National Library of Energy BETA

Sample records for 1-to-2-ft lengths scattered

  1. Stimulated forward Raman scattering in large scale-length laser...

    Office of Scientific and Technical Information (OSTI)

    Stimulated forward Raman scattering in large scale-length laser-produced plasmas Citation Details In-Document Search Title: Stimulated forward Raman scattering in large ...

  2. Stimulated forward Raman scattering in large scale-length laser...

    Office of Scientific and Technical Information (OSTI)

    in large scale-length laser-produced plasmas Citation Details In-Document Search Title: Stimulated forward Raman scattering in large scale-length laser-produced plasmas You ...

  3. Exploiting Universality in Atoms with Large Scattering Lengths

    SciTech Connect (OSTI)

    Braaten, Eric

    2012-05-31

    The focus of this research project was atoms with scattering lengths that are large compared to the range of their interactions and which therefore exhibit universal behavior at sufficiently low energies. Recent dramatic advances in cooling atoms and in manipulating their scattering lengths have made this phenomenon of practical importance for controlling ultracold atoms and molecules. This research project was aimed at developing a systematically improvable method for calculating few-body observables for atoms with large scattering lengths starting from the universal results as a first approximation. Significant progress towards this goal was made during the five years of the project.

  4. Scattering lengths and medium and high energy {pi}{pi} scattering

    SciTech Connect (OSTI)

    Ananthanarayan, B.; Buettiker, P.

    1996-11-01

    Crucial tests of chiral perturbation theory and determinations of chiral coupling constants rely on fine details of dispersion relation analysis of {pi}{pi} scattering data. Whereas a recent Roy equation analysis of low energy {ital S} and {ital P} waves with {ital a}{sup 0}{sub 0} in the range predicted by standard one-loop chiral perturbation theory, yielded sharp determinations of certain {ital S}- and {ital P}-wave threshold parameters only, we now extend the discussion to medium and high energy. This is shown to contribute to the {ital D}-wave scattering lengths {ital a}{sup 0}{sub 2} and {ital a}{sup 2}{sub 2} significantly, roughly 10{percent} and 30{percent} of their central experimental values, remaining consistent with chiral predictions. Results of our Roy equation fits to the {ital F}-wave scattering length {ital a}{sup 1}{sub 3}, a quantity for which two-loop chiral perturbation theory holds important predictions, are presented. {copyright} {ital 1996 The American Physical Society.}

  5. Three-Body Recombination of {sup 6}Li Atoms with Large Negative Scattering Lengths

    SciTech Connect (OSTI)

    Braaten, Eric; Kang, Daekyoung; Platter, Lucas; Hammer, H.-W.

    2009-08-14

    The three-body recombination rate at threshold for distinguishable atoms with large negative pair scattering lengths is calculated in the zero-range approximation. The only parameters in this limit are the 3 scattering lengths and the Efimov parameter, which can be complex-valued. We provide semianalytic expressions for the cases of 2 or 3 equal scattering lengths, and we obtain numerical results for the general case of 3 different scattering lengths. Our general result is applied to the three lowest hyperfine states of {sup 6}Li atoms. Comparisons with recent experiments provide indications of loss features associated with Efimov trimers near the 3-atom threshold.

  6. Resonant dimer relaxation in cold atoms with a large scattering length

    SciTech Connect (OSTI)

    Braaten, Eric; Hammer, H.-W.

    2007-05-15

    Efimov physics refers to universal phenomena associated with a discrete scaling symmetry in the three-body problem with a large scattering length. The first experimental evidence for Efimov physics was the recent observation of a resonant peak in the three-body recombination rate for {sup 133}Cs atoms with large negative scattering length. There can also be resonant peaks in the atom-dimer relaxation rate for large positive scattering length. We calculate the atom-dimer relaxation rate as a function of temperature and show how measurements of the relaxation rate can be used to determine accurately the parameters that govern Efimov physics.

  7. Three-body Recombination in Bose Gases with Large Scattering Length

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Three-body Recombination in Bose Gases with Large Scattering Length Citation Details In-Document Search Title: Three-body Recombination in Bose Gases with Large Scattering Length An effective field theory for the three-body system with large scattering length is applied to three-body recombination to a weakly bound s -wave state in a Bose gas. Our model independent analysis demonstrates that the three-body recombination constant {alpha} is not universal,

  8. Stimulated forward Raman scattering in large scale-length laser-produced

    Office of Scientific and Technical Information (OSTI)

    plasmas (Journal Article) | SciTech Connect Stimulated forward Raman scattering in large scale-length laser-produced plasmas Citation Details In-Document Search Title: Stimulated forward Raman scattering in large scale-length laser-produced plasmas Authors: Niemann, C ; Berger, R L ; Divol, L ; Kirkwood, R K ; Moody, J D ; Sorce, C M ; Glenzer, S H Publication Date: 2011-08-22 OSTI Identifier: 1113524 Report Number(s): LLNL-JRNL-496073 DOE Contract Number: W-7405-ENG-48 Resource Type:

  9. Elementary excitations and universal interaction in Bose-Einstein condensates at large scattering lengths

    SciTech Connect (OSTI)

    Sarjonen, R.; Saarela, M.; Mazzanti, F.

    2011-10-15

    We present a theoretical analysis of excitation modes in Bose-Einstein condensates of ultracold alkali-metal gases for large scattering lengths, showing clear deviations from the Bogoliubov prediction as seen by Papp et al.[Phys. Rev. Lett. 101, 135301 (2008)]. We construct the atom-atom interaction by deriving the T matrix of such systems from two coupled (open and closed) channels assuming that the Feshbach resonance dominates the latter. We calculate molecular bound-state energies as a function of the magnetic field and compare with available experiments. The s-wave phase shifts determine the local effective interaction with long-ranged repulsion and short-ranged attraction. We show that it becomes a universal function at large scattering lengths. Finally, we use this interaction to characterize the ground-state and elementary excitations of {sup 85}Rb, {sup 87}Rb, and {sup 23}Na gases. Good agreement with line shift experiments in {sup 85}Rb is achieved. We find that, at large scattering lengths, Bragg scattering experiments could directly measure the momentum dependence of the effective two-body potential.

  10. Three-body Recombination in Bose Gases with Large Scattering Length

    SciTech Connect (OSTI)

    Bedaque, P. F.; Braaten, Eric; Hammer, H.-W.

    2000-07-31

    An effective field theory for the three-body system with large scattering length is applied to three-body recombination to a weakly bound s -wave state in a Bose gas. Our model independent analysis demonstrates that the three-body recombination constant {alpha} is not universal, but can take any value between zero and 67.9({Dirac_h}/2{pi})a{sup 4}/m , where a is the scattering length. Other low-energy three-body observables can be predicted in terms of a and {alpha} . Near a Feshbach resonance, {alpha} should oscillate between those limits as the magnetic field B approaches the point where a{yields}{infinity} . In any interval of B over which a increases by a factor of 22.7, {alpha} should have a zero. (c) 2000 The American Physical Society.

  11. Three-Body Recombination into Deep Bound States in a Bose Gas with Large Scattering Length

    SciTech Connect (OSTI)

    Braaten, Eric; Hammer, H.-W.

    2001-10-15

    An effective field theory for the three-body system with large two-body scattering length a is applied to three-body recombination into deep bound states in a Bose gas. The recombination constant {alpha} is calculated to first order in the short-distance interactions that allow the recombination. For a<0 , the dimensionless combination m{alpha}/({Dirac_h}a{sup 4}) is a periodic function of ln|a| that exhibits resonances at values of a that differ by multiplicative factors of 22.7. This dramatic behavior should be observable near a Feshbach resonance when a becomes large and negative.

  12. Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Scattering Print When a crystalline sample is illuminated with x-rays, the x-rays are scattered (diffracted) into very specific directions with various intensities. Detectors are used to measure this "diffraction pattern," which is then processed by computers to deduce the arrangement of atoms within the crystal. Hard x-rays have wavelengths comparable to the distance between atoms. Essentially everything we know about the atomic structure of materials is based on results

  13. Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Print When a crystalline sample is illuminated with x-rays, the x-rays are scattered (diffracted) into very specific directions with various intensities. Detectors are used to measure this "diffraction pattern," which is then processed by computers to deduce the arrangement of atoms within the crystal. Hard x-rays have wavelengths comparable to the distance between atoms. Essentially everything we know about the atomic structure of materials is based on results from x-ray

  14. Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Print When a crystalline sample is illuminated with x-rays, the x-rays are scattered (diffracted) into very specific directions with various intensities. Detectors are used to measure this "diffraction pattern," which is then processed by computers to deduce the arrangement of atoms within the crystal. Hard x-rays have wavelengths comparable to the distance between atoms. Essentially everything we know about the atomic structure of materials is based on results from x-ray

  15. Scattering Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  16. Scattering Solar Thermal Concentrators

    SciTech Connect (OSTI)

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the concentrator optical efficiency was found to decrease significantly with increasing aperture width beyond 0.5 m due to parasitic waveguide out-coupling loss and low-level absorption that become dominant at larger scale. A heat transfer model was subsequently implemented to predict collector fluid heat gain and outlet temperature as a function of flow rate using the optical model as a flux input. It was found that the aperture width size limitation imposed by the optical efficiency characteristics of the waveguide limits the absolute optical power delivered to the heat transfer element per unit length. As compared to state-of-the-art parabolic trough CPV system aperture widths approaching 5 m, this limitation leads to an approximate factor of order of magnitude increase in heat transfer tube length to achieve the same heat transfer fluid outlet temperature. The conclusion of this work is that scattering solar thermal concentration cannot be implemented at the scale and efficiency required to compete with the performance of current parabolic trough CSP systems. Applied within the alternate context of CPV, however, the results of this work have likely opened up a transformative new path that enables quasi-static, high efficiency CPV to be implemented on rooftops in the form factor of traditional fixed-panel photovoltaics.

  17. Progress in Long Scale Length Laser-Plasma Interactions

    SciTech Connect (OSTI)

    Glenzer, S H; Arnold, P; Bardsley, G; Berger, R L; Bonanno, G; Borger, T; Bower, D E; Bowers, M; Bryant, R; Buckman, S; Burkhart, S C; Campbell, K; Chrisp, M P; Cohen, B I; Constantin, G; Cooper, F; Cox, J; Dewald, E; Divol, L; Dixit, S; Duncan, J; Eder, D; Edwards, J; Erbert, G; Felker, B; Fornes, J; Frieders, G; Froula, D H; Gardner, S D; Gates, C; Gonzalez, M; Grace, S; Gregori, G; Greenwood, A; Griffith, R; Hall, T; Hammel, B A; Haynam, C; Heestand, G; Henesian, M; Hermes, G; Hinkel, D; Holder, J; Holdner, F; Holtmeier, G; Hsing, W; Huber, S; James, T; Johnson, S; Jones, O S; Kalantar, D; Kamperschroer, J H; Kauffman, R; Kelleher, T; Knight, J; Kirkwood, R K; Kruer, W L; Labiak, W; Landen, O L; Langdon, A B; Langer, S; Latray, D; Lee, A; Lee, F D; Lund, D; MacGowan, B; Marshall, S; McBride, J; McCarville, T; McGrew, L; Mackinnon, A J; Mahavandi, S; Manes, K; Marshall, C; Mertens, E; Meezan, N; Miller, G; Montelongo, S; Moody, J D; Moses, E; Munro, D; Murray, J; Neumann, J; Newton, M; Ng, E; Niemann, C; Nikitin, A; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rekow, V; Rinnert, R; Riordan, B; Rhodes, M

    2003-11-11

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 mm and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3{omega}) with a total intensity of 2 x 10{sup 15} W cm{sup -2}. The targets were filled with 1 atm of CO{sub 2} producing of up to 7 mm long homogeneously heated plasmas with densities of n{sub e} = 6 x 10{sup 20} cm{sup -3} and temperatures of T{sub e} = 2 keV. The high energy in a NIF quad of beams of 16kJ, illuminating the target from one direction, creates unique conditions for the study of laser plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last {approx}1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 6% for the smallest length ({approx}2 mm). increasing to 12% for {approx}7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modeling of the laser-plasma interactions at ignition-size scale lengths.

  18. Raman scattering in a whispering mode optical waveguide

    DOE Patents [OSTI]

    Kurnit, Norman A.

    1982-01-01

    A device and method for Raman scattering in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature .rho. p for confining the beam to increase intensity. A Raman scattering medium is disposed in the optical path of the beam as it propagates along the waveguide. Raman scattering is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.

  19. Continuously variable focal length lens

    DOE Patents [OSTI]

    Adams, Bernhard W; Chollet, Matthieu C

    2013-12-17

    A material preferably in crystal form having a low atomic number such as beryllium (Z=4) provides for the focusing of x-rays in a continuously variable manner. The material is provided with plural spaced curvilinear, optically matched slots and/or recesses through which an x-ray beam is directed. The focal length of the material may be decreased or increased by increasing or decreasing, respectively, the number of slots (or recesses) through which the x-ray beam is directed, while fine tuning of the focal length is accomplished by rotation of the material so as to change the path length of the x-ray beam through the aligned cylindrical slows. X-ray analysis of a fixed point in a solid material may be performed by scanning the energy of the x-ray beam while rotating the material to maintain the beam's focal point at a fixed point in the specimen undergoing analysis.

