National Library of Energy BETA

Sample records for 100w high pressure

  1. Design of applicative 100 W Stirling engine

    SciTech Connect (OSTI)

    Kagawa, Noboru; Hirata, Koichi; Takeuchi, Makoto

    1995-12-31

    A small 100 W displacer type Stirling engine is being developed under a project of a JSME committee, RC127. The project consists of sixteen Japanese academic researchers of universities and governmental laboratories and eleven enterprise members related to the Stirling field. The engine has very unique features. Its expansion cylinder is heated by combustion gas or solar energy directly, and a simple cooling system rejects heat from the working fluid. A regenerator is built in the displacer piston with heating and cooling tubes in which the working fluid flows from/to outer tubes. The outer tubes for heating were located at the top of the expansion cylinder and the tubes for cooling are in the middle of the cylinder. The target performance is a 100 W output with 20% thermal efficiency at the operating conditions of 923 K expansion space temperature, 343 K compression space temperature, and 1,000 rpm. The 100 W displacer engine was designed based on a design manual established by a related JSME committee, RC110. It contains several guides to design for cycle, heat exchanger system, and mechanism of most Stirling cycle machines. The engine was designed by using the fundamental method, the second and third-order analyses accomplished with the newly arranged knowledge about each component. This paper presents the engine specifications and the theoretical analysis results. The design method is also introduced briefly.

  2. Test results of applicative 100 W Stirling engine

    SciTech Connect (OSTI)

    Hirata, Koichi; Kagawa, Noboru; Takeuchi, Makoto; Yamashita, Iwao; Isshiki, Naotsugu; Hamaguchi, Kazuhiro

    1996-12-31

    A small 100 W displacer-type Stirling engine, Ecoboy-SCM81, has been developed by a committee of the Japan Society of Mechanical Engineers (JSME). The engine contains unique features, including an expansion cylinder which is heated by either combustion gas or direct solar energy. Also, a simple cooling system rejects heat from the working fluid. A displacer piston has both heating and cooling inner tubes for the working fluid which flows to and from outer tubes. The outer tubes for heating were located at the top of the expansion cylinder and the outer tubes for cooling were located in the middle of the cylinder. A regenerator is located in the displacer piston. The components of the engine adopted some new technologies. For instance, a porous type matrix consisting of pressed zigzag stainless steel wires were adopted for the regenerator. The matrix is practical for Stirling engines because it can be made at low cost and the assembling process is simplified.

  3. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect (OSTI)

    Ross, M.A.

    1980-06-16

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  4. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA); Scandrol, Roy O. (Library, PA)

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  5. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  6. High pressure furnace

    DOE Patents [OSTI]

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  7. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  8. High pressure furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  9. HIGH PRESSURE GAS REGULATOR

    DOE Patents [OSTI]

    Ramage, R.W.

    1962-05-01

    A gas regulator operating on the piston and feedback principle is described. The device is particularly suitable for the delicate regulation of high pressure, i.e., 10,000 psi and above, gas sources, as well as being perfectly adaptable for use on gas supplies as low as 50 psi. The piston is adjustably connected to a needle valve and the movement of the piston regulates the flow of gas from the needle valve. The gas output is obtained from the needle valve. Output pressure is sampled by a piston feedback means which, in turn, regulates the movement of the main piston. When the output is other than the desired value, the feedback system initiates movement of the main piston to allow the output pressure to be corrected or to remain constant. (AEC)

  10. HIGH PRESSURE DIES

    DOE Patents [OSTI]

    Wilson, W.B.

    1960-05-31

    A press was invented for subjecting specimens of bismuth, urania, yttria, or thoria to high pressures and temperatures. The press comprises die parts enclosing a space in which is placed an electric heater thermally insulated from the die parts so as not to damage them by heat. The die parts comprise two opposed inner frustoconical parts and an outer part having a double frustoconical recess receiving the inner parts. The die space decreases in size as the inner die parts move toward one another against the outer part and the inner parts, though very hard, do not fracture because of the mode of support provided by the outer part.

  11. High pressure capillary connector

    SciTech Connect (OSTI)

    Renzi, Ronald F.

    2005-08-09

    A high pressure connector capable of operating at pressures of 40,000 psi or higher is provided. This connector can be employed to position a first fluid-bearing conduit that has a proximal end and a distal end to a second fluid-bearing conduit thereby providing fluid communication between the first and second fluid-bearing conduits. The connector includes (a) an internal fitting assembly having a body cavity with (i) a lower segment that defines a lower segment aperture and (ii) an interiorly threaded upper segment, (b) a first member having a first member aperture that traverses its length wherein the first member aperture is configured to accommodate the first fluid-bearing conduit and wherein the first member is positioned in the lower segment of the internal fitting assembly, and (c) a second member having a second member aperture that traverses its length wherein the second member is positioned in the upper segment of the fitting assembly and wherein a lower surface of the second member is in contact with an upper surface of the first member to assert a compressive force onto the first member and wherein the first member aperture and the second member aperture are coaxial.

  12. High-Pressure Hydrogen Tanks

    Broader source: Energy.gov [DOE]

    Presentation on High-Pressure Hydrogen Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  13. High Pressure Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pressure Chemistry - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  14. High pressure storage vessel

    DOE Patents [OSTI]

    Liu, Qiang

    2013-08-27

    Disclosed herein is a composite pressure vessel with a liner having a polar boss and a blind boss a shell is formed around the liner via one or more filament wrappings continuously disposed around at least a substantial portion of the liner assembly combined the liner and filament wrapping have a support profile. To reduce susceptible to rupture a locally disposed filament fiber is added.

  15. Electrokinetically pumped high pressure sprays

    DOE Patents [OSTI]

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2002-01-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  16. Electrokinetically pumped high pressure sprays

    DOE Patents [OSTI]

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2005-11-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  17. High pressure ceramic joint

    DOE Patents [OSTI]

    Ward, M.E.; Harkins, B.D.

    1993-11-30

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  18. High pressure ceramic joint

    DOE Patents [OSTI]

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  19. Electrokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  20. Electrokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  1. Electrokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  2. High pressure neon arc lamp

    DOE Patents [OSTI]

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  3. High pressure liquid level monitor

    DOE Patents [OSTI]

    Bean, Vern E.; Long, Frederick G.

    1984-01-01

    A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  4. High Temperature, High Pressure Devices for Zonal Isolation in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, ...

  5. High-pressure, high-temperature plastic deformation of sintered...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High-pressure, high-temperature plastic deformation of sintered diamonds Citation Details In-Document Search Title: High-pressure, high-temperature plastic ...

  6. High pressure and high temperature apparatus

    DOE Patents [OSTI]

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  7. High pressure xenon ionization detector

    DOE Patents [OSTI]

    Markey, John K. (New Haven, CT)

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  8. High pressure xenon ionization detector

    DOE Patents [OSTI]

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  9. Electokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.

  10. Method of producing a high pressure gas

    DOE Patents [OSTI]

    Bingham, Dennis N.; Klingler, Kerry M.; Zollinger, William T.

    2006-07-18

    A method of producing a high pressure gas is disclosed and which includes providing a container; supplying the container with a liquid such as water; increasing the pressure of the liquid within the container; supplying a reactant composition such as a chemical hydride to the liquid under pressure in the container and which chemically reacts with the liquid to produce a resulting high pressure gas such as hydrogen at a pressure of greater than about 100 pounds per square inch of pressure; and drawing the resulting high pressure gas from the container.

  11. High-pressure microhydraulic actuator

    DOE Patents [OSTI]

    Mosier, Bruce P. [San Francisco, CA; Crocker, Robert W. [Fremont, CA; Patel, Kamlesh D. [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  12. High-Pressure Tube Trailers and Tanks

    Broader source: Energy.gov [DOE]

    Presentation on High-Pressure Tube Trailers and Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  13. High-Pressure and High-Temperature Powder Diffraction (Journal...

    Office of Scientific and Technical Information (OSTI)

    High-Pressure and High-Temperature Powder Diffraction Citation Details In-Document Search Title: High-Pressure and High-Temperature Powder Diffraction Authors: Fei, Yingwei ; Wang, ...

  14. NETL- High-Pressure Combustion Research Facility

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  15. NETL- High-Pressure Combustion Research Facility

    SciTech Connect (OSTI)

    2013-07-08

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  16. High-Pressure Hydrogen Tank Testing

    Broader source: Energy.gov [DOE]

    Many types of compressed hydrogen tanks have been certified worldwide and demonstrated in several prototype fuel cell vehicles. The following information discusses high-pressure hydrogen tank...

  17. The high-pressure-high-temperature behavior of bassanite (Journal...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: The high-pressure-high-temperature behavior of bassanite The pressure evolution of bassanite (CaSOsub 4 centerdot 12 Hsub 2O) was ...

  18. Consider Installing High-Pressure Boilers with BackpressureTurbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replace Pressure-Reducing Valves with Backpressure Turbogenerators Flash High-Pressure Condensate to Regenerate Low-Pressure Steam Steam Pressure Reduction: Opportunities and ...

  19. High-pressure studies of melamine

    SciTech Connect (OSTI)

    Pravica, Michael; Kim, Eunja; Tkachev, Sergey; Chow, Paul; Xiao, Yuming

    2010-04-05

    We performed the first high-pressure study of melamine using X-ray Raman spectroscopy (XRS) up to -17 GPa in a diamond anvil cell at ambient temperature. We utilized the 16 ID-D undulator beamline at the Advanced Photon Source for the X-ray source. The observed diminishment of the 1s {yields} {pi}* peak as well as other changes in the XRS spectra with pressure suggest the possibility of intra- and inter-molecular bonding changes due to two phase changes in the investigated pressure range or hybridization changes of atomic orbitals in the material with pressure. We also performed a complementary X-ray powder diffraction study of neat melamine up to 24 GPa observing at least two phase transitions with pressure. Pressure cycling indicated that the phase transitions were reversible. Density-functional theory calculations performed on the system at ambient and low pressure show a high level of agreement with the experiments.

  20. Portable high precision pressure transducer system

    DOE Patents [OSTI]

    Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.

    1994-04-26

    A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.

  1. Portable high precision pressure transducer system

    DOE Patents [OSTI]

    Piper, Thomas C.; Morgan, John P.; Marchant, Norman J.; Bolton, Steven M.

    1994-01-01

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.

  2. High Temperature, High Pressure Devices for Zonal Isolation in Geothermal

    Broader source: Energy.gov (indexed) [DOE]

    Wells | Department of Energy High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells PDF icon fabian_ctd_ zonal_isolation_peer2013.pdf More Documents & Publications High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells

  3. Magnetic and Superconducting Materials at High Pressures

    SciTech Connect (OSTI)

    Struzhkin, Viktor V.

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including transitions from magnetic to nonmagnetic phases in a broad pressure-temperature range; using X-ray methods including the newly developed RIXS high-pressure technique to explore pressure-tuned electronic excitations in strongly correlated 3d-materials; and advancing transport and magnetic techniques for measurements on small samples at very high pressures in a wide temperature range, with the application of focused ion beam technology and photolithography tailored to the design of microcircuits down to a nanoscale size, thus expanding the horizon in the search for novel physical phenomena at ultrahigh pressures. Apply new optical magnetic sensing techniques with NV- centers in diamond to detect superconductivity and magnetic transitions with unprecedented spatial resolution.

  4. High pressure ceramic heat exchanger

    DOE Patents [OSTI]

    Harkins, Bruce D.; Ward, Michael E.

    1998-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  5. High pressure ceramic heat exchanger

    DOE Patents [OSTI]

    Harkins, B.D.; Ward, M.E.

    1998-09-22

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 5 figs.

  6. High pressure ceramic heat exchanger

    DOE Patents [OSTI]

    Harkins, Bruce D.; Ward, Michael E.

    1999-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the reinforcing member and having a strengthening member wrapped around the refractory material. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  7. Pressure sensor for high-temperature liquids

    DOE Patents [OSTI]

    Forster, George A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacment of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely.

  8. Sample injector for high pressure liquid chromatography

    DOE Patents [OSTI]

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2001-01-01

    Apparatus and method for driving a sample, having a well-defined volume, under pressure into a chromatography column. A conventional high pressure sampling valve is replaced by a sample injector composed of a pair of injector components connected in series to a common junction. The injector components are containers of porous dielectric material constructed so as to provide for electroosmotic flow of a sample into the junction. At an appropriate time, a pressure pulse from a high pressure source, that can be an electrokinetic pump, connected to the common junction, drives a portion of the sample, whose size is determined by the dead volume of the common junction, into the chromatographic column for subsequent separation and analysis. The apparatus can be fabricated on a substrate for microanalytical applications.

  9. Pressure Relief Devices for High-Pressure Gaseous Storage Systems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... List of Figures Figure A1. Pressure relief valve activation characteristics ... Figure A5. Spring-loaded pressure relief valve device cross-section ......

  10. High pressure, high current, low inductance, high reliability sealed terminals

    DOE Patents [OSTI]

    Hsu, John S. [Oak Ridge, TN; McKeever, John W. [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  11. High pressure electrical insulated feed thru connector

    DOE Patents [OSTI]

    Oeschger, Joseph E.; Berkeland, James E.

    1979-11-13

    A feed-thru type hermetic electrical connector including at least one connector pin feeding through an insulator block within the metallic body of the connector shell. A compression stop arrangement coaxially disposed about the insulator body is brazed to the shell, and the shoulder on the insulator block bears against this top in a compression mode, the high pressure or internal connector being at the opposite end of the shell. Seals between the pin and an internal bore at the high pressure end of the insulator block and between the insulator block and the metallic shell at the high pressure end are hermetically brazed in place, the first of these also functioning to transfer the axial compressive load without permitting appreciable shear action between the pin and insulator block.

  12. High pressure chemistry of substituted acetylenes

    SciTech Connect (OSTI)

    Chellappa, Raja; Dattelbaum, Dana; Sheffield, Stephen; Robbins, David

    2011-01-25

    High pressure in situ synchrotron x-ray diffraction experiments were performed on substituted polyacetylenes: tert-butyl acetylene [TBA: (CH{sub 3}){sub 3}-C{triple_bond}CH] and ethynyl trimethylsilane [ETMS: (CH{sub 3}){sub 3}-Si{triple_bond}CH] to investigate pressure-induced chemical reactions. The starting samples were the low temperature crystalline phases which persisted metastably at room temperature and polymerized beyond 11 GPa and 26 GPa for TBA and ETMS respectively. These reaction onset pressures are considerably higher than what we observed in the shockwave studies (6.1 GPa for TBA and 6.6 GPa for ETMS). Interestingly, in the case of ETMS, it was observed with fluid ETMS as starting sample, reacts to form a semi-crystalline polymer (crystalline domains corresponding to the low-T phase) at pressures less than {approx}2 GPa. Further characterization using vibrational spectroscopy is in progress.

  13. Exotic stable cesium polynitrides at high pressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun

    2015-11-19

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3 , N4, N5, N6) and chains (N∞). Polymeric chainsmore » of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44- anion. In conclusion, to our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure.« less

  14. High pressure water jet mining machine

    DOE Patents [OSTI]

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  15. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    SciTech Connect (OSTI)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction mechanism for the NBFZ tests.

  16. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect (OSTI)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  17. High pressure injection of dimethyl ether

    SciTech Connect (OSTI)

    Glensvig, M.; Sorenson, S.C.; Abata, D.

    1996-12-31

    Partially oxygenated hydrocarbons produced from natural gas have been shown to be viable alternate fuels for the diesel engine, showing favorable combustion characteristics similar to that of diesel fuel but without exhaust particulates and with significantly reduced NO{sub x} emissions and lower engine noise. Further, engine studies have demonstrated that such compounds, like dimethyl ether (DME), can be injected at much lower pressures than conventional diesel fuel with better overall performance. This experimental study compares the injection of DME to that of conventional diesel fuel. Both fuels were injected into a quiescent high pressure chamber containing Nitrogen at pressures up to 25 atmospheres at room temperature with a pintle nozzle and jerk pump. Comparisons were obtained with high speed photography using a Hycam camera. Results indicate that there are significant differences in spray geometry and penetration which are not predictable with analytical models currently used for diesel fuels.

  18. Stable magnesium peroxide at high pressure (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Stable magnesium peroxide at high pressure Citation Details In-Document Search Title: Stable magnesium peroxide at high pressure Authors: Lobanov, Sergey S. ; Zhu, Qiang ; ...

  19. Prediction of new high pressure structural sequence in thorium...

    Office of Scientific and Technical Information (OSTI)

    Prediction of new high pressure structural sequence in thorium carbide: A first principles study Citation Details In-Document Search Title: Prediction of new high pressure ...

  20. A University Consortium on High Pressure, Lean Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure, Lean Combustion for Efficient and Clean IC Engines (UM - lead, MIT, UCB) A University Consortium on High Pressure, Lean Combustion for Efficient and Clean IC Engines ...

  1. Consider Installing High-Pressure Boilers with Backpressure Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators When specifying a new boiler, consider a high-pressure boiler with a backpressure steam ...

  2. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Presented at the 2007 ...

  3. High-pressure Raman spectroscopy of phase change materials (Journal...

    Office of Scientific and Technical Information (OSTI)

    Title: High-pressure Raman spectroscopy of phase change materials We used high-pressure Raman spectroscopy to study the evolution of vibrational frequencies of the phase change ...

  4. High pressure liquid chromatographic gradient mixer

    DOE Patents [OSTI]

    Daughton, Christian G.; Sakaji, Richard H.

    1985-01-01

    A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".

  5. High-pressure liquid chromatographic gradient mixer

    DOE Patents [OSTI]

    Daughton, C.G.; Sakaji, R.H.

    1982-09-08

    A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.

  6. Cavity closure arrangement for high pressure vessels

    DOE Patents [OSTI]

    Amtmann, Hans H.

    1981-01-01

    A closure arrangement for a pressure vessel such as the pressure vessel of a high temperature gas-cooled reactor wherein a liner is disposed within a cavity penetration in the reactor vessel and defines an access opening therein. A closure is adapted for sealing relation with an annular mounting flange formed on the penetration liner and has a plurality of radially movable locking blocks thereon having outer serrations adapted for releasable interlocking engagement with serrations formed internally of the upper end of the penetration liner so as to effect high strength closure hold-down. In one embodiment, ramping surfaces are formed on the locking block serrations to bias the closure into sealed relation with the mounting flange when the locking blocks are actuated to locking positions.

  7. Flash High-Pressure Condensate to Regenerate Low-Pressure Steam

    Broader source: Energy.gov [DOE]

    This tip sheet outlines optimal conditions for flashing high-pressure condensate to regenerate low-pressure steam in steam systems.

  8. Engine having a high pressure hydraulic system and low pressure lubricating system

    DOE Patents [OSTI]

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

  9. High-pressure solvent extraction of methane from geopressured...

    Office of Scientific and Technical Information (OSTI)

    of recovering dissolved methane from geopressured-geothermal brines at high pressures. ... The contributions of hydraulic (pressure) energy recovery and geothermal power production ...

  10. Conformable pressure vessel for high pressure gas storage

    DOE Patents [OSTI]

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  11. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT

    SciTech Connect (OSTI)

    Chris Guenther, Ph.D.

    2003-01-28

    SRI has completed the NBFZ test program, made modification to the experimental furnace for the HPBO test. The NBFZ datasets provide the information NEA needs to simulate the combustion and fuel-N conversion with detailed chemical reaction mechanisms. BU has determined a linear swell of 1.55 corresponding to a volumetric increase of a factor of 3.7 and a decrease in char density by the same factor. These results are highly significant, and indicate significantly faster burnout at elevated pressure due to the low char density and large diameter.

  12. High pressure-resistant nonincendive emulsion explosive

    DOE Patents [OSTI]

    Ruhe, Thomas C.; Rao, Pilaka P.

    1994-01-01

    An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

  13. High pressure fiber optic sensor system

    DOE Patents [OSTI]

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  14. High-Pressure Multi-Mbar Conductivity Experiments on Hydrogen...

    Office of Scientific and Technical Information (OSTI)

    High-Pressure Multi-Mbar Conductivity Experiments on Hydrogen: The Quest for Solid Metallic Hydrogen Citation Details In-Document Search Title: High-Pressure Multi-Mbar ...

  15. Low energy high pressure miniature screw valve

    DOE Patents [OSTI]

    Fischer, Gary J.; Spletzer, Barry L.

    2006-12-12

    A low energy high pressure screw valve having a valve body having an upper portion and a lower portion, said lower portion of said valve body defining an inlet flow passage and an outlet flow passage traversing said valve body to a valve seat, said upper portion of said valve body defining a cavity at said valve seat, a diaphragm restricting flow between said upper portion of said valve body and said lower portion, said diaphragm capable of engaging said valve seat to restrict fluid communication between said inlet passage and said outlet passage, a plunger within said cavity supporting said diaphragm, said plunger being capable of engaging said diaphragm with said valve seat at said inlet and outlet fluid passages, said plunger being in point contact with a drive screw having threads engaged with opposing threads within said upper portion of said valve body such engagement allowing motion of said drive screw within said valve body.

  16. Urea and deuterium mixtures at high pressures

    SciTech Connect (OSTI)

    Donnelly, M. Husband, R. J.; Frantzana, A. D.; Loveday, J. S.; Bull, C. L.; Klotz, S.

    2015-03-28

    Urea, like many network forming compounds, has long been known to form inclusion (guest-host) compounds. Unlike other network formers like water, urea is not known to form such inclusion compounds with simple molecules like hydrogen. Such compounds if they existed would be of interest both for the fundamental insight they provide into molecular bonding and as potential gas storage systems. Urea has been proposed as a potential hydrogen storage material [T. A. Strobel et al., Chem. Phys. Lett. 478, 97 (2009)]. Here, we report the results of high-pressure neutron diffraction studies of urea and D{sub 2} mixtures that indicate no inclusion compound forms up to 3.7 GPa.

  17. High Pressure Rotary Shaft Sealing Mechanism

    DOE Patents [OSTI]

    Dietle, Lannie; Gobeli, Jeffrey D.

    2001-05-08

    A laterally translatable pressure staged rotary shaft sealing mechanism having a seal housing with a shaft passage therein being exposed to a fluid pressure P1 and with a rotary shaft being located within the shaft passage. At least one annular laterally translatable seal carrier is provided. First and second annular resilient sealing elements are supported in axially spaced relation by the annular seal carriers and have sealing relation with the rotary shaft. The seal housing and at least one seal carrier define a first pressure staging chamber exposed to the first annular resilient sealing element and a second pressure staging chamber located between and exposed to the first and second annular resilient sealing elements. A first fluid is circulated to the first pressure chamber at a pressure P1, and a second staging pressure fluid is circulated to the second pressure chamber at a fraction of pressure P1 to achieve pressure staging, cooling of the seals. Seal placement provides hydraulic force balancing of the annular seal carriers.

  18. Electronic Transitions in f-electron Metals at High Pressures...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Electronic Transitions in f-electron Metals at High Pressures: Citation Details In-Document Search Title: Electronic Transitions in f-electron Metals at High ...

  19. Ultrasound Measurements of Cerium under High Pressure in a Large...

    Office of Scientific and Technical Information (OSTI)

    Ultrasound Measurements of Cerium under High Pressure in a Large Volume Press Combined ... Citation Details In-Document Search Title: Ultrasound Measurements of Cerium under High ...

  20. Single stage high pressure centrifugal slurry pump

    DOE Patents [OSTI]

    Meyer, John W.; Bonin, John H.; Daniel, Arnold D.

    1984-03-27

    Apparatus is shown for feeding a slurry to a pressurized housing. An impeller that includes radial passages is mounted in the loose fitting housing. The impeller hub is connected to a drive means and a slurry supply means which extends through the housing. Pressured gas is fed into the housing for substantially enveloping the impeller in a bubble of gas.

  1. Automated high pressure cell for pressure jump x-ray diffraction

    SciTech Connect (OSTI)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  2. AB INITIO PHASE STABILITY AT HIGH TEMPERATURES AND PRESSURES...

    Office of Scientific and Technical Information (OSTI)

    AND PRESSURES IN THE V-Cr SYSTEM Citation Details In-Document Search Title: AB INITIO PHASE STABILITY AT HIGH TEMPERATURES AND PRESSURES IN THE V-Cr SYSTEM Authors: Landa, A ...

  3. AB INITIO PHASE STABILITY AT HIGH TEMPERATURES AND PRESSURES...

    Office of Scientific and Technical Information (OSTI)

    AND PRESSURES IN THE V-Cr SYSTEM Citation Details In-Document Search Title: AB INITIO PHASE STABILITY AT HIGH TEMPERATURES AND PRESSURES IN THE V-Cr SYSTEM You are ...

  4. Constant pressure high throughput membrane permeation testing...

    Office of Scientific and Technical Information (OSTI)

    membrane testing cell is ported by a permeate multiport valve for sampling or venting. ... pressures and flow rates on each side of the planar membrane throughout a sampling cycle. ...

  5. Improved Growth of High-Temperature Superconductors with HF Pressure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marketing Summary A new method of growing high-temperature superconductors controls hydrogen fluoride gas pressure and creates larger, more uniform crystal structures in...

  6. Double Shock Experiments and Reactive Flow Modeling of High Pressure...

    Office of Scientific and Technical Information (OSTI)

    Double Shock Experiments and Reactive Flow Modeling of High Pressure LX-17 Detonation Reaction Product States Citation Details In-Document Search Title: Double Shock Experiments ...

  7. Hydrogen sulfide at high pressure: Change in stoichiometry (Journal...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Hydrogen sulfide at high pressure: Change ... Publication Date: 2016-05-12 OSTI Identifier: 1253790 Resource Type: Journal Article ...

  8. Spin crossover in ferropericlase at high pressure: a seismically...

    Office of Scientific and Technical Information (OSTI)

    Title: Spin crossover in ferropericlase at high pressure: a seismically silenttransparent transition? Authors: Antonangeli, D ; Siebert, J ; Aracne, C ; Farber, D ; Bosak, A ; ...

  9. Spin Crossover in Ferropericlase at High Pressure: A Seismically...

    Office of Scientific and Technical Information (OSTI)

    Title: Spin Crossover in Ferropericlase at High Pressure: A Seismically Hidden Transition? Authors: Antonangeli, D ; Siebert, J ; Aracne, C ; Farber, D ; Bosak, A ; Hoesch, M ; ...

  10. Ultralow viscosity of carbonate melts at high pressures (Journal...

    Office of Scientific and Technical Information (OSTI)

    Title: Ultralow viscosity of carbonate melts at high pressures Authors: Kono, Yoshio ; Kenney-Benson, Curtis ; Hummer, Daniel ; Ohfuji, Hiroaki ; Park, Changyong ; Shen, Guoyin ; ...

  11. High pressure floating zone growth and structural properties...

    Office of Scientific and Technical Information (OSTI)

    quantum paraelectric BaFe12O19 Citation Details In-Document Search Title: High pressure floating zone growth and structural properties of ferrimagnetic quantum ...

  12. High Pressure Fuel Storage Cylinders Periodic Inspection and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Storage Cylinders Periodic Inspection and End of Life Issues High Pressure Fuel Storage Cylinders Periodic Inspection and End of Life Issues These slides were presented at the ...

  13. The Reactivity of Energetic Materials Under High Pressure and...

    Office of Scientific and Technical Information (OSTI)

    Title: The Reactivity of Energetic Materials Under High Pressure and ... Resource Type: Journal Article Resource Relation: Journal Name: Advances in Quantum Chemistry, vol. 69, no. ...

  14. Lessons Learned from Practical Field Experience with High Pressure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications High Pressure Fuel Storage Cylinders Periodic Inspection and End of Life Issues Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: ...

  15. Hydrogen sulfide at high pressure: Change in stoichiometry (Journal...

    Office of Scientific and Technical Information (OSTI)

    Title: Hydrogen sulfide at high pressure: Change in stoichiometry Authors: Goncharov, Alexander F. ; Lobanov, Sergey S. ; Kruglov, Ivan ; Zhao, Xiao-Miao ; Chen, Xiao-Jia ; Oganov, ...

  16. High Pressure Hydrogen Storage in Carbon Nanotubes - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search High Pressure Hydrogen Storage in Carbon Nanotubes Lawrence Livermore National Laboratory Contact...

  17. High temperature pressurized high frequency testing rig and test method

    DOE Patents [OSTI]

    De La Cruz, Jose; Lacey, Paul

    2003-04-15

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  18. Evaluation of high-pressure drilling fluid supply systems

    SciTech Connect (OSTI)

    McDonald, M.C.; Reichman, J.M.; Theimer, K.J.

    1981-10-01

    A study was undertaken to help determine the technical and economic feasibility of developing a high-pressure fluid-jet drilling system for the production of geothermal wells. Three system concepts were developed and analyzed in terms of costs, component availability, and required new-component development. These concepts included a single-conduit system that supplies the downhole cutting nozzles directly via surface-located high-pressure pumps; a single-conduit system utilizing low-pressure surface pumps to supply and operate a high-pressure downhole pump, which in turn supplies the cutting nozzles; and a dual-conduit system supplying surface-generated high-pressure fluid for cutting via one conduit and low-pressure scavenging fluid via the other. It is concluded that the single-conduit downhole pump system concept has the greatest potential for success in this application. 28 figures, 11 tables.

  19. High-pressure structural study of MgCl2 up to 1 Mbar: Extensive pressure

    Office of Scientific and Technical Information (OSTI)

    stability of the B-MgCl2 layered structure. (Conference) | SciTech Connect High-pressure structural study of MgCl2 up to 1 Mbar: Extensive pressure stability of the B-MgCl2 layered structure. Citation Details In-Document Search Title: High-pressure structural study of MgCl2 up to 1 Mbar: Extensive pressure stability of the B-MgCl2 layered structure. Authors: Stavrou, E ; Zaug, J M ; Bastea, S ; Yansun, Y ; Kalkan, B ; Konopkova, Z ; Kunz, M Publication Date: 2016-03-01 OSTI Identifier:

  20. Synchrotron infrared reflectivity measurements of iron at high pressures

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Synchrotron infrared reflectivity measurements of iron at high pressures Citation Details In-Document Search Title: Synchrotron infrared reflectivity measurements of iron at high pressures The infrared reflectance of iron was studied using high-pressure synchrotron radiation methods up to 50 GPa at room temperature in a diamond anvil cell of 1000-8000 cm{sup -1} (1.25-10 {mu}m). The magnitude of the reflectivity shows a weak pressure

  1. Structural behaviour of niobium oxynitride under high pressure

    SciTech Connect (OSTI)

    Sharma, Bharat Bhooshan Poswal, H. K. Pandey, K. K. Sharma, Surinder M.; Yakhmi, J. V.; Ohashi, Y.; Kikkawa, S.

    2014-04-24

    High pressure investigation of niobium oxynitrides (NbN{sub 0.98}O{sub 0.02}) employing synchrotron based angle dispersive x-ray diffraction experiments was carried out in very fine pressure steps using membrane driven diamond anvil cell. Ambient cubic phase was found to be stable up to ∼18 GPa. At further high pressure cubic phase showed rhombohedral distortion.

  2. Constant pressure high throughput membrane permeation testing system

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Constant pressure high throughput membrane permeation testing system Citation Details In-Document Search Title: Constant pressure high throughput membrane permeation testing system The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing

  3. Rotational viscometer for high-pressure high-temperature fluids

    DOE Patents [OSTI]

    Carr, Kenneth R.

    1985-01-01

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer includes a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. An output is generated indicative of the phase difference between the two waveforms.

  4. Rotational viscometer for high-pressure, high-temperature fluids

    DOE Patents [OSTI]

    Carr, K.R.

    1983-06-06

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer include a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. Means are provided to generate an output indicative of the phase difference between the two waveforms. The viscometer is comparatively simple, inexpensive, rugged, and does not require shaft seals.

  5. Flash High-Pressure Condensate to Regenerate Low-Pressure Steam...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    when it is not economically feasible to return the high-pressure condensate to the boiler. ... The average temperature of the boiler makeup water is 70F. From the table above, when ...

  6. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT

    SciTech Connect (OSTI)

    Chris Guenther; Bill Rogers

    2001-09-15

    The HPCCK project was initiated with a kickoff meeting held on June 12, 2001 in Morgantown, WV, which was attended by all project participants. SRI's existing g-RCFR reactor was reconfigured to a SRT-RCFR geometry (Task 1.1). This new design is suitable for performing the NBFZ experiments of Task 1.2. It was decided that the SRT-RCFR apparatus could be modified and used for the HPBO experiments. The purchase, assembly, and testing of required instrumentation and hardware is nearly complete (Task 1.1 and 1.2). Initial samples of PBR coal have been shipped from FWC to SRI (Task 1.1). The ECT device for coal flow measurements used at FWC will not be used in the SRI apparatus and a screw type feeder has been suggested instead (Task 5.1). NEA has completed a upgrade of an existing Fluent simulator for SRI's RCFR to a version that is suitable for interpreting results from tests in the NBFZ configuration (Task 1.3) this upgrade includes finite-rate submodels for devolatilization, secondary volatiles pyrolysis, volatiles combustion, and char oxidation. Plans for an enhanced version of CBK have been discussed and development of this enhanced version has begun (Task 2.5). A developmental framework for implementing pressure and oxygen effects on ash formation in an ash formation model (Task 3.3) has begun.

  7. High-Pressure Flame Speed Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connect Technical Report: High-Performance Ducts in Hot-Dry Climates Citation Details In-Document Search Title: High-Performance Ducts in Hot-Dry Climates Duct thermal losses and air leakage have long been recognized as prime culprits in the degradation of heating, ventilating, and air-conditioning (HVAC) system efficiency. Both the U.S. Department of Energy's Zero Energy Ready Home program and California's proposed 2016 Title 24 Residential Energy Efficiency Standards require that ducts be

  8. Subsea intensifier supplies high pressure to downhole safety valves

    SciTech Connect (OSTI)

    1996-07-01

    A subsea high-pressure hydraulic intensifier (HPI) is now available as an alternative method of operating downhole surface-controlled subsea safety valves (SCSSVs). By generating high hydraulic pressures on the seafloor, the system eliminates need for transmitting high pressure via hose from surface. The new intensifier can generate up to 15,000 psi (1,035 bar) from the 3,000-psi (210-bar) low pressure actuator supply already within the umbilical. It uses low pressure hydraulic fluid acting on a large-area piston to push a second piston, one-fifth the cross sectional area, acting in a second hydraulic circuit. To reduce pulsation, the unit is double acting, with one piston drawing in fluid while the other discharges it. This paper reviews the design, performance, and construction of this equipment.

  9. Digital pressure transducer for use at high temperatures

    DOE Patents [OSTI]

    Karplus, Henry H. B.

    1981-01-01

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  10. Digital pressure transducer for use at high temperatures

    DOE Patents [OSTI]

    Karplus, H.H.B.

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  11. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    SciTech Connect (OSTI)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantums then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel systems performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of smart tanks that could monitor health of tank thus allowing for lower design safety factor, and the development of Cool Fuel technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  12. Energy Systems High Pressure Test Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems High Pressure Test Laboratory at the Energy Systems Integration Facility. The purpose of the Energy Systems High Pressure Test Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to provide space where high pressure hydrogen components can be safely tested. High pressure hydrogen storage is an integral part of energy storage technology for use in fuel cell and in other distributed energy scenarios designed to effectively utilize the variability inherent with renewable energy sources. The high pressure storage laboratory is co-located with energy storage activities such as ultra-capacitors, super conducting magnetic flywheel and mechanical energy storage systems laboratories for an integrated approach to system development and demonstration. Hazards associated with hydrogen storage at pressures up to 10,000 psi include oxygen displacement, combustion, explosion, and pressurization of room air due to fast release and physical hazards associated with burst failure modes. A critical understanding of component failure modes is essential in developing reliable, robust designs that will minimize failure risk beyond the end of service life. Development of test protocol for accelerated life testing to accurately scale to real world operating conditions is essential for developing regulations, codes and standards required for safe operation. NREL works closely with industry partners in providing support of advanced hydrogen technologies. Innovative approaches to product design will accelerate commercialization into new markets. NREL works with all phases of the product design life cycle from early prototype development to final certification testing. High pressure tests are performed on hydrogen components, primarily for the validation of developing new codes and standards for high pressure hydrogen applications. The following types of tests can be performed: Performance, Component and system level efficiency, Strength of materials and hydrogen compatibility, Safety demonstration, Model validation, and Life cycle reliability.

  13. XAS and XMCD spectroscopies to study matter at high pressure...

    Office of Scientific and Technical Information (OSTI)

    XAS and XMCD spectroscopies to study matter at high pressure: Probing the correlation between structure and magnetism in the 3d metals Citation Details In-Document Search Title: ...

  14. DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of FreedomCAR & Fuels PartnershipDOE Delivery Program (PDF 9.19 MB), George Parks, ConocoPhilips High-Pressure Tube Trailers and Tanks (PDF 4.21 MB), Slavador Aceves, ...

  15. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Pressure MOF Research Yields Structural Insights High-Pressure MOF Research Yields Structural Insights Print Wednesday, 26 February 2014 00:00 Metal-organic frameworks (MOFs) are a remarkable class of relatively new materials that exist as a subclass of a larger group called coordination networks. MOFs have shown promise in a variety of applications ranging from gas storage to ion exchange. The materials are comprised of organic linkers that bridge discrete metal building units. Accurate

  16. Spin Crossover in Ferropericlase at High Pressure: A Seismically Hidden

    Office of Scientific and Technical Information (OSTI)

    Transition? (Conference) | SciTech Connect Conference: Spin Crossover in Ferropericlase at High Pressure: A Seismically Hidden Transition? Citation Details In-Document Search Title: Spin Crossover in Ferropericlase at High Pressure: A Seismically Hidden Transition? Authors: Antonangeli, D ; Siebert, J ; Aracne, C ; Farber, D ; Bosak, A ; Hoesch, M ; Krisch, M ; Ryerson, F ; Fiquet, G ; Badro, J Publication Date: 2010-09-13 OSTI Identifier: 1121389 Report Number(s): LLNL-PROC-455012 DOE

  17. Spin Crossover in Ferropericlase at High Pressure: A Seismically Hidden

    Office of Scientific and Technical Information (OSTI)

    Transition? (Conference) | SciTech Connect Conference: Spin Crossover in Ferropericlase at High Pressure: A Seismically Hidden Transition? Citation Details In-Document Search Title: Spin Crossover in Ferropericlase at High Pressure: A Seismically Hidden Transition? × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to

  18. Spin crossover in ferropericlase at high pressure: a seismically

    Office of Scientific and Technical Information (OSTI)

    silent/transparent transition? (Journal Article) | SciTech Connect Journal Article: Spin crossover in ferropericlase at high pressure: a seismically silent/transparent transition? Citation Details In-Document Search Title: Spin crossover in ferropericlase at high pressure: a seismically silent/transparent transition? Authors: Antonangeli, D ; Siebert, J ; Aracne, C ; Farber, D ; Bosak, A ; Hoesch, M ; Krisch, M ; Ryerson, F ; Fiquet, G ; Badro, J Publication Date: 2010-09-20 OSTI Identifier:

  19. Spin crossover in ferropericlase at high pressure: a seismically

    Office of Scientific and Technical Information (OSTI)

    silent/transparent transition? (Journal Article) | SciTech Connect Journal Article: Spin crossover in ferropericlase at high pressure: a seismically silent/transparent transition? Citation Details In-Document Search Title: Spin crossover in ferropericlase at high pressure: a seismically silent/transparent transition? × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and

  20. Pressure Testing of a High Temperature Naturally Fractured Reservoir

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Pressure Testing of a High Temperature Naturally Fractured Reservoir Citation Details In-Document Search Title: Pressure Testing of a High Temperature Naturally Fractured Reservoir Los Alamos National Laboratory has conducted a number of pumping and flow-through tests at the Hot Dry rock (HDR) test site at Fenton Hill, New Mexico. These tests consisted of injecting fresh water at controlled rates up to 12 BPM (32 {ell}/s) and surface pressures up to

  1. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect (OSTI)

    Michael L. Swanson

    2005-08-30

    The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was 50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

  2. Interfacial tension in high-pressure carbon dioxide mixtures

    SciTech Connect (OSTI)

    Chun, B.S.; Wilkinson, G.T.

    1995-12-01

    High-pressure interfacial- and surface-tension phenomena govern the migration and recovery of oil and gas from hydrocarbon reservoirs. The phenomena are of particular relevance to phase separation and mass transfer in light hydrocarbon fractionation plants and in propane deasphalting in lubricating oil refining. Interfacial tensions of carbon dioxide-water-alcohol mixtures were measured at temperatures in the range 5--71 C and pressures 0.1--18.6 MPa, using the capillary rise method. The alcohols were methanol (0.136 mf), ethanol (to 0.523 mf), and isopropyl alcohol (to 0.226 mf). Interfacial tension (IFT) decreased linearly with both temperature and pressure din the low-pressure range (gaseous CO{sub 2}) but was largely independent of pressure at high pressure (liquid or supercritical CO{sub 2}). There was a zone in the vicinity of the critical pressure of CO{sub 2}-as much as 20 C below and 10 C above the carbon dioxide critical temperature--where IFT became small. This is attributed to the formation of a second CO{sub 2}-rich phase. The isotherms exhibited a crossover pressure near 3 MPa for all systems examined.

  3. Sandia Energy - High-Pressure and High-Temperature Neutron Reflectomet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Pressure and High-Temperature Neutron Reflectometry Cell for Solid-Fluid Interface Studies Home Carbon Capture & Storage Climate News News & Events Carbon Capture Carbon...

  4. High pressure rotary piston coal feeder for coal gasification applications

    DOE Patents [OSTI]

    Gencsoy, Hasan T.

