10-ft Wave Flume Facility | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's picture SubmittedSoltech Jump
Delft Hydraulic's Large Wind-Wave Flume Paul van Vliet 1
Jaehne, Bernd
499 Delft Hydraulic's Large Wind-Wave Flume Paul van Vliet 1 , Frank Hering 2 , and Bernd J¨ahne 2,3 1 Waterloopkundig Laboratorium, Delft Hydraulics Laboratory Rotterdamseweg 185, NL-2692 HD Delft in the seventies, Delft Hydraulics large wind wave flume was totally overhauled to fit the needs of scientists
Stennis Flume | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt.Steep Gradient Flume Jump to:HIF Hydrodynamic Testing
Alden Small Flume | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to: navigation, searchAlcoa Jump to:Flume
Steep Gradient Flume | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt.Steep Gradient Flume Jump to: navigation, search
Adjustable shear stress erosion and transport flume
Roberts, Jesse D. (Carlsbad, NM); Jepsen, Richard A. (Carlsbad, NM)
2002-01-01T23:59:59.000Z
A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.
Bathymetric evolution of sand bed forms under partially standing waves
Landry, Blake Jude
2004-01-01T23:59:59.000Z
Experiments were conducted in a large wave flume where the interaction between water waves and a movable sand bed were investigated. Monochromatic and poly- chromatic waves of specified amplitudes and period were generated ...
Hydrodynamic Tesla Wheel Flume for Model and Prototype Testing
Wood, Stephen L.
The Tesla turbine, U.S. Patent 1,061,206 -- May 6, 1913 was invented by Nikola Tesla as a means to extractHydrodynamic Tesla Wheel Flume for Model and Prototype Testing Spencer Jenkins, Chris Scott, Jacob Engineering department at Florida Institute of Technology (Florida Tech) has developed a Hydrodynamic Tesla
1.5-ft Wave Flume Facility | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's picture SubmittedSoltech Jump to:
3-ft Wave Flume Facility | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's APTA Basic Specifications
11-ft Wave Flume Facility | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource HistorykV remote controlOpenOpen
5-ft Wave Flume Facility | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe Commission |Information EffluentU.S.C. 552 -1.5
6-ft Wave Flume Facility | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe Commission |Information EffluentU.S.C. Home3:105.2
L-Shaped Flume Wave Basin | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas:Kuju Kanko HotelKwitherbee'sGarde Inc
Flume Studies of Sediment Transportation in Shallow Flow with Simulated Rainfall
Nail, F.M.
TR-2 1966 Flume Studies of Sediment Transportation in Shallow Flow with Simulated Rainfall F.M. Nail Texas Water Resources Institute Texas A&M University ...
DeFrees Flume 2 | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNew Jersey: EnergyDeForest,DeFrees Flume 2
DeFrees Flume 3 | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNew Jersey: EnergyDeForest,DeFrees Flume
Nazarenko, Sergey
Gravity Wave Turbulence in Wave Tanks: Space and Time Statistics Sergei Lukaschuk,1,* Sergey the first simultaneous space-time measurements for gravity wave turbulence in a large laboratory flume. We found that the slopes of k and ! wave spectra depend on wave intensity. This cannot be explained by any
Effects of sea severity on wave-overtopping for FPSO fixed in head seas
Bakrawala, Murtaza A.
2003-01-01T23:59:59.000Z
A series of experiments applying regular linear, nonlinear waves (Stokes 5th order-like) and random waves on a fixed FPSO model were performed in the wave-flume tank. Statistical information was gathered for wave overtopping of extreme waves...
Paris-Sud XI, UniversitÃ© de
(hemp), which was chosen as an analogue for natural substrates often found in agricultural ditches, has for the experiments with a flume initially containing dry hemp. In that case, both the initial condition (hemp to favour adsorption. The lowest adsorption is obtained for the flume containing hemp initially saturated
Laboratory Measurements of Wave Forcing and Reactions on a Model Submerged Mesh Breakwater
Knoll, Alex Baxter
2014-07-30T23:59:59.000Z
of 3.4 ft and a length of 10 ft. The estimated forcing on the structure came from measurements during model testing in the Haynes Coastal Engineering Laboratory wave tank. Both regular sinusoidal waves and irregular waves were generated. The significant...
Shemer, Lev
2007-01-01T23:59:59.000Z
in phase, a very wave steep single emerges. The experimental study was carried out in two wave flumes; Freak waves; Zakharov equation; Spatial evolution; Bound (locked) waves 1. Introduction Generation of great importance. Excitation of a single steep wave at a prescribed location in a laboratory wave tank
FLUME-PRISM Workshop Met Office, Exeter, March 15-16, 2004
FLUME-PRISM Workshop Met Office, Exeter, March 15-16, 2004 OASIS3 and OASIS4 : the PRISM couplers G-16, 2004 Slide 2 Outline OASIS historic OASIS community today PRISM first coupler: Oasis3 ·model adaptation ·coupled model configuration ·communication ·interpolations/transformations PRISM final coupler: Oasis4
A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments
Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.
2008-08-27T23:59:59.000Z
We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field.
Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies
Jacobson, Paul T. [Electric Power Research Institute; Amaral, Stephen V. [Alden Research Laboratory; Castro-Santos, Theodore [U.S. Geological Survey; Giza, Dan [Alden Research Laboratory; Haro, Alexander J. [U.S. Geological Survey; Hecker, George [Alden Research Laboratory; McMahon, Brian [Alden Research Laboratory; Perkins, Norman [Alden Research Laboratory; Pioppi, Nick [Alden Research Laboratory
2012-12-31T23:59:59.000Z
This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur duri
Denny, Mark
a dynamically matched 1/25-scale physical model in a laboratory flume. In experiments with kelp mimics, waves a dynamically scaled laboratory model Johanna H. Rosman,a,* Mark W. Denny,b Robert B. Zeller,c Stephen G between model kelp and water under waves increased wake generation of turbulence, resulting in turbulent
LaCure, Mari Mae
2010-04-29T23:59:59.000Z
Waves is the supporting document to the Master of Fine Arts thesis exhibition of the same title. Exhibited March 7-12 2010 in the Art and Design Gallery at the University of Kansas, Waves was comprised of a series of mixed media drawings...
Hydrodynamic forces due to waves and a current induced on a pipeline placed in an open trench
Lee, Jaeyoung
1991-01-01T23:59:59.000Z
. For the first test, calibration was carried out in a small wave flume with an electric carnage. This carriage is designed to move at a steady speed in the range of 0. 5 ? 8. 0 fps (15 ? 24 cm/sec). The probe support, which has a hot ? wire anemometer at its.... This proves that the calibration has to be done at the same water temperature as the temperature in which the probe will be employed. Since the test wave flume is not equipped with a carriage, a small plastic ball (OD = 0. 197 in. (0. 5 cm)) was placed...
Sea ice floes dissipate the energy of steep ocean waves
Toffoli, Alessandro; Meylan, Michael H; Cavaliere, Claudio; Alberello, Alberto; Elsnab, John; Monty, Jason P
2015-01-01T23:59:59.000Z
Wave attenuation by ice floes is an important parameter for modelling the Arctic Oceans. At present, attenuation coefficients are extracted from linear models as a function of the incident wave period and floe thickness. Recent explorations in the Antarctic Mixed Ice Zone (MIZ) revealed a further dependence on wave amplitude, suggesting that nonlinear contributions are non-negligible. An experimental model for wave attenuation by a single ice floe in a wave flume is here presented. Observations are compared with linear predictions based on wave scattering. Results indicate that linear models perform well under the effect of gently sloping waves. For more energetic wave fields, however, transmitted wave height is normally over predicted. Deviations from linearity appear to be related to an enhancement of wave dissipation induced by unaccounted wave-ice interaction processes, including the floe over wash.
Cycloidal Wave Energy Converter
Stefan G. Siegel, Ph.D.
2012-11-30T23:59:59.000Z
This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.
DeFrees Large Wave Basin | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNew Jersey: EnergyDeForest,DeFrees FlumeWave
Flume | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro IncEnergyInformationOpenOpen
Theoretical and experimental evidence of non-symmetric doubly localized rogue waves
Jingsong He; Lijuan Guo; Yongshuai Zhang; Amin Chabchoub
2014-07-27T23:59:59.000Z
We present determinant expressions for vector rogue wave solutions of the Manakov system, a two-component coupled nonlinear Schr\\"odinger equation. As special case, we generate a family of exact and non-symmetric rogue wave solutions of the nonlinear Schr\\"odinger equation up to third-order, localized in both space and time. The derived non-symmetric doubly-localized second-order solution is generated experimentally in a water wave flume for deep-water conditions. Experimental results, confirming the characteristic non-symmetric pattern of the solution, are in very good agreement with theory as well as with numerical simulations, based on the modified nonlinear Schr\\"odinger equation, known to model accurately the dynamics of weakly nonlinear wave packets in deep-water.
Weijgaert, Rien van de
;14/03/2014 6 H L H L L Phase & Group Velocity #12;14/03/2014 7 Doppler Effect #12;14/03/2014 8 Shock Waves #12;14/03/2014 14 Supernova Remnant Cassiopeia A Supernova blast waves #12;14/03/2014 15 Tycho's Remnant (SN 1572AD A SNR flythrough Theory of Supernova Blast Waves Supernovae: Type Ia Subsonic deflagration wave turning
Horizontal and Vertical Erosion Flume
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolÃ©(tm) HarmonicbetandEnergy 2010 A File Storage UpdatesA
Kennedy Flume | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,Kas Farms WindKemp, Texas:Wind
Scripps Flume | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPIDâ€Ž |Rippey JumpAir Jump to:Scotts Bluff County,
Environmental Flume | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolisEnviroMission Ltd JumpFund Place: NewGroup
Teaching Flume | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpodsSweetwaterTMATalbotTaunton,
Erosion Flume | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLCInsulation Incentives RetrievedOhio:Erie,Erosion
Anderson, Mary Elizabeth
2011-10-21T23:59:59.000Z
nor implemented in current hydrodynamic models. A series of laboratory experiments were conducted at the Haynes Coastal Engineering Laboratory and in a two-dimensional flume at Texas A and M University to investigate the influence of relative...
Paul S. Wesson
2012-12-11T23:59:59.000Z
As an example of the unification of gravitation and particle physics, an exact solution of the five-dimensional field equations is studied which describes waves in the classical Einstein vacuum. While the solution is essentially 5D in nature, the waves exist in ordinary 3D space, and may provide a way to test for an extra dimension.
Wave represents displacement Wave represents pressure Source -Sound Waves
Colorado at Boulder, University of
Wave represents displacement Wave represents pressure Source - Sound Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency
Coda wave interferometry 1 Coda wave interferometry
Snieder, Roel
Coda wave interferometry 1 Coda wave interferometry An interferometer is an instrument that is sensitive to the interference of two or more waves (optical or acoustic). For example, an optical interferometer uses two interfering light beams to measure small length changes. Coda wave interferometry
Alden Large Flume | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to: navigation, searchAlcoa Jump to:
Bucknell Hydraulic Flume | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to:Brunei: Energy Resources
2-ft Flume Facility | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-M
Sectional Model Flume Facilities | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPIDâ€Ž |Rippey JumpAir Jump to:ScottsSearch
Sediment Basin Flume | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPIDâ€Ž |Rippey JumpAir Jump to:ScottsSearchSt. Louis, MissouriBasin
Conte Small Flume | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSC Hydrodynamic Testing
Conte Large Flume | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| OpenCongress,ConsolidatedContained Energy Jump to:Conte
Geometrical vs wave optics under gravitational waves
Raymond Angélil; Prasenjit Saha
2015-05-20T23:59:59.000Z
We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics - rather than solving Maxwell's equations directly for the fields, as in most previous approaches - we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic fields all experience the same phase modulation. Applying such a phase modulation to a superposition of plane waves corresponding to a Gaussian wave packet leads to time delays.
,2) provide a kinematic description of water waves, which to this point means that the conditionsWater Waves Roger Grimshaw May 7, 2003 Abstract A short review of the theory of weakly nonlinear water waves, prepared for the forthcoming Encyclopedia of Nonlinear Science 1 Introduction Water waves
the wave model A traveling wave is an organized disturbance
Winokur, Michael
1 waves the wave model A traveling wave is an organized disturbance propagating at a well-defined wave speed v. · In transverse waves the particles of the medium move perpendicular to the direction of wave propagation. · In longitudinal waves the particles of the medium move parallel to the direction
Iwo Bialynicki-Birula
2005-08-26T23:59:59.000Z
Photon wave function is a controversial concept. Controversies stem from the fact that photon wave functions can not have all the properties of the Schroedinger wave functions of nonrelativistic wave mechanics. Insistence on those properties that, owing to peculiarities of photon dynamics, cannot be rendered, led some physicists to the extreme opinion that the photon wave function does not exist. I reject such a fundamentalist point of view in favor of a more pragmatic approach. In my view, the photon wave function exists as long as it can be precisely defined and made useful.
Reflection and transmission of a monochromatic gravity wave at oblique incidence to a step
Wanstrath, John Joseph
1971-01-01T23:59:59.000Z
and Transmission Amplitude Coefficients 4. Error Function, E and E2. 5. Verification Checks. 6. 1 Eigenvalues For The Situation Where The Water Depth 71 73 75 77 10 Ft. aud T = 15 Sec. Sl 6. 2 Eigenvalues For The Situation Where The Water Depth 5 Ft.... and T = 15 Sec 32 6. 3 Eigenvalues For The Situation There The Water Depth 2 Ft. and T = 15 Sec 6. 4 Figenvalues For The Situation [lhcre The Water 10 Ft. and T = 10 Sec S4 6, 5 Eigenvalues For The Situation Whaere The Water Den ch 2 Ft. and T = 10 Sec...
Rogue Wave Modes for the Long Wave-Short Wave Resonance Kwok Wing CHOW*(1)
1 Rogue Wave Modes for the Long Wave-Short Wave Resonance Model Kwok Wing CHOW*(1) , Hiu Ning CHAN.45.Yv; 47.35.Fg ABSTRACT The long wave-short wave resonance model arises physically when the phase velocity of a long wave matches the group velocity of a short wave. It is a system of nonlinear evolution
Mathur, Manikandan S.
Internal waves are a ubiquitous and significant means of momentum and energy transport in the oceans, atmosphere, and astrophysical bodies. Here, we show that internal wave propagation in nonuniform density stratifications, ...
Mercier, Matthieu J.
We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (Exp. Fluids, vol. 42, 2007, pp. 123–130). This ...
Degasperis, Antonio; Aceves, Alejandro B
2015-01-01T23:59:59.000Z
We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing, may lead to extreme waves at extremely low powers.
Internal wave instability: Wave-wave versus wave-induced mean flow interactions
Sutherland, Bruce
, known as parametric sub- harmonic instability, results generally when a disturbance of one frequency imparts energy to disturbances of half that frequency.13,14 Generally, a plane periodic internal wave, energy from primary waves is transferred, for example, to waves with half frequency. Self
Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino
Merlino, Robert L.
Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino Department of Physics and Astronomy with their announcement that: "We find that a new type of sound wave, namely, the dust-acoustic waves, can appear" [1 and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some
Performance Assessment of the Wave Dragon Wave Energy Converter
Hansen, René Rydhof
Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology S of the wave energy sector, device developers are called to provide reliable estimates on power performanceMar, Nissum Bredning, Hanstholm, North Sea, Ekofisk, Wave-to-wire, Wave energy. I. INTRODUCTION The wave
Coastal Wave Generation and Wave Breaking over Terrain: Two Problems in Mesoscale Wave Dynamics
Qian, Tingting
2010-07-14T23:59:59.000Z
Two problems in mesoscale wave dynamics are addressed: (i) wave-turbulence interaction in a breaking mountain wave and (ii) gravity wave generation associated with coastal heating gradients. The mean and turbulent structures in a breaking mountain...
Coastal Wave Generation and Wave Breaking over Terrain: Two Problems in Mesoscale Wave Dynamics
Qian, Tingting
2010-07-14T23:59:59.000Z
Two problems in mesoscale wave dynamics are addressed: (i) wave-turbulence interaction in a breaking mountain wave and (ii) gravity wave generation associated with coastal heating gradients. The mean and turbulent structures in a breaking mountain...
Pacôme Delva; Marie-Christine Angonin; Philippe Tourrenc
2006-09-20T23:59:59.000Z
We calculate and compare the response of light wave interferometers and matter wave interferometers to gravitational waves. We find that metric matter wave interferometers will not challenge kilometric light wave interferometers such as Virgo or LIGO, but could be a good candidate for the detection of very low frequency gravitational waves.
Nonlinear spherical Alfven waves
Ulf Torkelsson; G. Christopher Boynton
1997-09-23T23:59:59.000Z
We present an one-dimensional numerical study of Alfven waves propagating along a radial magnetic field. Neglecting losses, any spherical Alfven wave, no matter how small its initial amplitude is, becomes nonlinear at sufficiently large radii. From previous simulations of Alfven waves in plane parallel atmospheres we did expect the waves to steepen and produce current sheets in the nonlinear regime, which was confirmed by our new calculations. On the other hand we did find that even the least nonlinear waves were damped out almost completely before 10 solar radii. A damping of that kind is required by models of Alfven wave-driven winds from old low-mass stars as these winds are mainly accelerated within a few stellar radii.
Structure-borne sound Flexural wave (bending wave)
Berlin,Technische Universität
1 Structure-borne sound · Flexural wave (bending wave) »One dimensional (beam) +(/x)dx +(/x)dx = (/x) (/x)dx=(2/x2)dx Mz +(Mz/x)dx Mz vy Fy Fy +(Fy/x)dx Structure-borne sound · Bending wave flexural wave #12;2 Structure-borne sound · Two obliquely propagating waves + - + + - + - Structure
Wave Propagation Theory 2.1 The Wave Equation
2 Wave Propagation Theory 2.1 The Wave Equation The wave equation in an ideal fluid can be derived #12;66 2. Wave Propagation Theory quantities of the quiescent (time independent) medium are identified perturbations is much smaller than the speed of sound. 2.1.1 The Nonlinear Wave Equation Retaining higher
Wave momentum flux parameter: a descriptor for nearshore waves
US Army Corps of Engineers
Wave momentum flux parameter: a descriptor for nearshore waves Steven A. Hughes* US Army Engineer Available online 7 October 2004 Abstract A new parameter representing the maximum depth-integrated wave momentum flux occurring over a wave length is proposed for characterizing the wave contribution
Mercier, Matthieu J; Mathur, Manikandan; Gostiaux, Louis; Peacock, Thomas; Dauxois, Thierry
2015-01-01T23:59:59.000Z
We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (2007). This mechanism, which involves a tunable source comprised of oscillating plates, has so far been used for a few fundamental studies of internal waves, but its full potential has yet to be realized. Our studies reveal that this approach is capable of producing a wide variety of two-dimensional wave fields, including plane waves, wave beams and discrete vertical modes in finite-depth stratifications. The effects of discretization by a finite number of plates, forcing amplitude and angle of propagation are investigated, and it is found that the method is remarkably efficient at generating a complete wave field despite forcing only one velocity component in a controllable manner. We furthermore find that the nature of the radiated wave field is well predicted using Fourier transforms of the spatial structure of the wave generator.
Directed Relativistic Blast Wave
Andrei Gruzinov
2007-04-23T23:59:59.000Z
A spherically symmetrical ultra-relativistic blast wave is not an attractor of a generic asymmetric explosion. Spherical symmetry is reached only by the time the blast wave slows down to non-relativistic velocities, when the Sedov-Taylor-von Neumann attractor solution sets in. We show however, that a directed relativistic explosion, with the explosion momentum close to the explosion energy, produces a blast wave with a universal intermediate asymptotic -- a selfsimilar directed ultra-relativistic blast wave. This universality might be of interest for the astrophysics of gamma-ray burst afterglows.
Wave Energy challenges and possibilities
© Wave Energy challenges and possibilities By: Per Resen Steenstrup www.WaveStarEnergy.com Risø-R-1608(EN) 161 #12;© Wave energy is an old story.... The first wave energy patent is 200 years old. Over the last 100 years more than 200 new wave energy devices have been developped and more than 1.000 patents
Wave-Corpuscle Mechanics for Electric Charges
Babin, Anatoli; Figotin, Alexander
2010-01-01T23:59:59.000Z
superposition in nonlinear wave dynamics. Rev. Math. Phys.6. Babin, A. , Figotin, A. : Wave-corpuscle mechanics forV. , Fortunato, D. : Solitary waves in the nonlinear wave
Wave Energy Resource Analysis for Use in Wave Energy Conversion
Pastor, J.; Liu, Y.; Dou, Y.
2014-01-01T23:59:59.000Z
In order to predict the response of wave energy converters an accurate representation of the wave climate resource is crucial. This paper gives an overview of wave resource modeling techniques as well as detailing a methodology for estimating...
Harmonic generation of gravitational wave induced Alfven waves
Mats Forsberg; Gert Brodin
2007-11-26T23:59:59.000Z
Here we consider the nonlinear evolution of Alfven waves that have been excited by gravitational waves from merging binary pulsars. We derive a wave equation for strongly nonlinear and dispersive Alfven waves. Due to the weak dispersion of the Alfven waves, significant wave steepening can occur, which in turn implies strong harmonic generation. We find that the harmonic generation is saturated due to dispersive effects, and use this to estimate the resulting spectrum. Finally we discuss the possibility of observing the above process.
J X Zheng-Johansson; P-I Johansson
2006-08-27T23:59:59.000Z
The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity $v$, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed $c$ between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength ${\\mit\\Lambda}_d$$=(\\frac{v}{c}){\\mit\\Lambda}$ and phase velocity $c^2/v+v$ which resembles directly L. de Broglie's hypothetic phase wave. This phase wave in terms of transporting the particle mass at the speed $v$ and angular frequency ${\\mit\\Omega}_d=2\\pi v /{\\mit\\Lambda}_d$, with ${\\mit\\Lambda}_d$ and ${\\mit\\Omega}_d$ obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase) wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schr\\"odinger equation of an identical system.
Secondary dust density waves excited by nonlinear dust acoustic waves
Heinrich, J. R.; Kim, S.-H.; Meyer, J. K.; Merlino, R. L. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, M. [Department of Electrical and Computer Engineering, University of California, San Diego, California 92093 (United States)
2012-08-15T23:59:59.000Z
Secondary dust density waves were observed in conjunction with high amplitude (n{sub d}/n{sub d0}>2) dust acoustic waves (DAW) that were spontaneously excited in a dc glow discharge dusty plasma in the moderately coupled, {Gamma}{approx}1, state. The high amplitude dust acoustic waves produced large dust particle oscillations, displacements, and trapping. Secondary dust density waves were excited in the wave troughs of the high amplitude DAWs. The waveforms, amplitudes, wavelengths, and wave speeds of the primary DAWs and the secondary waves were measured. A dust-dust streaming instability is discussed as a possible mechanism for the production of the secondary waves.
Recirculation in multiple wave conversions
Brizard, A.J.
2008-01-01T23:59:59.000Z
model lies with the simple wave energy conservation law itthe recirculation of wave energy introduces interference e?particles, the tertiary-wave energy may be negative and thus
Arnold Schwarzenegger CALIFORNIA OCEAN WAVE
Arnold Schwarzenegger Governor CALIFORNIA OCEAN WAVE ENERGY ASSESSMENT Prepared For: California this report as follows: Previsic, Mirko. 2006. California Ocean Wave Energy Assessment. California Energy Systems Integration Â· Transportation California Ocean Wave Energy Assessment is the final report
B. V. Ivanov
1997-05-21T23:59:59.000Z
A coordinate transformation is found which diagonalizes the axisymmetric pp-waves. Its effect upon concrete solutions, including impulsive and shock waves, is discussed.
Wave-wave interactions in solar type III radio bursts
Thejappa, G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); MacDowall, R. J. [NASA/Goddard Space Flight Center, Greenbelt MD 20771 (United States)
2014-02-11T23:59:59.000Z
The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.
Full wave simulations of lower hybrid wave propagation in tokamaks
Wright, John C.
Full wave simulations of lower hybrid wave propagation in tokamaks J. C. Wright , P. T. Bonoli , C hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance. Consequently these waves are well-suited to driving current in the plasma periphery where the electron
Broader source: Energy.gov (indexed) [DOE]
Water Power Peer Review WindWaveFloat Alla Weinstein Principle Power, Inc. aweinstein@principlepowerinc.com November 1, 2011 2 | Wind and Water Power Program eere.energy.gov...
Cavaleri, Luigi; Bidlot, Jean-Raymond
2015-01-01T23:59:59.000Z
We consider the effect of rain on wind wave generation and dissipation. Rain falling on a wavy surface may have a marked tendency to dampen the shorter waves in the tail of the spectrum, the related range increasing with the rain rate. Following the coupling between meteorological and wave models, we derive that on the whole this should imply stronger wind and higher waves in the most energetic part of the spectrum. This is supported by numerical experiments. However, a verification based on the comparison between operational model results and measured data suggests that the opposite is true. This leads to a keen analysis of the overall process, in particular on the role of the tail of the spectrum in modulating the wind input and the white-capping. We suggest that the relationship between white-capping and generation by wind is deeper and more implicative than presently generally assumed.
