerism of the vinyl iodide, there are eight possible isomeric combinations. In this report, the systematic synthesis, purification and animal testing of several isomers of radioiodinated ``IQNP`` are reported. A dramatic and unexpected relation between the absolute configuration at the two asymmetric centers and the stereochemistry of the vinyl iodide on receptor specificity was observed. The E-(R)(R) isomer shows specific and significant localization (per cent dose/gram at 6 hours) in receptor-rich cerebral structures (i.e. Cortex = 1.38 + 0.31; Striatum = 1.22 + 0.20) and low uptake in tissues rich in the M{sub 2} subtype (Heart = 0.10; Cerebellum = 0.04). In contrast, the E-(R)(S) isomer shows very low receptor-specific uptake (Cortex = 0.04; Striatum = 0.02), demonstrating the importance of absolute configuration at the acetate center. An unexpected and important observation is that the stereochemistry of the vinyl iodine appears to affect receptor subtype specificity, since the Z-(R,S)(R) isomer shows much higher uptake in the heart (0.56 + 0.12) and cerebellum (0.17 + 0.04). Studies are now in progress to confirm these exciting results in vitro. Progress has also continued during this period with several collaborative programs. The first large-scale clinical tungsten-188/rhenium-188 generator prototype (500 mCi) was fabricated and supplied to the Center for Molecular Medicine and Immunology (CMMI), in Newark, New Jersey, for Phase I clinical trials of rhenium-188-labeled anti CEA antibodies for patient treatment. Collaborative studies are also continuing in conjunction with the Nuclear Medicine Department at the University of Massachusetts where a generator is in use to compare the biological properties of {open_quotes}direct{close_quotes} and {open_quotes}indirect{close_quotes} labeled antibodies.

  8. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    SciTech Connect (OSTI)

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

    2011-10-01

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

  9. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    2 Residential Storm Window and Door Shipments, by Frame Type (Million Units) Type 1990 2000 2005 2008 1990 2000 2005 2008 1990 2000 2005 2008 Aluminum 10 8 7 N/A 2 4 4 3 12 12 11 N/A Wood 0 0 0 N/A 0 0 0 0 0 0 0 N/A Other (1) 1 2 2 N/A 0 1 2 1 1 4 4 N/A Total (2) 11 11 9 N/A 2 6 6 4 13 16 15 N/A Note(s): Windows Doors Total 1) Other includes metal over wood/foam core or vinyl, etc. 2) Due to rounding, sums may not add up to totals. Source(s): AAMA/NWWDA, Industry Statistical Review and Forecast

  10. Research on stable, high-efficiency amorphous silicon multijunction modules. Final subcontract report, 1 January 1991--31 August 1994

    SciTech Connect (OSTI)

    Guha, S.

    1994-10-01

    The principal objective of this program is to conduct research on semiconductor materials and non-semiconductor materials to enhance the performance of multibandgap, multijunction, large-area amorphous silicon-based alloy modules. The goal for this program is to demonstrate stabilized module efficiency of 12% for multijunction modules of area greater than 900 cm{sup 2}. Double-junction and triple-junction cells are made on Ag/ZnO back reflector deposited on stainless steel substrates. The top cell uses a-Si alloy; a-SiGe alloy is used for the i layer in the middle and the bottom cells. After evaporation of antireflection coating, silver grids and bus bars are put on the top surface, and the panel is encapsulated in an ethylene vinyl acetate (EVA)/Tefzel structure to make a one-square-foot monolithic module.

  11. Polybenzimidazole compounds

    DOE Patents [OSTI]

    Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.

    2010-08-10

    A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

  12. Polybenzimidazole compounds, polymeric media, and methods of post-polymerization modifications

    DOE Patents [OSTI]

    Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.

    2007-08-21

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2-- where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least 5 equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about 15.

  13. Identification of Explosives from Porous Materials: Applications Using Reverse Phase High Performance Liquid Chromatography and Gas Chromatography

    SciTech Connect (OSTI)

    C.J. Miller; G. Elias; N.C. Schmitt; C. Rae

    2010-06-01

    High performance liquid chromatography and gas chromatography techniques are well documented and widely used for the detection of trace explosives from organic solvents. These techniques were modified to specifically identify and quantify explosives extracted from various materials taken from people who had recently handled explosives. Documented techniques were modified to specifically detect and quantify RDX, TNT, and PETN from denim, colored flannel, vinyl, and canvas extracted in methanol using no sample cleanup prior to analysis. The methanol extracts were injected directly into several different column types and analyzed by HPLC-UV and/or GC-ECD. This paper describes general screening methods that were used to determine the presence of explosives in unknown samples and techniques that have been optimized for quantification of each explosive from the substrate extracts.

  14. Fundamentals of fluidized bed chemical processes

    SciTech Connect (OSTI)

    Yates, J.G.

    1983-01-01

    Chemical processes based on the use of fluidized solids, although widely used on an industrial scale for some four decades, are currently increasing in importance as industry looks for improved methods for handling and reacting solid materials. This book provides background necessary for an understanding of the technique of gas-solid fluidization. Contents: Some Fundamental Aspects of Fluidization-General Features of Gas-Solid Fluidization; Minimum Fluidization Velocity; Inter-particle forces; Liquid-Solid Fluidization; Bubbles; Slugging; Entrainment and Elutriation; Particle Movement; Bed Viscosity; Fluidization Under Pressure. Fluidized-Bed Reactor Models-ome Individual Models; Model Comparisons; Multiple Region Models. Catalytic Cracking-Process Developments Riser Cracking; Catalysis; Process Chemistry; Kinetics; Process Models. Combustion and Gasification-Plant Developments; Oil and Gas Combustion; Desulphurization; No/sub x/ Emissions; Coal Gassification. Miscellaneous Processes-Phthalic Anhydride (1,3-isobezofurandione); Acrylonitrile (prop-3-enenitrile); Vinyl Chloride (chloroethene); Titanium Dioxide; Uranium Processing; Sulphide Roasting; Indexes.

  15. Experimental Design for a Macrofoam Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Hutchison, Janine R.

    2014-04-16

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (plating/counting and polymerase chain reaction) will be used. Only one previous study has investigated false negative as a function of affecting test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam swab sampling at low concentrations.

  16. Waste management health risk assessment: A case study of a solid waste landfill in South Italy

    SciTech Connect (OSTI)

    Davoli, E.; Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M.; Rossi, A.N.; Il Grande, M.; Fanelli, R.

    2010-08-15

    An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

  17. Method for controlling clathrate hydrates in fluid systems

    DOE Patents [OSTI]

    Sloan, E.D. Jr.

    1995-07-11

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.

  18. Method for controlling clathrate hydrates in fluid systems

    DOE Patents [OSTI]

    Sloan, Jr., Earle D.

    1995-01-01

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.

  19. Release of organic chelating agents from solidified decontamination wastes

    SciTech Connect (OSTI)

    Piciulo, P.L.; Adams, J.W.; Milian, L.W.

    1986-01-01

    In order to provide technical information needed by the US Nuclear Regulatory Commission to evaluate the adequacy of near-surface disposal of decontamination wastes, Brookhaven National Laboratory has measured the release of organic complexing agents from simulated decontamination resin wastes solidified in cement and vinyl ester-styrene. The simulated waste consisted of either mixed bed ion-exchange resins or anion exchange resins equilibrated with EDTA, oxalic acid, citric acid, picolinic acid, formic acid, simulated LOMI reagent or the LND-101A decontamination reagent. The standard procedure ANS 16.1 appeared to be adequate for determining a leachability index for organic acids for comparing the leach resistance of decontamination waste forms. Leachability indexes appeared to be specific for each organic acid. Further, the apparent diffusivities were generally less than those observed for Cs releases from cement wastes forms. The finder material and the composition of the simulated wastes affected the release of the reagents.

  20. Evaluation and performance of the special wasteform lysimeters at a humid site

    SciTech Connect (OSTI)

    Oblath, S B; Hoeffner, S L

    1985-09-01

    The Savannah River Laboratory has been evaluating the leaching/migration behavior of commercial power reactor wasteforms by the use of lysimeters operated under field conditions at a humid site. These lysimeters model the conditions in actual burial trenches. Wasteforms comprising Portland cement, masonry cement, and vinyl ester-styrene polymer wasteforms were emplaced in the lysimeters in March 1982. Effluent water has been analyzed on a regular basis since that time. Cs-137, Sr-90, and/or Co-60 have observed in the effluent water from the lysimeters, as well as in soil moisture samples collected from the unsaturated zone beneath the wasteforms. In March of 1984, horizontal cores were taken from one of the lysimeters containing a Portland cement wasteform to determine the vertical and radial profiles of radionuclides which might not have reached the lysimeter sump. Results from all of these sampling methods are discussed and interpreted. 6 refs., 3 figs., 3 tabs.

  1. Release of organic reagents from solidified decontamination wastes

    SciTech Connect (OSTI)

    Piciulo, P.L.; Adams, J.W.

    1985-01-01

    In order to provide technical information needed by the US Nuclear Regulatory Commission to evaluate the adequacy of near-surface disposal of decontamination wastes, Brookhaven National Laboratory has measured the release of organic reagents from solidified simulated decontamination wastes. The waste streams consisted of either mixed-bed ion-exchange resins or anion exchange resins equilibrated with EDTA, oxalic acid, citric acid, picolinic acid or simulated LOMI decontamination reagent. These simulated resin wastes were solidified in either cement or vinyl ester-styrene. Samples were tested by a fixed interval leach procedure or according to the standard ANS 16.1 procedure. The leachability indices, which were calculated as prescribed in ANS 16.1, varied with leach period for some of the composites tested. 4 references, 6 figures, 2 tables.

  2. Commodity chemicals from natural gas by methane chlorination

    SciTech Connect (OSTI)

    Che, S.C.; Minet, R.G.; Giacobbe, F.; Mullick, S.L.

    1987-01-01

    Ethylene and vinyl chloride monomer (VCM) can be produced from natural gas through methane chlorination by reacting methane and chlorine at 900/sup 0/C or higher. Experimental results indicate total ethylene equivalent yield from methane of 45%(wt) and marginal process economics. Fundamental kinetic modeling predicts improved C/sub 2/ yields of up to 70%(wt) at optimum reaction conditions. This optimum condition established the basis for the process design study to evaluate the potential for producing ethylene and VCM from natural gas. HCl by-product is recycled for economic viability. Using the Kel-Chlor process for recycling HCl, the proposed plant produces 27,200 TPA of C/sub 2/H/sub 4/ and 383,800 TPA of VCM. The Midwest is an ethylene consumption area requiring imports of ethylene derivatives from other regions. A methane chlorination plant located on a Midwestern natural gas pipeline network has a good commercial potential.

  3. Solid electrolytes

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  4. Composition and method for encapsulating photovoltaic devices

    DOE Patents [OSTI]

    Pern, Fu-Jann

    2000-01-01

    A composition and method for encapsulating a photovoltaic device which minimizes discoloration of the encapsulant. The composition includes an ethylene-vinyl acetate encapsulant, a curing agent, an optional ultraviolet light stabilizer, and/or an optional antioxidant. The curing agent is preferably 1,1-di-(t-butylperoxy)-3,3,5-trimethylcyclohexane; the ultraviolet light stabilizer is bis-(N-octyloxy-tetramethyl) piperidinyl sebacate and the antioxidant is selected from the group consisting of tris (2,4-di-tert-butylphenyl) phosphite, tetrakis methylene (3,5-di-tert-butyl-4-hydroxyhydrocinnamate) methane, octadecyl 3,5-di-tert-butyl-4-hydroxyhydrocinnamate, and 2,2'-ethylidene bis(4,6-di-t-butylphenyl) fluorophosponite. The composition is applied to a solar cell then cured. The cured product contains a minimal concentration of curing-generated chromophores and resists UV-induced degradation.

  5. An example of regioselective esterification by intramolecular acyl transfer from a tertiary amine

    SciTech Connect (OSTI)

    Waddell, T.G.; Rambalakos, T.; Christie, K.R. )

    1990-07-20

    Despite the fact that the famous antimarlarial quinine (1) has been known for 170 years, there is still considerable interest in its chemical and biological properties. Much of the most recent attention is due to the utility of quinine as a chiral resolving agent and catalyst. Important and new chemistry of quinine may yet be discovered. To this point, the authors became interested in constructing quinine derivatives which have built into their structures electrophilic centers which might make covalent bonds with cellular protein or nucleic acid nucleophilic sites. In order to preserve the noncovalent binding properties of quinine, functionalization and derivatization of the remote vinyl group were desired. In an esterification step of the derivatization, a structurally hindered ester was formed, to our surprise. The mechanism for this regioselective reaction are discussed.

  6. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  7. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  8. Spectroscopic properties of (PVA+ZnO):Mn{sup 2+} polymer films

    SciTech Connect (OSTI)

    Rani, Ch.; Raju, D. Siva; Bindu, S. Hima; Krishna, J. Suresh; Raju, Ch. Linga

    2015-05-15

    Electron Paramagnetic Resonance (EPR), optical absorption and infrared spectral studies have been carried out on Mn{sup 2+} ions doped in poly(vinyl alcohol) complexed with zinc oxide polymer films prepared by solution cast technique. The EPR spectra of 1 mol% Mn{sup 2+} ions doped polymer complex (PVA+ZnO) at room temperature exhibit sextet hyperfine structure (hfs), centered at 2.01. The spin-Hamiltonian parameter values indicate that the ground state of Mn{sup 2+} ion in d{sup 5} and the site symmetry around Mn{sup 2+} ions in tetragonally distorted octa hedral site. The optical absorption spectra exhibits two bands centered at 275nm at 437nm. The FTIR spectrum exhibits bands characteristic of stretching and banding vibrations of O-H, C-H and C=C groups.

  9. Method of making gold thiolate and photochemically functionalized microcantilevers

    DOE Patents [OSTI]

    Boiadjiev, Vassil I. [Knoxville, TN; Brown, Gilbert M. [Knoxville, TN; Pinnaduwage, Lal A. [Knoxville, TN; Thundat, Thomas G. [Knoxville, TN; Bonnesen, Peter V. [Knoxville, TN; Goretzki, Gudrun [Nottingham, GB

    2009-08-25

    Highly sensitive sensor platforms for the detection of specific reagents, such as chromate, gasoline and biological species, using microcantilevers and other microelectromechanical systems (MEMS) whose surfaces have been modified with photochemically attached organic monolayers, such as self-assembled monolayers (SAM), or gold-thiol surface linkage are taught. The microcantilever sensors use photochemical hydrosilylation to modify silicon surfaces and gold-thiol chemistry to modify metallic surfaces thereby enabling individual microcantilevers in multicantilever array chips to be modified separately. Terminal vinyl substituted hydrocarbons with a variety of molecular recognition sites can be attached to the surface of silicon via the photochemical hydrosilylation process. By focusing the activating UV light sequentially on selected silicon or silicon nitride hydrogen terminated surfaces and soaking or spotting selected metallic surfaces with organic thiols, sulfides, or disulfides, the microcantilevers are functionalized. The device and photochemical method are intended to be integrated into systems for detecting specific agents including chromate groundwater contamination, gasoline, and biological species.

  10. Image analysis of jet structure on electrospinning from free liquid surface

    SciTech Connect (OSTI)

    Kula, Jiri Linka, Ales Tunak, Maros; Lukas, David

    2014-06-16

    The work analyses intra-jet distances during electrospinning from a free surface of water based poly(vinyl alcohol) solution confined by two thin metallic plates employed as a spinning electrode. A unique computer vision system and digital image processing were designed in order to track position of every polymer jet. Here, we show that jet position data are in good compliance with theoretically predicted intra-jet distances by linear stability analysis. Jet density is a critical parameter of electrospinning technology, since it determines the process efficiency and homogeneity of produced nanofibrous layer. Achievements made in this research could be used as essential approach to study jetting from two-dimensional spinning electrodes, or as fundamentals for further development of control system related to Nanospider{sup ™} technology.

  11. Experimental Design for a Macrofoam-Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Hutchison, Janine R.

    2014-12-05

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam-swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (culture and polymerase chain reaction) will be used. Only one previous study has investigated how the false negative rate depends on test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam-swab sampling at low concentrations.

  12. Corrosion of packaged cadmium plated electrical control units from paint vapors

    SciTech Connect (OSTI)

    Brough, L.A.

    1987-08-01

    One of the most widely used methods of controlling the degradation of steel is the application of paint. It is relatively easy to accomplish and very economical. Painted steel is used successfully for many applications, including industrial equipment with electrical enclosures. Unless the proper paint and application procedures are selected, corrosion problems may develop directly from the paint, as the following incident will illustrate. A few years ago, a large electrical control enclosure (30 x 72 x 18 in. (76 x 183 x 46 cm)) was supplied to a customer with the control wiring and hardware mounted inside, which included a number of cadmium plated components. The enclosure had been painted inside with a fast drying, vinyl alkyd white enamel shortly before assembly. Since it was known that the completed unit would probably be stored at the customer's plant site for some time before installation, elaborate procedures were followed to retard or prevent degradation of any part of the system.

  13. Greenbelt Homes Pilot Energy Efficiency Program Phase 1 Summary: Existing Conditions and Baseline Energy Use

    SciTech Connect (OSTI)

    Wiehagen, J.; Del Bianco, M.; Wood, A.