    1977-05-24

    The subject development is directed to an apparatus for feeding pulverized coal into a coal gasifier operating at relatively high pressures and elevated temperatures. This apparatus is a rotary piston feeder which comprises a circular casing having a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable discoid rotor having a cylinder in which a reciprocateable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam arrangement whereby the pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder cavity and then discharged therefrom into the high-pressure gasifier without the loss of high pressure gases from within the latter.

  5. Confinement of hydrogen at high pressure in carbon nanotubes

    DOE Patents [OSTI]

    Lassila, David H.; Bonner, Brian P.

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  6. Aqueous Geochemistry at High Pressures and High Temperatures

    SciTech Connect (OSTI)

    Bass, Jay D.

    2015-05-21

    This project is aimed at experimental characterization of the sound velocities, equations of state (EOS), and derived physical and chemical properties of aqueous solutions and carbon dioxide at extreme pressure and temperature conditions relevant to processes occurring in the interior of the Earth. Chemical transport, phase changes (including melting), fluid-solid reactions, and formation of magmatic liquids at convergent plat boundaries are a key motivation for this project. Research in this area has long been limited by the extreme experimental challenges and lack of data under the appropriate pressure-temperature (P-T) conditions. The vast majority of studies of aqueous geochemistry relevant to terrestrial problems of fluid-rock interactions have been conducted at 0.3 GPa or less, and the widely used Helgeson-Kirkham-Flowers equation of state for aqueous species is applicable only at ~ < 0.5 GPa. These limits are unfortunate because fluid flow and reactions plays a central role in many deeper environments. Recent efforts including our own, have resulted in new experimental techniques that now make it possible to investigate properties of homogeneous and heterogeneous equilibria involving aqueous species and minerals over a much broader range of pressure and temperature appropriate for deep crustal and upper mantle processes involving water-rich fluids. We carried out 1) Brillouin scattering measurements of the equations of state and molar volume of water and carbon dioxide to over 10 GPa and 870K using precise resistance heating of samples under pressure in the diamond anvil cell, and 2) the phase diagrams of the water and CO2, and 3) Exploring new experimental approaches, including CO2 laser heating of samples in a diamond cell, to measurements of sound velocities, EOS, and phase relations by Brillouin scattering to far greater pressures and temperatures.

  7. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    SciTech Connect (OSTI)

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  8. Structural Behaviour of Uranium Sulfide under High Pressure

    SciTech Connect (OSTI)

    Shareef, F.; Singh, S.; Gour, A.; Bhardwaj, P.; Sarwan, M.; Dubey, R. [High Pressure Research Lab, Department of Physics, Barkatullah University, Bhopal-462026 (India); Singh, R. K. [ITM University, Gurgaon, Haryana-122017 (India)

    2011-07-15

    The study of pressure induced structural phase transition of uranium sulphide, which crystallizes in rock salt (B1) structure, has been performed using the well described three body interaction model (TBIPM). Our present TBIP model consists of long range coulombic interaction, three body interactions, Hafemeister and Flygare type short-range overlap repulsion extended upto the second neighbor ions and the van der Waals interaction. The present results are in good agreement with the available experimental data on the phase transition pressure (Pt = 80.2 GPa). So it can be considered as an adequate and suitable model to perform high pressure studies.

  9. Reinvestigation of high pressure polymorphism in hafnium metal

    SciTech Connect (OSTI)

    Pandey, K. K. Sharma, Surinder M.; Gyanchandani, Jyoti; Dey, G. K.; Somayazulu, M.; Sikka, S. K.

    2014-06-21

    There has been a recent controversy about the high pressure polymorphism of Hafnium (Hf). Unlike, the earlier known ??? structural transition at 38??8?GPa, at ambient temperature, Hrubiak et al. [J. Appl. Phys. 111, 112612 (2012)] did not observe it till 51?GPa. They observed this transition only at elevated temperatures. We have reinvestigated the room temperature phase diagram of Hf, employing x-ray diffraction (XRD) and DFT based first principles calculations. Experimental investigations have been carried out on several pure and impure Hf samples and also with different pressure transmitting media. Besides demonstrating the significant role of impurity levels on the high pressure phase diagram of Hf, our studies re-establish room temperature ??? transition at high pressures, even in quasi-hydrostatic environment. We observed this transition in pure Hf with equilibrium transition pressure P{sub o}?=?44.5?GPa; however, with large hysteresis. The structural sequence, transition pressures, the lattice parameters, the c/a ratio and its variation with compression for the ? and ? phases as predicted by our ab-initio scalar relativistic (SR) calculations are found to be in good agreement with our experimental results of pure Hf.

  10. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOE Patents [OSTI]

    Westerfield, Curtis L.; Morris, John S.; Agnew, Stephen F.

    1997-01-01

    Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear.

  11. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOE Patents [OSTI]

    Westerfield, C.L.; Morris, J.S.; Agnew, S.F.

    1997-01-14

    Diamond anvil cell is described for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear. 4 figs.

  12. Pressure and Temperature effects on the High Pressure Phase Transformation in Zirconium

    SciTech Connect (OSTI)

    Escobedo-Diaz, Juan P.; Cerreta, Ellen K.; Brown, Donald W.; Trujillo, Carl P.; Rigg, Paulo A.; Bronkhorst, Curt A.; Addessio, Francis L.; Lookman, Turab

    2012-06-20

    At high pressure zirconium is known to undergo a phase transformation from the hexagonal close packed (HCP) alpha phase ({alpha}) to the simple hexagonal omega phase ({omega}). Under conditions of shock loading, the high-pressure omega phase is retained upon release. However, the hysteresis in this transformation is not well represented by equilibrium phase diagrams. For this reason, the influence of peak shock pressure and temperature on the retention of omega phase in Zr is explored in this study. In situ VISAR measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to quantify the volume fraction of retained omega phase, morphology of the shocked alpha and omega phases, and qualitatively understand the kinetics of this transformation. This understanding of the role of peak shock stress will be utilized to address physics to be encoded in our present macro-scale models.

  13. Ultra-high pressure water jet: Baseline report

    SciTech Connect (OSTI)

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems.

  14. Microhole High-Pressure Jet Drill for Coiled Tubing

    SciTech Connect (OSTI)

    Ken Theimer; Jack Kolle

    2007-06-30

    Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

  15. High-pressure stability relations, crystal structures, and physical

    Office of Scientific and Technical Information (OSTI)

    properties of perovskite and post-perovskite of NaNiF{sub 3} (Journal Article) | SciTech Connect High-pressure stability relations, crystal structures, and physical properties of perovskite and post-perovskite of NaNiF{sub 3} Citation Details In-Document Search Title: High-pressure stability relations, crystal structures, and physical properties of perovskite and post-perovskite of NaNiF{sub 3} NaNiF{sub 3} perovskite was found to transform to post-perovskite at 16-18 GPa and 1273-1473 K.

  16. Hydrogen sulfide at high pressure: Change in stoichiometry (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | DOE PAGES Hydrogen sulfide at high pressure: Change in stoichiometry This content will become publicly available on May 10, 2017 Title: Hydrogen sulfide at high pressure: Change in stoichiometry Authors: Goncharov, Alexander F. ; Lobanov, Sergey S. ; Kruglov, Ivan ; Zhao, Xiao-Miao ; Chen, Xiao-Jia ; Oganov, Artem R. ; Konôpková, Zuzana ; Prakapenka, Vitali B. Publication Date: 2016-05-10 OSTI Identifier: 1252349 Grant/Contract Number: FG02-94ER14466; AC02-98CH10086;

  17. Visible Reflectivity System for High-Pressure Studies. (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect SciTech Connect Search Results Journal Article: Visible Reflectivity System for High-Pressure Studies. Citation Details In-Document Search Title: Visible Reflectivity System for High-Pressure Studies. Authors: Seagle, Christopher T ; Dolan, III, Daniel H Publication Date: 2013-04-01 OSTI Identifier: 1073453 Report Number(s): SAND2013-2893J Journal ID: ISSN 0034-6748 DOE Contract Number: AC04-94AL85000 Resource Type: Journal Article Resource Relation: Journal Name: Review of

  18. Capillary toroid cavity detector for high pressure NMR

    DOE Patents [OSTI]

    Gerald, II, Rex E.; Chen, Michael J.; Klingler, Robert J.; Rathke, Jerome W.; ter Horst, Marc

    2007-09-11

    A Toroid Cavity Detector (TCD) is provided for implementing nuclear magnetic resonance (NMR) studies of chemical reactions under conditions of high pressures and temperatures. A toroid cavity contains an elongated central conductor extending within the toroid cavity. The toroid cavity and central conductor generate an RF magnetic field for NMR analysis. A flow-through capillary sample container is located within the toroid cavity adjacent to the central conductor to subject a sample material flowing through the capillary to a static magnetic field and to enable NMR spectra to be recorded of the material in the capillary under a temperature and high pressure environment.

  19. The Reactivity of Energetic Materials Under High Pressure and Temperature

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect The Reactivity of Energetic Materials Under High Pressure and Temperature Citation Details In-Document Search Title: The Reactivity of Energetic Materials Under High Pressure and Temperature Authors: Manaa, M R ; Fried, L E Publication Date: 2013-09-17 OSTI Identifier: 1209648 Report Number(s): LLNL-JRNL-643808 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Journal Article Resource Relation: Journal Name: Advances in Quantum Chemistry, vol. 69, no.

  20. Performance of Lanthanum Strontium Manganite Electrodes at High Pressure

    SciTech Connect (OSTI)

    Thomsen, Edwin C.; Coffey, Greg W.; Pederson, Larry R.; Marina, Olga A.

    2009-06-15

    The high-pressure performance of lanthanum strontium manganite (LSM), LSM-zirconia, and LSM/ceria composite electrodes was studied by impedance spectroscopy and dc methods. Electrode resistances decreased in proportion to P(O2)1/2 for the LSM electrode in both cathodic and anodic directions to at least 100 atm, a decrease that was attributed to dissociative oxygen adsorption, surface diffusion, and related phenomena. For the LSM-20/zirconia composite electrode, resistances decreased in proportion to P(O2)1/4 across the entire pressure range considered. Two principal features appeared in the impedance spectra, one that showed a P(O2)1/4 dependence attributed to charge transfer reactions, and one that was nearly pressure-independent, possibly due to transport in the zirconia portion of the composite. For the LSM-20/ceria composite electrode, resistances decreased as P(O2)0.3-0.4 at high pressure, depending on temperature. Two features appeared in the impedance spectra: one at low to intermediate frequency having a P(O2)1/2 dependence and one at high frequency having a P(O2)1/4 dependence. These features are attributed to dissociative oxygen adsorption and to charge transfer reactions, respectively. Results suggest that cathodic losses can be substantially lowered by operation of solid oxide fuel cells at greater than ambient pressure.

  1. High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Design, demonstrate, and qualify high-temperature high pressure zonal isolation devices compatible with the high temperature downhole Enhanced Geothermal Systems (EGS) environment.

  2. Pressure dependence on the reaction propagation rate of PETN at high pressure

    SciTech Connect (OSTI)

    Foltz, M.F.

    1993-04-01

    The reaction propagation rate (RPR) of the sensitive high explosive pentaerythritol tetranitrate (PETN) was measured in a diamond anvil cell (DAC) over the pressure range of 2--20 GPa. The experimental technique used is the same as that previously reported. The RPR data shows that it burns one to two orders of magnitude faster in the DAC than 1,3,5,-triamino-2,4,6-trinitrobenzene (TATB) and nitromethane (CH{sub 3}NO{sub 2}) respectively. The PETN RPR curve did not show sample pressure-dependent behavior like that of nitromethane, but instead varied abruptly like the RPR curve of TATB. In order to interpret these changes, static-pressure DAC mid-IR FTIR spectra were taken of micro-pellets of PETN embedded in KBr. The relationship between changes in the spectra, the RPR curve, and published single crystal PETN wedge test data are discussed.

  3. High pressure and Multiferroics materials. A happy marriage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gilioli, Edmondo; Ehm, Lars

    2014-10-31

    We found that the community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. Moreover, the in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties andmore » the coupling to structural instabilities.« less

  4. Novel high pressure monoclinic Fe[subscript 2]O[subscript 3]...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Novel high pressure monoclinic ... Citation Details In-Document Search Title: Novel high pressure monoclinic Fesubscript ...

  5. Elasticity of single-crystal olivine at high pressures and temperature...

    Office of Scientific and Technical Information (OSTI)

    Elasticity of single-crystal olivine at high pressures and temperatures Citation Details In-Document Search Title: Elasticity of single-crystal olivine at high pressures and ...

  6. Surface roughening of superalloys by high pressure pure waterjet

    SciTech Connect (OSTI)

    Taylor, T.A.

    1995-12-31

    A high pressure waterjet has been used to study the surface roughening of superalloys as preparation for thermal spraying. Designed experiments for Mar-M 509 and Rene 80 were carried out for the effects of jet pressure and mass of water delivered per unit area. Comparisons were made of several superalloys in terms of erosion, surface roughness and topology. The mechanism of jet erosion of Rene 80 was studied in relation to its metallurgical microstructure. An MCrAlY coating by shrouded plasma spray was made over a waterjet prepared surface with excellent bonding and having an ideally clean interface.

  7. Aging study of boiling water reactor high pressure injection systems

    SciTech Connect (OSTI)

    Conley, D.A.; Edson, J.L.; Fineman, C.F.

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  8. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    SciTech Connect (OSTI)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in mm/s and P is the pressure in units of MPa. Details of the experimental method, results and data analysis are discussed herein and briefly compared to other AP based materials that have been measured in this apparatus.

  9. Modified approaches for high pressure filtration of fine clean coal

    SciTech Connect (OSTI)

    Yang, J.; Groppo, J.G.; Parekh, B.K. [Center for Applied Energy Research, Lexington, KY (United States)

    1995-12-31

    Removal of moisture from fine (minus 28 mesh) clean coal to 20% or lower level is difficult using the conventional vacuum dewatering technique. High pressure filtration technique provides an avenue for obtaining low moisture in fine clean coal. This paper describes a couple of novel approaches for dewatering of fine clean coal using pressure filtration which provides much lower moisture in fine clean coal than that obtained using conventional pressure filter. The approaches involve (a) split stream dewatering and (b) addition of paper pulp to the coal slurry. For Pittsburgh No. 8 coal slurry, split stream dewatering at 400 mesh provided filter cake containing 12.9% moisture compared to 24.9% obtained on the feed material. The addition of paper pulp to the slurry provided filter cake containing about 17% moisture.

  10. Dynamic high-pressure studies of an electrothermal capillary

    SciTech Connect (OSTI)

    Benson, D.A.; Cahill, P.A.

    1990-01-01

    This paper describes arc discharge tests conducted in a prepressurized, constant-volume pressure vessel to study arc behavior over a wide range of current densities, discharge durations and initial vessel pressures. This method allows controlled access to a wider range of conditions than those previously studied in capillary tests. We have investigated aspects of the radiative heat transfer by calculating the material opacity and mean free paths of photons for conditions typical of arc diagnostics. We also performed one-dimensional Eulerian hydrodynamic calculations of the boundary layer behavior in the radiative diffusion approximation. These calculations, which describe the radial mass flow and heat transfer in the absence of turbulent flow effects, show the characteristic times for equilibrium of the high-pressure arc. Finally, we describe progress on a promising means for increasing the mass flux from the capillary discharge through the use of chemically reactive media on the capillary walls. 20 refs., 7 figs.

  11. Transport signatures of quantum critically in Cr at high pressure.

    SciTech Connect (OSTI)

    Jaramillo, R.; Feng, Y.; Wang, J.; Rosenbaum, T. F.

    2010-08-03

    The elemental antiferromagnet Cr at high pressure presents a new type of naked quantum critical point that is free of disorder and symmetry-breaking fields. Here we measure magnetotransport in fine detail around the critical pressure, P{sub c} {approx} 10 GPa, in a diamond anvil cell and reveal the role of quantum critical fluctuations at the phase transition. As the magnetism disappears and T {yields} 0, the magntotransport scaling converges to a non-mean-field form that illustrates the reconstruction of the magnetic Fermi surface, and is distinct from the critical scaling measured in chemically disordered Cr:V under pressure. The breakdown of itinerant antiferromagnetism only comes clearly into view in the clean limit, establishing disorder as a relevant variable at a quantum phase transition.

  12. High-pressure structural study of MnF2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; Konopkova, Zuzana; Raptis, Constantine

    2015-02-01

    In this study, manganese fluoride (MnF2) with the tetragonal rutile-type structure has been studied using a synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy in a diamond anvil cell up to 60 GPa at room temperature combined with first-principles density functional calculations. The experimental data reveal two pressure-induced structural phase transitions with the following sequence: rutile → SrI2 type (3 GPa)→ α–PbCl2 type (13 GPa). Complete structural information, including interatomic distances, has been determined in the case of MnF2 including the exact structure of the debated first high-pressure phase. First-principles density functional calculations confirm this phase transition sequence, and themore » two calculated transition pressures are in excellent agreement with the experiment. Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phases. The results are discussed in line with the possible practical use of rutile-type fluorides in general and specifically MnF2 as a model compound to reveal the HP structural behavior of rutile-type SiO2 (Stishovite).« less

  13. High-pressure, high-temperature plastic deformation of sintered diamonds

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | DOE PAGES High-pressure, high-temperature plastic deformation of sintered diamonds This content will become publicly available on September 29, 2017 Title: High-pressure, high-temperature plastic deformation of sintered diamonds Authors: Gasc, Julien ; Wang, Yanbin ; Yu, Tony ; Benea, Ion C. ; Rosczyk, Benjamin R. ; Shinmei, Toru ; Irifune, Tetsuo Publication Date: 2015-10-01 OSTI Identifier: 1249858 Grant/Contract Number: FG02-94ER14466; NSF DMR-1121262; NSF EEC-0647560

  14. X-ray imaging for studying behavior of liquids at high pressures and high

    Office of Scientific and Technical Information (OSTI)

    temperatures using Paris-Edinburgh press (Journal Article) | SciTech Connect X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press Citation Details In-Document Search Title: X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press Authors: Kono, Yoshio ; Kenney-Benson, Curtis ; Shibazaki, Yuki ; Park, Changyong ; Wang, Yanbin ; Shen, Guoyin [1] ; CIW) [2] ; UC) [2] + Show

  15. High-pressure, high-temperature plastic deformation of sintered diamonds

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: High-pressure, high-temperature plastic deformation of sintered diamonds Citation Details In-Document Search This content will become publicly available on September 29, 2017 Title: High-pressure, high-temperature plastic deformation of sintered diamonds Authors: Gasc, Julien ; Wang, Yanbin ; Yu, Tony ; Benea, Ion C. ; Rosczyk, Benjamin R. ; Shinmei, Toru ; Irifune, Tetsuo Publication Date: 2015-10-01 OSTI

  16. The high-pressure-high-temperature behavior of bassanite (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect The high-pressure-high-temperature behavior of bassanite Citation Details In-Document Search Title: The high-pressure-high-temperature behavior of bassanite The pressure evolution of bassanite (CaSO{sub 4} {center_dot} 1/2 H{sub 2}O) was investigated by synchrotron X-ray powder diffraction along three isotherms: at room temperature up to 33 GPa, at 109 C up to 22 GPa, and at 200 C up to 12 GPa. The room-temperature cell-volume data, from 0.001 to 33 GPa, were fitted to a

  17. Plastic deformation and sintering of alumina under high pressure

    SciTech Connect (OSTI)

    Liu, Fangming; Liu, Pingping; Wang, Haikuo; Xu, Chao; Yin, Shuai; Yin, Wenwen; Li, Yong; He, Duanwei

    2013-12-21

    Plastic deformation of alumina (Al{sub 2}O{sub 3}) under high pressure was investigated by observing the shape changes of spherical particles, and the near fully dense transparent bulks were prepared at around 5.5 GPa and 900 °C. Through analyzing the deformation features, densities, and residual micro-strain of the Al{sub 2}O{sub 3} compacts prepared under high pressures and temperatures (2.0–5.5 GPa and 600–1200 °C), the effects of plastic deformation on the sintering behavior of alumina have been demonstrated. Under compression, the microscopic deviatoric stress caused by grain-to-grain contact could initiate the plastic deformation of individual particles, eliminate pores of the polycrystalline samples, and enhance the local atomic diffusion at the grain boundaries, thus produced transparent alumina bulks.

  18. Intermittently-fed high-pressure gasifier process

    DOE Patents [OSTI]

    Bailey, John M.; Zadoks, Abraham L.

    1993-11-30

    An improved gasifier adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications.

  19. Intermittently-fed high-pressure gasifier process

    DOE Patents [OSTI]

    Bailey, J.M.; Zadoks, A.L.

    1993-11-30

    An improved gasifier is described which is adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications. 3 figures.

  20. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Pressure MOF Research Yields Structural Insights Print Metal-organic frameworks (MOFs) are a remarkable class of relatively new materials that exist as a subclass of a larger group called coordination networks. MOFs have shown promise in a variety of applications ranging from gas storage to ion exchange. The materials are comprised of organic linkers that bridge discrete metal building units. Accurate structural knowledge is key to the understanding of the applicability of these materials,

  1. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Pressure MOF Research Yields Structural Insights Print Metal-organic frameworks (MOFs) are a remarkable class of relatively new materials that exist as a subclass of a larger group called coordination networks. MOFs have shown promise in a variety of applications ranging from gas storage to ion exchange. The materials are comprised of organic linkers that bridge discrete metal building units. Accurate structural knowledge is key to the understanding of the applicability of these materials,

  2. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Pressure MOF Research Yields Structural Insights Print Metal-organic frameworks (MOFs) are a remarkable class of relatively new materials that exist as a subclass of a larger group called coordination networks. MOFs have shown promise in a variety of applications ranging from gas storage to ion exchange. The materials are comprised of organic linkers that bridge discrete metal building units. Accurate structural knowledge is key to the understanding of the applicability of these materials,

  3. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Pressure MOF Research Yields Structural Insights Print Metal-organic frameworks (MOFs) are a remarkable class of relatively new materials that exist as a subclass of a larger group called coordination networks. MOFs have shown promise in a variety of applications ranging from gas storage to ion exchange. The materials are comprised of organic linkers that bridge discrete metal building units. Accurate structural knowledge is key to the understanding of the applicability of these materials,

  4. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Pressure MOF Research Yields Structural Insights Print Metal-organic frameworks (MOFs) are a remarkable class of relatively new materials that exist as a subclass of a larger group called coordination networks. MOFs have shown promise in a variety of applications ranging from gas storage to ion exchange. The materials are comprised of organic linkers that bridge discrete metal building units. Accurate structural knowledge is key to the understanding of the applicability of these materials,

  5. Vibratory high pressure coal feeder having a helical ramp

    DOE Patents [OSTI]

    Farber, Gerald

    1978-01-01

    Apparatus and method for feeding powdered coal from a helical ramp into a high pressure, heated, reactor tube containing hydrogen for hydrogenating the coal and/or for producing useful products from coal. To this end, the helical ramp is vibrated to feed the coal cleanly at an accurately controlled rate in a simple reliable and trouble-free manner that eliminates complicated and expensive screw feeders, and/or complicated and expensive seals, bearings and fully rotating parts.

  6. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Pressure MOF Research Yields Structural Insights Print Metal-organic frameworks (MOFs) are a remarkable class of relatively new materials that exist as a subclass of a larger group called coordination networks. MOFs have shown promise in a variety of applications ranging from gas storage to ion exchange. The materials are comprised of organic linkers that bridge discrete metal building units. Accurate structural knowledge is key to the understanding of the applicability of these materials,

  7. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Pressure MOF Research Yields Structural Insights Print Metal-organic frameworks (MOFs) are a remarkable class of relatively new materials that exist as a subclass of a larger group called coordination networks. MOFs have shown promise in a variety of applications ranging from gas storage to ion exchange. The materials are comprised of organic linkers that bridge discrete metal building units. Accurate structural knowledge is key to the understanding of the applicability of these materials,

  8. Vitiated ethane oxidation in a high-pressure flow reactor

    SciTech Connect (OSTI)

    Walters, K.M.; Bowman, C.T.

    2009-10-15

    Vitiated combustion processes offer the potential to improve the thermodynamic efficiency in hydrocarbon-fueled combustion systems, providing a subsequent decrease in energy-specific CO{sub 2} emissions along with a decrease in the emission levels of nitrogen oxides (NO{sub x}) and particulate matter. The present work comprises an experimental and modeling study of vitiated ethane oxidation in a high-pressure flow reactor, with pressures of 1-6 bar, O{sub 2} mole fractions of 3.5-7.0%, temperatures of 1075-1100 K and 15-18 mole.% H{sub 2}O. Time-history measurements of species are used to characterize the overall rate of reaction and track the fuel-carbon through intermediate and product species. A one-dimensional mixing-reacting model that accounts for partial oxidation during reactant mixing is used in conjunction with a detailed kinetic mechanism. Changes in competing pathways due to variations in pressure and O{sub 2} mole fraction give rise to the complex pressure dependence seen in the experiments. (author)

  9. Demonstration of Magnesium Intercalation into a High-Voltage Oxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | SciTech Connect Demonstration of LED Street Lighting in Kansas City, MO Citation Details In-Document Search Title: Demonstration of LED Street Lighting in Kansas City, MO Nine different streetlighting products were installed on various streets in Kansas City, Missouri during February, 2011, to evaluate their performance relative to the incumbent high-pressure sodium (HPS) lighting. The applications investigated included 100 W, 150 W, 250 W, and 400 W HPS installations. Initial measurements

  10. Electronic Structure of Crystalline 4He at High Pressures

    SciTech Connect (OSTI)

    Mao, Ho Kwang; Shirley, Eric L.; Ding, Yang; Eng, Peter; Cai, Yong Q.; Chow, Paul; Xiao, Yuming; Jinfu Shu, A=Kao, Chi-Chang; Hemley, Russell J.; Kao, Chichang; Mao, Wendy L.; ,

    2011-01-10

    Using inelastic X-ray scattering techniques, we have succeeded in probing the high-pressure electronic structure of helium crystal at 300 K which has the widest known electronic energy bandgap of all materials, that was previously inaccessible to measurements due to the extreme energy and pressure range. We observed rich electron excitation spectrum, including a cut-off edge above 23 eV, a sharp exciton peak showing linear volume dependence, and a series of excitations and continuum at 26 to 45 eV. We determined electronic dispersion along the {Gamma}-M direction over two Brillouin zones, and provided a quantitative picture of the helium exciton beyond the simplified Wannier-Frenkel description.

  11. Controls for offshore high pressure corrosive gas wells

    SciTech Connect (OSTI)

    Bailliet, R.M.

    1982-01-01

    In September 1981, Shell Oil Company began production from its first high-pressure corrosive gas well in the Gulf of Mexico. The extreme pressures and corrosive nature of the gas required the installation of a 20,000 psi low alloy steel christmas tree, equipped with 12 hydraulically operated safety and control valves. This study describes the instrumentation and control system developed to operate this complex well. Similar wells have been produced on shore, but the limited space available on an offshore platform has required the development of new techniques for operating these wells. The instrumentation system described utilizes conventional pneumatics and hydraulics for control plus intrinsically-safe electronics for data acquisition. The use of intrinsically-safe field wiring provided maximum safety while avoiding the need for explosion-proof conduit and wiring methods in division one hazardous areas.

  12. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    DOE Patents [OSTI]

    Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi

    2014-04-08

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  13. Design Strategies for Optically-Accessible, High-Temperature, High-Pressure Reactor

    SciTech Connect (OSTI)

    S. F. Rice; R. R. Steeper; C. A. LaJeunesse; R. G. Hanush; J. D. Aiken

    2000-02-01

    The authors have developed two optical cell designs for high-pressure and high-temperature fluid research: one for flow systems, and the other for larger batch systems. The flow system design uses spring washers to balance the unequal thermal expansions of the reactor and the window materials. A typical design calculation is presented showing the relationship between system pressure, operating temperature, and torque applied to the window-retaining nut. The second design employs a different strategy more appropriate for larger windows. This design uses two seals: one for the window that benefits from system pressure, and a second one that relies on knife-edge, metal-to-metal contact.

  14. Design strategies for optically-accessible, high-temperature, high-pressure reactor

    SciTech Connect (OSTI)

    S. F. Rice; R. R. Steeper; C. A. LaJeunesse; R. G. Hanush; J. D. Aiken

    2000-02-01

    The authors have developed two optical cell designs for high-pressure and high-temperature fluid research: one for flow systems, and the other for larger batch systems. The flow system design uses spring washers to balance the unequal thermal expansions of the reactor and the window materials. A typical design calculation is presented showing the relationship between system pressure, operating temperature, and torque applied to the window-retaining nut. The second design employs a different strategy more appropriate for larger windows. This design uses two seals: one for the window that benefits from system pressure, and a second one that relies on knife-edge, metal-to-metal contact.

  15. Deformation of Single Crystal Molybdenum at High Pressure (Technical...

    Office of Scientific and Technical Information (OSTI)

    characterization and analysis to determine if deformation mechanisms are altered by pressure. Experiments under hydrostatic pressure provide insight into the nature of materials ...

  16. HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND

    Office of Scientific and Technical Information (OSTI)

    HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR Semi-Annual Report Reporting Period Start Date: May 1, 2003 Reporting Period End Date: November 1, 2003 Principal Authors: Robert Loucks (Co-PI), Steve Ruppel (Co-PI), Julia Gale, Jon Holder, Jon Olsen, Deanna Combs, Dhiraj Dembla, and Leonel Gomez Date Report Issued: December 10, 2003 DOE Award Number: DE-FC26-02NT15442 Bureau of Economic Geology The John A. and Katherine G. Jackson School of Geosciences The

  17. System Study: High-Pressure Coolant Injection 1998-2012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the high-pressure coolant injection system (HPCI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCI results.

  18. System Study: High-Pressure Safety Injection 1998–2012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the high-pressure safety injection system (HPSI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPSI results.

  19. System Study: High-Pressure Core Spray 19982012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the high-pressure core spray (HPCS) at 8 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCS results.

  20. Phase Diagram and Equation of State of Magnesium to High Pressures and High

    Office of Scientific and Technical Information (OSTI)

    Temperatures (Journal Article) | SciTech Connect Phase Diagram and Equation of State of Magnesium to High Pressures and High Temperatures Citation Details In-Document Search Title: Phase Diagram and Equation of State of Magnesium to High Pressures and High Temperatures Authors: Stinton, G W ; MacLeod, S G ; Cynn, H ; Errandonea, D ; Evans, W J ; Proctor, J E ; Meng, Y ; McMahon, M I Publication Date: 2014-01-21 OSTI Identifier: 1188628 Report Number(s): LLNL-JRNL-648674 DOE Contract Number:

  1. DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION

    SciTech Connect (OSTI)

    WHYTE, DG; JERNIGAN, TC; HUMPHREYS, DA; HYATT, AW; LASNIER, CJ; PARKS, PB; EVANS, TE; TAYLOR, PL; KELLMAN, AG; GRAY, DS; HOLLMANN, EM

    2002-10-01

    OAK A271 DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION. High-pressure gas jets of neon and argon are used to mitigate the three principal damaging effects of tokamak disruptions: thermal loading of the divertor surfaces, vessel stress from poloidal halo currents and the buildup and loss of relativistic electrons to the wall. The gas jet penetrates as a neutral species through to the central plasma at its sonic velocity. The injected gas atoms increase up to 500 times the total electron inventory in the plasma volume, resulting in a relatively benign radiative dissipation of >95% of the plasma stored energy. The rapid cooling and the slow movement of the plasma to the wall reduce poloidal halo currents during the current decay. The thermally collapsed plasma is very cold ({approx} 1-2 eV) and the impurity charge distribution can include > 50% fraction neutral species. If a sufficient quantity of gas is injected, the neutrals inhibit runaway electrons. A physical model of radiative cooling is developed and validated against DIII-D experiments. The model shows that gas jet mitigation, including runaway suppression, extrapolates favorably to burning plasmas where disruption damage will be more severe. Initial results of real-time disruption detection triggering gas jet injection for mitigation are shown.

  2. Very low pressure high power impulse triggered magnetron sputtering

    DOE Patents [OSTI]

    Anders, Andre; Andersson, Joakim

    2013-10-29

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  3. Comparison of diesel spray combustion in different high-temperature, high-pressure facilities.

    SciTech Connect (OSTI)

    Christiansen, Caspar; Hermant, Laurent; Malbec, Louis-Marie; Bruneaux, Gilles; Genzale, Caroline L.; Pickett, Lyle M.; Schramm, Jesper

    2010-05-01

    Diesel spray experiments at controlled high-temperature and high-pressure conditions offer the potential for an improved understanding of diesel combustion, and for the development of more accurate CFD models that will ultimately be used to improve engine design. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but uncertainties about their operation exist because of the uniqueness of each facility. For the IMEM meeting, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP. Targeting the same ambient gas conditions (900 K, 60 bar, 22.8 kg/m{sup 3}, 15% oxygen) and sharing the same injector (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K), we describe detailed measurements of the temperature and pressure boundary conditions at each facility, followed by observations of spray penetration, ignition, and combustion using high-speed imaging. Performing experiments at the same high-temperature, high-pressure operating conditions is an objective of the Engine Combustion Network (http://www.ca.sandia.gov/ECN/), which seeks to leverage the research capabilities and advanced diagnostics of all participants in the ECN. We expect that this effort will generate a high-quality dataset to be used for advanced computational model development at engine conditions.

  4. TENSILE TESTING OF CARBON STEEL IN HIGH PRESSURE HYDROGEN

    SciTech Connect (OSTI)

    Duncan, A; Thad Adams, T; Ps Lam, P

    2007-05-02

    An infrastructure of new and existing pipelines and systems will be required to carry and to deliver hydrogen as an alternative energy source under the hydrogen economy. Carbon and low alloy steels of moderate strength are currently used in hydrogen delivery systems as well as in the existing natural gas systems. It is critical to understand the material response of these standard pipeline materials when they are subjected to pressurized hydrogen environments. The methods and results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (10.34 MPa or 1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels.

  5. MECHANICAL TESTING OF CARBON STEEL IN HIGH PRESSURE HYDROGEN

    SciTech Connect (OSTI)

    Duncan, A

    2006-05-11

    The methods and interim results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. The scope is carbon steels commonly used for natural gas pipelines in the United States that are candidates for hydrogen service in the hydrogen economy. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in 1500 psig hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test program will continue with tests to quantify the fracture behavior in terms of J-R curves for these materials at air and hydrogen pressure conditions.

  6. Pressure Resistance Welding of High Temperature Metallic Materials

    SciTech Connect (OSTI)

    N. Jerred; L. Zirker; I. Charit; J. Cole; M. Frary; D. Butt; M. Meyer; K. L. Murty

    2010-10-01

    Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400oC has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

  7. High-pressure X-ray diffraction, Raman, and computational studies...

    Office of Scientific and Technical Information (OSTI)

    High-pressure X-ray diffraction, Raman, and computational studies of MgCl2 up to 1 Mbar: ... Citation Details In-Document Search Title: High-pressure X-ray diffraction, Raman, and ...

  8. DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Analysis and High Pressure Tanks R&D Project Review Meeting Agenda DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project Review Meeting Agenda DOE Hydrogen ...

  9. Equations of state in the Fe-FeSi system at high pressures and...

    Office of Scientific and Technical Information (OSTI)

    Equations of state in the Fe-FeSi system at high pressures and temperatures Citation Details In-Document Search Title: Equations of state in the Fe-FeSi system at high pressures ...

  10. A new high pressure and temperature equation of state of fcc...

    Office of Scientific and Technical Information (OSTI)

    new high pressure and temperature equation of state of fcc cobalt Citation Details In-Document Search Title: A new high pressure and temperature equation of state of fcc cobalt ...

  11. High pressure effects on U L[subscript 3] x-ray absorption in...

    Office of Scientific and Technical Information (OSTI)

    High pressure effects on U Lsubscript 3 x-ray absorption in partial fluorescence yield ... Citation Details In-Document Search Title: High pressure effects on U Lsubscript 3 x-ray ...

  12. Structural Deformation of Sm@C88 Under High Pressure (Journal...

    Office of Scientific and Technical Information (OSTI)

    Deformation of Sm@C88 Under HighPressure Citation Details In-Document Search Title: Structural Deformation of Sm@C88 Under High Pressure Authors: J Cui ; M Yao ; H Yang ; Z Liu ; ...

  13. Device for testing closure disks at high rates of change of pressure

    DOE Patents [OSTI]

    Merten, Jr., Charles W.

    1993-11-09

    A device for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston.

  14. High- and low-temperature-stable thermite composition for producing high-pressure, high-velocity gases

    DOE Patents [OSTI]

    Halcomb, Danny L.; Mohler, Jonathan H.

    1990-10-16

    A high- and low-temperature-stable thermite composition for producing high-pressure and high-velocity gases comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas-producing additive selected from the group consisting of metal carbides and metal nitrides.

  15. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Presentation) | Department of Energy High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 07_anl_high_pressure_steam_ethanol_reforming.pdf More Documents & Publications High Pressure Ethanol Reforming for Distributed Hydrogen Production Bio-Derived

  16. High-pressure cell for neutron diffraction with in situ pressure control at cryogenic temperatures

    SciTech Connect (OSTI)

    Jacobsen, Matthew K.; Ridley, Christopher J.; Bocian, Artur; Kamenev, Konstantin V.; Kirichek, Oleg; Manuel, Pascal; Khalyavin, Dmitry; Azuma, Masaki; Attfield, J. Paul

    2014-04-15

    Pressure generation at cryogenic temperatures presents a problem for a wide array of experimental techniques, particularly neutron studies due to the volume of sample required. We present a novel, compact pressure cell with a large sample volume in which load is generated by a bellow. Using a supply of helium gas up to a pressure of 350 bar, a load of up to 78 kN is generated with leak-free operation. In addition, special fiber ports added to the cryogenic center stick allow for in situ pressure determination using the ruby pressure standard. Mechanical stability was assessed using finite element analysis and the dimensions of the cell have been optimized for use with standard cryogenic equipment. Load testing and on-line experiments using NaCl and BiNiO{sub 3} have been done at the WISH instrument of the ISIS pulsed neutron source to verify performance.

  17. Preconcentrator with high volume chiller for high vapor pressure particle detection

    DOE Patents [OSTI]

    Linker, Kevin L

    2013-10-22

    Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

  18. High Temperature Electrolysis Pressurized Experiment Design, Operation, and Results

    SciTech Connect (OSTI)

    J.E. O'Brien; X. Zhang; G.K. Housley; K. DeWall; L. Moore-McAteer

    2012-09-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate planar cells with dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. It is also suitable for testing other cell and stack geometries including tubular cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. Pressurized operation of a ten-cell internally manifolded solid oxide electrolysis stack has been successfully demonstrated up 1.5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this report. Results of initial testing showed the expected increase in open-cell voltage associated with elevated pressure. However, stack performance in terms of area-specific resistance was enhanced at elevated pressure due to better gas diffusion through the porous electrodes of the cells. Some issues such as cracked cells and seals were encountered during testing. Full resolution of these issues will require additional testing to identify the optimum test configurations and protocols.

  19. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    SciTech Connect (OSTI)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  20. High-pressure science gets super-sized | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-pressure science gets super-sized By Tona Kunz * October 23, 2012 Tweet EmailPrint ARGONNE, Ill. - The study of materials at extreme conditions took a giant leap forward with the discovery of a way to generate super high pressures without using shock waves whose accompanying heat turns solids to liquid. This discovery will allow scientists for the first time to reach static pressure levels exceeding four million atmospheres, a high-pressure environment where new unique compounds could be

  1. Bonfire Tests of High Pressure Hydrogen Storage Tanks

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  2. High-pressure solvent extraction of methane from geopressured...

    Office of Scientific and Technical Information (OSTI)

    followed by conventional mechanical pumping. The contributions of hydraulic (pressure) energy recovery and geothermal power production are also assessed. For deep injection into...

  3. Equations of state of ice VI and ice VII at high pressure and high temperature

    SciTech Connect (OSTI)

    Bezacier, Lucile; Hanfland, Michael; Journaux, Baptiste; Perrillat, Jean-Philippe; Cardon, Herv; Daniel, Isabelle

    2014-09-14

    High-pressure H{sub 2}O polymorphs among which ice VI and ice VII are abundant in the interiors of large icy satellites and exo-planets. Knowledge of the elastic properties of these pure H{sub 2}O ices at high-temperature and high-pressure is thus crucial to decipher the internal structure of icy bodies. In this study we assess for the first time the pressure-volume-temperature (PVT) relations of both polycrystalline pure ice VI and ice VII at high pressures and temperatures from 1 to 9 GPa and 300 to 450 K, respectively, by using in situ synchrotron X-ray diffraction. The PVT data are adjusted to a second-order Birch-Murnaghan equation of state and give V{sub 0} = 14.17(2) cm{sup 3}?mol{sup ?1}, K{sub 0} = 14.05(23) GPa, and ?{sub 0} = 14.6(14) 10{sup ?5} K{sup ?1} for ice VI and V{sub 0} = 12.49(1) cm{sup 3}?mol{sup ?1}, K{sub 0} = 20.15(16) GPa, and ?{sub 0} = 11.6(5) 10{sup ?5} K{sup ?1} for ice VII.