  20. Continuous lengths of oxide superconductors

    DOE Patents [OSTI]

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  1. Variable focal length deformable mirror

    DOE Patents [OSTI]

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  2. Distributions of off-diagonal scattering matrix elements: Exact results

    SciTech Connect (OSTI)

    Nock, A. Kumar, S. Sommers, H.-J. Guhr, T.

    2014-03-15

    Scattering is a ubiquitous phenomenon which is observed in a variety of physical systems which span a wide range of length scales. The scattering matrix is the key quantity which provides a complete description of the scattering process. The universal features of scattering in chaotic systems is most generally modeled by the Heidelberg approach which introduces stochasticity to the scattering matrix at the level of the Hamiltonian describing the scattering center. The statistics of the scattering matrix is obtained by averaging over the ensemble of random Hamiltonians of appropriate symmetry. We derive exact results for the distributions of the real and imaginary parts of the off-diagonal scattering matrix elements applicable to orthogonally-invariant and unitarily-invariant Hamiltonians, thereby solving a long standing problem. -- Highlights: Scattering problem in complex or chaotic systems. Heidelberg approach to model the chaotic nature of the scattering center. A novel route to the nonlinear sigma model based on the characteristic function. Exact results for the distributions of off-diagonal scattering-matrix elements. Universal aspects of the scattering-matrix fluctuations.

  3. Environment scattering in GADRAS.

    SciTech Connect (OSTI)

    Thoreson, Gregory G.; Mitchell, Dean James; Theisen, Lisa Anne; Harding, Lee T.

    2013-09-01

    Radiation transport calculations were performed to compute the angular tallies for scattered gamma-rays as a function of distance, height, and environment. Green's Functions were then used to encapsulate the results a reusable transformation function. The calculations represent the transport of photons throughout scattering surfaces that surround sources and detectors, such as the ground and walls. Utilization of these calculations in GADRAS (Gamma Detector Response and Analysis Software) enables accurate computation of environmental scattering for a variety of environments and source configurations. This capability, which agrees well with numerous experimental benchmark measurements, is now deployed with GADRAS Version 18.2 as the basis for the computation of scattered radiation.

  4. Scattering Techniques and Geometries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grains - Thin films - Texture (crystallite orientation) - Real time experiments (electrochemistry, stress-strain) Get to know your beamlines incident scattered Detector Q...

  5. Property:Length(m) | Open Energy Information

    Open Energy Info (EERE)

    Length(m) Jump to: navigation, search This is a property of type String, and provides a complied list of the lengths of various hydrodynamic testing facilities. Pages using the...

  6. Compton scattering overview

    SciTech Connect (OSTI)

    Hartemann, F V

    2008-12-01

    An overview of linear and nonlinear Compton scattering is presented, along with a comparison with Thomson scattering. Two distinct processes play important roles in the nonlinear regime: multi-photon interactions, leading to the generation of harmonics, and radiation pressure, yielding a downshift of the radiated spectral features. These mechanisms, their influence on the source brightness, and different modeling strategies are also briefly discussed.

  7. Neutrino Nucleon Elastic Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nucleon Elastic Scattering in MiniBooNE D. Christopher Cox for the MiniBooNE Collaboration Indiana University, Bloomington, IN Abstract. Neutrino nucleon elastic scattering ν N → ν N is a fundamental process of the weak interaction, and can be used to study the structure of the nucleon. This is the third largest scattering process in MiniBooNE comprising ∼15% of all neutrino interactions. Analysis of this sample has yielded a neutral current elastic differential cross section as a function

  8. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    small-angle x-ray scattering (GISAXS) to characterize active-layer formation in real time and at multiple length scales. Watching the Ink Dry Flexible, lightweight, and...

  9. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    responds to radiological incident August 27, 2012 The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE), a multidisciplinary accelerator facility used for both civilian and national security research. The

  10. Scattering Society of America

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Majewski named Fellow of the Neutron Scattering Society of America May 9, 2016 The Neutron Scattering Society of America (NSSA) has honored Jaroslaw (Jarek) Majewski of the Center for Integrated Nanotechnologies (MPA-CINT) with the title of Fellow. The Society recognized Majewski for "contributions to our understanding of weakly organized two-dimensional systems, including surfactant molecules found in biological systems. Majewski's achievements Majewski received a doctorate in Materials

  11. Temperature dependence of diffusion length, lifetime and minority electron mobility in GaInP

    SciTech Connect (OSTI)

    Schultes, F. J.; Haegel, N. M.; Christian, T.; Alberi, K.; Fluegel, B.; Jones-Albertus, R.; Pickett, E.; Liu, T.; Misra, P.; Sukiasyan, A.; Yuen, H.

    2013-12-09

    The mobility of electrons in double heterostructures of p-type Ga{sub 0.50}In{sub 0.50}P has been determined by measuring minority carrier diffusion length and lifetime. The minority electron mobility increases monotonically from 300?K to 5?K, limited primarily by optical phonon and alloy scattering. Comparison to majority electron mobility over the same temperature range in comparably doped samples shows a significant reduction in ionized impurity scattering at lower temperatures, due to differences in interaction of repulsive versus attractive carriers with ionized dopant sites. These results should be useful in modeling and optimization for multi-junction solar cells and other optoelectronic devices.

  12. MAGNETIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science, ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

  13. Scattering Of Light Nuclei

    SciTech Connect (OSTI)

    Quaglioni, S; Navratil, P; Roth, R

    2009-12-15

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.

  14. Imaging an event horizon: mitigation of scattering toward Sagittarius A*

    SciTech Connect (OSTI)

    Fish, Vincent L.; Lu, Ru-Sen; Doeleman, Sheperd S.; Pankratius, Victor; Johnson, Michael D.; Narayan, Ramesh; Vertatschitsch, Laura E.; Bouman, Katherine L.; Zoran, Daniel; Freeman, William T.; Psaltis, Dimitrios; Broderick, Avery E.; Gwinn, Carl R.

    2014-11-10

    The image of the emission surrounding the black hole in the center of the Milky Way is predicted to exhibit the imprint of general relativistic (GR) effects, including the existence of a shadow feature and a photon ring of diameter ?50 ?as. Structure on these scales can be resolved by millimeter-wavelength very long baseline interferometry. However, strong-field GR features of interest will be blurred at ? ? 1.3 mm due to scattering by interstellar electrons. The scattering properties are well understood over most of the relevant range of baseline lengths, suggesting that the scattering may be (mostly) invertible. We simulate observations of a model image of Sgr A* and demonstrate that the effects of scattering can indeed be mitigated by correcting the visibilities before reconstructing the image. This technique is also applicable to Sgr A* at longer wavelengths.

  15. Probing the Conformational Distributions of Sub-Persistence Length DNA

    SciTech Connect (OSTI)

    Mastroianni, Alexander; Sivak, David; Geissler, Phillip; Alivisatos, Paul

    2009-06-08

    We have measured the bending elasticity of short double-stranded DNA (dsDNA) chains through small-angle X-ray scattering from solutions of dsDNA-linked dimers of gold nanoparticles. This method, which does not require exertion of external forces or binding to a substrate, reports on the equilibrium distribution of bending fluctuations, not just an average value (as in ensemble FRET) or an extreme value (as in cyclization), and in principle provides a more robust data set for assessing the suitability of theoretical models. Our experimental results for dsDNA comprising 42-94 basepairs (bp) are consistent with a simple worm-like chain model of dsDNA elasticity, whose behavior we have determined from Monte Carlo simulations that explicitly represent nanoparticles and their alkane tethers. A persistence length of 50 nm (150 bp) gave a favorable comparison, consistent with the results of single-molecule force-extension experiments on much longer dsDNA chains, but in contrast to recent suggestions of enhanced flexibility at these length scales.

  16. Mixing lengths scaling in a gravity flow

    SciTech Connect (OSTI)

    Ecke, Robert E [Los Alamos National Laboratory; Rivera, Micheal [Los Alamos National Laboratory; Chen, Jun [Los Alamos National Laboratory; Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    We present an experimental study of the mixing processes in a gravity current. The turbulent transport of momentum and buoyancy can be described in a very direct and compact form by a Prandtl mixing length model [1]: the turbulent vertical fluxes of momentum and buoyancy are found to scale quadraticatly with the vertical mean gradients of velocity and density. The scaling coefficient is the square of the mixing length, approximately constant over the mixing zone of the stratified shear layer. We show in this paper how, in different flow configurations, this length can be related to the shear length of the flow {radical}({var_epsilon}/{partial_derivative}{sub z}u{sup 3}).

  17. Inelastic Scattering Form Factors

    Energy Science and Technology Software Center (OSTI)

    1992-01-01

    ATHENA-IV computes form factors for inelastic scattering calculations, using single-particle wave functions that are eigenstates of motion in either a Woods-Saxon potential well or a harmonic oscillator well. Two-body forces of Gauss, Coulomb, Yukawa, and a sum of cut-off Yukawa radial dependences are available.

  18. Process for fabricating continuous lengths of superconductor

    DOE Patents [OSTI]

    Kroeger, Donald M.; List, III, Frederick A.

    1998-01-01

    A process for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor precursor between said first substrate ribbon and said second substrates ribbon. The layered superconductor precursor is then heat treated to form a super conductor layer.

  19. What Does a Scattering Pattern Tell US?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Space sample light image Image Space lens Angular Space Q 4p sin(q) l Fourier Transform Scattering Pattern Fourier Transform Phase Problem Scattering Pattern...

  20. Molecular-beam scattering

    SciTech Connect (OSTI)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  1. Crystal diffraction lens with variable focal length

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL)

    1991-01-01

    A method and apparatus for altering the focal length of a focusing element o one of a plurality of pre-determined focal lengths by changing heat transfer within selected portions of the element by controlled quantities. Control over heat transfer is accomplished by manipulating one or more of a number of variables, including: the amount of heat or cold applied to surfaces; type of fluids pumped through channels for heating and cooling; temperatures, directions of flow and rates of flow of fluids; and placement of channels.

  2. Apparatus for fabricating continuous lengths of superconductor

    DOE Patents [OSTI]

    Kroeger, Donald M.; List, III, Frederick A.

    2001-01-01

    A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.

  3. Apparatus for fabricating continuous lengths of superconductor

    DOE Patents [OSTI]

    Kroeger, Donald M.; List, III, Frederick A.

    2002-01-01

    A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.

  4. Crystal diffraction lens with variable focal length

    DOE Patents [OSTI]

    Smither, R.K.

    1991-04-02

    A method and apparatus for altering the focal length of a focusing element of one of a plurality of pre-determined focal lengths by changing heat transfer within selected portions of the element by controlled quantities is disclosed. Control over heat transfer is accomplished by manipulating one or more of a number of variables, including: the amount of heat or cold applied to surfaces; type of fluids pumped through channels for heating and cooling; temperatures, directions of flow and rates of flow of fluids; and placement of channels. 19 figures.

  5. Sighting optics including an optical element having a first focal length and a second focal length

    DOE Patents [OSTI]

    Crandall, David Lynn

    2011-08-01

    One embodiment of sighting optics according to the teachings provided herein may include a front sight and a rear sight positioned in spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus, for a user, images of the front sight and the target.

  6. Bunch length measurements using synchrotron ligth monitor

    SciTech Connect (OSTI)

    Ahmad, Mahmoud; Tiefenback, Michael G.

    2015-09-01

    The bunch length is measured at CEBAF using an invasive technique. The technique depends on applying an energy chirp for the electron bunch and imaging it through a dispersive region. The measurements are taken through Arc1 and Arc2 at CEBAF. The fundamental equations, procedure and the latest results are given.

  7. A New Polyethylene Scattering Law Determined Using Inelastic Neutron Scattering

    SciTech Connect (OSTI)

    Lavelle, Christopher M [ORNL; Liu, C [Oak Ridge National Laboratory (ORNL); Stone, Matthew B [ORNL

    2013-01-01

    Monte Carlo neutron transport codes such as MCNP rely on accurate data for nuclear physics cross-sections to produce accurate results. At low energy, this takes the form of scattering laws based on the dynamic structure factor, S (Q, E). High density polyethylene (HDPE) is frequently employed as a neutron moderator at both high and low temperatures, however the only cross-sections available are for T =300 K, and the evaluation has not been updated in quite some time. In this paper we describe inelastic neutron scattering measurements on HDPE at 5 and 300 K which are used to improve the scattering law for HDPE. We describe the experimental methods, review some of the past HDPE scattering laws, and compare computations using these models to the measured S (Q, E). The total cross-section is compared to available data, and the treatment of the carbon secondary scatterer as a free gas is assessed. We also discuss the use of the measurement itself as a scattering law via the 1 phonon approximation. We show that a scattering law computed using a more detailed model for the Generalized Density of States (GDOS) compares more favorably to this experiment, suggesting that inelastic neutron scattering can play an important role in both the development and validation of new scattering laws for Monte Carlo work.

  8. Time-of-flight direct recoil ion scattering spectrometer

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  9. Time-of-flight direct recoil ion scattering spectrometer

    DOE Patents [OSTI]

    Krauss, Alan R.; Gruen, Dieter M.; Lamich, George J.