    2013-02-01

    A multi-year pilot energy efficiency retrofit project has been undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 co-operative of circa 1930 and '40 homes. The three predominate construction methods of the townhomes in the community are materials common to the area and climate zone including 8" CMU block, wood frame with brick veneer and wood frame with vinyl siding. GHI has established a pilot project that will serve as a basis for decision making for the roll out of a decade-long community upgrade program that will incorporate energy efficiency to the building envelope and equipment with the modernization of other systems like plumbing, mechanical equipment, and cladding.

  14. Greenbelt Homes Pilot Energy Efficiency Program Phase 1 Summary. Existing Conditions and Baseline Energy Use

    SciTech Connect (OSTI)

    Wiehagen, J.; Del Bianco, M.; Wood, A.

    2013-02-01

    A multi-year pilot energy efficiency retrofit project has been undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 co-operative of circa 1930 and '40 homes. The three predominate construction methods of the townhomes in the community are materials common to the area and climate zone including 8” CMU block, wood frame with brick veneer and wood frame with vinyl siding. GHI has established a pilot project that will serve as a basis for decision making for the roll out of a decade-long community upgrade program that will incorporate energy efficiency to the building envelope and equipment with the modernization of other systems like plumbing, mechanical equipment, and cladding.

  15. Lithium ion battery with improved safety

    DOE Patents [OSTI]

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  16. Special waste-form lysimeters - arid: 1984--1992 data summary and preliminary interpretation

    SciTech Connect (OSTI)

    Jones, T.L.; Serne, R.J.

    1994-10-01

    A lysimeter facility constructed at the Hanford Site in south-central Washington State has been used since 1984 to monitor the leaching of buried waste forms under natural conditions. The facility is generating data that are useful in evaluating source-term models used in radioactive waste transport analyses. The facility includes ten bare-soil lysimeters (183 cm diameter by 305 cm depth) containing buried waste forms generated at nuclear reactors in the United States and solidified with Portland M cement, masonry cement, bitumen, and vinyl-ester styrene. The waste forms contained in the lysimeters have been leached under natural, semiarid conditions. In spite of the semiarid conditions, from 1984 through 1992, an average of 45 cm of water leached through the lysimeters, representing 27% of area precipitation. Leachate samples have been routinely collected and analyzed for radionuclide and chemical content. To date, tritium, cobalt-60, and cesium-137 have been identified in the lysimeter leachate samples. From 1984 through 1992, over 4000 {mu}Ci of tritium, representing 76 and 71 % of inventory (not decay corrected), have been leached from the two waste forms containing tritium. Cobalt-60 has been found in the leachate from all six of the waste forms that originally contained > 1 mCi of inventory. The leached amounts of cobalt-60 represent < 0.1 % of original cobalt inventories. Mobile cobalt is believed to be chelated with organic compounds, such as ethylenediaminetetraacetic acid (EDTA), that are present in the waste. Trace amounts of cesium-137 have occasionally been identified in leachate from two waste forms since 1991. Qualitatively, the field leaching results confirm laboratory studies suggesting that tritium is readily leached from cement, and that cobalt-60 is generally leached more easily from cement than from vinyl-ester styrene.

  17. Historical Material Analysis of DC745U Pressure Pads

    SciTech Connect (OSTI)

    Ortiz-Acosta, Denisse

    2012-07-30

    As part of the Enhance Surveillance mission, it is the goal to provide suitable lifetime assessment of stockpile materials. This report is an accumulation of historical publication on the DC745U material and their findings. It is the intention that the B61 LEP program uses this collection of data to further develop their understanding and potential areas of study. DC745U is a commercially available silicone elastomer consisting of dimethyl, methyl-phenyl, and methyl-vinyl siloxane repeat units. Originally, this material was manufactured by Dow Corning as Silastic{reg_sign} DC745U at their manufacturing facility in Kendallville, IN. Recently, Dow Corning shifted this material to the Xiameter{reg_sign} brand product line. Currently, DC745U is available through Xiameter{reg_sign} or Dow Corning's distributor R. D. Abbott Company. DC745U is cured using 0.5 wt% vinyl-specific peroxide curing agent known as Luperox 101 or Varox DBPH-50. This silicone elastomer is used in numerous parts, including two major components (outer pressure pads and aft cap support) in the W80 and as pressure pads on the B61. DC745U is a proprietary formulation, thus Dow Corning provides limited information on its composition and properties. Based on past experience with Dow Corning, DC745U is at risk of formulation changes without notification to the costumer. A formulation change for DC745U may have a significant impact because the network structure is a key variable in determining material properties. The purpose of this report is to provide an overview of historical DC745U studies and identify gaps that need to be addressed in future work. Some of the previous studies include the following: 1. Spectroscopic characterization of raw gum stock. 2. Spectroscopic, thermal, and mechanical studies on cured DC745U. 3. Nuclear Magnetic Resonance (NMR) and solvent swelling studies on DC745U with different crosslink densities. 4. NMR, solvent swelling, thermal, and mechanical studies on thermally aged DC745U. 5. NMR, solvent swelling, thermal, and mechanical studies on radiolytically aged DC745U. Each area is reviewed and further work is suggested to improve our understanding of DC745U for systems engineering, surveillance, aging assessments, and lifetime assessment.

  18. Field Testing of Thermoplastic Encapsulants in High-Temperature Installations

    SciTech Connect (OSTI)

    Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; Kurtz, Sarah R.; Moseley, John M.; Shah, Qurat A.; Tamizhmani, Govindasamy; Sakurai, Keiichiro; Inoue, Masanao; Doi, Takuya; Masuda, Atsushi; Samuels, Sam L.; Vanderpan, Crystal E.

    2015-11-01

    Recently there has been increased interest in using thermoplastic encapsulant materials in photovoltaic modules, but concerns have been raised about whether these would be mechanically stable at high temperatures in the field. This has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. We constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass thin-film mock modules using different encapsulant materials, of which only two were formulated to chemically crosslink. One module set was exposed outdoors with thermal insulation on the back side in Mesa, Arizona, in the summer (hot-dry), and an identical module set was exposed in environmental chambers. High-precision creep measurements (±20 μm) and electrical performance measurements indicate that despite many of these polymeric materials operating in the melt or rubbery state during outdoor deployment, no significant creep was seen because of their high viscosity, lower operating temperature at the edges, and/or the formation of chemical crosslinks in many of the encapsulants with age despite the absence of a crosslinking agent. Only an ethylene-vinyl acetate (EVA) encapsulant formulated without a peroxide crosslinking agent crept significantly. When the crystalline-silicon modules, the physical restraint of the backsheet reduced creep further and was not detectable even for the EVA without peroxide. Because of the propensity of some polymeric materials to crosslink as they age, typical thermoplastic encapsulants would be unlikely to result in creep in the vast majority of installations.

  19. Surface modification of polyethylene by functionalized plasma

    SciTech Connect (OSTI)

    Yuan, S.; Marchant, R.E.

    1993-12-31

    The surface of low density polyethylene(PE) has been modified by functionalized plasma-polymerized N-vinyl-2-pyrrolidone (PPNVP) and allyl alcohol(PPAA) thin films, PPNVP and PPAA(approx. 100 nm). The surface structure and functional groups of modified surfaces were characterized by water contact angle, ATR/FTIR and ESCA techniques. Plasma polymer modified PE surfaces exhibited significant water contact angle hysteresis and a much lower value of advancing water contact angle than that of unmodified polyethylene. Reduction of PPNVP and PPAA modified surfaces by sodium borohydride coverted into hydroxyl groups. The determined concentrations of hydroxyl groups on the reduced PPNVP and PPAA modified surfaces by ESCA after gas-phase derivatization with trifluoroacetic anhydride (TFAA) were about 25% and 30% of total oxygen content, respectively. Finally, the amine containing molecules such as amine-terminated polyethylene oxide (PEO) and 3-aminopropyltriethoxysilane (APTS) were coupled to the hydroxylated surfaces. These novel modified PE surfaces are suitable for immobilization of biomolecules.

  20. Shock tube ignition of ethanol, isobutene and MTBE: Experiments and modeling

    SciTech Connect (OSTI)

    Curran, H.J.; Dunphy, M.P.; Simmie, J.M.; Westbrook, C.K.; Pitz, W.J.

    1991-11-22

    The ignition of ethanol, isobutene and methyl tert-butyl ether (MTBE) has been studied experimentally in a shock tube and computationally with a detailed chemical kinetic model. Experimental results, consisting of ignition delay measurements, were obtained for a range of fuel/oxygen mixtures diluted in Argon, with temperatures varying over a range of 1100--1900 K. The numerical model consisted of a detailed kinetic reaction mechanism with more than 400 elementary reactions, chosen to describe reactions of each fuel and the smaller hydrocarbon and other species produced during their oxidation. The overall agreement between experimental and computed results was excellent, particularly for mixtures with greater than 0.3% fuel. The greatest sensitivity in the computed results was found to falloff parameters in the dissociation reactions of isobutene, ethane, methane, and ethyl and vinyl radicals, to the C{sub 3}H{sub 4} and C{sub 3}H{sub 5} reaction submechanisms in the model, and to the reactions in the H{sub 2}-O{sub 2}-Co submechanism.

  1. Polymeric media comprising polybenzimidazoles N-substituted with organic-inorganic hybrid moiety

    DOE Patents [OSTI]

    Klaehn, John R. [Idaho Falls, ID; Peterson, Eric S. [Idaho Falls, ID; Wertsching, Alan K. [Idaho Falls, ID; Orme, Christopher J. [Shelley, ID; Luther, Thomas A. [Idaho Falls, ID; Jones, Michael G. [Pocatello, ID

    2009-12-15

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with an organic-inorganic hybrid moiety may be included in a separator medium. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2-- where R is selected from among methyl, phenyl, vinyl, and allyl. The separatory medium may exhibit an H.sub.2, Ar, N.sub.2, O.sub.2, CH.sub.3, or CO.sub.2 gas permeability greater than the gas permeability of a comparable separatory medium comprising the PBI compound without substitution. The separatory medium may further include an electronically conductive medium and/or ionically conductive medium. The separatory medium may be used as a membrane (semi-permeable, permeable, and non-permeable), a barrier, an ion exhcange media, a filter, a gas chromatography coating (such as stationary phase coating in affinity chromatography), etc.

  2. Mesophases in polyethylene, polypropylene, and poly(1-butene)

    SciTech Connect (OSTI)

    Androsch, Rene J; Di Lorenzo, Maria; Schick, Christoph; Wunderlich, Bernhard {nmn}

    2010-01-01

    This paper contains new views about the amorphous and partially ordered phases of the three polymers listed in the title. The discussion is based on information on structure, thermodynamic stability, and large-amplitude molecular motion. Polyethylene is the basic backbone of all alkene polymers, and the other two are the first members of the vinyl polymers which have stereospecifically placed alkyl side chains. Their multiphase structures consist of metastable crystals, mesophases, and surrounding rigid and mobile amorphous fractions. All these phases have sizes ranging from micrometer dimensions down to nanometers. Besides the phase structures, information about the molecular coupling between the phases must be considered. Depending on temperature, the polymer phases can vary from solid (rigid) to liquid (mobile). New knowledge is also gained by cross-comparison of the title polymers. The experimental information was gained from (a) various forms of slow, fast, and temperature-modulated thermal analysis to identify equilibrium and non-equilibrium states, (b) measurement of structure and morphology at various length scales, and (c) tracing of the large-amplitude molecular motion, the kinetics of order/disorder changes, and the liquid/solid transitions (glass transitions). It is shown that much more needs to be known about the various phases and their coupling to characterize a given polymer and to fine-tune its properties for a given application.

  3. An experimental investigation of ethylene/O{sub 2}/diluent mixtures: Laminar flame speeds with preheat and ignition delays at high pressures

    SciTech Connect (OSTI)

    Kumar, Kamal; Mittal, Gaurav; Sung, Chih-Jen [Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States); Law, Chung K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2008-05-15

    The atmospheric pressure laminar flame speeds of premixed ethylene/O{sub 2}/N{sub 2} mixtures were experimentally measured over equivalence ratios ranging from 0.5 to 1.4 and mixture preheat temperatures varying from 298 to 470 K in a counterflow configuration. Ignition delay measurements were also conducted for ethylene/O{sub 2}/N{sub 2}/Ar mixtures using a rapid compression machine at compressed pressures from 15 to 50 bar and in the compressed temperature range from 850 to 1050 K. The experimental laminar flame speeds and ignition delays were then compared to the computed values using two existing chemical kinetic mechanisms. Results show that while the laminar flame speeds are reasonably predicted at room temperature conditions, the discrepancy becomes larger with increasing preheat temperature. A comparison of experimental and computational ignition delay times was also conducted and discussed. Sensitivity analysis further shows that the ignition delay is highly sensitive to the reactions of the vinyl radical with molecular oxygen. The reaction of ethylene with the HO{sub 2} radical was also found to be important for autoignition under the current experimental conditions. (author)

  4. Synthesis of oxazolines and oxazines

    DOE Patents [OSTI]

    Benicewicz, Brian C.; Mitchell, Michael A.

    1995-01-01

    A process of preparing an oxazoline or oxazine compound of the formula ##STR1## wherein X is an atom selected from the group of oxygen and sulfur, R is selected from the group consisting of C.sub.1-10 alkyl, C.sub.1-10 fluoroalkyl, aryl and substituted-aryl, and n is 2 or 3 comprising ring-closing a compound of the formula ##STR2## wherein X is an atom selected from the group of oxygen and sulfur, R is selected from the group consisting of C.sub.1-10 alkyl, C.sub.1-10 fluoroalkyl, aryl, and substituted aryl, n is 2 or 3, and Y is a bromine or chlorine atom in the presence of a basic reagent consisting essentially of a fluoride salt supported on an inorganic solid substrate is disclosed together with the compounds, 5-bromomethyl-2-phenyl-1,3-oxazoline, 5-methylene-2-phenyl-1,3-oxazine and 4,4-dimethyl-2-vinyl-1,3-oxazoline.

  5. Multi angle laser light scattering evaluation of field exposed thermoplastic photovoltaic encapsulant materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; Kurtz, Sarah R.; Moseley, John M.; Nobles, Dylan L.; Stika, Katherine M.; Brun, Yefim; Samuels, Sam L.; Shah, Qurat Annie; et al

    2016-01-08

    As creep of polymeric materials is potentially a safety concern for photovoltaic modules, the potential for module creep has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. To investigate the possibility of creep, modules were constructed, using several thermoplastic encapsulant materials, into thin-film mock modules and deployed in Mesa, Arizona. The materials examined included poly(ethylene)-co-vinyl acetate (EVA, including formulations both cross-linked and with no curing agent), polyethylene/polyoctene copolymer (PO), poly(dimethylsiloxane) (PDMS), polyvinyl butyral (PVB), and thermoplastic polyurethane (TPU). The absence of creep in this experiment is attributable to several factors of which themore » most notable one was the unexpected cross-linking of an EVA formulation without a cross-linking agent. It was also found that some materials experienced both chain scission and cross-linking reactions, sometimes with a significant dependence on location within a module. The TPU and EVA samples were found to degrade with cross-linking reactions dominating over chain scission. In contrast, the PO materials degraded with chain scission dominating over cross-linking reactions. Furthermore, we found no significant indications that viscous creep is likely to occur in fielded modules capable of passing the qualification tests, we note that one should consider how a polymer degrades, chain scission or cross-linking, in assessing the suitability of a thermoplastic polymer in terrestrial photovoltaic applications.« less

  6. Conformations of organophosphine oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    De Silva, Nuwan; Zahariev, Federico; Hay, Benjamin P.; Gordon, Mark S.; Windus, Theresa L.

    2015-07-17

    The conformations of a series of organophosphine oxides, OP(CH3)2R, where R = methyl, ethyl, isopropyl, tert-butyl, vinyl, and phenyl, are predicted using the MP2/cc-pVTZ level of theory. Comparison of potential energy surfaces for rotation about P–C bonds with crystal structure data reveals a strong correlation between predicted location and energetics of minima and histograms of dihedral angle distributions observed in the solid state. In addition, the most stable conformers are those that minimize the extent of steric repulsion between adjacent rotor substituents, and the torsional barriers tend to increase with the steric bulk of the rotating alkyl group. MM3 forcemore » field parameters were adjusted to fit the MP2 results, providing a fast and accurate model for predicting organophosphine oxides shapes—an essential part of understanding the chemistry of these compounds. As a result, the predictive power of the modified MM3 model was tested against MP2/cc-pVTZ conformations for triethylphosphine oxide, OP(CH2CH3)3, and triphenylphosphine oxide, OP(Ph)3.« less

  7. Initiation of atomic layer deposition of metal oxides on polymer substrates by water plasma pretreatment

    SciTech Connect (OSTI)

    Steven Brandt, E.; Grace, Jeremy M.

    2012-01-15

    The role of surface hydroxyl content in atomic layer deposition (ALD) of aluminum oxide (AO) on polymers is demonstrated by performing an atomic layer deposition of AO onto a variety of polymer types, before and after pretreatment in a plasma struck in water vapor. The treatment and deposition reactions are performed in situ in a high vacuum chamber that is interfaced to an x-ray photoelectron spectrometer to prevent adventitious exposure to atmospheric contaminants. X-ray photoelectron spectroscopy is used to follow the surface chemistries of the polymers, including theformation of surface hydroxyls and subsequent growth of AO by ALD. Using dimethyl aluminum isopropoxide and water as reactants, ALD is obtained for water-plasma-treated poly(styrene) (PS), poly(propylene) (PP), poly(vinyl alcohol) (PVA), and poly(ethylene naphthalate) (PEN). For PS, PP, and PEN, initial growth rates of AO on the native (untreated) polymers are at least an order of magnitude lower than on the same polymer surface following the plasma treatment. By contrast, native PVA is shown to initiate ALD of AO as a result of the presence of intrinsic surface hydroxyls that are derived from the repeat unit of this polymer.