Hietala, V.M.; Vawter, G.A.
1993-12-14T23:59:59.000Z
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.
Halliday, David Fraser
2009-01-01T23:59:59.000Z
This thesis concerns the application of seismic interferometry to surface waves. Seismic interferometry is the process by which the wavefield between two recording locations is estimated, resulting in new recordings at ...
Kim, Seoktae
2006-04-12T23:59:59.000Z
New millimeter wave interferometric, multifunctional sensors have been studied for industrial sensing applications: displacement measurement, liquid-level gauging and velocimetry. Two types of configuration were investigated to implement the sensor...
Bush, John W. M.
Yves Couder, Emmanuel Fort, and coworkers recently discovered that a millimetric droplet sustained on the surface of a vibrating fluid bath may self-propel through a resonant interaction with its own wave field. This article ...
Autoresonant Excitation of Diocotron Waves
Wurtele, Jonathan
of the wave, the pump and the wave will phase lock at very low wave amplitude. When the pump reachesAutoresonant Excitation of Diocotron Waves J. Fajans E. Gilson U.C. Berkeley L. Friedland Hebrew of phase with the oscillator, and the os- cillator's amplitude will decrease, eventually reaching zero
Application of optical remote sensing to the measurment of wave surface kinematics
Riedl, Stephen James
1994-01-01T23:59:59.000Z
, Wheeler Stretching and Linear Extrapolation. Adjustments are then made to the measured velocity time series to represent any drift currents that might be present in the flume that theory can not predict. Comparison of the adjusted time series are then made...
Marsh, S.P.
1988-03-08T23:59:59.000Z
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.
Marsh, S.P.
1987-03-12T23:59:59.000Z
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.
Graham, T. B.
2010-04-01T23:59:59.000Z
The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.
Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)
1991-01-01T23:59:59.000Z
A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.
Yerganian, Simon Scott (Lee's Summit, MO)
2003-02-11T23:59:59.000Z
A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
Yerganian, Simon Scott (Lee's Summit, MO)
2001-07-17T23:59:59.000Z
A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
Adaptive multiconfigurational wave functions
Evangelista, Francesco A., E-mail: francesco.evangelista@emory.edu [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)
2014-03-28T23:59:59.000Z
A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff ?. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than ?. The resulting ?-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (?+SD-CI), which is based on a small ?-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build ?-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The ?-CI and ?+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the ?-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the ?-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.
Real-time Water Waves with Wave Particles
Yuksel, Cem
2010-10-12T23:59:59.000Z
This dissertation describes the wave particles technique for simulating water surface waves and two way fluid-object interactions for real-time applications, such as video games. Water exists in various different forms in our environment...
Propagation of seismic waves through liquefied soils
Taiebat, Mahdi; Jeremic, Boris; Dafalias, Yannis; Kaynia, Amir; Cheng, Zhao
2010-01-01T23:59:59.000Z
the mechanisms of wave propagation and ARTICLE IN PRESS M.Numerical analysis Wave propagation Earthquake Liquefactionenergy during any wave propagation. This paper summarizes
California Small Hydropower and Ocean Wave Energy
California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy............................................................................................................. 20 Wave Energy Conversion Technology
mm-Wave Phase Shifters and Switches
Adabi Firouzjaei, Ehsan
2010-01-01T23:59:59.000Z
4.1.1 Slow wave transmissioncombiners . . . . . . . . . . . 5.3 mm-Wave implementationfailed to predict current mm-wave design trend [1] . . . . .
Heat Waves, Global Warming, and Mitigation
Carlson, Ann E.
2008-01-01T23:59:59.000Z
Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177
Wave refraction and wave energy on Cayo Arenas
Walsh, Donald Eugene
1962-01-01T23:59:59.000Z
WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis By Donald E. Welsh Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... January 1962 Major Subject: Physical Oceanography WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis Donald E. Walsh Approved as to style and content by: Chairman of the Committee ead of Department ' / January 1962 ACKNOWLEDGMENTS...
Menikoff, Ralph [Los Alamos National Laboratory
2012-04-03T23:59:59.000Z
Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.
Rossen I. Ivanov
2007-07-12T23:59:59.000Z
The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.
Magnetohydrodynamic Shearing Waves
Bryan M. Johnson
2007-02-12T23:59:59.000Z
I consider the nonaxisymmetric linear theory of a rotating, isothermal magnetohydrodynamic (MHD) shear flow. The analysis is performed in the shearing box, a local model of a thin disk, using a decomposition in terms of shearing waves, i.e., plane waves in a frame comoving with the shear. These waves do not have a definite frequency as in a normal mode decomposition, and numerical integration of a coupled set of amplitude equations is required to characterize their time dependence. Their generic time dependence, however, is oscillatory with slowly-varying frequency and amplitude, and one can construct accurate analytical solutions by applying the Wentzel-Kramers-Brillouin method to the full set of amplitude equations. The solutions have the following properties: 1) Their accuracy increases with wavenumber, so that most perturbations that fit within the disk are well-approximated as modes with time-dependent frequencies and amplitudes. 2) They can be broadly classed as incompressive and compressive perturbations, the former including the nonaxisymmetric extension of magnetorotationally unstable modes, and the latter being the extension of fast and slow modes to a differentially-rotating medium. 3) Wave action is conserved, implying that their energy varies with frequency. 4) Their shear stress is proportional to the slope of their frequency, so that they transport angular momentum outward (inward) when their frequency increases (decreases). The complete set of solutions constitutes a comprehensive linear test suite for numerical MHD algorithms that incorporate a background shear flow. I conclude with a brief discussion of possible astrophysical applications.
CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland
Haller, Merrick
CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland ABSTRACT Ocean Wave Energy Converters (OWECs) operating on the water surface are subject to storms at station 139. Keywords: wave energy, survivability, breaking waves, joint distribution, OWEC INTRODUCTION
Gas Explosion Characterization, Wave Propagation
s & Dt^boooo^j RisÃ¸-R-525 Gas Explosion Characterization, Wave Propagation (Small-Scale Experiments EXPLOSION CHARACTERIZATION, WAVE PROPAGATION (Small-Scale Experiments) G.C. Larsen Abstract. A number characteristics 14 3.5. Characteristics of the primary pressure wave 21 3.6. Pressure propagation over a hard
2, 70177025, 2014 Freaque wave
NHESSD 2, 70177025, 2014 Freaque wave occurrences in 2013 P. C. Liu Title Page Abstract to the corresponding final paper in NHESS if available. Brief Communication: Freaque wave occurrences in 2013 P. C. Liu7025, 2014 Freaque wave occurrences in 2013 P. C. Liu Title Page Abstract Introduction Conclusions References
Karney, Charles
is an envelope solitary wave. These solitary waves are not solitons. The occurrence of the constant phase pulses-state propagation of one of the two lower hybrid rays in a homogeneous considering the balance between thermal break up into two types of solitary waves, constant phase pulses or envelope pulses. e examine
Microstructural Design for Stress Wave Energy Management /
Tehranian, Aref
2013-01-01T23:59:59.000Z
Nemat-Nasser, Stress-wave energy management through materialNasser, S. , 2010. Stress-wave energy management throughconstitute pressure wave energy and/or shear wave energy.
Craig, Walter
Introduction Modeling of large ocean waves Propagation speed Coherent wavetrains Near-shore wave waves #12;Introduction Modeling of large ocean waves Propagation speed Coherent wavetrains NearMaster University Tsunamis and ocean waves #12;Introduction Modeling of large ocean waves Propagation speed Coherent
Nonlinear Hysteretic Torsional Waves
J. Cabaret; P. Béquin; G. Theocharis; V. Andreev; V. E. Gusev; V. Tournat
2015-01-09T23:59:59.000Z
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities, and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other type of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short term memory as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
Nonlinear Hysteretic Torsional Waves
Cabaret, J; Theocharis, G; Andreev, V; Gusev, V E; Tournat, V
2015-01-01T23:59:59.000Z
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities, and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other type of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short term memory as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control de...
Theoretical Physics IV SS 2007 R. Flume Exercise II
Buse, Karsten
) A rectangle in a T - S diagramm that is passed through in clockwise order is a Carnot cycle. Calculate for a reversible process. Calculate the entropy change and the optimal temperature T e for a machine which delivers) The Otto cycle consists of a clockwise rectangle in a S - V diagram. Compute for a simple ideal gas (i
Theoretical Physics IV -SS 2007 -R. Flume Exercise II
Buse, Karsten
that is passed through in clockwise order is a Carnot cycle. Calculate for a monatomic ideal gas the efficiency. The maximal work theorem says that the delivery of work is maximal for a reversible process. Calculate is S = Ns0 + NR · ln (( U U0 )c ( V V0 )( N N0 )-c-1 ) with c = 3/2. (i) The Otto cycle consists
Water Monitoring Flume Replaced at the Rocky Flats, Colorado, Site |
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director ofDepartmentDRAFTEnergyDepartment of
Property:Channel/Tunnel/Flume | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType Jump to: navigation, search This isCapRockAgeChallenges
DeFrees Flume 1 | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNew Jersey: EnergyDeForest,
DeFrees Flume 4 | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05b No revisionDbrodt's blog Home
L. Montagnier; J. Aissa; E. Del Giudice; C. Lavallee; A. Tedeschi; G. Vitiello
2010-12-23T23:59:59.000Z
Some bacterial and viral DNA sequences have been found to induce low frequency electromagnetic waves in high aqueous dilutions. This phenomenon appears to be triggered by the ambient electromagnetic background of very low frequency. We discuss this phenomenon in the framework of quantum field theory. A scheme able to account for the observations is proposed. The reported phenomenon could allow to develop highly sensitive detection systems for chronic bacterial and viral infections.
Nondestructive testing using stress waves: wave propagation in layered media
Ortega, Jose Alberto
2013-02-22T23:59:59.000Z
NONDESTRUCTIVE TESTING USING STRESS WAVES: WAVE PROPAGATION IN LAYERED MEDIA A Senior Honors Thesis by JOSE ALBERTO ORTEGA Submitted to the Office of Honors Program & Academic Scholarships Texas A&M University in partial fulfillment... of the requirement of the UNIVERSITY UNDERGRADUATE RESEARCH FELLOWS April 2002 Group: Engineering NONDESTRUCTIVE TESTING USI WAVE PROPAGATION IN LA A Senior Honors The ~pe -C JOSE ALBERTO ORTI /CI Submitted to the Office of Honors Program k. Academic...
Frank G. Borg; Ismo Hakala; Jukka Määttälä
2007-12-24T23:59:59.000Z
We present a summary of the basic properties of the radio wave generation, propagation and reception, with a special attention to the gigahertz bandwidth region which is of interest for wireless sensor networks. We also present some measurement results which use the so-called RSSI indicator in order to track how the field strength varies with position and distance of the transceivers. We hope the paper may be useful to anyone who looks for a quick review of the fundamentals of electromagnetic theory with application to antennas.
Lipscombe, O. J. [University of Tennessee, Knoxville (UTK); Chen, G. F. [The Institute of Physics, Chinese Academy of Sciences; Fang, Chen [Purdue University; Perring, T. G. [ISIS Facility, Rutherford Appleton Laboratory; Abernathy, Douglas L [ORNL; Christianson, Andrew D [ORNL; Egami, Takeshi [ORNL; Wang, Nanlin [The Institute of Physics, Chinese Academy of Sciences; Hu, Jiangping [Purdue University and Chinese Academy of Sciences; Dai, Pengcheng [University of Tennessee, Knoxville (UTK)
2011-01-01T23:59:59.000Z
We use neutron scattering to show that spin waves in the iron chalcogenide Fe{sub 1.05}Te display novel dispersion clearly different from both the first principles density functional calculations and recent observations in the related iron pnictide CaFe{sub 2}As{sub 2}. By fitting to a Heisenberg Hamiltonian, we find that although the nearest-neighbor exchange couplings in the two systems are quite different, their next-nearest-neighbor (NNN) couplings are similar. This suggests that superconductivity in the pnictides and chalcogenides share a common magnetic origin that is intimately associated with the NNN magnetic coupling between the irons.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTURE LOOKSof Energy Wave
Andrey Beresnyak; Alex Lazarian
2008-05-06T23:59:59.000Z
We present a model for nonlinear decay of the weak wave in three-dimensional incompressible magnetohydrodynamic (MHD) turbulence. We show that the decay rate is different for parallel and perpendicular waves. We provide a general formula for arbitrarily directed waves and discuss particular limiting cases known in the literature. We test our predictions with direct numerical simulations of wave decay in three-dimensional MHD turbulence, and discuss the influence of turbulent damping on the development of linear instabilities in the interstellar medium and on other important astrophysical processes.
Wave Evolution On the Evolution of Curvelets
Smith, Hart F.
Curvelets Wave Evolution On the Evolution of Curvelets by the Wave Equation Hart F. Smith of Curvelets by the Wave Equation #12;Curvelets Wave Evolution Curvelets and the Second Dyadic Decomposition Curvelets A curvelet frame {} is a wave packet frame on L2(R2) based on second dyadic decomposition. f
Wave Mechanics and the Fifth Dimension
Paul S. Wesson; James M. Overduin
2013-01-28T23:59:59.000Z
Replacing 4D Minkowski space by 5D canonical space leads to a clearer derivation of the main features of wave mechanics, including the wave function and the velocity of de Broglie waves. Recent tests of wave-particle duality could be adapted to investigate whether de Broglie waves are basically 4D or 5D in nature.
Creating Wave-Focusing Materials
A. G. Ramm
2008-05-16T23:59:59.000Z
Basic ideas for creating wave-focusing materials by injecting small particles in a given material are described. The number of small particles to be injected around any point is calculated. Inverse scattering problem with fixed wavenumber and fixed incident direction of the plane acoustic wave is formulated and solved.
Colliding axisymmetric pp-waves
B. V. Ivanov
1997-10-21T23:59:59.000Z
An exact solution is found describing the collision of axisymmetric pp-waves with M=0. They are impulsive in character and their coordinate singularities become point curvature singularities at the boundaries of the interaction region. The solution is conformally flat. Concrete examples are given, involving an ultrarelativistic black hole against a burst of pure radiation or two colliding beam- like waves.
Fully nonlinear wave-current interactions and kinematics by a BEM-based numerical wave tank
Lynett, Patrick
Fully nonlinear wave-current interactions and kinematics by a BEM-based numerical wave tank S. Ryu and the resulting kinematics. In the present paper, the variation of wave amplitude and wave length and minimize wave reflections from the down- stream wall. Nonlinear wave kinematics as a result of nonlinear
Korneev, Valeri A. (Lafayette, CA); Bakulin, Andrey (Houston, TX)
2009-10-13T23:59:59.000Z
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
Korneev, Valeri A [LaFayette, CA
2009-05-05T23:59:59.000Z
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
2011 Interference -1 INTERFERENCE OF SOUND WAVES
Glashausser, Charles
2011 Interference - 1 INTERFERENCE OF SOUND WAVES The objectives of this experiment are: Â· To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves. Â· To observe interference phenomena with ultrasonic sound waves. APPARATUS: Oscilloscope, function generator, ultrasonic
Electrostatic-plasma-wave energy flux
Amendt, P.; Rostoker, N.
1984-01-01T23:59:59.000Z
would reduce cross- field wave-energy convection since theor cross-field leakage of wave energy are ap- that thecomposition of electrostatic-wave-energy field degrees of
Walking Wave as a Model of Particle
A. V. Goryunov
2012-05-02T23:59:59.000Z
The concept of walking wave is introduced from classical relativistic positions. One- and three-dimensional walking waves considered with their wave equations and dispersion equations. It is shown that wave characteristics (de Broglie's and Compton's wavelengths) and corpuscular characteristics (energy-momentum vector and the rest mass) of particle may be expressed through parameters of walking wave. By that the new view on a number concepts of physic related with wave-particle duality is suggested.
Sandia National Laboratories: Wave Energy Resource Characterization...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
eECEnergyComputational Modeling & SimulationWave Energy Resource Characterization at US Test Sites Wave Energy Resource Characterization at US Test Sites Sandia Report Presents...
Wave runup on cylinders subject to deep water random waves
Indrebo, Ann Kristin
2001-01-01T23:59:59.000Z
The accurate prediction of wave runup on deepwater offshore platform columns is of great importance for design engineers. Although linear predictive models are commonly used in the design and analysis process, many of the important effects...
Wave Energy Resource Analysis for Use in Wave Energy Conversion
Pastor, J.; Liu, Y.; Dou, Y.
2014-01-01T23:59:59.000Z
the naturally available and technically recoverable resource in a given location. The methodology was developed by the EPRI and uses a modified Gamma spectrum that interoperates hindcast sea state parameter data produced by NOAA's Wave watch III. This Gamma...
Backreacting p-wave Superconductors
Raúl E. Arias; Ignacio Salazar Landea
2013-01-28T23:59:59.000Z
We study the gravitational backreaction of the non-abelian gauge field on the gravity dual to a 2+1 p-wave superconductor. We observe that as in the $p+ip$ system a second order phase transition exists between a superconducting and a normal state. Moreover, we conclude that, below the phase transition temperature $T_c$ the lowest free energy is achieved by the p-wave solution. In order to probe the solution, we compute the holographic entanglement entropy. For both $p$ and $p+ip$ systems the entanglement entropy satisfies an area law. For any given entangling surface, the p-wave superconductor has lower entanglement entropy.
Nonlinear dust acoustic waves and shocks
Merlino, R. L.; Heinrich, J. R.; Hyun, S.-H.; Meyer, J. K. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)
2012-05-15T23:59:59.000Z
We describe experiments on (1) nonlinear dust acoustic waves and (2) dust acoustic shocks performed in a direct current (DC) glow discharge dusty plasma. First, we describe experiments showing nonlinear dust acoustic waves characterized by waveforms of the dust density that are typically sharper in the wave crests and flatter in the wave troughs (compared to sinusoidal waves), indicating the development of wave harmonics. We discuss this behavior in terms of a second-order fluid theory for dust acoustic waves. Second, experimental observations of the propagation and steepening of large-amplitude dust acoustic waves into dust acoustic shock waves are presented. The observed shock wave evolution is compared with numerical calculations based on the Riemann solution of the fully nonlinear fluid equations for dust acoustic waves.
Plasma waves driven by gravitational waves in an expanding universe
D. B. Papadopoulos
2002-05-22T23:59:59.000Z
In a Friedmann-Robertson-Walker (FRW) cosmological model with zero spatial curvature, we consider the interaction of the gravitational waves with the plasma in the presence of a weak magnetic field. Using the relativistic hydromagnetic equations it is verified that large amplitude magnetosonic waves are excited, assuming that both, the gravitational field and the weak magnetic field do not break the homogeneity and isotropy of the considered FRW spacetime.
The parametric decay of Alfven waves into shear Alfven waves and dust lower hybrid waves
Jamil, M. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Department of Physics, Crescent Model School Shadman, Lahore 54000 (Pakistan); Shah, H. A.; Zubia, K.; Zeba, I.; Uzma, Ch. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Salimullah, M. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh)
2010-07-15T23:59:59.000Z
The parametric decay instability of Alfven wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in a dusty plasma in the presence of external/ambient uniform magnetic field. Magnetohydrodynamic fluid equations of plasmas have been employed to find the linear and nonlinear response of the plasma particles for this three-wave nonlinear coupling in a dusty magnetoplasma. Here, relatively high frequency electromagnetic Alfven wave has been taken as the pump wave. It couples with other two low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is maximum for small value of external magnetic field B{sub s}. It is noticed that the growth rate is proportional to the unperturbed electron number density n{sub oe}.
Wave Energy Extraction from buoys
Garnaud, Xavier
2009-01-01T23:59:59.000Z
Different types of Wave Energy Converters currently tested or under development are using the vertical movement of floating bodies to generate electricity. For commercial applications, arrays have to be considered in order ...
Michael Spillane; Alexander Stoffers; Ismail Zahed
2011-10-23T23:59:59.000Z
We study the propagation of an ultrarelativistic light quark jet inside a shock wave using the holographic principle. The maximum stopping distance and its dependency on the energy of the jet is obtained.
Brian J. Smith; M. G. Raymer
2007-02-21T23:59:59.000Z
The position-representation wave function for multi-photon states and its equation of motion are introduced. A major strength of the theory is that it describes the complete evolution (including polarization and entanglement) of multi-photon states propagating through inhomogeneous media. As a demonstration of the two-photon wave function's use, we show how two photons in an orbital-angular-momentum entangled state decohere upon propagation through a turbulent atmosphere.
Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.
2013-07-29T23:59:59.000Z
The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.
Wave function as geometric entity
B. I. Lev
2011-02-10T23:59:59.000Z
A new approach to the geometrization of the electron theory is proposed. The particle wave function is represented by a geometric entity, i.e., Clifford number, with the translation rules possessing the structure of Dirac equation for any manifold. A solution of this equation is obtained in terms of geometric treatment. Interference of electrons whose wave functions are represented by geometric entities is considered. New experiments concerning the geometric nature of electrons are proposed.
Steady water waves with multiple critical layers
Mats Ehrnström; Joachim Escher; Erik Wahlén
2011-04-01T23:59:59.000Z
We construct small-amplitude periodic water waves with multiple critical layers. In addition to waves with arbitrarily many critical layers and a single crest in each period, two-dimensional sets of waves with several crests and troughs in each period are found. The setting is that of steady two-dimensional finite-depth gravity water waves with vorticity.
Physica D 159 (2001) 3557 Wave group dynamics in weakly nonlinear long-wave models
Pelinovsky, Dmitry
Physica D 159 (2001) 35Â57 Wave group dynamics in weakly nonlinear long-wave models Roger Grimshawa Communicated by A.C. Newell Abstract The dynamics of wave groups is studied for long waves, using the framework reserved. Keywords: Wave group dynamics; KortewegÂde Vries equation; Nonlinear SchrÂ¨odinger equation 1
Propagation Plane waves -High order Modes
Berlin,Technische UniversitÃ¤t
1 Propagation Â· Plane waves - High order Modes y x a One wave: p(x,y,t)=p0 cos(k y)e-jk x e j t vy(y,t)= 0 ; y=0,a xy } ky = n a Propagation Â· Plane waves - High order Modes x n a p(x,y,t)=pn cos( y + - +- + + - +- + - + + +- - - (m,n) #12;4 Propagation Â· Circular duct Â Helical waves (spiralling waves) kc=m/a kz k
Propagation Plane waves -High order Modes
Berlin,Technische UniversitÃ¤t
1 Propagation Â· Plane waves - High order Modes y x a ky = n a One wave: p(x,y,t)=p0 cos(k y)e-jk x e j t vy(y,t)= 0 ; y=0,a xy } Propagation Â· Plane waves - High order Modes x n a p(x,y,t)=pn cos( y;4 Propagation Â· Circular duct Â Helical waves (spiralling waves) kc=m/a kz kH Projection: Propagation #12
Near-surface seismic attenuation of P-waves in West Texas
Al-Zahrani, Said Awdhah
1992-01-01T23:59:59.000Z
impedance contmsts in the near-surface layers. Data were also analyzed to characterize vertical and horizontal variations in the ambient noise levels near the surface. It was found that by burying geophones 10 ft below the surface, the ambient noise level... was reduced by 20 dB. Furthermore, by burying geophone 50 ft or 100 ft, the ambient noise levels were less by 30 to 35 dB than at the surface. The ambient noise level increases at the surface because of numerous noise sources which in turn decreases...
Wave-Turbulence Interactions in a Breaking Mountain Wave Craig Epifanio and Tingting Qian
#12;Dissipation of Mean Wave Energy · Mean wave energy E is just the total energy (kinetic + available · The dissipation of mean wave energy is caused by the turbulent momentum fluxes--specifically, by their tendency
Energy-momentum relation for solitary waves of relativistic wave equations
T. V. Dudnikova; A. I. Komech; H. Spohn
2005-08-23T23:59:59.000Z
Solitary waves of relativistic invariant nonlinear wave equation with symmetry group U(1) are considered. We prove that the energy-momentum relation for spherically symmetric solitary waves coincides with the Einstein energy-momentum relation for point particles.
Longridge, Jonathon Kent
1993-01-01T23:59:59.000Z
Waves in the oceans pose challenging problems to offshore structural design because they arc irregular and can be highly nonlinear. Although these irregular waves can be viewed as the summation of many linear wave components of different...
Modulation and kinematics of mechanically-generated short gravity waves riding on long waves
Spell, Charles Anthony
1992-01-01T23:59:59.000Z
for the degree of MASTER OF SCIENCE December 1992 Major Subject: Ocean Engineering MODULATION AND KINEMATICS OF MECHANICALLY- GENERATED SHORT GRAVITY WAVES RIDING ON LONG WAVES A Thesis by C~S ANTHONY SPELL Approved as to style and content by: Jun Zhang... fundamental nonlinear wave interaction occurring in an irregular wave field. The objectives of the present study are now stated: ~ Generate a dual-component wave formed from the interaction of two inde- pendently propagating monochromatic wave trains in a...
Surface wave chemical detector using optical radiation
Thundat, Thomas G.; Warmack, Robert J.
2007-07-17T23:59:59.000Z
A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.