    1994-01-01

    A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

  10. Slip length crossover on a graphene surface

    SciTech Connect (OSTI)

    Liang, Zhi; Keblinski, Pawel

    2015-04-07

    Using equilibrium and non-equilibrium molecular dynamics simulations, we study the flow of argon fluid above the critical temperature in a planar nanochannel delimited by graphene walls. We observe that, as a function of pressure, the slip length first decreases due to the decreasing mean free path of gas molecules, reaches the minimum value when the pressure is close to the critical pressure, and then increases with further increase in pressure. We demonstrate that the slip length increase at high pressures is due to the fact that the viscosity of fluid increases much faster with pressure than the friction coefficient between the fluid and the graphene. This behavior is clearly exhibited in the case of graphene due to a very smooth potential landscape originating from a very high atomic density of graphene planes. By contrast, on surfaces with lower atomic density, such as an (100) Au surface, the slip length for high fluid pressures is essentially zero, regardless of the nature of interaction between fluid and the solid wall.

  11. Property:Maximum Wave Length(m) | Open Energy Information

    Open Energy Info (EERE)

    Length(m) Jump to: navigation, search Property Name Maximum Wave Length(m) Property Type String Pages using the property "Maximum Wave Length(m)" Showing 18 pages using this...

  12. Sigmund and WInterbon Multiple Scattering

    Energy Science and Technology Software Center (OSTI)

    1985-03-01

    SWIMS calculates the angular dispersion of ion beams that undergo small-angle, incoherent multiple scattering by gaseous or solid media.

  13. Long path-length experimental studies of longitudinal phenomena...

    Office of Scientific and Technical Information (OSTI)

    Long path-length experimental studies of longitudinal phenomena in intense beams Citation ... This content will become publicly available on March 22, 2017 Title: Long path-length ...

  14. Observation of Nonlinear Compton Scattering

    SciTech Connect (OSTI)

    Kotseroglou, T.

    2003-12-19

    This experiment tests Quantum Electrodynamics in the strong field regime. Nonlinear Compton scattering has been observed during the interaction of a 46.6 GeV electron beam with a 10{sup 18} W/cm{sup 2} laser beam. The strength of the field achieved was measured by the parameter {eta} = e{var_epsilon}{sub rms}/{omega}mc = 0.6. Data were collected with infrared and green laser photons and circularly polarized laser light. The timing stabilization achieved between the picosecond laser and electron pulses has {sigma}{sub rms} = 2 ps. A strong signal of electrons that absorbed up to 4 infrared photons (or up to 3 green photons) at the same point in space and time, while emitting a single gamma ray, was observed. The energy spectra of the scattered electrons and the nonlinear dependence of the electron yield on the field strength agreed with the simulation over 3 orders of magnitude. The detector could not resolve the nonlinear Compton scattering from the multiple single Compton scattering which produced rates of scattered electrons of the same order of magnitude. Nevertheless, a simulation has studied this difference and concluded that the scattered electron rates observed could not be accounted for only by multiple ordinary Compton scattering; nonlinear Compton scattering processes are dominant for n {ge} 3.

  15. s-wave scattering of a polarizable atom by an absorbing nanowire

    SciTech Connect (OSTI)

    Fink, Martin; Arnecke, Florian; Eiglsperger, Johannes; Friedrich, Harald; Madronero, Javier; Raab, Patrick; Naranjo, Andres; Wirzba, Andreas

    2010-06-15

    We study the scattering of a polarizable atom by a conducting cylindrical wire with incoming boundary conditions, that is, total absorption, near the surface of the wire. Based on the explicit expression given recently [C. Eberlein and R. Zietal, Phys. Rev. A 75, 032516 (2007)] for the nonretarded atom-wire potential, we formulate a hierarchy of approximations that enables the numerical determination of this potential to any desired accuracy as economically as possible. We calculate the complex s-wave scattering length for the effectively two-dimensional atom-wire scattering problem. The scattering length a depends on the radius R of the wire and a characteristic length {beta} related to the polarizability of the atom via a simple scaling relation, a=R a{approx}({beta}/R). The 'scaled scattering length' a{approx} tends to unity in the thick-wire limit {beta}/R{yields}0, and it grows almost proportional to 1/R in the opposite thin-wire limit.

  16. Electron scattering in graphene with adsorbed NaCl nanoparticles

    SciTech Connect (OSTI)

    Drabińska, Aneta Kaźmierczak, Piotr; Bożek, Rafał; Karpierz, Ewelina; Wysmołek, Andrzej; Kamińska, Maria; Wołoś, Agnieszka; Krajewska, Aleksandra

    2015-01-07

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The main inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer.

  17. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    SciTech Connect (OSTI)

    Specht, Eliot D [ORNL; Ma, Jie [ORNL; Delaire, Olivier A [ORNL; Budai, John D [ORNL; May, Andrew F [ORNL; Karapetrova, Evguenia A. [Argonne National Laboratory (ANL)

    2015-01-01

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  18. Temporal Scattering And Response

    Energy Science and Technology Software Center (OSTI)

    1992-12-15

    TSAR2.3 (Temporal Scattering and Response) is a finite-difference time-domain electromagnetics code suite. TSAR2.3 is a software package for simulating the interactions of electromagnetic waves with linear materials through the use of the finite-difference time-domain method. The code suite contains grid generation, grid verification, input-file creation and post-processing utilities. The physics package, written in Fortran 77, can be pre-processed to run on many different architectures including Cray, Vax and many Unix workstations. Tools are provided tomore » easily port the code to new computers. The physics package is an efficient, flexible electromagnetic simulator. A body under study can be represented as a three-dimensional grid of materials with arbitrary linear properties. This grid can be simulated in a number of ways including incident plane waves, dipoles, and arbitrary incident fields. The grid can be terminated with numerous boundary conditions including free-space radiation, electric conductor, or magnetic conductor. Projection to the far-field in both the time and frequency domains is possible. This distribution includes make files for installing and maintaining the entire code suite.« less

  19. Crack length determination by ultrasonic methods

    SciTech Connect (OSTI)

    Rehbein, D.K.; Thompson, R.B.; Buck, O.

    1992-01-01

    Under the restriction of being able to operate in through transmission with focussed transducers, it has been shown that the location of the tip of a fatigue crack can be determined to within 0.5 mm in those cases where curvature of the crack front is significant with correspondingly better accuracy as the curvature decreases. Location of the crack tip is accomplished through use of the distributed spring model and also yields information on the residual stresses due to closure. The technique used is able to determine the crack length to within [plus minus] 0.5 mm in the unloaded condition in contrast to most of the work done previously, removing the necessity for application of a load sufficient to fully open the crack.

  20. Crack length determination by ultrasonic methods

    SciTech Connect (OSTI)

    Rehbein, D.K.; Thompson, R.B.; Buck, O.

    1992-12-31

    Under the restriction of being able to operate in through transmission with focussed transducers, it has been shown that the location of the tip of a fatigue crack can be determined to within 0.5 mm in those cases where curvature of the crack front is significant with correspondingly better accuracy as the curvature decreases. Location of the crack tip is accomplished through use of the distributed spring model and also yields information on the residual stresses due to closure. The technique used is able to determine the crack length to within {plus_minus} 0.5 mm in the unloaded condition in contrast to most of the work done previously, removing the necessity for application of a load sufficient to fully open the crack.

  1. SciTech Connect: "neutron scattering"

    Office of Scientific and Technical Information (OSTI)

    neutron scattering" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "neutron scattering" Semantic Semantic Term Title: Full Text: Bibliographic...

  2. LIDAR Thomson scattering for advanced tokamaks. Final report

    SciTech Connect (OSTI)

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-03-18

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.

  3. Elastic scattering and total cross sections

    SciTech Connect (OSTI)

    Cahn, R.N.

    1990-03-01

    This report discusses concepts of elastic scattering and cross sections of proton-proton interactions. (LSP)

  4. Thomson scattering diagnostic for the measurement of ion species fraction

    SciTech Connect (OSTI)

    Ross, J S; Park, H S; Amendt, A; Divol, L; Kugland, N L; Rozmus, W; Glenzer, S H

    2012-05-01

    Simultaneous Thomson scattering measurements of collective electron-plasma and ion-acoustic fluctuations have been utilized to determine ion species fraction from laser produced CH plasmas. The CH{sub 2} foil is heated with 10 laser beams, 500 J per beam, at the Omega Laser facility. Thomson scattering measurements are made 4 mm from the foil surface using a 30 J 2{omega} probe laser with a 1 ns pulse length. Using a series of target shots the plasma evolution is measured from 2.5 ns to 9 ns after the rise of the heater beams. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the two-ion species theoretical form factor for the ion feature such that the ion temperature, plasma flow velocity and ion species fraction are determined. The ion species fraction is determined to an accuracy of {+-}0.06 in species fraction.

  5. Characterization of porous materials using combined small-angle X-ray and neutron scattering techniques

    SciTech Connect (OSTI)

    Hu, Naiping; Borkar, Neha; Kohls, Doug; Schaefer, Dale W. (UCIN)

    2014-09-24

    A combination of ultra small angle X-ray scattering (USAXS) and ultra small angle neutron scattering (USANS) is used to characterize porous materials. The analysis methods yield quantitative information, including the mean skeletal chord length, mean pore chord length, skeletal density, and composition. A mixed cellulose ester (MCE) membrane with a manufacturer-labeled pore size of 0.1 {mu}m was used as a model to elucidate the specifics of the method. Four approaches describing four specific scenarios (different known parameters and form of the scattering data) are compared. Pore chords determined using all four approaches are in good agreement with the scanning electron microscopy estimates but are larger than the manufacturer's nominal pore size. Our approach also gives the average chord of the skeletal solid (struts) of the membrane, which is also consistent for all four approaches. Combined data from USAXS and USANS gives the skeletal density and the strut composition.

  6. Renormalization plasma shielding effects on scattering entanglement fidelity in dense plasmas

    SciTech Connect (OSTI)

    Lee, Gyeong Won; Shim, Jaewon; Jung, Young-Dae

    2014-10-15

    The influence of renormalization plasma screening on the entanglement fidelity for the elastic electron-atom scattering is investigated in partially ionized dense hydrogen plasmas. The partial wave analysis and effective interaction potential are employed to obtain the scattering entanglement fidelity in dense hydrogen plasmas as functions of the collision energy, the Debye length, and the renormalization parameter. It is found that the renormalization plasma shielding enhances the scattering entanglement fidelity. Hence, we show that the transmission of the quantum information can be increased about 10% due to the renormalization shielding effect in dense hydrogen plasmas. It is also found that the renormalization shielding effect on the entanglement fidelity for the electron-atom collision increases with an increase of the collision energy. In addition, the renormalization shielding function increases with increasing collision energy and saturates to the unity with an increase of the Debye length.

  7. Scattering apodizer for laser beams

    DOE Patents [OSTI]

    Summers, M.A.; Hagen, W.F.; Boyd, R.D.

    1984-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  8. Scattering apodizer for laser beams

    DOE Patents [OSTI]

    Summers, Mark A.; Hagen, Wilhelm F.; Boyd, Robert D.

    1985-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  9. Diffraction effects in the coherent transition radiation bunch length diagnostics

    SciTech Connect (OSTI)

    Kazakevich, G.; Lebedev, V.; Nagaitsev, S.; /Fermilab

    2007-08-01

    Diffraction effects in the Coherent Transition Radiation (CTR) bunch length diagnostics are considered for the A0 Photoinjector and the New Muon Laboratory (NML) injection module. The effects can cause a noticeable distortion of the measured CTR spectra depending on the experimental setup and the bunch parameters and resulting in errors of the bunch length measurements. Presented calculations show possible systematic errors in the bunch length in measurements based on the CTR spectra at A0 Photo injector and the NML injection module.

  10. SCIENCE ON SATURDAY- "A Short History of Length" | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SCIENCE ON SATURDAY- "A Short History of Length" Professor Joel Langer Department of Mathematics, Case Western Reserve University Presentation: PDF icon SOS09MAR2013JLangerAShort...

  11. Assessment of Possible Cycle Lengths for Fully Encapsulated Microstruc...

    Office of Scientific and Technical Information (OSTI)

    light water reactor Concepts Citation Details In-Document Search Title: Assessment of Possible Cycle Lengths for Fully Encapsulated Microstructure fueled light water reactor ...

  12. 10th LANSCE School on Neutron Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10th LANSCE School on Neutron Scattering LANSCE 10th LANSCE School on Neutron Scattering Home Abstract Lecturers Hands-On Experiments Free Day About the School Sponsors FAQ's...

  13. Neutron inelastic scattering in natural Pb as a background in...

    Office of Scientific and Technical Information (OSTI)

    SCATTERING; ISOTOPES; LEAD; LEAD 206; LEAD 207; LEVELS; NEUTRONS; SCATTERING Inelastic neutron scattering on Pb isotopes can result in gamma rays near the signature endpoint...

  14. Arthur H. Compton and Compton Scattering

    Office of Scientific and Technical Information (OSTI)

    Arthur H. Compton and Compton Scattering Resources with Additional Information * Compton Honored * Compton Scattering Arthur H. Compton Courtesy of Lawrence Berkeley National Laboratory Arthur Holly 'Compton was a professor at Washington University, studying the scattering of X-rays, when he discovered the effect that is named after him in 1922. ... The Compton effect [Compton scattering] is defined as the decrease in energy (increase in wavelength) of an X-ray or gamma ray photon, when it

  15. Sighting optics including an optical element having a first focal length and a second focal length and methods for sighting

    DOE Patents [OSTI]

    Crandall, David Lynn

    2011-08-16

    Sighting optics include a front sight and a rear sight positioned in a spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus for a user images of the front sight and the target.