  8. Conformations of organophosphine oxides

    SciTech Connect (OSTI)

    De Silva, Nuwan; Zahariev, Federico; Hay, Benjamin P.; Gordon, Mark S.; Windus, Theresa L.

    2015-07-17

    The conformations of a series of organophosphine oxides, OP(CH3)2R, where R = methyl, ethyl, isopropyl, tert-butyl, vinyl, and phenyl, are predicted using the MP2/cc-pVTZ level of theory. Comparison of potential energy surfaces for rotation about P–C bonds with crystal structure data reveals a strong correlation between predicted location and energetics of minima and histograms of dihedral angle distributions observed in the solid state. In addition, the most stable conformers are those that minimize the extent of steric repulsion between adjacent rotor substituents, and the torsional barriers tend to increase with the steric bulk of the rotating alkyl group. MM3 force field parameters were adjusted to fit the MP2 results, providing a fast and accurate model for predicting organophosphine oxides shapes—an essential part of understanding the chemistry of these compounds. As a result, the predictive power of the modified MM3 model was tested against MP2/cc-pVTZ conformations for triethylphosphine oxide, OP(CH2CH3)3, and triphenylphosphine oxide, OP(Ph)3.

  9. Climate change and health: Indoor heat exposure in vulnerable populations

    SciTech Connect (OSTI)

    White-Newsome, Jalonne L.; Sanchez, Brisa N.; Jolliet, Olivier; Zhang, Zhenzhen; Parker, Edith A.; Timothy Dvonch, J.; O'Neill, Marie S.

    2012-01-15

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 Degree-Sign C, 13.8 Degree-Sign C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.

  10. Synthesis, characterization and optical properties of hybrid PVAZnO nanocomposite: A composition dependent study

    SciTech Connect (OSTI)

    Hemalatha, K.S. [Department of Physics, Bangalore University, Bangalore 560 056, Karnataka (India); Department of Physics, Maharani's Science College for Women, Palace Road, Bangalore 560 001, Karnataka (India); Rukmani, K., E-mail: rukmani9909@yahoo.co.in [Department of Physics, Bangalore University, Bangalore 560 056, Karnataka (India); Suriyamurthy, N. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Nagabhushana, B.M. [Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore 560 054, Karnataka (India)

    2014-03-01

    Graphical abstract: - Highlights: ZnO nanoparticles were prepared by solution combustion method. PVAZnO nanocomposites were synthesized by solution casting method. Doped and undoped films were characterized using different techniques. Red shift in optical band gap was observed in Nanocomposite films with respect to nano ZnO. Photoluminescence intensity was found to be optimum for PVA10 mol% ZnO nanocomposite film. - Abstract: Nanocomposites of poly vinyl alcohol (PVA) and ZnO have been synthesized using the solution casting technique for different concentrations of nano ZnO powder prepared by low temperature solution combustion method. The formation of polymer nanocomposite and changes in the structural and micro structural properties of the materials were investigated by X-ray diffraction, Energy dispersive X ray spectroscopy and optical microscopy techniques (FTIR and UVVisible). The surface morphology of PVAZnO nanocomposite films were elucidated using Scanning Electron Microscopy. The optical absorption spectrum of nano ZnO shows blue shift in the optical band gap energy with respect to characteristic bulk ZnO at room temperature, whereas PVAZnO hybrid films show red shift with respect to nano ZnO. The photoluminescence studies show that the intensity of the blue emission (470 nm) varies with change in concentration of ZnO with an optimum intensity observed at 10 mol% of ZnO.

  11. Additives and method for controlling clathrate hydrates in fluid systems

    DOE Patents [OSTI]

    Sloan, Jr., Earle Dendy; Christiansen, Richard Lee; Lederhos, Joseph P.; Long, Jin Ping; Panchalingam, Vaithilingam; Du, Yahe; Sum, Amadeu Kun Wan

    1997-01-01

    Discussed is a process for preventing clathrate hydrate masses from detrimentally impeding the possible flow of a fluid susceptible to clathrate hydrate formation. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include polymers having lactam rings. Additives can also contain polyelectrolytes that are believed to improve conformance of polymer additives through steric hinderance and/or charge repulsion. Also, polymers having an amide on which a C.sub.1 -C.sub.4 group is attached to the nitrogen and/or the carbonyl carbon of the amide may be used alone, or in combination with ring-containing polymers for enhanced effectiveness. Polymers having at least some repeating units representative of polymerizing at least one of an oxazoline, an N-substituted acrylamide and an N-vinyl alkyl amide are preferred.

  12. Additives and method for controlling clathrate hydrates in fluid systems

    DOE Patents [OSTI]

    Sloan, E.D. Jr.; Christiansen, R.L.; Lederhos, J.P.; Long, J.P.; Panchalingam, V.; Du, Y.; Sum, A.K.W.

    1997-06-17

    Discussed is a process for preventing clathrate hydrate masses from detrimentally impeding the possible flow of a fluid susceptible to clathrate hydrate formation. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include polymers having lactam rings. Additives can also contain polyelectrolytes that are believed to improve conformance of polymer additives through steric hindrance and/or charge repulsion. Also, polymers having an amide on which a C{sub 1}-C{sub 4} group is attached to the nitrogen and/or the carbonyl carbon of the amide may be used alone, or in combination with ring-containing polymers for enhanced effectiveness. Polymers having at least some repeating units representative of polymerizing at least one of an oxazoline, an N-substituted acrylamide and an N-vinyl alkyl amide are preferred.

  13. Examination of a Standardized Test for Evaluating the Degree of Cure of EVA Encapsulation: Preprint

    SciTech Connect (OSTI)

    Miller, D. C.; Gu, X.; Haldenman, S.; Hidalgo, M.; Malguth, E.; Reid, C. G.; Shioda, T.; Schulze, S. H.; Wang, Z. Y.; Wohlgemuth, J. H.

    2013-11-01

    The curing of cross-linkable encapsulation is a critical consideration for photovoltaic (PV) modules manufactured using a lamination process. Concerns related to ethylene-co-vinyl acetate (EVA) include the quality (e.g., expiration and uniformity) of the films or completion (duration) of the cross-linking of the EVA within a laminator. Because these issues are important to both EVA and module manufacturers, an international standard has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the degree of cure for EVA encapsulation. The present draft of the standard calls for the use of differential scanning calorimetry (DSC) as the rapid, enabling secondary (test) method. Both the residual enthalpy- and melt/freeze-DSC methods are identified. The DSC methods are calibrated against the gel content test, the primary (reference) method. Aspects of other established methods, including indentation and rotor cure metering, were considered by the group. Key details of the test procedure will be described.

  14. Potential problems associated with ion-exchange resins used in the decontamination of light-water reactor systems

    SciTech Connect (OSTI)

    Soo, P.; Adams, J.W.; Kempf, C.R.

    1987-01-01

    During a typical decontamination event, ion-exchange resin beds are used to remove corrosion products (radioactive and nonradioactive) and excess decontamination reagents from waste streams. The spent resins may be solidified in a binder, such as cement, or sealed in a high-integrity container (HIC) in order to meet waste stability requirements specified by the Nuclear Regulatory Commission. Lack of stability of low-level waste in a shallow land burial trench may lead to trench subsidence, enhanced water infiltration and waste leaching, which would result in accelerated transport of radionuclides and the complexing agents used for decontamination. The current program is directed at investigating safety problems associated with the handling, solidification and containerization of decontamination resin wastes. The three tasks currently underway include freeze-thaw cycling of cementitious and vinyl ester-styrene forms to determine if mechanical integrity is compromised, a study of the corrosion of container materials by spent decontamination waste resins, and investigations of resin degradation mechanisms.

  15. Field lysimeter investigations - test results. Low-level waste data base development program: Test results for fiscal years 1986, 1987, 1988, and 1989

    SciTech Connect (OSTI)

    McConnell, J.W. Jr.; Rogers, R.D.; Findlay, M.W.; Davis, E.C.; Jastrow, J.D.; Neilson, R.M. Jr.; Hilton, L.D.

    1995-05-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program, funded by the U.S. Nuclear Regulatory Commission (NRC), is (a) studying the degradation effects in EPICOR-II organic ion-exchange resins caused by radiation, (b) examining the adequacy of test procedures recommended in the Branch Technical Position on Waste Form to meet the requirements of 10 CFR 61 using solidified EPICOR-II resins, (c) obtaining performance information on solidified EPICOR-II ion-exchange resins in a disposal environment, and (d) determining the condition of EPICOR-II liners. Results of the first 4 years of data acquisition from the field testing are presented and discussed. During the continuing field testing, both Portland type I-II cement and Dow vinyl ester-styrene waste forms are being tested in lysimeter arrays located at Argonne National Laboratory-East in Illinois and at Oak Ridge National Laboratory. The experimental equipment is described and results of waste form characterization using tests recommended by the NRC`s {open_quotes}Technical Position on Waste Form{close_quotes} are presented. The study is designed to provide continuous data on nuclide release and movement, as well as environmental conditions, over a 20-year period.

  16. Field Lysimeter Investigations - test results: Low-Level Waste Data Base Development Program: Test results for fiscal years 1994-1995

    SciTech Connect (OSTI)

    McConnell, J.W. Jr.; Rodgers, R.D.; Hilton, L.D.; Neilson, R.M. Jr.

    1996-06-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program, funded by the U.S. Nuclear Regulatory Commission (NRC), is (1) studying the degradation effects in EPICOR-II organic ion-exchange resins caused by radiation, (2) examining the adequacy of test procedures recommended in the Branch Technical Position on Waste Form to meet the requirements of 10 CFR 61 using solidified EPICOR-II resins, (3) obtaining performance information on solidified EPICOR-II ion-exchange resins in a disposal environment, and (4) determining the condition of EPICOR-II liners. Results of the final 2 (10 total) years of data acquisition from operation of the field testing are presented and discussed. During the continuing field testing, both portland type I-II cement and Dow vinyl ester-styrene waste forms are being tested in lysimeter arrays located at Argonne National Laboratory-East in Illinois and at Oak Ridge National Laboratory. The experimental equipment is described and results of waste form characterization using tests recommended by the NRC`s {open_quotes}Technical Position on Waste Form{close_quotes} are presented. The study is designed to provide continuous data on nuclide release and movement, as well as environmental conditions, over a 20-year period. At the end of the tenth year, the experiment was closed down. Examination of soil and waste forms is planned to be conducted next and will be reported later.

  17. Performance testing of grout-based waste forms for the solidification of anion exchange resins

    SciTech Connect (OSTI)

    Morgan, I.L.; Bostick, W.D.

    1990-10-01

    The solidification of spent ion exchanges resins in a grout matrix as a means of disposing of spent organic resins produced in the nuclear fuel cycle has many advantages in terms of process simplicity and economy, but associated with the process is the potential for water/cement/resins to interact and degrade the integrity of the waste form solidified. Described in this paper is one possible solution to preserving the integrity of these solidified waste forms: the encapsulation of beaded anion exchange resins in grout formulations containing ground granulated blast furnace slag, Type I-II (mixed) portland cement, and additives (clays, amorphous silica, silica fume, and fly ash). The results of the study reported herein show the cured waste form tested has a low leach rate for nitrate ion from the resin (and a low leach rate is inferred for Tc-99) and acceptable durability as assessed by the water immersion and freezing/thawing test protocols. The results also suggest a tested surrogate waste form prepared in vinyl ester styrene binder performs satisfactorily against the wetting/drying criterion, and it should offer additional insight into future work on the solidification of spent organic resins. 26 refs., 4 figs., 5 tabs.

  18. Field Lysimeter Investigations -- Test results. Low-Level Waste Data Base Development Program: Test results for fiscal years 1990, 1991, 1992, and 1993; Volume 2

    SciTech Connect (OSTI)

    McConnell, J.W. Jr.; Rogers, R.D.; Brey, R.R.; Neilson, R.M. Jr.; Hilton, L.D.; Jastrow, J.D.; Wickliff Hicks, D.S.; Sanford, W.E.; Sullivan, T.M.

    1995-12-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program, funded by the US Nuclear Regulatory Commission (NRC), is (a) studying the degradation effects in EPICOR-II organic ion-exchange resins caused by radiation, (b) examining the adequacy of test procedures recommended in the Branch Technical Position on Waste Form to meet the requirements of 10 CFR 61 using solidified EPICOR-II resins, (c) obtaining performance information on solidified EPICOR-II ion-exchange resins in a disposal environment, and (d) determining the condition of EPICOR-II liners. Results of the second 4 years of data acquisition from the field testing are presented and discussed. During the continuing field testing, both portland type 1--2 cement and Dow vinyl ester-styrene waste forms are being tested in lysimeter arrays located at Argonne National Laboratory-East in Illinois and at Oak Ridge National Laboratory. The experimental equipment is described and results of waste form characterization using tests recommended by the NRC`s ``Technical Position on Waste Form`` are presented. The study is designed to provide continuous data on nuclide release and movement, as well as environmental conditions, over a 20-year period.

  19. Technical support document for proposed 1994 revision of the MEC thermal envelope requirements

    SciTech Connect (OSTI)

    Conner, C.C.; Lucas, R.G.

    1994-03-01

    This report documents the development of the proposed revision of the Council of American Building Officials` (CABO) 1994 supplement to the 1993 Model Energy Code (MEC) building thermal envelope requirements for maximum component U{sub 0}-value. The 1994 amendments to the 1993 MEC were established in last year`s code change cycle and did not change the envelope requirements. The research underlying the proposed MEC revision was conducted by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Building Energy Standards program. The goal of this research was to develop revised guidelines based on an objective methodology that determines the most cost-effective (least total cost) combination of energy conservation measures (ECMs) (insulation levels and window types) for residential buildings. This least-cost set of ECMs was used as a basis for proposing revised MEC maximum U{sub 0}-values (thermal transmittances). ECMs include window types (for example, double-pane vinyl) and insulation levels (for example, R-19) for ceilings, walls, and floors.

  20. What do correlations tell us about anthropogenic – biogenic interactions and SOA formation in the Sacramento plume during CARES?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kleinman, Lawrence I.; Kuang, Chongai; Sedlacek, Art; Senum, Gunnar I.; Springston, Stephen R.; Wang, Jian; Zhang, Qi; Jayne, John T.; Fast, Jerome D.; Hubbe, John M.; et al

    2016-02-15

    During the Carbonaceous Aerosols and Radiative Effects Study (CARES) the DOE G-1 aircraft was used to sample aerosol and gas phase compounds in the Sacramento, CA plume and surrounding region. We present data from 66 plume transects obtained during 13 flights in which southwesterly winds transported the plume towards the foothills of the Sierra Nevada Mountains. Plume transport occurred partly over land with high isoprene emission rates. Our objective is to empirically determine whether organic aerosol (OA) can be attributed to anthropogenic or biogenic sources, and to determine whether there is a synergistic effect whereby OA concentrations are enhanced bymore » the simultaneous presence of high concentrations of CO and either isoprene, MVK+MACR (sum of methyl vinyl ketone and methacrolein) or methanol, which are taken as tracers of anthropogenic and biogenic emissions. Furthermore, linear and bi-linear correlations between OA, CO, and each of three biogenic tracers, “Bio”, for individual plume transects indicate that most of the variance in OA over short time and distance scales can be explained by CO.« less

  1. Fort Devens: Cold Climate Market-Rate Townhomes Targeting HERS Index of 40, Harvard, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Achieving aggressive energy efficiency targets requires tight coordination and clear communication among owners, designers, builders, and subcontractors. For this townhome project, MassDevelopment, the quasi-governmental agency owner, selected Metric Development of Boston, teaming with the U.S. Department of Energy (DOE) Consortium for Advanced Residential Buildings (CARB) and Cambridge Seven Architects, to build very high performing market-rate homes. Fort Devens is part of a decommissioned army base in working-class Harvard, Massachusetts, approximately one hour northwest of Boston. The team proposed 12 net zero energy-ready townhomes, meaning that the application of renewable energy systems would result in annual net zero energy use in the homes. The homes were also designed to achieve a Home Energy Rating System (HERS) Index Score of 41 before adding renewables. For this project, CARB drew on its experience working with Rural Development Inc. on a series of affordable townhomes in northern Massachusetts. The team carefully planned the site to maximize solar access, daylighting, and efficient building forms. The basic strategy was to design a very efficient thermal enclosure while minimizing incremental cost increases compared with standard construction. Using BEopt modeling software, the team established the requirements of the enclosure and investigated multiple assembly options. They settled on double-wall construction with dense-pack cellulose fill. High performance vinyl windows (U-0.24, solar heat gain coefficient [SHGC]-0.22), a vented R-59 attic, and exceptional air sealing completed the package.

  2. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors and intermediate products formed by such methods

    DOE Patents [OSTI]

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2012-12-04

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  3. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods

    DOE Patents [OSTI]

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2016-04-19

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  4. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods

    DOE Patents [OSTI]

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2014-09-09

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  5. HOW COMPLETE ARE ASTROPHYSICAL CATALOGS FOR THE MILLIMETER AND SUBMILLIMETER SPECTRAL REGION?

    SciTech Connect (OSTI)

    Fortman, Sarah M.; Medvedev, Ivan R.; Neese, Christopher F.; De Lucia, Frank C.