Two-wave interaction in ideal magnetohydrodynamics
T. V. Zaqarashvili; B. Roberts
2006-02-24T23:59:59.000Z
The weakly nonlinear interaction of sound and linearly polarised Alfv{\\'e}n waves propagating in the same direction along an applied magnetic field is studied. It is found that a sound wave is coupled to the Alfv{\\'e}n wave with double period and wavelength when the sound and Alfv{\\'e}n speeds are equal. The Alfv{\\'e}n wave drives the sound wave through the ponderomotive force, while the sound wave returns energy back to the Alfv{\\'e}n wave through the parametric (swing) influence. As a result, the two waves alternately exchange their energy during propagation. The process of energy exchange is faster for waves with stronger amplitudes. The phenomenon can be of importance in astrophysical plasmas, including the solar atmosphere and solar wind.
Global coherence of dust density waves
Killer, Carsten; Melzer, André [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)
2014-06-15T23:59:59.000Z
The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.
Rupprecht, F.; Möller, I.; Evans, B.; Spencer, T.; Jensen, K.
2015-04-19T23:59:59.000Z
with relevance to studies of habitat structure and ecosystem functioning as well as wave energy dissipation in salt marsh environments and can be used for the development of a more realistic representation of vegetation in numerical models and laboratory flume...
US Army Corps of Engineers
B8 Page 1 B8. Using CMS-Wave The most recent CMS-Wave code developed is Version 3.2. Several new capabilities and advanced features in this version include: · Full-plane wind-generation of waves · Automatic wave run-up calculation · Infra-gravity wave calculation · Nonlinear wave-wave interaction · Muddy
Sati, Priti; Tripathi, V. K. [Indian Institute of Technology, Hauz Khas, Delhi 110054 (India)
2012-12-15T23:59:59.000Z
Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.
Wave propagation in anisotropic viscoelasticity
Andrzej Hanyga
2015-04-30T23:59:59.000Z
We extend the theory of complete Bernstein functions to matrix-valued functions and apply it to analyze Green's function of an anisotropic multi-dimension\\-al linear viscoelastic problem. Green's function is given by the superposition of plane waves. Each plane wave is expressed in terms of matrix-valued attenuation and dispersion functions given in terms of a matrix-valued positive semi-definite Radon measure. More explicit formulae are obtained for 3D isotropic viscoelastic Green's functions. As an example of an anisotropic medium the transversely isotropic medium with a constant symmetry axis is considered.
Wave Energy | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002) | OpenEnergy AS Jump to:WaveWave
atmospheric gravity waves: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
gravity waves (AGWs). Satellite imagery shows evidence the characteristics of these waves. The favorable wave propagation conditions in 12;this region are illustrated 5...
anomalous spin waves: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered....
Identifying two steps in the internal wave energy cascade
Sun, Oliver Ming-Teh
2010-01-01T23:59:59.000Z
1.1.1 The internal wave energy cascade . . . . . . .? ? , which contain only wave energy trav- eling upward anddistinction is made between wave energy propagating upward
Fundamentals of Traveling Wave Ion Mobility Spectrometry. | EMSL
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Fundamentals of Traveling Wave Ion Mobility Spectrometry. Fundamentals of Traveling Wave Ion Mobility Spectrometry. Abstract: Traveling-wave ion mobility spectrometry (TW IMS) is a...
MHK Technologies/New Knowledge Wind and Wave Renewable Mobile...
Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge Wind and Wave Renewable...
alfven wave spectrum: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
waves are easily excited by various processes. Linear waves propagate at the Alfv'en speed v Guedel, Manuel 14 Anisotropic weak turbulence of Alfven waves in collisionless...
alfven wave avalanches: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
waves are easily excited by various processes. Linear waves propagate at the Alfv'en speed v Guedel, Manuel 13 Anisotropic weak turbulence of Alfven waves in collisionless...
Texas at Austin, University of
(fast and slow) with differing polarization. The 4C, 3D ocean-bottom cable (OBC) multicomponent seismic and stratigraphic features within the gas-charged intervals. C- waves (Figure 3) penetrate these P-wave wipeout
Wave VelocityWave Velocity Diff t f ti l l itDifferent from particle velocity
Yoo, S. J. Ben
Wave VelocityWave Velocity v=/T =f Diff t f ti l l itDifferent from particle velocity Depends on the medium in which the wave travelsDepends on the medium in which the wave travels stringaonvelocity F v of Waves11-8. Types of Waves Transverse wave Longitudinal wave Liu UCD Phy1B 2014 37 #12;Sound Wave
WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA
Cary, John R.
2012-01-01T23:59:59.000Z
case, the electrons have negative wave energy for 2w ne w wave energy for 2w .w > 0 nl Hence, unstable waves with negative phase velocity,
Einstein, Black Holes Gravitational Waves
Cook, Greg
1 #12;Einstein, Black Holes and Gravitational Waves Gregory B. Cook Wake Forest University 2 #12;Einstein's Miraculous Year: 1905 · Einstein, A. "¨Uber einen die Erzeugung und Verwandlung des Lichtes Concerning the Production and Transformation of Light. · Einstein, A. "¨Uber die von der molekularkinetischen
Wave functions of linear systems
Tomasz Sowinski
2007-06-05T23:59:59.000Z
Complete analysis of quantum wave functions of linear systems in an arbitrary number of dimensions is given. It is shown how one can construct a complete set of stationary quantum states of an arbitrary linear system from purely classical arguments. This construction is possible because for linear systems classical dynamics carries the whole information about quantum dynamics.
Nonlinear Saturation of Vertically Propagating Rossby Waves
Giannitsis, Constantine
The interaction between vertical Rossby wave propagation and wave breaking is studied in the idealized context of a beta-plane channel model. Considering the problem of propagation through a uniform zonal flow in an ...
Arnold Schwarzenegger DEVELOPING WAVE ENERGY IN
Arnold Schwarzenegger Governor DEVELOPING WAVE ENERGY IN COASTAL CALIFORNIA: POTENTIAL SOCIO. Developing Wave Energy In Coastal California: Potential Socio-Economic And Environmental Effects. California-ECONOMIC AND ENVIRONMENTAL EFFECTS Prepared For: California Energy Commission Public Interest Energy Research Program
Mathematical aspects of surface water waves
Craig, Walter
questions remain. These have to do with the evolution of surface water waves, their approximation by model normally being chosen. Unless we are describing waves of a global extent, such as a tsunami, for our
Fracture compliance estimation using borehole tube waves
Bakku, Sudhish Kumar
We tested two models, one for tube-wave generation and the other for tube-wave attenuation at a fracture intersecting a borehole that can be used to estimate fracture compliance, fracture aperture, and lateral extent. In ...
On quantization of nondispersive wave packets
Altaisky, M. V. [Space Research Institute RAS, Profsoyuznaya 84/32, Moscow 117997 (Russian Federation)] [Space Research Institute RAS, Profsoyuznaya 84/32, Moscow 117997 (Russian Federation); Kaputkina, N. E. [National University of Science and Technology “MISIS” Leninsky prospect 4, Moscow 119049 (Russian Federation)] [National University of Science and Technology “MISIS” Leninsky prospect 4, Moscow 119049 (Russian Federation)
2013-10-15T23:59:59.000Z
Nondispersive wave packets are widely used in optics and acoustics. We found it interesting that such packets could be also a subject of quantum field theory. Canonical commutation relations for the nondispersive wave packets are constructed.
Wave Mechanics and General Relativity: A Rapprochement
Paul S. Wesson
2006-01-16T23:59:59.000Z
Using exact solutions, we show that it is in principle possible to regard waves and particles as representations of the same underlying geometry, thereby resolving the problem of wave-particle duality.
Wind effects on shoaling wave shape
Feddersen, F; Veron, F
2005-01-01T23:59:59.000Z
breaking in the presence of wind drift and swell. J. Fluidlin, 1995: Asymmetry of wind waves studied in a laboratorycoupling between swell and wind-waves. J. Phys. Oceanogr. ,
Carbon nanotube-guided thermopower waves
Choi, Wonjoon
Thermopower waves are a new concept for the direct conversion of chemical to electrical energy. A nanowire with large axial thermal diffusivity can accelerate a self-propagating reaction wave using a fuel coated along its ...
Oblique reflections of internal gravity wave beams
Karimi, Hussain H. (Hussain Habibullah)
2012-01-01T23:59:59.000Z
We study nonlinear effects in reflections of internal gravity wave beams in a continuously stratified liquid which are incident upon a uniform slope at an oblique angle. Wave motion in a stratified fluid medium is unique ...
Turbulent round jet under gravity waves
Ryu, Yong Uk
2002-01-01T23:59:59.000Z
The behavior of a neutrally buoyant horizontal turbulent round jet under a wavy environment was investigated. Progressive waves with different wave amplitudes in an intermediate water depth were used. The Particle Image Velocimetry (PIV) technique...
Gravitational waves from merging compact binaries
Hughes, Scott A.
Largely motivated by the development of highly sensitive gravitational-wave detectors, our understanding of merging compact binaries and the gravitational waves they generate has improved dramatically in recent years. ...
Analysis of optimum Lamb wave tuning
Shi, Yijun, 1970-
2002-01-01T23:59:59.000Z
Guided waves are of enormous interest in the nondestructive evaluation of thin-walled structures and layered media. Due to their dispersive and multi-modal nature, it is desirable to tune the waves by discriminating one ...
Wave-driven Countercurrent Plasma Centrifuge
A.J. Fetterman and N.J. Fisch
2009-03-20T23:59:59.000Z
A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the ? channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.
Wave Propagation in Fractured Poroelastic Media
Seismic wave propagation through fractures and cracks is an important subject in exploration and production geophysics, earthquake seismology and mining.
Comparison of P-wave and S-wave data processed by DIP moveout
Al-Misnid, Abdulaziz Mugbel
1994-01-01T23:59:59.000Z
of compressional (P) and shear (S) wave data in a fractured reservoir can show whether amplitude anomalies on the P-wave section are associated with the presence of gas or change of lithology. The P-wave and S-wave data selected for this study were shot in Burleson...
High amplitude wave propagation in collapsible tubes. II. Forerunners and high amplitude waves
Paris-Sud XI, UniversitÃ© de
773 High amplitude wave propagation in collapsible tubes. II. Forerunners and high amplitude waves that, under certain circumstances, a pressure wave of large amplitude which propagates in a fluid feature of such a shock wave propagation inside an initially collapsed tube is the presence ofwavelets
Thompson/Ocean 420/Winter 2004 2D waves 1 Two-dimensional wave propagation
Thompson, LuAnne
Thompson/Ocean 420/Winter 2004 2D waves 1 Two-dimensional wave propagation So far we have talked about wave propagation in one-dimension. For two or three spatial dimensions, we vectorize our ideas propagation. For surface waves, there is no vertical propagation, and we are only concerned with the two
WAVE HEIGHTS IN A 4D OCEAN WAVE FIELD Paul C. Liu
WAVE HEIGHTS IN A 4D OCEAN WAVE FIELD Paul C. Liu NOAA Great Lakes Environmental Research a preliminary examination and analysis of a small suite of 4-D wave data to explore what new insight century. We feel it is timely to encourage further 4-D ocean wave measurement and thereby facilitate fresh
Wave Front Interaction Model of Stabilized Propagating Wave Segments Vladimir S. Zykov1
Showalter, Kenneth
Wave Front Interaction Model of Stabilized Propagating Wave Segments Vladimir S. Zykov1 and Kenneth; published 14 February 2005) A wave front interaction model is developed to describe the relationship between excitability and the size and shape of stabilized wave segments in a broad class of weakly excitable media
Wave Turbulence in Superfluid 4 Energy Cascades, Rogue Waves & Kinetic Phenomena
Fominov, Yakov
Outline Wave Turbulence in Superfluid 4 He: Energy Cascades, Rogue Waves & Kinetic Phenomena Conference, Chernogolovka, 3 August 2009 McClintock Efimov Ganshin Kolmakov Mezhov-Deglin Wave Turbulence in Superfluid 4 He #12;Outline Outline 1 Introduction Motivation 2 Modelling wave turbulence Need for models
Wave-pinned filaments of scroll waves Tams Bnsgi, Jr., Kevin J. Meyer, and Oliver Steinbocka
Steinbock, Oliver
Wave-pinned filaments of scroll waves Tamás Bánsági, Jr., Kevin J. Meyer, and Oliver Steinbocka Received 5 November 2007; accepted 26 December 2007; published online 6 March 2008 Scroll waves are three can be pinned to the wake of traveling wave pulses. This pinning is studied in experiments with the 1
Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves
Klein, Spencer
2010-01-01T23:59:59.000Z
waves generated by the thermoacoustic mechanism, little workproduction by the thermoacoustic mechanism is suppressed,
Wave Impact Study on a Residential Building Wave Impact Study on a Residential Building
Cox, Dan
Wave Impact Study on a Residential Building Paper: Wave Impact Study on a Residential Building John residential light- frame wood buildings and wave and surge loading be- cause often little is left residential structures and wave loading. To do this, one-sixth scale residen- tial building models typical
Beauty waves: an artistic representation of ocean waves using Bezier curves
Faulkner, Jay Allen
2007-04-25T23:59:59.000Z
In this thesis, we present a method for computing an artistic representation of ocean waves using Bezier curves. Wave forms are loosely based on procedural wave models and are designed to emulate those found in both art and nature. The wave forms...
Autoresonance of coupled nonlinear waves L. Friedland
Friedland, Lazar
wave train solutions of the decoupled problem. At the same time, the waves are globally phase locked, allowing the continuation of the phase locking between the waves despite the variation of system's param and sustaining this multidimensional autoresonance are the internal reso- nant excitation of one of the coupled
EFFECTS OF SOUND WAVES ON YOUNG SALMON
EFFECTS OF SOUND WAVES ON YOUNG SALMON Marine Biological Laboratory X. 1 33 R A. RTT ir.':; WOODS instantaneously to sounds. It was con- were tested in an experimental tank and in eluded that sound waves were, Wash . sound studies conducted under the above contract are terminated. #12;EFFECTS OF SOUND WAVES
Coupled Parabolic Equations for Wave Propagation
Zhao, Hongkai
Coupled Parabolic Equations for Wave Propagation Kai Huang, Knut Solna and Hongkai Zhao #3; April simulation of wave propagation over long distances. The coupled parabolic equations are derived from a two algorithms are important in order to understand wave propagation in complex media. Resolving the wavelength
Solitary waves propagating over variable Roger Grimshaw
Solitary waves propagating over variable topography Roger Grimshaw Loughborough University waves that can propagate steadily over long distances. They were first observed by Russell in 1837 in a now famous report [26] on his observations of a solitary wave propagating along a Scottish canal
Seminario de Matemtica Aplicada "Renowable wave energy
Tradacete, Pedro
Seminario de Matemática Aplicada "Renowable wave energy: potencial and technical challenges Abstract: Among the various renewable energy sources, ocean wave energy has been only recently investiga will be at first to introduce the potential of wave energy, as a significant, and often neglected, contributor
Wave propagation Remco Hartkamp (University of Twente)
Entekhabi, Dara
) waves Sound: 20 Hz 20 kHz Gas: P Liquid: P Plasma: P Solid: P & S #12;Stretched string example 1D wave Dispersion: Waves with different wavelengths propagate at different speeds 6 k c k k Shallow water: c gh mJ K material parameter (related to the strain saturation of the material) det FJ bulk modulus
Multi-reflective acoustic wave device
Andle, Jeffrey C.
2006-02-21T23:59:59.000Z
An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.
Wave guides: vacuum w/ tube of conductor
Hart, Gus
Wave guides: vacuum w/ tube of conductor boundary conditions for conductor Properties: non-transverse waves except TEM mode in coaxial cable speed normal modes (from Liouville problem) TE or TM TEM for coaxial cable cuto frequency otherwise evanescent waves separation into and components with 1 #12;B
WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS
Stewart, Sarah T.
WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS C. L. Liu and Thomas J. Ahrens Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 In order to record P- and S-waves on the interactions between incident P- and SV-waves and free-surfaces of rocks. The relations between particle
Wave Packets and Turbulent Peter Jordan1
Dabiri, John O.
Wave Packets and Turbulent Jet Noise Peter Jordan1 and Tim Colonius2 1 D´epartement Fluides-control efforts is incomplete. Wave packets are intermittent, advecting disturbances that are correlated over review evidence of the existence, energetics, dynamics, and acous- tic efficiency of wave packets. We
EFFICIENCY OF FAST WAVE CURRENT DRIVE FOR
Karney, Charles
EFFICIENCY OF FAST WAVE CURRENT DRIVE FOR A WEAKLY RELATIVISTIC PLASMA by S.C. CHIU, C.F.F. KARNEY: http://charles.karney.info/biblio/chiu94.html #12;Chiu e t al. THE EFFICIENCY OF FAST WAVE CURRENT DRIVE FOR A WEAKLY RELATIVISTIC PLASMA THE EFFICIENCY OF FAST WAVE CURRENT DRIVE FOR A WEAKLY
Visualizing the kinematics of relativistic wave packets
Bernd Thaller
2004-09-14T23:59:59.000Z
This article investigates some solutions of the time-dependent free Dirac equation. Visualizations of these solutions immediately reveal strange phenomena that are caused by the interference of positive- and negative-energy waves. The effects discussed here include the Zitterbewegung, the opposite direction of momentum and velocity in negative-energy wave packets, and the superluminal propagation of the wave packet's local maxima.
Hybrid wave model and its applications
Yang, Jun
1998-01-01T23:59:59.000Z
A nonlinear hybrid wave model (HWM) is developed. It uses the conventional mode-coupling method (MCM) and the phase modulation method (PMM) to address the nonlinear interactions between free-wave components in an ocean wave field. The PMM is a...
Airborne observations of the kinematics and statistics of breaking waves
Kleiss, Jessica M.
2009-01-01T23:59:59.000Z
E. M. Janssen, 1996: Wave energy dissipation by whitecaps.waves: Surface impulse and wave energy dissipation rates. J.to the ocean, dissipating wave energy that is then available
ITB KNAW UTwente Lectures on Free Surface Waves
Al Hanbali, Ahmad
, Acknowledgment Surface waves are phenomena that are characterised by the dynamic interplay between linear.3 Linear Dispersive wave model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Wave groupsITB KNAW UTwente Lectures on Free Surface Waves Brenny van Groesen, Applied Analysis & Mathematical
Traveling wave device for combining or splitting symmetric and asymmetric waves
Möbius, Arnold (Eggenstein, DE); Ives, Robert Lawrence (Saratoga, CA)
2005-07-19T23:59:59.000Z
A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.
Wave turbulent statistics in non-weak wave turbulence
Naoto Yokoyama
2011-05-08T23:59:59.000Z
In wave turbulence, it has been believed that statistical properties are well described by the weak turbulence theory, in which nonlinear interactions among wavenumbers are assumed to be small. In the weak turbulence theory, separation of linear and nonlinear time scales derived from the weak nonlinearity is also assumed. However, the separation of the time scales is often violated even in weak turbulent systems where the nonlinear interactions are actually weak. To get rid of this inconsistency, closed equations are derived without assuming the separation of the time scales in accordance with Direct-Interaction Approximation (DIA), which has been successfully applied to Navier--Stokes turbulence. The kinetic equation of the weak turbulence theory is recovered from the DIA equations if the weak nonlinearity is assumed as an additional assumption. It suggests that the DIA equations is a natural extension of the conventional kinetic equation to not-necessarily-weak wave turbulence.
Gravitational wave radiometry: Mapping a stochastic gravitational wave background
Mitra, Sanjit [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Observatoire de la Cote d'Azur, BP 4229, 06304 Nice Cedex 4 (France); Dhurandhar, Sanjeev; Souradeep, Tarun [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Lazzarini, Albert; Mandic, Vuk; Ballmer, Stefan [LIGO Laboratory, California Institute of Technology, MS 18-34, Pasadena, California 91125 (United States); Bose, Sukanta [Department of Physics, Washington State University, Pullman, Washington 99164-2814 (United States)
2008-02-15T23:59:59.000Z
The problem of the detection and mapping of a stochastic gravitational wave background (SGWB), either cosmological or astrophysical, bears a strong semblance to the analysis of the cosmic microwave background (CMB) anisotropy and polarization, which too is a stochastic field, statistically described in terms of its correlation properties. An astrophysical gravitational wave background (AGWB) will likely arise from an incoherent superposition of unmodelled and/or unresolved sources and cosmological gravitational wave backgrounds (CGWB) are also predicted in certain scenarios. The basic statistic we use is the cross correlation between the data from a pair of detectors. In order to ''point'' the pair of detectors at different locations one must suitably delay the signal by the amount it takes for the gravitational waves (GW) to travel to both detectors corresponding to a source direction. Then the raw (observed) sky map of the SGWB is the signal convolved with a beam response function that varies with location in the sky. We first present a thorough analytic understanding of the structure of the beam response function using an analytic approach employing the stationary phase approximation. The true sky map is obtained by numerically deconvolving the beam function in the integral (convolution) equation. We adopt the maximum likelihood framework to estimate the true sky map using the conjugate gradient method that has been successfully used in the broadly similar, well-studied CMB map-making problem. We numerically implement and demonstrate the method on signal generated by simulated (unpolarized) SGWB for the GW radiometer consisting of the LIGO pair of detectors at Hanford and Livingston. We include 'realistic' additive Gaussian noise in each data stream based on the LIGO-I noise power spectral density. The extension of the method to multiple baselines and polarized GWB is outlined. In the near future the network of GW detectors, including the Advanced LIGO and Virgo detectors that will be sensitive to sources within a thousand times larger spatial volume, could provide promising data sets for GW radiometry.
Damage Detection in Plate Structures using Guided Ultrasonic Waves
Jarmer, Gregory James Sylvester
Guided Wave Structural Health Monitoring. ” Ultrasonics 50 (to Structural Health Monitoring. ” Philosophicalfor Guided-wave Structural Health Monitoring. ” Structural
Construction of KP solitons from wave patterns
Sarbarish Chakravarty; Yuji Kodama
2013-09-10T23:59:59.000Z
We often observe that waves on the surface of shallow water form complex web-like patterns. They are examples of nonlinear waves, and these patterns are generated by nonlinear interactions among several obliquely propagating waves. In this note, we discuss how to construct an exact soliton solution of the KP equation from such web-pattern of shallow water wave. This can be regarded as an "inverse problem" in the sense that by measuring certain metric data of the solitary waves in the given pattern, it is possible to construct an exact KP soliton solution which can describe the non-stationary dynamics of the pattern.
Thermal Gravitational Waves from Primordial Black Holes
C. Sivaram; Kenath Arun
2010-05-19T23:59:59.000Z
Thermal gravitational waves can be generated in various sources such as, in the cores of stars, white dwarfs and neutron stars due to the fermion collisions in the dense degenerate Fermi gas. Such high frequency thermal gravitational waves can also be produced during the collisions in a gamma ray burst or during the final stages of the evaporation of primordial black holes. Here we estimate the thermal gravitational waves from primordial black holes and estimate the integrated energy of the gravitational wave emission over the entire volume of the universe and over Hubble time. We also estimate the gravitational wave flux from gamma ray bursts and jets.
Refractive gravitational waves and quantum fluctuations
John W. Barrett
2000-11-14T23:59:59.000Z
Refractive gravitational waves are a generalisation of impulsive waves on a null hypersurface in which the metric is discontinuous but a weaker continuity condition for areas holds. A simple example of a plane wave is examined in detail and two arguments are given that this should be considered a solution of Einstein's vacuum field equations. The study of these waves is motivated by quantum gravity, where the refractive plane waves are considered as elementary quantum fluctuations and the `area geometry' of a null hypersurface plays a primary role.
Matter Wave Radiation Leading to Matter Teleportation
Yong-Yi Huang
2015-02-12T23:59:59.000Z
The concept of matter wave radiation is put forward, and its equation is established for the first time. The formalism solution shows that the probability density is a function of displacement and time. A free particle and a two-level system are reinvestigated considering the effect of matter wave radiation. Three feasible experimental designs, especially a modified Stern-Gerlach setup, are proposed to verify the existence of matter wave radiation. Matter wave radiation effect in relativity has been formulated in only a raw formulae, which offers another explanation of Lamb shift. A possible mechanics of matter teleportation is predicted due to the effect of matter wave radiation.
Ponderomotive Forces On Waves In Modulated Media
Dodin, I.Y; Fisch, Nathaniel
2014-02-28T23:59:59.000Z
Nonlinear interactions of waves via instantaneous cross-phase modulation can be cast in the same way as ponderomotive wave-particle interactions in high-frequency electromagnetic fi eld. The ponderomotive effect arises when rays of a probe wave scatter off perturbations of the underlying medium produced by a second, modulation wave, much like charged particles scatter off a quasiperiodic field. Parallels with the point-particle dynamics, which itself is generalized by this theory, lead to new methods of wave manipulation, including asymmetric barriers for light.
Kinematic dynamo induced by helical waves
Wei, Xing
2014-01-01T23:59:59.000Z
We investigate numerically the kinematic dynamo induced by the superposition of two helical waves in a periodic box as a simplified model to understand the dynamo action in astronomical bodies. The effects of magnetic Reynolds number, wavenumber and wave frequency on the dynamo action are studied. It is found that this helical-wave dynamo is a slow dynamo. There exists an optimal wavenumber for the dynamo growth rate. A lower wave frequency facilitates the dynamo action and the oscillations of magnetic energy emerge at some particular wave frequencies.