  16. Posters Radiation Singularities, Multiple Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Posters Radiation Singularities, Multiple Scattering and Diffusion in Multifractal Clouds P. Silas, G. Brösamlen, and S. Lovejoy Department of Physics McGill University Montreal, Quebec, Canada C. Naud and D. Schertzer Université Pierre and Marie Curie Paris, France B. Watson Department of Physics St. Lawrence University Canton, New York Diffusion on One-Dimensional Multifractals (P. Silas, S. Lovejoy, D. Schertzer) Many geophysical and atmospheric fields exhibit multifractal characteristics

  17. Parity Violation in Electron Scattering

    SciTech Connect (OSTI)

    Beise, Elizabeth

    2007-10-26

    About thirty years ago, electron scattering from nucleons was used [1] to identify, and then measure, the properties of the weak interaction, the only force of nature known to violate the symmetry parity. The basic technique has not fundamentally changed, which is to look for a small asymmetry in count rate from scattering a polarized electron beam from an unpolarized target. Since then, parity-violating (PV) electron scattering has developed substantially, a result of significant improvements in polarized electron beams, accelerator advancements, and developments in cryogenic targets that make it possible to carry out experiments with much higher statistical precision. In the last decade PV experiments have focused on using the complementary electron-quark flavor coupling of the weak interaction to identify and place limits on contributions of strange quark-antiquark pairs to the charge and magnetism of the proton. This observable provides a unique window into the structure of the proton since strange quark contributions can arise only from the sea of quarks and gluons that are responsible for the vast majority of the nucleon's mass. This paper will report on recent results aimed at this goal, along with a brief overview of future directions.

  18. Scattering of radiation in collisionless dusty plasmas

    SciTech Connect (OSTI)

    Tolias, P.; Ratynskaia, S.

    2013-04-15

    Scattering of electromagnetic waves in collisionless dusty plasmas is studied in the framework of a multi-component kinetic model. The investigation focuses on the spectral distribution of the scattered radiation. Pronounced dust signatures are identified in the coherent spectrum due to scattering from the shielding cloud around the dust grains, dust acoustic waves, and dust-ion acoustic waves. The magnitude and shape of the scattered signal near these spectral regions are determined with the aid of analytical expressions and its dependence on the dust parameters is investigated. The use of radiation scattering as a potential diagnostic tool for dust detection is discussed.

  19. Call issued for Lujan Neutron Scattering Center proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (polarized and unpolarized) Inelastic neutron scattering spectroscopy Small angle neutron scattering Neutron radiographytomography The Lujan instruments webpage...

  20. Structural stability of transparent conducting films assembled from length purified single-wall carbon nanotubes

    SciTech Connect (OSTI)

    J. M. Harris; G. R. S. Iyer; D. O. Simien; J. A. Fagan; J. Y. Huh; J. Y. Chung; S. D. Hudson; J. Obrzut; J. F. Douglas; C. M. Stafford; E. K. Hobbie

    2011-01-01

    Single-wall carbon nanotube (SWCNT) films show significant promise for transparent electronics applications that demand mechanical flexibility, but durability remains an outstanding issue. In this work, thin membranes of length purified single-wall carbon nanotubes (SWCNTs) are uniaxially and isotropically compressed by depositing them on prestrained polymer substrates. Upon release of the strain, the topography, microstructure, and conductivity of the films are characterized using a combination of optical/fluorescence microscopy, light scattering, force microscopy, electron microscopy, and impedance spectroscopy. Above a critical surface mass density, films assembled from nanotubes of well-defined length exhibit a strongly nonlinear mechanical response. The measured strain dependence reveals a dramatic softening that occurs through an alignment of the SWCNTs normal to the direction of prestrain, which at small strains is also apparent as an anisotropic increase in sheet resistance along the same direction. At higher strains, the membrane conductivities increase due to a compression-induced restoration of conductive pathways. Our measurements reveal the fundamental mode of elasto-plastic deformation in these films and suggest how it might be suppressed.

  1. Completeness for sparse potential scattering

    SciTech Connect (OSTI)

    Shen, Zhongwei

    2014-01-15

    The present paper is devoted to the scattering theory of a class of continuum Schrdinger operators with deterministic sparse potentials. We first establish the limiting absorption principle for both modified free resolvents and modified perturbed resolvents. This actually is a weak form of the classical limiting absorption principle. We then prove the existence and completeness of local wave operators, which, in particular, imply the existence of wave operators. Under additional assumptions on the sparse potential, we prove the completeness of wave operators. In the context of continuum Schrdinger operators with sparse potentials, this paper gives the first proof of the completeness of wave operators.

  2. Assessment of Possible Cycle Lengths for Fully-Ceramic Micro...

    Office of Scientific and Technical Information (OSTI)

    Light Water Reactor Concepts Citation Details In-Document Search Title: Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor ...

  3. Fact #615: March 22, 2010 Average Vehicle Trip Length

    Broader source: Energy.gov [DOE]

    According to the latest National Household Travel Survey, the average trip length grew to over 10 miles in 2009, just slightly over the 9.9 mile average in 2001. Trips to work in 2009 increased to...

  4. Effects of fracture distribution and length scale on the equivalent

    Office of Scientific and Technical Information (OSTI)

    continuum elastic compliance of fractured rock masses (Journal Article) | SciTech Connect Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses Citation Details In-Document Search Title: Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses Authors: Gutierrez, Marte ; Youn, Dong-Joon Publication Date: 2015-12-01 OSTI Identifier: 1224355 Grant/Contract

  5. Length Scale of Leidenfrost Ratchet Switches Droplet Directionality

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Length Scale of Leidenfrost Ratchet Switches Droplet Directionality Citation Details In-Document Search Title: Length Scale of Leidenfrost Ratchet Switches Droplet Directionality Arrays of tilted pillars with characteristic heights spanning from hundreds of nanometers to tens of micrometers were created using wafer level processing and used as Leidenfrost ratchets to control droplet directionality. Dynamic Leidenfrost droplets on the ratchets with

  6. Assessment of Possible Cycle Lengths for Fully Encapsulated Microstructure

    Office of Scientific and Technical Information (OSTI)

    fueled light water reactor Concepts (Journal Article) | SciTech Connect Assessment of Possible Cycle Lengths for Fully Encapsulated Microstructure fueled light water reactor Concepts Citation Details In-Document Search Title: Assessment of Possible Cycle Lengths for Fully Encapsulated Microstructure fueled light water reactor Concepts The use of TRISO-particle-based dispersion fuel within SiC matrix and cladding materials has the potential to allow the design of extremely safe LWRs with

  7. Noise power spectral density of a fibre scattered-light interferometer with a semiconductor laser source

    SciTech Connect (OSTI)

    Alekseev, A E; Potapov, V T

    2013-10-31

    Spectral characteristics of the noise intensity fluctuations at the output of a scattered-light interferometer, caused by phase fluctuations of semiconductor laser radiation are considered. This kind of noise is one of the main factors limiting sensitivity of interferometric sensors. For the first time, to our knowledge, the expression is obtained for the average noise power spectral density at the interferometer output versus the degree of a light source coherence and length of the scattering segment. Also, the approximate expressions are considered which determine the power spectral density in the low-frequency range (up to 200 kHz) and in the limiting case of extended scattering segments. The expression obtained for the noise power spectral density agrees with experimental normalised power spectra with a high accuracy. (interferometry of radiation)

  8. Small Angle X-Ray Scattering Detector

    DOE Patents [OSTI]

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  9. Scattering Workshop May 16-17, 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Annual SSRL Workshop on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application Tuesday, May 16 & Wednesday, May 17, 2006...

  10. Coupled-channel scattering on a torus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Peng; Dudek, Jozef Jon; Edwards, Robert G.; Szczepaniak, Adam Pawel

    2013-07-01

    Based on the Hamiltonian formalism approach, a generalized Luscher's formula for two particle scattering in both the elastic and coupled-channel cases in moving frames is derived from a relativistic Lippmann-Schwinger equation. Some strategies for extracting scattering amplitudes for a coupled-channel system from the discrete finite-volume spectrum are discussed and illustrated with a toy model of two-channel resonant scattering. This formalism will, in the near future, be used to extract information about hadron scattering from lattice QCD computations.

  11. Synthetic Aperture Radar Persistent Scatterer Interferometry...

    Open Energy Info (EERE)

    NA, 2010 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Synthetic Aperture Radar Persistent Scatterer Interferometry (PSInSAR)...

  12. Extended length microchannels for high density high throughput electrophoresis systems

    DOE Patents [OSTI]

    Davidson, James C.; Balch, Joseph W.

    2000-01-01

    High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.

  13. The scattering problem for nonlocal potentials

    SciTech Connect (OSTI)

    Zolotarev, V A

    2014-11-30

    We solve the direct and inverse scattering problems for integro-differential operators which are one-dimensional perturbations of the self-adjoint second derivative operator on the half-axis. We also describe the scattering data for this class of operators. Bibliography: 28 titles.

  14. Biological cell classification by multiangle light scattering

    DOE Patents [OSTI]

    Salzman, G.C.; Crowell, J.M.; Mullaney, P.F.

    1975-06-03

    The specification is directed to an apparatus and method for detecting light scattering from a biological cell. Light, preferably from a coherent source of radiation, intercepts an individual biological cell in a stream of cells passing through the beam. Light scattered from the cell is detected at a selected number of angles between 0 and 90/sup 0/ to the longitudinal axis of the beam with a circular array of light responsive elements which produce signals representative of the intensity of light incident thereon. Signals from the elements are processed to determine the light-scattering pattern of the cell and therefrom its identity.

  15. Neutron Compton Scattering as a Probe of Hydrogen Bonded (and...

    Office of Scientific and Technical Information (OSTI)

    Scattering as a Probe of Hydrogen Bonded (and other) Systems Citation Details In-Document Search Title: Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other) ...

  16. Neutron scattering of iron-based superconductors (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Neutron scattering of iron-based superconductors Citation Details In-Document Search Title: Neutron scattering of iron-based superconductors Low-energy spin excitations have been...

  17. PSTD Simulations of Multiple Light Scattering in 3-D Macrocsopic...

    Office of Scientific and Technical Information (OSTI)

    PSTD Simulations of Multiple Light Scattering in 3-D Macrocsopic Random Media Citation Details In-Document Search Title: PSTD Simulations of Multiple Light Scattering in 3-D ...

  18. WPEC subgroup 35 ""scattering angular distribution in the fast...

    Office of Scientific and Technical Information (OSTI)

    WPEC subgroup 35 ""scattering angular distribution in the fast energy range"" status report Citation Details In-Document Search Title: WPEC subgroup 35 ""scattering angular...

  19. Quasielastic Neutron Scattering Study of Water Confined in Carbon...

    Office of Scientific and Technical Information (OSTI)

    Quasielastic Neutron Scattering Study of Water Confined in Carbon Nanopores Citation Details In-Document Search Title: Quasielastic Neutron Scattering Study of Water Confined in...

  20. 2012 LANSCE Neutron Scattering School | Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 LANSCE Neutron Scattering School LANSCE 2012 LANSCE Neutron Scattering School Home About the School Hands-On Experiments Quick Links Application - Closed Schedule Poster...

  1. 2012 LANSCE Neutron Scattering School | Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 LANSCE Neutron Scattering School LANSCE 2011 LANSCE Neutron Scattering School Home NSS 2011 About the School Lecturers Hands-On Experiments Quick Links Application Schedule...

  2. Application of Neutron Imaging and Scattering to Fluid Flow and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS ...

  3. Plane wave method for elastic wave scattering by a heterogeneous...

    Office of Scientific and Technical Information (OSTI)

    Plane wave method for elastic wave scattering by a heterogeneous fracture Citation Details In-Document Search Title: Plane wave method for elastic wave scattering by a ...

  4. Rapidity divergences and deep inelastic scattering in the endpoint...

    Office of Scientific and Technical Information (OSTI)

    Rapidity divergences and deep inelastic scattering in the endpoint region Citation Details In-Document Search Title: Rapidity divergences and deep inelastic scattering in the ...

  5. Structuring Materials on Multiple Length Scales for Energy Applications |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MIT-Harvard Center for Excitonics Structuring Materials on Multiple Length Scales for Energy Applications October 25, 2012 at 3pm/36-428 Adreas Stein Department of Chemistry, University of Minnesota astein Abstract: Nanoporous and nanostructured materials are becoming increasingly important for advanced applications, including energy storage and conversion materials. Templating methods based on hard templates (colloidal crystal templating, nanocasting) and soft templates (surfactant systems)

  6. Thomson Scattering Lineshape Fitting for Plasma Diagnostics

    Energy Science and Technology Software Center (OSTI)

    1994-02-04

    HFIT30 is used for interpreting lineshape (intensity versus frequency) data from Thomson and Rayleigh light scattering from a plasma, to obtain temperatures and number densities of the component species in the plasma.

  7. Association of scattering matrices in quantum networks

    SciTech Connect (OSTI)

    Almeida, F.A.G.; Macdo, A.M.S.