    2010-12-10

    With the growth in sensitivity and angular resolution of millimeter and submillimeter telescopes, the number of unidentified molecular spectral lines in surveys of the interstellar medium has grown rapidly. While some of these unidentified lines are due to as yet unidentified astrophysical species, it is the general consensus that most are due to lines from a limited number of well-known interstellar species, the interstellar weeds. These unidentified lines do not appear in astrophysical line catalogs, which are based on quantum mechanical models and are incomplete primarily because of the difficulty of performing the usual bootstrap assignment and analysis process in their often highly perturbed low-lying vibrational states. To address this problem, we have proposed and demonstrated an alternative catalog approach that is based on the analysis of intensity-calibrated spectra taken over a range of temperatures in the laboratory. These analyses also make it possible to quantitatively address the astrophysical completeness of existing catalogs. In this Letter, we use extensive new experimental data in the 210-270 GHz window to address this question for eight molecules that are considered to be the leading candidates for astronomical weeds-methyl formate, methanol, dimethyl ether, acetaldehyde, sulfur dioxide, methyl cyanide, vinyl cyanide, and ethyl cyanide. Additionally, for each of the eight molecules, we use these results and knowledge of the molecular vibrational/torsional energy levels to predict completeness as a function of astronomical source temperature.

  6. Synthesis of palladium-doped silica nanofibers by sol-gel reaction and electrospinning process

    SciTech Connect (OSTI)

    San, Thiam Hui; Daud, Wan Ramli Wan; Kadhum, Abdul Amir Hassan; Mohamad, Abu Bakar; Kamarudin, Siti Kartom; Shyuan, Loh Kee; Majlan, Edy Herianto [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia and Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2012-06-29

    Nanofiber is drawing great attention nowadays with their high surface area per volume and flexibility in surface functionalities that make them favorable as a proton exchange membrane in fuel cell application. In this study, incorporation of palladium nanoparticles in silica nanofibers was prepared by combination of a tetraorthosilane (TEOS) sol-gel reaction with electrospinning process. This method can prevent the nanoparticles from aggregation by direct mixing of palladium nanoparticles in silica sol. The as-produced electrospun fibers were thermally treated to remove poly(vinyl pyrrolidone) (PVP) and condensation of silanol in silica framework. PVP is chosen as fiber shaping agent because of its insulting and capping properties for various metal nanoparticles. Scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the silica fibers and Pd nanoparticles on the fibers. Spun fibers with average diameter ranged from 100nm to 400nm were obtained at optimum operating condition and distribution of Pd nanoparticles on silica fibers was investigated.

  7. [Transition metal mediated transformations of small molecules

    SciTech Connect (OSTI)

    Sen, A.

    1992-01-01

    Work on organotransition metal chemistry, homogeneous and heterogeneous catalysis is summarized. Several cationic palladium(II) complexes with bulky phosphine or pyridine ligands were discovered that are highly selective catalysts for linear dimerization of vinyl monomers and linear polymerization of p-divinylbenzene, the reactions proceeding through a carbocationic mechanism. Our studies were continued on alternating olefin-carbon monoxide copolymers. The copolymerization reaction and reactivity of copolymers were examined. New catalytic systems for alternating copolymerization of [alpha]-olefins with CO were discovered. In the case of styrene derivatives, tactic copolymers were obtained. Poly(ethylenepyrrolediyl) derivatives were synthesized from alternating ethylene-carbon monoxide copolymer and become electronic conductors when doped with iodine. A catalytic system for direct synthesis of polyureas and polyoxamides from and diamines was also discovered. Pt metal catalyzed the oxidation of ethers, esters, and amines to carboxylic acids and the oxidation of olefins to 1,2-diols. Anaerobic and aerobic decomposition of molybdenum(VI)-oxoalkyl compounds were studied for heterogeneous oxidation of alkanes and olefins on Mo(VI)-oxide surfaces. Synthesis of polymer-trapped metal, metal oxide, and metal sulfide nanoclusters (size <1--10 nm) was studied.

  8. [Transition metal mediated transformations of small molecules]. Progress report

    SciTech Connect (OSTI)

    Sen, A.

    1992-10-01

    Work on organotransition metal chemistry, homogeneous and heterogeneous catalysis is summarized. Several cationic palladium(II) complexes with bulky phosphine or pyridine ligands were discovered that are highly selective catalysts for linear dimerization of vinyl monomers and linear polymerization of p-divinylbenzene, the reactions proceeding through a carbocationic mechanism. Our studies were continued on alternating olefin-carbon monoxide copolymers. The copolymerization reaction and reactivity of copolymers were examined. New catalytic systems for alternating copolymerization of {alpha}-olefins with CO were discovered. In the case of styrene derivatives, tactic copolymers were obtained. Poly(ethylenepyrrolediyl) derivatives were synthesized from alternating ethylene-carbon monoxide copolymer and become electronic conductors when doped with iodine. A catalytic system for direct synthesis of polyureas and polyoxamides from and diamines was also discovered. Pt metal catalyzed the oxidation of ethers, esters, and amines to carboxylic acids and the oxidation of olefins to 1,2-diols. Anaerobic and aerobic decomposition of molybdenum(VI)-oxoalkyl compounds were studied for heterogeneous oxidation of alkanes and olefins on Mo(VI)-oxide surfaces. Synthesis of polymer-trapped metal, metal oxide, and metal sulfide nanoclusters (size <1--10 nm) was studied.

  9. Thermal chemistry of the Cu-KI5 atomic layer deposition precursor on a copper surface

    SciTech Connect (OSTI)

    Ma, Qiang; Zaera, Francisco

    2015-01-01

    The thermal chemistry of a Cu(I) ketoiminate complex, Cu-KI5, resulting from the modification of the known Air Products CupraSelect{sup } copper CVD precursor Cu(hfac)(tmvs) designed to tether the two ligands via an isopropoxide linker, was studied under ultrahigh vacuum on a Cu(110) single-crystal surface by using a combination of temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy. Adsorption at low temperatures was determined to take place via the displacement of the vinyl ligand by the surface. Molecular desorption was seen at 210?K, and the evolution of Cu(II)-KI5{sub 2} was established to take place at 280?K, presumably from a disproportionation reaction that also leads to the deposition of Cu(0). Other sets of desorption products were seen at 150, 250, and 430?K, all containing copper atoms and small organic moieties with molecular masses below 100 amu. The latter TPD peak in particular indicates significant fragmentation of the ligands, likely at the CN bond that holds the vinylsilane-isopropoxide moiety tethered to the ketoimine fragment, and possibly also at the union between the vinylsilane and the alkoxide linker. The 430?K temperature measured for this chemistry may set an upper limit for clean Cu film deposition, but since reactivity on the surface was also found to be inhibited at higher surface coverages, it may be delayed to higher temperatures under atomic layer deposition conditions.

  10. Large-area sol-gel highly-reflective coatings processed by the dipping technique

    SciTech Connect (OSTI)

    Belleville, P.; Pegon, P.

    1997-12-01

    The Centre d`Etudes de Limeil-Valenton is currently involved in a project which consists of the construction of a 2 MJ/500TW (351-nm) pulsed Nd:glass laser devoted to Inertial Confinement Fusion (ICF) research. With 240 laser beams, the proposed megajoule-class laser conceptual design necessitates 44-cm x 2 44-cm x 6-cm cavity-end mirrors (1053-nm) representing more than 50-m{sup 2} of coated area. These dielectric mirrors are made of quaterwave stacks of SiO{sub 2} and ZrO{sub 2}-PVP (PolyVinylPyrrolidone) and are prepared from colloidal suspensions (sols) using the sol-gel route. After a sustained search effort. we have prepared (SiO{sub 2}/ZrO{sub 2}-PVP){sup 10} mirrored coatings with up to 99% reflection at 1053-nm and for different incidence use. Adequate laser-conditioned damage thresholds ranging 14 - 15 J/cm{sup 2} at 1053-nm wavelength and with 3-ns pulse duration were achieved. Large-area mirrors with good coating uniformity and weak edge-effect were produced by dip-coating at room temperature and atmospheric pressure.

  11. Sanitary Landfill Groundwater Monitoring Report, Fourth Quarter 1999 and 1999 Summary

    SciTech Connect (OSTI)

    Chase, J.

    2000-03-13

    A maximum of thirty eight-wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Iron (Total Recoverable), Chloroethene (Vinyl Chloride) and 1,1-Dichloroethane were the most widespread constituents exceeding the Final Primary Drinking Water Standards during 1999. Trichloroethylene, 1,1-Dichloroethylene, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Aluminum (Total Recoverable), Benzene, cis-1,2-Dichloroethylene, Dichlorodifluoromethane, Dichloromethane (Methylene Chloride), Gross Alpha, Mercury (Total Recoverable), Nonvolatile Beta, Tetrachloroethylene, Total Organic Halogens, Trichlorofluoromethane, Tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 144.175 ft/year during first quarter 1999 and 145.27 ft/year during fourth quarter 1999.

  12. Ionizing radiation induced degradation of poly (2-methoxy-5-(2'-ethyl-hexyloxy) -1,4-phenylene vinylene) in solution

    SciTech Connect (OSTI)

    Bronze-Uhle, E. S.; Batagin-Neto, A.; Lavarda, F. C.; Graeff, C. F. O.

    2011-10-01

    In this paper we investigate the causes of the chromatic alteration observed in chloroform solutions of poly (2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) after gamma ray irradiation. Structural and chemical changes were analyzed by gel permeation chromatography, fourier transform infrared spectroscopy, and proton nuclear magnetic resonance techniques and complemented by electronic structure calculations. The results indicate chlorine incorporation in the polymer structure and main chain scission after irradiation. Based on our findings we propose that the main mechanism for the blue-shifts, observed in the UV-Vis absorption spectra of MEH-PPV after irradiation, is the result of a radical attack on the polymer main chain. Gamma rays generate radicals, Cl and CHCl{sub 2} from chloroform radiolysis that attack preferentially the vinyl double bonds of the polymer backbone, breaking the electronic conjugation and eventually the chain. Our results indicate that oxygen does not play a major role in the effect. Electronic spectra simulations were performed based on these assumptions reproducing the UV-Vis experimental results.

  13. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    SciTech Connect (OSTI)

    R.-H. Yoon; G.H. Luttrell; B. Luvsansambuu; A.D. Walters

    2000-10-01

    Work continued during the past quarter to improve the performance of the POC-scale unit. For the charging system, a more robust ''turbocharger'' has been fabricated and installed. All of the internal components of the charger have been constructed from the same material (i.e., Plexiglas) to prevent particles from contacting surfaces with different work functions. For the electrode system, a new set of vinyl-coated electrodes have been constructed and tested. The coated electrodes (i) allow higher field strengths to be tested without of risk of arcing and (ii) minimize the likelihood of charge reversal caused by particles colliding with the conducting surfaces of the uncoated electrodes. Tests are underway to evaluate these modifications. Several different coal samples were collected for testing during this reporting period. These samples included (i) a ''reject'' material that was collected from the pyrite trap of a pulverizer at a coal-fired power plant, (ii) an ''intermediate'' product that was selectively withdrawn from the grinding chamber of a pulverizer at a power plant, and (iii) a run-of-mine feed coal from an operating coal preparation plant. Tests were conducted with these samples to investigate the effects of several key parameters (e.g., particle size, charger type, sample history, electrode coatings, etc.) on the performance of the bench-scale separator.

  14. Testing Protocol for Module Encapsulant Creep (Presentation)

    SciTech Connect (OSTI)

    Kempe, M. D.; Miller, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.; Moseley, J. M.; Shah, Q.; Tamizhmani, G.; Sakurai, K.; Inoue, M.; Doi, T.; Masuda, A.

    2012-02-01

    Recently there has been an interest in the use of thermoplastic encapsulant materials in photovoltaic modules to replace chemically crosslinked materials, e.g., ethylene-vinyl acetate. The related motivations include the desire to: reduce lamination time or temperature; use less moisture-permeable materials; or use materials with better corrosion characteristics. However, the use of any thermoplastic material in a high-temperature environment raises safety and performance concerns, as the standardized tests currently do not expose the modules to temperatures in excess of 85C, yet modules may experience temperatures above 100C in operation. Here we constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass mock modules using different encapsulation materials of which only two were designed to chemically crosslink. One module set was exposed outdoors with insulation on the back side in Arizona in the summer, and an identical set was exposed in environmental chambers. High precision creep measurements and performance measurements indicate that despite many of these polymeric materials being in the melt state at some of the highest outdoor temperatures achievable, very little creep was seen because of their high viscosity, temperature heterogeneity across the modules, and in the case of the crystalline-silicon modules, the physical restraint of the backsheet. These findings have very important implications for the development of IEC and UL qualification and safety standards, and in regards to the necessary level of cure during the processing of crosslinking encapsulants.

  15. Examination of a Standardized Test for Evaluating the Degree of Cure of EVA Encapsulation (Presentation)

    SciTech Connect (OSTI)

    Miller, D.; Wohlgemuth, J.; Gu, X.; Haldeman, S.; Hidalgo, M.; Malguth, E.; Reid, C.; Shioda, T.; Schulze, S.; Wang, Z.

    2013-11-01

    The curing of cross-linkable encapsulation is a critical consideration for photovoltaic (PV) modules manufactured using a lamination process. Concerns related to ethylene-co-vinyl acetate (EVA) include the quality (e.g., expiration and uniformity) of the films or completion (duration) of the cross-linking of the EVA within a laminator. Because these issues are important to both EVA and module manufacturers, an international standard has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the degree of cure for EVA encapsulation. The present draft of the standard calls for the use of differential scanning calorimetry (DSC) as the rapid, enabling secondary (test) method. Both the residual enthalpy- and melt/freeze-DSC methods are identified. The DSC methods are calibrated against the gel content test, the primary (reference) method. Aspects of other established methods, including indentation and rotor cure metering, were considered by the group. Key details of the test procedure will be described.

  16. Catalyst activity maintenance study for the liquid phase dimethyl ether process

    SciTech Connect (OSTI)

    Peng, X.D.; Toseland, B.A.; Underwood, R.P.

    1995-12-31

    The co-production of dimethyl ether (DME) and methanol from syngas is a process of considerable commercial attractiveness. DME coproduction can double the productivity of a LPMEOH process when using coal-derived syngas. This in itself may offer chemical producers and power companies increased flexibility and more profitable operation. DME is also known as a clean burning liquid fuel; Amoco and Haldor-Topsoe have recently announced the use of DME as an alternative diesel fuel. Moreover, DME can be an interesting intermediate in the production of chemicals such as olefins and vinyl acetate. The current APCl liquid phase dimethyl ether (LPDME) process utilizes a physical mixture of a commercial methanol synthesis catalyst and a dehydration catalyst (e.g., {gamma}-alumina). While this arrangement provides a synergy that results in much higher syngas conversion per pass compared to the methanol-only process, the stability of the catalyst system suffers. The present project is aimed at reducing catalyst deactivation both by understanding the cause(s) of catalyst deactivation and by developing modified catalyst systems. This paper describes the current understanding of the deactivation mechanism.

  17. Petrochemicals from coal-derived syngas

    SciTech Connect (OSTI)

    Sardesai, A.; Lee, S.

    1996-12-31

    The development of the Liquid Phase Dimethyl Ether (LPDME) process has established a means to effectively convert CO-rich syngas to dimethyl ether (DME) in a mechanically agitated slurry reactor. By operating in a dual catalyst mode, in-situ produced methanol may be converted to DME, thereby alleviating the chemical equilibrium limitation imposed on the methanol synthesis reaction. As a result, higher syngas conversions and methyl productivities are seen over methanol synthesis alone. This effective route to DME production over methanol has led to the development of conversion technologies based on a DME feedstock. Oxygenates, in particular, ethers and their precursors, are very important as potential clean fuel additives and have been postulated through vinylation/hydrogenation and oxidative coupling reactions. Specialty chemicals such as methyl acetate and acetic acid have widescale industrial importance in the conversion to ethanol from a non-agricultural feedstock. Vapor phase oxidative dimerization of DME over tin based catalysts produced precursors of ethylene glycol. Finally, DME has been extensively used as a feedstock for hydrocarbon synthesis including olefins, paraffins and gasoline range hydrocarbons, over zeolite based catalysts with a 46% increase in product selectivity over methanol. The efficient production of DME in the liquid phase has given it widescale industrial significance as a potential replacement for methanol and as a keystone for more important petrochemicals.

  18. Use of Sequential Injection Analysis to construct a Potentiometric Electronic Tongue: Application to the Multidetermination of Heavy Metals

    SciTech Connect (OSTI)

    Mimendia, Aitor; Merkoci, Arben; Valle, Manel del; Legin, Andrey

    2009-05-23

    An automated potentiometric electronic tongue (ET) was developed for the quantitative determination of heavy metal mixtures. The Sequential Injection Analysis (SIA) technique was used in order to automate the obtaining of input data, and the combined response was modeled by means of Artificial Neural Networks (ANN). The sensor array was formed by four sensors: two based on chalcogenide glasses Cd sensor and Cu sensor, and the rest on poly(vinyl chloride) membranes Pb sensor and Zn sensor. The Ion Selective Electrode (ISE) sensors were first characterized with respect to one and two analytes, by means of high-dimensionality calibrations, thanks to the use of the automated flow system; this characterization enabled an interference study of great practical utility. To take profit of the dynamic nature of the sensor's response, the kinetic profile of each sensor was compacted by Fast Fourier Transform (FFT) and the extracted coefficients were used as inputs for the ANN in the multidetermination applications. In order to identify the ANN which provided the best model of the electrode responses, some of the network parameters were optimized. Finally analyses were performed employing synthetic samples and water samples of the river Ebro; obtained results were compared with reference methods.