Gravitational waves from perturbed stars
Valeria Ferrari
2011-05-09T23:59:59.000Z
Non radial oscillations of neutron stars are associated with the emission of gravitational waves. The characteristic frequencies of these oscillations can be computed using the theory of stellar perturbations, and they are shown to carry detailed information on the internal structure of the emitting source. Moreover, they appear to be encoded in various radiative processes, as for instance in the tail of the giant flares of Soft Gamma Repeaters. Thus, their determination is central to the theory of stellar perturbation. A viable approach to the problem consists in formulating this theory as a problem of resonant scattering of gravitational waves incident on the potential barrier generated by the spacetime curvature. This approach discloses some unexpected correspondences between the theory of stellar perturbations and the theory of quantum mechanics, and allows us to predict new relativistic effects.
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23T23:59:59.000Z
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
Majidi-Ahy, Gholamreza (Sunnyvale, CA); Bloom, David M. (Portola Valley, CA)
1991-01-01T23:59:59.000Z
A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.
Freak waves in white dwarfs and magnetars
Sabry, R. [Theoretical Physics Group, Physics Department, Faculty of Science, Damietta University, New Damietta 34517 (Egypt); Department of Physics, College of Science and Humanitarian Studies, Salman bin Abdulaziz University, Alkharj (Saudi Arabia); International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); Moslem, W. M. [International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt); Shukla, P. K. [International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); Department of Mechanical and Aerospace Engineering and Center for Energy Research, University of California, San Diego, La Jolla, California 92093 (United States)
2012-12-15T23:59:59.000Z
We report properties of ion acoustic freak waves that propagate in a plasma composed of warm ions and ultrarelativistic electrons and positrons. The dynamics of the nonlinear freak waves is governed by the nonlinear Schroedinger equation. The possible region for the freak waves to exist is defined precisely for typical parameters of white dwarfs and magnetars corona. It is found that for low wave number, the nonlinear ion-acoustic wave packets are structurally stable in magnetars corona than in white dwarfs. However, for large wave numbers the situation is opposite. The critical wave number threshold (k{sub c}), which indicates where the modulational instability sets in, is defined for both applications. It is seen that near to k{sub c} the freak wave amplitude becomes high, but it decreases whenever we stepped away from k{sub c}. For the wave numbers close to k{sub c}, the increase of the unperturbed density ratio of positrons-to-electrons ({beta}) would lead to increase the freak wave amplitude, but for larger wave numbers the amplitude decreases with the increase of {beta}.
The Nature of Running Penumbral Waves Revealed
D. Shaun Bloomfield; Andreas Lagg; Sami K. Solanki
2007-09-24T23:59:59.000Z
We seek to clarify the nature of running penumbral (RP) waves: are they chromospheric trans-sunspot waves or a visual pattern of upward-propagating waves? Full Stokes spectropolarimetric time series of the photospheric Si I 10827 \\AA line and the chromospheric He I 10830 \\AA multiplet were inverted using a Milne-Eddington atmosphere. Spatial pixels were paired between the outer umbral/inner penumbral photosphere and the penumbral chromosphere using inclinations retrieved by the inversion and the dual-height pairings of line-of-sight velocity time series were studied for signatures of wave propagation using a Fourier phase difference analysis. The dispersion relation for radiatively cooling acoustic waves, modified to incorporate an inclined propagation direction, fits well the observed phase differences between the pairs of photospheric and chromospheric pixels. We have thus demonstrated that RP waves are in effect low-beta slow-mode waves propagating along the magnetic field.
Corvino's construction using Brill waves
Domenico Giulini; Gustav Holzegel
2005-08-17T23:59:59.000Z
For two-black-hole time-symmetric initial data we consider the Corvino construction of gluing an exact Schwarzschild end. We propose to do this by using Brill waves. We address the question of whether this method can be used to reduce the overall energy, which seems to relate to the question of whether it can reduce the amount of `spurious' gravitational radiation. We find a positive answer at first order in the inverse gluing radius.
Sequentially pulsed traveling wave accelerator
Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)
2009-08-18T23:59:59.000Z
A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.
Wave propagation in axion electrodynamics
Yakov Itin
2007-06-20T23:59:59.000Z
In this paper, the axion contribution to the electromagnetic wave propagation is studied. First we show how the axion electrodynamics model can be embedded into a premetric formalism of Maxwell electrodynamics. In this formalism, the axion field is not an arbitrary added Chern-Simon term of the Lagrangian, but emerges in a natural way as an irreducible part of a general constitutive tensor.We show that in order to represent the axion contribution to the wave propagation it is necessary to go beyond the geometric approximation, which is usually used in the premetric formalism. We derive a covariant dispersion relation for the axion modified electrodynamics. The wave propagation in this model is studied for an axion field with timelike, spacelike and null derivative covectors. The birefringence effect emerges in all these classes as a signal of Lorentz violation. This effect is however completely different from the ordinary birefringence appearing in classical optics and in premetric electrodynamics. The axion field does not simple double the ordinary light cone structure. In fact, it modifies the global topological structure of light cones surfaces. In CFJ-electrodynamics, such a modification results in violation of causality. In addition, the optical metrics in axion electrodynamics are not pseudo-Riemannian. In fact, for all types of the axion field, they are even non-Finslerian.
Topological Aspects of Wave Propagation
Carlos Valero
2014-06-13T23:59:59.000Z
In the context of wave propagation on a manifold X, the characteristic functions are real valued functions on cotangent bundle of X that specify the allowable phase velocities of the waves. For certain classes of differential operators (e.g Maxwell's Equations) the associated characteristic functions have singularities. These singularities account for phenomena like conical refraction and the transformation of longitudinal waves into transversal ones (or viceversa). For a specific class of differential operators on surface, we prove that the singularities of the characteristic functions can be accounted from purely topological considerations. We also prove that there is a natural way to desingularsize the characteristic functions, and observe that this fact and Morse Theory establishes a specific connection between singularities and critical points of these functions. The relation between characteristic functions and differential operators is obtained through what is known as the symbol of the operator. We establish a connection between these symbols and holomorphic vector fields, which will provide us with symbols whose characteristic functions have interesting singularity sets.
Victoria, University of
On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry Effective, economic extraction of ocean wave energy requires an intimate under- standing of the ocean wave
SPECTROSCOPIC OBSERVATIONS OF A CORONAL MORETON WAVE
Harra, Louise K. [UCL-Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Sterling, Alphonse C. [Space Science Office, VP62, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Goemoery, Peter [Astronomical Institute, Slovak Academy of Sciences, SK-05960 Tatranska Lomnica (Slovakia); Veronig, Astrid, E-mail: lkh@mssl.ucl.ac.uk, E-mail: alphonse.sterling@nasa.gov, E-mail: gomory@astro.s, E-mail: astrid.veronig@uni-graz.at [Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria)
2011-08-10T23:59:59.000Z
We observed a coronal wave (EIT wave) on 2011 February 16, using EUV imaging data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) and EUV spectral data from the Hinode/EUV Imaging Spectrometer (EIS). The wave accompanied an M1.6 flare that produced a surge and a coronal mass ejection (CME). EIS data of the wave show a prominent redshifted signature indicating line-of-sight velocities of {approx}20 km s{sup -1} or greater. Following the main redshifted wave front, there is a low-velocity period (and perhaps slightly blueshifted), followed by a second redshift somewhat weaker than the first; this progression may be due to oscillations of the EUV atmosphere set in motion by the initial wave front, although alternative explanations may be possible. Along the direction of the EIS slit the wave front's velocity was {approx}500 km s{sup -1}, consistent with its apparent propagation velocity projected against the solar disk as measured in the AIA images, and the second redshifted feature had propagation velocities between {approx}200 and 500 km s{sup -1}. These findings are consistent with the observed wave being generated by the outgoing CME, as in the scenario for the classic Moreton wave. This type of detailed spectral study of coronal waves has hitherto been a challenge, but is now possible due to the availability of concurrent AIA and EIS data.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTURE LOOKS
The Loudest Gravitational Wave Events
Hsin-Yu Chen; Daniel E. Holz
2014-09-04T23:59:59.000Z
As first emphasized by Bernard Schutz, there exists a universal distribution of signal-to-noise ratios for gravitational wave detection. Because gravitational waves (GWs) are almost impossible to obscure via dust absorption or other astrophysical processes, the strength of the detected signal is dictated solely by the emission strength and the distance to the source. Assuming that the space density of an arbitrary population of GW sources does not evolve, we show explicitly that the distribution of detected signal-to-noise (SNR) values depends solely on the detection threshold; it is independent of the detector network (interferometer or pulsar timing array), the individual detector noise curves (initial or Advanced LIGO), the nature of the GW sources (compact binary coalescence, supernova, or some other discrete source), and the distributions of source variables (only non-spinning neutron stars of mass exactly $1.4\\,M_\\odot$ or a complicated distribution of masses and spins). We derive the SNR distribution for each individual detector within a network as a function of the relative detector orientations and sensitivities. While most detections will have SNR near the detection threshold, there will be a tail of events to higher SNR. We derive the SNR distribution of the loudest (highest SNR) events in any given sample of detections. We find that the median SNR of the loudest out of the first four events should have an $\\mbox{SNR}=22$ (for a threshold of 12, appropriate for the Advanced LIGO/Virgo network), increasing to a median value for the loudest SNR of 47 for 40 detections. We expect these loudest events to provide particularly powerful constraints on their source parameters, and they will play an important role in extracting astrophysics from gravitational wave sources. These distributions also offer an important internal calibration of the response of the GW detector networks.
Particle acceleration in superluminal strong waves
Teraki, Yuto; Nagataki, Shigehiro
2015-01-01T23:59:59.000Z
We calculate the electron acceleration in random superluminal strong waves (SLSWs) and radiation from them by using numerical methods in the context of the termination shock of the pulsar wind nebulae. We pursue the electrons by solving the equation of motion in the analytically expressed electromagnetic turbulences. These consist of primary SLSW and isotropically distributed secondary electromagnetic waves. Under the dominance of the secondary waves, all electrons gain nearly equal energy. On the other hand, when the primary wave is dominant, selective acceleration occurs. The phase of the primary wave felt by the electrons moving nearly along the wavevector changes very slowly compared to the oscillation of the wave, which is called "phase locked", and such electrons are continuously accelerated. This acceleration by SLSWs may play a crucial role in the pre-acceleration for the shock acceleration. In general, the radiation from the phase-locked population is different from the synchro-Compton radiation. How...
Wave Heating of the Solar Atmosphere
Arregui, I
2015-01-01T23:59:59.000Z
Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding on coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding on the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation, and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us understanding and quantifying magnetic wave heating of the sola...
Refrigeration system having standing wave compressor
Lucas, Timothy S. (Glen Allen, VA)
1992-01-01T23:59:59.000Z
A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.
Scattering of internal gravity waves
Leaman Nye, Abigail
2011-04-19T23:59:59.000Z
of the perturbed buoy- ancy field throughout a period of the motion. Curves represent cross-sections taken from the incident beam (cyan); a beam after reflection from a solid horizontal bound- ary (dark blue) and a beam after interaction with the sponge formation... wavenumber components and (b) plots power spectra calculated with Fourier and maximum entropy methods. k˜ is a nondimensional wavenumber representing the number of waves in an across-beam section of length Rc. . . . . . . 114 4.7 Two-dimensional power spectra...
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph HomeWaranaWater Power ForumGeothermalWave
Elgen Wave | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| OpenElectromagnetic ProfilingElgen Wave Jump to:
Long-range propagation of ocean waves
Young, William R.
hours. Friday, February 22, 2013 #12;OceanPowerTechnologies A 103 foot long, 260ton buoy being tested #12;Wave Power? PelamisWavePower With T=10sec and a = 1 meter, the energy flux is 40kW/meter. An average 40kW/meter of wave power is typical of good sites. Energy Flux = cg × Energy Density = g2 Ta2 8
Irregular wave induced velocities in shallow water
Sultan, Nels John
1991-01-01T23:59:59.000Z
probabil- ity density function. This thesis applies this expanded distribution to fluid particle velocities instead of wave elevations. Ochi (1982) presents a review of recent ad- vances in the stochastic analysis of random seas. He notes that the first..., (Longuet-Higgins 1963), that purely linear waves will have a Gaussian distribu- tion. Therefore, any deviation from a Gaussian distribution must be attributed to wave nonlinearities. Ochi (1982) discusses a series of experiments by Honda and Mitsuyasu...
Li, Bin
2012-11-29T23:59:59.000Z
Most designs for wave energy converters include a hydraulic (or pneumatic) interface between the wave device and the generator to smooth electricity production, but a direct drive power take-off system is a possible way ...
Full-wave modeling of lower hybrid waves on Alcator C-Mod
Meneghini, Orso (Orso-Maria Cornelio)
2012-01-01T23:59:59.000Z
This thesis focuses on several aspects of the Lower Hybrid (LH) wave physics, the common theme being the development of full-wave simulation codes based on Finite Element Methods (FEM) used in support of experiments carried ...
Using a Bore-Soliton-Splash to understand Rogue Waves, Tsunamis & Wave Energy
Wirosoetisno, Djoko
)compression] use wave focussing in a convergence [3]. · IPS wave buoy has a linear dynamo below sea level. · Designed & built new RogueWavEnergy device: it works, a LED is blinking & we measured the power output. 8
Interaction of gravitational waves with matter
A. Cetoli; C. J. Pethick
2011-10-03T23:59:59.000Z
We develop a unified formalism for describing the interaction of gravitational waves with matter that clearly separates the effects of general relativity from those due to interactions in the matter. Using it, we derive a general expression for the dispersion of gravitational waves in matter in terms of correlation functions for the matter in flat spacetime. The self energy of a gravitational wave is shown to have contributions analogous to the paramagnetic and diamagnetic contributions to the self energy of an electromagnetic wave. We apply the formalism to some simple systems - free particles, an interacting scalar field, and a fermionic superfluid.
Elastic Wave Behavior Across Linear Slip Interfaces
Schoenberg, M.
plane waves incident at arbitrary angles upon a plane linear slip interface are computed ... Also included in these sections is an analysis ... ish, Ut is of the form.
Nonlinear manipulation and control of matter waves
E. V. Goldstein; M. G. Moore; P. Meystre
1999-06-23T23:59:59.000Z
This paper reviews some of our recent results in nonlinear atom optics. In addition to nonlinear wave-mixing between matter waves, we also discuss the dynamical interplay between optical and matter waves. This new paradigm, which is now within experimental reach, has the potential to impact a number of fields of physics, including the manipulation and applications of atomic coherence, and the preparation of quantum entanglement between microscopic and macroscopic systems. Possible applications include quantum information processing, matter-wave holography, and nanofabrication.
Wave Propagation in Fractured Poroelastic Media
2014-06-22T23:59:59.000Z
Wave Propagation in Fractured. Poroelastic Media. WCCM, Barcelona, Spain, July 2014. Juan E. Santos,. 1. 1. Instituto del Gas y del Petr´oleo (IGPUBA), UBA,
Sandia National Laboratories: wave energy converter
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
release. This model has ... Sandia Funded to Model Power Pods for Utility-Scale Wave-Energy Converter On September 16, 2014, in Computational Modeling & Simulation, Energy,...
Stochastic Quantum Trajectories without a Wave Function
Jeroen C. Vink
2015-03-16T23:59:59.000Z
After summarizing three versions of trajectory-based quantum mechanics, it is argued that only the original formulation due to Bohm, which uses the Schr\\"odinger wave function to guide the particles, can be readily extended to particles with spin. To extend the two wave function-free formulations, it is argued that necessarily particle trajectories not only determine location, but also spin. Since spin values are discrete, it is natural to revert to a variation of Bohm's pilot wave formulation due originally to Bell. It is shown that within this formulation with stochastic quantum trajectories, a wave function free formulation can be obtained.
Sandia National Laboratories: reflected optical wave
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
reflected optical wave New Sandia Mirror Isn't Shiny: Instead It Reflects Infrared Light Using a Metamaterial On December 12, 2014, in Capabilities, Materials Science, News, News &...
Wave Packets Propagation in Quantum Gravity
Kourosh Nozari; S. H. Mehdipour
2005-07-03T23:59:59.000Z
Wave packet broadening in usual quantum mechanics is a consequence of dispersion behavior of the medium which the wave propagates in it. In this paper, we consider the problem of wave packet broadening in the framework of Generalized Uncertainty Principle(GUP) of quantum gravity. New dispersion relations are derived in the context of GUP and it has been shown that there exists a gravitational induced dispersion which leads to more broadening of the wave packets. As a result of these dispersion relations, a generalized Klein-Gordon equation is obtained and its interpretation is given.
Fast methods for inverse wave scattering problems
Lee, Jung Hoon, Ph. D. Massachusetts Institute of Technology
2008-01-01T23:59:59.000Z
Inverse wave scattering problems arise in many applications including computerized/diffraction tomography, seismology, diffraction/holographic grating design, object identification from radar singals, and semiconductor ...
Experiment Indicates Sound Waves Can Trigger Quakes
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
in a laboratory setting, a Los Alamos researcher and his colleagues have shown that seismic waves-the sounds radiated from earthquakes-can induce earthquake aftershocks, often...
Sandia National Laboratories: wave energy converters
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...
Phase Diagram of a Holographic Superconductor Model with s-wave and d-wave
Mitsuhiro Nishida
2014-12-11T23:59:59.000Z
We consider a holographic model with a scalar field, a tensor field and a direct coupling between them as a superconductor with an s-wave and a d-wave. We find a rich phase structure in the model. The model exhibits a phase of coexistence of the s-wave and the d-wave, or a phase of an order competition. Furthermore, it has a triple point.
Sound Waves from Quenched Jets
Vladimir Khachatryan; Edward Shuryak
2011-08-15T23:59:59.000Z
Heavy ion collisions at RHIC/LHC energies are well described by the (nearly ideal) hydrodynamics. Last year this success has been extended to higher angular harmonics, $v_n,n=3..9$ induced by initial-state perturbations, in analogy to cosmic microwave background fluctuations. Here we use hydrodynamics to study sound propagation emitted by quenched jets. We use the so called "geometric acoustics" to follow the sound propagation, on top of the expanding fireball. The conical waves, known as "Mach cones", turn out to be strongly distorted. We show that large radial flow makes the observed particle spectra to be determined mostlly by the vicinity of their intersection with the fireball's space-like and time-like freezeout surfaces. We further show how the waves modify the freezeout surfaces and spectra. We end up comparing our calculations to the two-particle correlation functions at RHIC, while emphasizing that studies of dijet events observed at LHC should provide much better test of our theory.
Wave Propagation in Lipid Monolayers
J. Griesbauer; A. Wixforth; M. F. Schneider
2010-05-26T23:59:59.000Z
Sound waves are excited on lipid monolayers using a set of planar electrodes aligned in parallel with the excitable medium. By measuring the frequency dependent change in the lateral pressure we are able to extract the sound velocity for the entire monolayer phase diagram. We demonstrate that this velocity can also be directly derived from the lipid monolayer compressibility and consequently displays a minimum in the phase transition regime. This minimum decreases from v0=170m/s for one component lipid monolayers down to vm=50m/s for lipid mixtures. No significant attenuation can be detected confirming an adiabatic phenomenon. Finally our data propose a relative lateral density oscillation of \\Delta\\rho/\\rho ~ 2% implying a change in all area dependent physical properties. Order of magnitude estimates from static couplings therefore predict propagating changes in surface potential of 1-50mV, 1 unit in pH (electrochemical potential) and 0.01{\\deg}K in temperature and fall within the same order of magnitude as physical changes measured during nerve pulse propagation. These results therefore strongly support the idea of propagating adiabatic sound waves along nerves as first thoroughly described by Kaufmann in 1989 and recently by Heimburg and Jackson, but claimed by Wilke already in 1912.
"Nonrelativistic" kinematics: Particles or waves?
Jens Madsen Houlrik; Germain Rousseaux
2010-05-11T23:59:59.000Z
The kinematics of particles refer to events and tangent vectors, while that of waves refer to dual gradient planes. Special relativity [1-3] applies to both objects alike. Here we show that spacetime exchange symmetry [7] implicit in the SIdefinition of length based on the universal constant c has profound consequences at low velocities. Galilean physics, exact in the limit c \\to \\infty, is mirrored by a dual so-called Carrollian superluminal kinematics [4-6] exact in the limit c \\to 0. Several new results follow. The Galilean limit explains mass conservation in Newtonian mechanics, while the dual limit is a kinematical prerequisite for wavelike tachyonic motion [8, 9]. As an example, the Land\\'e paradox [19, 20] of waveparticle duality has a natural resolution within special relativity in terms of superluminal, particlelike waves. It is emphasized that internal particle energy mc^2 can not be ignored, while kinetic energy leads to an extended Galilei group. We also demonstrate that Maxwell's equations have magnetic and electric limits covariant under Galilean and Carrollian symmetry.
Rogue Waves 2008, 1314 October 2008, Brest, France WIND-FORCED MODULATIONS OF GRAVITY WAVES
Paris-Sud XI, Université de
Rogue Waves 2008, 1314 October 2008, Brest, France WIND-FORCED MODULATIONS OF GRAVITY WAVES S in deep water of weakly nonlinear packets of surface gravity waves under wind forcing is derived. Stokes Theoretically, some progress has been made recently for modulational instability under wind forcing [9]. Let (x
Thompson/Ocean 420/Winter 2005 Surface Gravity Wave Surface Gravity Wave Generation
Thompson, LuAnne
the wavelength. Wind energy in Waves Wave energy out (breaking) #12;Thompson/Ocean 420/Winter 2005 Surface waves with different periods and phases. The spectrum of energy is usually plotted as energy density, (unit of energy/unit frequency interval, Hz). The energy density is given by the amount of energy
Wirosoetisno, Djoko
are difficult to model mathematically and numerically. The challenge is that nonlinear and breaking waves with fine-scale dynamic air-water interfaces need to be modelled efficiently, including their interactions measurements in wave basins. These potential flow models will be developed further at the University of Twente
Calculation of Extreme Wave Loads on Coastal Highway Bridges
Meng, Bo
2010-01-14T23:59:59.000Z
force on bridge decks. 2D Model is a linear wave model, which has the capability of calculating wave velocity potential components in time domain based on wave parameters such as wave height, wave period and water depth, and complex structural geometries...
Aquatic manoeuvering with counter-propagating waves: a novel
Lauder, George V.
Aquatic manoeuvering with counter-propagating waves: a novel locomotive strategy Oscar M. Curet1 of these inward counter-propagating waves. In addition, we compare the flow structure and upward force generated by inward counter-propagating waves to standing waves, unidirectional waves, and outward counter-propagating
Singular value decomposition methods for wave propagation analysis
Santolik, Ondrej
Singular value decomposition methods for wave propagation analysis O. SantoliÂ´k,1 M. Parrot, and F planarity. Simulations of Z-mode waves, which simultaneously propagate with different wave vectors, indicate the waves simultaneously propagate with wave vectors in two opposite hemispheres. Finally, we show
16. Wave-particle interaction 16.1 Landau damping
Pohl, Martin Karl Wilhelm
16. Wave-particle interaction 16.1 Landau damping We started our discussion of hydromagnetic waves with simple one-dimensional electrostatic fluctuations, the Langmuir waves. We derived their dispersion was the relationship between the waves and the plasma. Can the waves change plasma properties or, vice versa, can
Wave Power Demonstration Project at Reedsport, Oregon
Mekhiche, Mike [Principal Investigator] [Principal Investigator; Downie, Bruce [Project Manager] [Project Manager
2013-10-21T23:59:59.000Z
Ocean wave power can be a significant source of large?scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy? to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high?voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon?based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take?off subsystem are complete; additionally the power take?off subsystem has been successfully integrated into the spar.
Waves, instability and geostrophic turbulence Nick.Hall@legos.obs-mip.fr
-Roisin Atmospheric and Oceanic Fluid Dynamics - Vallis El NiÃ±o - Philander Waves in the Ocean - wave kinematics - shallow water waves - inertia-gravity (PoincarÃ©) waves - Kelvin waves - Rossby waves - internal waves Francis #12;Wave kinematics Consider a propagating sinusoidal wave equivalently so and we note
Wave Power Resources off the Hawaiian Islands luisvega@hawaii.edu 1 Wave Resources for Representative Sites Around the Hawaiian Islands Table of Contents Summary p2 Background: Wave Power Conversion p3 Licensing and Permitting p3 Challenges and Barriers p4 Wave Power Resources: Previous Work p5 Wave
Nonlinear inertial Alfven wave in dusty plasmas
Mahmood, S. [Theoretical Plasma Physics Division, P.O. Nilore Islamabad 44000 (Pakistan); National Center for Physics, Shadra Valley, Quaid-i-Azam University Islamabad 44000 (Pakistan); Saleem, H. [National Center for Physics, Shadra Valley, Quaid-i-Azam University Islamabad 44000 (Pakistan)
2011-11-29T23:59:59.000Z
Solitary inertial Alfven wave in the presence of positively and negatively charged dust particles is studied. It is found that electron density dips are formed in the super Alfvenic region and wave amplitude is increased for the case of negatively charged dust particles in comparison with positively charged dust particles in electron-ion plasmas.