  4. Phase transitions of LiAlO{sub 2} at high pressure and high temperature

    SciTech Connect (OSTI)

    Lei Li; He Duanwei Zou Yongtao; Zhang Wei; Wang Zhao; Jiang Ming; Du Maolu

    2008-08-15

    This work presents a comprehensive study on phase transitions in LiAlO{sub 2} system at high pressures and temperatures (0.5-5.0 GPa and 300-1873 K, respectively), as well as the phase stability for polymeric phases of LiAlO{sub 2} in the studied P-T space by X-ray diffraction (XRD). Besides the previously described polymorphic hexagonal {alpha}-phase, orthorhombic {beta}-phase and tetragonal {delta}-phase, a possible new phase of LiAlO{sub 2} was observed after the tetragonal {gamma}-LiAlO{sub 2} sample was treated at 5.0 GPa and 389 K. The stable regimes of these high-pressure phases were defined through the observation of coexistence points of the polymeric phases. Our results revealed that LiAlO{sub 2} could experience structural phase transitions from {gamma}-LiAlO{sub 2} to its polymorphs at lower pressures and temperatures compared to the reported results. Hexagonal {alpha}-LiAlO{sub 2} with highly (003) preferential orientation was prepared at 5.0 GPa and 1873 K. - Graphical abstract: Constructing the pressure-temperature phase diagram for LiAlO{sub 2}.

  5. High pressure HC1 conversion of cellulose to glucose

    SciTech Connect (OSTI)

    Antonoplis, Robert Alexander; Blanch, Harvey W.; Wilke, Charles R.

    1981-08-01

    The production of ethanol from glucose by means of fermentation represents a potential long-range alternative to oil for use as a transportation fuel. Today's rising oil prices and the dwindling world supply of oil have made other fuels, such as ethanol, attractive alternatives. It has been shown that automobiles can operate, with minor alterations, on a 10% ethanol-gasoline mixture popularly known as gasohol. Wood has long been known as a potential source of glucose. Glucose may be obtained from wood following acid hydrolysis. In this research, it was found that saturating wood particles with HCl gas under pressure was an effective pretreatment before subjecting the wood to dilute acid hydrolysis. The pretreatment is necessary because of the tight lattice structure of cellulose, which inhibits dilute acid hydrolysis. HCl gas makes the cellulose more susceptible to hydrolysis and the glucose yield is doubled when dilute acid hydrolysis is preceded by HCl saturation at high pressure. The saturation was most effectively performed in a fluidized bed reactor, with pure HCl gas fluidizing equal volumes of ground wood and inert particles. The fluidized bed effectively dissipated the large amount of heat released upon HCl absorption into the wood. Batch reaction times of one hour at 314.7 p.s.i.a. gave glucose yields of 80% and xylose yields of 95% after dilute acid hydrolysis. A non-catalytic gas-solid reaction model, with gas diffusing through the solid limiting the reaction rate, was found to describe the HCl-wood reaction in the fluidized bed. HCl was found to form a stable adduct with the lignin residue in the wood, in a ratio of 3.33 moles per mole of lignin monomer. This resulted in a loss of 0.1453 lb. of HCl per pound of wood. The adduct was broken upon the addition of water. A process design and economic evaluation for a plant to produce 214 tons per day of glucose from air-dried ground Populus tristi gave an estimated glucose cost of 15.14 cents per pound. This would correspond to $2.54 per gallon of ethanol if the glucose were fermented. Key factors contributing to the cost of glucose production were unrecovered HCl, which contributed 5.70 cents per pound of glucose, and the cost of wood, which at $25 per ton contribute 4.17 cents per pound.

  6. Size-dependent structure of silver nanoparticles under high pressure

    SciTech Connect (OSTI)

    Koski, Kristie Jo

    2008-12-31

    Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.

  7. High-pressure gasification of Montana subbituminous coal

    SciTech Connect (OSTI)

    Goyal, A.; Bryan, B.; Rehmat, A.

    1991-01-01

    A data base for the fluidized-bed gasification of different coals at elevated pressures has been developed at the Institute of Gas Technology (IGT) with different ranks of coal at pressures up to 450 psig and at temperatures dictated by the individual coals. Adequate data have been obtained to characterize the effect of pressure on the gasification of Montana Rosebud subbituminous coal and North Dakota lignite. The results obtained with Montana Rosebud subbituminous coal are presented here. This program was funded by the Gas Research Institute. 9 refs., 10 figs., 3 tabs.

  8. High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems

    SciTech Connect (OSTI)

    Rodriguez, G.; Sandberg, R. L.; Lalone, B. M.; Marshall, B. R.; Grover, M.; Stevens, G. D.; Udd, E.

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  9. Materials for High-Pressure Fuel Injection Systems

    SciTech Connect (OSTI)

    Blau, P.; Shyam, A.; Hubbard, C.; Howe, J.; Trejo, R.; Yang, N.; Pollard, M.

    2011-09-30

    The high-level goal of this multi-year effort was to facilitate the Advanced Combustion Engine goal of 20% improvement (compared to 2009 baseline) of commercial engine efficiency by 2015. A sub-goal is to increase the reliability of diesel fuel injectors by investigating modelbased scenarios that cannot be achieved by empirical, trial and error methodologies alone. During this three-year project, ORNL developed the methodology to evaluate origins and to record the initiation and propagation of fatigue cracks emanating from holes that were electrodischarge machined (EDM), the method used to form spray holes in fuel injector tips. Both x-ray and neutron-based methods for measuring residual stress at four different research facilities were evaluated to determine which, if any, was most applicable to the fuel injector tip geometry. Owing to the shape and small volumes of material involved in the sack area, residual stress data could only be obtained in the walls of the nozzle a few millimeters back from the tip, and there was a hint of only a small compressive stress. This result was consistent with prior studies by Caterpillar. Residual stress studies were suspended after the second year, reserving the possibility of pursuing this in the future, if and when methodology suitable for injector sacks becomes available. The smooth specimen fatigue behavior of current fuel injector steel materials was evaluated and displayed a dual mode initiation behavior. At high stresses, cracks started at machining flaws in the surface; however, below a critical threshold stress of approximately 800 MPa, cracks initiated in the bulk microstructure, below the surface. This suggests that for the next generation for high-pressure fuel injector nozzles, it becomes increasingly important to control the machining and finishing processes, especially if the stress in the tip approaches or exceeds that threshold level. Fatigue tests were also conducted using EDM notches in the gage sections. Compared to the smooth specimens, EDM notching led to a severe reduction in total fatigue life. A reduction in fatigue life of nearly four orders of magnitude can occur at an EDM notch the approximate size of fuel injector spray holes. Consequently, the initiation and propagation behavior of cracks from small spray holes is relevant for generation of design quality data for the next generation diesel fuel injection devices. This is especially true since the current design methodologies usually rely on the less conservative smooth specimen fatigue testing results, and since different materials can have varying levels of notch fatigue resistance.

  10. Extracting strength from high pressure ramp-release experiments

    SciTech Connect (OSTI)

    Brown, J. L.; Alexander, C. S.; Asay, J. R.; Vogler, T. J.; Ding, J. L.

    2013-12-14

    Unloading from a plastically deformed state has long been recognized as a sensitive measure of a material's deviatoric response. In the case of a ramp compression and unload, time resolved particle velocity measurements of a sample/window interface may be used to gain insight into the sample material's strength. Unfortunately, measurements of this type are often highly perturbed by wave interactions associated with impedance mismatches. Additionally, wave attenuation, the finite pressure range over which the material elastically unloads, and rate effects further complicate the analysis. Here, we present a methodology that overcomes these shortcomings to accurately calculate a mean shear stress near peak compression for experiments of this type. A new interpretation of the self-consistent strength analysis is presented and then validated through the analysis of synthetic data sets on tantalum to 250 GPa. The synthetic analyses suggest that the calculated shear stresses are within 3% of the simulated values obtained using both rate-dependent and rate-independent constitutive models. Window effects are addressed by a new technique referred to as the transfer function approach, where numerical simulations are used to define a mapping to transform the experimental measurements to in situ velocities. The transfer function represents a robust methodology to account for complex wave interactions and a dramatic improvement over the incremental impedance matching methods traditionally used. The technique is validated using experiments performed on both lithium fluoride and tantalum ramp compressed to peak stresses of 10 and 15 GPa, respectively. In each case, various windows of different shock impedance are used to ensure consistency within the transfer function analysis. The data are found to be independent of the window used and in good agreement with previous results.

  11. Constant pressure high throughput membrane permeation testing system

    DOE Patents [OSTI]

    Albenze, Erik J.; Hopkinson, David P.; Luebke, David R.

    2014-09-02

    The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing cell in a plurality of membrane testing cells while a stream of retentate gas from each membrane testing cell is ported by a retentate multiport valve for sampling or venting, and a stream of permeate gas from each membrane testing cell is ported by a permeate multiport valve for sampling or venting. Back pressure regulators and mass flow controllers act to maintain substantially equivalent gas pressures and flow rates on each side of the planar membrane throughout a sampling cycle. A digital controller may be utilized to position the retentate and permeate multiport valves cyclically, allowing for gas sampling of different membrane cells over an extended period of time.

  12. Single Crystal Preparation for High-Pressure Experiments in the Diamond

    Office of Scientific and Technical Information (OSTI)

    Anvil Cell (Conference) | SciTech Connect Conference: Single Crystal Preparation for High-Pressure Experiments in the Diamond Anvil Cell Citation Details In-Document Search Title: Single Crystal Preparation for High-Pressure Experiments in the Diamond Anvil Cell Most research conducted in diamond anvil cells (DAC) is performed on polycrystalline samples. While data from polycrystalline samples are sufficient for determining the bulk properties, high-pressure experiments on single crystals

  13. DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting | Department of Energy Delivery High-Pressure Tanks and Analysis Project Review Meeting DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting On February 8-9, 2005, the Department of Energy held the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting at Argonne National Laboratory. The purpose of the meeting was to review the progress and plans of the R&D projects and to facilitate collaboration among researchers. The

  14. Device for testing closure disks at high rates of change of pressure

    DOE Patents [OSTI]

    Merten, C.W. Jr.

    1993-11-09

    A device is described for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston. 5 figures.

  15. DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project Review Meeting Agenda

    Broader source: Energy.gov [DOE]

    DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project Review Meeting Agenda, held February 8-9, 2005 by Argonne National Laboratory

  16. High pressure effects on the iron iron oxide and nickel nickel...

    Office of Scientific and Technical Information (OSTI)

    The results can be used to improve interpretation of high pressure experiments, specifically Fe-Ni exchange between metallic and oxide phases. Authors: Campbell, Andrew J ; ...

  17. In-situ elasticity measurement for the unquenchable high-pressure...

    Office of Scientific and Technical Information (OSTI)

    Title: In-situ elasticity measurement for the unquenchable high-pressure clinopyroxene phase: Implication for the upper mantle Authors: Kung, Jennifer ; Li, Baosheng ; Uchida, ...

  18. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators

    Broader source: Energy.gov [DOE]

    This tip sheet outlines the benefits of high-pressure boilers with backpressure turbine-generators as part of optimized steam systems.

  19. Phase transition and metallization of FeO at high pressures and...

    Office of Scientific and Technical Information (OSTI)

    Therefore its high pressure-temperature behavior, including its electronic structure, is essential to understanding the nature and evolution of Earth's deep interior. We performed ...

  20. An In-situ Tensile Test Apparatus for Polymers in High Pressure Hydrogen

    SciTech Connect (OSTI)

    Alvine, Kyle J.; Kafentzis, Tyler A.; Pitman, Stan G.; Johnson, Kenneth I.; Skorski, Daniel C.; Tucker, Joseph C.; Roosendaal, Timothy J.; Dahl, Michael E.

    2014-10-10

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex-situ measurements of mechanical properties problematic. Designing in-situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials like Nd. Here we detail the design and operation of a solenoid based in-situ tensile tester under high-pressure hydrogen environments up to 5,000 psi. Modulus data from high-density polyethylene (HDPE) samples tested under high-pressure hydrogen are also reported as compared to baseline measurements taken in air.

  1. An in situ tensile test apparatus for polymers in high pressure hydrogen

    SciTech Connect (OSTI)

    Alvine, K. J. Kafentzis, T. A.; Pitman, S. G.; Johnson, K. I.; Skorski, D.; Tucker, J. C.; Roosendaal, T. J.; Dahl, M. E.

    2014-10-15

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials such as Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up to 42 MPa (6000 psi). Modulus data from high-density polyethylene samples tested under high-pressure hydrogen at 35 MPa (5000 psi) are also reported as compared to baseline measurements taken in air.

  2. Raman scattering from superhard rhenium diboride under high pressure

    SciTech Connect (OSTI)

    Xie, Miao; Winkler, Björn; Mao, Zhu; Kaner, Richard B.; Tolbert, Sarah H. E-mail: tolbert@chem.ucla.edu; Kavner, Abby E-mail: tolbert@chem.ucla.edu; California NanoSystems Institute , University of California, Los Angeles, California 90095

    2014-01-06

    Lattice vibrational properties of superhard rhenium diboride (ReB{sub 2}) were examined up to 8 GPa in a diamond anvil cell using Raman spectroscopy techniques. Linear pressure coefficients and mode Grüneisen parameters are obtained. Good agreement is found between the experimental and theoretical calculated Grüneisen parameters. Examination of the calculated mode Grüneisen parameters reveals that both B-B and Re-B covalent bonds play a dominant role in supporting the applied load under pressure. A comparison of vibrations parallel and perpendicular to the c-axis indicates that bonds along the c-axis tend to take greater loads. Our results agree with observations of elastic lattice anisotropy obtained from both in situ X-ray diffraction measurements and ultrasonic resonance spectra.

  3. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    SciTech Connect (OSTI)

    Vohra, Yogesh, K.

    2009-10-28

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductors under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.

  4. High-temperature fiber optic cubic-zirconia pressure sensor - article no. 124402

    SciTech Connect (OSTI)

    Peng, W.; Pickrell, G.R.; Wang, A.B.

    2005-12-15

    There is a critical need for pressure sensors that can operate reliably at high temperatures in many industrial segments such as in the combustion section of gas turbine engines for both transportation and power generation, coal gasifiers, coal fired boilers, etc. Optical-based sensors are particularly attractive for the measurement of a wide variety of physical and chemical parameters in high-temperature and high-pressure industrial environments due to their small size and immunity to electromagnetic interference. A fiber optic pressure sensor utilizing single-crystal cubic zirconia as the sensing element is reported. The pressure response of this sensor has been measured at temperatures up to 1000{sup o}C. Additional experimental results show that cubic zirconia could be used for pressure sensing at temperatures over 1000{sup o}C. This study demonstrates the feasibility of using a novel cubic-zirconia sensor for pressure measurement at high temperatures.

  5. Au-Ag Alloy Static High Pressure EOS measurements: FY09 summary of results

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Au-Ag Alloy Static High Pressure EOS measurements: FY09 summary of results Citation Details In-Document Search Title: Au-Ag Alloy Static High Pressure EOS measurements: FY09 summary of results Static high-pressure measurements of the equation of state of a Gold-Silver alloy (23.5 wt-% Ag) at room temperature were performed up to a pressure of approximately 100 GPA (1 megabar). Measurements were made using an energy-dispersive x-ray

  6. FY05 LDRD Final Report Mapping Phonons at High-pressure (Technical Report)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Technical Report: FY05 LDRD Final Report Mapping Phonons at High-pressure Citation Details In-Document Search Title: FY05 LDRD Final Report Mapping Phonons at High-pressure In order to shed light on the intriguing, and not yet fully understood fcc-isostructural {gamma} {yields} {alpha} transition in cerium, we have begun an experimental program aimed at the determination of the pressure evolution of the transverse acoustic (TA) and longitudinal acoustic (LA) phonon

  7. High-temperature, high-pressure bonding of nested tubular metallic components

    DOE Patents [OSTI]

    Quinby, Thomas C. (Kingston, TN)

    1980-01-01

    This invention is a tool for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  8. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    DOE Patents [OSTI]

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  9. Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump

    DOE Patents [OSTI]

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

  10. HIGH-PRESSURE SOLVENT EXTRACTION OF METHANE FROM GEOPRESSURED BRINES:

    Office of Scientific and Technical Information (OSTI)

    PRESSURE SOLVENT EXTRACTION OF METHANE FROM GEOPRESSURED BRINES: TECHNICAL EVALUATION AND COST ANALYSIS R. Quong H. H. Otsuki F. E. Locke July 1981 This is an informal report intended primarily for internal or limited extcrual dirtribdk.. 1Lc opinions and condusions stated are tbose of the antbor and m y or may m o t be tbosc of tbe Laboratory. Work performed under the ampices of the U S . Department of Elnrgy by tbe Lawrence Livermore Laboratory under Cwbsct W-7405-Er498. 7 DISTRIBUTIUN OF THIS

  11. Development and utilization of a coiled tubing equipment package for work in high pressure wells

    SciTech Connect (OSTI)

    Adrichem, W.P. van; Gordon, D.G.; Newlands, D.J.

    1995-12-31

    Cleanouts of deep, high pressure, high temperature gas wells are a common operation in South Texas. Until recently, these cleanouts required the use of snubbing units due to the high pressures encountered. This resulted in time consuming (7--12 days) and thus expensive operations. Because of this expense, efforts have been made to extend the application of coiled tubing (CT) to operations where wellhead pressures approach 10,000 psi. Testing of a specially equipped 1-1/4 inch CT unit in conditions simulating a 10,000 psi South Texas well cleanout proved that the use of a CT unit was a viable alternative to snubbing operations. Since then, some 50 high pressure cleanouts have been successfully performed at an average cost saving of 50% while taking 1--3 days to complete. This paper will focus on the operating parameters, the design, the testing and the field implementation of a high pressure CT unit.

  12. Phase Diagram and Equation of State of Magnesium to High Pressures...

    Office of Scientific and Technical Information (OSTI)

    Phase Diagram and Equation of State of Magnesium to High Pressures and High Temperatures Citation Details In-Document Search Title: Phase Diagram and Equation of State of Magnesium ...

  13. X-ray imaging for studying behavior of liquids at high pressures...

    Office of Scientific and Technical Information (OSTI)

    X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press Citation Details In-Document Search Title: X-ray imaging for ...

  14. Sealed rotors for in situ high temperature high pressure MAS NMR

    SciTech Connect (OSTI)

    Hu, Jian Z.; Hu, Mary Y.; Zhao, Zhenchao; Xu, Souchang; Vjunov, Aleksei; Shi, Hui; Camaioni, Donald M.; Peden, Charles H. F.; Lercher, Johannes A.

    2015-07-06

    Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization, a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.

  15. APPLICATION OF CERAMICS TO HIGH PRESSURE FUEL SYSTEMS

    SciTech Connect (OSTI)

    Mandler, Jr., William F.

    2000-08-20

    Diesel fuel systems are facing increased demands as engines with reduced emissions are developed. Injection pressures have increased to provide finer atomization of fuel for more efficient combustion, Figure 1. This increases the mechanical loads on the system and requires tighter clearances between plungers and bores to prevent leakage. At the same time, fuel lubricity has decreased as a byproduct of reducing the sulfur levels in fuel. Contamination of fuel by water and debris is an ever-present problem. For oil-lubricated fuel system components, increased soot loading in the oil results in increased wear rates. Additionally, engine manufacturers are lengthening warranty periods for engines and systems. This combination of factors requires the development of new materials to counteract the harsher tribological environment.

  16. Phase relations in the Fe-FeSi system at high pressures and temperatures

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Phase relations in the Fe-FeSi system at high pressures and temperatures Citation Details In-Document Search Title: Phase relations in the Fe-FeSi system at high pressures and temperatures The Earth's core is comprised mostly of iron and nickel, but it also contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is important to understand the high pressure, high temperature properties

  17. High Pressure PEM Electrolysis: Status, Key Issues, and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drawback is high back diffusion. Similar faradaic losses in PEM fuel cells and ... durability testingvalidation Full optimization studies Hydrogen safety codes and ...

  18. High pressure effects on the iron iron oxide and nickel nickel oxide oxygen

    Office of Scientific and Technical Information (OSTI)

    fugacity buffers (Journal Article) | SciTech Connect High pressure effects on the iron iron oxide and nickel nickel oxide oxygen fugacity buffers Citation Details In-Document Search Title: High pressure effects on the iron iron oxide and nickel nickel oxide oxygen fugacity buffers The chemical potential of oxygen in natural and experimental samples is commonly reported relative to a specific oxygen fugacity (fO{sub 2}) buffer. These buffers are precisely known at 1 bar, but under high

  19. Very low pressure high power impulse triggered magnetron sputtering...

    Office of Scientific and Technical Information (OSTI)

    Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same ...

  20. Development test report for the high pressure water jet system nozzles

    SciTech Connect (OSTI)

    Takasumi, D.S.

    1995-09-28

    The high pressure water jet nozzle tests were conducted to identify optimum water pressure, water flow rate, nozzle orifice size and fixture configuration needed to effectively decontaminate empty fuel storage canisters in KE-Basin. This report gives the tests results and recommendations from the these tests.

  1. Phase transition and metallization of FeO at high pressures and

    Office of Scientific and Technical Information (OSTI)

    temperatures (Journal Article) | SciTech Connect Journal Article: Phase transition and metallization of FeO at high pressures and temperatures Citation Details In-Document Search Title: Phase transition and metallization of FeO at high pressures and temperatures Wuestite, Fe{sub 1-x}O, is an important component in the mineralogy of Earth's lower mantle and may also be a component of the core. Therefore its high pressure-temperature behavior, including its electronic structure, is essential

  2. High-pressure X-ray diffraction, Raman, and computational studies of MgCl2

    Office of Scientific and Technical Information (OSTI)

    up to 1 Mbar: Extensive pressure stability of the B-MgCl2 layered structure. (Conference) | SciTech Connect X-ray diffraction, Raman, and computational studies of MgCl2 up to 1 Mbar: Extensive pressure stability of the B-MgCl2 layered structure. Citation Details In-Document Search Title: High-pressure X-ray diffraction, Raman, and computational studies of MgCl2 up to 1 Mbar: Extensive pressure stability of the B-MgCl2 layered structure. Authors: Stavrou, E ; Zaug, J M ; Bastea, S ; Kuo, I W

  3. Developments in time-resolved high pressure x-ray diffraction using rapid compression and decompression

    SciTech Connect (OSTI)

    Smith, Jesse S.; Sinogeikin, Stanislav V.; Lin, Chuanlong; Rod, Eric; Bai, Ligang; Shen, Guoyin

    2015-07-15

    Complementary advances in high pressure research apparatus and techniques make it possible to carry out time-resolved high pressure research using what would customarily be considered static high pressure apparatus. This work specifically explores time-resolved high pressure x-ray diffraction with rapid compression and/or decompression of a sample in a diamond anvil cell. Key aspects of the synchrotron beamline and ancillary equipment are presented, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.

  4. Microstructure evolution in solution treated Ti15Mo alloy processed by high pressure torsion

    SciTech Connect (OSTI)

    Jane?ek, Milo; ?ek, Jakub; Strsk, Josef; Vclavov, Kristna; Hruka, Petr; Polyakova, Veronika; Gatina, Svetlana; Semenova, Irina

    2014-12-15

    Microstructure evolution and mechanical properties of ultra-fine grained Ti15Mo alloy processed by high pressure torsion were investigated. High pressure torsion straining resulted in strong grain refinement as-observed by transmission electron microscopy. Microhardness and light microscopy showed two distinct regions (i) a central region with radial material flow and low microhardness (340 HV) and (ii) a peripheral region with rotational material flow and high microhardness (430 HV). Positron annihilation spectroscopy showed that the only detectable defects in the material are dislocations, whose density increases with the radial distance and the number of high pressure torsion revolutions. The local chemical environment around defects does not differ significantly from the average composition. - Highlights: Beta-Ti alloy Ti15Mo was processed by high pressure torsion (HPT). Lateral inhomogeneity of the microstructure and microhardness was found. Dislocations are the only lattice defects detectable by positron annihilation. Molybdenum is not preferentially segregated along dislocation cores.

  5. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-11-07

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less

  6. High-pressure three-phase fluidization: Hydrodynamics and heat transfer

    SciTech Connect (OSTI)

    Luo, X.; Jiang, P.; Fan, L.S.

    1997-10-01

    High-pressure operations are common in industrial applications of gas-liquid-solid fluidized-bed reactors for resid hydrotreating, Fischer-Tropsch synthesis, coal methanation, methanol synthesis, polymerization, and other reactions. The phase holdups and the heat-transfer behavior were studied experimentally in three-phase fluidized beds over a pressure range of 0.1--15.6 MPa. Bubble characteristics in the bed are examined by direct flow visualization. Pressure effects on the bubble coalescence and breakup are analyzed mechanistically. The study indicates that the pressure affects the hydrodynamics and heat-transfer properties of a three-phase fluidized bed significantly. The average bubble size decreases and the bubble-size distribution becomes narrower with an increase in pressure. The bubble-size reduction leads to an increase in the transition gas velocity from the dispersed bubble regime to the coalesced bubble regime, an increase in the gas holdup, and a decrease in the liquid and solids holdups. The pressure effect is insignificant above 6 MPa. The heat-transfer coefficient between an immersed surface and the bed increases to a maximum at pressure 6--8 MPa and then decreases with an increase in pressure at a given gas and liquid flow rate. This variation is attributed to the pressure effects on phase holdups and physical properties of the gas and liquid phases. A mechanistic analysis revealed that the major heat-transfer resistance in high-pressure three-phase fluidized beds resides in a liquid film surrounding the heat-0transfer surface. An empirical correlation is proposed to predict the heat-transfer coefficient under high-pressure conditions.

  7. DEVELOPMENT OF ASME SECTION X CODE RULES FOR HIGH PRESSURE COMPOSITE HYDROGEN PRESSURE VESSELS WITH NON-LOAD SHARING LINERS

    SciTech Connect (OSTI)

    Rawls, G.; Newhouse, N.; Rana, M.; Shelley, B.; Gorman, M.

    2010-04-13

    The Boiler and Pressure Vessel Project Team on Hydrogen Tanks was formed in 2004 to develop Code rules to address the various needs that had been identified for the design and construction of up to 15000 psi hydrogen storage vessel. One of these needs was the development of Code rules for high pressure composite vessels with non-load sharing liners for stationary applications. In 2009, ASME approved new Appendix 8, for Section X Code which contains the rules for these vessels. These vessels are designated as Class III vessels with design pressure ranging from 20.7 MPa (3,000 ps)i to 103.4 MPa (15,000 psi) and maximum allowable outside liner diameter of 2.54 m (100 inches). The maximum design life of these vessels is limited to 20 years. Design, fabrication, and examination requirements have been specified, included Acoustic Emission testing at time of manufacture. The Code rules include the design qualification testing of prototype vessels. Qualification includes proof, expansion, burst, cyclic fatigue, creep, flaw, permeability, torque, penetration, and environmental testing.

  8. Comparison of the high-pressure behavior of the cerium oxides...

    Office of Scientific and Technical Information (OSTI)

    behavior of the cerium oxides Cesubscript 2Osubscript 3 and CeOsubscript 2 Citation Details In-Document Search Title: Comparison of the high-pressure behavior of the ...

  9. High Pressure Melting Curve of TIn (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    High Pressure Melting Curve of TIn Citation Details ... OSTI Identifier: 1124823 Report Number(s): LLNL-JRNL-522418 DOE Contract Number: W-7405-ENG-48 Resource Type: Journal ...

  10. Photoluminescence Studies of Y2O3:Eu3+ Under High Pressure (Journal...

    Office of Scientific and Technical Information (OSTI)

    Photoluminescence Studies of Y2O3:Eu3+ Under High Pressure Citation ... Publication Date: 2014-01-14 OSTI Identifier: 1162799 Report Number(s): BNL--106745-2014-JA Journal ID: ISSN ...

  11. Implementation of micro-ball nanodiamond anvils for high-pressure...

    Office of Scientific and Technical Information (OSTI)

    Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6Mbar Citation Details In-Document Search Title: Implementation of micro-ball nanodiamond anvils for ...

  12. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on installing high-pressure boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  13. Effects of High Shock Pressures and Pore Morphology on Hot Spot...

    Office of Scientific and Technical Information (OSTI)

    Title: Effects of High Shock Pressures and Pore Morphology on Hot Spot Mechanisms in HMX Authors: Springer, H K ; Tarver, C M ; Bastea, S Publication Date: 2015-08-20 OSTI ...

  14. Deformation twinning of a silver nanocrystal under high pressure. Supplementary materials

    SciTech Connect (OSTI)

    Huang, X. J.; Yang, W. G.; Harder, R.; Sun, Y.; Lu, M.; Chu, Y. S.; Robinson, I. K.; Mao, H. K.

    2015-10-20

    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials microscopic morphology and alter their properties. Likewise, understanding a crystals response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We also observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.

  15. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators - Steam Tip Sheet #22

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on installing high-pressure boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  16. High-pressure experimental studies on geo-liquids using synchrotron...

    Office of Scientific and Technical Information (OSTI)

    studies on geo-liquids using synchrotron radiation at the Advanced Photon Source Citation Details In-Document Search Title: High-pressure experimental studies on geo-liquids ...

  17. High-pressure viscosity of liquid Fe and FeS revisited by falling...

    Office of Scientific and Technical Information (OSTI)

    High-pressure viscosity of liquid Fe and FeS revisited by falling sphere viscometry using ultrafast X-ray imaging Citation Details In-Document Search This content will become ...

  18. Au-Ag Alloy Static High Pressure EOS measurements: FY09 summary...

    Office of Scientific and Technical Information (OSTI)

    Static high-pressure measurements of the equation of state of a Gold-Silver alloy (23.5 ... EOS curves of silver and gold, taken from the literature, are shown for comparison. We fit ...

  19. Deformation twinning of a silver nanocrystal under high pressure. Supplementary materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, X. J.; Yang, W. G.; Harder, R.; Sun, Y.; Lu, M.; Chu, Y. S.; Robinson, I. K.; Mao, H. K.

    2015-10-20

    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials’ microscopic morphology and alter their properties. Likewise, understanding a crystal’s response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We also observed amore » continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.« less

  20. High-pressure X-ray diffraction, Raman, and computational studies...

    Office of Scientific and Technical Information (OSTI)

    X-ray diffraction, Raman, and computational studies of MgCl2 up to 1 Mbar: Extensive ... Citation Details In-Document Search Title: High-pressure X-ray diffraction, Raman, and ...

  1. Comparison of the high-pressure behavior of the cerium oxides...

    Office of Scientific and Technical Information (OSTI)

    We posit from this data that the 4f electrons do not drive the volume collapse ofmore CeO2 from the high-symmetry, low-pressure fluorite structure to the lower-symmetry ...

  2. High-Pressure Multi-Mbar Conductivity Experiments on Hydrogen: The Quest

    Office of Scientific and Technical Information (OSTI)

    for Solid Metallic Hydrogen (Technical Report) | SciTech Connect High-Pressure Multi-Mbar Conductivity Experiments on Hydrogen: The Quest for Solid Metallic Hydrogen Citation Details In-Document Search Title: High-Pressure Multi-Mbar Conductivity Experiments on Hydrogen: The Quest for Solid Metallic Hydrogen Ultra-dense hydrogen has long been the subject of intense experimental and theoretical research due to the fascinating physics which arises from this supposedly simple system. The

  3. XAS and XMCD spectroscopies to study matter at high pressure: Probing the

    Office of Scientific and Technical Information (OSTI)

    correlation between structure and magnetism in the 3d metals (Journal Article) | SciTech Connect XAS and XMCD spectroscopies to study matter at high pressure: Probing the correlation between structure and magnetism in the 3d metals Citation Details In-Document Search Title: XAS and XMCD spectroscopies to study matter at high pressure: Probing the correlation between structure and magnetism in the 3d metals Authors: Torchio, R. ; Mathon, O. ; Pascarelli, S. [1] + Show Author Affiliations

  4. Vehicle having hydraulic and power steering systems using a single high pressure pump

    DOE Patents [OSTI]

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-06-22

    A vehicle comprises a plurality of wheels attached to a vehicle housing. Also attached to the vehicle housing is a power steering system, including a fluid flow circuit, which is operably coupled to a number of the wheels. An internal combustion engine attached to the vehicle housing is connected to a hydraulically actuated system that includes a high pressure pump. An outlet of the high pressure pump is in fluid communication with the fluid flow circuit.

  5. Equations of state in the Fe-FeSi system at high pressures and temperatures

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Equations of state in the Fe-FeSi system at high pressures and temperatures Citation Details In-Document Search Title: Equations of state in the Fe-FeSi system at high pressures and temperatures Authors: Fischer, Rebecca A. ; Campbell, Andrew J. ; Caracas, Razvan ; Reaman, Daniel M. ; Heinz, Dion L. ; Dera, Przemyslaw ; Prakapenka, Vitali B. [1] ; UC) [2] ; Claude-Bernard) [2] + Show Author Affiliations

  6. High-pressure behavior of FeOCl (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: High-pressure behavior of FeOCl Citation Details In-Document Search Title: High-pressure behavior of FeOCl Authors: Bykov, Maxium ; Bykova, Elena ; van Smaalen, Sander ; Dubrovinsky, Leonid ; McCammon, Catherine ; Prakapenka, Vitali ; Liermann, Hanns-Peter [1] ; Bayreuth) [2] ; UC) [2] + Show Author Affiliations (DESY) ( Publication Date: 2014-08-19 OSTI Identifier: 1150123 Resource Type: Journal Article Resource Relation: Journal Name: Phys. Rev.

  7. High-pressure experimental studies on geo-liquids using synchrotron

    Office of Scientific and Technical Information (OSTI)

    radiation at the Advanced Photon Source (Journal Article) | SciTech Connect Journal Article: High-pressure experimental studies on geo-liquids using synchrotron radiation at the Advanced Photon Source Citation Details In-Document Search Title: High-pressure experimental studies on geo-liquids using synchrotron radiation at the Advanced Photon Source Authors: Wang, Yanbin ; Shen, Guoyin [1] + Show Author Affiliations (UC) Publication Date: 2015-02-05 OSTI Identifier: 1168486 Resource Type:

  8. Implementation of micro-ball nanodiamond anvils for high-pressure studies

    Office of Scientific and Technical Information (OSTI)

    above 6Mbar (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6Mbar Citation Details In-Document Search Title: Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6Mbar Authors: Dubrovinsky, Leonid ; Dubrovinskaia, Natalia ; Prakapenka, Vitali B. ; Abakumov, Artem M. [1] ; Bayreuth) [2] ; UC) [2] + Show Author Affiliations (Antwerp) ( Publication Date:

  9. In-situ elasticity measurement for the unquenchable high-pressure

    Office of Scientific and Technical Information (OSTI)

    clinopyroxene phase: Implication for the upper mantle (Journal Article) | SciTech Connect Journal Article: In-situ elasticity measurement for the unquenchable high-pressure clinopyroxene phase: Implication for the upper mantle Citation Details In-Document Search Title: In-situ elasticity measurement for the unquenchable high-pressure clinopyroxene phase: Implication for the upper mantle Authors: Kung, Jennifer ; Li, Baosheng ; Uchida, Takeyuki ; Wang, Yanbin [1] ; SBU) [2] + Show Author

  10. Double Shock Experiments and Reactive Flow Modeling of High Pressure LX-17

    Office of Scientific and Technical Information (OSTI)

    Detonation Reaction Product States (Conference) | SciTech Connect Double Shock Experiments and Reactive Flow Modeling of High Pressure LX-17 Detonation Reaction Product States Citation Details In-Document Search Title: Double Shock Experiments and Reactive Flow Modeling of High Pressure LX-17 Detonation Reaction Product States Authors: Vandersall, K S ; Garcia, F ; Fried, L E ; Tarver, C M Publication Date: 2014-06-24 OSTI Identifier: 1169870 Report Number(s): LLNL-CONF-656252

  11. Prediction of new high pressure structural sequence in thorium carbide: A

    Office of Scientific and Technical Information (OSTI)

    first principles study (Journal Article) | SciTech Connect Prediction of new high pressure structural sequence in thorium carbide: A first principles study Citation Details In-Document Search Title: Prediction of new high pressure structural sequence in thorium carbide: A first principles study In the present work, we report the detailed electronic band structure calculations on thorium monocarbide. The comparison of enthalpies, derived for various phases using evolutionary structure search

  12. Ultrasound Measurements of Cerium under High Pressure in a Large Volume

    Office of Scientific and Technical Information (OSTI)

    Press Combined with Energy Dispersive X-ray Scattering and Radiography (Journal Article) | SciTech Connect Ultrasound Measurements of Cerium under High Pressure in a Large Volume Press Combined with Energy Dispersive X-ray Scattering and Radiography Citation Details In-Document Search Title: Ultrasound Measurements of Cerium under High Pressure in a Large Volume Press Combined with Energy Dispersive X-ray Scattering and Radiography Authors: Lipp, M J ; Kono, Y ; Jenei, Z ; Cynn, H ;

  13. Phase transitions in delafossite CuLaO{sub 2} at high pressures

    SciTech Connect (OSTI)

    Salke, Nilesh P.; Rao, Rekha Gupta, M. K.; Mittal, R.; Garg, Alka B.; Achary, S. N.; Tyagi, A. K.

    2014-04-07

    Structural stability of a transparent conducting oxide CuLaO{sub 2} at high pressures is investigated using in-situ Raman spectroscopy, electrical resistance, and x-ray diffraction techniques. The present Raman investigations indicate a sequence of structural phase transitions at 1.8?GPa and 7?GPa. The compound remains in the first high pressure phase when pressure is released. Electrical resistance measurements carried out at high pressures confirm the second phase transition. These observations are further supported by powder x-ray diffraction at high pressures which also showed that a-axis is more compressible than c-axis in this compound. Fitting the pressure dependence of unit cell volume to 3{sup rd} order Birch-Murnaghan equation of state, zero pressure bulk modulus of CuLaO{sub 2} is determined to be 154(25) GPa. The vibrational properties in the ambient delafossite phase of CuLaO{sub 2} are investigated using ab-initio calculations of phonon frequencies to complement the Raman spectroscopic measurements. Temperature dependence of the Raman modes of CuLaO{sub 2} is investigated to estimate the anharmonicity of Raman modes.

  14. Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application

    SciTech Connect (OSTI)

    Sadeghi, J., E-mail: j-sadeghi@sbu.ac.ir; Chenari, Z.; Ziaee, F. [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Latifi, H., E-mail: latifi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Department of Physics, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Santos, J. L., E-mail: josantos@fc.up.pt [INESC PortoInstituto de Engenharia de Sistemas e Computadores do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Departamento de Fsica, da Faculdade de Cincias, da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2014-02-17

    Pressure fiber sensors play an important role in downhole high pressure measurements to withstand long term operation. The purpose of this paper is to present an application of hollow core photonic crystal fiber (HC-PCF) as a high pressure sensor head for downhole application based on dispersion variation. We used a high pressure stainless steel unit to exert pressure on the sensor. The experimental results show that different wavelengths based on sagnac loop interferometer have additive sensitivities from 5??10{sup ?5}?nm/psi at 1480?nm to 1.3??10{sup ?3}?nm/psi at 1680?nm. We developed a simulation to understand the reason for difference in sensitivity of wavelengths and also the relationship between deformation of HC-PCF and dispersion variation under pressure. For this purpose, by using the finite element method, we investigated the effect of structural variation of HC-PCF on spectral transformation of two linear polarizations under 1000?psi pressure. The simulation and experimental results show exponential decay behavior of dispersion variation from ?3.4??10{sup ?6} 1/psi to ?1.3??10{sup ?6} 1/psi and from ?5??10{sup ?6} 1/psi to ?1.8??10{sup ?6} 1/psi, respectively, which were in a good accordance with each other.

  15. LNG Vehicle High-Pressure Fuel System and ''Cold Energy'' Utilization

    SciTech Connect (OSTI)

    powers,Charles A.; Derbidge, T. Craig

    2001-03-27

    A high-pressure fuel system for LNG vehicles with direct-injection natural gas engines has been developed and demonstrated on a heavy-duty truck. A new concept for utilizing the ''cold energy'' associated with LNG vehicles to generate mechanical power to drive auxiliary equipment (such as high-pressure fuel pumps) has also been developed and demonstrated in the laboratory. The high-pressure LNG fuel system development included the design and testing of a new type of cryogenic pump utilizes multiple chambers and other features to condense moderate quantities of sucked vapor and discharge supercritical LNG at 3,000 to 4,000 psi. The pump was demonstrated on a Class 8 truck with a Westport high-pressure direct-injection Cummins ISX engine. A concept that utilizes LNG's ''cold energy'' to drive a high-pressure fuel pump without engine attachments or power consumption was developed. Ethylene is boiled and superheated by the engine coolant, and it is cooled and condensed by rejecting h eat to the LNG. Power is extracted in a full-admission blowdown process, and part of this power is applied to pump the ethylene liquid to the boiler pressure. Tests demonstrated a net power output of 1.1. hp at 1.9 Lbm/min of LNG flow, which is adequate to isentropically pump the LNG to approximately 3,400 psi..