  19. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOE Patents [OSTI]

    Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.

    1993-01-01

    A process for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm.sup.3 ].sup.1/2 with polar components in the 1.8-3.0 range and hydrogen bonding components in the 2-4.8 range and the recovery of the product extract from the solvent with no further purification being needed for use in adhesives and molding compounds. The product extract is characterized as being a mixture of very different compounds having a wide variety of chemical functionalities, including phenolic, carbonyl, aldehyde, methoxyl, vinyl and hydroxyl. The use of the product extract on phenol-formaldehyde thermosetting resins is shown to have advantages over the conventional phenol-formaldehyde resins.

  20. Low-cost household paint abatement to reduce children's blood lead levels

    SciTech Connect (OSTI)

    Taha, T.; Kanarek, M.S.; Schultz, B.D.; Murphy, A.

    1999-11-01

    The purpose was to examine the effectiveness of low-cost abatement on children's blood lead levels. Blood lead was analyzed before and after abatement in 37 homes of children under 7 years old with initial blood lead levels of 25--44 {micro}g/dL. Ninety-five percent of homes were built before 1950. Abatement methods used were wet-scraping and repainting deteriorated surfaces and wrapping window wells with aluminum or vinyl. A control group was retrospectively selected. Control children were under 7 years old, had initial blood lead levels of 25--44 {micro}g/dL and a follow-up level at least 28 days afterward, and did not have abatements performed in their homes between blood lead levels. After abatement, statistically significant declines occurred in the intervention children's blood lead levels. The mean decline was 22%, 1 to 6 months after treatment. After adjustment for seasonality and child's age, the mean decline was 6.0 {micro}g/dL, or 18%. The control children's blood levels did not decline significantly. There was a mean decline of 0.25 {micro}g/dL, or 0.39%. After adjustment for seasonality and age, the mean decline for control children was 1.6 {micro}g/dL, or 1.8%. Low-cost abatement and education are effective short-term interim controls.

  1. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This reduction in capacity was observed to be independent of the amount of charge/discharge cycles except for the composites containing siloxane, which showed less of an impact on hydrogen storage capacity as it was cycled further. While the reason for this is not clear, it may be due to a chemically stabilizing effect of the siloxane on the metal hydride. Flow-through calorimetry was used to characterize the mitigating effectiveness of the different composites relative to the neat (no polymer) material. The composites were found to be initially effective at reducing the amount of heat released during oxidation, and the best performing material was the siloxane-containing composite which reduced the heat release to less than 50% of the value of the neat material. However, upon cycling the composites, all mitigating behavior was lost. The combined results of the flow-through calorimetry, hydrogen capacity, and thermogravimetric analysis tests lead to the proposed conclusion that while the polymer composites have mitigating potential and are physically robust under cycling, they undergo a chemical change upon cycling that makes them ineffective at mitigating heat release upon oxidation of the metal hydride.

  2. Advanced development of PV encapsulants. Annual subcontract report, 30 December 1992--31 March 1994

    SciTech Connect (OSTI)

    Holley, W.; Agro, S.; Galica, J.; Thoma, L.; White, R.; Yorgensen, R.

    1994-11-01

    This report describes work under Phase II of a Photovoltaic Manufacturing Technology project to conduct laboratory problem definition with an emphasis on controlled aging studies to evaluate the influence of various compositional, processing, and operating parameters on ethylene vinyl acetate (EVA) discoloration. In support of future accelerated UV aging studies (AAS) of coupon-sized EVA laminates, an Atlas xenon arc Ci35A Weather-Ometer was procured, installed, and calibrated for temperature and irradiance. In preparing for the AAS studies, UV-visible spectroscopy measurements were performed on various types of low-iron glass, representive of materials used for module superstrates. It was discovered that the transmission spectra of some of the grades in the UV region from 250 to 400 nm was significantly different. Older grades of Solatex and solite, and StarPhire 'cut off' well below 290 nm, while newer grades of Solatex and Solite, and StarPhire and Airphire greatly reduce the UV transmittance between 280 and 330 nm. Controlled aging studies are presently underway at 0.55 W/m2, 340 nm, and 100 degrees C, and we expect comparative data on yellowing to be available soon.

  3. Air-stable solution-processed n-channel organic thin film transistors with polymer-enhanced morphology

    SciTech Connect (OSTI)

    He, Zhengran; Shaik, Shoieb; Bi, Sheng; Li, Dawen; Chen, Jihua

    2015-05-04

    N,N′-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN{sub 2}) is an n-type semiconductor exhibiting high electron mobility and excellent air stability. However, the reported electron mobility based on spin-coated PDIF-CN{sub 2} film is much lower than the value of PDIF-CN{sub 2} single crystals made from vapor phase deposition, indicating significant room for mobility enhancement. In this study, various insulating polymers, including poly(vinyl alcohol), poly(methyl methacrylate) (PMMA), and poly(alpha-methylstyrene) (PαMS), are pre-coated on silicon substrate aiming to enhance the morphology of the PDIF-CN{sub 2} thin film, thereby improving the charge transport and air stability. Atomic force microscopy images reveal that with the pre-deposition of PαMS or PMMA polymers, the morphology of the PDIF-CN{sub 2} polycrystalline films is optimized in semiconducting crystal connectivity, domain size, and surface roughness, which leads to significant improvement of organic thin-film transistor (OTFT) performance. Particularly, an electron mobility of up to 0.55 cm{sup 2}/V s has been achieved from OTFTs based on the PDIF-CN{sub 2} film with the pre-deposition of PαMS polymer.

  4. Structural foam-core panels in Northwest HUD-code manufactured housing: A preliminary assessment of opportunities and obstacles

    SciTech Connect (OSTI)

    Durfee, D.L.; Lee, A.D.; Onisko, S.A.

    1993-07-01

    This investigation of structural foam-core panels (foam panels) in manufactured housing was initiated during the Super Good Cents (SGC) program. The SGC program limited allowable glazing area because of the relatively high thermal losses associated with most windows. Due to their superior thermal performance, foam panels appeared to be a viable option to allow increased glazing area without compromising the thermal integrity of the wall. With the inception of the Manufactured-Housing Acquisition Program (MAP), however, the focus of this study has shifted. MAP permits unlimited glazing area if expensive, super-efficient, vinyl-framed, argon-gas-filled, low-emissivity coated windows are installed. Although MAP permits unlimited glazing area, a foam panel wall could allow the use of less expensive windows, larger window area, or less insulation and still provide the required thermal performance for the building. Bonneville contracted with the Pacific Northwest Laboratory (PNL) to investigate the feasibility of using foam panels in HUD-code manufactured housing. This study presents the results from a product and literature search. The potential barriers and benefits to the use of foam panels are determined from a regional survey of the HUD-code manufacturers and foam panel producers.

  5. The complete, temperature resolved experimental spectrum of methanol (CH{sub 3}OH) between 560 and 654 GHz

    SciTech Connect (OSTI)

    Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.

    2014-02-20

    The complete spectrum of methanol (CH{sub 3}OH) has been characterized over a range of astrophysically significant temperatures in the 560.4-654.0 GHz spectral region. Absolute intensity calibration and analysis of 166 experimental spectra recorded over a slow 248-398 K temperature ramp provide a means for the simulation of the complete spectrum of methanol as a function of temperature. These results include contributions from v{sub t} = 3 and other higher states that are difficult to model via quantum mechanical (QM) techniques. They also contain contributions from the {sup 13}C isotopologue in terrestrial abundance. In contrast to our earlier work on semi-rigid species, such as ethyl cyanide and vinyl cyanide, significant intensity differences between these experimental values and those calculated by QM methods were found for many of the lines. Analysis of these differences shows the difficulty of the calculation of dipole matrix elements in the context of the internal rotation of the methanol molecule. These results are used to both provide catalogs in the usual line frequency, linestrength, and lower state energy format, as well as in a frequency point-by-point catalog that is particularly well suited for the characterization of blended lines.

  6. INDEPENDENT TECHNICAL REVIEW OF THE BUILDING 100 PLUME, FORMER DOE PINELLAS SITE (YOUNG - RAINEY STAR CENTER), LARGO, FLORIDA

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Rossabi, J.; Amidon, M.; Riha, B.; Kaback, D.

    2010-07-30

    Contaminated groundwater associated with Building 100 at the Young-Rainey Science, Technology, and Research Center, formerly the DOE Pinellas plant, is the primary remedial challenge that remains to be addressed at the site. Currently, Building 100 is an active industrial facility that is now owned and operated by the Pinellas county government. Groundwater samples collected from monitoring wells recently installed near the southern boundary of the site suggest that contaminated groundwater has migrated off the plant site. In response to the challenges presented by the Building 100 plume, the Office of Legacy Management (LM) requested assistance from the DOE Office of Groundwater and Soil Remediation (EM-32) to provide a review team to make technical recommendations so that they can efficiently and effectively address characterization and remediation of the plume. The review team was unanimous in the conclusion that a dynamic strategy that combines a phased implementation of direct push samplers, sensors, and tools can be used to better delineate the extent of contamination, control plume migration, and rapidly remediate the contaminated groundwater at the site. The initial efforts of the team focused on reviewing the site history and data, organizing the information into a conceptual model, identifying appropriate technologies, and recommending an integrated strategy. The current groundwater data from the site indicate a two-lobed plume extending to the east and south. To the east vinyl chloride is the primary contaminant of concern, to the south, vinyl chloride and cis1, 2-DCE are the primary contaminants. The limited data that are available suggest that reductive dechlorination of the TCE is already occurring but is not sufficient to prevent offsite migration of low concentrations of TCE daughter products. The team recommends that DOE pursue a strategy that builds on the natural cleansing capacity of the subsurface with reductive methods including biostimulation and/or bioaugmentation to provide a sustainable remediation system within the flow path of the plume. Additional data will be required to implement this approach and will include: (1) Better delineation of the nature and extent of contamination; (2) Demonstration the plume is currently stable or shrinking; and (3) Demonstration the full reductive dechlorination is occurring. The technical team recommends that DOE use a phased approach to identify residual contamination and to provide rapid installation of remedies. Matrices of characterization and remediation sensors, technologies, and tools were developed by the team in order to match the specific conditions and requirements of the site. The team provides a specific example of remedy that includes the incorporation of a dynamic characterization strategy moving from minimally invasive to more aggressive field techniques, the consideration of multiple complementary remediation approaches based on a spatiotemporally phased approach keyed to the different demands of different parts of the plume, and the integration and sequencing of the characterization and remediation activities.

  7. US/UK second level panel discussions on the health and value of: Ageing and lifetime predictions (u)

    SciTech Connect (OSTI)

    Castro, Richard G

    2011-01-18

    Many healthy physics, engineering, and materials exchanges are being accomplished in ageing and lifetime prediction that directly supports US and UK Stockpile Management Programs. Lifetime assessment studies of silicon foams under compression - Joint AWE/LANLlLLNL study of compression set in stress cushions completed. Provides phenomenological prediction out to 50 years. Polymer volatile out-gassing studies - New exchange on the out-gassing of Ethylene Vinyl Acetate (EVA) using isotopic {sup 13}C labeling studies to interrogate mechanistic processes. Infra-red (IR) gas cell analytical capabilities developed by AWE will be used to monitor polymer out-gassing profiles. Pu Strength ageing Experiments and Constitutive Modeling - In recently compared modeling strategies for ageing effects on Pu yield strength at high strain rates, a US/UK consensus was reached on the general principle that the ageing effect is additive and not multiplicative. The fundamental mechanisms for age-strengthening in Pu remains unknown. Pu Surface and Interface Reactions - (1) US/UK secondment resulted in developing a metal-metal oxide model for radiation damaged studies consistent with a Modified Embedded Atom Method (MEAM) potential; and (2) Joint US/UK collaboration to study the role of impurities in hydride initiation. Detonator Ageing (wide range of activities) - (1) Long-term ageing study with field trials at Pantex incorporating materials from LANL, LLNL, SNL and AWE; (2) Characterization of PETN growth to detonation process; (3) Detonator performance modeling; and (4) Performance fault tree analysis. Benefits are a unified approach to lifetime prediction that Includes: materials characterization and the development of ageing models through improved understanding of the relationship between materials properties, ageing properties and detonator performance.

  8. Demonstration of the Performance of Highly Insulating (R-5) Windows in a Matched Pair of Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.

    2013-12-05

    Improving the insulation and solar heat gain characteristics of a homes windows has the potential to significantly improve the homes overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high-quality installation will also minimize or reduce air leakage through the building envelope, decreasing infiltration and thus contributing to reduced heat transmission through building envelope. These improvements all contribute to decreasing overall annual home energy use. In addition to improvements in energy efficiency, highly insulating windows can have important impacts on occupant comfort by minimizing or eliminating the cold draft many homeowners experience at or near window surfaces that are at a noticeably cooler than the room air temperature. Energy efficiency measures, such as highly insulating windows, also have the potential to decrease peak energy use in a home, which can lead to measurable peak load decreases for a utility service territory if implemented on a large scale. High-performance windows now feature triple-pane glass, double low-e coatings, and vinyl insulated frames to achieve U-factors as low as 0.2 , as compared to double-pane clear glass windows with a U-factor of 0.67, which are common in existing homes across the United States. The highly insulating windows (as they will be referred to in this document) are now available from several manufacturers and show promise to yield considerable energy savings and thermal comfort improvements in homes.

  9. Potentiometric Response Characteristics of Membrane-BasedCs+-Selective Electrodes Containing Ionophore-Functionalized Polymeric Microspheres

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peper, Shane; Gonczy, Chad

    2011-01-01

    Cs+-selective solvent polymeric membrane-based ion-selective electrodes (ISEs) were developed by doping ethylene glycol-functionalized cross-linked polystyrene microspheres (P-EG) into a plasticized poly(vinyl chloride) (PVC) matrix containing sodium tetrakis-(3,5-bis(trifluoromethyl)phenyl) borate (TFPB) as the ion exchanger. A systematic study examining the effects of the membrane plasticizers bis(2-ethylhexyl) sebacate (DOS), 2-nitrophenyl octyl ether (NPOE), and 2-fluorophenyl nitrophenyl ether (FPNPE) on the potentiometric response and selectivity of the corresponding electrodes was performed. Under certain conditions, P-EG-based ion-selective electrodes (ISEs) containing TFPB and plasticized with NPOE exhibited a super-Nernstian response between110?3and110?4?M Cs+, a response characteristic not observed in analogous membranes plasticized with either DOS or FPNPE.moreAdditionally, the performance of P-EG-based ISEs was compared to electrodes based on two mobile ionophores, a neutral lipophilic ethylene glycol derivative (ethylene glycol monooctadecyl ether (U-EG)) and a charged metallacarborane ionophore, sodium bis(dicarbollyl)cobaltate(III) (CC). In general, P-EG-based electrodes plasticized with FPNPE yielded the best performance, with a linear range from 10-110-5?M Cs+, a conventional lower detection limit of8.110?6?M Cs+, and a response slope of 57.7?mV/decade. The pH response of P-EG ISEs containing TFPB was evaluated for membranes plasticized with either NPOE or FPNPE. In both cases, the electrodes remained stable throughout the pH range 312, with only slight proton interference observed below pH 3.less

  10. Pilot-scale Tests to Vitrify Korean Low-Level Wastes

    SciTech Connect (OSTI)

    Choi, K.; Kim, C.-W.; Park, J. K.; Shin, S. W.; Song, M.-J.; Brunelot, P.; Flament, T.

    2002-02-26

    Korea is under preparation of its first commercial vitrification plant to handle LLW from her Nuclear Power Plants (NPPs). The waste streams include three categories: combustible Dry Active Wastes (DAW), borate concentrates, and spent resin. The combustible DAW in this research contains vinyl bag, paper, and protective cloth and rubber shoe. The loaded resin was used to simulate spent resin from NPPs. As a part of this project, Nuclear Environment Technology Institute (NETEC) has tested an operation mode utilizing its pilot-scale plant and the mixed waste surrogates of resin and DAW. It has also proved, with continuous operation for more than 100 hours, the consistency and operability of the plant including cold crucible melter and its off-gas treatment equipment. Resin and combustible DAW were simultaneously fed into the glass bath with periodic addition of various glass frits as additives, so that it achieved a volume reduction factor larger than 70. By adding various glass frits, this paper discusses about maintaining the viscosity and electrical conductivity of glass bath within their operable ranges, but not about obtaining a durable glass product. The operating mode starts with a batch of glass where a titanium ring is buried. When the induced power ignites the ring, the joule heat melts the surrounding glass frit along with the oxidation heat of titanium. As soon as the molten bath is prepared, in the first stage of the mode, the wastes consisting of loaded resin and combustible DAW are fed with no or minimum addition of glass frits. Then, in the second stage, the bath composition is kept as constant as possible. This operation was successful in terms of maintaining the glass bath under operable condition and produced homogeneous glass. This operation mode could be adapted in commercial stage.