WAVENET : Nearshore Wave Recording Network for
WAVENET : Nearshore Wave Recording Network for England and Wales Feasibility Study P J Hawkes R Atkins A H Brampton D Fortune R Garbett B P Gouldby Report TR 122 April 2001 #12;#12;WAVENET : Nearshore 05/03/02 Summary WAVENET : Nearshore Wave Recording Network for England and Wales Feasibility Study P
Wave propagation in the magnetic sun
T. Hartlep; M. S. Miesch; N. N. Mansour
2008-05-03T23:59:59.000Z
This paper reports on efforts to simulate wave propagation in the solar interior. Presented is work on extending a numerical code for constant entropy acoustic waves in the absence of magnetic fields to the case where magnetic fields are present. A set of linearized magnetohydrodynamic (MHD) perturbation equations has been derived and implemented.
Possible new wave phenomena in the brain
Jerzy Szwed
2009-08-10T23:59:59.000Z
We propose to search for new wave phenomena in the brain by using interference effects in analogy to the well-known double slit (Young) experiment. This method is able to extend the range of oscillation frequencies to much higher values than currently accessible. It is argued that such experiments may test the hypothesis of the wave nature of information coding.
Gravimagnetic shock waves in the anisotropic plasma
Yu. G. Ignatyev; D. N. Gorokhov
2011-01-01T23:59:59.000Z
The relativistic magnetohydrodynamic equations for the anisotropic magnetoactive plasma are obtained and accurately integrated in the plane gravitational wave metrics. The dependence of the induction mechanism of the gravimagnetic shock waves on the degree of the magnetoactive plasma anisotropy is analyzed.
Interaction of Gravitational Waves with Charged Particles
Thulsi Wickramasinghe; Will Rhodes; Mitchell Revalski
2015-02-03T23:59:59.000Z
It is shown here that a cloud of charged particles could in principle absorb energy from gravitational waves (GWs) incident upon it, resulting in wave attenuation. This could in turn have implications for the interpretation of future data from early universe GWs.
On the Energy of Rotating Gravitational Waves
Bahram Mashhoon; James C. McClune; Enrique Chavez; Hernando Quevedo
1996-09-06T23:59:59.000Z
A class of solutions of the gravitational field equations describing vacuum spacetimes outside rotating cylindrical sources is presented. A subclass of these solutions corresponds to the exterior gravitational fields of rotating cylindrical systems that emit gravitational radiation. The properties of these rotating gravitational wave spacetimes are investigated. In particular, we discuss the energy density of these waves using the gravitational stress-energy tensor.
LOCAL RUNUP AMPLIFICATION BY RESONANT WAVE INTERACTIONS
Paris-Sud XI, Université de
wave-gage recordings from real tsunami simulations, are used as forcing conditions to the BVP. Resonant in enhanced runup of non-leading waves. The evolution of energy reveals the exis- tence of a quasi tsunamis (Nicaragua and Flores Island), measurements suggested that the shoreline receded before inundation
A radiometer for stochastic gravitational waves
Stefan W. Ballmer
2005-10-20T23:59:59.000Z
The LIGO Scientific Collaboration recently reported a new upper limit on an isotropic stochastic background of gravitational waves obtained based on the data from the 3rd LIGO science Run (S3). Now I present a new method for obtaining directional upper limits that the LIGO Scientific Collaboration intends to use for future LIGO science runs and that essentially implements a gravitational wave radiometer.
Alla Weinstein, Dominique Roddier, Kevin Banister
2012-03-30T23:59:59.000Z
Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.
Wave function derivation of the JIMWLK equation
Alexey V. Popov
2008-12-16T23:59:59.000Z
Using the stationary lightcone perturbation theory, we propose the complete and careful derivation the JIMWLK equation. We show that the rigorous treatment requires the knowledge of a boosted wave function with second order accuracy. Previous wave function approaches are incomplete and implicitly used the time ordered perturbation theory, which requires a usage of an external target field.
Understanding Quantitative Wave-Particle Duality
Tabish Qureshi
2015-01-08T23:59:59.000Z
The complementary character of wave and particle natures of quantum objects (or quantons) was pointed out by Niels Bohr. This wave-particle duality, in the context of the two-slit experiment, is now quantitatively understood in terms of a duality relation. A very simple and intuitive derivation of the duality relation is presented, which should be understandable to a new student.
Traveling water waves with point vortices
Kristoffer Varholm
2015-03-20T23:59:59.000Z
We construct small-amplitude solitary traveling gravity-capillary water waves with a finite number of point vortices along a vertical line, on finite depth. This is done using a local bifurcation argument. The properties of the resulting waves are also examined: We find that they depend significantly on the position of the point vortices in the water column.
Gravitational dispersion in a torsional wave machine
Rafael de la Madrid; Alejandro Gonzalez; George Irwin
2014-09-01T23:59:59.000Z
We demonstrate that mechanical waves traveling in a torsional, mechanical wave machine exhibit dispersion due to gravity and the discreteness of the medium. We also show that although the dispersion due to discreteness is negligible, the dispersion due to gravity can be easily measured, and can be shown to disappear in a zero-gravity environment.
Gravitational waves versus black holes
Trevor W. Marshall
2007-07-02T23:59:59.000Z
It is argued that, in order for the gravitational field to be propagated as a wave, it is necessary for it to satisfy a further set of field equations, in addition to those of Einstein and Hilbert, and these equations mean there is a preferred coordinate frame, called the Global Inertial Frame, giving rise to a unique metric . The implication is that a true gravitational field is not compatible with Einstein's Principle of Equivalence, which is in contradiction with his other fundamental concept of locality. The additional field equations ensure that gravitational collapse does not go below the Schwarzschild radius, thereby excluding the possibility of singular solutions (black holes) of the Einstein-Hilbert equations. Such solutions would also violate Einstein's locality principle.
Phases of holographic d-wave superconductor
Krikun, Alexander
2015-01-01T23:59:59.000Z
We study different phases in the holographic model of d-wave superconductor. These are described by solutions to the classical equations of motion found in different ansatze. Apart from the known homogeneous d-wave superconducting phase we find three new solutions. Two of them represent two distinct families of the spatially modulated solutions, which realize the charge density wave phases in the dual theory. The third one is the new homogeneous phase with nonzero anapole moment. These phases are relevant to the physics of cuprate high-Tc superconductor in pseudogap region. While the d-wave phase preserves translation, parity and time reversal symmetry, the striped phases break translations spontaneously. Parity and time-reversal are preserved when combined with discrete half-periodic shift of the wave. In anapole phase translation symmetry is preserved, but parity and time reversal are spontaneously broken. All of the considered solutions brake the global $U(1)$. Thermodynamical treatment shows that in the s...
Dissipative electromagnetic solitary waves in collisional plasmas
Borhanian, Jafar [Department of Physics, Faculty of Science, University of Mohaghegh Ardabili, P.O.Box 179, Ardabil (Iran, Islamic Republic of)
2012-08-15T23:59:59.000Z
The propagation of linearly polarized electromagnetic (EM) waves in a collisional plasma is studied using multiple scale perturbation technique in a weakly nonlinear regime. A complex linear dispersion relation and a complex group velocity are obtained for EM waves propagating in a plasma and their dependence on system parameters is investigated. It is shown that the amplitude of EM pulse is governed by an envelope equation similar to a cubic complex Ginzburg-Landau equation. A traveling bright solitary wave solution for envelope equation is found, its existence condition in parameter space is explored and variation of its profile with system parameters is manipulated. Monitoring temporal evolution of traveling solitary wave solution provides more insight into the nature of this solution and ensures that depending on the parameters of the system, solitary wave solution may behave like a stationary soliton or may exhibit the behavior of a breathing soliton.
Surface acoustic wave dust deposition monitor
Fasching, G.E.; Smith, N.S. Jr.
1988-02-12T23:59:59.000Z
A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.
Spatial and temporal modulation of internal waves and thermohaline structure
Cole, Sylvia T.
2010-01-01T23:59:59.000Z
of outward internal wave energy and dissipation was 17 GW.timescale, the internal wave energy cascade that concludes2 addresses the internal wave energy cascade and its spatial
FRACTURE DETECTION IN CRYSTALLINE ROCK USING ULTRASONIC SHEAR WAVES
Waters, K.H.
2011-01-01T23:59:59.000Z
water interface. Thus, no S^| wave energy should penetrate asimilar situation some P wave energy is transmitted into thesome sort of "parasitic" P wave energy created by the S u H
acoustic shock waves: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
shock waves. We address the method in detail and present results of the modeling of the propagation of shock-associated extreme-ultraviolet (EUV) waves as well as Moreton waves...
Finite Difference Elastic Wave Modeling Including Surface Topography
Al Muhaidib, Abdulaziz
2011-01-01T23:59:59.000Z
Surface topography and the weathered zone (i.e., heterogeneity near the earth’s surface) have great effects on elastic wave propagation. Both surface waves and body waves are contaminated by scattering and conversion by ...
Dynamics and stability of gravity-capillary solitary waves
Calvo, David C. (David Christopher)
2001-01-01T23:59:59.000Z
Over the past several years, it has been recognized that a new class of solitary waves can propagate in nonlinear dispersive wave systems if the phase speed of linear waves attains a local extremum at some finite wavenumber. ...
Wave-induced motion of ramp-interconnected craft
Oonk, Stephen Holt
2008-01-01T23:59:59.000Z
OF CALIFORNIA, SAN DIEGO Wave-Induced Motion of Ramp-5 2.1 Mathematical Description of the Wave49 4.2 Case 1: Waves are Parallel to Ship-Ramp-Ship Axis (
Predictions of undirectional irregular wave kinematics and evolution
Ye, Mao
1994-01-01T23:59:59.000Z
Although irregular ocean waves can be viewed as the summation of many wave components with different frequencies, accurate prediction of elevation evolution and kinematics is difficult due to the existence of nonlinear interactions among the wave...
Wave attenuation over coastal salt marshes under storm surge conditions
Möller, Iris; Kudella, Matthias; Rupprecht, Franziska; Spencer, Tom; Paul, Maike; van Wesenbeeck, Bregje K.; Wolters, Guido; Jensen, Kai; Bouma, Tjeerd J.; Miranda-Lange, Martin; Schimmels, Stefan
2014-09-29T23:59:59.000Z
that wave dissipation over submerged salt marsh canopies is 43 dependent on water depth and incident wave energy, and that hydrodynamic conditions may exist 44 beyond which marshes lose their wave dissipating effect6,17,18. The existence of such conditions... 45 makes intuitive sense, as the orbital wave motion that is affected by the submerged vegetation 46 canopy decreases with increasing depth and decreasing incident wave energy. Existing empirical 47 studies of wave reduction over vegetated canopies...
Transport and generation of macroscopically modulated waves in diatomic chains
Johannes Giannoulis
2011-05-08T23:59:59.000Z
We derive and justify analytically the dynamics of a small macroscopically modulated amplitude of a single plane wave in a nonlinear diatomic chain with stabilizing on-site potentials including the case where a wave generates another wave via self-interaction. More precisely, we show that in typical chains acoustical waves can generate optical but not acoustical waves, while optical waves are always closed with respect to self-interaction.
WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA
Cary, John R.
2012-01-01T23:59:59.000Z
case, the electrons have negative wave energy for 2w ne w wave energy for 2w . > w > 0 nlw/k to the negative wave energy of the electrons. positive
anomalous wave propagation: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of wave vector and energy flow are also significantly different. It is found that waves exhibit different propagation behaviors in anisotropic media with different sign...
acoustic wave atomization: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of fluid and acoustic computations, hybrid methodologies still Kohlenbach, Ulrich 12 Propagation of atomic matter waves inside an atom wave guide Quantum Physics (arXiv)...
arterial wave reflection: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
24 March 2006; published online 16 May 2006 Internal waves propagate obliquely through propagation of internal waves follows from the dispersion relation that monochromatic...
acoustic wave resonator: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Helmholtz resonators Physics Websites Summary: Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators Bruno Acoustic wave propagation in a...
acoustic solitary waves: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
dust acoustic solitary waves in a dusty plasma CERN Preprints Summary: The excitation and propagation of finite amplitude low frequency solitary waves are investigated in an Argon...
acoustic wave resonators: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Helmholtz resonators Physics Websites Summary: Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators Bruno Acoustic wave propagation in a...
amplitude acoustic wave: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
same.29 Keywords: Nonlinear standing wave; Closed acoustic Heller, Barbara 4 Long-range propagation of finite-amplitude acoustic waves in an ocean waveguide Geosciences Websites...
Mapping and Assessment of the United States Ocean Wave Energy...
Mapping and Assessment of the United States Ocean Wave Energy Resource This project estimates the naturally available and technically recoverable U.S. wave energy resources, using...
Potential Impacts of Hydrokinetic and Wave Energy Conversion...
Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...
WEC up! Energy Department Announces Wave Energy Conversion Prize...
Office of Environmental Management (EM)
WEC up Energy Department Announces Wave Energy Conversion Prize Administrator WEC up Energy Department Announces Wave Energy Conversion Prize Administrator September 24, 2014 -...
Advancing Technology Readiness: Wave Energy Testing and Demonstration...
Broader source: Energy.gov (indexed) [DOE]
National Marine Renewable Energy Center (NNMREC), verified the functionality of the Wave Energy Technology - New Zealand (WET-NZ) device through wave tank testing and...
Wave Energy Harvesting unmanned maritime vehicle, Concept and Applications
Frandsen, Jannette B.
Wave Energy Harvesting unmanned maritime vehicle, Concept and Applications Justin Manley Senior). By harvesting abundant natural energy Wave Gliders provide a persistent ocean presence to commercial scientific
Using Radio Waves to Control Fusion Plasma Density
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Using Radio Waves to Control Fusion Plasma Density Using Radio Waves to Control Fusion Plasma Density Simulations Run at NERSC Support Fusion Experiments at MIT, General Atomics...
Binding Energy of dº Transition Metals to Alkenes By Wave...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Energy of dº Transition Metals to Alkenes By Wave Function Theory and Density Functional Theory. Binding Energy of dº Transition Metals to Alkenes By Wave Function Theory...
Energy Department Announces $10 million for Wave Energy Demonstration...
10 million for Wave Energy Demonstration at Navy's Hawaii Test Site Energy Department Announces 10 million for Wave Energy Demonstration at Navy's Hawaii Test Site April 28, 2014...
Mapping and Assessment of the United States Ocean Wave Energy...
Office of Environmental Management (EM)
States Ocean Wave Energy Resource Mapping and Assessment of the United States Ocean Wave Energy Resource This report describes the analysis and results of a rigorous assessment of...
atomic wave packets: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Statistics of atomic populations in output coupled wave packets from Bose-Einstein condensates: Four-wave mixing Physics Websites Summary: Statistics of atomic populations in...
Shear Waves, Sound Waves On A Shimmering Horizon
Omid Saremi
2007-03-19T23:59:59.000Z
In the context of the so called ``membrane paradigm'' of black holes/branes, it has been known for sometime that the dynamics of small fluctuations on the stretched horizon can be viewed as corresponding to diffusion of a conserved charge in simple fluids. To study shear waves in this context properly, one must define a conserved stress tensor living on the stretched horizon. Then one is required to show that such a stress tensor satisfies the corresponding constitutive relations. These steps are missing in a previous treatment of the shear perturbations by Kovtun, Starinets and Son. In this note, we fill the gap by prescribing the stress tensor on the stretched horizon to be the Brown and York (or Balasubramanian-Kraus (BK) in the AdS/CFT context) holographic stress tensor. We are then able to show that such a conserved stress tensor satisfies the required constitutive relation on the stretched horizon using Einstein equations. We read off the shear viscosity from the constitutive relations in two different channels, shear and sound. We find an expression for the shear viscosity in both channels which are equal, as expected. Our expression is in agreement with a previous membrane paradigm formula reported by Kovtun, Starinets and Son.
Wave-particle Interactions In Rotating Mirrors
Abraham J. Fetterman and Nathaniel J. Fisch
2011-01-11T23:59:59.000Z
Wave-particle interactions in E×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.
The Wave Function and Quantum Reality
Shan Gao
2011-08-04T23:59:59.000Z
We investigate the meaning of the wave function by analyzing the mass and charge density distribution of a quantum system. According to protective measurement, a charged quantum system has mass and charge density proportional to the modulus square of its wave function. It is shown that the mass and charge density is not real but effective, and it is formed by the ergodic motion of a localized particle with the total mass and charge of the system. Moreover, it is argued that the ergodic motion is not continuous but discontinuous and random. This result suggests a new interpretation of the wave function, according to which the wave function is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations. It is shown that the suggested interpretation of the wave function disfavors the de Broglie-Bohm theory and the many-worlds interpretation but favors the dynamical collapse theories, and the random discontinuous motion of particles may provide an appropriate random source to collapse the wave function.
Photon wave functions, wave-packet quantization of light, and coherence theory
Brian J. Smith; M. G. Raymer
2007-12-09T23:59:59.000Z
The monochromatic Dirac and polychromatic Titulaer-Glauber quantized field theories (QFTs) of electromagnetism are derived from a photon-energy wave function in much the same way that one derives QFT for electrons, that is, by quantization of a single-particle wave function. The photon wave function and its equation of motion are established from the Einstein energy-momentum-mass relation, assuming a local energy density. This yields a theory of photon wave mechanics (PWM). The proper Lorentz-invariant single-photon scalar product is found to be non-local in coordinate space, and is shown to correspond to orthogonalization of the Titulaer-Glauber wave-packet modes. The wave functions of PWM and mode functions of QFT are shown to be equivalent, evolving via identical equations of motion, and completely describe photonic states. We generalize PWM to two or more photons, and show how to switch between the PWM and QFT viewpoints. The second-order coherence tensors of classical coherence theory and the two-photon wave functions are shown to propagate equivalently. We give examples of beam-like states, which can be used as photon wave functions in PWM, or modes in QFT. We propose a practical mode converter based on spectral filtering to convert between wave packets and their corresponding biorthogonal dual wave packets.
Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)
2014-07-01T23:59:59.000Z
This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.
Yu, Y.; Li, Y.
2011-10-01T23:59:59.000Z
This paper presents the results of a preliminary study on the hydrodynamics of a moored floating-point absorber (FPA) wave energy system under extreme wave conditions.
Ion acoustic shock waves in degenerate plasmas
Akhtar, N. [Theoretical Plasma Physics Division, PINSTECH, Nilore, Islamabad 44000 Pakistan (Pakistan); Hussain, S. [Theoretical Plasma Physics Division, PINSTECH, Nilore, Islamabad 44000 Pakistan (Pakistan); Department of Physics and Applied Mathematics, PIEAS, Nilore, Islamabad 44000 Pakistan (Pakistan)
2011-07-15T23:59:59.000Z
Korteweg de Vries Burgers equation for negative ion degenerate dissipative plasma has been derived using reductive perturbation technique. The quantum hydrodynamic model is used to study the quantum ion acoustic shock waves. The effects of different parameters on quantum ion acoustic shock waves are studied. It is found that quantum parameter, electrons Fermi temperature, temperature of positive and negative ions, mass ratio of positive to negative ions, viscosity, and density ratio have significant impact on the shock wave structure in negative ion degenerate plasma.
Standing gravitational waves from domain walls
Gogberashvili, Merab [Andronikashvili Institute of Physics, 6 Tamarashvili Street, Tbilisi 0177 (Georgia); Javakhishvili Tbilisi State University, 3 Chavchavadze Avenue, Tbilisi 0128 (Georgia); California State University, Fresno, Physics Department, Fresno, California 93740-8031 (United States); Myrzakul, Shynaray [Department of General and Theoretical Physics, Gumilev Eurasian National University, Astana, 010008 (Kazakhstan); California State University, Fresno, Physics Department, Fresno, California 93740-8031 (United States); Singleton, Douglas [California State University, Fresno, Physics Department, Fresno, California 93740-8031 (United States); Institute of Gravitation and Cosmology, Peoples' Friendship University of Russia, Moscow 117198 (Russian Federation)
2009-07-15T23:59:59.000Z
We construct a plane symmetric, standing gravitational wave for a domain wall plus a massless scalar field. The scalar field can be associated with a fluid which has the properties of 'stiff' matter, i.e., matter in which the speed of sound equals the speed of light. Although domain walls are observationally ruled out in the present era, the solution has interesting features which might shed light on the character of exact nonlinear wave solutions to Einstein's equations. Additionally this solution may act as a template for higher dimensional 'brane-world' model standing waves.
Protective, Modular Wave Power Generation System
Vvedensky, Jane M.; Park, Robert Y.
2012-11-27T23:59:59.000Z
The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.
Counting energy packets in the electromagnetic wave
Stefan Popescu; Bernhard Rothenstein
2007-05-18T23:59:59.000Z
We discuss the concept of energy packets in respect to the energy transported by electromagnetic waves and we demonstrate that this physical quantity can be used in physical problems involving relativistic effects. This refined concept provides results compatible to those obtained by simpler definition of energy density when relativistic effects apply to the free electromagnetic waves. We found this concept further compatible to quantum theory perceptions and we show how it could be used to conciliate between different physical approaches including the classical electromagnetic wave theory, the special relativity and the quantum theories.
Wave soldering with Pb-free solders
Artaki, I.; Finley, D.W.; Jackson, A.M.; Ray, U. [AT and T Bell Labs., Princeton, NJ (United States); Vianco, P.T. [Sandia National Labs., Albuquerque, NM (United States)
1995-07-01T23:59:59.000Z
The manufacturing feasibility and attachment reliability of a series of newly developed lead-free solders were investigated for wave soldering applications. Some of the key assembly aspects addressed included: wettability as a function of board surface finish, flux activation and surface tension of the molten solder, solder joint fillet quality and optimization of soldering thermal profiles. Generally, all new solder formulations exhibited adequate wave soldering performance and can be considered as possible alternatives to eutectic SnPb for wave soldering applications. Further process optimization and flux development is necessary to achieve the defect levels associated with the conventional SnPb process.
On conformal higher spin wave operators
Teake Nutma; Massimo Taronna
2014-07-08T23:59:59.000Z
We analyze free conformal higher spin actions and the corresponding wave operators in arbitrary even dimensions and backgrounds. We show that the wave operators do not factorize in general, and identify the Weyl tensor and its derivatives as the obstruction to factorization. We give a manifestly factorized form for them on (A)dS backgrounds for arbitrary spin and on Einstein backgrounds for spin 2. We are also able to fix the conformal wave operator in d=4 for s=3 up to linear order in the Riemann tensor on generic Bach-flat backgrounds.
A Wave-function for Stringy Universes
Costas Kounnas; Nicolaos Toumbas; Jan Troost
2007-07-27T23:59:59.000Z
We define a wave-function for string theory cosmological backgrounds. We give a prescription for computing its norm following an earlier analysis within general relativity. Under Euclidean continuation, the cosmologies we discuss in this paper are described in terms of compact parafermionic worldsheet systems. To define the wave-function we provide a T-fold description of the parafermionic conformal field theory, and of the corresponding string cosmology. In specific examples, we compute the norm of the wave-function and comment on its behavior as a function of moduli.
Spatial wave functions of photon and electron
Khokhlov, D. L. [Sumy State University, R.-Korsakov St. 2, Sumy 40007 (Ukraine)
2010-12-01T23:59:59.000Z
The quantum mechanical model of the photon and electron is considered. The photon is conceived of as a particle moving with the speed of light which is accompanied by the wave function of the photon spreading out with an infinite speed. The wave function of the electron is introduced in terms of virtual photons tied to the electron. A description of electrostatic and magnetostatic interactions is given through the wave functions of electrons. The approach provides an explanation of the results of recent experiments measuring the speed of propagation of the bound magnetic field.
Robertson, William
Waves The study of waves is clearly an important subject in acoustics because sound energy, wavelength and speed of all types of waves, not only sound. In the case of sound waves in air the wave speed is transmitted by waves traveling though air. Furthermore, it turns out that the properties of waves on strings
Millimeter wave transmissometer computer system
Wiberg, J.D.; Widener, K.B.
1990-04-01T23:59:59.000Z
A millimeter wave transmissometer has been designed and built by the Pacific Northwest Laboratory in Richland, Washington for the US Army at the Dugway Proving Grounds in Dugway, Utah. This real-time data acquisition and control system is used to test and characterize battlefield obscurants according to the transmittance of electromagnetic radiation in the millimeter wavelengths. It is an advanced five-frequency instrumentation radar system consisting of a transceiver van and a receiver van deployed at opposite sides of a test grid. The transceiver computer systems is the successful integration of a Digital Equipment Corporation (DEC) VAX 8350, multiple VME bus systems with Motorola M68020 processors (one for each radar frequency), an IEEE-488 instrumentation bus, and an Aptec IOC-24 I/O computer. The software development platforms are the VAX 8350 and an IBM PC/AT. A variety of compilers, cross-assemblers, microcode assemblers, and linkers were employed to facilitate development of the system software. Transmittance measurements from each radar are taken forty times per second under control of a VME based M68020.