    2013-06-15

    Algorithms based on operations that associate scattering matrices in series or in parallel (analogous to impedance association in a classical circuit) are developed here. We exemplify their application by calculating the total scattering matrix of several types of quantum networks, such as star graphs and a chain of chaotic quantum dots, obtaining results with good agreement with the literature. Through a computational-time analysis we compare the efficiency of two algorithms for the simulation of a chain of chaotic quantum dots based on series association operations of (i) two-by-two centers and (ii) three-by-three ones. Empirical results point out that the algorithm (ii) is more efficient than (i) for small number of open scattering channels. A direct counting of floating point operations justifies quantitatively the superiority of the algorithm (i) for large number of open scattering channels.

  8. Relativistic Thomson Scatter from Factor Calculation

    Energy Science and Technology Software Center (OSTI)

    2009-11-01

    The purpose of this program is calculate the fully relativistic Thomson scatter from factor in unmagnetized plasmas. Such calculations are compared to experimental diagnoses of plasmas at such facilities as the Jupiter laser facility here a LLNL.

  9. What Does a Scattering Pattern Tell US?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    amplitude e iwt Phase difference Phase difference S e i (ri Q) A(DK) fi A(Q) Fourier Transform ( ri ) DK Q 4p sin(q) l Lensless Imaging Sample Space Scattering Space...

  10. A-BC Exact Coupled Channel Scattering

    Energy Science and Technology Software Center (OSTI)

    1992-03-02

    VIVAS2 computes the scattering S-matrix and transition probabilities for the collision of an S-state atom, A, with a sigma-state diatomic molecule, BC.

  11. What Does a Scattering Pattern Tell US?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light image Image Space lens Can we create the image without a lens? Angular Space Math Q 4p sin(q) l Lensless Imaging Sample Space Scattering Space sample light image lens...

  12. Light-scattering studies of silica aerogels

    SciTech Connect (OSTI)

    Hunt, A.J.

    1983-02-01

    Due to its combination of transparency and low thermal conductivity, aerogel holds considerable promise for use as insulating window materials for residential and commercial applications. This paper reports on the preliminary investigation of the optical and scattering properties of silica aerogels. It briefly describes the properties of aerogels important for window glazing applications. The optical properties are then described, followed by a discussion of the scattering measurements and their interpretation.

  13. Neutron and X-ray Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron and X-ray Scattering Neutron and X-ray Scattering When used together, neutrons and high-energy x-rays provide a supremely powerful scientific tool for mining details about the structure of materials. Combining neutrons and high-energy x-rays to explore the frontiers of materials in extreme environments. Illuminating previously inaccessible time and spatial scales. Enabling in situ research to design, discover, and control materials. Get Expertise Donald Brown Email Pushing the limits of

  14. American Conference on Neutron Scattering 2014

    SciTech Connect (OSTI)

    Dillen, J. Ardie

    2014-12-31

    Scientists from the around the world converged in Knoxville, TN to have share ideas, present technical information and contribute to the advancement of neutron scattering. Featuring over 400 oral/poster presentations, ACNS 2014 offered a strong program of plenary, invited and contributed talks and poster sessions covering topics in soft condensed matter, hard condensed matter, biology, chemistry, energy and engineering applications in neutron physics – confirming the great diversity of science that is enabled by neutron scattering.

  15. Nonlinear Brightness Optimization in Compton Scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hartemann, Fred V.; Wu, Sheldon S. Q.

    2013-07-26

    In Compton scattering light sources, a laser pulse is scattered by a relativistic electron beam to generate tunable x and gamma rays. Because of the inhomogeneous nature of the incident radiation, the relativistic Lorentz boost of the electrons is modulated by the ponderomotive force during the interaction, leading to intrinsic spectral broadening and brightness limitations. We discuss these effects, along with an optimization strategy to properly balance the laser bandwidth, diffraction, and nonlinear ponderomotive force.

  16. Resonances in pi-K scattering

    SciTech Connect (OSTI)

    Wilson, David J.

    2014-06-23

    We have obtained clear signals of resonances in coupled-channel pi K - eta K scattering. Using distillation and a large basis of operators we are able to extract a precise spectrum of energy levels using the variational method. These energies are analysed using inelastic extensions of the Luescher method to obtain scattering amplitudes that clearly describe S, P and D wave resonances, corresponding to the physical K_0^*(1430), the K^*(892) and the K_2^*(1430).

  17. 11th LANSCE School on Neutron Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11th LANSCE School on Neutron Scattering LANSCE » 11th LANSCE School on Neutron Scattering Home Abstract Lecturers Lecturer Abstracts Hands-On Experiments Free Day About the School Sponsors FAQ's Quick Links Application - Closed Reference Form - closed Schedule- tentative Poster Contacts School: neutronschool@lanl.gov School Co-Directors: A. Llobet allobet@lanl.gov H. Nakotte hnakotte@nmsu.edu Local Organizing Committee: Edwin Fohtung (Co-Chair) efohtung@nmsu.edu Ph:575.646.5631 Graham King

  18. Scattering Workshop May 16-17, 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshop on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application. group shot on the steps of bldg 41 (Click image for a hi-res version) Date: May 16 (Lectures) May 17 (Hands-on practical session) Location: SSRL Overview: Modern synchrotron-based X-ray scattering (SR-XRS) techniques offer the ability to probe nano- and atomic-scale structures and order/disorder relationships that critically govern the properties of advanced technological and

  19. Small Angle X-Ray Scattering Detector

    DOE Patents [OSTI]

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  20. Structure of low-density nanoporous dielectrics revealed by low-vacuum electron microscopy and small-angle x-ray scattering

    SciTech Connect (OSTI)

    Kucheyev, S O; Toth, M; Baumann, T F; Hamza, A V; Ilavsky, J; Knowles, W R; Thiel, B L; Tileli, V; van Buuren, T; Wang, Y M; Willey, T M

    2006-06-05

    We use low-vacuum scanning electron microscopy to image directly the ligament and pore size and shape distributions of representative aerogels over a wide range of length scales ({approx} 10{sup 0}-10{sup 5} nm). The images are used for unambiguous, real-space interpretation of small-angle scattering data for these complex nanoporous systems.

  1. The I=2 ππ S-wave Scattering Phase Shift from Lattice QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Beane, S. R.; Chang, E.; Detmold, W.; Lin, H. W.; Luu, T. C.; Orginos, K.; Parreno, A.; Savage, M. J.; Torok, A.; Walker-Loud, A.

    2012-02-16

    The π+π+ s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of mπ ≈ 390 MeV with an anisotropic nf = 2+1 clover fermion discretization in four lattice volumes, with spatial extent L ≈ 2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of bs ≈ 0.123 fm in the spatial direction and bt bs/3.5 in the time direction. The phase-shift is determined from the energy-eigenvalues of π+π+ systems with both zero and non-zero total momentum in the lattice volume using Luscher's method. Our calculations are precise enoughmore » to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape-parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: mπ2 a r = 3+O(mπ2/Λχ2). Chiral perturbation theory is used, with the Lattice QCD results as input, to predict the scattering phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.« less

  2. Varying properties along lengths of temperature limited heaters

    SciTech Connect (OSTI)

    Vinegar, Harold J.; Xie, Xueying; Miller, David Scott; Ginestra, Jean Charles

    2011-07-26

    A system for heating a subsurface formation is described. The system includes an elongated heater in an opening in the formation. The elongated heater includes two or more portions along the length of the heater that have different power outputs. At least one portion of the elongated heater includes at least one temperature limited portion with at least one selected temperature at which the portion provides a reduced heat output. The heater is configured to provide heat to the formation with the different power outputs. The heater is configured so that the heater heats one or more portions of the formation at one or more selected heating rates.

  3. Minimum length, extra dimensions, modified gravity and black hole remnants

    SciTech Connect (OSTI)

    Maziashvili, Michael

    2013-03-01

    We construct a Hilbert space representation of minimum-length deformed uncertainty relation in presence of extra dimensions. Following this construction, we study corrections to the gravitational potential (back reaction on gravity) with the use of correspondingly modified propagator in presence of two (spatial) extra dimensions. Interestingly enough, for r?0 the gravitational force approaches zero and the horizon for modified Schwarzschild-Tangherlini space-time disappears when the mass approaches quantum-gravity energy scale. This result points out to the existence of zero-temperature black hole remnants in ADD brane-world model.

  4. A noninvasive bunch length monitor for femtosecond electron bunches

    SciTech Connect (OSTI)

    Wang, D.X.; Kraft, G.A.; Price, E.; Wood, P.A.; Porterfield, D.W.; Crowe, T.W.

    1997-01-01

    A bunch length monitor for ultrashort (90 fs to 1 ps) electron bunches using a coherent synchrotron radiation detection techniques has been developed in a collaboration between the Thomas Jefferson National accelerator Facility (Jefferson Lab) and the University of Virginia. The noninvasive, high-resolution, high-sensitivity, low-noise monitor employs a state-of-the-art {open_quotes}bandpass{close_quotes} GaAs Schottky whisker diode operated at room temperature. This letter presents the monitor{close_quote}s performance. {copyright} {ital 1997 American Institute of Physics.}

  5. Nucleon-Nucleon Scattering Parameters in the Limit of SU(3) Flavor Symmetry

    SciTech Connect (OSTI)

    Beane, Silas; Chang, Emanuel; Savage, Martin; Lin, Huey-Wen; Orginos, Konstantinos; Cohen, Saul; Detmold, William; Luu, Tom; Parreno, Assumpta; Junnarkar, Parikshit; Walker-Loud, Andre Paul

    2013-08-01

    The scattering lengths and effective ranges that describe low-energy nucleon-nucleon scattering are calculated in the limit of SU(3)-flavor symmetry at the physical strange-quark mass with Lattice Quantum Chromodynamics. The calculations are performed with an isotropic clover discretization of the quark action in three volumes with spatial extents of L ~ 3.4 fm, 4.5 fm and 6.7 fm, and with a lattice spacing of b ~ 0.145 fm. With determinations of the energies of the two-nucleon systems ?both of which contain bound states at these light-quark masses? at rest and moving in the lattice volume, Luscher?s method is used to determine the low-energy phase shift in each channel, from which the scattering length and effective range are obtained. The scattering parameters in the {sup 1}S{sub 0} channel are found to be m{sub ?}a{sup ({sup 1}S{sub 0})} = 9.51+/-0.74+/-1.00 and m{sub ?}r{sup ({sup 1}S{sub 0})} = 4.76+/-0.37+/-0.40, and in the {sup 3}S{sub 1} channel are m{sub ?}a{sup ({sup 3}S{sub 1})} = 7.45+/-0.57+/-0.71 and m{sub ?}r{sup ({sup 3}S{sub 1})} = 3.71+/-0.28+/-0.28. These values are consistent with the two-nucleon system exhibiting Wigner?s supermultiplet symmetry, which becomes exact in the limit of large-N{sub c}.

  6. Length Scale Selects Directionality of Droplets on Vibrating Pillar Ratchet

    SciTech Connect (OSTI)

    Agapov, Rebecca L.; Boreyko, Jonathan B.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Collier, Pat; Lavrik, Nickolay V.

    2014-09-22

    Directional control of droplet motion at room temperature is of interest for applications such as microfluidic devices, self-cleaning coatings, and directional adhesives. Here, arrays of tilted pillars ranging in height from the nanoscale to the microscale are used as structural ratchets to directionally transport water at room temperature. Water droplets deposited on vibrating chips with a nanostructured ratchet move preferentially in the direction of the feature tilt while the opposite directionality is observed in the case of microstructured ratchets. This remarkable switch in directionality is consistent with changes in the contact angle hysteresis. To glean further insights into the length scale dependent asymmetric contact angle hysteresis, the contact lines formed by a nonvolatile room temperature ionic liquid placed onto the tilted pillar arrays were visualized and analyzed in situ in a scanning electron microscope. The ability to tune droplet directionality by merely changing the length scale of surface features all etched at the same tilt angle would be a versatile tool for manipulating multiphase flows and for selecting droplet directionality in other lap-on-chip applications.

  7. The differnces between bond lengths in biogenic and geologocal calcite.

    SciTech Connect (OSTI)

    Zlotoyabko, E.; Caspi, E. N.; Fieramosca, J. S.; Von Dreele, R. B.; Marin, F.; Mor, G.; Politi, Y.; Addadi, L.; Weiner, S.

    2010-01-01

    We used high-resolution neutron powder diffraction to accurately measure the atomic positions and bond lengths in biogenic and geological calcite. A special procedure for data analysis was developed in order to take into account the considerable amounts of magnesium present in all the investigated samples. As a result, in biogenic calcite we found some atomic bonds to have significantly different lengths as compared to those in geological calcite, after the contribution of magnesium is accounted for. The maximum effect (elongation up to 0.7%) was found for the C-O bonds. We also analyzed changes in frequencies and spectral widths of normal vibrations of carbonate groups in biogenic calcite (as compared to geological calcite) measured by Raman and Fourier transform IR techniques. Surprisingly, the frequency shifts after subtracting the magnesium contribution are close to zero. At the same time, substantial spectral broadening (up to 1.2%) in biogenic calcite as compared to geological samples was detected. Possible explanations for the experimental findings are discussed.