  16. Development of a High Pressure/High Temperature Down-hole Turbine Generator

    SciTech Connect (OSTI)

    Ben Plamp

    2008-06-30

    As oil & natural gas deposits become more difficult to obtain by conventional means, wells must extend to deeper more heat-intensive environments. The technology of the drilling equipment required to reach these depths has exceeded the availability of electrical power sources needed to operate these tools. Historically, logging while drilling (LWD) and measure while drilling (MWD) devices utilized a wireline to supply power and communication from the operator to the tool. Lithium ion batteries were used in scenarios where a wireline was not an option, as it complicated operations. In current downhole applications, lithium ion battery (LIB) packs are the primary source for electrical power. LIB technology has been proven to supply reliable downhole power at temperatures up to 175 °C. Many of the deeper well s reach ambient temperatures above 200 °C, creating an environment too harsh for current LIB technology. Other downfalls of LIB technology are cost, limitations on charge cycles, disposal issues and possible safety hazards including explosions and fires. Downhole power generation can also be achieved by utilizing drilling fluid flow and converting it to rotational motion. This rotational motion can be harnessed to spin magnets around a series of windings to produce power proportional to the rpm experienced by the driven assembly. These generators are, in most instances, driven by turbine blades or moyno-based drilling fluid pumps. To date, no commercially available downhole power generators are capable of operating at ambient temperatures of 250 °C. A downhole power g enerator capable of operation in a 250 °C and 20,000 psi ambient environment will be an absolute necessity in the future. Dexter Magnetic Technologies’ High-Pressure High-Temperature (HPHT) Downhole Turbine Generator is capable of operating at 250 °C and 20, 000 psi, but has not been tested in an actual drilling application. The technology exists, but to date no company has been willing to test the tool.

  17. Valve assembly for use with high temperature and high pressure fluids

    DOE Patents [OSTI]

    De Feo, Angelo

    1982-01-01

    The valve assembly for use with high temperature and high pressure fluids has inner and outer spaced shells and a valve actuator support of inner and outer spaced members which are connected at their end portions to the inner and outer shells, respectively, to extend substantially normal to the longitudinal axis of the inner shell. A layer of resilient heat insulating material covers the outer surfaces of the inner shell and the inner actuator support member and is of a thickness to only occupy part of the spaces between the inner and outer shells and inner and outer actuator support members. The remaining portion of the space between the inner and outer shells and the space between the inner and outer members is substantially filled with a body of castable, rigid refractory material. A movable valve member is disposed in the inner shell. A valve actuator assembly is supported in the valve actuator support to extend into the inner shell for connection with the movable valve member for movement of the movable valve member to positions from a fully open to a fully closed position to control flow of fluid through the inner shell. An anchor mneans is disposed adjacent opposite sides of the axis of the valve actuator support and attached to the inner shell so that relative radial movement between the inner and outer shell is permitted by the layer of resilient heat insulating material and relative longitudinal movement of the inner shell to the outer shell is permitted in opposite directions from the anchor means to thereby maintain the functional integrity of the movable valve member by providing an area of the inner shell surrounding the movable valve member longitdinally stationary, but at the same time allowing radial movement.

  18. Development of design criteria for a high pressure vessel construction code

    SciTech Connect (OSTI)

    Mraz, G.J.

    1987-05-01

    Out of concern for public safety, most legal jurisdictions now require unfired pressure vessel construction to comply with the ASME Boiler and Pressure Vessel Code. Because the present two divisions of Section VIII of that Code are not well suited for high pressure design, a new division is needed. The currently anticipated main design criteria of the proposed division are full plastic flow or full overstrain pressure, stress intensity in the bore, fatigue, and fracture mechanics. The rules are expected to allow better utilization of high strength steels already included in the present Section VIII. At the same time materials of even higher strength are introduced. The benefits of compressive prestress are recognized. Construction methods allowing it's achievement, such as autofrettage, shrink fitting and wire winding are included. Reasons for selection of the criteria are given.

  19. Systematic prediction of high-pressure melting curves of transition metals

    SciTech Connect (OSTI)

    Hieu, Ho Khac, E-mail: hieuhk@duytan.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2014-10-28

    The pressure effects on melting temperatures of transition metals have been studied based on the combination of the modified Lindemann criterion with statistical moment method in quantum statistical mechanics. Numerical calculations have been performed for five transition metals including Cu, Pd, Pt, Ni, and Mn up to pressure 100?GPa. Our results are in good and reasonable agreements with available experimental data. This approach gives us a relatively simple method for qualitatively calculating high-pressure melting temperature. Moreover, it can be used to verify future experimental and theoretical works. This research proposes the potential of the combination of statistical moment method and the modified Lindemann criterion on predicting high-pressure melting of materials.

  20. Analyses of High Pressure Molten Debris Dispersion for a Typical PWR Plant

    SciTech Connect (OSTI)

    Osamu KAawabata; Mitsuhiro Kajimoto [Japan Nuclear Energy Safety Organization (Japan)

    2006-07-01

    In such severe core damage accident, as small LOCAs with no ECCS injection or station blackout, in which the primary reactor system remains pressurized during core melt down, certain modes of vessel failure would lead to a high pressure ejection of molten core material. In case of a local failure of the lower head, the molten materials would initially be ejected into the cavity beneath the pressure vessel may subsequently be swept out from the cavity to the containment atmosphere and it might cause the early containment failure by direct contact of containment steel liner with core debris. When the contribution of a high-pressure scenario in a core damage frequency increases, early conditional containment failure probability may become large. In the present study, the verification analysis of PHOENICS code and the combining analysis with MELCOR and PHOENICS codes were performed to examine the debris dispersion behavior during high pressure melt ejection. The PHOENICS code which can treat thermal hydraulic phenomena, was applied to the verification analysis for melt dispersion experiments conducted by the Purdue university in the United States. A low pressure melt dispersion experiment at initial pressure 1.4 MPas used metal woods as a molten material was simulated. The analytical results with molten debris dispersion mostly from the model reactor cavity compartment showed an agreement with the experimental result, but the analysis result of a volumetric median diameter of the airborne debris droplets was estimated about 1.5 times of the experimental result. The injection rates of molten debris and steam after reactor vessel failure for a typical PWR plant were analyzed using the MELCOR code. In addition, PHOENICS was applied to a 3D analysis for debris dispersion with low primary pressure at the reactor vessel failure. The analysis result showed that almost all the molten debris were dispersed from the reactor vessel cavity compartment by about 45 seconds after the start of steam release. (authors)

  1. High-resolution thermal expansion measurements under helium-gas pressure

    SciTech Connect (OSTI)

    Manna, Rudra Sekhar; Wolf, Bernd; Souza, Mariano de; Lang, Michael

    2012-08-15

    We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4 K Less-Than-Or-Slanted-Equal-To T Less-Than-Or-Slanted-Equal-To 300 K and hydrostatic pressure P Less-Than-Or-Slanted-Equal-To 250 MPa. Helium ({sup 4}He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P Asymptotically-Equal-To 0.1 MPa (ambient pressure) and 104 MPa on a single crystal of azurite, Cu{sub 3}(CO{sub 3}){sub 2}(OH){sub 2}, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system.

  2. Effect of high pressure homogenization on aqueous phase solvent extraction of lipids from Nannochloris Oculata microalgae

    SciTech Connect (OSTI)

    Samarasinghe, Nalin; Fernando, Sandun; Faulkner, William B.

    2012-12-01

    The ability to extract lipids from high-moisture Nannochloris Oculata algal biomass disrupted with high pressure homogenization was investigated. During the first phase, the effect of high pressure homogenization (system pressure and number of passes) on disrupting aqueous algae (of different concentrations and degree of stress) was investigated. Secondly, the effect of degree of cell wall disruption on the amount of lipids extracted with three solvents, namely: hexane, dichloromethane and chloroform, were compared. Studies reveled that high pressure homogenization is effective on cell disruption while the amount of system pressure being the most significant factor affecting the degree of cell breakage. Although the number of passes had some impact, the level of disruption seemed to level-off after a certain number of passes. The study revealed that slightly polar solvents (such as chloroform and dichloromethane) performed better in aqueous-phase lipid extractions as compared to hexane. Also, it was revealed that it was not necessary to disrupt the algal cells completely to achieve appreciable levels of lipid yields. In fact, conditions that exerted only 20% of the cells to completely disrupt, allowed sufficient damage to liberate most of the lipids contained in the remainder of the cells.

  3. Revisit of the relationship between the elastic properties and sound velocities at high pressures

    SciTech Connect (OSTI)

    Wang, Chenju; Yan, Xiaozhen; Xiang, Shikai Chen, Haiyan; Gu, Jianbing; Yu, Yin; Kuang, Xiaoyu

    2014-09-14

    The second-order elastic constants and stress-strain coefficients are defined, respectively, as the second derivatives of the total energy and the first derivative of the stress with respect to strain. Since the Lagrangian and infinitesimal strain are commonly used in the two definitions above, the second-order elastic constants and stress-strain coefficients are separated into two categories, respectively. In general, any of the four physical quantities is employed to characterize the elastic properties of materials without differentiation. Nevertheless, differences may exist among them at non-zero pressures, especially high pressures. Having explored the confusing issue systemically in the present work, we find that the four quantities are indeed different from each other at high pressures and these differences depend on the initial stress applied on materials. Moreover, the various relations between the four quantities depicting elastic properties of materials and high-pressure sound velocities are also derived from the elastic wave equations. As examples, we calculated the high-pressure sound velocities of cubic tantalum and hexagonal rhenium using these nexus. The excellent agreement of our results with available experimental data suggests the general applicability of the relations.

  4. Effect of high pressure homogenization on aqueous phase solvent extraction of lipids from Nannochloris Oculata microalgae

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Samarasinghe, Nalin; Fernando, Sandun; Faulkner, William B.

    2012-12-01

    The ability to extract lipids from high-moisture Nannochloris Oculata algal biomass disrupted with high pressure homogenization was investigated. During the first phase, the effect of high pressure homogenization (system pressure and number of passes) on disrupting aqueous algae (of different concentrations and degree of stress) was investigated. Secondly, the effect of degree of cell wall disruption on the amount of lipids extracted with three solvents, namely: hexane, dichloromethane and chloroform, were compared. Studies reveled that high pressure homogenization is effective on cell disruption while the amount of system pressure being the most significant factor affecting the degree of cell breakage.more » Although the number of passes had some impact, the level of disruption seemed to level-off after a certain number of passes. The study revealed that slightly polar solvents (such as chloroform and dichloromethane) performed better in aqueous-phase lipid extractions as compared to hexane. Also, it was revealed that it was not necessary to disrupt the algal cells completely to achieve appreciable levels of lipid yields. In fact, conditions that exerted only 20% of the cells to completely disrupt, allowed sufficient damage to liberate most of the lipids contained in the remainder of the cells.« less

  5. Highly ionized physical vapor deposition plasma source working at very low pressure

    SciTech Connect (OSTI)

    Stranak, V.; Herrendorf, A.-P.; Drache, S.; Hippler, R.; Cada, M.; Hubicka, Z.; Tichy, M.

    2012-04-02

    Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti{sup +} and Ti{sup ++} peaks are observed in the mass scan spectra). This corresponds well with high plasma density n{sub e} {approx} 10{sup 18} m{sup -3}, measured during the HiPIMS pulse.

  6. Influence of gas pressure on high-order-harmonic generation of Ar and Ne

    SciTech Connect (OSTI)

    Wang Guoli; Jin Cheng; Le, Anh-Thu; Lin, C. D.

    2011-11-15

    We study the effect of gas pressure on the generation of high-order harmonics where harmonics due to individual atoms are calculated using the recently developed quantitative rescattering theory, and the propagation of the laser and harmonics in the medium is calculated by solving the Maxwell's wave equation. We illustrate that the simulated spectra are very sensitive to the laser focusing conditions at high laser intensity and high pressure since the fundamental laser field is severely reshaped during the propagation. By comparing the simulated results with several experiments we show that the pressure dependence can be qualitatively explained. The lack of quantitative agreement is tentatively attributed to the failure of the complete knowledge of the experimental conditions.

  7. Prediction of new high pressure structural sequence in thorium carbide: A first principles study

    SciTech Connect (OSTI)

    Sahoo, B. D. Joshi, K. D.; Gupta, Satish C.

    2015-05-14

    In the present work, we report the detailed electronic band structure calculations on thorium monocarbide. The comparison of enthalpies, derived for various phases using evolutionary structure search method in conjunction with first principles total energy calculations at several hydrostatic compressions, yielded a high pressure structural sequence of NaCl type (B1) → Pnma → Cmcm → CsCl type (B2) at hydrostatic pressures of ∼19 GPa, 36 GPa, and 200 GPa, respectively. However, the two high pressure experimental studies by Gerward et al. [J. Appl. Crystallogr. 19, 308 (1986); J. Less-Common Met. 161, L11 (1990)] one up to 36 GPa and other up to 50 GPa, on substoichiometric thorium carbide samples with carbon deficiency of ∼20%, do not report any structural transition. The discrepancy between theory and experiment could be due to the non-stoichiometry of thorium carbide samples used in the experiment. Further, in order to substantiate the results of our static lattice calculations, we have determined the phonon dispersion relations for these structures from lattice dynamic calculations. The theoretically calculated phonon spectrum reveal that the B1 phase fails dynamically at ∼33.8 GPa whereas the Pnma phase appears as dynamically stable structure around the B1 to Pnma transition pressure. Similarly, the Cmcm structure also displays dynamic stability in the regime of its structural stability. The B2 phase becomes dynamically stable much below the Cmcm to B2 transition pressure. Additionally, we have derived various thermophysical properties such as zero pressure equilibrium volume, bulk modulus, its pressure derivative, Debye temperature, thermal expansion coefficient and Gruneisen parameter at 300 K and compared these with available experimental data. Further, the behavior of zero pressure bulk modulus, heat capacity and Helmholtz free energy has been examined as a function temperature and compared with the experimental data of Danan [J. Nucl. Mater. 57, 280 (1975)].

  8. Electronic Transitions in f-electron Metals at High Pressures: (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Electronic Transitions in f-electron Metals at High Pressures: Citation Details In-Document Search Title: Electronic Transitions in f-electron Metals at High Pressures: This study was to investigate unusual phase transitions driven by electron correlation effects that occur in many f-band transition metals and are often accompanied by large volume changes: {approx}20% at the {delta}-{alpha} transition in Pu and 5-15% for analogous transitions in Ce, Pr, and Gd. The

  9. First-principles high-pressure unreacted equation of state and heat of

    Office of Scientific and Technical Information (OSTI)

    formation of crystal 2,6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105) (Journal Article) | SciTech Connect Journal Article: First-principles high-pressure unreacted equation of state and heat of formation of crystal 2,6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105) Citation Details In-Document Search Title: First-principles high-pressure unreacted equation of state and heat of formation of crystal 2,6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105) Authors: Manaa, M R ; Kuo, I W ; Fried, L

  10. Single Crystal Preparation for High-Pressure Experiments in the Diamond

    Office of Scientific and Technical Information (OSTI)

    Anvil Cell (Conference) | SciTech Connect Conference: Single Crystal Preparation for High-Pressure Experiments in the Diamond Anvil Cell Citation Details In-Document Search Title: Single Crystal Preparation for High-Pressure Experiments in the Diamond Anvil Cell × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  11. The W-WO[subscript 2] oxygen fugacity buffer (WWO) at high pressure and

    Office of Scientific and Technical Information (OSTI)

    temperature: Implications for fO[subscript 2] buffering and metal-silicate partitioning (Journal Article) | SciTech Connect The W-WO[subscript 2] oxygen fugacity buffer (WWO) at high pressure and temperature: Implications for fO[subscript 2] buffering and metal-silicate partitioning Citation Details In-Document Search Title: The W-WO[subscript 2] oxygen fugacity buffer (WWO) at high pressure and temperature: Implications for fO[subscript 2] buffering and metal-silicate partitioning Authors:

  12. A Reversible Structural Phase Transition in ZnV2O6 at High Pressures

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect A Reversible Structural Phase Transition in ZnV2O6 at High Pressures Citation Details In-Document Search Title: A Reversible Structural Phase Transition in ZnV2O6 at High Pressures Authors: Tang, R. ; Li, Y. ; Han, D. ; Li, H. ; Zhao, Y. ; Gao, C. ; Zhu, P. ; Wang, X. Publication Date: 2014-05-22 OSTI Identifier: 1162417 Report Number(s): BNL--106361-2014-JA Journal ID: ISSN 1932--7447 DOE Contract Number: DE-AC02-98CH10886 Resource Type: Journal Article

  13. AB INITIO PHASE STABILITY AT HIGH TEMPERATURES AND PRESSURES IN THE V-Cr

    Office of Scientific and Technical Information (OSTI)

    SYSTEM (Journal Article) | SciTech Connect AB INITIO PHASE STABILITY AT HIGH TEMPERATURES AND PRESSURES IN THE V-Cr SYSTEM Citation Details In-Document Search Title: AB INITIO PHASE STABILITY AT HIGH TEMPERATURES AND PRESSURES IN THE V-Cr SYSTEM Authors: Landa, A ; Soderlind, P ; Yang, L H Publication Date: 2013-10-29 OSTI Identifier: 1116979 Report Number(s): LLNL-JRNL-645443 DOE Contract Number: W-7405-ENG-48 Resource Type: Journal Article Resource Relation: Journal Name: Physical Review

  14. Novel high pressure monoclinic Fe[subscript 2]O[subscript 3] polymorph

    Office of Scientific and Technical Information (OSTI)

    revealed by single-crystal synchrotron X-ray diffraction studies (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Novel high pressure monoclinic Fe[subscript 2]O[subscript 3] polymorph revealed by single-crystal synchrotron X-ray diffraction studies Citation Details In-Document Search Title: Novel high pressure monoclinic Fe[subscript 2]O[subscript 3] polymorph revealed by single-crystal synchrotron X-ray diffraction studies Authors: Bykova, Elena ; Bykov,

  15. Effects of High Shock Pressures and Pore Morphology on Hot Spot Mechanisms

    Office of Scientific and Technical Information (OSTI)

    in HMX (Conference) | SciTech Connect Effects of High Shock Pressures and Pore Morphology on Hot Spot Mechanisms in HMX Citation Details In-Document Search Title: Effects of High Shock Pressures and Pore Morphology on Hot Spot Mechanisms in HMX Authors: Springer, H K ; Tarver, C M ; Bastea, S Publication Date: 2015-08-20 OSTI Identifier: 1240059 Report Number(s): LLNL-CONF-676480 DOE Contract Number: AC52-07NA27344 Resource Type: Conference Resource Relation: Conference: Presented at: 19th

  16. High-pressure coiled-tubing technology solves resin-sand-control problems

    SciTech Connect (OSTI)

    1997-06-01

    Operators of high-pressure offshore gas wells (> 5,000 psi) have had few options for controlling sand production. Sand-control (SC) processes can be economically prohibitive when they involve extensive mobilization, demobilization, and rig-up cost of the conventional offshore rig or hydraulic workover unit. Bullheading SC chemicals from the surface can damage the formation and prohibit production. Coiled-tubing (CT) technology now allows an offshore operator to remove extensive cement residue effectively from the wellbore and place chemical SC treatments in a high-pressure-gas environment. An example from the Gulf of Mexico illustrates the technology.

  17. Safety analysis of high pressure 3He-filled micro-channels for thermal neutron detection.

    SciTech Connect (OSTI)

    Ferko, Scott M.; Galambos, Paul C.; Derzon, Mark Steven; Renzi, Ronald F.

    2008-11-01

    This document is a safety analysis of a novel neutron detection technology developed by Sandia National Laboratories. This technology is comprised of devices with tiny channels containing high pressure {sup 3}He. These devices are further integrated into large scale neutron sensors. Modeling and preliminary device testing indicates that the time required to detect the presence of special nuclear materials may be reduced under optimal conditions by several orders of magnitude using this approach. Also, these devices make efficient use of our {sup 3}He supply by making individual devices more efficient and/or extending the our limited {sup 3}He supply. The safety of these high pressure devices has been a primary concern. We address these safety concerns for a flat panel configuration intended for thermal neutron detection. Ballistic impact tests using 3 g projectiles were performed on devices made from FR4, Silicon, and Parmax materials. In addition to impact testing, operational limits were determined by pressurizing the devices either to failure or until they unacceptably leaked. We found that (1) sympathetic or parasitic failure does not occur in pressurized FR4 devices (2) the Si devices exhibited benign brittle failure (sympathetic failure under pressure was not tested) and (3) the Parmax devices failed unacceptably. FR4 devices were filled to pressures up to 4000 + 100 psig, and the impacts were captured using a high speed camera. The brittle Si devices shattered, but were completely contained when wrapped in thin tape, while the ductile FR4 devices deformed only. Even at 4000 psi the energy density of the compressed gas appears to be insignificant compared to the impact caused by the incoming projectile. In conclusion, the current FR4 device design pressurized up to 4000 psi does not show evidence of sympathetic failure, and these devices are intrinsically safe.

  18. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect (OSTI)

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  19. High-pressure structure made of rings with peripheral weldments of reduced thickness

    DOE Patents [OSTI]

    Leventry, Samuel C.

    1988-01-01

    A high-pressure structure having a circular cylindrical metal shell made of metal rings joined together by weldments and which have peripheral areas of reduced shell thickness at the weldments which permit a reduction in the amount of weld metal deposited while still maintaining sufficient circumferential or hoop stress strength.

  20. Microsoft Word - NETL-TRS-5-2014_High-Temperature, High-Pressure Equation of State.20141003.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Temperature, High-Pressure Equation of State: Solidification of Hydrocarbons and Viscosity Measurement of Krytox Oil Using Rolling-Ball Viscometer 3 October 2014 Office of Fossil Energy NETL-TRS-5-2014 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility

  1. A compact high-performance low-field NMR apparatus for measurements on fluids at very high pressures and temperatures

    SciTech Connect (OSTI)

    Freedman, R.; Anand, V. Ganesan, K.; Tabrizi, P.; Torres, R.; Grant, B.; Catina, D.; Ryan, D.; Borman, C.; Krueckl, C.

    2014-02-15

    We discuss an innovative new high-performance apparatus for performing low-field Nuclear Magnetic Resonance (NMR) relaxation times and diffusion measurements on fluids at very high pressures and high temperatures. The apparatus sensor design and electronics specifications allow for dual deployment either in a fluid sampling well logging tool or in a laboratory. The sensor and electronics were designed to function in both environments. This paper discusses the use of the apparatus in a laboratory environment. The operating temperature and pressure limits, and the signal-to-noise ratio (SNR) of the new system exceed by a very wide margin what is currently possible. This major breakthrough was made possible by a revolutionary new sensor design that breaks many of the rules of conventional high pressure NMR sensor design. A metallic sample holder capable of operating at high pressures and temperatures is provided to contain the fluid under study. The sample holder has been successfully tested for operation up to 36 Kpsi. A solenoid coil wound on a slotted titanium frame sits inside the metallic sample holder and serves as an antenna to transmit RF pulses and receive NMR signals. The metal sample holder is sandwiched between a pair of gradient coils which provide a linear field gradient for pulsed field gradient diffusion measurements. The assembly sits in the bore of a low-gradient permanent magnet. The system can operate over a wide frequency range without the need for tuning the antenna to the Larmor frequency. The SNR measured on a water sample at room temperature is more than 15 times greater than that of the commercial low-field system in our laboratory. Thus, the new system provides for data acquisition more than 200 times faster than was previously possible. Laboratory NMR measurements of relaxations times and diffusion coefficients performed at pressures up to 25 Kpsi and at temperatures up to 175?C with crude oils enlivened with dissolved hydrocarbon gases (referred to as live oils) are shown. This is the first time low-field NMR measurements have been performed at such high temperatures and pressures on live crude oil samples. We discuss the details of the apparatus design, tuning, calibration, and operation. NMR data acquired at multiple temperatures and pressures on a live oil sample are discussed.

  2. High Temperature, high pressure equation of state density correlations and viscosity correlations

    SciTech Connect (OSTI)

    Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.

    2012-07-31

    Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.

  3. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    SciTech Connect (OSTI)

    Lyons, K.D.; Honeygan, S.; Moroz, T.H.

    2008-12-01

    The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to the identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

  4. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    SciTech Connect (OSTI)

    Lyons, K.D.; Honeygan, S.; Moroz, T

    2007-06-01

    The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore, the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

  5. Design and performance of a high-pressure Fischer-Tropsch fluidized bed reactor

    SciTech Connect (OSTI)

    Weimer, A.W.; Quarderer, G.J.; Cochran, G.A.; Conway, M.M. )

    1988-01-01

    A 900 kg/day, CO/H/sub 2/, high-pressure, fluidized bed, pilot reactor was designed from first principles to achieve high reactant conversions and heat removal rates for the Fischer-Tropsch (F-T) synthesis of liquefied petroleum gases (LPG's). Suppressed bubble growth at high pressure allowed high reactant conversions which nearly matched those obtained at identical conditions in a lab scale fixed bed reactor. For GHSV approximately 1400 hr/sup -1/ and T = 658 {Kappa} at P approximately 7000 {kappa}Pa, reactant conversion exceeded 75%. The reactor heat removal capability exceeded twice design performance with the fluidized bed easily operating under thermally stable conditions. The fluidized catalyst was a potassium promoted, molybdenum on carbon (Mo/{Kappa}/C) catalyst which did not produce any detrimental waxy products. Long catalyst lifetimes of 1000 hrs on steam between regenerations allowed the fluidized bed to be operated in a batch mode.

  6. TURBULENCE SETS THE INITIAL CONDITIONS FOR STAR FORMATION IN HIGH-PRESSURE ENVIRONMENTS

    SciTech Connect (OSTI)

    Rathborne, J. M.; Contreras, Y.; Longmore, S. N.; Bastian, N.; Jackson, J. M.; Kruijssen, J. M. D.; Alves, J. F.; Bally, J.; Foster, J. B.; Garay, G.; Testi, L.; Walsh, A. J.

    2014-11-10

    Despite the simplicity of theoretical models of supersonically turbulent, isothermal media, their predictions successfully match the observed gas structure and star formation activity within low-pressure (P/k < 10{sup 5} K cm{sup 3}) molecular clouds in the solar neighborhood. However, it is unknown whether or not these theories extend to clouds in high-pressure (P/k > 10{sup 7} K cm{sup 3}) environments, like those in the Galaxy's inner 200pc central molecular zone (CMZ) and in the early universe. Here, we present Atacama Large Millimeter/submillimeter Array 3mm dust continuum emission within a cloud, G0.253+0.016, which is immersed in the high-pressure environment of the CMZ. While the log-normal shape and dispersion of its column density probability distribution function (PDF) are strikingly similar to those of solar neighborhood clouds, there is one important quantitative difference: its mean column density is one to two orders of magnitude higher. Both the similarity and difference in the PDF compared to those derived from solar neighborhood clouds match predictions of turbulent cloud models given the high-pressure environment of the CMZ. The PDF shows a small deviation from log-normal at high column densities confirming the youth of G0.253+0.016. Its lack of star formation is consistent with the theoretically predicted, environmentally dependent volume density threshold for star formation which is orders of magnitude higher than that derived for solar neighborhood clouds. Our results provide the first empirical evidence that the current theoretical understanding of molecular cloud structure derived from the solar neighborhood also holds in high-pressure environments. We therefore suggest that these theories may be applicable to understand star formation in the early universe.

  7. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    SciTech Connect (OSTI)

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, a finding in stark contrast to DAC data.

  8. Studying single nanocrystals under high pressure using an x-ray nanoprobe

    SciTech Connect (OSTI)

    Wang Lin; Ding Yang; Yang Wenge; Patel, Umesh; Xiao Zhili; Cai Zhonghou; Mao, Wendy L.; Mao Hokwang

    2011-04-15

    In this report, we demonstrate the feasibility of applying a 250-nm focused x-ray beam to study a single crystalline NbSe{sub 3} nanobelt under high-pressure conditions in a diamond anvil cell. With such a small probe, we not only resolved the distribution and morphology of each individual nanobelt in the x-ray fluorescence maps but also obtained the diffraction patterns from individual crystalline nanobelts with thicknesses of less than 50 nm. Single crystalline diffraction measurements on NbSe{sub 3} nanobelts were performed at pressures up to 20 GPa.

  9. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Jin; Lin, Jung -Fu; Prakapenka, Vitali B.

    2015-01-06

    In this study, knowledge of the physical and chemical properties of candidate deep-carbon carriers such as ferromagnesite [(Mg,Fe)CO3] at high pressure and temperature of the deep mantle is necessary for our understanding of deep-carbon storage as well as the global carbon cycle of the planet. Previous studies have reported very different scenarios for the (Mg,Fe)CO3 system at deep-mantle conditions including the chemical dissociation to (Mg,Fe)O+CO2, the occurrence of the tetrahedrally-coordinated carbonates based on CO4 structural units, and various high-pressure phase transitions. Here we have studied the phase stability and compressional behavior of (Mg,Fe)CO3 carbonates up to relevant lower-mantle conditions ofmore » approximately 120 GPa and 2400 K. Our experimental results show that the rhombohedral siderite (Phase I) transforms to an orthorhombic phase (Phase II with Pmm2 space group) at approximately 50 GPa and 1400 K. The structural transition is likely driven by the spin transition of iron accompanied by a volume collapse in the Fe-rich (Mg,Fe)CO3 phases; the spin transition stabilizes the high-pressure phase II at much lower pressure conditions than its Mg-rich counterpart. It is conceivable that the low-spin ferromagnesite phase II becomes a major deep-carbon carrier at the deeper parts of the lower mantle below 1900 km in depth.« less

  10. Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.

    SciTech Connect (OSTI)

    Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

    2007-12-01

    An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

  11. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments

    SciTech Connect (OSTI)

    Sano-Furukawa, A. Hattori, T.; Arima, H.; Yamada, A.; Tabata, S.; Kondo, M.; Nakamura, A.; Kagi, H.; Yagi, T.

    2014-11-15

    We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm{sup 3}. Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use the aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.

  12. Laminar burn rates of gun propellants measured in the high-pressure strand burner

    SciTech Connect (OSTI)

    Reaugh, J. E., LLNL

    1997-10-01

    The pressure dependence of the laminar burn rate of gun propellants plays a role in the design and behavior of high-performance guns. We have begun a program to investigate the effects of processing variables on the laminar burn rates, using our high-pressure strand burner to measure these rates at pressures exceeding 700 MPa. We have burned JA2 and M43 propellant samples, provided by Dr. Arpad Juhasz, ARL, from propellant lots previously used in round-robin tests. Our results at room temperature are in accord with other measurements. In addition, we present results measured for propellant that has been preheated to 50 C before burning. We used our thermochemical equilibrium code, CHEETAH, to help interpret the simultaneous pressure and temperature measurements taken during the testing, and show examples of its use. It has been modified to provide performance measures and equations of state for the products that are familiar to the gun-propellant community users of BLAKE.

  13. High pressure pair distribution function studies of Green River oil shale.

    SciTech Connect (OSTI)

    Chapman, K. W.; Chupas, P. J.; Locke, D. R.; Winans, R. E.; Pugmire, R. J.; Univ. of Utah

    2008-01-01

    The compression behavior of a silicate-rich oil shale from the Green River formation in the pressure range 0.0-2.4 GPa was studied using in situ high pressure X-ray pair distribution function (PDF) measurements for the sample contained within a Paris-Edinburgh cell. The real-space local structural information in the PDF, G(r), was used to evaluate the compressibility of the oil shale. Specifically, the pressure-induced reduction in the medium- to long-range atom distances ({approx}6-20 {angstrom}) yielded an average sample compressibility corresponding to a bulk modulus of ca. 61-67 GPa. A structural model consisting of a three phase mixture of the principal crystalline oil shale components (quartz, albite and Illite) provided a good fit to the ambient pressure PDF data (R {approx} 30.7%). Indeed the features in the PDF beyond {approx} {angstrom}, were similarly well fit by a single phase model of the highest symmetry, highly crystalline quartz component. The factors influencing the observed compression behavior are discussed.

  14. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    SciTech Connect (OSTI)

    Nibur, Kevin A.

    2010-11-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  15. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    SciTech Connect (OSTI)

    Dadfarnia, Mohsen; Nibur, Kevin A.; San Marchi, Christopher W.; Sofronis, Petros; Somerday, Brian P.; Foulk, James W., III; Hayden, Gary A.

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  16. High pressure studies using two-stage diamond micro-anvils grown by chemical vapor deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vohra, Yogesh K.; Samudrala, Gopi K.; Moore, Samuel L.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; Velisavljevic, Nenad

    2015-06-10

    Ultra-high static pressures have been achieved in the laboratory using a two-stage micro-ball nanodiamond anvils as well as a two-stage micro-paired diamond anvils machined using a focused ion-beam system. The two-stage diamond anvils’ designs implemented thus far suffer from a limitation of one diamond anvil sliding past another anvil at extreme conditions. We describe a new method of fabricating two-stage diamond micro-anvils using a tungsten mask on a standard diamond anvil followed by microwave plasma chemical vapor deposition (CVD) homoepitaxial diamond growth. A prototype two stage diamond anvil with 300 μm culet and with a CVD diamond second stage ofmore » 50 μm in diameter was fabricated. We have carried out preliminary high pressure X-ray diffraction studies on a sample of rare-earth metal lutetium sample with a copper pressure standard to 86 GPa. Furthermore, the micro-anvil grown by CVD remained intact during indentation of gasket as well as on decompression from the highest pressure of 86 GPa.« less

  17. Structural phase transitions in Bi2Se3 under high pressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Zhenhai; Gu, Genda; Wang, Lin; Hu, Qingyang; Zhao, Jinggeng; Yan, Shuai; Yang, Ke; Sinogeikin, Stanislav; Mao, Ho -kwang

    2015-11-02

    Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi2Se3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and eventually to a high pressure body-centered tetragonal phase (SG: I4/mmm). Evidenced by our XRD data up to 81.2 GPa, the Bi2Se3 crystallizes into body-centered tetragonal structures rather than the recently reported disordered body-centered cubic (BCC) phase. Furthermore, first principles theoretical calculations favor the viewpoint thatmore » the I4/mmm phase Bi2Se3 can be stabilized under high pressure (>30 GPa). Remarkably, the Raman spectra of Bi2Se3 from this work (two independent runs) are still Raman active up to ~35 GPa. Furthermore, it is worthy to note that the disordered BCC phase at 27.8 GPa is not observed here. The remarkable difference in atomic radii of Bi and Se in Bi2Se3 may explain why Bi2Se3 shows different structural behavior than isocompounds Bi2Te3 and Sb2Te3.« less

  18. Comparison of high pressure transient PVT measurements and model predictions. Part I.

    SciTech Connect (OSTI)

    Felver, Todd G.; Paradiso, Nicholas Joseph; Evans, Gregory Herbert; Rice, Steven F.; Winters, William Stanley, Jr.

    2010-07-01

    A series of experiments consisting of vessel-to-vessel transfers of pressurized gas using Transient PVT methodology have been conducted to provide a data set for optimizing heat transfer correlations in high pressure flow systems. In rapid expansions such as these, the heat transfer conditions are neither adiabatic nor isothermal. Compressible flow tools exist, such as NETFLOW that can accurately calculate the pressure and other dynamical mechanical properties of such a system as a function of time. However to properly evaluate the mass that has transferred as a function of time these computational tools rely on heat transfer correlations that must be confirmed experimentally. In this work new data sets using helium gas are used to evaluate the accuracy of these correlations for receiver vessel sizes ranging from 0.090 L to 13 L and initial supply pressures ranging from 2 MPa to 40 MPa. The comparisons show that the correlations developed in the 1980s from sparse data sets perform well for the supply vessels but are not accurate for the receivers, particularly at early time during the transfers. This report focuses on the experiments used to obtain high quality data sets that can be used to validate computational models. Part II of this report discusses how these data were used to gain insight into the physics of gas transfer and to improve vessel heat transfer correlations. Network flow modeling and CFD modeling is also discussed.

  19. System overview and characterization of a high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier

    SciTech Connect (OSTI)

    Kelley, Madison A.; Dreyer, Christopher B.; Parker, Terence E.; Porter, Jason M.; Jakulewicz, Micah S.

    2015-05-15

    The high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier at the Colorado School of Mines, including the primary systems and the supporting subsystems, is presented. The gasifier is capable of operating at temperatures and pressures up to 1650 °C and 40 bar. The heated section of the reactor column has an inner diameter of 50 mm and is 1 m long. Solid organic feedstock (e.g., coal, biomass, and solid waste) is ground into batches with particle sizes ranging from 25 to 90 μm and is delivered to the reactor at feed rates of 2–20 g/min. The maximum useful power output of the syngas is 10 kW, with a nominal power output of 1.2 kW. The initial characterization and demonstration results of the gasifier system with a coal feedstock are also reported.

  20. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    SciTech Connect (OSTI)

    Axelbaum, Richard; Xia, Fei; Gopan, Akshay; Kumfer, Benjamin

    2014-09-30

    Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressed by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for optimization. The results reveal that for the SPOC design, absorption and emission due to particles is the dominant factor for determining the wall heat flux. The mechanism of “radiative trapping” of energy within the high-temperature flame region and the approach to utilizing this mechanism to control wall heat flux are described. This control arises, by design, from the highly non-uniform (non-premixed) combustion characteristics within the SPOC boiler, and the resulting gradients in temperature and particle concentration. Finally, a simple method for estimating the wall heat flux in pressurized combustion systems is presented.

  1. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    DOE Patents [OSTI]

    Efthimion, Philip C.; Helfritch, Dennis J.

    1989-11-28

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  2. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; Vohra, Y. K.

    2016-04-07

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8GPa and 600K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phasemore » diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0–10GPa and 300–650K« less

  3. Shock waves generated by high-pressure fuel sprays directly imaged by x-radiography.

    SciTech Connect (OSTI)

    Wang, J.; MacPhee, A.; Powell, C. F.; Yue, Y.; Narayanan, S.; Tate, M. W.; Renzi, M. J.; Ercan, A.; Fontes, E.; Gruner, S. M.; Walther, J.; Schaller, J.

    2001-12-20

    Synchrotron x-radiography and a novel fast x-ray detector are used to visualize the detailed, time-resolved structure of the fluid jets generated by a high pressure diesel-fuel injection. An understanding of the structure of the high-pressure spray is important in optimizing the injection process to increase fuel efficiency and reduce pollutants. It is shown that x-radiography can provide a quantitative measure of the mass distribution of the fuel. Such analysis has been impossible with optical imaging due to the multiple-scattering of visible light by small atomized fuel droplets surrounding the jet. In addition, direct visualization of the jet-induced shock wave proves that the fuel jets become supersonic under appropriate injection conditions. The radiographic images also allow quantitative analysis of the thermodynamic properties of the shock wave.

  4. Evidence for photo-induced monoclinic metallic VO{sub 2} under high pressure

    SciTech Connect (OSTI)

    Hsieh, Wen-Pin Mao, Wendy L.; Trigo, Mariano; Reis, David A.; Andrea Artioli, Gianluca; Malavasi, Lorenzo

    2014-01-13

    We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M{sub 1})-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M{sub 1}) phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions.

  5. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers

    SciTech Connect (OSTI)

    Moskovitz, Yevgeny; Yang, Hui

    2015-01-08

    Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns-long) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules at a pressure range of 1 - 1000 bar and temperature of 310 Kelvin. Xenon and argon have been tested as model gases for general anesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremor at hyperbaric conditions. The analysis of stacked radial pair distribution functions of DOPC headgroup atoms revealed the explicit solvation potential of gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor; while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar patterns of the order parameter for both DOPC acyl chains, which is opposite to the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the critical volume hypothesis of anesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1 - 100 bar could be associated with the possible manifestation of neurological tremor at the atomic scale. The non-immobilizer neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing monolayers undulations rate, which indicates enhanced diffusivity, rather than atom size, as the key factor.

  6. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moskovitz, Yevgeny; Yang, Hui

    2015-01-08

    Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns-long) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules at a pressure range of 1 - 1000 bar and temperature of 310 Kelvin. Xenon and argon have been tested as model gases for general anesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremor at hyperbaric conditions. The analysis of stacked radial pair distributionmore » functions of DOPC headgroup atoms revealed the explicit solvation potential of gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor; while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar patterns of the order parameter for both DOPC acyl chains, which is opposite to the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the ‘critical volume’ hypothesis of anesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1 - 100 bar could be associated with the possible manifestation of neurological tremor at the atomic scale. The non-immobilizer neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing monolayers undulations rate, which indicates enhanced diffusivity, rather than atom size, as the key factor.« less

  7. Engine having hydraulic and fan drive systems using a single high pressure pump

    DOE Patents [OSTI]

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine comprises a hydraulic system attached to an engine housing that includes a high pressure pump and a hydraulic fluid flowing through at least one passageway. A fan drive system is also attached to the engine housing and includes a hydraulic motor and a fan which can move air over the engine. The hydraulic motor includes an inlet fluidly connected to the at least one passageway.

  8. Ion current detector for high pressure ion sources for monitoring separations

    DOE Patents [OSTI]

    Smith, R.D.; Wahl, J.H.; Hofstadler, S.A.

    1996-08-13

    The present invention relates generally to any application involving the monitoring of signal arising from ions produced by electrospray or other high pressure (>100 torr) ion sources. The present invention relates specifically to an apparatus and method for the detection of ions emitted from a capillary electrophoresis (CE) system, liquid chromatography, or other small-scale separation methods. And further, the invention provides a very simple diagnostic as to the quality of the separation and the operation of an electrospray source. 7 figs.

  9. High-R Walls for New Construction Structural Performance. Wind Pressure Testing

    SciTech Connect (OSTI)

    DeRenzis, A.; Kochkin, V.

    2013-01-01

    This technical report is focused primarily on laboratory testing that evaluates wind pressure performance characteristics for wall systems constructed with exterior insulating sheathing. This research and test activity will help to facilitate the ongoing use of non-structural sheathing options and provide a more in-depth understanding of how wall system layers perform in response to high wind perturbations normal to the surface.

  10. Ion current detector for high pressure ion sources for monitoring separations

    DOE Patents [OSTI]

    Smith, Richard D.; Wahl, Jon H.; Hofstadler, Steven A.