Numerical wave optics and the lensing of gravitational waves by globular clusters
Andrew J. Moylan; David E. McClelland; Susan M. Scott; Antony C. Searle; G. V. Bicknell
2007-10-16T23:59:59.000Z
We consider the possible effects of gravitational lensing by globular clusters on gravitational waves from asymmetric neutron stars in our galaxy. In the lensing of gravitational waves, the long wavelength, compared with the usual case of optical lensing, can lead to the geometrical optics approximation being invalid, in which case a wave optical solution is necessary. In general, wave optical solutions can only be obtained numerically. We describe a computational method that is particularly well suited to numerical wave optics. This method enables us to compare the properties of several lens models for globular clusters without ever calling upon the geometrical optics approximation, though that approximation would sometimes have been valid. Finally, we estimate the probability that lensing by a globular cluster will significantly affect the detection, by ground-based laser interferometer detectors such as LIGO, of gravitational waves from an asymmetric neutron star in our galaxy, finding that the probability is insignificantly small.
Wave-particle duality and `bipartite' wave functions for a single particle
Zeqian Chen
2006-09-12T23:59:59.000Z
It is shown that `bipartite' wave functions can present a mathematical formalism of quantum theory for a single particle, in which the associated Schr\\"{o}dinger's wave functions correspond to those `bipartite' wave functions of product forms. This extension of Schr\\"{o}dinger's form establishes a mathematical expression of wave-particle duality and that von Neumann's entropy is a quantitative measure of complementarity between wave-like and particle-like behaviors. In particular, this formalism suggests that collapses of Schr\\"{o}dinger's wave functions can be regarded as the simultaneous transition of the particle from many levels to one. Our results shed considerable light on the basis of quantum mechanics, including quantum measurement.
H. Yan; K. Liao; Z. Deng; J. He; Z. Y. Xue; Z. M. Zhang; S. L. Zhu
2014-12-04T23:59:59.000Z
Light's wave-particle duality is at the heart of quantum mechanics and can be well illustrated by Wheeler's delayed-choice experiment. The choice of inserting or removing the second classical (quantum) beam splitter in a Mach-Zehnder interferometer determines the classical (quantum) wave-particle behaviors of a photon. In this paper, we report our experiment using the classical beam splitter to observe the simultaneous wave-particle behaviors in the wave-packet of a narrowband single photon. This observation suggests that it is necessary to generalize the current quantum wave-particle duality theory. Our experiment demonstrates that the produced wave-particle state can be considered an additional degree of freedom and can be utilized in encoding quantum information.
New Perspectives on Wave Energy Converter Control
Price, Alexandra A E
2009-01-01T23:59:59.000Z
This work examines some of the fundamental problems behind the control of wave energy converters (WECs). Several new perspectives are presented to aid the understanding of the problem and the interpretation of the ...
Energy storage and generation from thermopower waves
Abrahamson, Joel T. (Joel Theodore)
2012-01-01T23:59:59.000Z
The nonlinear coupling between an exothermic chemical reaction and a nanowire or nanotube with large axial heat conduction guides a self-propagating thermal wave along the nano-conduit. The thermal conduit accelerates the ...
Gravity waves from vortex dipoles and jets
Wang, Shuguang
2009-05-15T23:59:59.000Z
The dissertation first investigates gravity wave generation and propagation from jets within idealized vortex dipoles using a nonhydrostatic mesoscale model. Several initially balanced and localized jets induced by vortex dipoles are examined here...
Propagation of gravitational waves in multimetric gravity
Manuel Hohmann
2012-04-22T23:59:59.000Z
We discuss the propagation of gravitational waves in a recently discussed class of theories containing N >= 2 metric tensors and a corresponding number of standard model copies. Using the formalism of gauge-invariant linear perturbation theory we show that all gravitational waves propagate at the speed of light. We then employ the Newman-Penrose formalism to show that two to six polarizations of gravitational waves may exist, depending on the parameters entering the equations of motion. This corresponds to E(2) representations N_2, N_3, III_5 and II_6. We finally apply our general discussion to a recently presented concrete multimetric gravity model and show that it is of class N_2, i.e., it allows only two tensor polarizations, as it is the case for general relativity. Our results provide the theoretical background for tests of multimetric gravity theories using the upcoming gravitational wave experiments.
Aspects of Wave Turbulence in Preheating
José A. Crespo; H. P. de Oliveira
2014-06-04T23:59:59.000Z
In this work we have studied the nonlinear preheating dynamics of the $\\frac{1}{4} \\lambda \\phi^4$ inflationary model. It is well established that after a linear stage of preheating characterized by the parametric resonance, the nonlinear dynamics becomes relevant driving the system towards turbulence. Wave turbulence is the appropriated description of this phase since matter distributions are fields instead of usual fluids. Therefore, turbulence develops due to the nonlinear interations of waves, here represented by the small inhomogeneities of the inflaton field. We present relevant aspects of wave turbulence such as the Kolmogorov-Zakharov spectrum in frequency and wave number domains that indicates that there are a transfer of energy through scales. From the power spectrum of the matter energy density we were able to estimate the temperature of the thermalized system.
Causality in scalar-Einstein waves
Mark D. Roberts
2015-03-13T23:59:59.000Z
A wavelike scalar-Einstein solution is found and indicating vectors constructed from the Bel-Robinson tensor are used to study which objects co-move with the wave and whether gravitational energy transfer is null.
Interaction Dynamics of Singular Wave Fronts
Holm, Darryl D
2013-01-01T23:59:59.000Z
Some of the most impressive singular wave fronts seen in Nature are the transbasin oceanic internal waves, which may be observed from the Space Shuttle as they propagate and interact with each other, for example, in the South China Sea. The characteristic feature of these strongly nonlinear wavefronts is that they reconnect when two of them collide transversely. We derive the EPDiff equation, and use it to model this phenomenon as elastic collisions between singular wave fronts (solitons) whose momentum is distributed along curves moving in the plane. Numerical methods for EPDiff based on compatible differencing algorithms (CDAs) are used for simulating these collisions among curves. The numerical results show the same nonlinear behavior of wavefront reconnections as that observed for internal waves in the South China Sea. We generalize the singular solutions of EPDiff for other applications, in computational anatomy and in imaging science, where the singular wavefronts are evolving image outlines, whose mome...
Wave Patterns and Southern Hemisphere Convergence Zones
Ramotowski, Michelle R.
2013-04-11T23:59:59.000Z
Data from satellites and reanalysis products are analyzed to study the behavior of wave trains in the three major Southern Hemisphere Convergences zones: the South Pacific, the South Atlantic, and the South Indian. Using ...
Localized waves with spherical harmonic symmetries
Mills, M. S.
We introduce a class of propagation invariant spatiotemporal optical wave packets with spherical harmonic symmetries in their field configurations. The evolution of these light orbitals is considered theoretically in ...
Nonlinear Characteristics of Wave Propagation over Vegetation
Venkattaramanan, Aravinda
2014-04-28T23:59:59.000Z
The attenuation of wave energy by submerged or near-emergent coastal vegetation is one of the prominent methods of energy dissipation in areas with significant presence of wetlands. In this thesis, the nature of this dissipation in nearshore random...
Stable operating regime for traveling wave devices
Carlsten, Bruce E. (Los Alamos, NM)
2000-01-01T23:59:59.000Z
Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.
Double Kelvin Wave Cascade in Superfluid Helium
G. Boffetta; A. Celani; D. Dezzani; J. Laurie; S. Nazarenko
2008-10-20T23:59:59.000Z
We study the double cascade of energy and wave action in a local model of superfluid vortex filaments. The model is obtained from a truncated expansion of the 2D Local Induction Approximation and it is shown to support six-wave interactions. We argue that, because of the uncertainty in the vortex core profile, this model has the same status of validity as the traditionally used Biot-Savart model with cutoff, but it has advantage of being much simpler. Our minimal model leads to a wave kinetic equation for which we predict existence of two distinct power-law scaling in the spectrum, corresponding to a direct cascade of energy and an inverse one of wave action. Direct numerical simulations confirm the theoretical predictions in the weak turbulence regime.
A novel wideband gyrotron travelling wave amplifier
Sirigiri, Jagadishwar R. (Jagadishwar Rao), 1973-
2003-01-01T23:59:59.000Z
We present the design and the experimental results of a novel wideband quasioptical Gyrotron Traveling Wave Tube (gyro-TWT) amplifier and the first Vacuum Electron Device (VED) with a Photonic Band Gap (PBG) structure. The ...
Broader source: Energy.gov [DOE]
The UK is currently the undisputed global leader in marine energy, with more wave and tidal stream devices installed than the rest of the world combined. This leading position is built on an...
Guidelines in Wave Energy Conversion System Design
Guiberteau, K. L.; Liu, Y.; Lee, J.; Kozman, T.
2014-01-01T23:59:59.000Z
This paper presents an investigational study on wave energy converters (WECs). The types of WEC available from the market are studied first. The design considerations for implementing a WEC in the Gulf of Mexico (GOM) are then evaluated...
The gravitational wave symphony of the Universe
B. S. Sathyaprakash
2002-07-10T23:59:59.000Z
The new millennium will see the upcoming of several ground-based interferometric gravitational wave antennas. Within the next decade a space-based antenna may also begin to observe the distant Universe. These gravitational wave detectors will together operate as a network taking data continuously for several years, watching the transient and continuous phenomena occurring in the deep cores of astronomical objects and dense environs of the early Universe where gravity was extremely strong and highly non-linear. The network will listen to the waves from rapidly spinning non-axisymmetric neutron stars, normal modes of black holes, binary black hole inspiral and merger, phase transitions in the early Universe, quantum fluctuations resulting in a characteristic background in the early Universe. The gravitational wave antennas will open a new window to observe the dark Universe unreachable via other channels of astronomical observations.
Nonlinear extraordinary wave in dense plasma
Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Russian University of Peoples’ Friendship (Russian Federation)] [Russian University of Peoples’ Friendship (Russian Federation)
2013-10-15T23:59:59.000Z
Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.
Mead, Carver
2015-01-01T23:59:59.000Z
Gravitational coupling of the propagation four-vectors of matter wave functions is formulated in flat space-time. Coupling at the momentum level rather than at the "force-law" level greatly simplifies many calculations. This locally Lorentz-invariant approach (G4v) treats electromagnetic and gravitational coupling on an equal footing. Classical mechanics emerges from the incoherent aggregation of matter wave functions. The theory reproduces, to first order beyond Newton, the standard GR results for Gravity-Probe B, deflection of light by massive bodies, precession of orbits, gravitational red shift, and total gravitational-wave energy radiated by a circular binary system. Its predictions of total radiated energy from highly eccentric Kepler systems are slightly larger than those of similar GR treatments. G4v predictions differ markedly from those of GR for the gravitational-wave radiation patterns from rotating massive systems, and for the LIGO antenna pattern. The predicted antenna patterns have been shown t...
Power recycling for an interferometric gravitational wave
Ejiri, Shinji
THESIS Power recycling for an interferometric gravitational wave detector Masaki Ando Department . . . . . . . . . . . . . . 48 3.3 Power recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Principle of power recycling . . . . . . . . . . . . . . . . . 50 3.3.2 Recycling cavity
Deepwater Internal Wave Study and Application
Jiang, Lei
2013-12-10T23:59:59.000Z
conforming to the physics of internal waves and to study the effects on offshore drilling semisubmersibles, different types of offshore hull forms and riser systems, including the large diameter cold water pipe of floating Ocean Thermal Energy Conversion...
Lagrangian coherent structures and internal wave attractors
Tang, Wenbo
For a nonuniformly stratified layer of fluid, internal gravity waves propagate at varying angles depending on the local buoyancy and Coriolis (in geophysical applications) frequencies. Relatively confined geometries, such ...
Lipton, Robert, E-mail: lipton@math.lsu.edu; Polizzi, Anthony, E-mail: polizzi@math.lsu.edu [Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803-4918 (United States)
2014-10-14T23:59:59.000Z
We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.
NONLINEAR WAVE EVOLUTION IN VLASOV PLASMA: A LIE-TRANSFORM ANALYSIS
Cary, J.R.
2010-01-01T23:59:59.000Z
Packets: The Meaning of Wave Energy and Momentum and theAnalyzing Wave Packets Wave Energy and Momentum Derivationf i r s t consider wave energy and wave momentum. We prove
Wave Patterns and Southern Hemisphere Convergence Zones
Ramotowski, Michelle R.
2013-04-11T23:59:59.000Z
). .......................................................................................................... 54 5.2 Screenshots from a movie - PV, TCW streamers and waves piling up in the South Pacific. ........................................................................................ 56 5.3 Level plots and cross sections of atmospheric... 1984 to an idealized 9-layer GCM model and a 2-level primitive equation model. It was found that a packet may persist for more than one whole trip around the globe, and that multiple packets may be present at one time. These long-lived wave packets...
Peculiarities of wave fields in nonlocal media
V. A. Danylenko; S. I. Skurativskyi
2015-03-02T23:59:59.000Z
The article summarizes the studies of wave fields in structured non-equilibrium media describing by means of nonlocal hydrodynamic models. Due to the symmetry properties of models, we derived the invariant wave solutions satisfying autonomous dynamical systems. Using the methods of numerical and qualitative analysis, we have shown that these systems possess periodic, multiperiodic, quasiperiodic, chaotic, and soliton-like solutions. Bifurcation phenomena caused by the varying of nonlinearity and nonlocality degree are investigated as well.
Shock wave propagation in vibrofluidized granular materials
Kai Huang; Guoqing Miao; Peng Zhang; Yi Yun; Rongjue Wei
2005-11-29T23:59:59.000Z
Shock wave formation and propagation in two-dimensional granular materials under vertical vibration are studied by digital high speed photography. The steepen density and temperature wave fronts form near the plate as granular layer collides with vibrating plate and propagate upward through the layer. The temperature front is always in the transition region between the upward and downward granular flows. The effects of driving parameters and particle number on the shock are also explored.
The attenuation of strong shock waves
Kirkpatrick, Ronald Crecelius
1963-01-01T23:59:59.000Z
THE ATTENUATION OF STRONG SHOCK WAVES A Thesis By Ronald Crecelius Kirkpatrick Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 1963 Major Subject: Physics. THE ATTENUATION OF STRONG SHOCK WAVES A Thesis By Ronald Crecelius Kirkpatrick Approved as to style and content by: (Chairman of Committee (He of Departme ) May 1963 TABLE OF CONTENTS INT R ODU C TI ON ~Pe e...
Nonlinear physics of shear Alfvén waves
Zonca, Fulvio [Associazione EURATOM-ENEA sulla Fusione, C.P. 65-00044 Frascati, Italy and Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007 (China); Chen, Liu [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007, P.R.C. and Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)
2014-02-12T23:59:59.000Z
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.
Time symmetry in wave function collapse models
Daniel Bedingham
2015-02-25T23:59:59.000Z
A framework for wave function collapse models that is symmetric under time reversal is presented. Within this framework there are equivalent pictures of collapsing wave functions evolving in both time directions. The backwards-in-time Born rule can be broken by an initial condition on the Universe resulting in asymmetric behaviour. Similarly the forwards-in-time Born rule can in principle be broken by a final condition on the Universe.
Optical fiber having wave-guiding rings
Messerly, Michael J. (Danville, CA); Dawson, Jay W. (Livermore, CA); Beach, Raymond J. (Livermore, CA); Barty, Christopher P. J. (Hayward, CA)
2011-03-15T23:59:59.000Z
A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.
Gravity waves from cosmic bubble collisions
Salem, Michael P.; Saraswat, Prashant; Shaghoulian, Edgar, E-mail: mpsalem@stanford.edu, E-mail: ps88@stanford.edu, E-mail: edgars@stanford.edu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, California 94305 (United States)
2013-02-01T23:59:59.000Z
Our local Hubble volume might be contained within a bubble that nucleated in a false vacuum with only two large spatial dimensions. We study bubble collisions in this scenario and find that they generate gravity waves, which are made possible in this context by the reduced symmetry of the global geometry. These gravity waves would produce B-mode polarization in the cosmic microwave background, which could in principle dominate over the inflationary background.
Alfven wave. DOE Critical Review Series
Hasegawa, A.; Uberoi, C.
1982-01-01T23:59:59.000Z
This monograph deals with the properties of Alfven waves and with their application to fusion. The book is divided into 7 chapters dealing with linear properties in homogeneous and inhomogeneous plasmas. Absorption is treated by means of kinetic theory. Instabilities and nonlinear processes are treated in Chapters 1 to 6, and the closing chapter is devoted to theory and experiments in plasma heating by Alfven waves. (MOW)
Comparison of P-wave and S-wave data in a fractured reservoir
Al-Mustafa, Husam Mustafa
1993-01-01T23:59:59.000Z
COMPARISON OF P-WAVE AND S-WAVE DATA IN A FRACTURED RESERVOIR A Thesis by HUSAM MUSTAFA AL-MUSTAFA Submitted to the Office of Graduate Studies of Texas A%M University in partial fulfilhnent of the requirements for the degree of MASTER... OF SCIENCE August 1993 Major Subject: Geophysics COMPARISON OF P-WAVE AND S-WAVE DATA IN A FRACIURED RESERVOIR A Thesis by HUSAM MUSTAFA Al MUSTAFA Approved as to the style and content by: An y angi (Chair of 'ttee) Robert Berg (Member) oel Waddns...
Artemyev, A. V., E-mail: ante0226@gmail.com; Vasiliev, A. A. [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS—University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)
2014-10-15T23:59:59.000Z
In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ?10–100?mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ?10–50?keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.
Fast wave stabilization/destabilization of drift waves in a plasma
Kumar, Pawan; Tripathi, V. K. [Department of Physics, IIT Delhi, New Delhi-110016 (India)
2013-03-15T23:59:59.000Z
Four wave-nonlinear coupling of a large amplitude whistler with low frequency drift wave and whistler wave sidebands is examined. The pump and whistler sidebands exert a low frequency ponderomotive force on electrons introducing a frequency shift in the drift wave. For whistler pump propagating along the ambient magnetic field B{sub s}z-caret with wave number k(vector sign){sub 0}, drift waves of wave number k(vector sign)=k(vector sign){sub Up-Tack }+k{sub ||}z-caret see an upward frequency shift when k{sub Up-Tack }{sup 2}/k{sub 0}{sup 2}>4k{sub ||}/k{sub 0} and are stabilized once the whistler power exceeds a threshold value. The drift waves of low transverse wavelength tend to be destabilized by the nonlinear coupling. Oblique propagating whistler pump with transverse wave vector parallel to k(vector sign){sub Up-Tack} is also effective but with reduced effectiveness.
Dispersion equation for water waves with vorticity and Stokes waves on flows with counter-currents
Vladimir Kozlov; Nikolay Kuznetsov
2014-06-05T23:59:59.000Z
The two-dimensional free-boundary problem of steady periodic waves with vorticity is considered for water of finite depth. We investigate how flows with small-amplitude Stokes waves on the free surface bifurcate from a horizontal parallel shear flow in which counter-currents may be present. Two bifurcation mechanisms are described: for waves with fixed Bernoulli's constant and fixed wavelength. In both cases the corresponding dispersion equations serve for defining wavelengths from which Stokes waves bifurcate. Sufficient conditions guaranteeing the existence of roots of these equations are obtained. Two particular vorticity distributions are considered in order to illustrate general results.
Compressional-wave and shear-wave velocities from long-spaced sonic waveforms
Lake, Leonard Cornelius
1986-01-01T23:59:59.000Z
COMPRESSIONAL-WAVE AND SHEAR-WAVE VELOCITIES FROM LONG- SPACED SONIC WAVEFORMS A Thesis LEONARD CORNELIUS LAKE Submitted to the Graduate College of Texas AdtM University in partial fulftllment of the requirements for thc degree of MASTER... OF SCIENCE Mav 19S6 Major Subject: Geophystcs COMPRESSIONAL-WAVE AND SHEAR-WAVE VELOCITIES FROM LONG- SPACED SONIC WAVEFORMS A Thesis LEONARD CORNELIUS LAKE Approved as to style and content by: erry W. neer (C)tairman of Commtttee) R bert. R. Unterb...
Nonlinear Lattice Waves in Random Potentials
Sergej Flach
2014-09-10T23:59:59.000Z
Localization of waves by disorder is a fundamental physical problem encompassing a diverse spectrum of theoretical, experimental and numerical studies in the context of metal-insulator transition, quantum Hall effect, light propagation in photonic crystals, and dynamics of ultra-cold atoms in optical arrays. Large intensity light can induce nonlinear response, ultracold atomic gases can be tuned into an interacting regime, which leads again to nonlinear wave equations on a mean field level. The interplay between disorder and nonlinearity, their localizing and delocalizing effects is currently an intriguing and challenging issue in the field. We will discuss recent advances in the dynamics of nonlinear lattice waves in random potentials. In the absence of nonlinear terms in the wave equations, Anderson localization is leading to a halt of wave packet spreading. Nonlinearity couples localized eigenstates and, potentially, enables spreading and destruction of Anderson localization due to nonintegrability, chaos and decoherence. The spreading process is characterized by universal subdiffusive laws due to nonlinear diffusion. We review extensive computational studies for one- and two-dimensional systems with tunable nonlinearity power. We also briefly discuss extensions to other cases where the linear wave equation features localization: Aubry-Andre localization with quasiperiodic potentials, Wannier-Stark localization with dc fields, and dynamical localization in momentum space with kicked rotors.
New wave equation for ultrarelativistic particles
Ginés R. Pérez Teruel
2014-12-15T23:59:59.000Z
Starting from first principles and general assumptions based on the energy-momentum relation of the Special Theory of Relativity we present a novel wave equation for ultrarelativistic matter. This wave equation arises when particles satisfy the condition, $p>>m$, i.e, when the energy-momentum relation can be approximated by, $E\\simeq p+\\frac{m^{2}}{2p}$. Interestingly enough, such as the Dirac equation, it is found that this wave equation includes spin in a natural way. Furthermore, the free solutions of this wave equation contain plane waves that are completely equivalent to those of the theory of neutrino oscillations. Therefore, the theory reproduces some standard results of the Dirac theory in the limit $p>>m$, but offers the possibility of an explicit Lorentz Invariance Violation of order, $\\mathcal{O}((mc)^{4}/p^{2})$. As a result, the theory could be useful to test small departures from Dirac equation and Lorentz Invariance at very high energies. On the other hand, the wave equation can also describe particles of spin 1 by a simple substitution of the spin operators, $\\boldsymbol{\\sigma}\\rightarrow\\boldsymbol{\\alpha}$. In addition, it naturally admits a Lagrangian formulation and a Hamiltonian formalism. We also discuss the associated conservation laws that arise through the symmetry transformations of the Lagrangian.
Autoresonant beat-wave generation R. R. Lindberg,a
Wurtele, Jonathan
means for the ponderomotive excitation of nonlinear Langmuir waves by phase-locking of the plasma wave to resonantly excite a large- amplitude, high-phase-velocity Langmuir wave suitable for particle acceleration p-1 E0, where p 1-vp 2 /c2 -1/2 . Here, vp is the phase-velocity of the excited plasma wave
POINTWISE GREEN FUNCTION BOUNDS AND STABILITY OF COMBUSTION WAVES
Texier, Benjamin - Institut de Mathématiques de Jussieu, Université Paris 7
POINTWISE GREEN FUNCTION BOUNDS AND STABILITY OF COMBUSTION WAVES GREGORY LYNG, MOHAMMADREZA ROOFI for traveling wave solutions of an abstract viscous combustion model including both Majda's model and the full-wave) approximation. Notably, our results apply to combustion waves of any type: weak or strong, detonations or defla
Nonlinear three-wave interaction in marine sediments
N. I. Pushkina
2015-03-18T23:59:59.000Z
Nonlinear interaction of three acoustic waves in a sandy sediment is studied in the frequency range where there is a considerable wave velocity dispersion. The possibility of an experimental observation of the generation of a sound wave by two pump waves propagating at an angle to each other is estimated.
ISIS, AN ALTERNATIVE APPROACH TO SOUND WAVES Clarence Barlow
California at Santa Barbara, University of
ISIS, AN ALTERNATIVE APPROACH TO SOUND WAVES Clarence Barlow Royal Conservatoire Juliana van Sinusoids', is a means of mathematically interpolating sine wave segments between the samples of a sound wave recording (the word "sample" is here used as in "sample rate"). The sound wave is thus
Collective behavior of stabilized reaction-diffusion waves
Steele, Aaron J.; Tinsley, Mark; Showalter, Kenneth [Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045 (United States)
2008-06-15T23:59:59.000Z
Stabilized wave segments in the photosensitive Belousov-Zhabotinsky reaction are directionally controlled with intensity gradients in the applied illumination. The constant-velocity waves behave like self-propelled particles, and multiple waves interact via an applied interaction potential. Alignment arises from the intrinsic properties of the interacting waves, leading to processional and rotational behavior.