  8. SU-E-J-175: Proton Dose Calculation On Scatter-Corrected CBCT Image: Feasibility Study for Adaptive Proton Therapy

    SciTech Connect (OSTI)

    Park, Y; Winey, B; Sharp, G

    2014-06-01

    Purpose: To demonstrate feasibility of proton dose calculation on scattercorrected CBCT images for the purpose of adaptive proton therapy. Methods: Two CBCT image sets were acquired from a prostate cancer patient and a thorax phantom using an on-board imaging system of an Elekta infinity linear accelerator. 2-D scatter maps were estimated using a previously introduced CT-based technique, and were subtracted from each raw projection image. A CBCT image set was then reconstructed with an open source reconstruction toolkit (RTK). Conversion from the CBCT number to HU was performed by soft tissue-based shifting with reference to the plan CT. Passively scattered proton plans were simulated on the plan CT and corrected/uncorrected CBCT images using the XiO treatment planning system. For quantitative evaluation, water equivalent path length (WEPL) was compared in those treatment plans. Results: The scatter correction method significantly improved image quality and HU accuracy in the prostate case where large scatter artifacts were obvious. However, the correction technique showed limited effects on the thorax case that was associated with fewer scatter artifacts. Mean absolute WEPL errors from the plans with the uncorrected and corrected images were 1.3 mm and 5.1 mm in the thorax case and 13.5 mm and 3.1 mm in the prostate case. The prostate plan dose distribution of the corrected image demonstrated better agreement with the reference one than that of the uncorrected image. Conclusion: A priori CT-based CBCT scatter correction can reduce the proton dose calculation error when large scatter artifacts are involved. If scatter artifacts are low, an uncorrected CBCT image is also promising for proton dose calculation when it is calibrated with the soft-tissue based shifting.

  9. Sensitivity of ultracold-atom scattering experiments to variation of the fine-structure constant

    SciTech Connect (OSTI)

    Borschevsky, A.; Beloy, K.; Flambaum, V. V.; Schwerdtfeger, P.

    2011-05-15

    We present numerical calculations for cesium and mercury to estimate the sensitivity of the scattering length to the variation of the fine-structure constant {alpha}. The method used follows the ideas of Chin and Flambaum [Phys. Rev. Lett. 96, 230801 (2006)], where the sensitivity to the variation of the electron-to-proton mass ratio {beta} was considered. We demonstrate that for heavy systems, the sensitivity to the variation of {alpha} is of the same order of magnitude as to the variation of {beta}. Near narrow Feshbach resonances, the enhancement of the sensitivity may exceed nine orders of magnitude.

  10. Scattering and; Delay, Scale, and Sum Migration

    SciTech Connect (OSTI)

    Lehman, S K

    2011-07-06

    How do we see? What is the mechanism? Consider standing in an open field on a clear sunny day. In the field are a yellow dog and a blue ball. From a wave-based remote sensing point of view the sun is a source of radiation. It is a broadband electromagnetic source which, for the purposes of this introduction, only the visible spectrum is considered (approximately 390 to 750 nanometers or 400 to 769 TeraHertz). The source emits an incident field into the known background environment which, for this example, is free space. The incident field propagates until it strikes an object or target, either the yellow dog or the blue ball. The interaction of the incident field with an object results in a scattered field. The scattered field arises from a mis-match between the background refractive index, considered to be unity, and the scattering object refractive index ('yellow' for the case of the dog, and 'blue' for the ball). This is also known as an impedance mis-match. The scattering objects are referred to as secondary sources of radiation, that radiation being the scattered field which propagates until it is measured by the two receivers known as 'eyes'. The eyes focus the measured scattered field to form images which are processed by the 'wetware' of the brain for detection, identification, and localization. When time series representations of the measured scattered field are available, the image forming focusing process can be mathematically modeled by delayed, scaled, and summed migration. This concept of optical propagation, scattering, and focusing have one-to-one equivalents in the acoustic realm. This document is intended to present the basic concepts of scalar scattering and migration used in wide band wave-based remote sensing and imaging. The terms beamforming and (delayed, scaled, and summed) migration are used interchangeably but are to be distinguished from the narrow band (frequency domain) beamforming to determine the direction of arrival of a signal, and seismic migration in which wide band time series are shifted but not to form images per se. Section 3 presents a mostly graphically-based motivation and summary of delay, scale, and sum beamforming. The model for incident field propagation in free space is derived in Section 4 under specific assumptions. General object scattering is derived in Section 5 and simplified under the Born approximation in Section 6. The model of this section serves as the basis in the derivation of time-domain migration. The Foldy-Lax, full point scatterer scattering, method is derived in Section 7. With the previous forward models in hand, delay, scale, and sum beamforming is derived in Section 8. Finally, proof-of-principle experiments are present in Section 9.

  11. Inclusive Inelastic Electron Scattering from Nuclei

    SciTech Connect (OSTI)

    Fomin, Nadia

    2007-10-26

    Inclusive electron scattering from nuclei at large x and Q{sup 2} is the result of a reaction mechanism that includes both quasi-elastic scattering from nucleons and deep inelastic scattering from the quark consitituents of the nucleons. Data in this regime can be used to study a wide variety of topics, including the extraction of nuclear momentum distributions, the infiuence of final state interactions and the approach to y-scaling, the strength of nucleon-nucleon correlations, and the approach to x-scaling, to name a few. Selected results from the recent experiment E02-019 at the Thomas Jefferson National Accelerator Facility will be shown and their relevance discussed.

  12. Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform

    SciTech Connect (OSTI)

    Pinkhasova, Polina; Chen, Hui; Du, Henry; Kanka, Jiri; Mergo, Pawel

    2015-02-16

    Core-shell nanotags that are active in surface-enhanced Raman scattering (SERS) and entrapped with thiocyanate (SCN) label molecules were immobilized in the air channels of suspended-core photonic crystal fiber (PCF) to impart quantitative capacity to SERS-based PCF optofluidic sensing platform. The Raman intensity of Rhodamine 6G increases with concentration, whereas the intensity of SCN remains constant when measured using this platform. The signal from the SCN label can be used as an internal reference to establish calibration for quantitative measurements of analytes of unknown concentrations. The long optical path-length PCF optofluidic platform integrated with SERS-active core-shell nanotags holds significant promise for sensitive quantitative chem/bio measurements with the added benefit of small sampling volume. The dependence of SERS intensity on the nanotag coverage density and PCF length was interpreted based on numerical-analytical simulations.

  13. Geometric phases in a scattering process

    SciTech Connect (OSTI)

    Liu, H. D.; Yi, X. X. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2011-08-15

    The study of geometric phase in quantum mechanics has so far been confined to discrete (or continuous) spectra and trace-preserving evolutions. By considering only the transmission channel, a scattering process with internal degrees of freedom is neither a discrete spectrum problem nor a trace-preserving process. We explore the geometric phase in the scattering process by taking only the transmission process into account. We find that the geometric phase can be calculated by the same method as in unitary evolution. The interference visibility depends on the transmission amplitude. The dependence of the geometric phase on the barrier strength and the spin-spin coupling constant is also presented and discussed.

  14. Diffractive Scattering and Gauge/String Duality

    ScienceCinema (OSTI)

    Tan, Chung-I [Brown University, Providence, Rhode Island, United States

    2009-09-01

    High-energy diffractive scattering will be discussed based on Gauge/String duality. As shown by Brower, Polchinski, Strassler and Tan, the ubiquitous Pomeron emerges naturally in gauge theories with string-theoretical descriptions. Its existence is intimately tied to gluons, and also to the energy-momentum tensor. With a confining dual background metric, the Pomeron can be interpreted as a 'massive graviton'. In a single unified step, both its infrared and ultraviolet properties are dealt with, reflecting confinement and conformal symmetry respectively. An effective field theory for high-energy scattering can be constructed. Applications based on this approach will also be described.

  15. Scattering theory with localized non-Hermiticities

    SciTech Connect (OSTI)

    Znojil, Miloslav [Nuclear Physics Institute ASCR, 250 68 Rez (Czech Republic)

    2008-07-15

    In the context of the recent interest in solvable models of scattering mediated by non-Hermitian Hamiltonians (cf. H. F. Jones, Phys. Rev. D 76, 125003 (2007)) we show that the well-known variability of the ad hoc choice of the metric {theta} which defines the physical Hilbert space of states can help us to clarify several apparent paradoxes. We argue that with a suitable {theta}, a fully plausible physical picture of the scattering can be recovered. Quantitatively, our new recipe is illustrated on an exactly solvable toy model.

  16. Transport and noise properties of Si nanowire channels with different lengths before and after gamma radiation treatment

    SciTech Connect (OSTI)

    Li, Jing; Vitusevich, Svetlana; Pud, Sergii; Sydoruk, Viktor; Offenhusser, Andreas; Petrychuk, Mykhailo; Danilchenko, Boris

    2013-12-04

    The transport properties of Si nanowire (NW) structures fabricated on the basis of silicon on insulator (SOI) wafers were studied using noise spectroscopy before and after treatment with small doses of gamma radiation. The total resistance obtained from the I-V characteristics of Si NW structures scaled perfectly with length. Normalized flicker noise demonstrated 1/L{sup 2} dependence, which is a characteristic of dominant noise contribution from near-contact regions. The behavior changed to 1/L dependence after a small dose (110{sup 4} Gy) of gamma radiation treatment. Comparison of the random telegraph signal (RTS) noise parameters in the samples with small lengths before and after the treatment revealed a decrease in RTS amplitude and a shift to a lower frequency range after gamma irradiation. These results confirmed that the main changes in the samples were related to strain relaxation near-contact regions. In addition, such treatment resulted in a considerable decrease in the scattering data of device parameters.

  17. Light absorption cell combining variable path and length pump

    DOE Patents [OSTI]

    Prather, William S.

    1993-01-01

    A device for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid therebetween and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data.

  18. Light absorption cell combining variable path and length pump

    DOE Patents [OSTI]

    Prather, W.S.

    1993-12-07

    A device is described for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid there between and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data. 2 figures.

  19. Analysis and Optimization of "Full-Length" Diodes

    SciTech Connect (OSTI)

    Schock, Alfred

    2012-01-19

    A method of analyzing the axial variation of the heat generation rate, temperature, voltage, current density and emitter heat flux in a thermionic converter is described. The method is particularly useful for the case of "long" diodes, each extending over the full length of the reactor core. For a given diode geometry and fuel distribution, the analysis combines a nuclear solution of the axial fission density profile with the iterative solution of four differential equations representing the thermal, electrical, and thermionic interactions within the diode. The digital computer program developed to solve these equations can also perform a design optimization with respect to lead resistance, load voltage, and emitter thickness, for a specified maximum emitter temperature. Typical results are presented, and the use of this analysis for predicting the diode operating characteristics is illustrated.

  20. Coherent neutron scattering and collective dynamics on mesoscale

    SciTech Connect (OSTI)

    Novikov, Vladimir [ORNL; Schweizer, Kenneth S [ORNL; Sokolov, Alexei P [ORNL

    2013-01-01

    By combining, and modestly extending, a variety of theoretical concepts for the dynamics of liquids in the supercooled regime, we formulate a simple analytic model for the temperature and wavevector dependent collective density fluctuation relaxation time that is measurable using coherent dynamic neutron scattering. Comparison with experiments on the ionic glass-forming liquid Ca K NO3 in the lightly supercooled regime suggests the model captures the key physics in both the local cage and mesoscopic regimes, including the unusual wavevector dependence of the collective structural relaxation time. The model is consistent with the idea that the decoupling between diffusion and viscosity is reflected in a different temperature dependence of the collective relaxation time at intermediate wavevectors and near the main (cage) peak of the static structure factor. More generally, our analysis provides support for the ideas that decoupling information and growing dynamic length scales can be at least qualitatively deduced by analyzing the collective relaxation time as a function of temperature and wavevector, and that there is a strong link between dynamic heterogeneity phenomena at the single and many particle level. Though very simple, the model can be applied to other systems, such as molecular liquids.

  1. Fiber optic probe for light scattering measurements

    DOE Patents [OSTI]

    Nave, Stanley E.; Livingston, Ronald R.; Prather, William S.

    1995-01-01

    A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  2. Fiber optic probe for light scattering measurements

    DOE Patents [OSTI]

    Nave, S.E.; Livingston, R.R.; Prather, W.S.

    1993-01-01

    This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  3. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging LIDAR.

    SciTech Connect (OSTI)

    Love, Steven P.; Davis, A. B.; Rohde, C. A.; Tellier, L. L.; Ho, Cheng,

    2002-01-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data oti various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  4. Application of electrically invisible antennas to the modulated scatterer technique

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Crocker, Dylan A.; Donnell, Kristen M.

    2015-09-16

    The modulated scatterer technique (MST) has shown promise for applications in microwave imaging, electric field mapping, and materials characterization. Traditionally, MST scatterers are dipoles centrally loaded with an element capable of modulation (e.g., a p-i-n diode). By modulating the load element, signals scattered from the MST scatterer are also modulated. However, due to the small size of such scatterers, it can be difficult to reliably detect the modulated signal. Increasing the modulation depth (MD; a parameter related to how well the scatterer modulates the scattered signal) may improve the detectability of the scattered signal. In an effort to improve themore » MD, the concept of electrically invisible antennas is applied to the design of MST scatterers. This paper presents simulations and measurements of MST scatterers that have been designed to be electrically invisible during the reverse bias state of the modulated element (a p-i-n diode in this case), while producing detectable scattering during the forward bias state (i.e., operate in an electrically visible state). Furthermore, the results using the new design show significant improvement to the MD of the scattered signal as compared with a traditional MST scatterer (i.e., dipole centrally loaded with a p-i-n diode).« less

  5. Application of electrically invisible antennas to the Modulated Scatterer Technique

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Crocker, Dylan A.; Donnell, Kristen M.