  11. Field Testing of Thermoplastic Encapsulants in High-Temperature Installations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; Kurtz, Sarah R.; Moseley, John M.; Shah, Qurat A.; Tamizhmani, Govindasamy; Sakurai, Keiichiro; Inoue, Masanao; Doi, Takuya; et al

    2015-11-01

    Recently there has been increased interest in using thermoplastic encapsulant materials in photovoltaic modules, but concerns have been raised about whether these would be mechanically stable at high temperatures in the field. This has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. We constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass thin-film mock modules using different encapsulant materials, of which only two were formulated to chemically crosslink. One module set was exposed outdoors with thermal insulation on the back side in Mesa, Arizona, in the summer (hot-dry), and an identicalmore » module set was exposed in environmental chambers. High-precision creep measurements (±20 μm) and electrical performance measurements indicate that despite many of these polymeric materials operating in the melt or rubbery state during outdoor deployment, no significant creep was seen because of their high viscosity, lower operating temperature at the edges, and/or the formation of chemical crosslinks in many of the encapsulants with age despite the absence of a crosslinking agent. Only an ethylene-vinyl acetate (EVA) encapsulant formulated without a peroxide crosslinking agent crept significantly. When the crystalline-silicon modules, the physical restraint of the backsheet reduced creep further and was not detectable even for the EVA without peroxide. Because of the propensity of some polymeric materials to crosslink as they age, typical thermoplastic encapsulants would be unlikely to result in creep in the vast majority of installations.« less

  12. Potentiometric Response Characteristics of Membrane-Based Cs + -Selective Electrodes Containing Ionophore-Functionalized Polymeric Microspheres

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peper, Shane; Gonczy, Chad

    2011-01-01

    Csmore » + -selective solvent polymeric membrane-based ion-selective electrodes (ISEs) were developed by doping ethylene glycol-functionalized cross-linked polystyrene microspheres (P-EG) into a plasticized poly(vinyl chloride) (PVC) matrix containing sodium tetrakis-(3,5-bis(trifluoromethyl)phenyl) borate (TFPB) as the ion exchanger. A systematic study examining the effects of the membrane plasticizers bis(2-ethylhexyl) sebacate (DOS), 2-nitrophenyl octyl ether (NPOE), and 2-fluorophenyl nitrophenyl ether (FPNPE) on the potentiometric response and selectivity of the corresponding electrodes was performed. Under certain conditions, P-EG-based ion-selective electrodes (ISEs) containing TFPB and plasticized with NPOE exhibited a super-Nernstian response between 1 × 10 − 3 and 1 × 10 − 4  M+ , a response characteristic not observed in analogous membranes plasticized with either DOS or FPNPE. Additionally, the performance of P-EG-based ISEs was compared to electrodes based on two mobile ionophores, a neutral lipophilic ethylene glycol derivative (ethylene glycol monooctadecyl ether (U-EG)) and a charged metallacarborane ionophore, sodium bis(dicarbollyl)cobaltate(III) (CC). In general, P-EG-based electrodes plasticized with FPNPE yielded the best performance, with a linear range from 10 -1 –10 -5  M+ , a conventional lower detection limit of 8.1 × 10 − 6  M+ , and a response slope of 57.7 mV/decade. The pH response of P-EG ISEs containing TFPB was evaluated for membranes plasticized with either NPOE or FPNPE. In both cases, the electrodes remained stable throughout the pH range 3–12, with only slight proton interference observed below pH 3.« less

  13. Predicted concentrations in new relocatable classrooms of volatile organic compounds emitted from standard and alternate interior finish materials

    SciTech Connect (OSTI)

    Hodgson, Alfred T.; Fisk, William J.; Shendell, Derek G.; Apte, Michael G.

    2001-07-01

    Relocatable classrooms (RCs) are widely employed by California school districts to satisfy rapidly expanding space requirements due to population growth and class size reduction policies. There is public concern regarding indoor environmental quality (IEQ) in schools, particularly in RCs, but very little data to support or dispel these concerns. Several studies are investigating various aspects of IEQ in California schools. This laboratory-based study focused on evaluating the emissions of toxic and/or odorous volatile organic compounds (VOCs), including formaldehyde and acetaldehyde, from materials used to finish the interiors of new RCs. Furthermore, the study implemented a procedure for VOC source reduction by testing and selecting lower-emitting materials as substitutes for standard materials. In total, 17 standard and alternate floor coverings, wall panels and ceiling panels were quantitatively tested for emissions of VOCs using smallscale environmental chambers. Working with the largest northern California manufacturer of conventional RCs and two school districts, specifications were developed for four new RCs to be produced in early summer 2001. Two of these will be predominantly finished with standard materials. Alternate carpet systems, an alternate wall panel covering and an alternate ceiling panel were selected for the two other RCs based on the results of the laboratory study and considerations of cost and anticipated performance and maintenance. Particular emphasis was placed on reducing the concentrations of VOCs on California agency lists of toxic compounds. Indoor concentrations of toxic and odorous VOCs were estimated for the four classrooms by mass balance using the measured VOC emission factors, exposed surface areas of the materials in the RCs, and three ventilation rate scenarios. Results indicate that reductions in the concentrations of formaldehyde, acetaldehyde phenol, di(ethylene glycol) butyl ether, vinyl acetate, 1,2,4-trimethylbenzene and 1-methyl-2-pyrrolidinone should be achieved as the result of the source reduction procedure.

  14. Technical area status report for low-level mixed waste final waste forms. Volume 1

    SciTech Connect (OSTI)

    Mayberry, J.L.; DeWitt, L.M.; Darnell, R.

    1993-08-01

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

  15. The Mark 101 flux compression generator: Development progress

    SciTech Connect (OSTI)

    Freeman, B.L.; Fowler, C.M.; Rickel, D.G.; Hodgdon, M.L.

    1989-01-01

    The Mark 101 explosive flux compression generator is a line-initiated, helical generator that offers the possibility of a theoretical dL/dt greater than or equal to 0.5 ..cap omega... The design and initial tests were reported by Fowler, et al. and Freeman, et al. Subsequent to the early results, which demonstrated current gains of only /approximately/1.2:1, the generator design was modified and now includes a low-density foam staging layer between the PBX 9501 explosive and the aluminum armature and a vinyl coating on the stator winding. This redesigned Mark 101 has an initial working inductance of 5.36 ..mu..H and a load inductance of 0.60 ..mu..H. The lossless current gain of this unit is 9.9:1, and the estimated practical gain is /approximately/5.5. Experiments have been performed using SF/sub 6/ and vacuum as the insulating media between the armature and stator. Measured current gains of /approximately/5.0:1 have been achieved. The maximum measured dI/dt of /approximately/1.2 /times/ 10/sup 11/ Amps/sec and V of /approximately/62 kV were significantly less than expected during high-current tests. However, a case motion experiment has shown that the armature is probably disintegrating during the last few microseconds of the armature run. Thus, the configuration of the staging layer between the explosive and the armature has been the subject of study. The results of the generator tests are presented. 5 refs., 8 figs.

  16. Self-oscillating AB diblock copolymer developed by post modification strategy

    SciTech Connect (OSTI)

    Ueki, Takeshi E-mail: ryo@cross.t.u-tokyo.ac.jp; Onoda, Michika; Tamate, Ryota; Yoshida, Ryo E-mail: ryo@cross.t.u-tokyo.ac.jp; Shibayama, Mitsuhiro

    2015-06-15

    We prepared AB diblock copolymer composed of hydrophilic poly(ethylene oxide) segment and self-oscillating polymer segment. In the latter segment, ruthenium tris(2,2?-bipyridine) (Ru(bpy){sub 3}), a catalyst of the Belousov-Zhabotinsky reaction, is introduced into the polymer architecture based on N-isopropylacrylamide (NIPAAm). The Ru(bpy){sub 3} was introduced into the polymer segment by two methods; (i) direct random copolymerization (DP) of NIPAAm and Ru(bpy){sub 3} vinyl monomer and (ii) post modification (PM) of Ru(bpy){sub 3} with random copolymer of NIPAAm and N-3-aminopropylmethacrylamide. For both the diblock copolymers, a bistable temperature region (the temperature range; ?T{sub m}), where the block copolymer self-assembles into micelle at reduced Ru(bpy){sub 3}{sup 2+} state whereas it breaks-up into individual polymer chain at oxidized Ru(bpy){sub 3}{sup 3+} state, monotonically extends as the composition of the Ru(bpy){sub 3} increases. The ?T{sub m} of the block copolymer prepared by PM is larger than that by DP. The difference in ?T{sub m} is rationalized from the statistical analysis of the arrangement of the Ru(bpy){sub 3} moiety along the self-oscillating segments. By using the PM method, the well-defined AB diblock copolymer having ?T{sub m} (ca. 25?C) large enough to cause stable self-oscillation can be prepared. The periodic structural transition of the diblock copolymer in a dilute solution ([Polymer]?=?0.1?wt.?%) is closely investigated in terms of the time-resolved dynamic light scattering technique at constant temperature in the bistable region. A macroscopic viscosity oscillation of a concentrated polymer solution (15?wt.?%) coupled with the periodic microphase separation is also demonstrated.

  17. Synthesis of Naphthalimidedioxime Ligand-Containing Fibers for Uranium Adsorption from Seawater

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chatterjee, Sabornie; Bryantsev, Vyacheslav S.; Brown, Suree; Johnson, J. Casey; Grant, Christopher D.; Mayes, Richard T.; Hay, Benjamin P.; Dai, Sheng; Saito, Tomonori

    2015-12-16

    Uranium exists as uranyl carbonates (primarily as [UO2(CO3)3]4-) at a low concentration of 3.3 ppb, in seawater. Due to the ocean's vast volume, the total amount of uranium in seawater has been estimated at 4.5 billion tons or nearly 1000 times more than land-based resources. This large surplus provides attractive solution to supply nuclear fuel feeds in future. However, the presence of a variety of competing metal ions and the low concentration of uranium in seawater make the extraction of uranium from seawater challenging. The goal of this work is to develop adsorbent fibers that can recover uranium from themore » slightly alkaline (pH 8.0 - 8.3) seawater. In this process, radiation-induced graft polymerization (RIGP) is used where fibers are prepared by irradiating and treating polyethylene (PE) with different bulk ratios of vinyl benzyl chloride (VBC) and methacrylic acid (MAA) or itaconic acid. Furthermore, chemical modifications of these fibers were performed via two step processes, where novel bisimidoxime ligands are incorporated into fibers. These ligands contain imidedioxime, which is known to be a uranium-philic functionality. Also, the core structures of these ligands containing three donor atoms facilitate the formation of chelates with uranyl ion in seawater. Density functional theory (DFT) calculations were performed to quantify the binding strength with the uranyl ion. The adsorbent showed moderate to high uranium (~35-50 g-U/kg adsorbent) adsorption capacity in a model seawater with a uranium concentration of 6 ppm at pH 8.0 8.3.« less

  18. Chemical characterization, leach, and adsorption studies of solidified low-level wastes

    SciTech Connect (OSTI)

    Walter, M.B.; Serne, R.J.; Jones, T.L.; McLaurine, S.B.

    1986-12-01

    Laboratory and field leaching experiments are beig conducted by Pacific Northwest Laboratory (PNL) to investigate the performance of solidified low-level nuclear waste in a typical, arid, near-surface disposal site. Under PNL's Special Waste Form Lysimeters-Arid Program, a field test facility was constructed to monitor the leaching of commercial solidified waste. Laboratory experiments were conducted to investigate the leaching and adsorption characteristics of the waste forms in contact with soil. Liquid radioactive wastes solidified in cement, vinyl ester-styrene, and bitumen were obtained from commercial boiling water and pressurized water reactors, and buried in a field leaching facility on the Hanford site in southeastern Washington State. Batch leaching, soil column adsorption, and soil/waste form column experiments were conducted in the laboratory, using small-scale cement waste forms and Hanford site ground water. The purpose of these experiments is to evaluate the ability of laboratory leaching tests to predict leaching under actual field conditions and to determine which mechanisms (i.e., diffusion, solubility, adsorption) actually control the concentration of radionuclides in the soil surrounding the waste form. Chemical and radionuclide analyses performed on samples collected from the field and laboratory experiments indicate strong adsorption of /sup 134,137/Cs and /sup 85/Sr onto the Hanford site sediment. Small amounts of /sup 60/Co are leached from the waste forms as very mobile species. Some /sup 60/Co migrated through the soil at the same rate as water. Chemical constituents present in the reactor waste streams also found at elevated levels in the field and laboratory leachates include sodium, sulfate, magnesium, and nitrate. Plausible solid phases that could be controlling some of the chemical and radionuclide concentrations in the leachate were identified using the MINTEQ geochemical computer code.

  19. Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan; Tekinalp, Halil L.; Nanda, Jagjit; Ozcan, Soydan

    2015-05-13

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymermore » films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. These results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.« less

  20. Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes

    SciTech Connect (OSTI)

    Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan; Tekinalp, Halil L.; Nanda, Jagjit; Ozcan, Soydan

    2015-05-13

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymer films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. These results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.

  1. Removable fibrous glass insulation fitted to complex equipment shapes results in $178,000/yr savings

    SciTech Connect (OSTI)

    Not Available

    1985-08-01

    In early 1980, PPG Industries embarked on a general plant energy conservation effort at its Lake Charles, LA plant where chlor-alkalis, various chlorinated hydrocarbons, and vinyl chloride monomer are manufactured. Company engineers sought a means of insulating process steam components that, because of their complex shapes, were not (and normally are not) insulated. These components included flanges on heat exchanger heads and reboilers, steam valves in process areas, manways and other equipment. PPG plant engineers specified removable, reusable blanket insulation. The blankets are constructed of a fibrous glass mat form insulation encased in a silicone-impregnated glass cloth or similar weather barrier. Each insulation blanket was custom-made for its particular equipment shape and service application to ensure a close fit and optimal energy efficiency. Insulation thickness, type of weather barrier, and mesh were specified according to intended use. For protection from abrasion or puncture, some of the blankets also were covered with stainless steel, Monel, or Inconel wire mesh. Overall, the blankets provide high strength, durability, low thermal conductivity ratings, and an operating range of up to 1200/sup 0/F. Reduced maintenance costs and improved worker productivity have been evidenced since installing the blanket insulation. Further, PPG has increased energy efficiency. Project savings were tracked for 30 months (insulation and installation costs vs. fuel and maintenance savings) and revealed annual plant savings of $178,000-$130,000 in energy savings and $48,000 in maintenance savings. With the cost of the insulation blankets being about $125,000, PPG recovered its investment in under a year.

  2. Measuring the structure of thin soft matter films under confinement: A surface-force type apparatus for neutron reflection, based on a flexible membrane approach

    SciTech Connect (OSTI)

    Vos, Wiebe M. de; Mears, Laura L. E.; Richardson, Robert M.; Cosgrove, Terence; Prescott, Stuart W.; Dalgliesh, Robert M.

    2012-11-15

    A unique surface force type apparatus that allows the investigation of a confined thin film using neutron reflection is described. The central feature of the setup consists of a solid substrate (silicon) and a flexible polymer membrane (Melinex{sup Registered-Sign }). We show that inflation of the membrane against the solid surface provides close and even contact between the interfaces over a large surface area. Both heavy water and air can be completely squeezed out from between the flexible film and the solid substrate, leaving them in molecular contact. The strength of confinement is controlled by the pressure used to inflate the membrane. Dust provides a small problem for this approach as it can get trapped between membrane and substrate to prevent a small part of the membrane from making good contact with the substrate. This results in the measured neutron reflectivity containing a small component of an unwanted reflection, between 10% and 20% at low confining pressures (1 bar) and between 1% and 5% at high confining pressures (5 bar). However, we show that this extra signal does not prevent good and clear information on the structure of thin films being extracted from the neutron reflectivity. The effects of confinement are illustrated with data from a poly(vinyl pyrollidone) gel layer in water, a polyelectrolyte multilayer in water, and with data from a stack of supported lipid-bilayers swollen with D{sub 2}O vapor. The data demonstrates the potential of this apparatus to provide information on the structure of thin films under confinement for a known confining pressure.

  3. Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual technical report, 1 January 1996--30 June 1996

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    1997-01-01

    Two specific objectives of Solarex`s program are to reduce the manufacturing cost for polycrystalline silicon photovoltaic modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three. This report highlights accomplishments during the period of January 1 through June 30, 1996. Accomplishments include: began the conversion of production casting stations to increase ingot size; operated the wire saw in a production mode with higher yields and lower costs than achieved on the ID saws; developed and qualified a new wire guide coating material that doubles the wire guide lifetime and produces significantly less scatter in wafer thickness; completed a third pilot run of the cost-effective Al paste back-surface-field (BSF) process, verifying a 5% increase in cell efficiency and demonstrating the ability to process and handle the BSF paste cells; completed environmental qualification of modules using cells produced by an all-print metallization process; optimized the design of the 15.2-cm by 15.2-cm polycrystalline silicon solar cells; demonstrated the application of a high-efficiency process in making 15.2-cm by 15.2-cm solar cells; demonstrated that cell efficiency increases with decreasing wafer thickness for the Al paste BSF cells; qualified a vendor-supplied Tedlar/ethylene vinyl acetate (EVA) laminate to replace the combination of separate sheets of EVA and Tedlar backsheet; demonstrated the operation of a prototype unit to trim/lead attach/test modules; and demonstrated the operation of a wafer pull-down system for cassetting wet wafers.

  4. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect (OSTI)

    Allan, Shawn M.

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination identifying castable molds for prototyping were developed, which allowed Ceralink to obtain commitment to begin curved tooling development. The project significantly helped to advance RF lamination past the feasibility and novelty stage and into the realm of commercial acceptance as a viable alternative to autoclaves. The demonstration of autoclave-quality autoglass produced in just 1 minute with RF lamination, with validation by Pilkington, has fueled industry motivation to seriously consider RF lamination. The industry and other contacts and outreach made in the study of laminate markets (including 3 technical publications and 5 conference presentations), has resulted in a recent surge in RF lamination activity.