    1996-01-01

    The present invention relates generally to any application involving the monitoring of signal arising from ions produced by electrospray or other high pressure (>100 torr) ion sources. The present invention relates specifically to an apparatus and method for the detection of ions emitted from a capillary electrophoresis (CE) system, liquid chromatography, or other small-scale separation methods. And further, the invention provides a very simple diagnostic as to the quality of the separation and the operation of an electrospray source.

  11. High-pressure shock behavior of WC and Ta2O5 powders.

    SciTech Connect (OSTI)

    Knudson, Marcus D. (Sandia National Laboratories, Albuquerque, NM); Reinhart, William Dodd (Sandia National Laboratories, Albuquerque, NM); Vogler, Tracy John; Root, Seth (Sandia National Laboratories, Albuquerque, NM)

    2011-10-01

    Planar shock experiments were conducted on granular tungsten carbide (WC) and tantalum oxide (Ta{sub 2}O{sub 5}) using the Z machine and a 2-stage gas gun. Additional shock experiments were also conducted on a nearly fully dense form of Ta{sub 2}O{sub 5}. The experiments on WC yield some of the highest pressure results for granular materials obtained to date. Because of the high distention of Ta{sub 2}O{sub 5}, the pressures obtained were significantly lower, but the very high temperatures generated led to large contributions of thermal energy to the material response. These experiments demonstrate that the Z machine can be used to obtain accurate shock data on granular materials. The data on Ta{sub 2}O{sub 5} were utilized in making improvements to the P-{lambda} model for high pressures; the model is found to capture the results not only of the Z and gas gun experiments but also those from laser experiments on low density aerogels. The results are also used to illustrate an approach for generating an equation of state using only the limited data coming from nanoindentation. Although the EOS generated in this manner is rather simplistic, for this material it gives reasonably good results.

  12. High pressure phase-transformation induced texture evolution and strengthening in zirconium metal: Experiment and modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; Vogel, Sven C.; Zhang, Jianzhong; Brown, Donald W.; Wang, Yanbin; Reiche, Helmut M.; Wang, Shanmin; Du, Shiyu; et al

    2015-07-28

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can bemore » attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.« less

  13. High pressure phase-transformation induced texture evolution and strengthening in zirconium metal: Experiment and modeling

    SciTech Connect (OSTI)

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; Vogel, Sven C.; Zhang, Jianzhong; Brown, Donald W.; Wang, Yanbin; Reiche, Helmut M.; Wang, Shanmin; Du, Shiyu; Jin, Changqing; Zhao, Yusheng

    2015-07-28

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can be attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.

  14. Spectrographic temperature measurement of a high power breakdown arc in a high pressure gas switch

    SciTech Connect (OSTI)

    Yeckel, Christopher; Curry, Randy

    2011-09-15

    A procedure for obtaining an approximate temperature value of conducting plasma generated during self-break closure of a RIMFIRE gas switch is described. The plasma is in the form of a breakdown arc which conducts approximately 12 kJ of energy in 1 {mu}s. A spectrographic analysis of the trigger-section of the 6-MV RIMFIRE laser triggered gas switch used in Sandia National Laboratory's ''Z-Machine'' has been made. It is assumed that the breakdown plasma has sufficiently approached local thermodynamic equilibrium allowing a black-body temperature model to be applied. This model allows the plasma temperature and radiated power to be approximated. The gas dielectric used in these tests was pressurized SF{sub 6}. The electrode gap is set at 4.59 cm for each test. The electrode material is stainless steel and insulator material is poly(methyl methacrylate). A spectrum range from 220 to 550 nanometers has been observed and calibrated using two spectral irradiance lamps and three spectrograph gratings. The approximate plasma temperature is reported.

  15. Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target

    SciTech Connect (OSTI)

    Badziak, J.; Rosiński, M.; Krousky, E.; Kucharik, M.; Liska, R.; Ullschmied, J.

    2015-03-15

    A novel, efficient method of generating ultra-high-pressure shocks is proposed and investigated. In this method, the shock is generated by collision of a fast plasma projectile (a macro-particle) driven by laser-induced cavity pressure acceleration (LICPA) with a solid target placed at the LICPA accelerator channel exit. Using the measurements performed at the kilojoule PALS laser facility and two-dimensional hydrodynamic simulations, it is shown that the shock pressure ∼ Gbar can be produced with this method at the laser driver energy of only a few hundred joules, by an order of magnitude lower than the energy needed for production of such pressure with other laser-based methods known so far.

  16. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier

    SciTech Connect (OSTI)

    Liu, Jin; Lin, Jung -Fu; Prakapenka, Vitali B.

    2015-01-06

    In this study, knowledge of the physical and chemical properties of candidate deep-carbon carriers such as ferromagnesite [(Mg,Fe)CO3] at high pressure and temperature of the deep mantle is necessary for our understanding of deep-carbon storage as well as the global carbon cycle of the planet. Previous studies have reported very different scenarios for the (Mg,Fe)CO3 system at deep-mantle conditions including the chemical dissociation to (Mg,Fe)O+CO2, the occurrence of the tetrahedrally-coordinated carbonates based on CO4 structural units, and various high-pressure phase transitions. Here we have studied the phase stability and compressional behavior of (Mg,Fe)CO3 carbonates up to relevant lower-mantle conditions of approximately 120 GPa and 2400 K. Our experimental results show that the rhombohedral siderite (Phase I) transforms to an orthorhombic phase (Phase II with Pmm2 space group) at approximately 50 GPa and 1400 K. The structural transition is likely driven by the spin transition of iron accompanied by a volume collapse in the Fe-rich (Mg,Fe)CO3 phases; the spin transition stabilizes the high-pressure phase II at much lower pressure conditions than its Mg-rich counterpart. It is conceivable that the low-spin ferromagnesite phase II becomes a major deep-carbon carrier at the deeper parts of the lower mantle below 1900 km in depth.

  17. High-Pressure Tritium Targets for Research in Muon-Catalyzed Fusion

    SciTech Connect (OSTI)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2005-07-15

    The paper presents designs of a set of high-pressure targets developed by RFNC-VNIIEF and JINR collaboration to study muon-catalyzed fusion at high density of hydrogen isotopes in a wide temperature range. Designs, technical and operating characteristics of the targets and service results are described.In 1997-2002 these targets were used to measure basic characteristics of muon catalysis in pure deuterium, binary D/T mixture and triple H/D/T mixture as a function of density ([variant phi] = 0.2 - 1.2 LHD{sup *}), temperature (T = 20-800 K) and concentration of hydrogen isotopes in a mixture.

  18. High-pressure cells for in situ multi-anvil experiments

    SciTech Connect (OSTI)

    Leinenweber, K.; Mosenfelder, J.; Diedrich, T.; Soignard, E.; Sharp, T.G.; Tyburczy, J.A.; Wang, Y.

    2008-10-14

    A new series of high-pressure cells for in situ multi-anvil experiments is described. The cells are based on the conventional COMPRES cells, but modifications are made to improve the passage of X-rays. The modifications include cutting slits in parts of the assemblies that have very high X-ray absorption, such as lanthanum chromite and rhenium, the use of low-Z thermal insulation, such as forsterite, in place of zirconia, and the partial replacement of zirconia by MgO equatorial windows combined with a mullite octahedron. Details of the designs, thermal characterizations, and examples of the application of these cells are described.

  19. Thermal model development and validation for rapid filling of high pressure hydrogen tanks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Terry A.; Bozinoski, Radoslav; Ye, Jianjun; Sartor, George; Zheng, Jinyang; Yang, Jian

    2015-06-30

    This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Thus, a thorough understanding of temperature changes ofmore » the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Furthermore, due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.« less

  20. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer

    SciTech Connect (OSTI)

    Babij, Micha?; Kowalski, Zbigniew W. Nitsch, Karol; Gotszalk, Teodor; Silberring, Jerzy

    2014-05-15

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  1. Thermal model development and validation for rapid filling of high pressure hydrogen tanks

    SciTech Connect (OSTI)

    Johnson, Terry A.; Bozinoski, Radoslav; Ye, Jianjun; Sartor, George; Zheng, Jinyang; Yang, Jian

    2015-06-30

    This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Thus, a thorough understanding of temperature changes of the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Furthermore, due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.

  2. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  3. Dispersion of CNG following a high-pressure release. Final report, February 1995-March 1996

    SciTech Connect (OSTI)

    Gaumer, R.L.; Raj, P.K.

    1996-05-01

    The research described in the report was designed to evaluate the adequacy of the current convention concerning safeguards against CNG-related fires in transit buildings where CNG powered buses are fueled, stored, or maintained. The convention embraces the belief that precautions need to be taken only at or near the ceiling of the buildings. It is based on the premise that, since CNG is primarily methane and methane is approximately one-half the density of air at ambient temperature and pressure, any natural gas released would immediately rise to the ceiling as a buoyant plume. The experiments described here tested theoretical predictions that challenge this premise. During the tests, infrared imaging was used to track the movement of CNG following release from a high-pressure source close to the floor.

  4. Percolating porosity in ultrafine grained copper processed by High Pressure Torsion

    SciTech Connect (OSTI)

    Wegner, Matthias Leuthold, Jrn; Peterlechner, Martin; Divinski, Sergiy V. Wilde, Gerhard; Setman, Daria; Zehetbauer, Michael; Pippan, Reinhard

    2013-11-14

    Defect structures in copper of different purity (nominally 99.99 and 99.999?wt.?%) deformed via High Pressure Torsion (HPT) with varying processing parameters are investigated utilizing the radiotracer diffusion technique. While the degree of deformation is kept constant, the effects of applied quasi-hydrostatic pressure, processing temperature, post-deformation annealing treatments, and of the impurity concentration on the deformed samples are analyzed in terms of the formation of interconnected internal porosity. Furthermore, the anisotropy of the developing porosity network is examined. The porosity channels occurred to be interconnected along the direction parallel to the surface normal with a volume fraction of the order of a few ppm while no long-range penetration along the internal porosity could be detected when measured along the azimuthal or radial directions of a HPT processed sample.

  5. Dark matter directionality revisited with a high pressure xenon gas detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mohlabeng, Gopolang; Kong, Kyoungchul; Li, Jin; Para, Adam; Yoo, Jonghee

    2015-07-20

    An observation of the anisotropy of dark matter interactions in a direction-sensitive detector would provide decisive evidence for the discovery of galactic dark matter. Directional information would also provide a crucial input to understanding its distribution in the local Universe. Most of the existing directional dark matter detectors utilize particle tracking methods in a low-pressure gas time projection chamber. These low pressure detectors require excessively large volumes in order to be competitive in the search for physics beyond the current limit. In order to avoid these volume limitations, we consider a novel proposal, which exploits a columnar recombination effect inmore » a high-pressure gas time projection chamber. The ratio of scintillation to ionization signals observed in the detector carries the angular information of the particle interactions. In this paper, we investigate the sensitivity of a future directional detector focused on the proposed high-pressure Xenon gas time projection chamber. We study the prospect of detecting an anisotropy in the dark matter velocity distribution. We find that tens of events are needed to exclude an isotropic distribution of dark matter interactions at 95% confidence level in the most optimistic case with head-to-tail information. However, one needs at least 10-20 times more events without head-to-tail information for light dark matter below ~50 GeV. For an intermediate mass range, we find it challenging to observe an anisotropy of the dark matter distribution. Our results also show that the directional information significantly improves precision measurements of dark matter mass and the elastic scattering cross section for a heavy dark matter.« less

  6. Dark matter directionality revisited with a high pressure xenon gas detector

    SciTech Connect (OSTI)

    Mohlabeng, Gopolang; Kong, Kyoungchul; Li, Jin; Para, Adam; Yoo, Jonghee

    2015-07-20

    An observation of the anisotropy of dark matter interactions in a direction-sensitive detector would provide decisive evidence for the discovery of galactic dark matter. Directional information would also provide a crucial input to understanding its distribution in the local Universe. Most of the existing directional dark matter detectors utilize particle tracking methods in a low-pressure gas time projection chamber. These low pressure detectors require excessively large volumes in order to be competitive in the search for physics beyond the current limit. In order to avoid these volume limitations, we consider a novel proposal, which exploits a columnar recombination effect in a high-pressure gas time projection chamber. The ratio of scintillation to ionization signals observed in the detector carries the angular information of the particle interactions. In this paper, we investigate the sensitivity of a future directional detector focused on the proposed high-pressure Xenon gas time projection chamber. We study the prospect of detecting an anisotropy in the dark matter velocity distribution. We find that tens of events are needed to exclude an isotropic distribution of dark matter interactions at 95% confidence level in the most optimistic case with head-to-tail information. However, one needs at least 10-20 times more events without head-to-tail information for light dark matter below ~50 GeV. For an intermediate mass range, we find it challenging to observe an anisotropy of the dark matter distribution. Our results also show that the directional information significantly improves precision measurements of dark matter mass and the elastic scattering cross section for a heavy dark matter.

  7. Apparatus and method for fatigue testing of a material specimen in a high-pressure fluid environment

    DOE Patents [OSTI]

    Wang, Jy-An; Feng, Zhili; Anovitz, Lawrence M; Liu, Kenneth C

    2013-06-04

    The invention provides fatigue testing of a material specimen while the specimen is disposed in a high pressure fluid environment. A specimen is placed between receivers in an end cap of a vessel and a piston that is moveable within the vessel. Pressurized fluid is provided to compression and tension chambers defined between the piston and the vessel. When the pressure in the compression chamber is greater than the pressure in the tension chamber, the specimen is subjected to a compression force. When the pressure in the tension chamber is greater than the pressure in the compression chamber, the specimen is subjected to a tension force. While the specimen is subjected to either force, it is also surrounded by the pressurized fluid in the tension chamber. In some examples, the specimen is surrounded by hydrogen.

  8. Pressure-induced valence change in YbAl3: a combined high pressure inelastic x-ray scattering and theoretical investigation

    SciTech Connect (OSTI)

    Bauer, E D; Kumar, R S; Svane, A; Vaitheeswaran, G; Nicol, M F; Kanchana, V; Hu, M; Cornelius, A L

    2008-01-01

    High resolution x-ray absorption (XAS) experiments in the partial fluorescence yield mode (PFY) and resonant inelastic x-ray emission (RXES) measurements under pressure were performed on the intermediate valence compound YbAl{sub 3} up to 38 GPa. The results of the Yb L{sub 3} PFY-XAS and RXES studies show a smooth valence increase in YbAl{sub 3} from 2.75 to 2.93 at ambient to 38 GPa. In-situ angle dispersive synchrotron high pressure x-ray diffraction experiments carried out using a diamond cell at room temperature to study the equation of state showed the ambient cubic phase stable up to 40 GPa. The results obtained from self-interaction corrected local spin density functional calculations to understand the pressure effect on the Yb valence and compressibility are in good agreement with the experimental results.

  9. Development and Application of Insulated Drill Pipe for High Temperature, High Pressure Drilling

    SciTech Connect (OSTI)

    Tom Champness; Tony Worthen; John Finger

    2008-12-31

    This project aimed to extend the insulated drill pipe (IDP) technology already demonstrated for geothermal drilling to HTHP drilling in deep gas reservoirs where temperatures are high enough to pose a threat to downhole equipment such as motors and electronics. The major components of the project were: a preliminary design; a market survey to assess industry needs and performance criteria; mechanical testing to verify strength and durability of IDP; and development of an inspection plan that would quantify the ability of various inspection techniques to detect flaws in assembled IDP. This report is a detailed description of those activities.

  10. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOE Patents [OSTI]

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  11. FY05 LDRD Final Report Mapping Phonons at High-pressure (Technical...

    Office of Scientific and Technical Information (OSTI)

    at the determination of the pressure evolution of the transverse acoustic (TA) and ... along the 100 direction, the pressure evolution of the two other longitudinal branches ...

  12. Multi-temperature method for high-pressure sorption measurements on moist shales

    SciTech Connect (OSTI)

    Gasparik, Matus; Ghanizadeh, Amin; Gensterblum, Yves; Krooss, Bernhard M.

    2013-08-15

    A simple and effective experimental approach has been developed and tested to study the temperature dependence of high-pressure methane sorption in moist organic-rich shales. This method, denoted as multi-temperature (short multi-T) method, enables measuring multiple isotherms at varying temperatures in a single run. The measurement of individual sorption isotherms at different temperatures takes place in a closed system ensuring that the moisture content remains constant. The multi-T method was successfully tested for methane sorption on an organic-rich shale sample. Excess sorption isotherms for methane were measured at pressures of up to 25 MPa and at temperatures of 318.1 K, 338.1 K, and 348.1 K on dry and moisture-equilibrated samples. The measured isotherms were parameterized with a 3-parameter Langmuir-based excess sorption function, from which thermodynamic sorption parameters (enthalpy and entropy of adsorption) were obtained. Using these, we show that by taking explicitly into account water vapor as molecular species in the gas phase with temperature-dependent water vapor pressure during the experiment, more meaningful results are obtained with respect to thermodynamical considerations. The proposed method can be applied to any adsorbent system (coals, shales, industrial adsorbents) and any supercritical gas (e.g., CH{sub 4}, CO{sub 2}) and is particularly suitable for sorption measurements using the manometric (volumetric) method.

  13. Backbone N{sub x}H compounds at high pressures

    SciTech Connect (OSTI)

    Goncharov, Alexander F.; Holtgrewe, Nicholas; Qian, Guangrui; Hu, Chaohao; Oganov, Artem R.; Somayazulu, Maddury; Stavrou, Elissaios; Pickard, Chris J.; and others

    2015-06-07

    Optical and synchrotron x-ray diffraction diamond anvil cell experiments have been combined with first-principles theoretical structure predictions to investigate mixtures of N{sub 2} and H{sub 2} up to 55 GPa. Our experiments show the formation of structurally complex van der Waals compounds [see also D. K. Spaulding et al., Nat. Commun. 5, 5739 (2014)] above 10 GPa. However, we found that these N{sub x}H (0.5 < x < 1.5) compounds transform abruptly to new oligomeric materials through barochemistry above 47 GPa and photochemistry at pressures as low as 10 GPa. These oligomeric compounds can be recovered to ambient pressure at T < 130 K, whereas at room temperature, they can be metastable on pressure release down to 3.5 GPa. Extensive theoretical calculations show that such oligomeric materials become thermodynamically more stable in comparison to mixtures of N{sub 2}, H{sub 2}, and NH{sub 3} above approximately 40 GPa. Our results suggest new pathways for synthesis of environmentally benign high energy-density materials. These materials could also exist as alternative planetary ices.

  14. High pressure-temperature polymorphism of 1,1-diamino-2,2-dinitroethylene

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bishop, M. M.; Chellappa, R. S.; Liu, Z.; Preston, D. N.; Sandstrom, M. M.; Dattelbaum, D. M.; Vohra, Y. K.; Velisavljevic, N.

    2014-05-07

    Here, 1,1-diamino-2,2-dinitroethylene (FOX-7) is a low sensitivity energetic material with performance comparable to commonly used secondary explosives such as RDX and HMX. At ambient pressure, FOX-7 exhibits complex polymorphism with at least three structurally distinct phases (α, β, and γ). In this study, we have investigated the high pressure-temperature stability of FOX-7 polymorphs using synchrotron mid-infrared (MIR) spectroscopy. At ambient pressure, our MIR spectra and corresponding differential scanning calorimetry (DSC) measurements confirmed the known α → β (~110 °C) and β → γ (~160 °C) structural phase transitions; as well as, indicated an additional transition γ → δ (~210 °C),more » with the δ phase being stable up to ~251 degree C prior to decomposition. In situ MIR spectra obtained during isobaric heating at 0.9 GPa, revealed a potential α → β transition that could occur as early as 180 degree C, while β → β+δ phase transition shifted to ~300 °C with suppression of γ phase. Decomposition was observed slightly above 325 °C at 0.9 GPa..« less

  15. Influence of Intense Beam in High Pressure Hydrogen Gas Filled RF Cavities

    SciTech Connect (OSTI)

    Yonehara, K.; Chung, M.; Collura, M.G.; Jana, M.R.; Leonova, M.; Moretti, A.; Popovic, M.; Schwarz, T.; Tollestrup, A.; Johnson, R.P.; Franagan, G.; /Muons, Inc. /IIT

    2012-05-01

    The influence of an intense beam in a high-pressure gas filled RF cavity has been measured by using a 400 MeV proton beam in the Mucool Test Area at Fermilab. The ionization process generates dense plasma in the cavity and the resultant power loss to the plasma is determined by measuring the cavity voltage on a sampling oscilloscope. The energy loss has been observed with various peak RF field gradients (E), gas pressures (p), and beam intensities in nitrogen and hydrogen gases. Observed RF energy dissipation in single electron (dw) in N{sub 2} and H{sub 2} gases was 2 10{sup -17} and 3 10{sup -17} Joules/RF cycle at E/p = 8 V/cm/Torr, respectively. More detailed dw measurement have been done in H{sub 2} gas at three different gas pressures. There is a clear discrepancy between the observed dw and analytical one. The discrepancy may be due to the gas density effect that has already been observed in various experiments.

  16. Comparison of the high-pressure behavior of the cerium oxides Ce[subscript

    Office of Scientific and Technical Information (OSTI)

    2]O[subscript 3] and CeO[subscript 2] (Journal Article) | SciTech Connect Ce[subscript 2]O[subscript 3] and CeO[subscript 2] Citation Details In-Document Search Title: Comparison of the high-pressure behavior of the cerium oxides Ce[subscript 2]O[subscript 3] and CeO[subscript 2] Authors: Lipp, M. J. ; Jeffries, J. R. ; Cynn, H. ; Klepeis, J.-H. Park ; Evans, W. J. ; Mortensen, D. R. ; Seidler, G. T. ; Xiao, Y. ; Chow, P. [1] ; UWASH) [2] ; CIW/GL) [2] + Show Author Affiliations LLNL (

  17. Residence time distribution studies in a multiphase reactor under high temperature and pressure conditions

    SciTech Connect (OSTI)

    Nalitham, R.V.; Davies, O.L.

    1987-06-01

    The residence time distribution of the slurry phase in a coal liquefaction reactor is determined experimentally under high temperature and pressure conditions using native radioactive tracers. The experimental data are fitted to several exit age distribution models, and a model is selected based on the best fit. The effect of process conditions such as recycle gas rate, coal feed rate, reactor temperature, and solvent-to-coal ratio on the degree of backmixing and mean residence time is studied. Gas holdup is estimated from the experimental mean residence time, the nominal residence time, and the total reactor holdup. The effect of gas superficial velocity on gas holdup is studied.

  18. Joule heat generation in thermionic cathodes of high-pressure arc discharges

    SciTech Connect (OSTI)

    Benilov, M. S.; Cunha, M. D.

    2013-02-14

    The nonlinear surface heating model of plasma-cathode interaction in high-pressure arcs is extended to take into account the Joule effect inside the cathode body. Calculation results are given for different modes of current transfer to tungsten cathodes of different configurations in argon plasmas of atmospheric or higher pressures. Special attention is paid to analysis of energy balances of the cathode and the near-cathode plasma layer. In all the cases, the variation of potential inside the cathode is much smaller than the near-cathode voltage drop. However, this variation can be comparable to the volt equivalent of the energy flux from the plasma to the cathode and then the Joule effect is essential. Such is the case of the diffuse and mixed modes on rod cathodes at high currents, where the Joule heating causes a dramatic change of thermal and electrical regimes of the cathode. The Joule heating has virtually no effect over characteristics of spots on rod and infinite planar cathodes.

  19. Impact of cycle chemistry on fossil-fueled high pressure boilers - BHEL approach and experience

    SciTech Connect (OSTI)

    Somu, M.; Gourishankar, S.

    1995-01-01

    Cycle chemistry in high pressure boilers plays an important role as far as availability and reliability of the boilers are concerned. Up keep of proper cycle chemistry is a stupendous task and care must be taken, right from design stage to commissioning and operation of the boilers. It calls for selection of proper design, method of manufacture of critical components and practicing proper procedures during commissioning and regular operation of boilers. Control of cycle chemistry is important from the view point of proper quality of steam and prevention of corrosion. The corrosion is like a double edged knife which reduces the boiler availability on one side and steam quality on the other. The steam quality dictates the efficiency of the turbine. Apart from the internal and external Water Treatment practices, selection of proper deaerator, sizing of drum, steam loading, selection of appropriate drum internals etc. help achieve the desired cycle chemistry. The impact of such cycle chemistry, selection of equipment, Water Treatment practice and operational practices are presented in this paper, in the back drop of BHEL`s design, fabrication and operational guidelines and experience on high pressure boilers. The critical components in the pre-boiler circuit as well as in the main circuit are assessed from the point of view of appropriate water chemistry parameters.

  20. High-capacity single-pressure SF/sub 6/ interrupters. Final report

    SciTech Connect (OSTI)

    Rostron, J R; Berkebile, L E; Spindle, H E

    1983-05-01

    The object of this project was to design and develop a high-voltage, single-pressure, SF/sub 6/ interrupter with an interrupting capability of 120 kA at 145 kV with a continuous current rating of 5000 A and an interrupting time of 1.5 cycles or less. A second objective of 100 kA at 242 kV was added during the project. Mathematical models were used to extrapolate design requirements from existing data for 63 and 80 kA. Two model puffers, one liquid and the other gas, were designed and tested to obtain data at 100 kA. An interrupter, optimized on the basis of total prospective breaker cost, was designed using the mathematical models. A study was made of the construction materials to operate under the high-stress conditions in this interrupter. Existing high-speed movies of high-current arcs under double-flow conditions were analyzed to obtain more information for modeling the interrupter. The optimized interrupter design was built and tested. The interrupting capability confirmed calculations of predicted performance near current zero; however, the dielectric strength after interrupting these high-current arcs was not adequate for the 145-kV or the 242-kV ratings. The dielectric strength was reduced by hot gases flowing out of the interrupter. Valuable data have been obtained for modeling the SF/sub 6/ puffer interrupter for high currents.

  1. CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CH4, CH4H2 and CO2CH4H2 separations at high pressures using Mg2(dobdc) Previous Next List Zoey R. Herm, Rajamani Krishna, Jeffrey R. Long, Microporous Mesoporous Mater., 151,...

  2. X-ray-absorption study of CuBr at high pressure

    SciTech Connect (OSTI)

    Tranquada, J.M.; Ingalls, R.

    1986-09-15

    The x-ray-absorption spectrum of cuprous bromide has been measured as a function of pressure. The x-ray-absorption near-edge structure proved to be an excellent indicator of high-pressure phase transitions in this material. The normalized ''white-line'' peak heights at both the Cu and Br K-italic edges decreased on entering the tetragonal phase and increased in going to the NaCl structure. The zinc-blende to tetragonal phase transition took place over a very narrow pressure range centered at 46 +- 5 kbar. The transformation from the tetragonal to the NaCl structure, on the other hand, showed a broad mixed-phase region, suggesting a nucleation-and-growth mechanism for the transition. The mixed-phase region was centered at 75 +- 6 kbar. No evidence of a phase between the zinc-blende and tetragonal phases was observed, presumably because it does not exist. Analysis of the extended x-ray-absorption fine-structure (EXAFS) clearly showed that there is no change in coordination in going from the zinc-blende to the tetragonal phase although the nearest-neighbor distance increases slightly. A much larger increase in R-italic/sub 1/ occurs at the transition to the NaCl structure, where the coordination increases from 4 to 6. The mean-square deviation in the nearest-neighbor bond length, sigma/sub 1//sup 2/, appears to be a fairly smooth function of nearest-neighbor distance, decreasing (or increasing) as R-italic/sub 1/ decreases (or increases) more or less independent of structure. Evidence from the literature was presented to suggest that the zinc-blende to tetragonal transition in CuBr (and also CuCl) should occur by shear deformation.

  3. Isobutane ignition delay time measurements at high pressure and detailed chemical kinetic simulations

    SciTech Connect (OSTI)

    Healy, D.; Curran, H.J.; Donato, N.S.; Aul, C.J.; Petersen, E.L.; Zinner, C.M.; Bourque, G.

    2010-08-15

    Rapid compression machine and shock-tube ignition experiments were performed for real fuel/air isobutane mixtures at equivalence ratios of 0.3, 0.5, 1, and 2. The wide range of experimental conditions included temperatures from 590 to 1567 K at pressures of approximately 1, 10, 20, and 30 atm. These data represent the most comprehensive set of experiments currently available for isobutane oxidation and further accentuate the complementary attributes of the two techniques toward high-pressure oxidation experiments over a wide range of temperatures. The experimental results were used to validate a detailed chemical kinetic model composed of 1328 reactions involving 230 species. This mechanism has been successfully used to simulate previously published ignition delay times as well. A thorough sensitivity analysis was performed to gain further insight to the chemical processes occurring at various conditions. Additionally, useful ignition delay time correlations were developed for temperatures greater than 1025 K. Comparisons are also made with available isobutane data from the literature, as well as with 100% n-butane and 50-50% n-butane-isobutane mixtures in air that were presented by the authors in recent studies. In general, the kinetic model shows excellent agreement with the data over the wide range of conditions of the present study. (author)

  4. High-Pressure Turbulent Flame Speeds and Chemical Kinetics of Syngas Blends with and without Impurities

    SciTech Connect (OSTI)

    Peterson, Eric; Mathieu, Olivier; Morones, Anibal; Ravi, Sankar; Keesee, Charles; Hargis, Joshua; Vivanco, Jose

    2014-12-01

    This Topical Report documents the first year of the project, from October 1, 2013 through September 30, 2014. Efforts for this project included experiments to characterize the atmospheric-pressure turbulent flame speed vessel over a range of operating conditions (fan speeds and turbulent length scales). To this end, a new LDV system was acquired and set up for the detailed characterization of the turbulence field. Much progress was made in the area of impurity kinetics, which included a numerical study of the effect of impurities such as NO2, NO, H2S, and NH3 on ignition delay times and laminar flame speeds of syngas blends at engine conditions. Experiments included a series of laminar flame speed measurements for syngas (CO/H2) blends with various levels of CH4 and C2H6 addition, and the results were compared to the chemical kinetics model of NUI Galway. Also, a final NOx kinetics mechanism including ammonia was assembled, and a journal paper was written and is now in press. Overall, three journal papers and six conference papers related to this project were published this year. Finally, much progress was made on the design of the new high-pressure turbulent flame speed facility. An overall design that includes a venting system was decided upon, and the detailed design is in progress.

  5. Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation

    SciTech Connect (OSTI)

    Jerzembeck, S.; Peters, N. [RWTH, Aachen (Germany); Pepiot-Desjardins, P.; Pitsch, H. [Department of Mechanical Engineering, Stanford University, CA (United States)

    2009-02-15

    Spherical flames of n-heptane, iso-octane, PRF 87 and gasoline/air mixtures are experimentally investigated to determine laminar burning velocities and Markstein lengths under engine-relevant conditions by using the constant volume bomb method. Data are obtained for an initial temperature of 373 K, equivalence ratios varying from {phi}=0.7 to {phi}=1.2, and initial pressures from 10 to 25 bar. To track the flame front in the vessel a dark field He-Ne laser Schlieren measurement technique and digital image processing were used. The propagating speed with respect to the burned gases and the stretch rate are determined from the rate of change of the flame radius. The laminar burning velocities are obtained through a linear extrapolation to zero stretch. The experimentally determined Markstein numbers are compared to theoretical predictions. A reduced chemical kinetic mechanism for n-heptane and iso-octane was derived from the Lawrence Livermore comprehensive mechanisms. This mechanism was validated for ignition delay times and flame propagation at low and high pressures. In summary an overall good agreement with the various experimental data sets used in the validation was obtained. (author)

  6. Chemical kinetic modeling of high pressure propane oxidation and comparison to experimental results. Revision 1

    SciTech Connect (OSTI)

    Koert, D.N.; Pitz, W.J.; Bozzelli, J.W.; Cernansky, N.P.

    1996-02-01

    A pressure dependent kinetic mechanism for propane oxidation is developed and compared to experimental data from a high pressure flow reactor. Experimental conditions range from 10--15 atm, 650--800 K, and a residence time of 198 ms for propane-air mixtures at an equivalence ratio of 0.4. The experimental results clearly indicate a negative temperature coefficient (NTC) behavior. The chemistry describing this phenomena is critical in understanding automotive engine knock and cool flame oscillations. Results of the numerical model are compared to a spectrum of stable species profiles sampled from the flow reactor. Rate constants and product channels for the reaction of propyl radicals, hydroperoxy-propyl radicals and important isomers (radicals) with O{sub 2} were estimated using thermodynamic properties, with multifrequency quantum Kassel Theory for k(E) coupled with modified strong collision analysis for fall-off. Results of the chemical kinetic model show an NTC region over nearly the same temperature regime as observed in the experiments. Sensitivity analysis identified the key reaction steps that control the rate of oxidation in the NTC region. The model reasonably simulates the profiles for many of the major and minor species observed in the experiments.

  7. Diamond-anvil high-pressure cell with improved X-ray collimation system

    DOE Patents [OSTI]

    Schiferl, David; Olinger, Barton W.; Livingston, Robert W.

    1986-01-01

    An adjustable X-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The X-ray collimation system includes a tubular insert which contains an X-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric O-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the O-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  8. Diamond-anvil high-pressure cell with improved x-ray collimation system

    DOE Patents [OSTI]

    Schiferl, D.; Olinger, B.W.; Livingston, R.W.

    1984-03-30

    An adjustable x-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The x-ray collimation system includes a tubular insert which contains an x-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric o-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the o-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  9. Neutron diffraction and electrical transport studies on magnetic ordering in terbium at high pressures and low temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas, Sarah A.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; Vohra, Yogesh K.; Chesnut, Gary N.; Weir, Samuel T.; Tulk, Christopher A.; dos Santos, Antonio M.

    2013-06-11

    Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate the onset of ferromagnetic order as a function of pressure. The electrical resistance measurements show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of this ferromagnetic transition decreases from approximately 240 K at ambient pressure at a rate of –16.7 K/GPa up to a pressure of 3.6 GPa, at which point the onset of ferromagnetic order is suppressed. Neutron diffraction measurements as a function ofmore » pressure at temperatures ranging from 90 K to 290 K confirm that the change of slope in the resistance is associated with the ferromagnetic ordering, since this occurs at pressures similar to those determined from the resistance results at these temperatures. Furthermore, a change in ferromagnetic ordering as the pressure is increased above 3.6 GPa is correlated with the phase transition from the ambient hexagonal close packed (hcp) structure to an α-Sm type structure at high pressures.« less

  10. Diamond as a high pressure gauge up to 2.7 Mbar (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Calibration curve of the Raman shift versus pressure is extended up to 270 GPa and ... GIGA PA; PRESSURE RANGE MEGA PA 10-100; RAMAN SPECTRA; SYNTHESIS CARBON; ELEMENTS; ...

  11. High-pressure X-ray diffraction and X-ray emission studies on iron-bearing silicate perovskite under high pressures

    SciTech Connect (OSTI)

    Lin, Jung-Fu; Speciale, Sergio; Prakapenka, Vitali B.; Dera, Przemek; Lavina, Babara; Watson, Heather C.

    2010-06-22

    Iron-bearing silicate perovskite is believed to be the most abundant mineral of the Earth's lower mantle. Recent studies have shown that Fe{sup 2+} exists predominantly in the intermediate-spin state with a total spin number of 1 in silicate perovskite in the lower part of the lower mantle. Here we have measured the spin states of iron and the pressure-volume relation in silicate perovskite [(Mg{sub 0.6},Fe{sub 0.4})SiO{sub 3}] at pressure conditions relevant to the lowermost mantle using in situ X-ray emission and X-ray diffraction in a diamond cell. Our results showed that the intermediate-spin Fe{sup 2+} is stable in the silicate perovskite up to {approx} 125 GPa but starts to transition to the low-spin state at approximately 135 GPa. Concurrent X-ray diffraction measurements showed a decrease of approximately 1% in the unit cell volume in the silicate perovskite [(Mg{sub 0.6},Fe{sub 0.4})SiO{sub 3}], which is attributed to the intermediate-spin to the low-spin transition. The transition pressure coincides with the pressure conditions of the lowermost mantle, raising the possibility of the existence of the silicate perovskite phase with the low-spin Fe{sup 2+} across the transition from the post-perovskite to the perovskite phases in the bottom of the D{double_prime} layer.

  12. Experimental observation of standing wave effect in low-pressure very-high-frequency capacitive discharges

    SciTech Connect (OSTI)

    Liu, Yong-Xin; Gao, Fei; Liu, Jia; Wang, You-Nian

    2014-07-28

    Radial uniformity measurements of plasma density were carried out by using a floating double probe in a cylindrical (21?cm in electrode diameter) capacitive discharge reactor driven over a wide range of frequencies (27220 MHz). At low rf power, a multiple-node structure of standing wave effect was observed at 130?MHz. The secondary density peak caused by the standing wave effect became pronounced and shifts toward the axis as the driving frequency further to increase, indicative of a much more shortened standing-wave wavelength. With increasing rf power, the secondary density peak shift toward the radial edge, namely, the standing-wave wavelength was increased, in good qualitative agreement with the previous theory and simulation results. At higher pressures and high frequencies, the rf power was primarily deposited at the periphery of the electrode, due to the fact that the waves were strongly damped as they propagated from the discharge edge into the center.

  13. Measurement and computation of heat transfer in high-pressure compressor drum geometries with axial throughflow

    SciTech Connect (OSTI)

    Long, C.A.; Morse, A.P.; Tucker, P.G.

    1997-01-01

    This paper makes comparisons between CFD computations and experimental measurements of heat transfer for the axial throughflow of cooling air in a high-pressure compressor spool rig and a plane cavity rig. The heat transfer measurements are produced using fluxmeters and by the conduction solution method from surface temperature measurements. Numerical predictions are made by solving the Navier-Stokes equations in a full three-dimensional, time-dependent form using the finite-volume method. Convergence is accelerated using a multigrid algorithm and turbulence modeled using a simple mixing length formulation. Notwithstanding systematic differences between the measurements and the computations, the level of agreement can be regarded as promising in view of the acknowledged uncertainties in the experimental data, the limitations of the turbulence model and, perhaps more importantly, the modest grid densities used for the computations.

  14. Dynamics of multiple double layers in high pressure glow discharge in a simple torus

    SciTech Connect (OSTI)

    Kumar Paul, Manash, E-mail: manashkr@gmail.com [Department of Physics, National Institute of Technology Agartala, Tripura799 046 (India); Sharma, P. K.; Thakur, A.; Kulkarni, S. V.; Bora, D. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat382 428 (India)

    2014-06-15

    Parametric characterization of multiple double layers is done during high pressure glow discharge in a toroidal vessel of small aspect ratio. Although glow discharge (without magnetic field) is known to be independent of device geometry, but the toroidal boundary conditions are conducive to plasma growth and eventually the plasma occupy the toroidal volume partially. At higher anode potential, the visibly glowing spots on the body of spatially extended anode transform into multiple intensely luminous spherical plasma blob structures attached to the tip of the positive electrode. Dynamics of multiple double layers are observed in argon glow discharge plasma in presence of toroidal magnetic field. The radial profiles of plasma parameters measured at various toroidal locations show signatures of double layer formation in our system. Parametric dependence of double layer dynamics in presence of toroidal magnetic field is presented here.

  15. An assessment of the Tongonan geothermal reservoir, Philippines, at high-pressure operating conditions

    SciTech Connect (OSTI)

    Sarmiento, Z.F.; Aquino, B.G.; Aunzo, Z.P.; Rodis, N.O.; Saw, V.S.

    1993-10-01

    An evaluation of the Tongonan geothermal reservoir was conducted to improve the power recovery through reservoir and process optimization. The performance of the existing production wells was reviewed and the response of the field based on the anticipated production levels was simulated at various operating conditions. The results indicate that the Tongonan geothermal reservoir can be exploited at a high pressure operating condition with substantial improvement in the field capacity. The authors calculate that the Upper Mahiao and the Malitbog sectors of the Tongonan field are capable of generating 395 MWe at 1.0 MPa abs., on top of the existing 112.5 MWe plant, compared with 275 MWe if the field is operated at 0.6 MPa abs. The total capacity for the proposed Leyte A 640 MWe expansion can be generated from these sectors with the additional power to be tapped from Mahanagdong and Alto Peak sectors.

  16. Instrument for stable high temperature Seebeck coefficient and resistivity measurements under controlled oxygen partial pressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ihlefeld, Jon F.; Brown-Shaklee, Harlan James; Sharma, Peter Anand

    2015-04-28

    The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO2) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO2-induced drifts in thermocouple readings. Oxygen equilibriummore » is monitored using both an O2 sensor and the transient behavior of the resistance as a proxy. A pO2 range of 10-25–100 atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt–Rh thermocouple wire, and a Bi2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO2 on a 1 % Nb-doped SrTiO3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. Thus, an approximately 11% increase in power factor over a pO2 range of 10-19–10-8 atm at 973 K for the donor-doped single crystals is observed.« less

  17. Instrument for stable high temperature Seebeck coefficient and resistivity measurements under controlled oxygen partial pressure

    SciTech Connect (OSTI)

    Ihlefeld, Jon F.; Brown-Shaklee, Harlan James; Sharma, Peter Anand

    2015-04-28

    The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO2) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO2-induced drifts in thermocouple readings. Oxygen equilibrium is monitored using both an O2 sensor and the transient behavior of the resistance as a proxy. A pO2 range of 10-25–100 atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt–Rh thermocouple wire, and a Bi2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO2 on a 1 % Nb-doped SrTiO3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. Thus, an approximately 11% increase in power factor over a pO2 range of 10-19–10-8 atm at 973 K for the donor-doped single crystals is observed.

  18. High pressures and the Kondo gap in Ce{sub 3}Bi{sub 4}Pt{sub 3}

    SciTech Connect (OSTI)

    Cooley, J.C.; Aronson, M.C.; Canfield, P.C.