Chapter 10: Waves Did you read chapter 10
Hart, Gus
Properties: Speed The speed of sound is 340 m/s (about 1/5 mile/sec) The speed of light is 3x108 m/s You unchanged Speed = frequency Ã? wavelength. Sound "Talking" Outboard Propeller whine A compression wave Compression waves can travel through solids and fluids Solid Liquid Gas #12;2 Types of Waves: Transverse waves
Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation
Santolik, Ondrej
12 Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation, containing waves which simultaneously propagate in different directions and/or wave modes the concept emission is found to propagate predominantly in the R-X mode with wave energy distributed in relatively
Shock wave propagation in composites and active Vinamra Agrawal
Shyamasundar, R.K.
Shock wave propagation in composites and active Vinamra Agrawal California Institute of Technology travel through a material. These waves are characterized as a discontinuity propagating through shock waves propagate in heterogeneous materials. Shock waves are also being used to o pulsed currents
Wave-Based Sound Propagation for VR Applications Ravish Mehra
North Carolina at Chapel Hill, University of
Wave-Based Sound Propagation for VR Applications Ravish Mehra University of North Carolina to state-of-the-art wave solvers, enabling real-time, wave-based sound propagation in scenes spanning propagation accurately, it is important to develop interactive wave-based propagation techniques. We present
Propagation and reflection of internal waves B. R. Sutherlanda)
Sutherland, Bruce
Propagation and reflection of internal waves B. R. Sutherlanda) Department of Mathematical Sciences 01205-2 I. INTRODUCTION An internal wave is a disturbance propagating under the effects of buoyancy gravity waves incident upon a level where the Doppler-shifted frequency of the waves is comparable
Production of highly unidirectional lower-hybrid waves
McWilliams, R.; Okubo, M.; Platt, R.C.; Sheehan, D.P.
1985-01-01T23:59:59.000Z
The development of a highly unidirectional lower-hybrid wave source would improve the electron current drive efficiency in tokamaks. Lower-hybrid waves launched from a phased wave array are shown to be reflected from a grid placed in a cold, low-density plasma. The antenna--grid combination results in highly unidirectional lower-hybrid waves.
Wave Energy Development in Oregon Licensing & Permitting Requirements
July 09 Wave Energy Development in Oregon Licensing & Permitting Requirements Prepared by Pacific Energy Ventures on behalf of the Oregon Wave Energy Trust w w w . o r e g o n w a v e . o r g #12;This study was commissioned by Oregon Wave Energy Trust. Oregon Wave Energy Trust is funded by the Oregon
Ocean Wave Converters: State of the Art and Current Status
Paris-Sud XI, Université de
and benefits have been identified in the area of ocean wave energy extraction, i.e., harnessing the wave [3]. To harness the power energy in waves present a different set of technical challenges and a wide, this paper presents ocean wave energy fundamentals and then reviews the fundamental concepts and the main
Mathematical Theory of Water Waves John D. Carter
Carter, John
#12;Why Study Water Waves? Practical reasons Tsunamis Rogue waves Weather prediction Beach erosion Evolution Initial John D. Carter Mathematical Theory of Water Waves #12;The Stability Problem Exact Evolution Initial Later John D. Carter Mathematical Theory of Water Waves #12;The Stability Problem Stable
A DISCRETE WAVELET ANALYSIS OF FREAK WAVES IN THE OCEAN
A DISCRETE WAVELET ANALYSIS OF FREAK WAVES IN THE OCEAN EN-BING LIN AND PAUL C. LIU Received 25 wavelet analysis on a freak wave. We demonstrate several applications of wavelets and discrete and continuous wavelet transforms on the study of a freak wave. A modeling setting for freak waves will also
Toward a wave turbulence formulation of statistical nonlinear optics
Garnier, Josselin
Toward a wave turbulence formulation of statistical nonlinear optics Josselin Garnier,1, * Mietek optical waves have been reported in the literature. This article is aimed at providing a generalized wave, the process of optical wave thermalization to thermo- dynamic equilibrium, which slows down significantly
A Wave Analysis of the Subset Sum Problem Mark Jelasity
Jelasity, Márk
A Wave Analysis of the Subset Sum Problem M´ark Jelasity Research Group of Artificial Intelligence the wave model, a novel approach on analyzing the behavior of GAs. Our aim is to give techniques that have and effective heuristics on certain problem classes. The wave analysis is the process of building wave models
Ocean 420 Physical Processes in the Ocean Project 6: Waves
Thompson, LuAnne
generates an upwelling internal wave at 30N with a positive deviation in interface height of size 30m. What long would it take for this internal wave to propagate to 40N? c) At the same time that the wave passesOcean 420 Physical Processes in the Ocean Project 6: Waves Due: Thursday, March 1 1. A two layer
Wave spectral energy variability in the northeast Peter D. Bromirski
Bromirski, Peter D.
January 2005; published 8 March 2005. [1] The dominant characteristics of wave energy variability of monthly wave energy anomalies reveal that all three wave energy components exhibit similar patterns of spatial variability. The dominant mode represents coherent heightened (or diminished) wave energy along
Kinematic Wave Models of Network Vehicular Traffic Wenlong Jin
Mease, Kenneth D.
Kinematic Wave Models of Network Vehicular Traffic By Wenlong Jin B.S. (University of Science Applied Mathematics Kinematic Wave Models of Network Vehicular Traffic Abstract The kinematic wave theory vehicular traffic. In this dissertation, we study kinematic wave models of network traffic, which
Fully Nonlinear Properties of Periodic Waves Shoaling over Slopes1
Grilli, StÃ©phan T.
; detailed wave kinematics at the BP is also needed for surfzone models which are increasingly used after. In most wave transformation models used so far, shoaling of deep water waves is calculated based and intermediate water, may not be sufficiently accurate close to the BP where wave height reaches a significant
FORMATION OF ROLL WAVES IN LAMINAR SHEET FLOW
Julien, Pierre Y.
with the wave kinematic viscosity of water distance downslope critical distance at which roll waves are formedFORMATION OF ROLL WAVES IN LAMINAR SHEET FLOW by Pierre Y. Julien and David M. Hartley January 1985 required for the formation of roll waves . . . . 5 2.3.1 Celerityofrollwaves . . . . . . . . . . . . . . 6
Propagation and Re ection of Internal Waves B. R. Sutherland
Sutherland, Bruce
the frequency spectrum of the waves. I INTRODUCTION An internal wave is a disturbance propagating under the e a level where the Doppler-shifted frequency of the waves is comparable with the background buoyancy frequency. Although linear theory predicts that the waves should re ect if the Doppler-shifted frequency
The Preliminary Guides to the MegaWave2 Software, Versions 2.x MegaWave2 System Library
The Preliminary Guides to the MegaWave2 Software, Versions 2.x Volume Two MegaWave2 System Library;Contents MegaWave2 System Library Contents 2 Contents 1 Introduction 6 1.1 What you will find in this guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 The MegaWave2 memory (internal) types . . . . . . . . . . . . . . . . . . . . . . 6 1.3 File
Zonca, Fulvio
WentzelÂKramersÂBrillouin-full-wave approach and its application to lower hybrid wave propagation propagation and absorption, e.g., lower hybrid waves. As a novel method, its comparison with other approaches, e.g., WKB and beam tracing methods, is discussed. Its application to lower hybrid wave propagation
Wright, Dawn Jeannine
Wave Energy Ecological Effects Workshop page 1 of 4 Ecological Effects of Wave Energy Development the capacity to harvest wave energy off its coast as a clean, renewable resource. An important part of moving this agenda forward must include understanding the potential effects of wave energy technology
Wave EnergyFocusing in aThree-dimensional Numerical WaveTank C. Fochesato*, F. Dias**, S. Grilli***
Grilli, Stéphan T.
Wave EnergyFocusing in aThree-dimensional Numerical WaveTank C. Fochesato*, F. Dias**, S. Grilli Department (University of Rhode Island), Narragansett, RI, U.S.A. ABSTRACT Directional wave energy focusing in space is one of the mechanisms that may contribute to the generation of a rogue wave in the ocean
Geddes, Cameron Guy Robinson
Warm wave breaking of nonlinear plasma waves with arbitrary phase velocities C. B. Schroeder, E, collisionless plasma is developed to analyze nonlinear plasma waves excited by intense drive beams. The maximum amplitude and wavelength are calculated for nonrelativistic plasma temperatures and arbitrary plasma wave
Gibbon, J. D.
The Kinematic Wave Equation (KWE) In Tuesday's interrupted lecture we derived the Kinematic Wave refer to partial derivatives. Kinematic waves occur when we take Q = Q(), in which case t + c()x = 0 (2) where the propagation velocity is c() = dQ/d. (2) is called the Kinematic Wave Equation (KWE). We wish
Paris-Sud XI, UniversitÃ© de
Seismic Wave Propagation in Alluvial Basins and Influence of Site-City Interaction 1 Seismic Wave of alluvial deposits have a major influence on seismic wave propagation and amplification. However influence seismic wave propagation near the free surface. In this paper, the influence of surface structures
What Is Sound? Sound is a pressure wave which is
Toronto, University of
What Is Sound? Sound is a pressure wave which is created by a vibrating object. This vibrations set the medium. Since the particles are moving in parallel direction to the wave movement, the sound wave of a sine wave (C~crests, R~troughs) The speed of a sound pressure wave in air is 331.5+0.6Tc m/s , Tc
Numerical calculation of wave refraction by digital computer
Orr, Terry Edwin
1969-01-01T23:59:59.000Z
OF REFRACTION COEFFICIENTS Geometric Aspect of Wave Refraction. Energy Aspect of Wave Refraction I1I. ADAPTATION TO COMPUTER METHCDS IV, PROGRAM INPUT AND OUTPUT V. ANALYSIS AND RESULTS VI. SUMMARY AND CONCLUSIONS. 6 8 19 30 33 44 BIBLIOGRAPHY... that the wave does not advance at a uniform rate. With more nearabout e structures being built in coastal regions, ''t is imperati ve that the design engineer be able to estimate wave characteristics in shallow water. Wave height is a prime criterion...
Circular polarization of obliquely propagating whistler wave magnetic field
Bellan, P. M. [Applied Physics, Caltech, Pasadena California 91125 (United States)] [Applied Physics, Caltech, Pasadena California 91125 (United States)
2013-08-15T23:59:59.000Z
The circular polarization of the magnetic field of obliquely propagating whistler waves is derived using a basis set associated with the wave partial differential equation. The wave energy is mainly magnetic and the wave propagation consists of this magnetic energy sloshing back and forth between two orthogonal components of magnetic field in quadrature. The wave electric field energy is small compared to the magnetic field energy.
ACSD/CRB/CCRM Hindcasting Winds and Waves
1 ACSD/CRB/CCRM Hindcasting Winds and Waves Using Kinematic Analysis V.R. SwailV.R. SwailWorkstationWindWorkstationÂ®Â® #12;7 ACSD/CRB/CCRM Wave AnalysisWave Analysis Â· Import final kinematic surface (10m) winds/CRB/CCRM OUTLINEOUTLINE Â· Introduction Â· Data Sources Â· Wind Analysis Â· Generation of wave hindcasts Â· Wind and wave
Erwin Schroedinger and the rise of Wave mechanics. II. The creation of wave mechanics
Mehra, J.
1987-12-01T23:59:59.000Z
This article (Part II) deals with the creation of the theory of wave mechanics by Erwin Schroedinger in Zurich during the early months of 1926; he laid the foundations of this theory in his first two communications to Annalen der Physik. The background of Schroedinger's work on, and his actual creation of, wave mechanics are analyzed.
Application of wave generator theory to the development of a Wave Energy Converter
Wood, Stephen L.
of the second buoy's curved face. Upon deployment, the WEC successfully logged the power output of the system a wave energy converter (WEC) capable of providing at least a quarter-Watt of power to a small aquatic and basic wave generation technology to improving the power capture design of a basic direct drive WEC
Wave packet dynamics of the matter wave field of a Bose-Einstein condensate
C. Sudheesh; S. Lakshmibala; V. Balakrishnan
2004-08-11T23:59:59.000Z
We show in the framework of a tractable model that revivals and fractional revivals of wave packets afford clear signatures of the extent of departure from coherence and from Poisson statistics of the matter wave field in a Bose-Einstein condensate, or of a suitably chosen initial state of the radiation field propagating in a Kerr-like medium.
Tunable damper for an acoustic wave guide
Rogers, S.C.
1982-10-21T23:59:59.000Z
A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.
Local Runup Amplification By Resonant Wave Interactions
Stefanakis, Themistoklis; Dutykh, Denys
2011-01-01T23:59:59.000Z
Until now the analysis of long wave runup on a plane beach has been focused on finding its maximum value, failing to capture the existence of resonant regimes. One-dimensional numerical simulations in the framework of the Nonlinear Shallow Water Equations (NSWE) are used to investigate the Boundary Value Problem (BVP) for plane and non-trivial beaches. Monochromatic waves, as well as virtual wave-gage recordings from real tsunami simulations, are used as forcing conditions to the BVP. Resonant phenomena between the incident wavelength and the beach slope are found to occur, which result in enhanced runup of non-leading waves. The evolution of energy reveals the existence of a quasi-periodic state for the case of sinusoidal waves, the energy level of which, as well as the time required to reach that state, depend on the incident wavelength for a given beach slope. Dispersion is found to slightly reduce the value of maximum runup, but not to change the overall picture. Runup amplification occurs for both leadin...
Carver Mead
2015-03-16T23:59:59.000Z
Gravitational coupling of the propagation four-vectors of matter wave functions is formulated in flat space-time. Coupling at the momentum level rather than at the "force-law" level greatly simplifies many calculations. This locally Lorentz-invariant approach (G4v) treats electromagnetic and gravitational coupling on an equal footing. Classical mechanics emerges from the incoherent aggregation of matter wave functions. The theory reproduces, to first order beyond Newton, the standard GR results for Gravity-Probe B, deflection of light by massive bodies, precession of orbits, gravitational red shift, and total gravitational-wave energy radiated by a circular binary system. Its predictions of total radiated energy from highly eccentric Kepler systems are slightly larger than those of similar GR treatments. G4v predictions differ markedly from those of GR for the gravitational-wave radiation patterns from rotating massive systems, and for the LIGO antenna pattern. The predicted antenna patterns have been shown to be highly distinguishable in the case of continuous gravitational-wave sources, and should therefore be testable as data from Advanced LIGO becomes available over the next few years.
McKenzie, J. F. [Department of Mathematics, Statistics and Physics, Durban University of Technology, Steve Biko Campus, Durban 4001 (South Africa); School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag: X54001, Durban 4001 (South Africa); Doyle, T. B. [Materials Research Division, iThemba LABS, P.O.Box 722, Somerset West, 7129, South Africa and School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag: X54001, Durban 4001 (South Africa); Rajah, S. S. [Department of Mathematics, Statistics and Physics, Durban University of Technology, Steve Biko Campus, Durban 4001 (South Africa)
2012-11-15T23:59:59.000Z
The theory of fully nonlinear stationary electrostatic ion cyclotron waves is further developed. The existence of two fundamental constants of motion; namely, momentum flux density parallel to the background magnetic field and energy density, facilitates the reduction of the wave structure equation to a first order differential equation. For subsonic waves propagating sufficiently obliquely to the magnetic field, soliton solutions can be constructed. Importantly, analytic expressions for the amplitude of the soliton show that it increases with decreasing wave Mach number and with increasing obliquity to the magnetic field. In the subsonic, quasi-parallel case, periodic waves exist whose compressive and rarefactive amplitudes are asymmetric about the 'initial' point. A critical 'driver' field exists that gives rise to a soliton-like structure which corresponds to infinite wavelength. If the wave speed is supersonic, periodic waves may also be constructed. The aforementioned asymmetry in the waveform arises from the flow being driven towards the local sonic point in the compressive phase and away from it in the rarefactive phase. As the initial driver field approaches the critical value, the end point of the compressive phase becomes sonic and the waveform develops a wedge shape. This feature and the amplitudes of the compressive and rarefactive portions of the periodic waves are illustrated through new analytic expressions that follow from the equilibrium points of a wave structure equation which includes a driver field. These expressions are illustrated with figures that illuminate the nature of the solitons. The presently described wedge-shaped waveforms also occur in water waves, for similar 'transonic' reasons, when a Coriolis force is included.
INTERFERENCE FRINGES OF SOLAR ACOUSTIC WAVES AROUND SUNSPOTS
Chou, Dean-Yi; Zhao Hui; Yang, Ming-Hsu; Liang, Zhi-Chao, E-mail: chou@phys.nthu.edu.tw [Physics Department, National Tsing Hua University, Hsinchu, Taiwan (China)
2012-10-20T23:59:59.000Z
Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.
MHD Wave Propagation in the Neighbourhood of Two Null Points
J. A. McLaughlin; A. W. Hood
2007-12-11T23:59:59.000Z
The nature of fast magnetoacoustic and Alfv\\'en waves is investigated in a zero $\\beta$ plasma in the neighbourhood of a pair of two-dimensional null points. This gives an indication of wave propagation in the low $\\beta$ solar corona, for a more complicated magnetic configuration than that looked at by McLaughlin & Hood (2004). It is found that the fast wave is attracted to the null points and that the front of the wave slows down as it approaches the null point pair, with the wave splitting and part of the wave accumulating at one null and the rest at the other. Current density will then accumulate at these points and ohmic dissipation will then extract the energy in the wave at these points. This suggests locations where wave heating will occur in the corona. The Alfv\\'en wave behaves in a different manner in that the wave accumulates along the separatrices. Hence, the current density will accumulate at this part of the topology and this is where wave heating will occur. However, the phenomenon of wave accumulation at a specific place is a feature of both wave types, and illustrates the importance of studying the topology of the corona when considering MHD wave propagation.
Gravitational waves and gamma-ray bursts
Alessandra Corsi; for the LIGO Scientific Collaboration; for the Virgo Collaboration
2012-05-11T23:59:59.000Z
Gamma-Ray Bursts are likely associated with a catastrophic energy release in stellar mass objects. Electromagnetic observations provide important, but indirect information on the progenitor. On the other hand, gravitational waves emitted from the central source, carry direct information on its nature. In this context, I give an overview of the multi-messenger study of gamma-ray bursts that can be carried out by using electromagnetic and gravitational wave observations. I also underline the importance of joint electromagnetic and gravitational wave searches, in the absence of a gamma-ray trigger. Finally, I discuss how multi-messenger observations may probe alternative gamma-ray burst progenitor models, such as the magnetar scenario.
Oblique interactions of dust density waves
Wang, Zhelchui [Los Alamos National Laboratory; Li, Yang - Fang [MAX-PLANCK INSTITUTE; Hou, Lujing [MAX-PLANCK INSTITUTE; Jiang, Ke [MAX-PLANCK INSTITUTE; Wu, De - Jin [CHINA; Thomas, Hubertus M [MAX-PLANCK INSTITUTE; Morfill, Gregor E [MAX-PLANCK INSTITUTE
2010-01-01T23:59:59.000Z
Self-excited dust density waves (DDWs) are studied in a striped electrode device. In addition to the usual perpendicularly (with respect to the electrode) propagating DDWs, which have been frequently observed in dusty plasma experiments on the ground, a low-frequency oblique mode is also observed. This low-frequency oblique DDW has a frequency much lower than the dust plasma frequency and its spontaneous excitation is observed even with a very low dust density. It is found that the low-frequency oblique mode can exist either separately or together with the usual perpendicular mode. In the latter case, a new mode arises as a result of the interactions between the perpendicular and the oblique modes. The experiments show that these three modes satisfy the wave coupling conditions in both the frequencies and the wave-vectors.
Wave turbulence served up on a plate
Pablo Cobelli; Philippe Petitjeans; Agnes Maurel; Vincent Pagneux; Nicolas Mordant
2009-10-28T23:59:59.000Z
Wave turbulence in a thin elastic plate is experimentally investigated. By using a Fourier transform profilometry technique, the deformation field of the plate surface is measured simultaneously in time and space. This enables us to compute the wavevector-frequency Fourier ($\\mathbf k, \\omega$) spectrum of the full space-time deformation velocity. In the 3D ($\\mathbf k, \\omega$) space, we show that the energy of the motion is concentrated on a 2D surface that represents a nonlinear dispersion relation. This nonlinear dispersion relation is close to the linear dispersion relation. This validates the usual wavenumber-frequency change of variables used in many experimental studies of wave turbulence. The deviation from the linear dispersion, which increases with the input power of the forcing, is attributed to weak non linear effects. Our technique opens the way for many new extensive quantitative comparisons between theory and experiments of wave turbulence.
Microfabricated bulk wave acoustic bandgap device
Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming leg, Carol
2010-06-08T23:59:59.000Z
A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).
Microfabricated bulk wave acoustic bandgap device
Olsson, Roy H. (Albuquerque, NM); El-Kady, Ihab F. (Albuquerque, NM); McCormick, Frederick (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Fleming, legal representative, Carol (Albuquerque, NM)
2010-11-23T23:59:59.000Z
A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).
Interferometry with correlated matter-waves
Oksana I. Streltsova; Alexej I. Streltsov
2014-12-12T23:59:59.000Z
Matter-wave interferometry of ultra-cold atoms with attractive interactions is studied at the full many-body level. First, we study how a coherent light-pulse applied to an initially-condensed solitonic system splits it into two matter-waves. The split system looses its coherence and develops correlations with time, and inevitably becomes fragmented due to inter-particle attractions. Next, we show that by re-colliding the sub-clouds constituting the split density together, along with a simultaneous application of the same laser-pulse, one creates three matter-waves propagating with different momenta. We demonstrate that the number of atoms in the sub-cloud with zero-momentum is directly proportional to the degree of fragmentation in the system. This interferometric-based protocol to discriminate, probe, and measure the fragmentation is general and can be applied to ultra-cold systems with attractive, repulsive, short- and long-range interactions.
Active micromixer using surface acoustic wave streaming
Branch; Darren W. (Albuquerque, NM), Meyer; Grant D. (Ithaca, NY), Craighead; Harold G. (Ithaca, NY)
2011-05-17T23:59:59.000Z
An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.
Kinematic dynamo wave in the vicinity of the solar poles
Victor Galitski; D. D. Sokoloff
2001-04-27T23:59:59.000Z
We consider a dynamo wave in the solar convective shell for the kinematic $\\alpha\\omega$-dynamo model. The spectrum and eigenfunctions of the corresponding equations are derived analytically with the aid of the WKB method. Our main aim here is to investigate the dynamo wave behavior in the vicinity of the solar poles. Explicit expressions for the incident and reflected waves are obtained. The reflected wave is shown to be relatively weak in comparison to the incident wave. The phase shifts and the ratio of amplitudes of the two waves are found.
Writing magnetic patterns with surface acoustic waves
Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi, E-mail: dhagat@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331 (United States)
2014-05-07T23:59:59.000Z
A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10??m wide stripes of alternating magnetization and a 3??m dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.
Gravitational wave energy spectrum of hyperbolic encounters
Lorenzo De Vittori; Philippe Jetzer; Antoine Klein
2012-07-23T23:59:59.000Z
The emission of gravitational waves is studied for a system of massive objects interacting on hyperbolic orbits within the quadrupole approximation following the work of Capozziello et al. Here we focus on the derivation of an analytic formula for the energy spectrum of the emitted waves. We checked numerically that our formula is in agreement with the two limiting cases for which results were already available: for the eccentricity {\\epsilon} = 1, the parabolic case whose spectrum was computed by Berry and Gair, and the large {\\epsilon} limit with the formula given by Turner.
Soft Capacitors for Wave Energy Harvesting
Karsten Ahnert; Markus Abel; Matthias Kollosche; Per Jørgen Jørgensen; Guggi Kofod
2011-10-14T23:59:59.000Z
Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggle d with problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regio ns with optimal behavior are found, and novel material descriptors are determined which simplify analysis dramatically. The characteristics of currently ava ilable material are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery.
Gravitational wave energy spectrum of hyperbolic encounters
De Vittori, Lorenzo; Klein, Antoine
2012-01-01T23:59:59.000Z
The emission of gravitational waves is studied for a system of massive objects interacting on hyperbolic orbits within the quadrupole approximation following the work of Capozziello et al. Here we focus on the derivation of an analytic formula for the energy spectrum of the emitted waves. We checked numerically that our formula is in agreement with the two limiting cases for which results were already available: for the eccentricity {\\epsilon} = 1, the parabolic case whose spectrum was computed by Berry and Gair, and the large {\\epsilon} limit with the formula given by Turner.
Hot Plasma Waves in Schwarzschild Magnetosphere
M. Sharif; Asma Rafique
2009-11-03T23:59:59.000Z
In this paper we examine the wave properties of hot plasma living in Schwarzschild magnetosphere. The 3+1 GRMHD perturbation equations are formulated for this scenario. These equations are Fourier analyzed and then solved numerically to obtain the dispersion relations for non-rotating, rotating non-magnetized and rotating magnetized plasma. The wave vector is evaluated which is used to calculate refractive index. These quantities are shown in graphs which are helpful to discuss the dispersive properties of the medium near the event horizon.