  5. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect (OSTI)

    Allan, Shawn M.; Baranova, Inessa; Poley, Joseph; Reis, Henrique

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 °C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination identifying castable molds for prototyping were developed, which allowed Ceralink to obtain commitment to begin curved tooling development. The project significantly helped to advance RF lamination past the feasibility and novelty stage and into the realm of commercial acceptance as a viable alternative to autoclaves. The demonstration of autoclave-quality autoglass produced in just 1 minute with RF lamination, with validation by Pilkington, has fueled industry motivation to seriously consider RF lamination. The industry and other contacts and outreach made in the study of laminate markets (including 3 technical publications and 5 conference presentations), has resulted in a recent surge in RF lamination activity.

  6. Side-by-Side Field Evaluation of Highly Insulating Windows in the PNNL Lab Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.; Baechler, Michael C.; Bauman, Nathan N.

    2012-08-01

    To examine the energy, air leakage, and thermal performance of highly insulating windows, a field evaluation was undertaken in a matched pair of all-electric, factory-built Lab Homes located on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. The baseline Lab Home B was retrofitted with standard double-pane clear aluminum-frame slider windows and patio doors, while the experimental Lab Home A was retrofitted with Jeld-Wen triple-pane vinyl-frame slider windows and patio doors with a U-factor of 0.2 and solar heat gain coefficient of 0.19. To assess the window, the building shell air leakage, energy use, and interior temperatures of each home were compared during the 2012 winter heating and summer cooling seasons. The measured energy savings in Lab Home B averaged 5,821 watt-hours per day (Wh/day) during the heating season and 6,518 Wh/day during the cooling season. The overall whole-house energy savings of Lab Home B compared to Lab Home A are 11.6% 1.53% for the heating season and 18.4 2.06% for the cooling season for identical occupancy conditions with no window coverings deployed. Extrapolating these energy savings numbers based on typical average heating degree days and cooling degree days per year yields an estimated annual energy savings of 12.2%, or 1,784 kWh/yr. The data suggest that highly insulating windows are an effective energy-saving measure that should be considered for high-performance new homes and in existing retrofits. However, the cost effectiveness of the measure, as determined by the simple payback period, suggests that highly insulating window costs continue to make windows difficult to justify on a cost basis alone. Additional reductions in costs via improvements in manufacturing and/or market penetration that continue to drive down costs will make highly insulating windows much more viable as a cost-effective energy efficiency measure. This study also illustrates that highly insulating windows have important impacts on peak load, occupant comfort, and condensation potential, which are not captured in the energy savings calculation. More consistent and uniform interior temperature distributions suggest that highly insulated windows, as part of a high performance building envelope, may enable more centralized duct design and downsized HVAC systems. Shorter, more centralized duct systems and smaller HVAC systems to yield additional cost savings, making highly insulating windows more cost effective as part of a package of new construction or retrofit measures which achieve significant reductions in home energy use.

  7. What do correlations tell us about anthropogenicbiogenic interactions and SOA formation in the Sacramento Plume during CARES?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kleinman, L.; Kuang, C.; Sedlacek, A.; Senum, G.; Springston, S.; Wang, J.; Zhang, Q.; Jayne, J.; Fast, J.; Hubbe, J.; et al

    2015-09-17

    During the Carbonaceous Aerosols and Radiative Effects Study (CARES) the DOE G-1 aircraft was used to sample aerosol and gas phase compounds in the Sacramento, CA plume and surrounding region. We present data from 66 plume transects obtained during 13 flights in which southwesterly winds transported the plume towards the foothills of the Sierra Nevada Mountains. Plume transport occurred partly over land with high isoprene emission rates. Our objective is to empirically determine whether organic aerosol (OA) can be attributed to anthropogenic or biogenic sources, and to determine whether there is a synergistic effect whereby OA concentrations are enhanced bymorethe simultaneous presence of high concentrations of CO and either isoprene, MVK+MACR (sum of methyl vinyl ketone and methacrolein) or methanol, which are taken as tracers of anthropogenic and biogenic emissions, respectively. Linear and bilinear correlations between OA, CO, and each of three biogenic tracers, "Bio", for individual plume transects indicate that most of the variance in OA over short time and distance scales can be explained by CO. For each transect and species a plume perturbation, (i.e., ?OA, defined as the difference between 90th and 10th percentiles) was defined and regressions done amongst ? values in order to probe day to day and location dependent variability. Species that predicted the largest fraction of the variance in ?OA were ?O3 and ?CO. Background OA was highly correlated with background methanol and poorly correlated with other tracers. Because background OA was ~ 60 % of peak OA in the urban plume, peak OA should be primarily biogenic and therefore non-fossil. Transects were split into subsets according to the percentile rankings of ?CO and ?Bio, similar to an approach used by Setyan et al. (2012) and Shilling et al. (2013) to determine if anthropogenic-biogenic interactions enhance OA production. As found earlier, ?OA in the data subset having high ?CO and high ?Bio was several-fold greater than in other subsets. Part of this difference is consistent with a synergistic interaction between anthropogenic and biogenic precursors and part to an independent linear dependence of ?OA on precursors. Highest values of ?O3 also occur in the high ?COhigh ?Bio data set, raising the possibility that the coincidence of high concentrations of anthropogenic and biogenic tracers as well as OA and O3 may be associated with high temperatures, clear skies, and poor ventilation in addition to specific interaction between anthropogenic and biogenic compounds.less

  8. Solar-Powered Air Stripping at the Rocky Flats Site, Colorado - 12361

    SciTech Connect (OSTI)

    Boylan, John A.

    2012-07-01

    The U.S. Department of Energy's Rocky Flats Site (the Site), near Denver, Colorado, is a former nuclear weapons facility that was constructed beginning in 1951. With the end of the Cold War, the Site was cleaned up and closed in 2005. Four gravity-driven groundwater treatment systems were installed during cleanup, and their continued operation was incorporated into the final remedy for the Site. All utilities, including electrical power, were removed as part of this closure, so all Site electrical power needs are now met with small solar-powered systems. The Mound Site Plume Treatment System (MSPTS) was installed in 1998 as an innovative system based on zero-valent iron (ZVI). Groundwater flow from the Mound source area containing elevated concentrations of volatile organic compounds (VOCs), primarily in the tetrachloroethene (PCE)-trichloroethene (TCE) family of chlorinated solvents, is intercepted by a collection trench and routed to twin ZVI treatment cells. Later, in 2005, remediation of VOC-contaminated soils at a second up-gradient source area included adding an electron donor to the backfill to help stimulate biodegradation. This reduced concentrations of primary constituents but caused down-gradient groundwater to contain elevated levels of recalcitrant degradation byproducts, particularly cis-1,2-dichloroethene and vinyl chloride. A gravel drain installed as part of the 2005 remediation directs contaminated groundwater from this second source area to the MSPTS for treatment. This additional contaminant load, coupled with correspondingly reduced residence time within the ZVI media due to the increased flow rate, resulted in reduced treatment effectiveness. Elevated concentrations of VOCs were then detected in MSPTS effluent, as well as in surface water at the downstream performance monitoring location for the MSPTS. Subsequent consultations with the Site regulators led to the decision to add a polishing component to reduce residual VOCs in MSPTS effluent. Initially, several alternatives such as commercial air strippers and cascade aerators were evaluated; resulting cost estimates exceeded $100,000. After several simpler alternatives were considered and prototype testing was conducted, the existing effluent metering manhole was converted to house a spray-nozzle based, solar-powered air stripper, at a cost of approximately $20,000. About two-thirds of this cost was for the solar power system, which was initially designed to only provide power for 12 hours per day. Performance data are being collected and adjustments made to optimize the design, determine maintenance requirements, and establish power needs for continuous operation. Analytical data confirm the air stripper is sharply reducing concentrations of residual contaminants. (authors)

  9. Evaluation of a permeable reactive barrier technology for use at Rocky Flats Environmental Technology Site (RFETS)

    SciTech Connect (OSTI)

    DWYER,BRIAN P.

    2000-01-01

    Three reactive materials were evaluated at laboratory scale to identify the optimum treatment reagent for use in a Permeable Reactive Barrier Treatment System at Rocky Flats Environmental Technology Site (RFETS). The contaminants of concern (COCS) are uranium, TCE, PCE, carbon tetrachloride, americium, and vinyl chloride. The three reactive media evaluated included high carbon steel iron filings, an iron-silica alloy in the form of a foam aggregate, and a peculiar humic acid based sorbent (Humasorb from Arctech) mixed with sand. Each material was tested in the laboratory at column scale using simulated site water. All three materials showed promise for the 903 Mound Site however, the iron filings were determined to be the least expensive media. In order to validate the laboratory results, the iron filings were further tested at a pilot scale (field columns) using actual site water. Pilot test results were similar to laboratory results; consequently, the iron filings were chosen for the fill-scale demonstration of the reactive barrier technology. Additional design parameters including saturated hydraulic conductivity, treatment residence time, and head loss across the media were also determined and provided to the design team in support of the final design. The final design was completed by the Corps of Engineers in 1997 and the system was constructed in the summer of 1998. The treatment system began fill operation in December, 1998 and despite a few problems has been operational since. Results to date are consistent with the lab and pilot scale findings, i.e., complete removal of the contaminants of concern (COCs) prior to discharge to meet RFETS cleanup requirements. Furthermore, it is fair to say at this point in time that laboratory developed design parameters for the reactive barrier technology are sufficient for fuel scale design; however,the treatment system longevity and the long-term fate of the contaminants are questions that remain unanswered. This project along with others such as the Durango, CO and Monticello, UT reactive barriers will provide the data to determine the long-term effectiveness and return on investment (ROI) for this technology for comparison to the baseline pump and treat.

  10. Blade System Design Study. Part II, final project report (GEC).

    SciTech Connect (OSTI)

    Griffin, Dayton A.

    2009-05-01

    As part of the U.S. Department of Energy's Low Wind Speed Turbine program, Global Energy Concepts LLC (GEC)1 has studied alternative composite materials for wind turbine blades in the multi-megawatt size range. This work in one of the Blade System Design Studies (BSDS) funded through Sandia National Laboratories. The BSDS program was conducted in two phases. In the Part I BSDS, GEC assessed candidate innovations in composite materials, manufacturing processes, and structural configurations. GEC also made recommendations for testing composite coupons, details, assemblies, and blade substructures to be carried out in the Part II study (BSDS-II). The BSDS-II contract period began in May 2003, and testing was initiated in June 2004. The current report summarizes the results from the BSDS-II test program. Composite materials evaluated include carbon fiber in both pre-impregnated and vacuum-assisted resin transfer molding (VARTM) forms. Initial thin-coupon static testing included a wide range of parameters, including variation in manufacturer, fiber tow size, fabric architecture, and resin type. A smaller set of these materials and process types was also evaluated in thin-coupon fatigue testing, and in ply-drop and ply-transition panels. The majority of materials used epoxy resin, with vinyl ester (VE) resin also used for selected cases. Late in the project, testing of unidirectional fiberglass was added to provide an updated baseline against which to evaluate the carbon material performance. Numerous unidirectional carbon fabrics were considered for evaluation with VARTM infusion. All but one fabric style considered suffered either from poor infusibility or waviness of fibers combined with poor compaction. The exception was a triaxial carbon-fiberglass fabric produced by SAERTEX. This fabric became the primary choice for infused articles throughout the test program. The generally positive results obtained in this program for the SAERTEX material have led to its being used in innovative prototype blades of 9-m and 30-m length, as well as other non-wind related structures.

  11. Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units

    SciTech Connect (OSTI)

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-10-01

    Sixteen previously occupied temporary housing units (THUs) were studied to assess emissions of volatile organic compounds. The whole trailer emission factors wereevaluated for 36 VOCs including formaldehyde. Indoor sampling was carried out in the THUs located in Purvis staging yard in Mississippi, USA. Indoor temperature andrelative humidity (RH) were also measured in all the trailers during sampling. Indoor temperatures were varied (increased or decreased) in a selection of THUs using theheating, ventilation and air conditioning (HVAC) systems. Indoor temperatures during sampling ranged from 14o C to 33o C, and relative humidity (RH) varied between 35percentand 74percent. Ventilation rates were increased in some trailers using bathroom fans and vents during some of the sampling events. Ventilation rates measured during some aselection of sampling events varied from 0.14 to 4.3 h-1. Steady state indoor formaldehyde concentrations ranged from 10 mu g-m-3 to 1000 mu g-m-3. The formaldehyde concentrations in the trailers were of toxicological significance. The effects of temperature, humidity and ventilation rates were also studied. A linearregression model was built using log of percentage relative humidity, inverse of temperature (in K-1), and inverse log ACH as continuous independent variables, trailermanufacturer as a categorical independent variable, and log of the chemical emission factors as the dependent variable. The coefficients of inverse temperature, log relativehumidity, log inverse ACH with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. The regression model wasfound to explain about 84percent of the variation in the dependent variable. Most VOC concentrations measured indoors in the Purvis THUs were mostly found to be belowvalues reported in earlier studies by Maddalena et al.,1,2 Hodgson et al.,3 and Hippelein4. Emissions of TMPB-DIB (a plasticizer found in vinyl products) were found to be higher than values reported in comparable housing by Hodgson et al.,3. Emissions of phenol were also found to be slightly higher than values reported in earlier studies1,2,3. This study can assist in retrospective formaldehyde exposure assessments of THUs where estimates of the occupants indoor formaldehyde exposures are needed.

  12. Inexpensive CO2 Thickening Agents for Improved Mobility Control of CO2 Floods

    SciTech Connect (OSTI)

    Robert Enick; Eric Beckman; Andrew Hamilton

    2005-08-31

    The objective of this research was the design, synthesis and evaluation of inexpensive, non-fluorous carbon dioxide thickening agents. We followed the same strategy employed in the design of fluorinated CO{sub 2} polymeric thickeners. First, a highly CO{sub 2}-philic, hydrocarbon-based monomer was to be identified. Polymers or oligomers of this monomer were then synthesized. The second step was to design a CO{sub 2}-thickener based on these CO{sub 2}-philic polymers. Two types of thickeners were considered. The first was a copolymer in which the CO{sub 2}-philic monomer was combined with a small proportion of CO{sub 2}-phobic associating groups that could cause viscosity-enhancing intermolecular interactions to occur. The second was a small hydrogen-bonding compound with urea groups in the core to promote intermolecular interactions that would cause the molecules to 'stack' in solution while the arms were composed of the CO{sub 2}-philic oligomers. Although we were not able to develop a viable thickener that exhibited high enough CO{sub 2} solubility at EOR MMP conditions to induce a viscosity increase, we made significant progress in our understanding of CO{sub 2}-soluble compounds that can be used in subsequent studies to design CO{sub 2}-soluble thickeners or CO{sub 2}-soluble surfactant-based foaming agents. These findings are detailed in this final report. In summary, we assessed many polymers and verified that the most CO{sub 2}-soluble oxygenated hydrocarbon polymer is poly(vinyl acetate), PVAc. This is primarily due to the presence of both ether and carbonyl oxygens associated with acetate-rich compounds. In addition to polymers, we also made small acetate-rich molecules that were also capable of associating in solution via the inclusion of hydrogen-bonding groups in hopes of forming viscosity-enhancing macromolecules. Despite the presence of multiple acetate groups in these compounds, which can impart incredible CO{sub 2}-solubility to many compounds, our attempts to make acetate-rich high molecular weight polymers and small hydrogen-bonding compounds did not yield a highly CO{sub 2}-soluble polymer or hydrogen-bonding associative thickener. The conclusions of our molecular modeling calculations confirmed that although acetates are indeed 'CO{sub 2}-philic', nitrogen-containing amines also interact favorably with CO{sub 2} and should also be examined. Therefore we obtained and synthesized many N-rich (e.g. amine-containing) polymers. Unfortunately, we found that the intermolecular polymer-polymer interactions between the amines were so strong that the polymers were essentially insoluble in CO{sub 2}. For the convenience of the reader, a table of all of the polymers evaluated during this research is provided.