    1997-03-01

    We have measured the electrical resistivity {rho}(T) of single crystals of Ce{sub 3}Bi{sub 4}Pt{sub 3} for temperatures from 1.2 to 300 K, and pressures from 1 bar to 145 kbar. The transport is dominated at high temperatures by excitations across a small activation gap {Delta}, which increases rapidly with pressure. The low-temperature transport involves variable range hopping among extrinsic states in the gap. The spatial extent of the in-gap states reflects coupling to conduction-electron states, and is strongly modified as pressure enhances {Delta}. Despite the strong pressure dependence of {Delta}, a direct correspondence between single-ion energetics and the measured gap is maintained, and the role of valence fluctuations is minimal even at the highest pressures. {copyright} {ital 1997} {ital The American Physical Society}

  19. Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection

    SciTech Connect (OSTI)

    Grant, Marion B.

    2012-04-30

    In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to these same feature surfaces to withstand the pulsating UHIP diesel injection without fatigue failure, through the expected life of the fuel system's components (10,000 hours for the pump and common rail, 5000 hours for the injector). The potential to Caterpillar of this fueling approach and the overall emissions reduction system is the cost savings of the fuel, the cost savings of not requiring a full emissions module and other emissions hardware, and the enabling of the use of biodiesel fuel due to the reduced dependency on after-treatment. A proprietary production CRS generating process was developed to treat the interior of the sac-type injector nozzle tip region (particularly for the sac region). Ninety-five tips passed ultra high pulsed pressure fatigue testing with no failures assignable to treated surfaces or materials. It was determined that the CRS impartation method does not weaken the tip internal seat area. Caterpillar Fuel Systems - Product Development accepts that the CRS method initial production technical readiness level has been established. A method to gage CRS levels in production was not yet accomplished, but it is believed that monitoring process parameters call be used to guarantee quality. A precision profiling process for injector seat and sac regions has been shown to be promising but not yet fully confirmed. It was demonstrated that this precision profiling process can achieve form and geometry to well under an aggressively small micron peak-to-valley and that there are no surface flaws that approach an even tighter micron peak-to-valley tolerance. It is planned to purchase machines to further develop and move the process towards production. The system is targeted towards the high-power diesel electric power generators and high-power diesel marine power generators, with displacement from 20 liters to 80 liters and with power from 800 brake horsepower (BHP) to 3200BHP (0.6 megawatts to 2.4 megawatts). However, with market adoption, this system has the potential to meet EPA exhaust standards for all diesel engines nine liters and up, or 300B

  20. Mechanical behaviors and phase transition of Ho{sub 2}O{sub 3} nanocrystals under high pressure

    SciTech Connect (OSTI)

    Yan, Xiaozhi; Ren, Xiangting; He, Duanwei E-mail: yangwg@hpstar.ac.cn; Chen, Bin; Yang, Wenge E-mail: yangwg@hpstar.ac.cn

    2014-07-21

    Mechanical properties and phase transition often show quite large crystal size dependent behavior, especially at nanoscale under high pressure. Here, we have investigated Ho{sub 2}O{sub 3} nanocrystals with in-situ x-ray diffraction and Raman spectroscopy under high pressure up to 33.5 GPa. When compared to the structural transition routine cubic -> monoclinic -> hexagonal phase in bulk Ho{sub 2}O{sub 3} under high pressure, the nano-sized Ho{sub 2}O{sub 3} shows a much higher onset transition pressure from cubic to monoclinic structure and followed by a pressure-induced-amorphization under compression. The detailed analysis on the Q (Q = 2π/d) dependent bulk moduli reveals the nanosized Ho{sub 2}O{sub 3} particles consist of a clear higher compressible shell and a less compressible core. Insight into these phenomena shed lights on micro-mechanism studies of the mechanical behavior and phase evolution for nanomaterials under high pressure, in general.

  1. Advanced Models of LWR Pressure Vessel Embrittlement for Low Flux-HighFluence Conditions

    SciTech Connect (OSTI)

    Odette, G. Robert; Yamamoto, Takuya

    2013-06-17

    Neutron embrittlement of reactor pressure vessels (RPVs) is an unresolved issue for light water reactor life extension, especially since transition temperature shifts (TTS) must be predicted for high 80-year fluence levels up to approximately 1,020 n/cm{sup 2}, far beyond the current surveillance database. Unfortunately, TTS may accelerate at high fluence, and may be further amplified by the formation of late blooming phases that result in severe embrittlement even in low-copper (Cu) steels. Embrittlement by this mechanism is a potentially significant degradation phenomenon that is not predicted by current regulatory models. This project will focus on accurately predicting transition temperature shifts at high fluence using advanced physically based, empirically validated and calibrated models. A major challenge is to develop models that can adjust test reactor data to account for flux effects. Since transition temperature shifts depend on synergistic combinations of many variables, flux-effects cannot be treated in isolation. The best current models systematically and significantly under-predict transition temperature at high fluence, although predominantly for irradiations at much higher flux than actual RPV service. This project will integrate surveillance, test reactor and mechanism data with advanced models to address a number of outstanding RPV embrittlement issues. The effort will include developing new databases and preliminary models of flux effects for irradiation conditions ranging from very low (e.g., boiling water reactor) to high (e.g., accelerated test reactor). The team will also develop a database and physical models to help predict the conditions for the formation of Mn-Ni-Si late blooming phases and to guide future efforts to fully resolve this issue. Researchers will carry out other tasks on a best-effort basis, including prediction of transition temperature shift attenuation through the vessel wall, remediation of embrittlement by annealing, and fracture toughness master curve issues.

  2. High pressure elastic properties of minerals from ab initio simulations: The case of pyrope, grossular and andradite silicate garnets

    SciTech Connect (OSTI)

    Erba, A. Mahmoud, A.; Dovesi, R.; Belmonte, D.

    2014-03-28

    A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed.

  3. High-Pressure Micellar Solutions of Symmetric and Asymmetric Styrene?Diene Diblocks in Compressible Near Critical Solvents: Micellization Pressures and Cloud Pressures Respond but Micellar Cloud Pressures Insensitive to Copolymer Molecular Weight, Concentration, and Block Ratio Changes

    SciTech Connect (OSTI)

    Winoto, Winoto; Tan, Sugata; Shen, Youqin; Radosz, Maciej; Hong, Kunlun; Mays, Jimmy

    2009-01-01

    Micellar solutions of polystyrene-block-polybutadiene and polystyrene-block-polyisoprene in propane are found to exhibit significantly lower cloud pressures than the corresponding hypothetical nonmicellar solutions. Such a cloud-pressure reduction indicates the extent to which micelle formation enhances the apparent diblock solubility in near-critical and hence compressible propane. Concentration-dependent pressure-temperature points beyond which no micelles can be formed, referred to as the micellization end points, are found to depend on the block type, size, and ratio. The cloud-pressure reduction and the micellization end point measured for styrene-diene diblocks in propane should be characteristic of all amphiphilic diblock copolymer solutions that form micelles in compressible solvents.

  4. Chemical kinetic modeling of high pressure propane oxidation and comparison to experimental results

    SciTech Connect (OSTI)

    Koert, D.N.; Pitz, W.J.; Bozzelli, J.W.; Cernansky, N.P.

    1995-11-08

    A pressure dependent kinetic mechanism for propane oxidation is developed and compared to experimental data from a high pressure flow reactor. The experiment conditions range from 10--15 atm, 650--800 K, and were performed at a residence time of 200 {micro}s for propane-air mixtures at an equivalence ratio of 0.4. The experimental results include data on negative temperature coefficient (NTC) behavior, where the chemistry describing this phenomena is considered critical in understanding automotive engine knock and cool flame oscillations. Results of the numerical model are compared to a spectrum of stable species profiles sampled from the flow reactor. Rate constants and product channels for the reaction of propyl radicals, hydroperoxy-propyl radicals and important isomers with O{sub 2} were estimated using thermodynamic properties, with multifrequency quantum Kassel Theory for k(E) coupled with modified strong collision analysis for fall-off. Results of the chemical kinetic model show an NTC region over nearly the same temperature regime as observed in the experiments. The model simulates properly the production of many of the major and minor species observed in the experiments. Numerical simulations show many of the key reactions involving propylperoxy radicals are in partial equilibrium at 10--15 atm. This indicates that their relative concentrations are controlled by a combination of thermochemistry and rate of minor reaction channels (bleed reactions) rather than primary reaction rates. This suggests that thermodynamic parameters of the oxygenated species, which govern equilibrium concentrations, are important. The modeling results show propyl radical and hydroperoxy-propyl radicals reaction with O{sub 2} proceeds, primarily, through thermalized adducts, not chemically activated channels.

  5. High Temperature and Pressure Steam-H2 Interaction with Candidate Advanced LWR Fuel Claddings

    SciTech Connect (OSTI)

    Pint, Bruce A

    2012-08-01

    This report summarizes the work completed to evaluate cladding materials that could serve as improvements to Zircaloy in terms of accident tolerance. This testing involved oxidation resistance to steam or H{sub 2}-50% steam environments at 800-1350 C at 1-20 bar for short times. A selection of conventional alloys, SiC-based ceramics and model alloys were used to explore a wide range of materials options and provide guidance for future materials development work. Typically, the SiC-based ceramic materials, alumina-forming alloys and Fe-Cr alloys with {ge}25% Cr showed the best potential for oxidation resistance at {ge}1200 C. At 1350 C, FeCrAl alloys and SiC remained oxidation resistant in steam. Conventional austenitic steels do not have sufficient oxidation resistance with only {approx}18Cr-10Ni. Higher alloyed type 310 stainless steel is protective but Ni is not a desirable alloy addition for this application and high Cr contents raise concern about {alpha}{prime} formation. Higher pressures (up to 20.7 bar) and H{sub 2} additions appeared to have a limited effect on the oxidation behavior of the most oxidation resistant alloys but higher pressures accelerated the maximum metal loss for less oxidation resistant steels and less metal loss was observed in a H{sub 2}-50%H{sub 2}O environment at 10.3 bar. As some of the results regarding low-alloyed FeCrAl and Fe-Cr alloys were unexpected, further work is needed to fundamentally understand the minimum Cr and Al alloy contents needed for protective behavior in these environments in order to assist in alloy selection and guide alloy development.

  6. High pressure low temperature studies on 1-2-2 iron-based superconductors using designer diamond cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Uhoya, Walter O.; Tsoi, Georgiy M.; Vohra, Yogesh K.; Mitchell, Jonathan, E.; Safa-Sefat, Athena; Weir, Samuel

    2013-01-01

    In this study, high pressure low temperature electrical resistance measurements were carried out on a series of 122 iron-based superconductors using a designer diamond anvil cell. These studies were complemented by image plate x-ray diffraction measurements under high pressures and low temperatures at beamline 16-BM-D, HPCAT, Advanced Photon Source. A common feature of the 1-2-2 iron-based materials is the observation of anomalous compressibility effects under pressure and a Tetragonal (T) to Collapsed Tetragonal (CT) phase transition under high pressures. Specific studies on antiferromagnetic spin-density-wave Ba0.5Sr0.5Fe2As2 and Ba(Fe0.9Ru0.1)2As2 samples are presented to 10 K and 41 GPa. The collapsed tetragonal phasemore » was observed at a pressure of 14 GPa in Ba0.5Sr0.5Fe2As2 at ambient temperature. The highest superconducting transition temperature in Ba0.5Sr0.5Fe2As2 was observed to be at 32 K at a pressure of 4.7 GPa. The superconductivity was observed to be suppressed on transformation to the CT phase in 122 materials.« less

  7. High-pressure mechanical and sonic properties of a Devonian shale from West Virginia

    SciTech Connect (OSTI)

    Heard, H.C.; Lin, W.

    1986-01-01

    Static mechanical properties and sonic velocities were determined on each of four members of the Devonian shale from Columbia Gas Transmission's well 20403, Huntington, West Virginia. They were: Pressure - volume data to 4.0 GPa; Compressive strength at confining pressures up to 300 MPa, both parallel and perpendicular to bedding. Extensile strength at 100 to 700 MPa confining pressure, both parallel and perpendicular to bedding. Loading and unloading path in uniaxial strain at 20 to 500 MPa confining pressure, both parallel and perpendicular to bedding. Tensile strength at ambient pressure, parallel and perpendicular to bedding. Shear and compressional wave velocities at confining pressures up to 1000 MPa parallel, at 45/sup 0/, and perpendicular to bedding. Results are presented and discussed. 32 refs., 10 figs., 10 tabs.

  8. High-pressure Storage Vessels for Hydrogen, Natural Gas and Hydrogen-Natural Gas Blends

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  9. Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

    SciTech Connect (OSTI)

    Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott; Asay, James Russell

    2010-09-01

    A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.

  10. High-pressure generation using double stage micro-paired diamond anvils shaped by focused ion beam

    SciTech Connect (OSTI)

    Sakai, Takeshi Ohfuji, Hiroaki; Yagi, Takehiko; Irifune, Tetsuo; Ohishi, Yasuo; Hirao, Naohisa; Suzuki, Yuya; Kuroda, Yasushi; Asakawa, Takayuki; Kanemura, Takashi

    2015-03-15

    Micron-sized diamond anvils with a 3 ?m culet were successfully processed using a focused ion beam (FIB) system and the generation of high pressures was confirmed using the double stage diamond anvil cell technique. The difficulty of aligning two second-stage micro-anvils was solved via the paired micro-anvil method. Micro-manufacturing using a FIB system enables us to control anvil shape, process any materials, including nano-polycrystalline diamond and single crystal diamond, and assemble the sample exactly in a very small space between the second-stage anvils. This method is highly reproducible. High pressures over 300 GPa were achieved, and the pressure distribution around the micro-anvil culet was evaluated by using a well-focused synchrotron micro-X-ray beam.

  11. Comparison of the high-pressure behavior of the cerium oxides Ce2O3 and CeO2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lipp, M. J.; Jeffries, J. R.; Cynn, H.; Park Klepeis, J. -H.; Evans, W. J.; Mortensen, D. R.; Seidler, G. T.; Xiao, Y.; Chow, P.

    2016-02-09

    We studied the high-pressure behavior of Ce2O3 using angle-dispersive x-ray diffraction to 70 GPa and compared with that of CeO2. Up to the highest pressure Ce2O3 remains in the hexagonal phase (space group 164, P ¯32/m1) typical for the lanthanide sesquioxides. We did not observe a theoretically predicted phase instability for 30 GPa. The isothermal bulk modulus and its pressure derivative for the quasihydrostatic case are B0 = 111 ± 2 GPa, B'0 = 4.7 ± 0.3, and for the case without pressure-transmitting medium B0 = 104 ±4 GPa, B'0 = 6.5 ± 0.4. Starting from ambient-pressure magnetic susceptibility measurementsmore » for both oxides in highly purified form,we find that the Ce atom in Ce2O3 behaves like a trivalent Ce3+ ion (2.57μB per Ce atom) in contrast to previously published data. Since x-ray emission spectroscopy of the Lγ (4d3/2 → 2p1/2) transition is sensitive to the 4f -electron occupancy, we also followed the high-pressure dependence of this line for both oxides up to 50 GPa. We observed no change of the respective line shape, indicating that the 4f -electron configuration is stable for both materials. We posit from this data that the 4f electrons do not drive the volume collapse of CeO2 from the high-symmetry, low-pressure fluorite structure to the lower-symmetry orthorhombic phase.« less

  12. Effects of argon gas pressure on its metastable-state density in high-density plasmas

    SciTech Connect (OSTI)

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-15

    The effect of argon gas pressure on its metastable density in inductively coupled plasmas (ICPs) is investigated by using the laser-induced fluorescence method. Our results show that the metastable-state density of argon varies with the gas pressure depending on the measurement position; the density decreases with the pressure at a position far from the ICP antenna, whereas it increases with the pressure at a position near the antenna. This contrast in the metastable-state density trend with the pressure is explained by considering the electron temperature variations at the two measurement positions. The theoretical interpretation and calculation using a global model are also addressed in detail in this paper.

  13. Benzene under high pressure: A story of molecular crystals transforming to saturated networks, with a possible intermediate metallic phase

    SciTech Connect (OSTI)

    Wen, Xiao-Dong; Hoffmann, Roald; Ashcroft, N. W.

    2011-01-01

    In a theoretical study, benzene is compressed up to 300 GPa. The transformations found between molecular phases generally match the experimental findings in the moderate pressure regime (<20 GPa): phase I (Pbca) is found to be stable up to 4 GPa, while phase II (P43212) is preferred in a narrow pressure range of 47 GPa. Phase III (P21/c) is at lowest enthalpy at higher pressures. Above 50 GPa, phase V (P21 at 0 GPa; P21/c at high pressure) comes into play, slightly more stable than phase III in the range of 5080 GP, but unstable to rearrangement to a saturated, four-coordinate (at C), one-dimensional polymer. Actually, throughout the entire pressure range, crystals of graphane possess lower enthalpy than molecular benzene structures; a simple thermochemical argument is given for why this is so. In several of the benzene phases there nevertheless are substantial barriers to rearranging the molecules to a saturated polymer, especially at low temperatures. Even at room temperature these barriers should allow one to study the effect of pressure on the metastable molecular phases. Molecular phase III (P21/c) is one such; it remains metastable to higher pressures up to ~200 GPa, at which point it too rearranges spontaneously to a saturated, tetracoordinate CH polymer. At 300 K the isomerization transition occurs at a lower pressure. Nevertheless, there may be a narrow region of pressure, between P = 180 and 200 GPa, where one could find a metallic, molecular benzene state. We explore several lower dimensional models for such a metallic benzene. We also probe the possible first steps in a localized, nucleated benzene polymerization by studying the dimerization of benzene molecules. Several new (C6H6)2 dimers are predicted.

  14. HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect (OSTI)

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olsen; Deanna Combs; Dhiraj Dembla; Leonel Gomez

    2003-12-10

    The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration will being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the U.S.

  15. Precipitation in AlMg solid solution prepared by solidification under high pressure

    SciTech Connect (OSTI)

    Jie, J.C., E-mail: jiejc@dlut.edu.cn [Laboratory of Special Processing of Raw Materials and School of Material Science and Engineering, Dalian University of Technology, Dalian, 116024 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, H.W.; Zou, C.M.; Wei, Z.J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Li, T.J. [Laboratory of Special Processing of Raw Materials and School of Material Science and Engineering, Dalian University of Technology, Dalian, 116024 (China)

    2014-01-15

    The precipitation in AlMg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the ?-Al{sub 12}Mg{sub 17} phase is formed and the ?? phase cannot be observed in the solid solution during ageing process. The precipitation of ? and ? phases takes place in a non-uniform manner during heating process, i.e. the ? and ? phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solution appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in AlMg solid solution. The direct transformation from the ? to ? phase is observed after ageing at 423 K for 24 h. It is considered that the ? phase is formed through a peritectoid reaction of ? + ? ? ? which needs the diffusion of Mg atoms across the interface of ?/? phases. - Highlights: The ? phase is formed and the ?? phase is be observed in Al(Mg) solid solution. Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 C. The ? phase is formed through a peritectoid reaction of ? + ? ? ?.

  16. Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

    SciTech Connect (OSTI)

    Choi, Kyoo Sil; Li, Dongsheng; Sun, Xin; Li, Mei; Allison, John

    2013-06-01

    In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) Magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses to induce the fracture by element removal, leading to the prediction of ductility. The results in this study show that the ductility monotonically decreases as the pore volume fraction increases and that the effect of skin region on the ductility is noticeable under the condition of same local pore volume fraction in the center region of the sample and its existence can be beneficial for the improvement of ductility. The further synthetic microstructure-based 3D finite element analyses are planned to investigate the effects of pore size and pore size distribution.

  17. Rotational coherent anti-Stokes Raman spectroscopy (CARS) applied to thermometry in high-pressure hydrocarbon flames

    SciTech Connect (OSTI)

    Vestin, Fredrik; Sedarsky, David; Collin, Robert; Alden, Marcus; Linne, Mark; Bengtsson, Per-Erik

    2008-07-15

    Dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) has been investigated for thermometry under high-pressure and high-temperature conditions, in the product gas of fuel-lean hydrocarbon flames up to 1 MPa. Initial calibration measurements made in nitrogen, oxygen, and air, at pressures up to 1.55 MPa and temperatures up to 1800 K, showed good agreement between experimental and theoretical spectra. In the high-pressure flames, high-quality single-shot spectra were recorded in which nitrogen lines dominated, and peaks from CO{sub 2} and O{sub 2} were also visible. A spectral model including the species N{sub 2}, CO{sub 2}, and O{sub 2}, as well as the best available Raman linewidth models for flame thermometry, were used to evaluate the experimental spectra. Experimental problems as well as considerations related to the spectral evaluation are discussed. This work demonstrates the significant potential of DB-RCARS thermometry for applications in high-pressure and high-temperature environments. (author)

  18. High pressure feeder and method of operating to feed granular or fine materials

    DOE Patents [OSTI]

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2014-10-07

    A coal feed system to feed pulverized low rank coals containing up to 25 wt % moisture to gasifiers operating up to 1000 psig pressure is described. The system includes gas distributor and collector gas permeable pipes imbedded in the lock vessel. Different methods of operation of the feed system are disclosed to minimize feed problems associated with bridging and packing of the pulverized coal. The method of maintaining the feed system and feeder device exit pressures using gas addition or extraction with the pressure control device is also described.

  19. Comparison of the high-pressure behavior of the cerium oxides C e 2 O 3 and

    Office of Scientific and Technical Information (OSTI)

    Ce O 2 (Journal Article) | SciTech Connect C e 2 O 3 and Ce O 2 Citation Details In-Document Search This content will become publicly available on February 9, 2017 Title: Comparison of the high-pressure behavior of the cerium oxides C e 2 O 3 and Ce O 2 We studied the high-pressure behavior of Ce2O3 using angle-dispersive x-ray diffraction to 70 GPa and compared with that of CeO2. Up to the highest pressure Ce2O3 remains in the hexagonal phase (space group 164, P ¯32/m1) typical for the

  20. Liquid film thickness inside the high pressure swirl injectors: Real scale measurement and evaluation of analytical equations

    SciTech Connect (OSTI)

    Moon, Seoksu; Bae, Choongsik; Abo-Serie, Essam

    2010-02-15

    Liquid film thickness inside two swirl injectors for direct injection (DI) gasoline engines was measured at different injection pressure conditions ranging from 2.0 to 7.0 MPa and then previous analytical and empirical equations were examined from the experimental results. Based on the evaluation, a new equation for the liquid film thickness inside the swirl injectors was introduced. A direct photography using two real scale transparent nozzles and a pulsed light source was employed to measure the liquid film thickness inside the swirl injectors. The error in the liquid film thickness measurement, generated from different refractive indices among transparent nozzle, fuel and air, was estimated and corrected based on the geometric optics. Two injectors which have different nozzle diameter and nozzle length were applied to introduce a more general empirical equation for the liquid film thickness inside the pressure swirl injectors. The results showed that the liquid film thickness remains constant at the injection pressures for direct injection gasoline engines while the ratio of nozzle length to nozzle diameter (L/D) shows significant effect on the liquid film thickness. The previously introduced analytical and empirical equations for relatively low injection pressure swirl injectors overestimated the effect of injection pressure at the operating range of high pressure swirl injectors and, in addition, the effect of L/D ratio and swirler geometry was rarely considered. A new empirical equation was suggested based on the experimental results by taking into account the effects of fuel properties, nozzle diameter, nozzle length and swirler geometry. (author)

  1. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Assessment of High Value Surveillance Materials

    Broader source: Energy.gov [DOE]

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the...

  2. High-pressure behavior and thermoelastic properties of niobium studied by in situ x-ray diffraction

    SciTech Connect (OSTI)

    Zou, Yongtao E-mail: yongtaozou6@gmail.com; Li, Baosheng; Qi, Xintong; Wang, Xuebing; Chen, Ting; Li, Xuefei; Welch, David

    2014-07-07

    In situ synchrotron energy dispersive x-ray diffraction (XRD) experiments on Nb have been conducted at pressures up to 6.4 GPa and temperatures up to 1073 K. From the pressure-volume-temperature measurements, thermoelastic parameters were derived for the first time for Nb based on the thermal pressure (?P{sub th}) equation of state (EOS), modified high-T Birch-Murnaghan EOS, and Mie-Grneisen-Debye EOS. With the pressure derivative of the bulk modulus K{sub T}{sup } fixed at 4.0, we obtained the ambient isothermal bulk modulus K{sub T0}=174(5) GPa, the temperature derivative of bulk modulus at constant pressure (?K{sub T}/?T){sub P}=-0.060(8) GPa K? and at constant volume (?K{sub T}/?T){sub V}=-0.046(8) GPa K?, the volumetric thermal expansivity ?{sub T}(T)=2.3(3)10??+0.3(2)10??T (K?), as well as the pressure dependence of thermal expansion (??/?P){sub T}=(?2.00.4)10?? K? GPa?. Fitting the present data to the Mie-Grneisen-Debye EOS with Debye temperature ??=276.6 K gives ??=1.27(8) and K{sub T0}=171(3) GPa at a fixed value of q=3.0. The ambient isothermal bulk modulus and Grneisen parameter derived from this work are comparable to previously reported values from both experimental and theoretical studies. An in situ high-resolution, angle dispersive XRD study on Nb did not indicate any anomalous behavior related to pressure-induced electronic topological transitions at ~5 GPa as has been reported previously.

  3. Vehicle Technologies Office 2013 Merit Review: A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines

    Broader source: Energy.gov [DOE]

    A presentation given by the University of Michigan at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a university consortium to research efficient and clean high-pressure lean burn engines.

  4. Determination of the relative resistance to ignition of selected turbopump materials in high-pressure, high-temperature, oxygen environments, volume 1. Interim report

    SciTech Connect (OSTI)

    Stoltzfus, J.M.; Benz, F.J.

    1986-07-01

    Advances in the design of the liquid oxygen, liquid hydrogen engines for the Space Transportation System call for the use of warm, high-pressure oxygen as the driving gas in the liquid oxygen turbopump. The NASA Lewis Research Center requested the NASA White Sands Test Facility (WSTF) to design a test program to determine the relative resistance to ignition of nine selected turbopump materials: Hastelloy X, Inconel 600, Invar 36, Monel K-500, nickel 200, silicon carbide, stainless steel 316, and zirconium copper. The materials were subjected to particle impact and to frictional heating in high-pressure oxygen.

  5. FY07 LDRD Final Report Synthesis under High Pressure and Temperature of New Metal Nitrides

    SciTech Connect (OSTI)

    Crowhurst, J C; Sadigh, B; Aberg, D; Zaug, J M; Goncharov, A F

    2008-09-23

    The original aim of this LDRD was to determine with unprecedented precision the melting curve of iron to geophysically relevant pressures. In the course of developing much of the technology and techniques required to obtain this information we have encountered and studied novel chemical reactions some of whose products are stable or metastable under ambient conditions. Specifically we have synthesized nitrides of the platinum group metals including platinum, iridium, and palladium. We have also carried out in depth first principles theoretical investigations into the nature of these materials. We believed that the scientific impact of continuing this work would be greater than that of the original goals of this project. Indeed the work has led to a number of high profile publications with additional publications in preparation. While nitrides of the transition metals are generally of tremendous technological importance, those of the noble metals in particular have enjoyed much experimental and theoretical attention in the very short time since they were first synthesized. The field was and clearly remains open for further study. While the scientific motivation for this research is different from that originally proposed, many of the associated methods in which we have now gained experience are similar or identical. These include use of the diamond anvil cell combined with technologies to generate high temperatures, the in-situ technique of Raman scattering using our purpose-built, state-of-the-art system, analytical techniques for determining the composition of recovered samples such as x-ray photoelectron spectroscopy, and finally synchrotron-based techniques such as x-ray diffraction for structural and equation of state determinations. Close interactions between theorists and experimentalists has and will continue to allow our group to rapidly and reliably interpret complicated results on the structure and dynamics of these compounds and also additional novel materials. Although the purely scientific dividends of this project have been substantial, there remains the possibility of a technological application--now that nitrides with likely desirable properties have been shown to exist, large-scale synthesis techniques can be considered.

  6. THE STRUCTURE OF SURFACE H{sub 2}O LAYERS OF ICE-COVERED PLANETS WITH HIGH-PRESSURE ICE

    SciTech Connect (OSTI)

    Ueta, S.; Sasaki, T. E-mail: takanori@geo.titech.ac.jp

    2013-10-01

    Many extrasolar (bound) terrestrial planets and free-floating (unbound) planets have been discovered. While the existence of bound and unbound terrestrial planets with liquid water is an important question, of particular importance is the question of these planets' habitability. Even for a globally ice-covered planet, geothermal heat from the planetary interior may melt the interior ice, creating an internal ocean covered by an ice shell. In this paper, we discuss the conditions that terrestrial planets must satisfy for such an internal ocean to exist on the timescale of planetary evolution. The question is addressed in terms of planetary mass, distance from a central star, water abundance, and abundance of radiogenic heat sources. In addition, we investigate the structure of the surface H{sub 2}O layers of ice-covered planets by considering the effects of ice under high pressure (high-pressure ice). As a fiducial case, a 1 M{sub ?} planet at 1 AU from its central star and with 0.6-25 times the H{sub 2}O mass of the Earth could have an internal ocean. We find that high-pressure ice layers may appear between the internal ocean and the rock portion on a planet with an H{sub 2}O mass over 25 times that of the Earth. The planetary mass and abundance of surface water strongly restrict the conditions under which an extrasolar terrestrial planet may have an internal ocean with no high-pressure ice under the ocean. Such high-pressure ice layers underlying the internal ocean are likely to affect the habitability of the planet.

  7. Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment

    SciTech Connect (OSTI)

    Rich Ciora; Paul KT Liu

    2012-06-27

    In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.

  8. Structural distortions in 5-10 nm silver nanoparticles under high pressure

    SciTech Connect (OSTI)

    Koski, Kristie J.; Kamp, Noelle M.; Kunz, Martin; Knight, Jason K.; Alivisatos, A.P.; Smith, R.K.

    2008-10-13

    We present experimental evidence that silver nanoparticles in the size range of 5-10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. We have used x-ray diffraction with a synchrotron light source to investigate pressure-dependent and size-dependent trends in the crystal structure of silver nanoparticles in a hydrostatic medium compressed in a diamond-anvil cell. Results suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. We propose a mechanism for this transition that considers the bond-length distribution in idealized multiply twinned icosahedral particles. To further support this hypothesis, we also show that similar measurements of single-crystal platinum nanoparticles reveal no such distortions.

  9. Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1996-02-20

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70 C to 90 C, at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%. 68 figs.

  10. Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity

    DOE Patents [OSTI]

    Premuzic, Eugene T.; Lin, Mow

    1996-02-20

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70.degree. C. to 90.degree. C., at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%.

  11. Vacuum ultra-violet emission of plasma discharges with high Xe partial pressure using a cathode protective layer with high secondary electron emission

    SciTech Connect (OSTI)

    Zhu, Di; Song, Le; Zhang, Xiong; Kajiyama, Hiroshi

    2014-02-14

    In this work, the mechanism of the vacuum ultra-violet (VUV) emission of plasma discharges, with high Xe partial pressure and high ion-induced secondary electrons emission protective layer, is studied by measuring the VUV light emission directly and comparing it with two-dimensional simulations. From the panel measurement, we find that the high intensity of excimer VUV mainly contributes to the high luminous efficacy of SrCaO-plasma display panels (PDP) at a low sustain voltage. The unchanged Xe excitation efficiency indicates that the electron temperature is not decreased by the high secondary electrons emission protective layer, even though the sustain voltage is much lower. From the two-dimensional simulations, we can find that the ratio of excimer VUV to resonant VUV, which is determined by the collision rate in the discharge, is only significantly affected by the Xe partial pressure, while it is independent of the sustain voltage and the secondary-electrons-emission capability of protective layer. The unchanged average electron energy at the moment when the electric field becomes maximum confirms that the improvement of the VUV production efficiency mainly is attributed to the increase in electron heating efficiency of a PDP with high ion-induced secondary electrons emission protective layer. Combining the experimental and the simulation results, we conclude about the mechanism by which the VUV production is improved for the plasma display panel with a high Xe partial pressure and a cold cathode with high ion-induced secondary electrons emission.

  12. DECOMMISSIONING THE HIGH PRESSURE TRITIUM LABORATORY AT LOS ALAMOS NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Peifer, M.J.; Rendell, K.; Hearnsberger, D.W.

    2003-02-27

    In May 0f 2000, the Cerro Grande wild land fire burned approximately 48,000 acres in and around Los Alamos. In addition to the many buildings that were destroyed in the town site, many structures were also damaged and destroyed within the 43 square miles that comprise the Los Alamos National Laboratory (LANL). A special Act of Congress provided funding to remove Laboratory structures that were damaged by the fire, or that could be threatened by subsequent catastrophic wild land fires. The High Pressure Tritium Laboratory (HPTL) is located at Technical Area (TA) 33, building 86 in the far southeast corner of the Laboratory property. It is immediately adjacent to Bandelier National Park. Because it was threatened by both the Cerro Grande fire in 2000, and the 16,000- acre Dome fire in 1996, the former tritium processing facility was placed on the list of facilities scheduled for Decontamination and Decommissioning under the Cerro Grande Rehabilitation Project. The work was performed through the Facilities and Waste Operations (FWO) Division and is integrated with other Laboratory D&D efforts. The primary demolition contractor was Clauss Construction of San Diego, California. Earth Tech Global Environmental Services of San Antonio, Texas was sub-contracted to Clauss Construction, and provided radiological decontamination support to the project. Although the forty-seven year old facility had been in a state of safe-shutdown since operations ceased in 1990, a significant amount of tritium remained in the rooms where process systems were located. Tritium was the only radiological contaminant associated with this facility. Since no specific regulatory standards have been set for the release of volumetrically contaminated materials, concentration guidelines were derived in order to meet other established regulatory criteria. A tritium removal system was developed for this project with the goal of reducing the volume of tritium concentrated in the concrete of the building. The derived concentration guidelines, combined with the tritium removal system that was developed for this project, provided a significant timesaving for decontamination as well as an overall cost savings for waste disposal.

  13. Elastic properties, sp fraction, and Raman scattering in low and high pressure synthesized diamond-like boron rich carbides

    SciTech Connect (OSTI)

    Zinin, Pavel V.; Burgess, Katherine; Jia, Ruth; Sharma, Shiv; Ming, Li-Chung; Liu, Yongsheng; Ciston, Jim; Hong, Shiming

    2014-10-07

    Dense BC{sub x} phases with high boron concentration are predicted to be metastable, superhard, and conductors or superconductors depending on boron concentration. However, up to this point, diamond-like boron rich carbides BC{sub x} (dl-BC{sub x}) phases have been thought obtainable only through high pressure and high temperature treatment, necessitating small specimen volume. Here, we use electron energy loss spectroscopy combined with transmission electron microscopy, Raman spectroscopy, surface Brillouin scattering, laser ultrasonics (LU) technique, and analysis of elastic properties to demonstrate that low pressure synthesis (chemical vapor deposition) of BC{sub x} phases may also lead to the creation of diamond-like boron rich carbides. The elastic properties of the dl-BC{sub x} phases depend on the carbon spversus sp content, which decreases with increasing boron concentration, while the boron bonds determine the shape of the Raman spectra of the dl-BC{sub x} after high pressure-high temperature treatment. Using the estimation of the density value based on the sp fraction, the shear modulus ? of dl-BC?, containing 10% carbon atoms with sp bonds, and dl-B?C?, containing 38% carbon atoms with sp bonds, were found to be ? = 19.3 GPa and ? = 170 GPa, respectively. The presented experimental data also imply that boron atoms lead to a creation of sp bonds during the deposition processes.

  14. Synchrotron X-ray diffraction studies of phase transitions and mechanical properties of nanocrystalline materials at high pressure

    SciTech Connect (OSTI)

    Prilliman, Gerald Stephen

    2003-09-01

    The behavior of nanocrystals under extreme pressure was investigated using synchrotron x-ray diffraction. A major part of this investigation was the testing of a prototype synchrotron endstation on a bend magnet beamline at the Advanced Light Source for high pressure work using a diamond anvil cell. The experiments conducted and documented here helped to determine issues of efficiency and accuracy that had to be resolved before the construction of a dedicated ''super-bend'' beamline and endstation. The major conclusions were the need for a cryo-cooled monochromator and a fully remote-controllable pressurization system which would decrease the time to change pressure and greatly reduce the error created by the re-placement of the diamond anvil cell after each pressure change. Two very different types of nanocrystal systems were studied, colloidal iron oxide (Fe{sub 2}O{sub 3}) and thin film TiN/BN. Iron oxide nanocrystals were found to have a transition from the {gamma} to the {alpha} structure at a pressure strongly dependent on the size of the nanocrystals, ranging from 26 GPa for 7.2 nm nanocrystals to 37 GPa for 3.6 nm nanocrystals. All nanocrystals were found to remain in the {alpha} structure even after release of pressure. The transition pressure was also found, for a constant size (5.7 nm) to be strongly dependent on the degree of aggregation of the nanocrystals, increasing from 30 GPa for completely dissolved nanocrystals to 45 GPa for strongly aggregated nanocrystals. Furthermore, the x-ray diffraction pattern of the pressure induced {alpha} phase demonstrated a decrease in intensity for certain select peaks. Together, these observations were used to make a complete picture of the phase transition in nanocrystalline systems. The size dependence of the transition was interpreted as resulting from the extremely high surface energy of the {alpha} phase which would increase the thermodynamic offset and thereby increase the kinetic barrier to transition that must be overridden with pressure. The anomalous intensities in the x-ray diffraction patterns were interpreted as being the result of stacking faults, indicating that the mechanism of transition proceeds by the sliding of {gamma}(111) planes to form {alpha}(001) planes. The increasing transition pressure for more aggregated samples may be due to a positive activation volume, retarding the transition for nanocrystals with less excess (organic) volume available to them. The lack of a reverse transition upon decompression makes this interpretation more difficult because of the lack of an observable hysteresis, and it is therefore difficult to ascertain kinetic effects for certain. In the case TiN/BN nanocomposite systems, it was found that the bulk modulus (B{sub 0}) of the TiN nanoparticles was not correlated to the observed hardness or Young's modulus of the macroscopic thin film. This indicates that the origin of the observed super-hard nature of these materials is not due to any change in the Ti-N interatomic potential. Rather, the enhanced hardness must be due to nano-structural effects. It was also found that during pressurization the TiN nanoparticles developed a great deal of strain. This strain can be related to defects induced in individual nanoparticles which generates strain in adjacent particles due to the highly coupled nature of the system.

  15. Positron Annihilation Spectroscopy of High Performance Polymer Films under CO2 Pressure

    SciTech Connect (OSTI)

    C.A. Quarles; John R. Klaehn; Eric S. Peterson; Jagoda M. Urban-Klaehn

    2010-08-01

    Positron annihilation Lifetime and Doppler broadening measurements are reported for six polymer films as a function of carbon dioxide absolute pressure ranging from 0 to 45 psi. Since the polymer films were thin and did not absorb all positrons, corrections were made in the lifetime analysis for the absorption of positrons in the positron source and sample holder using the Monte Carlo transport code MCNP. Different polymers are found to behave differently. Some polymers studied form positronium and some, such as the polyimide structures, do not. For those samples that form positronium an interpretation in terms of free volume is possible; for those that dont form positronium, further work is needed to determine how best to describe the behavior in terms of the bulk positron annihilation parameters. Some polymers exhibit changes in positron lifetime and intensity under CO2 pressure which may be described by the Henry or Langmuir sorption models, while the positron response of other polymers is rather insensitive to the CO2 pressure. The results demonstrate the usefulness of positron annihilation spectroscopy in investigating the sorption of CO2 into various polymers at pressures up to about 3 atm.

  16. Capabilities for measuring physical and chemical properties of rocks at high pressure

    SciTech Connect (OSTI)

    Durham, W.B.

    1990-01-01

    The Experimental Geophysics Group of the Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) has experimental equipment that measures a variety of physical properties and phase equilibria and kinetics on rocks and minerals at extreme pressures (to 500 GPa) and temperatures (from 10 to 2800 K). These experimental capabilities are described in this report in terms of published results, photographs, and schematic diagrams.

  17. Analysis of a high pressure ATWS (anticipated transient without scram) with very low make-up flow

    SciTech Connect (OSTI)

    Wagner, K.C.

    1988-10-01

    A series of calculations were performed to analyze the response of General Electric Company's (GE) advanced boiling water reactor (ABWR) during an anticipated transient without scram (ATWS). This work investigated the early plant response with an assumed failure or manual inhibit of the high pressure core flooder (HPCF). Consequently, the reactor core isolation cooling (RCIC) and control rod drive (CRD) systems are the only sources of high pressure injection available to maintain core cooling. Steam leaving the reactor pressure vessel was diverted to the pressure suppression pool (PSP) via the steam line and the safety relief valves. The combination of an unscrammed core and the CRD and RCIC injection sources make this a particularly challenging transient. System energy balance calculations were performed to predict the core power and PSP heat-up rate. The amount of vessel vapor superheat and the PSP temperature were found to significantly affect the resultant core power. Consequently, detailed thermal-hydraulic calculations were performed to simulate the system response during the postulated transient. 15 refs., 15 figs., 4 tabs.