Plasma planar filament instability and Alfven waves
Garcia de Andrade
2007-03-05T23:59:59.000Z
Inhomogeneous plasmas filaments instabilities are investigated by using the techniques of classical differential geometry of curves where Frenet torsion and curvature describe completely the motion of curves. In our case the Frenet frame changes in time and also depends upon the other coordinates taking into account the inhomogeneity of the plasma. The exponential perturbation method so commonly used to describe cosmological perturbatons is applied to magnetohydrodynamic (MHD) plasma equations to find longitudinal modes describing Alfven waves propagation modes describing plasma waves in the medium. Stability is investigated in the imaginary axis of the spectra of complex frequencies ${\\omega}$ or $Im(\\omega)\
Wave regularity in curve integrable spacetimes
Yafet Sanchez Sanchez
2015-02-23T23:59:59.000Z
The idea of defining a gravitational singularity as an obstruction to the dynamical evolution of a test field (described by a PDE) rather than the dynamical evolution of a particle (described by a geodesics) is explored. In particular, the concept of wave regularity is introduced which serves to show that the classical singularities in curve integrable spacetimes do not interrupt the well-posedness of the wave equation. The techniques used also provide arguments that can be extended to establish when a classically singular spacetime remains singular in a semi-classical picture.
Modulational instability in wind-forced waves
Brunetti, Maura
2014-01-01T23:59:59.000Z
We consider the wind-forced nonlinear Schroedinger (NLS) equation obtained in the potential flow framework when the Miles growth rate is of the order of the wave steepness. In this case, the form of the wind-forcing terms gives rise to the enhancement of the modulational instability and to a band of positive gain with infinite width. This regime is characterised by the fact that the ratio between wave momentum and norm is not a constant of motion, in contrast to what happens in the standard case where the Miles growth rate is of the order of the steepness squared.
Deflection microwave and millimeter-wave amplifiers
Tang., C.M. [Naval Research Lab., Washington, DC (United States)] [Naval Research Lab., Washington, DC (United States); Lau, Y.Y. [Univ. of Michigan, Ann Arbor, MI (United States)] [Univ. of Michigan, Ann Arbor, MI (United States); Swyden, T.A. [FM Technologies, Inc., Fairfax, VA (United States)] [FM Technologies, Inc., Fairfax, VA (United States)
1994-03-01T23:59:59.000Z
A new class of microwave and millimeter-wave amplifiers, called deflectron amplifiers, which are based on the deflection of low voltage electron beams in a microstructure were analyzed. This concept may be applied in two ways: as microelectronic amplifiers or as bunched beam cathodes to power conventional amplifier configurations such as klystrodes and traveling wave tubes. Estimates for gain and efficiency are obtained from a circuit analysis. Particle codes are used to test the viability of the concept. Frequencies of operation are projected up to a few tens of GHz for microelectronic amplifiers and up to {approx}80 GHz for power amplifiers 29 refs., 5 figs.
Wave Energy Resource Assessment | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02ReportWaste-to-Energy andAprilWater andWatershedWaveWave
Roberts, Jesse D.; Chang, Grace; Jones, Craig
2014-09-01T23:59:59.000Z
The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.
Anomalous electron-ion energy coupling in electron drift wave turbulence
Zhao, Lei
annulus arises due to a wave energy flux differential acrossprincipal collisionless wave energy dissipation channel inOn the other hand, wave energy can be dissipated by ion
Multi-scale interaction of driftWave turbulence with large scale shear flows
McDevitt, Christopher J.
2008-01-01T23:59:59.000Z
then to impose outgoing wave energy boundary conditions [Appendix A, this outgoing wave energy condition implies thatMHD. Appendix A: Outgoing Wave Energy Boundary Conditions In
Propagation of nonlinear waves in waveguides and application to nondestructive stress measurement
Nucera, Claudio
2012-01-01T23:59:59.000Z
of ultrasonic wave propagation to identify defects in investigation of elastic wave propagation in a cylinder. Modeling guided wave propagation with application to the
Lo, W.-C.
2009-01-01T23:59:59.000Z
1988, Bulk elastic wave propagation in partially saturated1986, Compressional wave propagation in liquid and/or gassaturation and seismic-wave propagation, Annu. Rev. Earth
Energy Transfer via Solar Wind Driven Ultra Low Frequency Waves in the Earth's Magnetosphere
Hartinger, Michael David
2012-01-01T23:59:59.000Z
spectral density comparison Wave polarization and energyEnergy transfer via MHD waves . . . . . . . . . . . . .magnetosphere (where wave energy can exit the magnetosphere
Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking /
Chen, Tianjia
2013-01-01T23:59:59.000Z
Power Maximization in Wave-Energy Converters Using Sampled-design optimization of wave energy converters con- sistingN. Sahinkaya. A review of wave energy converter technology.
Climate modulates internal wave activity in the Northern South China Sea
Decarlo, TM; Karnauskas, KB; Davis, KA; Wong, GTF
2015-01-01T23:59:59.000Z
Energy of nonlinear internal waves in the South China Sea,the nonlinear internal wave climate in the northeasternlarge amplitude internal waves, Mar. Ecol. Prog. Ser. , 412,
Wave breaking along the stratospheric polar vortex as seen in ERA-40 data
Abatzoglou, John T; Magnusdottir, Gudrun
2007-01-01T23:59:59.000Z
1983), Breaking planetary waves in the stratosphere, Nature,structure of breaking Rossby waves in the polar wintertimecontrol of upward wave flux near the tropopause, Geophys.
WAVE TRANSMISSION AND MOORING-FORCE CHARACTERISTICS OF PIPE-TIRE FLOATING BREAKWATERS
Harms, Volker W.
2013-01-01T23:59:59.000Z
Facility and Instrumentation a. Wave Tank . b. Have Gauge c.Procedures Experimental Results Wave~Transmission Data Page112 Appendix C - Detailed Wave-Transmission Diagrams . 121
AMP 576 Wave Propagation in the Ocean Environment, Prof. Roland Romeiser Fall Semester 2012
Miami, University of
environment. Material: Basic principles of fluid mechanics, equations of surface gravity waves, linear reflection, freqency and wavenumber spectra, action balance equation, wave generation, wave
Magnetohydrodynamics wave propagation in the neighbourhood of two dipoles
J. A. McLaughlin; A. W. Hood
2007-12-11T23:59:59.000Z
This paper is the third in a series of investigations by the authors. The nature of fast magnetoacoustic and Alfv\\'en waves is investigated in a 2D $\\beta=0$ plasma in the neighbourhood of two dipoles. We use both numerical simulations (two-step Lax-Wendroff scheme) and analytical techniques (WKB approximation). It is found that the propagation of the linear fast wave is dictated by the Alfv\\'en speed profile and that close to the null, the wave is attracted to the neutral point. However, it is also found that in this magnetic configuration some of the wave can escape the refraction effect; this had not been seen in previous investigations by the authors. The wave split occurs near the regions of very high Alfv\\'en speed (found near the loci of the two dipoles). Also, for the set-up investigated it was found that 40% of the wave energy accumulates at the null. Ohmic dissipation will then extract the wave energy at this point. The Alfv\\'en wave behaves in a different manner in that part of the wave accumulates along the separatrices and part escapes. Hence, the current density will accumulate at this part of the topology and this is where wave heating will occur. The phenomenon of wave accumulation at a specific place is a feature of both wave types, as is the result that a fraction of the wave can now escape the numerical box when propagating in this magnetic configuration.
Excitation of Banded Whistler Waves in the Magnetosphere
Gary, S. Peter [Los Alamos National Laboratory; Liu, Kaijun [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory
2012-07-13T23:59:59.000Z
Banded whistler waves can be generated by the whistler anisotropy instability driven by two bi-Maxwellian electron components with T{sub {perpendicular}}/T{sub {parallel}} > 1 at different T{sub {parallel}} For typical magnetospheric condition of 1 < {omega}{sub e}/{Omega}{sub e} < 5 in regions associated with strong chorus, upper-band waves can be excited by anisotropic electrons below {approx} 1 keV, while lower-band waves are excited by anisotropic electrons above {approx} 10 keV. Lower-band waves are generally field-aligned and substantially electromagnetic, while upper-band waves propagate obliquely and have quasi-electrostatic fluctuating electric fields. The quasi-electrostatic feature of upper-band waves suggests that they may be more easily identified in electric field observations than in magnetic field observations. Upper-band waves are liable to Landau damping and the saturation level of upperband waves is lower than lower-band waves, consistent with observations that lower-band waves are stronger than upper-band waves on average. The oblique propagation, the lower saturation level, and the more severe Landau damping together would make upper-band waves more tightly confined to the geomagnetic equator (|{lambda}{sub m}| < {approx}10{sup o}) than lower-band waves.
Moherek, Anthony Joseph
1977-01-01T23:59:59.000Z
experiments indicated that the four sediment mixtures erode similarly as evidenced by the same critical bed shear (Tp a 1 ~ 0 dynes/cm ). necessary to induce massive bedload transport and rapid suspended sediment increases. Significant deposition... of suspended fine silt and clay occurred at low bed shears (~o & 0. 2 dynes/cma). Extrapolation of these erosion and deposition bed shears to recorded offshore bottom current speed measurements over month-long periods suggest that bed- load erosion occurs...
A prediction of meander migration based on large-scale flume tests in clay
Park, Namgyu
2009-05-15T23:59:59.000Z
great ideas or useful hints for new research concerning the same type of problem. The past research works related to the prediction of meander migration were studied in order to have a better understanding of the existing techniques and an idea of a...
Flume Studies of Sediment Transportation in Shallow Flow with Simulated Rainfall
Nail, F.M.
1966-01-01T23:59:59.000Z
, Trinity, Neches and Sabine River Basins," is a general discussion of the economic factors as they are related to demand for water in each basin. In addition to a statewide outlook, a separate discussion for each basin is presented which includes future...
Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies, 2012
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration | Department56-2011DepartmentThirdEnvironmental
Currents driven by electron cyclotron waves
Karney, C.F.F.; Fisch, N.J.
1981-07-01T23:59:59.000Z
Certain aspects of the generation of steady-state currents by electron cyclotron waves are explored. A numerical solution of the Fokker-Planck equation is used to verify the theory of Fisch and Boozer and to extend their results into the nonlinear regime. Relativistic effects on the current generated are discussed. Applications to steady-state tokamak reactors are considered.
The wave function of a gravitating shell
V. I. Dokuchaev; S. V. Chernov
2010-10-01T23:59:59.000Z
We have calculated a discrete spectrum and found an exact analytical solution in the form of Meixner polynomials for the wave function of a thin gravitating shell in the Reissner-Nordstrom geometry. We show that there is no extreme state in the quantum spectrum of the gravitating shell, as in the case of extreme black hole.
Relativistic Wave Equations and Compton Scattering
B. A. Robson; S. H. Sutanto
2006-05-25T23:59:59.000Z
The recently proposed eight-component relativistic wave equation is applied to the scattering of a photon from a free electron (Compton scattering). It is found that in spite of the considerable difference in the structure of this equation and that of Dirac the cross section is given by the Klein-Nishina formula.
Wave dynamics of regular and chaotic rays
McDonald, S.W.
1983-09-01T23:59:59.000Z
In order to investigate general relationships between waves and rays in chaotic systems, I study the eigenfunctions and spectrum of a simple model, the two-dimensional Helmholtz equation in a stadium boundary, for which the rays are ergodic. Statistical measurements are performed so that the apparent randomness of the stadium modes can be quantitatively contrasted with the familiar regularities observed for the modes in a circular boundary (with integrable rays). The local spatial autocorrelation of the eigenfunctions is constructed in order to indirectly test theoretical predictions for the nature of the Wigner distribution corresponding to chaotic waves. A portion of the large-eigenvalue spectrum is computed and reported in an appendix; the probability distribution of successive level spacings is analyzed and compared with theoretical predictions. The two principal conclusions are: 1) waves associated with chaotic rays may exhibit randomly situated localized regions of high intensity; 2) the Wigner function for these waves may depart significantly from being uniformly distributed over the surface of constant frequency in the ray phase space.
MAKING WAVES AT FAU FLORIDA ATLANTIC UNIVERSITY
Fernandez, Eduardo
to generate energy by harnessing the power of Florida's ocean currents. FAU has been named to Military TimesMAKING WAVES AT FAU FLORIDA ATLANTIC UNIVERSITY QUICK FACTS #12;About FAu 1 PeoPle 7 AcAdemics 12 Marine Renewable Energy Center, a federally funded research facility that is developing technology
Wave equations with energy dependent potentials
J. Formanek; R. J. Lombard; J. Mares
2003-09-22T23:59:59.000Z
We study wave equations with energy dependent potentials. Simple analytical models are found useful to illustrate difficulties encountered with the calculation and interpretation of observables. A formal analysis shows under which conditions such equations can be handled as evolution equation of quantum theory with an energy dependent potential. Once these conditions are met, such theory can be transformed into ordinary quantum theory.
Wavelet Spectrum Analysis and Ocean Wind Waves
Wavelet Spectrum Analysis and Ocean Wind Waves Paul C. Liu Abstract. Wavelet spectrum analysis characteristics. These insights are due to the nature of the wavelet transform that would not be immediately or decay, is Wavelets in Geophysics 151 Efi Foufoula-Georgiou and Praveen Kumar (eds.), pp. 151-166. ISBN 0
Autoresonant propagation of incoherent light-waves
Friedland, Lazar
. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989). 5. S. Somekh, and A. Yariv, "Phasematchable, "Nonlinear Coupling of Waveguide Modes," Appl. Phys. Lett. 50(13), 801 803 (1987). 2. O. Cohen, X. Zhang, A, "Spatial Four Wave Mixing in Nonlinear Periodic Structures," Phys. Rev. Lett. 97(7), 073906 (2006). 4. A
Solar Eclipse Anomalies and Wave Refraction
Alasdair Macleod
2006-10-23T23:59:59.000Z
There is some inconclusive evidence that measurement devices sensitive to local gravitation exhibit anomalous behaviour during solar eclipses. We investigate if these findings can be incorporated into the standard general relativistic model of gravitation. The General Theory of Relativity (GTR) describes gravitation as the response of an object to local spacetime curvature. Gravitational waves travelling at the speed of light are then a necessary mechanism to maintain the required consistency between local curvature and distant gravitating mass. Gravitational waves will certainly be subject to refraction by bodies such as the moon and we explore if such an effect can result in an error in the apparent position of the sources and thereby give rise to the characteristic pattern of response associated with the eclipse anomaly. It is found there are phenomenological similarities, but only if gravitational waves are considered not merely to respond to spacetime curvature but are also significantly affected by the presence of mass, perhaps in a manner analogous to electromagnetic waves propagating through matter.
Modeling Kelvin Wave Cascades in Superfluid Helium
Guido Boffetta; Antonio Celani; Davide Dezzani; Jason Laurie; Sergey Nazarenko
2009-11-10T23:59:59.000Z
We study two different types of simplified models for Kelvin wave turbulence on quantized vortex lines in superfluids near zero temperature. Our first model is obtained from a truncated expansion of the Local Induction Approximation (Truncated-LIA) and it is shown to possess the same scalings and the essential behaviour as the full Biot-Savart model, being much simpler than the latter and, therefore, more amenable to theoretical and numerical investigations. The Truncated-LIA model supports six-wave interactions and dual cascades, which are clearly demonstrated via the direct numerical simulation of this model in the present paper. In particular, our simulations confirm presence of the weak turbulence regime and the theoretically predicted spectra for the direct energy cascade and the inverse wave action cascade. The second type of model we study, the Differential Approximation Model (DAM), takes a further drastic simplification by assuming locality of interactions in $k$-space via a differential closure that preserves the main scalings of the Kelvin wave dynamics. DAMs are even more amenable to study and they form a useful tool by providing simple analytical solutions in the cases when extra physical effects are present, e.g. forcing by reconnections, friction dissipation and phonon radiation. We study these models numerically and test their theoretical predictions, in particular the formation of the stationary spectra, and the closeness of the numerics for the higher-order DAM to the analytical predictions for the lower-order DAM .
Pressure wave charged repetitively pulsed gas laser
Kulkarny, Vijay A. (Redondo Beach, CA)
1982-01-01T23:59:59.000Z
A repetitively pulsed gas laser in which a system of mechanical shutters bracketing the laser cavity manipulate pressure waves resulting from residual energy in the cavity gas following a lasing event so as to draw fresh gas into the cavity and effectively pump spent gas in a dynamic closed loop.
Electron dynamics in surface acoustic wave devices
Thorn, Adam Leslie
2009-10-13T23:59:59.000Z
-dimensional nanostructures one can create a series of dynamic quantum dots corresponding to the minima of the travelling electric wave, and each dot carries a single electron at the SAW velocity (? 2800 m/s). These devices may be of use in developing future quantum...
On the Vacuum Propagation of Gravitational Waves
Xiao Liu
2007-06-05T23:59:59.000Z
We show that, for any local, causal quantum field theory which couples covariantly to gravity, and which admits Minkowski spacetime vacuum(a) invariant under the inhomogeneous proper orthochronous Lorentz group, plane gravitational waves propagating in such Minkowski vacuum(a) do not dissipate energy or momentum via quantum field theoretic effects.
Pointwise Fourier Inversion: a Wave Equation Approach
Pointwise Fourier Inversion: a Wave Equation Approach Mark A. Pinsky1 Michael E. Taylor2. A general criterion for pointwise Fourier inversion 2. Pointwise Fourier inversion on Rn (n = 3) 3. Fourier inversion on R2 4. Fourier inversion on Rn (general n) 5. Fourier inversion on spheres 6. Fourier inversion
Pointwise Fourier Inversion: a Wave Equation Approach
Pointwise Fourier Inversion: a Wave Equation Approach Mark A. Pinsky 1 Michael E. Taylor 2. A general criterion for pointwise Fourier inversion 2. Pointwise Fourier inversion on R n (n = 3) 3. Fourier inversion on R 2 4. Fourier inversion on R n (general n) 5. Fourier inversion on spheres 6. Fourier
Accelerometer using atomic waves for space applications
of Bose-Einstein condensation (BEC) of a dilute gas of trapped atoms in a single quantum state [18, 19, 20 of such devices in the field of navigation, surveying and analysis of earth structures. Matter-wave interferometry that the use of Bose-Einstein condensed atoms will bring the science of atom optics, and in particular atom
aerial ultrasonic waves: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
6 Non-collinear wave mixing for non-linear ultrasonic detection of physical ageing in PVC Engineering Websites Summary: Non-collinear wave mixing for non-linear ultrasonic...
MODELING WAVE-CURRENT INTERACTION IN THE VICINITY OF
US Army Corps of Engineers
region of the bay are dredged once or twice a year, at significant cost. The interactions between waves of sediment transport and the implications of alternative dredging schemes at Humboldt Bay. The wave model
Ducted kinetic Alfven waves in plasma with steep density gradients
Houshmandyar, Saeid [Solar Observatory Department, Prairie View A and M University, Prairie View, Texas 77446 (United States); Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Scime, Earl E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)
2011-11-15T23:59:59.000Z
Given their high plasma density (n {approx} 10{sup 13} cm{sup -3}), it is theoretically possible to excite Alfven waves in a conventional, moderate length (L {approx} 2 m) helicon plasma source. However, helicon plasmas are decidedly inhomogeneous, having a steep radial density gradient, and typically have a significant background neutral pressure. The inhomogeneity introduces regions of kinetic and inertial Alfven wave propagation. Ion-neutral and electron-neutral collisions alter the Alfven wave dispersion characteristics. Here, we present the measurements of propagating kinetic Alfven waves in helium helicon plasma. The measured wave dispersion is well fit with a kinetic model that includes the effects of ion-neutral damping and that assumes the high density plasma core defines the radial extent of the wave propagation region. The measured wave amplitude versus plasma radius is consistent with the pile up of wave magnetic energy at the boundary between the kinetic and inertial regime regions.
Responses of an articulated loading platform in waves and currents
Ran, Zhihuang
1993-01-01T23:59:59.000Z
The responses of an articulated loading platform (ALP) in regular and irregular unidirectional waves (with or without currents) are investigated both in frequency and time domain. The first- and second-order wave diffraction radiation are solved...
alfven wave dispersion: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Relation for Alfven Waves in a Viscous, Diffusive Plasma Astrophysics (arXiv) Summary: Propagation of Alfven waves in the solar plasma has been a topic of scientific interest...
alfven wave antenna: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Relation for Alfven Waves in a Viscous, Diffusive Plasma Astrophysics (arXiv) Summary: Propagation of Alfven waves in the solar plasma has been a topic of scientific interest...
alfven waves: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Relation for Alfven Waves in a Viscous, Diffusive Plasma Astrophysics (arXiv) Summary: Propagation of Alfven waves in the solar plasma has been a topic of scientific interest...
alfven wave doe: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Relation for Alfven Waves in a Viscous, Diffusive Plasma Astrophysics (arXiv) Summary: Propagation of Alfven waves in the solar plasma has been a topic of scientific interest...
acoustic wave equation: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
media Josselin Garnier in acoustics4,34 , and also in other domains, such as seismic wave propagation7,8,35 . Experimental observations show that the attenuation of acoustic waves...
alfvenic wave components: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Relation for Alfven Waves in a Viscous, Diffusive Plasma Astrophysics (arXiv) Summary: Propagation of Alfven waves in the solar plasma has been a topic of scientific interest...
Revamped Simulation Tool to Power Up Wave Energy Development...
Revamped Simulation Tool to Power Up Wave Energy Development Revamped Simulation Tool to Power Up Wave Energy Development May 21, 2015 - 2:40pm Addthis Revamped Simulation Tool to...
Submitted for publication. A constructive approach to traveling waves in
be observed in chemotactic species. One of them are traveling waves or pulses which spread trough traveling wave solutions for (1) in the cylindrical domain\\Omega = IR \\Theta \\Gamma, where \\Gamma
Local Dynamics of Synoptic Waves in the Martian Atmosphere
Kavulich, Michael J., Jr.
2011-10-21T23:59:59.000Z
The sources and sinks of energy for transient waves in the Martian atmosphere are investigated, applying diagnostic techniques developed for the analysis of terrestrial baroclinic waves to output from a Mars General Circulation Model...
Generation and analysis of multi-directional waves
Liagre, Pierre-Yves Francois Bernard
1999-01-01T23:59:59.000Z
Real sea states cannot be represented adequately by a single sine wave. Indeed, wind-generated waves in the ocean have obviously different amplitudes and frequencies, but also come from different directions. Consequently, the distribution of energy...
DOE Announces Webinars on the Wave Energy Converter Prize, the...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
DOE Announces Webinars on the Wave Energy Converter Prize, the Best of the Clean Cities Tools and Resources, and More DOE Announces Webinars on the Wave Energy Converter Prize, the...
Sea surface wave reconstruction from marine radar images
Qi, Yusheng, S.M. Massachusetts Institute of Technology
2012-01-01T23:59:59.000Z
The X-band marine radar is one type of remote sensing technology which is being increasingly used to measure sea surface waves nowadays. In this thesis, how to reconstruct sea surface wave elevation maps from X-band marine ...
Experimental Characterization of Plasma Heating with Beating Electrostatic Waves
Choueiri, Edgar
Experimental Characterization of Plasma Heating with Beating Electrostatic Waves Benjamin Jorns and Edgar Y. Choueiri Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, NJ, 08540 The heating of ions in a magnetized plasma by two electrostatic waves whose frequencies
PNNL Expert Doug McMakin Discusses Millimeter Wave Technology
Doug McMakin
2012-12-31T23:59:59.000Z
Electrical Engineer Doug McMakin discusses Millimeter Wave Holographic technology, which uses non-harmful, ultrahigh-frequency radio waves to penetrate clothing to detect and identify concealed objects, as well as obtain accurate body measurements.
Modeling of Wave Impact Using a Pendulum System
Nie, Chunyong
2011-08-08T23:59:59.000Z
For high speed vessels and offshore structures, wave impact, a main source of environmental loads, causes high local stresses and structural failure. However, the prediction of wave impact loads presents numerous challenges due to the complex nature...
Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
has a gently sloping seabed, free of irregularities that could disturb the local wave field. Thus, it is likely that the wave field is homogeneous over the deployment area of...
Shear-wave splitting and reservoir crack characterization: the...
Shear-wave splitting and reservoir crack characterization: the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Shear-wave...
alfven wave excitation: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
waves are easily excited by various processes. Linear waves propagate at the Alfv'en speed v Guedel, Manuel 5 Nonlinear Excitation of Acoustic Modes by Large-Amplitude Alfven...
Columbia Power Technologies, Inc. Deploys its Direct Drive Wave...
Office of Environmental Management (EM)
Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am...
A Study of SSI Effects Incorporating Seismic Wave Incoherence...
Office of Environmental Management (EM)
A Study of SSI Effects Incorporating Seismic Wave Incoherence within the DOE Complex A Study of SSI Effects Incorporating Seismic Wave Incoherence within the DOE Complex A Study of...
acoustic wave investigations: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
(UGT) are expected to be a next of incorporating a wave rotor to an ultra-micro gas turbine and the advantages of wave rotors, topping gas turbines at about 70%. Keywords:...
air pressure wave: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
(UGT) are expected to be a next of incorporating a wave rotor to an ultra-micro gas turbine and the advantages of wave rotors, topping gas turbines at about 70%. Keywords:...
axoplasmic pressure waves: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
(UGT) are expected to be a next of incorporating a wave rotor to an ultra-micro gas turbine and the advantages of wave rotors, topping gas turbines at about 70%. Keywords:...