  13. What do correlations tell us about anthropogenic - biogenic interactions and SOA formation in the Sacramento plume during CARES?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kleinman, Lawrence; Kuang, Chongai; Sedlacek, Arthur; Senum, Gunnar; Springston, Stephen; Wang, Jian; Zhang, Qi; Jayne, John; Fast, Jerome; Hubbe, John; et al

    2016-02-15

    During the Carbonaceous Aerosols and Radiative Effects Study (CARES) the US Department of Energy (DOE) G-1 aircraft was used to sample aerosol and gas phase compounds in the Sacramento, CA, plume and surrounding region. We present data from 66 plume transects obtained during 13 flights in which southwesterly winds transported the plume towards the foothills of the Sierra Nevada. Plume transport occurred partly over land with high isoprene emission rates. Our objective is to empirically determine whether organic aerosol (OA) can be attributed to anthropogenic or biogenic sources, and to determine whether there is a synergistic effect whereby OA concentrationsmore » are enhanced by the simultaneous presence of high concentrations of carbon monoxide (CO) and either isoprene, MVK+MACR (sum of methyl vinyl ketone and methacrolein), or methanol, which are taken as tracers of anthropogenic and biogenic emissions, respectively. Linear and bilinear correlations between OA, CO, and each of three biogenic tracers, “Bio”, for individual plume transects indicate that most of the variance in OA over short timescales and distance scales can be explained by CO. For each transect and species a plume perturbation, (i.e., ΔOA, defined as the difference between 90th and 10th percentiles) was defined and regressions done amongst Δ values in order to probe day-to-day and location-dependent variability. Species that predicted the largest fraction of the variance in ΔOA were ΔO3 and ΔCO. Background OA was highly correlated with background methanol and poorly correlated with other tracers. Because background OA was ~60% of peak OA in the urban plume, peak OA should be primarily biogenic and therefore non-fossil, even though the day-to-day and spatial variability of plume OA is best described by an anthropogenic tracer, CO. Transects were split into subsets according to the percentile rankings of ΔCO and ΔBio, similar to an approach used by Setyan et al. (2012) and Shilling et al. (2013) to determine if anthropogenic–biogenic (A–B) interactions enhance OA production. As found earlier, ΔOA in the data subset having high ΔCO and high ΔBio was several-fold greater than in other subsets. Part of this difference is consistent with a synergistic interaction between anthropogenic and biogenic precursors and part to an independent linear dependence of ΔOA on precursors. Here, the highest values of ΔO3, along with high temperatures, clear skies, and poor ventilation, also occurred in the high ΔCO–high ΔBio data set. A complicated mix of A–B interactions can result. After taking into account linear effects as predicted from low concentration data, an A–B enhancement of OA by a factor of 1.2 to 1.5 is estimated.« less

  14. ALDEHYDE AND OTHER VOLATILE ORGANIC CHEMICAL EMISSIONS IN FOUR FEMA TEMPORARY HOUSING UNITS ? FINAL REPORT

    SciTech Connect (OSTI)

    Salazar, Olivia; Maddalena, Randy L.; Russell, Marion; Sullivan, Douglas P.; Apte, Michael G.

    2008-05-04

    Four unoccupied FEMA temporary housing units (THUs) were studied to assess their indoor emissions of volatile organic compounds including formaldehyde. Measurement of whole-THU VOC and aldehyde emission factors (mu g h-1 per m2 of floor area) for each of the four THUs were made at FEMA's Purvis MS staging yard using a mass balance approach. Measurements were made in the morning, and again in the afternoon in each THU. Steady-state indoor formaldehyde concentrations ranged from 378 mu g m-3 (0.31ppm) to 632 mu g m-3 (0.52 ppm) in the AM, and from 433 mu g m-3 (0.35 ppm) to 926 mu g m-3 (0.78 ppm) in the PM. THU air exchange rates ranged from 0.15 h-1 to 0.39 h-1. A total of 45 small (approximately 0.025 m2) samples of surface material, 16 types, were collected directly from the four THUs and shipped to Lawrence Berkeley Laboratory. The material samples were analyzed for VOC and aldehyde emissions in small stainless steel chambers using a standard, accurate mass balance method. Quantification of VOCs was done via gas chromatography -- mass spectrometry and low molecular weight aldehydes via high performance liquid chromatography. Material specific emission factors (mu g h-1 per m2 of material) were quantified. Approximately 80 unique VOCs were tentatively identified in the THU field samples, of which forty-five were quantified either because of their toxicological significance or because their concentrations were high. Whole-trailer and material specific emission factors were calculated for 33 compounds. The THU emission factors and those from their component materials were compared against those measured from other types of housing and the materials used in their construction. Whole THU emission factors for most VOCs were typically similar to those from comparative housing. The three exceptions were exceptionally large emissions of formaldehyde and TMPD-DIB (a common plasticizer in vinyl products), and somewhat elevated for phenol. Of these three compounds, formaldehyde was the only one with toxicological significance at the observed concentrations. Whole THU formaldehyde emissions ranged from 173 to 266 mu g m-2 h 1 in the morning and 257 to 347 mu g m-2 h-1 in the afternoon. Median formaldehyde emissions in previously studied site-built and manufactured homes were 31 and 45 mu g m-2 h-1, respectively. Only one of the composite wood materials that was tested appeared to exceed the HUD formaldehyde emission standard (430 mu g/m2 h-1 for particleboard and 130 mu g/m2 h-1 for plywood). The high loading factor (material surface area divided by THU volume) of composite wood products in the THUs and the low fresh air exchange relative to the material surface area may be responsible for the excessive concentrations observed for some of the VOCs and formaldehyde.

  15. Brush-Coated Nanoparticle Polymer Thin Films: structure-mechanical-optical properties

    SciTech Connect (OSTI)

    Green, Peter F.

    2015-01-13

    Executive Summary Our work was devoted to understanding the structure and properties of a class of thin film polymer nanocomposites (PNCs). PNCs are composed of polymer hosts into which nanoparticles (metallic nanoparticles, quantum dots, nanorods, C60, nanotubes) are incorporated. PNCs exhibit a diverse range of functional properties (optical, electronic, mechanical, biomedical, structural), determined in part by the chemical composition of the polymer host and the type of nanoparticle. The properties PNCs rely not only on specific functional, size-dependent, behavior of the nanoparticles, but also on the dispersion, and organizational order in some cases, inter-nanoparticle separation distances, and on relative interactions between the nanoparticles and the host. Therefore the scientific challenges associated with understanding the interrelations between the structure and function/properties of PNCs are far more complex than may be understood based only on the knowledge of the compositions of the constituents. The challenges of understanding the structure-function behavior of PNCs are further compounded by the fact that control of the dispersion of the nanoparticles within the polymer hosts is difficult; one must learn how to disperse inorganic particles within an organic host. The goal of this proposal was to develop an understanding of the connection between the structure and the thermal (glass transition), mechanical and optical properties of a specific class of PNCs. Specifically PNCs composed of polymer chain grafted gold nanoparticles within polymer hosts. A major objective was to understand how to develop basic principles that enable the fabrication of functional materials possessing optimized morphologies and combinations of materials properties. Accomplishments: We developed: (1) fundamental principles that enabled the creation of thin film PNCs possessing more complex morphologies of homopolymers and block copolymer micellar systems [1-6]; (2) a new understanding of physical phenomena associated with the structure of PNC systems and the glass transition and dynamics [7-11], including surface dynamics [12, 13]; designed PNCs to understand the connection between structure and specific optical responses of the material [14, 15]; electrorheological phenomena [16-18]; coarsening/aggregation phenomena [19, 20]; directed assembly [21] and elastic mechanical properties of thin supported films [22]. We established procedures to design and control the spatial distribution of gold nanoparticles (Au-NP), onto which polystyrene (PS) chains were end-grafted, within thin film PS hosts.[1-3] We explained how enthalpic and entropic interactions between the grafted layers and the polymer host chains, the nanoparticle (NP) sizes and shapes determine the spatial distribution of NPs within the host (i.e.: the morphology). In brief, the chemistries of the grafted chains and the polymer hosts, the degrees of polymerization of grafted and host chains (N and P, respectively), and the surface grafting densities Σ influence the thermodynamic interactions. Thin films are unique: the external interfaces (substrate and free surface) profoundly influence the spatial distribution of NPs within the PNC. For example, thin films are thermodynamically less stable than their bulk analogs due to the preferential attraction between the brush-coated nanoparticles and the external interfaces (i.e.: the free surface/polymer interface and the polymer/substrate interface). We investigated the organization of the brush-coated nanoparticles within a host composed on block copolymer micelles in a homopolymer [4, 5]. Block copolymers, composed of a polymer of type A that is bonded covalently to another polymer of type B (A-b-B) are known to form micelles within homopolymers A or B. A micelle is composed of an inner core of the A component of the copolymer and an outer corona of the B-component, that resides within homopolymer B, which serves as the host. If the host is the A homopolymer then the core of the micelle is composed of the B component of the copolymer. One important objective in applications such as drug delivery is to incorporate nanoparticles into micelles. We developed phase diagrams and demonstrated how the nanoparticle could be located in different regions (micelle cores, interfaces, hompolymer hosts) of the system, based on manipulating the thermodynamic interactions [4, 5]. This work will enable the design of new PNC materials with specific functional properties. In a separate series of experiments, we investigated the connection between structure and dynamics of polymer systems composed on mixtures of BCPs with homopolymer hosts. We investigated the dynamics of the individual polymeric constituents within pure copolymers and within micelles confined within different polymer hosts. Interestingly the dynamics manifested the structure of the local environment. In other words, the dynamics of chains of type-A within a copolymer, or in the pure homopolymer, or within a micelle were different. This has practical as well as technological implications. The latter is related to the potential design of polymer membranes. In another series of experiments we investigated the dynamics of polymer chains at the free surface of a polymer/polymer blend of polystyrene and poly vinyl methyl ether (PS/PVME) and or a nanocomposite for which PS/PVME is the host [12, 13]. These measurements were performed using the sophisticated technique, X-ray photon correlation spectroscopy (XPCS). We showed for the first time how the surface dynamics of a single component could be orders of magnitude faster than the same component in the bulk of the sample. This has implications toward understanding the interrelations between the surface dynamics, the structure and other properties. Having developed strategies to tailor the spatial distribution of gold nanoparticles (Au-NPs) of different sizes within polystyrene (PS) thin, supported, film hosts, we demonstrated the connection between the spatial distribution of Au-NPs within the polymer film and the optical properties (i.e.: surface plasmon response) [14, 15]. The optical spectra of samples (surface plasmon) manifest features associated with differences between the size and interparticle spacings as well as the proximity and organization of nanoparticles at the substrate and free surface. We also investigated a well know phenomenon that occurs in physical systems that include condensation, phase separation and coarsening in liquid/liquid mixtures, metal alloys etc. Parenthetically, symmetric BCPs self organize to form lamellar morphologies. Such BCPs form thin films on substrates, with free surfaces characterized by topographic structures of thickness equal to the interlamellar spacing. We showed that these surface structures coarsen in a manner reminiscent of 2-dimensional phase ordering systems of binary alloys, where the growth is self-similar, governed by classical capillarity driven Ostwald ripening and coalescence mechanisms. The coarsening dynamics in BCP/nanoparticle thin films, the dynamics are considerably slower, and the mechanism of coarsening occurs predominantly via coalescence. Our studies also involved the discovery and scientific explanation of the electrorheological behavior (this program provided partial support) of a specific new polymer/nanoparticle system [16-18]. It shows how the application of an electric field to the system, results in a significant increase in the mechanical strength, due to an electric field-induced change in the polarization of the system.

  16. Synthesis of main group, rare-earth, and d{sup 0} metal complexes containing beta-hydrogen

    SciTech Connect (OSTI)

    Yan, Ka King

    2013-05-02

    A series of organometallic compounds containing the tris(dimethylsilyl)methyl ligand are described. The potassium carbanions KC(SiHMe{sub 2}){sub 3} and KC(SiHMe{sub 2}){sub 3}TMEDA are synthesized by deprotonation of the hydrocarbon HC(SiHMe{sub 2}){sub 3} with potassium benzyl. KC(SiHMe{sub 2}){sub 3}TMEDA crystallizes as a dimer with two types of three-center-two-electron KH- Si interactions. Homoleptic Ln(III) tris(silylalkyl) complexes containing β-SiH groups M{C(SiHMe{sub 2}){sub 3}}{sub 3} (Ln = Y, Lu, La) are synthesized from salt elimination of the corresponding lanthanide halide and 3 equiv. of KC(SiHMe{sub 2}){sub 3}. The related reactions with Sc yield bis(silylalkyl) ate-complexes containing either LiCl or KCl. The divalent calcium and ytterbium compounds M{C(SiHMe{sub 2}){sub 3}}{sub 2}L (M = Ca, Yb; L = THF{sub 2} or TMEDA) are prepared from MI{sub 2} and 2 equiv of KC(SiHMe{sub 2}){sub 3}. The compounds M{C(SiHMe{sub 2}){sub 3}}{sub 2}L (M = Ca, Yb; L = THF{sub 2} or TMEDA) and La{C(SiHMe{sub 2}){sub 3}}{sub 3} react with 1 equiv of B(C{sub 6}F{sub 5}){sub 3} to give 1,3- disilacyclobutane {Me2Si-C(SiHMe2)2}2 and MC(SiHMe2)3HB(C6F5)3L, and La{C(SiHMe{sub 2}){sub 3}}{sub 2}HB(C{sub 6}F{sub 5}){sub 3}, respectively. The corresponding reactions of Ln{C(SiHMe{sub 2}){sub 3}}{sub 3} (Ln = Y, Lu) give the β-SiH abstraction product [{(Me{sub 2}HSi){sub 3}C}{sub 2}LnC(SiHMe{sub 2}){sub 2}SiMe{sub 2}][HB(C{sub 6}F{sub 5}){sub 3}] (Ln = Y, Lu), but the silene remains associated with the Y or Lu center. The abstraction reactions of M{C(SiHMe{sub 2}){sub 3}}{sub 2}L (M = Ca, Yb; L = THF{sub 2 }or TMEDA) and Ln{C(SiHMe{sub 2}){sub 3}}{sub 3} (Ln = Y, Lu, La) and 2 equiv of B(C{sub 6}F{sub 5}){sub 3} give the expected dicationic M{HB(C{sub 6}F{sub 5}){sub 3}}{sub 2}L (M = Ca, Yb; L = THF{sub 2} or TMEDA) and dicationic mono(silylalkyl) LnC(SiHMe{sub 2}){sub 3}{HB(C{sub 6}F{sub 5}){sub 3}}{sub 2} (Ln = Y, Lu, La), respectively. Salt metathesis reactions of Cp{sub 2}(NR{sub 2})ZrX (X = Cl, I, OTf; R = t-Bu, SiHMe{sub 2}) and lithium hydrosilazide ultimately afford hydride products Cp{sub 2}(NR{sub 2})ZrH that suggest unusual β-hydrogen elimination processes. A likely intermediate in one of these reactions, Cp{sub 2}Zr[N(SiHMe{sub 2})t-Bu][N(SiHMe{sub 2}){sub 2}], is isolated under controlled synthetic conditions. Addition of alkali metal salts to this zirconium hydrosilazide compound produces the corresponding zirconium hydride. However as conditions are varied, a number of other pathways are also accessible, including C-H/Si-H dehydrocoupling, γ-abstraction of a CH, and β-abstraction of a SiH. Our observations suggest that the conversion of (hydrosilazido)zirconocene to zirconium hydride does not follow the classical four-center β- elimination mechanism. Elimination and abstraction reactions dominate the chemistry of ligands containing β- hydrogen. In contrast, Cp{sub 2}Zr{N(SiHMe{sub 2}){sub 2}}H and Cp{sub 2}Zr{N(SiHMe{sub 2}){sub 2}}Me undergo selective γ-CH bond activation to yield the azasilazirconacycle Cp{sub 2Zr}{κ{sup 2}-N(SiHMe{sub 2})SiHMeCH{sub 2}}, even though there are reactive β-hydrogen available for abstraction. The β-SiH groups in metallacycle provide access to new pathways for sixteen-electron zirconium alkyl compounds, in which Cp{sub 2}Zr{κ{sup 2}-N(SiHMe{sub 2})SiHMeCH{sub 2}} undergoes a rare σ-bond metathesis reaction with ethylene. The resulting vinyl intermediate undergoes β-hydrogen abstraction to reform ethylene and a silanimine zirconium species that reacts with ethylene to give a metallacyclopentane as the isolated product. The pendent β-SiH in metallocycle also reacts with paraformaldehyde through an uncatalyzed hydrosilylation to form an exocyclic methoxysilyl moiety, while the zirconium-carbon bond in metallocycle is surprisingly inert toward formaldehyde. Still, the Zr-C moiety in metallocycle is available for chemistry, and it interacts with the carbon monoxide and strong electrophile B(C{sub 6}F{sub 5}){sub 3} to provide Cp{sub 2}Zr[κ{sup 2}- OC(=CH{sub 2})SiMeHN(SiHMe{sub 2})] and Cp{sub 2}Zr[N(SiHMe{sub 2})SiHMeCH{sub 2}B(C{sub 6}F{sub 5}){sub 3}]. Finally, the frustrated Lewis-pair 2,6-lutidine-B(C{sub 6}F{sub 5}){sub 3} adduct reacts with the intra-cyclic SiH to give a transient 2,6-lutidine-stabilized silicon cation [Cp{sub 2}ZrCH{sub 2}SiMe(2,6-Me{sub 2 }- NC{sub 6}H{sub 3})N(SiMe{sub 2}H)][HB(C{sub 6}F{sub 5}){sub 3}] that slowly rearranges to give Cp{sub 2}Zr[N(SiHMe{sub 2})SiHMeCH{sub 2}B(C{sub 6}F{sub 5}){sub 3}] and free 2,6-lutidine. Finally, we also demonstrated a β-elimination of a cationic zirconocene disilazide compound [Cp{sub 2}ZrN(SiHMe{sub 2}){sub 2}]{sup +} that is facilitated by DMAP (4-N,N-dimethylaminopyridine) to give [Cp{sub 2}ZrH{N(SiHMe{sub 2})(SiMe{sub 2DMAP})}]{sup +}. A formal insertion reaction of a Zr-R group of Cp{sub 2}ZrN(SiHMe{sub 2}){sub 2}R (R = H, alkyl, halide, alkoxide) into a silaimine, formed by reaction of the zirconocene silazide and B(C{sub 6}F{sub 5}){sub 3}, to give [Cp{sub 2}Zr{N(SiHMe{sub 2})(SiRMe{sub 2})]{sup +}. Thus, we also show the application of the β-elimination reaction in hydrosilylation of ketones and aldehydes.