  18. Manufacturing Cost Analysis of Novel Steel/Concrete Composite Vessel for Stationary Storage of High-Pressure Hydrogen

    SciTech Connect (OSTI)

    Feng, Zhili; Zhang, Wei; Wang, Jy-An John; Ren, Fei

    2012-09-01

    A novel, low-cost, high-pressure, steel/concrete composite vessel (SCCV) technology for stationary storage of compressed gaseous hydrogen (CGH2) is currently under development at Oak Ridge National Laboratory (ORNL) sponsored by DOE s Fuel Cell Technologies (FCT) Program. The SCCV technology uses commodity materials including structural steels and concretes for achieving cost, durability and safety requirements. In particular, the hydrogen embrittlement of high-strength low-alloy steels, a major safety and durability issue for current industry-standard pressure vessel technology, is mitigated through the use of a unique layered steel shell structure. This report presents the cost analysis results of the novel SCCV technology. A high-fidelity cost analysis tool is developed, based on a detailed, bottom-up approach which takes into account the material and labor costs involved in each of the vessel manufacturing steps. A thorough cost study is performed to understand the SCCV cost as a function of the key vessel design parameters, including hydrogen pressure, vessel dimensions, and load-carrying ratio. The major conclusions include: The SCCV technology can meet the technical/cost targets set forth by DOE s FCT Program for FY2015 and FY2020 for all three pressure levels (i.e., 160, 430 and 860 bar) relevant to the hydrogen production and delivery infrastructure. Further vessel cost reduction can benefit from the development of advanced vessel fabrication technologies such as the highly automated friction stir welding (FSW). The ORNL-patented multi-layer, multi-pass FSW can not only reduce the amount of labor needed for assembling and welding the layered steel vessel, but also make it possible to use even higher strength steels for further cost reductions and improvement of vessel structural integrity. It is noted the cost analysis results demonstrate the significant cost advantage attainable by the SCCV technology for different pressure levels when compared to the industry-standard pressure vessel technology. The real-world performance data of SCCV under actual operating conditions is imperative for this new technology to be adopted by the hydrogen industry for stationary storage of CGH2. Therefore, the key technology development effort in FY13 and subsequent years will be focused on the fabrication and testing of SCCV mock-ups. The static loading and fatigue data will be generated in rigorous testing of these mock-ups. Successful tests are crucial to enabling the near-term impact of the developed storage technology on the CGH2 storage market, a critical component of the hydrogen production and delivery infrastructure. In particular, the SCCV has high potential for widespread deployment in hydrogen fueling stations.

  19. Evidence of the existence of the high-density and low-density phases in deeply-cooled confined heavy water under high pressures

    SciTech Connect (OSTI)

    Wang, Zhe; Chen, Sow-Hsin; Liu, Kao-Hsiang; Harriger, Leland; Leo, Juscelino B.

    2014-07-07

    The average density of D{sub 2}O confined in a nanoporous silica matrix (MCM-41-S) is studied with neutron scattering. We find that below ?210 K, the pressure-temperature plane of the system can be divided into two regions. The average density of the confined D{sub 2}O in the higher-pressure region is about 16% larger than that in the lower-pressure region. These two regions could represent the so-called low-density liquid and high-density liquid phases. The dividing line of these two regions, which could represent the associated 1st order liquid-liquid transition line, is also determined.

  20. Transitions between strongly correlated and random steady-states for catalytic CO-oxidation on surfaces at high-pressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Da -Jiang; Evans, James W.

    2015-04-02

    We explore simple lattice-gas reaction models for CO-oxidation on 1D and 2D periodic arrays of surface adsorption sites. The models are motivated by studies of CO-oxidation on RuO2(110) at high-pressures. Although adspecies interactions are neglected, the effective absence of adspecies diffusion results in kinetically-induced spatial correlations. A transition occurs from a random mainly CO-populated steady-state at high CO-partial pressure pCO, to a strongly-correlated near-O-covered steady-state for low pCO as noted. In addition, we identify a second transition to a random near-O-covered steady-state at very low pCO.

  1. Process for CO.sub.2 capture using zeolites from high pressure and moderate temperature gas streams

    DOE Patents [OSTI]

    Siriwardane, Ranjani V.; Stevens, Robert W.

    2012-03-06

    A method for separating CO.sub.2 from a gas stream comprised of CO.sub.2 and other gaseous constituents using a zeolite sorbent in a swing-adsorption process, producing a high temperature CO.sub.2 stream at a higher CO.sub.2 pressure than the input gas stream. The method utilizes CO.sub.2 desorption in a CO.sub.2 atmosphere and effectively integrates heat transfers for optimizes overall efficiency. H.sub.2O adsorption does not preclude effective operation of the sorbent. The cycle may be incorporated in an IGCC for efficient pre-combustion CO.sub.2 capture. A particular application operates on shifted syngas at a temperature exceeding 200.degree. C. and produces a dry CO.sub.2 stream at low temperature and high CO.sub.2 pressure, greatly reducing any compression energy requirements which may be subsequently required.

  2. Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments

    SciTech Connect (OSTI)

    Xiao, Hai; Tsai, Hai-Lung; Dong, Junhang

    2014-09-30

    This is the final report for the program “Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments”, funded by NETL, and performed by Missouri University of Science and Technology, Clemson University and University of Cincinnati from October 1, 2009 to September 30, 2014. Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is a central element to the mission of The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensor technologies that can function under the extreme operating conditions often found in advanced power systems. The main objective of this research program is to conduct fundamental and applied research that will lead to successful development and demonstration of robust, multiplexed, microstructured silica and single-crystal sapphire fiber sensors to be deployed into the hot zones of advanced power and fuel systems for simultaneous measurements of high temperature and gas pressure. The specific objectives of this research program include: 1) Design, fabrication and demonstration of multiplexed, robust silica and sapphire fiber temperature and dynamic gas pressure sensors that can survive and maintain fully operational in high-temperature harsh environments. 2) Development and demonstration of a novel method to demodulate the multiplexed interferograms for simultaneous measurements of temperature and gas pressure in harsh environments. 3) Development and demonstration of novel sapphire fiber cladding and low numerical aperture (NA) excitation techniques to assure high signal integrity and sensor robustness.

  3. A BEAMLINE FOR HIGH PRESSURE STUDIES AT THE ADVANCED LIGHT SOURCE WITH A SUPERCONDUCTING BENDING MAGNET AS THE SOURCE

    SciTech Connect (OSTI)

    Kunz, M; MacDowell, A A; Caldwell, W A; Cambie, D; Celestre, R S; Domning, E E; Duarte, R M; Gleason, A; Glossinger, J; Kelez, N; Plate, D W; Yu, T; Zaug, J M; Padmore, H A; Jeanloz, R; Alivisatos, A P; Clark, S M

    2005-04-19

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on Beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 Tesla superconducting bending magnet (superbend). Useful x-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness preserving optics of the beamline. These optics are comprised of: a plane parabola collimating mirror (M1), followed by a Kohzu monochromator vessel with a Si(111) crystals (E/{Delta}E {approx} 7000) and a W/B{sub 4}C multilayer (E/{Delta}E {approx} 100), and then a toroidal focusing mirror (M2) with variable focusing distance. The experimental enclosure contains an automated beam positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detectors (CCD or image-plate detector). Future developments aim at the installation of a second end station dedicated for in situ laser-heating on one hand and a dedicated high-pressure single-crystal station, applying both monochromatic as well as polychromatic techniques.

  4. A Beamline for High-Pressure Studies at the Advanced Light Sourcewith a Superconducting Bending Magnet as the Source

    SciTech Connect (OSTI)

    Kunz, Martin; MacDowell, Alastair A.; Caldwell, Wendel A.; Cambie, Daniella; Celestre, Richard S.; Domning, Edward E.; Duarte,Robert M.; Gleason, Arianna E.; Glossinger, James M.; Kelez, Nicholas; Plate, David W.; Yu, Tony; Zaug, Joeseph M.; Padmore, Howard A.; Jeanloz,Raymond; Alivisatos, A. Paul; Clark, Simon M.

    2005-06-30

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on Beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 Tesla superconducting bending magnet (superbend). Useful x-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness preserving optics of the beamline. These optics are comprised of: a plane parabola collimating mirror (M1), followed by a Kohzu monochromator vessel with a Si(111) crystals (E/DE {approx}7000) and a W/B4C multilayers (E/DE {approx} 100), and then a toroidal focusing mirror (M2) with variable focusing distance. The experimental enclosure contains an automated beam positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detectors (CCD or image-plate detector). Future developments aim at the installation of a second end station dedicated for in situ laser-heating on one hand and a dedicated high-pressure single-crystal station, applying both monochromatic as well as polychromatic techniques.

  5. High-Pressure Micellar Solutions of Polystyrene-block-Polybutadiene and Polystyrene-block-Polyisoprene Solutions in Propane Exhibit Cloud-Pressure Reduction and Distinct Micellization End Points

    SciTech Connect (OSTI)

    Winoto, Winoto; Radosz, Maciej; Tan, Sugata; Hong, Kunlun; Mays, Jimmy

    2009-01-01

    Micellar solutions of polystyrene-block-polybutadiene and polystyrene-block-polyisoprene in propane are found to exhibit significantly lower cloud pressures than the corresponding hypothetical non-micellar solutions. Such a cloud-pressure reduction indicates the extent to which micelle formation enhances the apparent diblock solubility in near-critical and hence compressible propane. Pressure-temperature points beyond which no micelles can be formed, referred to as the micellization end points, are found to depend on the block type, size and ratio, and on the polymer concentration. For a given pressure, the micellization end-point temperature corresponds to the "critical micelle temperature." The cloud-pressure reduction and the micellization end point measured for styrene-diene diblocks in propane should be characteristic of all amphiphilic diblock copolymer solutions that form micelles in compressible solvents.

  6. Synthesis of new Diamond-like B-C Phases under High Pressure and Temperatures

    SciTech Connect (OSTI)

    Ming, L. C.; Zinin, P. V.; Sharma, S. K.

    2014-04-22

    A cubic BC3 (c-BC3) phase was synthesized by direct transformation from graphitic phases at a pressure of 39 GPa and temperature of 2200 K in a laser-heated diamond anvil cell (DAC). A combination of x-ray diffraction (XRD), electron diffraction (ED), transmission electron microscopy (TEM) imaging, and electron energy loss spectroscopy (EELS) measurements lead us to conclude that the obtained phase is hetero-nano-diamond, c-BC3. The EELS measurements show that the atoms inside the cubic structure are bonded by sp3 bonds.

  7. Kondo-like 4f delocalization in Gd at high pressure

    SciTech Connect (OSTI)

    Maddox, B R; Lazicki, A; Yoo, C S; Iota, V; Chen, M; McMahan, A K; Hu, M Y; Chow, P; Scalettar, R T; Pickett, W E

    2005-11-28

    We present resonant inelastic x-ray scattering (RIXS) and x-ray emission spectroscopy (XES) results which suggest Kondo-like aspects in the delocalization of 4f electrons in Gd metal to 113 GPa. Analysis of the RIXS data reveal a prolonged and continuous process throughout the entire pressure range, so that the volume collapse transition at 59 GPa is only part of the delocalization phenomenon. Moreover, the L{sub {gamma}1} XES spectra indicate no apparent change in the bare 4f moment across the collapse, suggesting that Kondo screening is responsible for the expected Pauli-like behavior in magnetic susceptibility.

  8. MICROSTRUCTURE AND MECHANICAL PROPERTY PERFORMANCE OF COMMERCIAL GRADE API PIPELINE STEELS IN HIGH PRESSURE GASEOUS HYDROGEN

    SciTech Connect (OSTI)

    Stalheim, Mr. Douglas; Boggess, Todd; San Marchi, Chris; Jansto, Steven; Somerday, Dr. B; Muralidharan, Govindarajan; Sofronis, Prof. Petros

    2010-01-01

    The continued growth of the world s developing countries has placed an ever increasing demand on traditional fossil fuel energy sources. This development has lead to increasing research and development of alternative energy sources. Hydrogen gas is one of the potential alternative energy sources under development. Currently the most economical method of transporting large quantities of hydrogen gas is through steel pipelines. It is well known that hydrogen embrittlement has the potential to degrade steel s mechanical properties when hydrogen migrates into the steel matrix. Consequently, the current pipeline infrastructure used in hydrogen transport is typically operated in a conservative fashion. This operational practice is not conducive to economical movement of significant volumes of hydrogen gas as an alternative to fossil fuels. The degradation of the mechanical properties of steels in hydrogen service is known to depend on the microstructure of the steel. Understanding the levels of mechanical property degradation of a given microstructure when exposed to hydrogen gas under pressure can be used to evaluate the suitability of the existing pipeline infrastructure for hydrogen service and guide alloy and microstructure design for new hydrogen pipeline infrastructure. To this end, the 2 Copyright 2010 by ASME microstructures of relevant steels and their mechanical properties in relevant gaseous hydrogen environments must be fully characterized to establish suitability for transporting hydrogen. A project to evaluate four commercially available pipeline steels alloy/microstructure performance in the presences of gaseous hydrogen has been funded by the US Department of Energy along with the private sector. The microstructures of four pipeline steels were characterized and then tensile testing was conducted in gaseous hydrogen and helium at pressures of 800, 1600 and 3000 psi. Based on measurements of reduction of area, two of the four steels that performed the best across the pressure range were selected for evaluation of fracture and fatigue performance in gaseous hydrogen at 800 and 3000 psi. This paper will describe the work performed on four commercially available pipeline steels in the presence of gaseous hydrogen at pressures relevant for transport in pipelines. Microstructures and mechanical property performances will be compared. In addition, recommendations for future work related to gaining a better understanding of steel pipeline performance in hydrogen service will be discussed.

  9. Size dependence of cubic to trigonal structural distortion in silver micro- and nanocrystals under high pressure

    SciTech Connect (OSTI)

    Guo, Qixum; Zhao, Yusheng; Zin, Zhijun; Wang, Zhongwu; Skrabalak, Sara E; Xia, Younan

    2008-01-01

    Silver micro- and nanocrystals with sizes of {approx}2--3.5 {mu}m and {approx}50--100 nm were uniaxially compressed under nonhydrostatic pressures (strong deviatoric stress) up to {approx}30 GPa at room temperature in a symmetric diamond-anvil cell and studied in situ using angle-dispersive synchrotron X-ray diffraction. A cubic to trigonal structural distortion along a 3-fold rotational axis was discovered by careful and comprehensive analysis of the apparent lattice parameter and full width at half-maximum, which are strongly dependent upon the Miller index and crystal size.

  10. n-Butane: Ignition delay measurements at high pressure and detailed chemical kinetic simulations

    SciTech Connect (OSTI)

    Healy, D.; Curran, H.J.; Donato, N.S.; Aul, C.J.; Petersen, E.L.; Zinner, C.M.; Bourque, G.

    2010-08-15

    Ignition delay time measurements were recorded at equivalence ratios of 0.3, 0.5, 1, and 2 for n-butane at pressures of approximately 1, 10, 20, 30 and 45 atm at temperatures from 690 to 1430 K in both a rapid compression machine and in a shock tube. A detailed chemical kinetic model consisting of 1328 reactions involving 230 species was constructed and used to validate the delay times. Moreover, this mechanism has been used to simulate previously published ignition delay times at atmospheric and higher pressure. Arrhenius-type ignition delay correlations were developed for temperatures greater than 1025 K which relate ignition delay time to temperature and concentration of the mixture. Furthermore, a detailed sensitivity analysis and a reaction pathway analysis were performed to give further insight to the chemistry at various conditions. When compared to existing data from the literature, the model performs quite well, and in several instances the conditions of earlier experiments were duplicated in the laboratory with overall good agreement. To the authors' knowledge, the present paper presents the most comprehensive set of ignition delay time experiments and kinetic model validation for n-butane oxidation in air. (author)

  11. Chemical interaction in the B-BN system at high pressures and temperatures

    SciTech Connect (OSTI)

    Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.

    2009-06-15

    Chemical interaction and phase transformations in the B-BN system have been in situ studied by X-ray diffraction with synchrotron radiation at pressures up to 5.3 GPa and temperatures up to 2800 K using multianvil press. New rhombohedral boron subnitride B{sub 13}N{sub 2} has been synthesized by crystallization from the B-BN melt at 5 GPa. The structure of B{sub 13}N{sub 2} belongs to the R-3m space group (a=5.4455(2) A, c=12.2649(9) A) and represents a new structural type. The subnitride is an individual compound and not a solid solution, in contrast to boron carbide. Besides, the formation of two other boron-rich B-N phases denoted as 'B{sub 6}N' and 'B{sub 50}N{sub 2}' has been observed. Their structures seem to be much more sophisticated and have not been even resolved to present time. - Graphical abstract: Chemical interaction and phase transformations in the B-BN system have been in situ studied by X-ray diffraction with synchrotron radiation at pressures up to 5.3 GPa and temperatures up to 2800 K using multianvil press. Three boron subnitrides have been synthesized and characterized.

  12. Critical Heat Flux Phenomena at HighPressure & Low Mass Fluxes: NEUP Final Report Part I: Experiments

    SciTech Connect (OSTI)

    Corradini, Michael; Wu, Qiao

    2015-04-30

    This report is a preliminary document presenting an overview of the Critical Heat Flux (CHF) phenomenon, the High Pressure Critical Heat Flux facility (HPCHF), preliminary CHF data acquired, and the future direction of the research. The HPCHF facility has been designed and built to study CHF at high pressure and low mass flux ranges in a rod bundle prototypical of conceptual Small Modular Reactor (SMR) designs. The rod bundle is comprised of four electrically heated rods in a 2x2 square rod bundle with a prototypic chopped-cosine axial power profile and equipped with thermocouples at various axial and circumferential positions embedded in each rod for CHF detection. Experimental test parameters for CHF detection range from pressures of ~80 – 160 bar, mass fluxes of ~400 – 1500 kg/m2s, and inlet water subcooling from ~30 – 70°C. The preliminary data base established will be further extended in the future along with comparisons to existing CHF correlations, models, etc. whose application ranges may be applicable to the conditions of SMRs.

  13. Structural and electronic response of U{sub 3}Fe{sub 4}Ge{sub 4} to high pressure

    SciTech Connect (OSTI)

    Henriques, M. S.; Prchal, J.; Havela, L.; Raison, P.; Heathman, S.; Griveau, J.-C.; Colineau, E.; Gonalves, A. P.

    2015-03-21

    Structural, magnetic, and electrical properties have been studied on a U{sub 3}Fe{sub 4}Ge{sub 4} single crystal under hydrostatic pressure. The orthorhombic crystal structure is found to be stable up to 30 GPa, the highest applied pressure, but the compressibility is strongly anisotropic. Contrary to typical uranium intermetallics for which the softest lattice direction is along the shortest inter-uranium links, in U{sub 3}Fe{sub 4}Ge{sub 4} the lattice is compressed most in a perpendicular direction for the high pressure range. The elastic properties are modified considerably in the vicinity of 1?GPa when the b axis is transformed from least compressible to most compressible. The bulk modulus is found to be about 150?GPa. The anomalies in the elastic properties are reflected in the electronic properties that consistently indicate a change of the magnetic ground state from ferromagnetic to antiferromagnetic. Both types of order exhibit a gap in the magnon spectrum; however, it is twice as high for the ferromagnetic state. The magnetoresistance reveals field-induced transitions of different origins in the antiferromagnetic state along the easy and hard magnetization directions.

  14. Preparation of W-Ta thin-film thermocouple on diamond anvil cell for in-situ temperature measurement under high pressure

    SciTech Connect (OSTI)

    Yang Jie; Li Ming; Zhang Honglin; Gao Chunxiao

    2011-04-15

    In this paper, a W-Ta thin-film thermocouple has been integrated on a diamond anvil cell by thin-film deposition and photolithography methods. The thermocouple was calibrated and its thermal electromotive force was studied under high pressure. The results indicate that the thermal electromotive force of the thermocouple exhibits a linear relationship with temperature and is not associated with pressure. The resistivity measurement of ZnS powders under high pressure at different temperatures shows that the phase transition pressure decreases as the temperature increases.

  15. Structural phase transitions in Bi2Se3 under high pressure

    SciTech Connect (OSTI)

    Yu, Zhenhai; Gu, Genda; Wang, Lin; Hu, Qingyang; Zhao, Jinggeng; Yan, Shuai; Yang, Ke; Sinogeikin, Stanislav; Mao, Ho -kwang

    2015-11-02

    Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi2Se3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and eventually to a high pressure body-centered tetragonal phase (SG: I4/mmm). Evidenced by our XRD data up to 81.2 GPa, the Bi2Se3 crystallizes into body-centered tetragonal structures rather than the recently reported disordered body-centered cubic (BCC) phase. Furthermore, first principles theoretical calculations favor the viewpoint that the I4/mmm phase Bi2Se3 can be stabilized under high pressure (>30 GPa). Remarkably, the Raman spectra of Bi2Se3 from this work (two independent runs) are still Raman active up to ~35 GPa. Furthermore, it is worthy to note that the disordered BCC phase at 27.8 GPa is not observed here. The remarkable difference in atomic radii of Bi and Se in Bi2Se3 may explain why Bi2Se3 shows different structural behavior than isocompounds Bi2Te3 and Sb2Te3.

  16. Densification of alkoxide-derived fine silica powder compact by ultra-high-pressure cold isostatic pressing

    SciTech Connect (OSTI)

    Kamiya, Hidehiro . Dept. of Chemical Engineering); Suzuki, Hisao ); Kato, Daisuke; Jimbo, Genji . Dept. of Chemical Engineering)

    1993-01-01

    Powder compacts of alkoxide-derived fine silica powders were consolidated into a highly dense and uniform structure by ultra-high-pressure cold isostatic pressing of granules with controlled structure. The diameters of spherical and nearly monosized amorphous silica particles, prepared from metal alkoxide, were successfully controlled in the range of 9 to 760 nm by varying the concentration of ammonia. Close-packed granules of these powders were produced by spray drying. These powders were isostatically pressed up to 1 GPa at room temperature. Although the average particle diameter was less than 100 nm, the maximum relative density of the compacts was more than 78% of theoretical density. The optimum particle size to obtain highly dense compacts was in the range of 30 to 300 nm at 1 GPa. Furthermore, the ratio of mode pore diameter in these compacts to particle diameter was less than 0.155, which corresponded to the minimum ratio of calculated three-particle pore channel radii for hexagonal close packing. Viscous deformation of particles under ultra-high isostatic pressure played an important role in the densification of the compacts.

  17. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    SciTech Connect (OSTI)

    Kck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Kltzer, Bernhard; Penner, Simon

    2014-08-15

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  18. Design practices in Japan for the super high pressure vessels and comparison with the ASME Code Sect. VIII Div. 3 (under preparation)

    SciTech Connect (OSTI)

    Onozawa, Tsutomu; Tahara, Takayasu

    1995-12-01

    Recently, super high pressure facilities have been increasing in the industrial area so that to establish the regulatory standard to regulate the super high pressure vessels is a matter of great urgency world widely to keep the industrial safety. Under such a situation, the author shows respect to the ASME Code Committee for their efforts to publish the super high pressure vessel code. Mr. Leslie P. Antalffy, Fluor Daniel, Incorporated, Houston, Texas presented a paper during the 1993 and 1994 ASME PVP Conferences that ASME Code Committee has been preparing the rules of Division 3 of Section 8 of the Boiler and Pressure Vessel Code and explained its outline. In this paper, the authors shows the current super high pressure vessel design practices in Japan and explain the merit and problem area of these formulas comparing with the ASME formula and necessary conditions for the fatigue analysis.

  19. Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation

    SciTech Connect (OSTI)

    Rue, David

    2013-09-30

    The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis found a number of modifications and adjustments that could provide higher efficiency and better use of available work. Conclusions from this analysis will help guide the analyses and CFD modeling in future process development. The MBB technology has the potential to be a disruptive technology that will enable coal combustion power plants to be built and operated in a cost effective way, cleanly with no carbon dioxide emissions. A large amount of work is needed to quantify and confirm the great promise of the MBB technology. A Phase 2 proposal was submitted to DOE and other sponsors to address the most critical MBB process technical gaps. The Phase 2 proposal was not accepted for current DOE support.

  20. Auto-ignition during instationary jet evolution of dimethyl ether (DME) in a high-pressure atmosphere

    SciTech Connect (OSTI)

    Fast, G.; Kuhn, D.; Class, A.G.; Maas, U.

    2009-01-15

    The auto-ignition process during transient injection of gaseous dimethyl ether (DME) in a constant high-pressure atmosphere is studied experimentally by laser-optical methods and compared with numerical calculations. With different non-intrusive measurement techniques jet properties and auto-ignition are investigated at high temporal and spatial resolution. The open jet penetrates a constant pressure oxidative atmosphere of up to 4 MPa. During the transient evolution, the fuel jet entrains air at up to 720 K. The subsequent auto-ignition of the ignitable part of the jet occurs simultaneously over a wide spatial extension. The ignition delay times are not affected by variation of the nozzle exit velocity. Thus, the low-temperature oxidation is slow compared with the shorter time scales of mixing, so that chemical kinetics is dominating the process. The typical two-stage ignition is resolved optically with high-speed shadowgraphy at a sampling rate of 10 kHz. The 2D fields of jet velocity and transient mixture fraction are measured phase-coupled with Particle Image Velocimetry (PIV) and Tracer Laser Induced Fluorescence (LIF) during the time-frame of ignition. The instationary Probability Density Functions (PDF) of mixture fraction are described very well by Beta functions within the complete area of the open jet. Additional 1D flamelet simulations of the auto-ignition process are computed with a detailed reaction mechanism for DME [S. Fischer, F. Dryer, H. Curran, Int. J. Chem. Kinet. 32 (12) (2000) 713-740; H. Curran, S. Fischer, F. Dryer, Int. J. Chem. Kinet. 32 (12) (2000) 741-759]. Calculated ignition delay times are in very good agreement with the measured mean ignition delay times of 3 ms. Supplemental flamelet simulations address the influence of DME and air temperature, pressure and strain. Underneath a critical strain rate the air temperature is identified to be the most sensitive factor on ignition delay time. (author)

  1. Detection of melting by X-ray imaging at high pressure

    SciTech Connect (OSTI)

    Li, Li; Weidner, Donald J.

    2014-06-15

    The occurrence of partial melting at elevated pressure and temperature is documented in real time through measurement of volume strain induced by a fixed temperature change. Here we present the methodology for measuring volume strains to one part in 10{sup ?4} for mm{sup 3} sized samples in situ as a function of time during a step in temperature. By calibrating the system for sample thermal expansion at temperatures lower than the solidus, the onset of melting can be detected when the melting volume increase is of comparable size to the thermal expansion induced volume change. We illustrate this technique with a peridotite sample at 1.5 GPa during partial melting. The Re capsule is imaged with a CCD camera at 20 frames/s. Temperature steps of 100 K induce volume strains that triple with melting. The analysis relies on image comparison for strain determination and the thermal inertia of the sample is clearly seen in the time history of the volume strain. Coupled with a thermodynamic model of the melting, we infer that we identify melting with 2 vol.% melting.

  2. HFIR (High Flux Isotope Reactor) pressure vessel and structural components materials surveillance program: Supplement 1

    SciTech Connect (OSTI)

    Cheverton, R.D.; McGinty, D.M.; McWherter, J.R.; Nanstad, R.K.

    1987-10-01

    Extending the life of the HFIR vessel by the proposed 10 effective full-power years is contingent upon a continuation of the materials surveillance program and the application of hydrostatic proof testing. As a part of the surveillance program, Charpy V-notch (CVN) specimens of shell, weld and nozzle materials are installed adjacent to the inner surface of the vessel and are removed periodically for testing to determine the radiation-induced increase in the nil-ductility transition temperature. Hydro testing is conducted to prove that a critical combination of flaw size, stress and fracture toughness does not exist. Information from the materials surveillance program is used in a fracture mechanics analysis to confirm that the hydro-test pressure being applied is appropriate for the desired life extension of the vessel. This report specifies (1) the number, type, location and schedule for removal-testing of the CVN specimens for the continuing materials surveillance program, and (2) the procedures and test conditions for the hydro test.

  3. Dual shell pressure balanced vessel

    DOE Patents [OSTI]

    Fassbender, Alexander G.

    1992-01-01

    A dual-wall pressure balanced vessel for processing high viscosity slurries at high temperatures and pressures having an outer pressure vessel and an inner vessel with an annular space between the vessels pressurized at a pressure slightly less than or equivalent to the pressure within the inner vessel.

  4. Chemical Processing in High-Pressure Aqueous Environments. 9. Process Development for Catalytic Gasification of Algae Feedstocks

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.

    2012-07-26

    Through the use of a metal catalyst, gasification of wet algae slurries can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In a pressurized-water environment (20 MPa), near-total conversion of the organic structure of the algae to gases has been achieved in the presence of a supported ruthenium metal catalyst. The process is essentially steam reforming, as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high levels of methane, as dictated by thermodynamic equilibrium. As opposed to earlier work, biomass trace components were removed by processing steps so that they did not cause processing difficulties in the fixed catalyst bed tubular reactor system. As a result, the algae feedstocks, even those with high ash contents, were much more reliably processed. High conversions were obtained even with high slurry concentrations. Consistent catalyst operation in these short-term tests suggested good stability and minimal poisoning effects. High methane content in the product gas was noted with significant carbon dioxide captured in the aqueous byproduct in combination with alkali constituents and the ammonia byproduct derived from proteins in the algae. High conversion of algae to gas products was found with low levels of byproduct water contamination and low to moderate loss of carbon in the mineral separation step.

  5. RUI: Structure and Behavior of RF-Driven Plasma Filaments in High-Pressure Gases

    SciTech Connect (OSTI)

    Burin, Michael

    2014-11-18

    The filamentary discharge seen within commercial plasma globes is commonly enjoyed, yet not well understood. We investigate filament properties in a plasma globe using a variable high voltage amplifier. Results from the 3-year grant period and their physics are discussed.

  6. Structure and transport in high pressure oxygen sputter-deposited BaSnO{sub 3−δ}

    SciTech Connect (OSTI)

    Ganguly, Koustav; Ambwani, Palak; Xu, Peng; Jeong, Jong Seok; Mkhoyan, K. Andre; Leighton, C. E-mail: leighton@umn.edu; Jalan, Bharat E-mail: leighton@umn.edu

    2015-06-01

    BaSnO{sub 3} has recently been identified as a high mobility wide gap semiconductor with significant potential for room temperature oxide electronics. Here, a detailed study of the high pressure oxygen sputter-deposition, microstructure, morphology, and stoichiometry of epitaxial BaSnO{sub 3} on SrTiO{sub 3}(001) and MgO(001) is reported, optimized conditions resulting in single-phase, relaxed, close to stoichiometric films. Most significantly, vacuum annealing is established as a facile route to n-doped BaSnO{sub 3−δ}, leading to electron densities above 10{sup 19} cm{sup −3}, 5 mΩ cm resistivities, and room temperature mobility of 20 cm{sup 2} V{sup −1} s{sup −1} in 300-Å-thick films on MgO(001). Mobility limiting factors, and the substantial scope for their improvement, are discussed.

  7. Chemical Processing in High-Pressure Aqueous Environments. 7. Process Development for Catalytic Gasification of Wet Biomass Feedstocks

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Butner, Scott S.; Zacher, Alan H.; Engelhard, Mark H.; Young, James S.; McCready, David E.

    2004-07-01

    Through the use of a metal catalyst, gasification of wet biomass can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In the pressurized-water environment (20 MPa) near-total conversion of the organic structure of biomass to gases has been accomplished in the presence of a ruthenium metal catalyst. The process is essentially steam reforming as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high-levels of methane, as dictated by thermodynamic equilibrium. Biomass trace components cause processing difficulties using the fixed catalyst bed tubular reactor system. Results are described for both bench-scale and scaled-up reactor systems.

  8. High pressure synthesis of a new phase of YbAg2: Structure, valence of Yb and properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tsvyashchenko, A. V.; Menushenkov, A. P.; Sidorov, V. A.; Petrova, A. E.; Fomicheva, L. N.; Chernysheva, O. V.; Lebed, Yu. B.; Axenov, S. N.; Bud’ko, S. L.; Sun, Liling; et al

    2015-08-05

    The new phase of YbAg2 was obtained using high-pressure and high-temperature reaction. YbAg2 crystallizes in the MgZn2 structure (the space group P63/mmc space group, No 194) with a = 5.68153(3) Å and c = 9.31995(7) Å and the unit cell volume V = 260.54(3) Å3. The XANES analysis showed that the valence state of Yb is +2.8. The low-temperature dependences of the electrical resistivity and magnetic susceptibility can be adequately described by a T2 term that supports the Fermi-liquid picture. Furthermore, the Kadowaki–Woods relation gives a low value of the degeneracy (N = 2).

  9. High pressure synthesis of a new phase of YbAg2: Structure, valence of Yb and properties

    SciTech Connect (OSTI)

    Tsvyashchenko, A. V.; Menushenkov, A. P.; Sidorov, V. A.; Petrova, A. E.; Fomicheva, L. N.; Chernysheva, O. V.; Lebed, Yu. B.; Axenov, S. N.; Bud’ko, S. L.; Sun, Liling; Zhao, Zhongxian

    2015-08-05

    The new phase of YbAg2 was obtained using high-pressure and high-temperature reaction. YbAg2 crystallizes in the MgZn2 structure (the space group P63/mmc space group, No 194) with a = 5.68153(3) Å and c = 9.31995(7) Å and the unit cell volume V = 260.54(3) Å3. The XANES analysis showed that the valence state of Yb is +2.8. The low-temperature dependences of the electrical resistivity and magnetic susceptibility can be adequately described by a T2 term that supports the Fermi-liquid picture. Furthermore, the Kadowaki–Woods relation gives a low value of the degeneracy (N = 2).

  10. Access to a New Plasma Edge State with High Density and Pressures using Quiescent H-mode

    SciTech Connect (OSTI)

    Solomon, Wayne M.; Snyder, P. B.; Burrell, K. H.; Fenstermacher, M. E.; Garofalo, A. M.; Grierson, B. A.; Loarte, A.; McKee, G. R.; Nazikian, R; Osborne, T. H.

    2014-07-01

    A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over standard edge localized mode (ELM)ing H-mode at these parameters. The thermal energy confinement time increases both as a result of the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.

  11. Water-Gas-Shift Membrane Reactor for High-Pressure Hydrogen Production. A comprehensive project report (FY2010 - FY2012)

    SciTech Connect (OSTI)

    Klaehn, John; Peterson, Eric; Orme, Christopher; Bhandari, Dhaval; Miller, Scott; Ku, Anthony; Polishchuk, Kimberly; Narang, Kristi; Singh, Surinder; Wei, Wei; Shisler, Roger; Wickersham, Paul; McEvoy, Kevin; Alberts, William; Howson, Paul; Barton, Thomas; Sethi, Vijay

    2013-01-01

    Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H2 gas separations at operating temperatures (~200C). VTEC PI 80-051 was thoroughly analyzed for its H2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H2/CO2 separation (? = 7-9) and H2/CO separation (? = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H2 gas separations membrane for high-temperature syngas streams.

  12. Analysis by oxygen atom number density measurement of high-speed hydrophilic treatment of polyimide using atmospheric pressure microwave plasma

    SciTech Connect (OSTI)

    Ono, S.

    2015-03-30

    This paper describes the fundamental experimental data of the plasma surface modification of the polyimide using atmospheric pressure microwave plasma source. The experimental results were discussed from the point of view of the radicals behavior, which significantly affects the modification mechanism. The purpose of the study is to examine how the value of the oxygen atom density will affect the hydrophilic treatment in the upstream region of the plasma where gas temperature is very high. The surface modification experiments were performed by setting the polyimide film sample in the downstream region of the plasma. The degree of the modification was measured by a water contact angle measurement. The water contact angle decreased less than 30 degrees within 1 second treatment time in the upstream region. Very high speed modification was observed. The reason of this high speed modification seems that the high density radical which contributes the surface modification exist in the upstream region of the plasma. This tendency is supposed to the measured relatively high electron density (~10{sup 15}cm{sup ?3}) at the center of the plasma. We used the electric heating catalytic probe method for oxygen radical measurement. An absolute value of oxygen radical density was determined by catalytic probe measurement and the results show that ~10{sup 15}cm{sup ?3} of the oxygen radical density in the upstream region and decreases toward downstream region. The experimental results of the relation of the oxygen radical density and hydrophilic modification of polyimide was discussed.

  13. High-Pressure Raman Spectroscopy and X-ray Diffraction Studies of a Terpolymer of Tetrafluoroethylene-Hexafluoropropylene-Vinylidene Fluoride: THV 500

    SciTech Connect (OSTI)

    Emmons, E.D.; Velisavljevic, N.; Schoonover, J.R.; Dattelbaum, D.M.

    2008-04-02

    High-pressure Raman spectroscopy and X-ray diffraction of THV 500, a terpolymer of tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride, were performed using diamond anvil cells (DAC). Changes in the interatomic spacing as well as shifts of several of the vibrational bands as a function of pressure were measured up to {approx}10 GPa. The changes in interatomic spacing and shifts of the vibrational bands are compared to those of polytetrafluoroethylene, showing the effects of copolymerization and reduced crystallinity. The high-pressure behavior of polymers is a relatively unexplored field but is becoming increasingly important due to applications where polymers experience extreme conditions.

  14. Experimental Investigation of Magnetic Superconducting, and other Phase Transitions in Novel f-Electron Materials at Ultra-high Pressures Using Designer Diamond Anvils

    SciTech Connect (OSTI)

    Maple, M. Brian

    2005-09-13

    Pressure is a powerful control parameter, owing to its ability to affect crystal and electronic structure without introducing defects, for the investigation of condensed matter systems. Some f-electron, heavy-fermion materials display interesting and novel behavior when exposed to pressures achievable with conventional experimental techniques; however, a growing number of condensed matter systems require extreme conditions such as ultrahigh pressures, high magnetic fields, and ultralow temperatures to sufficiently explore the important properties. To that end, we have been funded to develop an ultrahigh pressure facility at the University of California, San Diego (UCSD) in order to investigate superconductivity, magnetism, non-Fermi liquid behavior, and other phenomena under extreme conditions. Our goals for the second year of this grant were as follows: (a) perform electrical resistivity measurements on novel samples at a myriad of pressures using conventional piston-cylinder techniques, Bridgman anvil techniques, and diamond anvil cell technology; (b) install, commission, and operate an Oxford Kelvinox MX-100 dilution refrigerator for access to ultralow temperatures and high magnetic fields. (c) continue the development of diamond anvil cell (DAC) technology. During the past year, we have successfully installed the Oxford Kelvinox MX-100 dilution refrigerator and verified its operability down to 12 mK. We have begun an experimental program to systematically investigate the f-electron compound URu2Si2 under pressure and in the presence of magnetic fields. We have also continued our collaborative work with Sam Weir at Lawrence Livermore National Laboratory (LLNL) on Au4V and implemented a new corollary study on Au1-xVx using ultrahigh pressures. We have continued developing our DAC facility by designing and constructing an apparatus for in situ pressure measurement as well as designing high pressure cells. This report serves to highlight the progress we have made towards developing an ultrahigh pressure research facility at UCSD, the research performed in the past year, as well as future directions we plan to pursue.

  15. Assessment of Computer Simulation Software and Process Data for High Pressure Die Casting of Magnesium

    SciTech Connect (OSTI)

    Sabau, Adrian S; Hatfield, Edward C; Dinwiddie, Ralph Barton; Kuwana, Kazunori; Viti, Valerio; Hassan, Mohamed I; Saito, Kozo

    2007-09-01

    Computer software for the numerical simulation of solidification and mold filling is an effective design tool for cast structural automotive magnesium components. A review of commercial software capabilities and their validation procedures was conducted. Aside form the software assessment, the program addressed five main areas: lubricant degradation, lubricant application, gate atomization, and heat transfer at metal mold interfaces. A test stand for lubricant application was designed. A sensor was used for the direct measurement of heat fluxes during lubricant application and casting solidification in graphite molds. Spray experiments were conducted using pure deionized water and commercial die lubricants. The results show that the sensor can be used with confidence for measuring heat fluxes under conditions specific to the die lube application. The data on heat flux was presented in forms suitable for use in HPDC simulation software. Severe jet breakup and atomization phenomena are likely to occur due to high gate velocities in HPDC. As a result of gate atomization, droplet flow affects the mold filling pattern, air entrapment, skin formation, and ensuing defects. Warm water analogue dies were designed for obtaining experimental data on mold filling phenomena. Data on break-up jet length, break-up pattern, velocities, and droplet size distribution were obtained experimentally and was used to develop correlations for jet break-up phenomena specific to die casting gate configurations.

  16. Nanoscale coherent intergrowths in a crystal of La?.?Ca?.?Cu?O??? made superconducting by high-pressure oxygen annealing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Hefei; Zhu, Yimei; Shi, Xiaoya; Li, Qiang; Zhong, Ruidan; Schneeloch, John A.; Gu, Genda; Tranquada, John M.; Billinge, Simon J. L.

    2014-10-28

    Superconductivity with Tc = 53.5 K has been induced in a large La?.?Ca?.?Cu?O? (La-2126) single crystal by annealing in a high partial-pressure of oxygen at 1200C. Using transmission electron microscopy (TEM) techniques, we show that a secondary Ca-doped La?CuO? (La-214) phase, not present in the as-grown crystal, appears as a coherent intergrowth as a consequence of the annealing. A corresponding secondary superconducting transition near 13 K is evident in the magnetization measurement. Electron energy loss spectroscopy (EELS) reveals a pre-edge peak at the O K edge in the superconducting La-2126 phase, which is absent in the as-grown crystal, confirming themorehole-doping by interstitial oxygen.less

  17. Determination of the relative resistance to ignition of selected turbopump materials in high-pressure, high-temperature, oxygen environments, volume 4. Interim report

    SciTech Connect (OSTI)

    Stoltzfus, J.M.; Benz, F.J.