    2015-09-16

    The modulated scatterer technique (MST) has shown promise for applications in microwave imaging, electric field mapping, and materials characterization. Traditionally, MST scatterers are dipoles centrally loaded with an element capable of modulation (e.g., a p-i-n diode). By modulating the load element, signals scattered from the MST scatterer are also modulated. However, due to the small size of such scatterers, it can be difficult to reliably detect the modulated signal. Increasing the modulation depth (MD; a parameter related to how well the scatterer modulates the scattered signal) may improve the detectability of the scattered signal. In an effort to improve themore » MD, the concept of electrically invisible antennas is applied to the design of MST scatterers. Our paper presents simulations and measurements of MST scatterers that have been designed to be electrically invisible during the reverse bias state of the modulated element (a p-i-n diode in this case), while producing detectable scattering during the forward bias state (i.e., operate in an electrically visible state). Furthermore, the results using the new design show significant improvement to the MD of the scattered signal as compared with a traditional MST scatterer (i.e., dipole centrally loaded with a p-i-n diode).« less

  6. Application of electrically invisible antennas to the Modulated Scatterer Technique

    SciTech Connect (OSTI)

    Crocker, Dylan A.; Donnell, Kristen M.

    2015-09-16

    The modulated scatterer technique (MST) has shown promise for applications in microwave imaging, electric field mapping, and materials characterization. Traditionally, MST scatterers are dipoles centrally loaded with an element capable of modulation (e.g., a p-i-n diode). By modulating the load element, signals scattered from the MST scatterer are also modulated. However, due to the small size of such scatterers, it can be difficult to reliably detect the modulated signal. Increasing the modulation depth (MD; a parameter related to how well the scatterer modulates the scattered signal) may improve the detectability of the scattered signal. In an effort to improve the MD, the concept of electrically invisible antennas is applied to the design of MST scatterers. Our paper presents simulations and measurements of MST scatterers that have been designed to be electrically invisible during the reverse bias state of the modulated element (a p-i-n diode in this case), while producing detectable scattering during the forward bias state (i.e., operate in an electrically visible state). Furthermore, the results using the new design show significant improvement to the MD of the scattered signal as compared with a traditional MST scatterer (i.e., dipole centrally loaded with a p-i-n diode).

  7. Application of electrically invisible antennas to the modulated scatterer technique

    SciTech Connect (OSTI)

    Crocker, Dylan A.; Donnell, Kristen M.

    2015-09-16

    The modulated scatterer technique (MST) has shown promise for applications in microwave imaging, electric field mapping, and materials characterization. Traditionally, MST scatterers are dipoles centrally loaded with an element capable of modulation (e.g., a p-i-n diode). By modulating the load element, signals scattered from the MST scatterer are also modulated. However, due to the small size of such scatterers, it can be difficult to reliably detect the modulated signal. Increasing the modulation depth (MD; a parameter related to how well the scatterer modulates the scattered signal) may improve the detectability of the scattered signal. In an effort to improve the MD, the concept of electrically invisible antennas is applied to the design of MST scatterers. This paper presents simulations and measurements of MST scatterers that have been designed to be electrically invisible during the reverse bias state of the modulated element (a p-i-n diode in this case), while producing detectable scattering during the forward bias state (i.e., operate in an electrically visible state). Furthermore, the results using the new design show significant improvement to the MD of the scattered signal as compared with a traditional MST scatterer (i.e., dipole centrally loaded with a p-i-n diode).

  8. Decreasing transmembrane segment length greatly decreases perfringolysin O pore size

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Qingqing; Li, Huilin; Wang, Tong; London, Erwin

    2015-04-08

    Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakagemore » assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.« less

  9. Thermal management of long-length HTS cable systems

    SciTech Connect (OSTI)

    Demko, Jonathan A; Hassenzahl, William V

    2011-01-01

    Projections of electric power production suggest a major shift to renewables, such as wind and solar, which will be in remote locations where massive quantities of power are available. One solution for transmitting this power over long distances to load centers is direct current (dc), high temperature superconducting (HTS) cables. Electric transmission via dc cables promises to be effective because of the low-loss, highcurrent- carrying capability of HTS wire at cryogenic temperatures. However, the thermal management system for the cable must be carefully designed to achieve reliable and energyefficient operation. Here we extend the analysis of a superconducting dc cable concept proposed by the Electric Power Research Institute (EPRI), which has one stream of liquid nitrogen flowing in a cryogenic enclosure that includes the power cable, and a separate return tube for the nitrogen. Refrigeration stations positioned every 10 to 20 km cool both nitrogen streams. Both go and return lines are contained in a single vacuum/cryogenic envelope. Other coolants, including gaseous helium and gaseous hydrogen, could provide potential advantages, though they bring some technical challenges to the operation of long-length HTS dc cable systems. A discussion of the heat produced in superconducting cables and a system to remove the heat are discussed. Also, an analysis of the use of various cryogenic fluids in long-distance HTS power cables is presented.

  10. Decreasing transmembrane segment length greatly decreases perfringolysin O pore size

    SciTech Connect (OSTI)

    Lin, Qingqing; Li, Huilin; Wang, Tong; London, Erwin

    2015-04-08

    Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakage assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.

  11. Length scale selects directionality of droplets on vibrating pillar ratchet

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agapov, Rebecca L.; Boreyko, Jonathan B.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Collier, C. Patrick; Lavrik, Nickolay V.

    2014-09-22

    Directional control of droplet motion at room temperature is of interest for applications such as microfluidic devices, self-cleaning coatings, and directional adhesives. Here, arrays of tilted pillars ranging in height from the nanoscale to the microscale are used as structural ratchets to directionally transport water at room temperature. Water droplets deposited on vibrating chips with a nanostructured ratchet move preferentially in the direction of the feature tilt while the opposite directionality is observed in the case of microstructured ratchets. This remarkable switch in directionality is consistent with changes in the contact angle hysteresis. To glean further insights into the lengthmore » scale dependent asymmetric contact angle hysteresis, the contact lines formed by a nonvolatile room temperature ionic liquid placed onto the tilted pillar arrays were visualized and analyzed in situ in a scanning electron microscope. As a result, the ability to tune droplet directionality by merely changing the length scale of surface features all etched at the same tilt angle would be a versatile tool for manipulating multiphase flows and for selecting droplet directionality in other lap-on-chip applications.« less

  12. Inelastic X-ray and Nuclear Resonant Scattering | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XSD-IXN XSD-IXN Home Staff Inelastic X-ray and Nuclear Resonant Scattering The Inelastic X-ray and Nuclear Resonant Scattering group operates beamlines at APS Sectors 3, 9 and 30....

  13. Room-return scattering in fission neutron outputs (Conference...

    Office of Scientific and Technical Information (OSTI)

    Room-return scattering in fission neutron outputs Citation Details In-Document Search Title: Room-return scattering in fission neutron outputs You are accessing a document from...

  14. Apparatus and method for spectroscopic analysis of scattering media

    DOE Patents [OSTI]

    Strobl, Karlheinz; Bigio, Irving J.; Loree, Thomas R.

    1994-01-01

    Apparatus and method for spectroscopic analysis of scattering media. Subtle differences in materials have been found to be detectable from plots of intensity as a function of wavelength of collected emitted and scattered light versus wavelength of excitation light.

  15. S-wave scattering of strangeness -3 baryons (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    S-wave scattering of strangeness -3 baryons Citation Details In-Document Search Title: S-wave scattering of strangeness -3 baryons You are accessing a document from the ...

  16. SXST 2014 - 7th SSRL School on Synchrotron X-Ray Scattering Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    important techniques including small angle scattering, thin-film scattering, powder diffraction, structure refinement and surface x-ray scattering. The school will address topics...

  17. 11th LANSCE School on Neutron Scattering | About the School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    students calculate results About the LANSCE School on Neutron Scattering The annual Los Alamos Neutron Science Center (LANSCE) School on Neutron Scattering is 9- to 10-day school focusing on specific science topics to which neutron scattering makes a critical impact. The focus-driven agenda makes it distinct from other neutron schools in the nation. The LANSCE Neutron Scattering School began in 2004 and it has had a continuous and successful run to this day. General School Format The first day

  18. Jefferson Lab experiment works to clarify Real Compton Scattering |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab experiment works to clarify Real Compton Scattering Real Compton Scattering experiment spokespeople The Real Compton Scattering experiment spokespeople take a short break for a photo. From left is Bogdan Wojtsekhowski, JLab staff scientist; Charles Hyde-Wright, physics professor at Old Dominion University; and Alan Nathan, physics professor at the University of Illinois and chair of the JLab Users Group. Jefferson Lab experiment works to clarify Real Compton Scattering January

  19. Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles

    Broader source: Energy.gov [DOE]

    The average trip length (one-way) is 9.7 miles according to the 2009 Nationwide Personal Transportation Survey. Trip lengths vary by the purpose of the trip. Shopping and family/personal business...

  20. Property:Length of Effective Tow(m) | Open Energy Information

    Open Energy Info (EERE)

    of Effective Tow(m) Jump to: navigation, search Property Name Length of Effective Tow(m) Property Type String Pages using the property "Length of Effective Tow(m)" Showing 20 pages...

  1. Multiple Scattering Measurements in the MICE Experiment

    SciTech Connect (OSTI)

    Carlisle, T.; Cobb, J.; Neuffer, D.; /Fermilab

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), under construction at RAL, will test a prototype cooling channel for a future Neutrino Factory or Muon Collider. The cooling channel aims to achieve, using liquid hydrogen absorbers, a 10% reduction in transverse emittance. The change in 4D emittance will be determined with an accuracy of 1% by measuring muons individually. Step IV of MICE will make the first precise emittance-reduction measurements of the experiment. Simulation studies using G4MICE, based on GEANT4, find a significant difference in multiple scattering in low Z materials, compared with the standard expression quoted by the Particle Data Group. Direct measurement of multiple scattering using the scintillating-fibre trackers is found to be possible, but requires the measurement resolution to be unfolded from the data.

  2. Contraband detection via neutron elastic scattering

    SciTech Connect (OSTI)

    Gomberg, H.J.; Charatis, G.; Brundage, J.

    1993-04-01

    Reliable detection of explosives and narcotics depends on generating signatures of compounds which characterize them. Major explosives and also alkaloid narcotics contain unique concentrations of Carbon (C), Nitrogen (N), and Oxygen (O). The kinematic energy shifts of neutrons scattered through angles larger than 140{degrees} allows separate determinations of C, N, and O; ratios of N/C and O/C together give clear signatures of the presence of plastic explosives or narcotics. The ability to detect these signatures under conditions similar to those that would obtain for airport screening has been demonstrated for neutrons for energies less {le} 3 MeV. Strong N resonances and a deep window for scattering from O enhance the confidence of element quantification. Detection of contraband in large cargo containers presents a much more difficult problem. Use of higher energy neutrons is now being tested for shielding penetration, so narcotic signatures could be identified behind the shielding of cargo containers. Scattered neutron spectra, or {open_quotes}signatures{close_quotes} of different organic compounds will be presented.

  3. Molecular anisotropy effects in carbon K-edge scattering: depolarized diffuse scattering and optical anisotropy

    SciTech Connect (OSTI)

    Stone, Kevin H.

    2014-07-14

    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K-edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence, and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylene-like backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  4. Method for compression of data using single pass LZSS and run-length encoding

    DOE Patents [OSTI]

    Berlin, Gary J.

    1997-01-01

    A method used preferably with LZSS-based compression methods for compressing a stream of digital data. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer.

  5. Method for compression of data using single pass LZSS and run-length encoding

    DOE Patents [OSTI]

    Berlin, G.J.

    1994-01-01

    A method used preferably with LZSS-based compression methods for compressing a stream of digital data. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer.

  6. Method for compression of data using single pass LZSS and run-length encoding

    DOE Patents [OSTI]

    Berlin, G.J.

    1997-12-23

    A method used preferably with LZSS-based compression methods for compressing a stream of digital data is disclosed. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer. 3 figs.

  7. Non-coherent continuum scattering as a line polarization mechanism

    SciTech Connect (OSTI)

    Del Pino Alemán, T.; Manso Sainz, R.; Trujillo Bueno, J. E-mail: rsainz@iac.es

    2014-03-20

    Line scattering polarization can be strongly affected by Rayleigh scattering at neutral hydrogen and Thomson scattering at free electrons. Often a depolarization of the continuum results, but the Doppler redistribution produced by the continuum scatterers, which are light (hence, fast), induces more complex interactions between the polarization in spectral lines and in the continuum. Here we formulate and solve the radiative transfer problem of scattering line polarization with non-coherent continuum scattering consistently. The problem is formulated within the spherical tensor representation of atomic and light polarization. The numerical method of solution is a generalization of the Accelerated Lambda Iteration that is applied to both the atomic system and the radiation field. We show that the redistribution of the spectral line radiation due to the non-coherence of the continuum scattering may modify the shape of the emergent fractional linear polarization patterns significantly, even yielding polarization signals above the continuum level in intrinsically unpolarizable lines.