    1986-07-01

    Results from frictional heating tests to determine the effects of oxygen pressure on the Pv production required for igntion are presented. Materials tested include: Monel K-500 and 1015 carbon steels at pressures varied from 100 to 3000 PSIG).

  18. Gradual crossover in molecular organization of stable liquid H{sub 2}O at moderately high pressure and temperature

    SciTech Connect (OSTI)

    Koga, Yoshikata; Westh, Peter; Yoshida, Koh; Inaba, Akira; Nakazawa, Yasuhiro

    2014-09-15

    Using the literature raw data of the speed of sound and the specific volume, the isothermal compressibility, κ{sub T}, a second derivative thermodynamic quantity of G, was evaluated for liquid H{sub 2}O in the pressure range up to 350 MPa and the temperature to 50 ºC. We then obtained its pressure derivative, dκ{sub T}/dp, a third derivative numerically without using a fitting function to the κ{sub T} data. On taking yet another p-derivative at a fixed T graphically without resorting to any fitting function, the resulting d{sup 2}κ{sub T}/dp{sup 2}, a fourth derivative, showed a weak but clear step anomaly, with the onset of the step named point X and its end point Y. In analogy with another third and fourth derivative pair in binary aqueous solutions of glycerol, dα{sub p}/dx{sub Gly} and d{sup 2}α{sub p}/dx{sub Gly}{sup 2}, at 0.1 MPa (α{sub p} is the thermal expansivity and x{sub Gly} the mole fraction of solute glycerol) in our recent publication [J. Solution Chem. 43, 663-674 (2014); DOI:10.1007/s10953-013-0122-7], we argue that there is a gradual crossover in the molecular organization of pure H{sub 2}O from a low to a high p-regions starting at point X and ending at Y at a fixed T. The crossover takes place gradually spanning for about 100 MPa at a fixed temperature. The extrapolated temperature to zero p seems to be about 70 – 80 °C for points X and 90 – 110 °C for Y. Furthermore, the mid-points of X and Y seem to extrapolate to the triple point of liquid, ice Ih and ice III. Recalling that the zero x{sub Gly} extrapolation of point X and Y for binary aqueous glycerol at 0.1 MPa gives about the same T values respectively, we suggest that at zero pressure the region below about 70 °C the hydrogen bond network is bond-percolated, while above about 90 ºC there is no hydrogen bond network. Implication of these findings is discussed.

  19. High Pressure Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  20. The analysis of cracks in high-pressure piping and their effects on strength and lifetime of construction components at the Ignalina nuclear plant

    SciTech Connect (OSTI)

    Aleev, A.; Petkevicius, K.; Senkus, V.

    1997-04-01

    A number of cracks and damages of other sorts have been identified in the high-pressure parts at the Ignalina Nuclear Plant. They are caused by inadequate production- and repair technologies, as well as by thermal, chemical and mechanical processes of their performance. Several techniques are available as predictions of cracks and other defects of pressurized vessels. The choice of an experimental technique should be based on the level of its agreement with the actual processes.

  1. Pressure Effect on the Structural Transition and Suppression of the High-Spin State in the Triple-Layer T'-La₄Ni₃O₈

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, J. B.; Zhou, H. D.; Matsubayashi, K.; Uwatoko, Y.; Kong, P. P.; Jin, C. Q.; Yang, W. G.; Shen, G. Y.

    2012-06-08

    We report a comprehensive high-pressure study on the triple-layer T'-La₄Ni₃O₈ with a suite of experimental probes, including structure determination, magnetic, and transport properties up to 50 GPa. Consistent with a recent ab inito calculation, application of hydrostatic pressure suppresses an insulator-metal spin-state transition at Pc≈6 GPa. However, a low-spin metallic phase does not emerge after the high-spin state is suppressed to the lowest temperature. For P>20 GPa, the ambient T' structure transforms gradually to a T†-type structure, which involves a structural reconstruction from fluorite La–O₂–La blocks under low pressures to rock-salt LaO-LaO blocks under high pressures. Absence of the metallicmore » phase under pressure has been discussed in terms of local displacements of O²⁻ ions in the fluorite block under pressure before a global T† phase is established.« less

  2. Pressure Effect on the Structural Transition and Suppression of the High-Spin State in the Triple-Layer T'-La?Ni?O?

    SciTech Connect (OSTI)

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, J. B.; Zhou, H. D.; Matsubayashi, K.; Uwatoko, Y.; Kong, P. P.; Jin, C. Q.; Yang, W. G.; Shen, G. Y.

    2012-06-08

    We report a comprehensive high-pressure study on the triple-layer T'-La?Ni?O? with a suite of experimental probes, including structure determination, magnetic, and transport properties up to 50 GPa. Consistent with a recent ab inito calculation, application of hydrostatic pressure suppresses an insulator-metal spin-state transition at Pc?6 GPa. However, a low-spin metallic phase does not emerge after the high-spin state is suppressed to the lowest temperature. For P>20 GPa, the ambient T' structure transforms gradually to a T-type structure, which involves a structural reconstruction from fluorite LaO?La blocks under low pressures to rock-salt LaO-LaO blocks under high pressures. Absence of the metallic phase under pressure has been discussed in terms of local displacements of O? ions in the fluorite block under pressure before a global T phase is established.

  3. Pressure transducer

    DOE Patents [OSTI]

    Anderson, T.T.; Roop, C.J.; Schmidt, K.J.; Gunchin, E.R.

    1987-02-13

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output. 7 figs.

  4. Pressure transducer

    DOE Patents [OSTI]

    Anderson, Thomas T.; Roop, Conard J.; Schmidt, Kenneth J.; Gunchin, Elmer R.

    1989-01-01

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output.

  5. Development of Larger Diameter High Pressure CNG Cylinder Manufactured by Piercing and Drawing for Natural Gas Vehicle

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  6. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect (OSTI)

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olson; Deanna Combs; Dhiraj Dembla

    2004-06-01

    The Bureau of Economic Geology (BEG) and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology (BEG) and the Department of Petroleum and Geosystems Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data were to be generated during the demonstration phase to improve the accuracy of the reservoir model. The demonstration phase has been delayed by Goldrus because of funding problems. Since the first of the year, Goldrus has been active in searching for partners to help finance the project. To this end it has commissioned several small consulting studies to technically support its effort to secure a partner. After financial support is obtained, the demonstration phase of the project will proceed. Since just after the beginning of the year, BEG has curtailed project activities and spending of DOE funds except for the continued support of one engineering student. This student has now completed his work and has written a thesis describing his research (titled ''Stimulating enhanced oil recovery (EOR) by high-pressure air injection (HPAI) in west Texas light oil reservoir''). We plan to recommence our work on the project as soon as the operator obtains necessary funding to carry out the demonstration phase of the project. In order to complete all activities specified in the proposal, it will be necessary to request an extension of the project from the originally defined completion date. We are confident that Goldrus will obtain the necessary funding to continue and that we can complete the project if an extension is granted. We strongly believe that the results of this study will provide the impetus for a new approach to enhanced oil recovery in the Permian Basin and elsewhere in the United States.

  7. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect (OSTI)

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olsen; Deanna Combs; Dhiraj Dembla; Leonel Gomez

    2003-06-01

    The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plant that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration are being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the US.

  8. High-Pressure Synchtron Radiation X-Ray Diffraction Studies of Pentaerythritol Tetranitrate C(CH[subscript 2]ONO[subscript 2 ])[subscript 4

    SciTech Connect (OSTI)

    Lipinska-Kalita, K.E.; Pravica, M.; Nicol, M.

    2006-02-02

    A high-pressure x-ray diffraction study of nanocrystalline pentaerythritol tetranitrate, C(CH{sub 2}ONO{sub 2}){sub 4}, (PETN), has been performed in a diamond-anvil cell at ambient temperature using synchrotron radiation. Pressure-induced alterations in the profiles of the diffraction lines, including their positions, widths and intensities were followed up to 30 GPa in a compressino cycle. The spectral changes in the diffraction patterns at low pressures indicated continuous densification of the tetragonal structure (space group P{bar 4}2{sub 1}c). The diffraction patterns confirmed that PETN compressed from ambient pressure to 7.4 GPa by 17%. At 8.2 GPa and above, several new diffraction lines appeared in the patterns. These lines suggest that the lattice undergoes an incomplete stress-induced structural transformation from the tetragonal to an orthorhombic structure (most probably space group P2{sub 1}22{sub 1}). The mixture of both structures appeared to persist to 30 GPa. The progressive broadening of the diffraction lines as the pressure increased beyond 10 GPa is attributed to the combined diffraction lines of a mixture of two coexisting PETN phases and inhomogeneous pressure distribution within the sample.

  9. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    SciTech Connect (OSTI)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. The successful development of HPAI technology has tremendous potential for increasing the flow of oil from deep carbonate reservoirs in the Permian Basin, a target resource that can be conservatively estimated at more than 1.5 billion barrels. Successful implementation in the field chosen for demonstration, for example, could result in the recovery of more than 34 million barrels of oil that will not otherwise be produced. Geological and petrophysical analysis of available data at Barnhart field reveals the following important observations: (1) the Barnhart Ellenburger reservoir is similar to most other Ellenburger reservoirs in terms of depositional facies, diagenesis, and petrophysical attributes; (2) the reservoir is characterized by low to moderate matrix porosity much like most other Ellenburger reservoirs in the Permian Basin; (3) karst processes (cave formation, infill, and collapse) have substantially altered stratigraphic architecture and reservoir properties; (4) porosity and permeability increase with depth and may be associated with the degree of karst-related diagenesis; (5) tectonic fractures overprint the reservoir, improving overall connectivity; (6) oil-saturation profiles show that the oil-water contact (OWC) is as much as 125 ft lower than previous estimations; (7) production history and trends suggest that this reservoir is very similar to other solution-gas-drive reservoirs in the Permian Basin; and (8) reservoir simulation study showed that the Barnhart reservoir is a good candidate for HPAI and that application of horizontal-well technology can improve ultimate resource recovery from the reservoir.

  10. High-pressure x-ray diffraction study of YBO{sub 3}/Eu{sup 3+}, GdBO{sub 3}, and EuBO{sub 3}: Pressure-induced amorphization in GdBO{sub 3}

    SciTech Connect (OSTI)

    Wang, Pei; Xu, Chao; Ren, Xiangting; Lei, Li; Wang, Shanmin; Peng, Fang; Yan, Xiaozhi; Liu, Dongqiong; Wang, Qiming; He, Duanwei; Xiong, Lun; Liu, Jing

    2014-01-28

    Angle-dispersive synchrotron X-ray diffraction measurements were performed on vaterite-type YBO{sub 3}/Eu{sup 3+}, GdBO{sub 3}, and EuBO{sub 3}, respectively, up to 41 GPa at room temperature using a diamond-anvil cell. Pressure-induced amorphization was observed in hexagonal GdBO{sub 3} with a significant compression along the c-axis. Compared to the ions of the distorted GdBO{sub 3} phase, its anions may lose their long-range order prior to the cations at high pressures. Based on the experimental pressure-volume data, the obtained bulk moduli of YBO{sub 3}/Eu{sup 3+} and GdBO{sub 3} are 329 and 321 GPa, respectively, which are more than 90% larger than that of EuBO{sub 3} (167 GPa) and are presumably attributed to Gd{sup 3+} and Y{sup 3+} with a high density of d valence electrons.

  11. Predicting the Influence of Pore Characteristics on Ductility of Thin-Walled High Pressure Die Casting Magnesium

    SciTech Connect (OSTI)

    Sun, Xin; Choi, Kyoo Sil; Li, Dongsheng

    2013-06-10

    In this paper, a two-dimensional microstructure-based finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die casting Mg materials on their ductility. For this purpose, the cross-sections of AM50 and AM60 casting samples are first examined using optical microscope to obtain the overall information on the pore characteristics. The experimentally quantified pore characteristics are then used to generate a series of synthetic microstructures with different pore sizes, pore volume fractions and pore size distributions. Pores are explicitly represented in the synthetic microstructures and meshed out for the subsequent finite element analysis. In the finite element analysis, an intrinsic critical strain value is used for the Mg matrix material, beyond which work-hardening is no longer permissible. With no artificial failure criterion prescribed, ductility levels are predicted for the various microstructures in the form of strain localization. Mesh size effect study is also conducted, from which a mesh size dependent critical strain curve is determined. A concept of scalability of pore size effects is then presented and examined with the use of the mesh size dependent critical strain curve. The results in this study show that, for the regions with lower pore size and lower volume fraction, the ductility generally decreases as the pore size and pore volume fraction increase whereas, for the regions with larger pore size and larger pore volume fraction, other factors such as the mean distance between the pores begin to have some substantial influence on the ductility. The results also indicate that the pore size effects may be scalable for the models with good-representative pore shape and distribution with the use of the mesh size dependent critical strain curve.

  12. Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system

    SciTech Connect (OSTI)

    Marshall, B.W.

    1983-05-01

    As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

  13. Field test of two high-pressure direct-contact downhole steam generators. Volume II. Oxygen/diesel system

    SciTech Connect (OSTI)

    Moreno, J.B.

    1983-07-01

    A field test of an oxygen/diesel fuel, direct contact steam generator has been completed. The field test, which was a part of Project DEEP STEAM and was sponsored by the US Department of Energy, involved the thermal stimulation of a well pattern in the Tar Zone of the Wilmington Oil Field. The activity was carried out in cooperation with the City of Long Beach and the Long Beach Oil Development Company. The steam generator was operated at ground level, with the steam and combustion products delivered to the reservoir through 2022 feet of calcium-silicate insulated tubing. The objectives of the test included demonstrations of safety, operational ease, reliability and lifetime; investigations of reservoir response, environmental impact, and economics; and comparison of those points with a second generator that used air rather than oxygen. The test was extensively instrumented to provide the required data. Excluding interruptions not attributable to the oxygen/diesel system, steam was injected 78% of the time. System lifetime was limited by the combustor, which required some parts replacement every 2 to 3 weeks. For the conditions of this particular test, the use of trucked-in LOX resulted in liess expense than did the production of the equivalent amount of high pressure air using on site compressors. No statistically significant production change in the eight-acre oxygen system well pattern occurred during the test, nor were any adverse effects on the reservoir character detected. Gas analyses during the field test showed very low levels of SOX (less than or equal to 1 ppM) in the generator gaseous effluent. The SOX and NOX data did not permit any conclusion to be drawn regarding reservoir scrubbing. Appreciable levels of CO (less than or equal to 5%) were measured at the generator, and in this case produced-gas analyses showed evidence of significant gas scrubbing. 64 figures, 10 tables.

  14. Evaluation of select heat and pressure measurement gauges for potential use in the NRC/OECD High Energy Arc Fault (HEAF) test program.

    SciTech Connect (OSTI)

    Lopez, Carlos; Wente, William Baker; Figueroa, Victor G.

    2014-01-01

    In an effort to improve the current state of the art in fire probabilistic risk assessment methodology, the U.S. Nuclear Regulatory Commission, Office of Regulatory Research, contracted Sandia National Laboratories (SNL) to conduct a series of scoping tests to identify thermal and mechanical probes that could be used to characterize the zone of influence (ZOI) during high energy arc fault (HEAF) testing. For the thermal evaluation, passive and active probes were exposed to HEAF-like heat fluxes for a period of 2 seconds at the SNLs National Solar Thermal Test Facility to determine their ability to survive and measure such an extreme environment. Thermal probes tested included temperature lacquers (passive), NANMAC thermocouples, directional flame thermometers, modified plate thermometers, infrared temperature sensors, and a Gardon heat flux gauge. Similarly, passive and active pressure probes were evaluated by exposing them to pressures resulting from various high-explosive detonations at the Sandia Terminal Ballistic Facility. Pressure probes included bikini pressure gauges (passive) and pressure transducers. Results from these tests provided good insight to determine which probes should be considered for use during future HEAF testing.

  15. Structural and elastic anisotropy of crystals at high pressures and temperatures from quantum mechanical methods: The case of Mg{sub 2}SiO{sub 4} forsterite

    SciTech Connect (OSTI)

    Erba, A. Dovesi, R.; Maul, J.; De La Pierre, M.

    2015-05-28

    We report accurate ab initio theoretical predictions of the elastic, seismic, and structural anisotropy of the orthorhombic Mg{sub 2}SiO{sub 4} forsterite crystal at high pressures (up to 20 GPa) and temperatures (up to its melting point, 2163 K), which constitute earth’s upper mantle conditions. Single-crystal elastic stiffness constants are evaluated up to 20 GPa and their first- and second-order pressure derivatives reported. Christoffel’s equation is solved at several pressures: directional seismic wave velocities and related properties (azimuthal and polarization seismic anisotropies) discussed. Thermal structural and average elastic properties, as computed within the quasi-harmonic approximation of the lattice potential, are predicted at high pressures and temperatures: directional thermal expansion coefficients, first- and second-order pressure derivatives of the isothermal bulk modulus, and P-V-T equation-of-state. The effect on computed properties of five different functionals, belonging to three different classes of approximations, of the density functional theory is explicitly investigated.

  16. Accident source terms for pressurized water reactors with high-burnup cores calculated using MELCOR 1.8.5.

    SciTech Connect (OSTI)

    Gauntt, Randall O.; Powers, Dana Auburn; Ashbaugh, Scott G.; Leonard, Mark Thomas; Longmire, Pamela

    2010-04-01

    In this study, risk-significant pressurized-water reactor severe accident sequences are examined using MELCOR 1.8.5 to explore the range of fission product releases to the reactor containment building. Advances in the understanding of fission product release and transport behavior and severe accident progression are used to render best estimate analyses of selected accident sequences. Particular emphasis is placed on estimating the effects of high fuel burnup in contrast with low burnup on fission product releases to the containment. Supporting this emphasis, recent data available on fission product release from high-burnup (HBU) fuel from the French VERCOR project are used in this study. The results of these analyses are treated as samples from a population of accident sequences in order to employ approximate order statistics characterization of the results. These trends and tendencies are then compared to the NUREG-1465 alternative source term prescription used today for regulatory applications. In general, greater differences are observed between the state-of-the-art calculations for either HBU or low-burnup (LBU) fuel and the NUREG-1465 containment release fractions than exist between HBU and LBU release fractions. Current analyses suggest that retention of fission products within the vessel and the reactor coolant system (RCS) are greater than contemplated in the NUREG-1465 prescription, and that, overall, release fractions to the containment are therefore lower across the board in the present analyses than suggested in NUREG-1465. The decreased volatility of Cs2MoO4 compared to CsI or CsOH increases the predicted RCS retention of cesium, and as a result, cesium and iodine do not follow identical behaviors with respect to distribution among vessel, RCS, and containment. With respect to the regulatory alternative source term, greater differences are observed between the NUREG-1465 prescription and both HBU and LBU predictions than exist between HBU and LBU analyses. Additionally, current analyses suggest that the NUREG-1465 release fractions are conservative by about a factor of 2 in terms of release fractions and that release durations for in-vessel and late in-vessel release periods are in fact longer than the NUREG-1465 durations. It is currently planned that a subsequent report will further characterize these results using more refined statistical methods, permitting a more precise reformulation of the NUREG-1465 alternative source term for both LBU and HBU fuels, with the most important finding being that the NUREG-1465 formula appears to embody significant conservatism compared to current best-estimate analyses.

  17. Infrared spectroscopic and modeling studies of H{sub 2}/CH{sub 4} microwave plasma gas phase from low to high pressure and power

    SciTech Connect (OSTI)

    Rond, C. Lombardi, G.; Gicquel, A.; Hamann, S.; Rpcke, J.; Wartel, M.

    2014-09-07

    InfraRed Tunable Diode Laser Absorption Spectroscopy technique has been implemented in a H{sub 2}/CH{sub 4} Micro-Wave (MW frequency f?=?2.45 GHz) plasma reactor dedicated to diamond deposition under high pressure and high power conditions. Parametric studies such as a function of MW power, pressure, and admixtures of methane have been carried out on a wide range of experimental conditions: the pressure up to 270 mbar and the MW power up to 4?kW. These conditions allow high purity Chemical Vapor Deposition diamond deposition at high growth rates. Line integrated absorption measurements have been performed in order to monitor hydrocarbon species, i.e., CH{sub 3}, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The densities of the stable detected species were found to vary in the range of 10{sup 12}10{sup 17} molecules cm{sup ?3}, while the methyl radical CH{sub 3} (precursor of diamond growth under these conditions) measured into the plasma bulk was found up to 10{sup 14} molecules cm{sup ?3}. The experimental densities have been compared to those provided by 1D-radial thermochemical model for low power and low pressure conditions (up to 100 mbar/2?kW). These densities have been axially integrated. Experimental measurements under high pressure and power conditions confirm a strong increase of the degree of dissociation of the precursor, CH{sub 4}, associated to an increase of the C{sub 2}H{sub 2} density, the most abundant reaction product in the plasma.

  18. TECHNICAL BASIS AND APPLICATION OF NEW RULES ON FRACTURE CONTROL OF HIGH PRESSURE HYDROGEN VESSEL IN ASME SECTION VIII, DIVISION 3 CODE

    SciTech Connect (OSTI)

    Rawls, G

    2007-04-30

    As a part of an ongoing activity to develop ASME Code rules for the hydrogen infrastructure, the ASME Boiler and Pressure Vessel Code Committee approved new fracture control rules for Section VIII, Division 3 vessels in 2006. These rules have been incorporated into new Article KD-10 in Division 3. The new rules require determining fatigue crack growth rate and fracture resistance properties of materials in high pressure hydrogen gas. Test methods have been specified to measure these fracture properties, which are required to be used in establishing the vessel fatigue life. An example has been given to demonstrate the application of these new rules.

  19. Experimental results of direct containment heating by high-pressure melt ejection into the Surtsey vessel: The DCH-3 and DCH-4 tests

    SciTech Connect (OSTI)

    Allen, M.D.; Pilch, M.; Brockmann, J.E.; Tarbell, W.W. ); Nichols, R.T. ); Sweet, D.W. )

    1991-08-01

    Two experiments, DCH-3 and DCH-4, were performed at the Surtsey test facility to investigate phenomena associated with a high-pressure melt ejection (HPME) reactor accident sequence resulting in direct containment heating (DCH). These experiments were performed using the same experimental apparatus with identical initial conditions, except that the Surtsey test vessel contained air in DCH-3 and argon in DCH-4. Inerting the vessel with argon eliminated chemical reactions between metallic debris and oxygen. Thus, a comparison of the pressure response in DCH-3 and DCH-4 gave an indication of the DCH contribution due to metal/oxygen reactions. 44 refs., 110 figs., 43 tabs.

  20. High-pressure single-crystal elasticity study of CO{sub 2} across phase I-III transition

    SciTech Connect (OSTI)

    Zhang, Jin S. Bass, Jay D.; Shieh, Sean R.; Dera, Przemyslaw; Prakapenka, Vitali

    2014-04-07

    Sound velocities and elastic moduli of solid single-crystal CO{sub 2} were measured at pressures up to 11.7(3) GPa by Brillouin spectroscopy. The aggregate adiabatic bulk modulus (K{sub S}), shear modulus (G), and their pressure derivatives for CO{sub 2} Phase I are K{sub S0}?=?3.4(6) GPa, G{sub 0}?=?1.8(2) GPa, (dK{sub S}/dP){sub 0}?=?7.8(3), (dG/dP){sub 0}?=?2.5(1), (d{sup 2}K{sub S}/dP{sup 2}){sub 0}?=??0.23(3) GPa{sup ?1}, and (d{sup 2}G/dP{sup 2}){sub 0}?=??0.10(1) GPa{sup ?1}. A small increase of elastic properties was observed between 9.8(1) and 10.5(3) GPa, in agreement with the CO{sub 2} I-III transition pressure determined from previous x-ray diffraction experiments. Above the transition pressure P{sub T}, we observed a mixture dominated by CO{sub 2}-I, with minor CO{sub 2}-III. The CO{sub 2}-I + III mixture shows slightly increased sound velocities compared to pure CO{sub 2}-I. Elastic anisotropy calculated from the single-crystal elasticity tensor exhibits a decrease with pressure beginning at 7.9(1) GPa, which is lower than P{sub T}. Our results coincide with recent X-ray Raman observations, suggesting that a pressure-induced electronic transition is related to local structural and optical changes.

  1. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOE Patents [OSTI]

    Tomlinson, Leroy Omar; Smith, Raub Warfield

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  2. Structures of two intermediate phases between the B1 and B2 phases of PbS under high pressure

    SciTech Connect (OSTI)

    Li, Yanchun E-mail: liuj@ihep.ac.cn; Lin, Chuanlong; Li, Xiaodong; Liu, Jing E-mail: liuj@ihep.ac.cn; Xu, Jian; Li, Gong

    2014-12-15

    The structural transitions of PbS were investigated at pressures up to 50 GPa using synchrotron powder and single crystal X-ray diffraction (XRD) methods in diamond anvil cells. We found two intermediate phases between the B1 phase under atmospheric pressure and the B2 phase at 21.1 GPa, which is different to previous reports. The structures of these two intermediate phases were indexed as B27 and B33, respectively. Their structural parameters were investigated using density functional theory (DFT) calculations. Our results provide a new insight into understanding the transition pathway between the B1 and B2 phases in PbS.

  3. X-ray Raman scattering study of MgSiO₃ glass at high pressure: Implication for triclustered MgSiO₃ melt in Earth's mantle

    SciTech Connect (OSTI)

    Lee, Sung Keun; Lin, Jung-Fu; Cai, Yong Q.; Hiraoka, Nozomu; Eng, Peter J.; Okuchi, Takuo; Mao, Ho-kwang; Meng, Yue; Hu, Michael Y.; Chow, Paul; Shu, Jinfu; Li, Baosheng; Fukui, Hiroshi; Lee, Bum Han; Kim, Hyun Na; Yoo, Choong-Shik

    2015-02-09

    Silicate melts at the top of the transition zone and the core-mantle boundary have significant influences on the dynamics and properties of Earth's interior. MgSiO3-rich silicate melts were among the primary components of the magma ocean and thus played essential roles in the chemical differentiation of the early Earth. Diverse macroscopic properties of silicate melts in Earth's interior, such as density, viscosity, and crystal-melt partitioning, depend on their electronic and short-range local structures at high pressures and temperatures. Despite essential roles of silicate melts in many geophysical and geodynamic problems, little is known about their nature under the conditions of Earth's interior, including the densification mechanisms and the atomistic origins of the macroscopic properties at high pressures. Here, we have probed local electronic structures of MgSiO3 glass (as a precursor to Mg-silicate melts), using high-pressure x-ray Raman spectroscopy up to 39 GPa, in which high-pressure oxygen K-edge features suggest the formation of tricluster oxygens (oxygen coordinated with three Si frameworks; [3]O) between 12 and 20 GPa. Our results indicate that the densification in MgSiO3 melt is thus likely to be accompanied with the formation of triculster, in addition to a reduction in nonbridging oxygens. The pressure-induced increase in the fraction of oxygen triclusters >20 GPa would result in enhanced density, viscosity, and crystal-melt partitioning, and reduced element diffusivity in the MgSiO3 melt toward deeper part of the Earth's lower mantle.

  4. Miniaturized pressurization system

    DOE Patents [OSTI]

    Whitehead, John C. (Davis, CA); Swink, Don G. (Woodinville, WA)

    1991-01-01

    The invention uses a fluid stored at a low pressure and provides the fluid at a high pressure. The invention allows the low pressure fluid to flow to a fluid bore of a differential pump and from the pump to a fluid pressure regulator. After flowing through the regulator the fluid is converted to a gas which is directed to a gas bore of the differential pump. By controlling the flow of gas entering and being exhausted from the gas bore, the invention provides pressure to the fluid. By setting the regulator, the high pressure fluid can be set at predetermined values. Because the invention only needs a low pressure fluid, the inventive apparatus has a low mass, and therefore would be useful in rocket propulsion systems.

  5. Pressure cryocooling protein crystals

    DOE Patents [OSTI]

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  6. Vapor pressure and evaporation rate of certain heat-resistant compounds in a vacuum at high temperatures

    SciTech Connect (OSTI)

    Bolgar, A.S.; Verkhoglyadova, T.S.; Samsonov, G.V.

    1985-02-01

    The vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome and of strontium and carbides of titanium, zirconium, and chrome, molybdenum silicide and nitrides of titanium, niobium, and tantalum in a vacuum were studied. It is concluded that all subject compounds evaporate by molecular structures except AlB sub 12' which dissociates, losing the aluminum.

  7. Structural characterization of Green River oil-shale at high-pressure using pair distribution function analysis and small angle x-ray scattering.

    SciTech Connect (OSTI)

    Locke, D. R.; Chupas, P. J.; Chapman, K. W.; Pugmire, R. J.; Winans, R. E.; Univ. of Utah

    2008-01-01

    The compression behavior of a silicate-rich oil shale from the Green River formation in the pressure range 0.0-2.4 GPa was studied using in situ high pressure X-ray pair distribution function (PDF) measurements for the sample contained within a Paris-Edinburgh cell. The real-space local structural information in the PDF, G(r), was used to evaluate the compressibility of the oil shale. Specifically, the pressure-induced reduction in the medium- to long-range atom distances (6-20 {angstrom}) yielded an average sample compressibility corresponding to a bulk modulus of ca. 61-67 GPa. A structural model consisting of a three phase mixture of the principal crystalline oil shale components (quartz, albite and Illite) provided a good fit to the ambient pressure PDF data (R 30.7%). Indeed the features in the PDF beyond 6 {angstrom}, were similarly well fit by a single phase model of the highest symmetry, highly crystalline quartz component.

  8. Dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during a subnanosecond breakdown initiated by runaway electrons

    SciTech Connect (OSTI)

    Tarasenko, V. F. Beloplotov, D. V.; Lomaev, M. I.

    2015-10-15

    The dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during breakdown of a gap with a nonuniform distribution of the electric field by nanosecond high-voltage pulses was studied experimentally. Measurements of the amplitude and temporal characteristics of a diffuse discharge and its radiation with a subnanosecond time resolution have shown that, at any polarity of the electrode with a small curvature radius, breakdown of the gap occurs via two ionization waves, the first of which is initiated by runaway electrons. For a voltage pulse with an ∼500-ps front, UV radiation from different zones of a diffuse discharge is measured with a subnanosecond time resolution. It is shown that the propagation velocity of the first ionization wave increases after its front has passed one-half of the gap, as well as when the pressure in the discharge chamber is reduced and/or when SF{sub 6} is replaced with air or nitrogen. It is found that, at nitrogen pressures of 0.4 and 0.7 MPa and the positive polarity of the high-voltage electrode with a small curvature radius, the ionization wave forms with a larger (∼30 ps) time delay with respect to applying the voltage pulse to the gap than at the negative polarity. The velocity of the second ionization wave propagating from the plane electrode is measured. In a discharge in nitrogen at a pressure of 0.7 MPa, this velocity is found to be ∼10 cm/ns. It is shown that, as the nitrogen pressure increases to 0.7 MPa, the propagation velocity of the front of the first ionization wave at the positive polarity of the electrode with a small curvature radius becomes lower than that at the negative polarity.

  9. Nonlinear propagation of a high-power focused femtosecond laser pulse in air under atmospheric and reduced pressure

    SciTech Connect (OSTI)

    Geints, Yu E; Zemlyanov, A A; Ionin, Andrei A; Kudryashov, Sergei I; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S

    2012-04-30

    This paper examines the propagation of focused femtosecond gigawatt laser pulses in air under normal and reduced pressure in the case of Kerr self-focusing and photoionisation of the medium. The influence of gas density on the beam dimensions and power and the electron density in the plasma column in the nonlinear focus zone of the laser beam has been studied experimentally and by numerical simulation. It has been shown that, in rarefied air, the radiation-induced reduction in the rate of plasma formation diminishes the blocking effect of the plasma on the growth of the beam intensity in the case of tight focusing. This allows higher power densities of ultrashort laser pulses to be reached in the focal waist region in comparison with beam self-focusing under atmospheric pressure.

  10. Multiferroic CuCrO? under high pressure: In situ X-ray diffraction and Raman spectroscopic studies

    SciTech Connect (OSTI)

    Garg, Alka B. Mishra, A. K.; Pandey, K. K.; Sharma, Surinder M.

    2014-10-07

    The compression behavior of delafossite compound CuCrO? has been investigated by in situ x-ray diffraction (XRD) and Raman spectroscopic measurements up to 23.2 and 34 GPa, respectively. X-ray diffraction data show the stability of ambient rhombohedral structure up to ~23 GPa. Material shows large anisotropy in axial compression with c-axis compressibility, ?{sub c} = 1.26 10?(1) GPa? and a-axis compressibility, ?{sub a} = 8.90 10?(6) GPa?. Our XRD data show an irreversible broadening of diffraction peaks. Pressure volume data when fitted to 3rd order Birch-Murnaghan equation of state give the value of bulk modulus, B? = 156.7(2.8) GPa with its pressure derivative, B?{sup } as 5.3(0.5). All the observed vibrational modes in Raman measurements show hardening with pressure. Appearance of a new mode at ~24 GPa indicates the structural phase transition in the compound. Our XRD and Raman results indicate that CuCrO{sub 2} may be transforming to an ordered rocksalt type structure under compression.

  11. Pressure reducing regulator

    DOE Patents [OSTI]

    Whitehead, John C. (Davis, CA); Dilgard, Lemoyne W. (Willits, CA)

    1995-01-01

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes.

  12. Pressure reducing regulator

    DOE Patents [OSTI]

    Whitehead, J.C.; Dilgard, L.W.

    1995-10-10

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure is disclosed. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes. 10 figs.

  13. Experimental Investigation of Magnetic, Superconducting, and other Phase Transitions in novel F-Electron Materials at Ultra-high Pressures - Final Progress Report

    SciTech Connect (OSTI)

    Maple, Brian; Jeffires, Jason

    2006-07-28

    This grant, entitled “Experimental investigation of magnetic, superconducting and other phase transitions in novel f-electron materials at ultrahigh pressures,” spanned the funding period from May 1st, 2003 until April 30th, 2006. The major goal of this grant was to develop and utilize an ultrahigh pressure facility—capable of achieving very low temperatures, high magnetic fields, and extreme pressures as well as providing electrical resistivity, ac susceptibility, and magnetization measurement capabilities under pressure—for the exploration of magnetic, electronic, and structural phases and any corresponding interactions between these states in novel f-electron materials. Realizing this goal required the acquisition, development, fabrication, and implementation of essential equipment, apparatuses, and techniques. The following sections of this report detail the establishment of an ultrahigh pressure facility (Section 1) and measurements performed during the funding period (Section 2), as well as summarize the research project (Section 3), project participants and their levels of support (Section 4), and publications and presentations (Section 5).

  14. Performance of a Small High-Pressure Xenon Detector at Sub-MeV Photon Energies with an Example Application to Ion Beam Analysis

    SciTech Connect (OSTI)

    Pallone, Arthur K.; Beyerle, Al; Demaree, John D.

    2009-03-10

    Ion beam analysis (IBA) is a nondestructive method that provides nondestructive compositional information of a sample. Many IBA techniques derive the information from high-energy photons produced by the interaction of the ion beam with the sample. The performance of a 1.53.8-inch cm diameter by 37.6-inch cm long high-pressure xenon (HPXe) detector is investigated at photon energies useful to IBA. The results for the HPXe detector are then used to predict the performance of larger HPXe detectors at those energies and recommendations are made for an HPXe system for IBA.

  15. Uranium in geologic fluids: Estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures

    SciTech Connect (OSTI)

    Shock, E.L.; Sassani, D.C.; Betz, H.

    1997-10-01

    Theoretical methods are used with the available experimental data to provide estimates of parameters for the revised-HKF equations of state for aqueous uranium species. These parameters are used with standard state thermodynamic data at 25{degrees}C and 1 bar to calculate equilibrium constants for redox reactions among the four most common oxidation states of uranium (U(III), U(IV), U(V), and U(VI)), and their hydrolysis reactions at temperatures to 1000{degrees}C and pressures to 5 kb. A total of nineteen aqueous uranium species are included. The predicted equilibrium constants are used to construct oxidation potential-pH diagrams at elevated temperatures and pressures and to calculate the solubilities of uraninite as functions of temperature and pH, which are compared to experimental data. Oxidation potential-pH diagrams illustrate the relative stabilities of aqueous uranium species and indicate that U(IV) and U(VI) species predominate in aqueous solution in the U-O-H system. Increasing temperature stabilizes U(VI) and U(III) species relative to U(IV) species, but U(IV) species dominate at oxidation states consistent and mineral-buffer assemblages and near-neutral pH. At low pH, U(VI) is stabilized relative to U(IV) suggesting that uranium transport in hydrothermal systems requires either acidic solutions or potent complexes of U(IV). 40 refs., 15 figs., 3 tabs.

  16. In situ measurement of interfacial tension of Fe-S and Fe-P liquids under high pressure using X-ray radiography and tomography techniques

    SciTech Connect (OSTI)

    Terasakia, H; Urakawa, S; Funakoshi, K; Nishiyama, N; Wang, Y; Nishida, K; Sakamaki, T; Suzuki, A; Ohtani, E

    2009-09-14

    Interfacial tension is one of the most important properties of the liquid iron alloy that controls the core formation process in the early history of the Earth and planets. In this study, we made high-pressure X-ray radiography and micro-tomography measurements to determine the interfacial tension between liquid iron alloys and silicate melt using the sessile drop method. The measured interfacial tension of liquid Fe-S decreased significantly (802-112 mN/m) with increasing sulphur content (0-40 at%) at 1.5 GPa. In contrast, the phosphorus content of Fe had an almost negligible effect on the interfacial tension of liquid iron. These tendencies in the effects of light elements are consistent with those measured at ambient pressure. Our results suggest that the effect of sulphur content on the interfacial tension of liquid Fe-S (690 mN/m reduction with the addition of 40 at% S) is large compared with the effect of temperature (~273 mN/m reduction with an increase of 200 K). The three-dimensional structure of liquid Fe-S was obtained at ~2 GPa and 1373-1873 K with a high-pressure tomography technique. The Fe-S droplet was quite homogeneous when evaluated in a slice of the three-dimensional image.

  17. CARS study of linewidths of the Q-branch of hydrogen molecules at high temperatures in a pulsed high-pressure H{sub 2}-O{sub 2} combustion chamber

    SciTech Connect (OSTI)

    Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V; Stelmakh, O M; Fabelinskii, V I; Clauss, W; Klimenko, D N; Oschwald, M

    2005-03-31

    The results of measurements of individual line widths of the Q-branch of a hydrogen molecule and the corresponding coefficients of broadening caused by collisions with water molecules at T = 2700 K in a repetitively pulsed high-pressure (50-200 atm) hydrogen-oxygen combustion chamber are presented. CARS spectra of individual Q{sub 1}-Q{sub 7} hydrogen lines, pressure pulses, and the broadband CARS spectra of the entire Q-branch of hydrogen are recorded simultaneously during a single laser pulse. The shape of line profiles was analysed using a Fabry-Perot interferometer. The temperature in the volume being probed was determined from the 'broadband' CARS spectra. The entire body of the experimental results gives information on the spectral linewidths, temperature and pressure in the combustion chamber during CARS probing. (laser applications and other topics in quantum electronics)

  18. Sapphire tube pressure vessel

    DOE Patents [OSTI]

    Outwater, John O. (Cambridge, MA)

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  19. Physico-chemical fracturing and cleaning of coal. [Treatment with CO/sub 2/ in water at high pressure

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.R.

    1983-09-30

    This invention relates to a method of producing a crushable coal and reducing the metallic values in coal represented by Si, Al, Ca, Na, K, and Mg, which comprises contacting a coal/water mix in a weight ratio of from about 4:1 to 1:6 in the presence of CO/sub 2/ at pressures of about 100 to 1400 psi and a minimum temperature of about 15/sup 0/C for a period of about one or more hours to produce a treated coal/water mix. In the process the treated coal/water mix has reduced values for Ca and Mg of up to 78% over the starting mix and the advantageous CO/sub 2/ concentration is in the range of about 3 to 30 g/L. Below 5 g/L CO/sub 2/ only small effects are observed and above 30 g/L no further special advantages are achieved. The coal/water ratios in the range 1:2 to 2:1 are particularly desirable and such ratios are compatible with coal water slurry applications.

  20. Theoretical calculations for structural, elastic, and thermodynamic properties of RuN{sub 2} under high pressure

    SciTech Connect (OSTI)

    Dong, Bing; Zhou, Xiao-Lin E-mail: lkworld@126.com; Chang, Jing; Liu, Ke E-mail: lkworld@126.com

    2014-08-07

    The structural and elastic properties of RuN{sub 2} were investigated through the first-principles calculation using generalized gradient approximation (GGA) and local density approximation (LDA) within the plane-wave pseudopotential density functional theory. The obtained equilibrium structure and mechanical properties are in excellent agreement with other theoretical results. Then we compared the elastic modulus of RuN{sub 2} with several other isomorphic noble metal nitrides. Results show that RuN{sub 2} can nearly rival with OsN{sub 2} and IrN{sub 2}, which indicate RuN{sub 2} is a potentially ultra-incompressible and hard material. By the elastic stability criteria, it is predicted that RuN{sub 2} is stable in our calculations (0–100 GPa). The calculated B/G ratios indicate that RuN{sub 2} possesses brittle nature at 0 GPa and when the pressure increases to 13.4 GPa (for LDA) or 20.8 GPa (for GGA), it begins to prone to ductility. Through the quasi-harmonic Debye model, we also investigated the thermodynamic properties of RuN{sub 2}.