  8. Stimulated scattering in laser driven fusion and high energy density physics experiments

    SciTech Connect (OSTI)

    Yin, L. Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J.; Kirkwood, R. K.; Milovich, J.

    2014-09-15

    In laser driven fusion and high energy density physics experiments, one often encounters a k?{sub D} range of 0.15?scattering (SRS) is active (k is the initial electron plasma wave number and ?{sub D} is the Debye length). Using particle-in-cell simulations, the SRS reflectivity is found to scale as ? (k?{sub D}){sup ?4} for k?{sub D} ? 0.3 where electron trapping effects dominate SRS saturation; the reflectivity scaling deviates from the above for k?{sub D}?scattering processes are found to be unimportant under conditions relevant to ignition experiments at the National Ignition Facility (NIF). Large-scale simulations of the hohlraum plasma show that the SRS wavelength spectrum peaks below 600?nm, consistent with most measured NIF spectra, and that nonlinear trapping in the presence of plasma gradients determines the SRS spectral peak. Collisional effects on SRS, stimulated Brillouin scattering (SBS), LDI, and re-scatter, together with three dimensional effects, are examined. Effects of collisions are found to include de-trapping as well as cross-speckle electron temperature variation from collisional heating, the latter of which reduces gain, introduces a positive frequency shift that counters the trapping-induced negative frequency shift, and affects SRS and SBS saturation. Bowing and breakup of ion-acoustic wavefronts saturate SBS and cause a dramatic, sharp decrease in SBS reflectivity. Mitigation of SRS and SBS in the strongly nonlinear trapping regime is discussed.

  9. Stimulated Raman scattering of laser dye mixtures dissolved in multiple scattering media

    SciTech Connect (OSTI)

    Yashchuk, V P; Komyshan, A O; Tikhonov, E A; Olkhovyk, L A

    2014-10-31

    Stimulated Raman scattering (SRS) of a mixture of rhodamine 6G and pyrromethene 605 laser dyes in vesicular films is studied. It is shown that a peculiar interaction of dyes occurs under conditions of multiple scattering of light from vesicles. This interaction manifests itself as SRS excitation of one of the dyes by random lasing of the other dye, provided that the random lasing spectrum overlaps the Stokes lines of the first dye. In addition, there is energy transfer between molecules of these dyes if their luminescence and absorption spectra overlap. The results obtained confirm that the mechanism of SRS from laser dyes in multiple scattering media is similar to that in coherent-active Raman spectroscopy. These results extend the possibility of determining the vibrational spectrum of dye molecules from their secondary radiation in these media. (nonlinear optical phenomena)

  10. Initial characterization of mudstone nanoporosity with small angle neutron scattering using caprocks from carbon sequestration sites.

    SciTech Connect (OSTI)

    McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine; Heath, Jason E.; Dewers, Thomas A.; Rother, Gernot

    2010-11-01

    Geological carbon sequestration relies on the principle that CO{sub 2} injected deep into the subsurface is unable to leak to the atmosphere. Structural trapping by a relatively impermeable caprock (often mudstone such as a shale) is the main trapping mechanism that is currently relied on for the first hundreds of years. Many of the pores of the caprock are of micrometer to nanometer scale. However, the distribution, geometry and volume of porosity at these scales are poorly characterized. Differences in pore shape and size can cause variation in capillary properties and fluid transport resulting in fluid pathways with different capillary entry pressures in the same sample. Prediction of pore network properties for distinct geologic environments would result in significant advancement in our ability to model subsurface fluid flow. Specifically, prediction of fluid flow through caprocks of geologic CO{sub 2} sequestration reservoirs is a critical step in evaluating the risk of leakage to overlying aquifers. The micro- and nanoporosity was analyzed in four mudstones using small angle neutron scattering (SANS). These mudstones are caprocks of formations that are currently under study or being used for carbon sequestration projects and include the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Total organic carbon varies from <0.3% to 4% by weight. Expandable clay contents range from 10% to {approx}40% in the Gothic shale and Kirtland Formation, respectively. Neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e. minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume of pores and their arrangement in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. Results from this study, combined with high-resolution TEM imaging, provide insight into the differences in volume and geometry of porosity between these various mudstones.

  11. Surface enhanced Raman scattering spectroscopic waveguide

    DOE Patents [OSTI]

    Lascola, Robert J; McWhorter, Christopher S; Murph, Simona H

    2015-04-14

    A waveguide for use with surface-enhanced Raman spectroscopy is provided that includes a base structure with an inner surface that defines a cavity and that has an axis. Multiple molecules of an analyte are capable of being located within the cavity at the same time. A base layer is located on the inner surface of the base structure. The base layer extends in an axial direction along an axial length of an excitation section. Nanoparticles are carried by the base layer and may be uniformly distributed along the entire axial length of the excitation section. A flow cell for introducing analyte and excitation light into the waveguide and a method of applying nanoparticles may also be provided.

  12. Dispersion corrections to parity violating electron scattering

    SciTech Connect (OSTI)

    Gorchtein, M.; Horowitz, C. J. [Nuclear Theory Center, Indiana University, Bloomington, IN 47408 (United States); Ramsey-Musolf, M. J. [University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2010-08-04

    We consider the dispersion correction to elastic parity violating electron-proton scattering due to {gamma}Z exchange. In a recent publication, this correction was reported to be substantially larger than the previous estimates. In this paper, we study the dispersion correction in greater detail. We confirm the size of the disperion correction to be {approx}6% for the QWEAK experiment designed to measure the proton weak charge. We enumerate parameters that have to be constrained to better than relative 30% in order to keep the theoretical uncertainty for QWEAK under control.

  13. Transient Rayleigh scattering from single semiconductor nanowires

    SciTech Connect (OSTI)

    Montazeri, Mohammad; Jackson, Howard E.; Smith, Leigh M.; Yarrison-Rice, Jan M.; Kang, Jung-Hyun; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati

    2013-12-04

    Transient Rayleigh scattering spectroscopy is a new pump-probe technique to study the dynamics and cooling of photo-excited carriers in single semiconductor nanowires. By studying the evolution of the transient Rayleigh spectrum in time after excitation, one can measure the time evolution of the density and temperature of photo-excited electron-hole plasma (EHP) as they equilibrate with lattice. This provides detailed information of dynamics and cooling of carriers including linear and bimolecular recombination properties, carrier transport characteristics, and the energy-loss rate of hot electron-hole plasma through the emission of LO and acoustic phonons.

  14. Resonant and non-resonant magnetic scattering

    SciTech Connect (OSTI)

    McWhan, D.B.; Hastings, J.B.; Kao, C.C.; Siddons, D.P.

    1991-12-31

    The tunability and the polarization of synchrotron radiation open upon new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and thy fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation.

  15. Resonant and non-resonant magnetic scattering

    SciTech Connect (OSTI)

    McWhan, D.B.; Hastings, J.B.; Kao, C.C.; Siddons, D.P.

    1991-01-01

    The tunability and the polarization of synchrotron radiation open upon new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and thy fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation.

  16. MFTF Thomson scattering: a system study

    SciTech Connect (OSTI)

    Frank, A.M.

    1980-09-11

    This report documents the design effort for a Thomson scattering diagnostic system for MFTF. The principal problem is obtaining enough photons, in the presence of a poorly known background, to make satisfactory measurements. No currently available laser will yield enough photons to do this. Design concepts for imaging and detection are discussed. The ability of components to survive in the high-radiation environment of MFTF is identified as an important problem. The transition to MFTF-B makes many of the problems identified here more serious.

  17. Nonperturbative NN scattering in {sup 3}S{sub 1}{sup 3}D{sub 1} channels of EFT(??)

    SciTech Connect (OSTI)

    Yang, Ji-Feng

    2013-12-15

    The closed-form T matrices in the {sup 3}S{sub 1}{sup 3}D{sub 1} channels of EFT(??) for NN scattering with the potentials truncated at order O(Q{sup 4}) are presented with the nonperturbative divergences parametrized in a general manner. The stringent constraints imposed by the closed form of the T matrices are exploited in the underlying theory perspective and turned into virtues in the implementation of subtractions and the manifestation of power counting rules in nonperturbative regimes, leading us to the concept of EFT scenario. A number of scenarios of the EFT description of NN scattering are compared with PSA data in terms of effective range expansion and {sup 3}S{sub 1} phase shifts, showing that it is favorable to proceed in a scenario with conventional EFT couplings and sophisticated renormalization in order to have large NN scattering lengths. The informative utilities of fine tuning are demonstrated in several examples and naturally interpreted in the underlying theory perspective. In addition, some of the approaches adopted in the recent literature are also addressed in the light of EFT scenario. -- Highlights: Closed-form unitary T matrices for NN scattering are obtained in EFT(??). Nonperturbative properties inherent in such closed-form T matrices are explored. Nonperturbative renormalization is implemented through exploiting these properties. Unconventional power counting of couplings is shown to be less favored by PSA data. The ideas about nonperturbative renormalization here might have wider applications.

  18. Stimulated Brillouin scattering in solid aerosols

    SciTech Connect (OSTI)

    Chitanvis, S.M.

    1988-08-01

    We estimate the differential scattering cross-section due to SBS in a glass bead which is much larger than the wavelength of a high energy laser beam which irradiates it. We consider three possible scenarios: neither the incident nor the Stokes wavelength is on a Mie resonance; only the Stokes wavelength is on resonance; and the incident wavelength and the Stokes wavelength are on a Mie resonance. For the first two cases, we find that the SBS scattering cross-section is extremely small compared to the geometric/Mie cross-section. It follows as a corollary that SBS in a glass bead will be insufficient to shatter it in these two cases. In the last case, it is quite possible that due to the buildup of high fields on-resonance within the spherical bead, the bead might be shattered. The chance of such an event occurring in a polydisperse distribution of spherical beads is generally not expected to be very high. 3 figs.

  19. Neutron scattering studies of premartensitic phenomena

    SciTech Connect (OSTI)

    Shapiro, S.M.

    1989-01-01

    Elastic neutron diffraction and inelastic neutron scattering are ideal techniques for studying premartensitic behavior in metallic alloys. By necessity, real, bulk samples are probed replete with their intrinsic defects. Also, because of the properties of the neutron it is straightforward to probe the behavior of the phonon modes away from the zone center which is probed in the normal ultrasonic techniques. A wide variety of alloys exhibiting martensitic transformations have been studied. It will be shown that most systems undergoing diffusionless transformations exhibit premartensitic behavior in that precursor effects are seen at temperatures well above the martensitic transformation temperature, T{sub M}. This behavior manifests itself in an anomalous temperature dependence of the energy of a particular phonon mode as the temperature approaches T{sub M}. The wavevector of this mode is frequently away from the zone center (i.e., q {ne} O). This softening is nearly always accompanied by elastic diffuse scattering at the same wavevector. Particular examples to be discussed are the alkali metals, {omega}-phase materials and Ni-based alloys. 34 refs., 9 figs.

  20. Measuring short electron bunch lengths using coherent Smith-Purcell radiation

    DOE Patents [OSTI]

    Nguyen, D.C.

    1999-03-30

    A method is provided for directly determining the length of sub-picosecond electron bunches. A metallic grating is formed with a groove spacing greater than a length expected for the electron bunches. The electron bunches are passed over the metallic grating to generate coherent and incoherent Smith-Purcell radiation. The angular distribution of the coherent Smith-Purcell radiation is then mapped to directly deduce the length of the electron bunches. 8 figs.

  1. Measuring short electron bunch lengths using coherent smith-purcell radiation

    DOE Patents [OSTI]

    Nguyen, Dinh C. (Los Alamos, NM)

    1999-01-01

    A method is provided for directly determining the length of sub-picosecond electron bunches. A metallic grating is formed with a groove spacing greater than a length expected for the electron bunches. The electron bunches are passed over the metallic grating to generate coherent and incoherent Smith-Purcell radiation. The angular distribution of the coherent Smith-Purcell radiation is then mapped to directly deduce the length of the electron bunches.

  2. Effects of graded distribution of scattering centers on ballistic transport

    SciTech Connect (OSTI)

    Mitran, T. L.; Nemnes, G. A.; Ion, L.; Dragoman, Daniela

    2014-09-28

    The transmission coefficient of a two dimensional scattering region connected to ideal leads was calculated for the case of electrons interacting with an inhomogeneous distribution of repulsive or attractive scattering centers. The scattering centers with Gaussian profiles were positioned at regular intervals perpendicular to the transport direction, but were spaced according to a power law along this direction. The transmission function was obtained using a scattering formalism based on the R-matrix method. The simulations revealed that although, overall, the transmission coefficient decreases and becomes almost monotonously dependent on energy as the inhomogeneity of both attractive and repulsive scattering centers increases, the redistribution of transmission between open channels depends on the type of scattering centers.

  3. Atom-diatom scattering dynamics of spinning molecules

    SciTech Connect (OSTI)

    Eyles, C. J.; Flo, J.; Averbukh, I. Sh.; Leibscher, M.

    2015-01-14

    We present full quantum mechanical scattering calculations using spinning molecules as target states for nuclear spin selective atom-diatom scattering of reactive D+H{sub 2} and F+H{sub 2} collisions. Molecules can be forced to rotate uni-directionally by chiral trains of short, non-resonant laser pulses, with different nuclear spin isomers rotating in opposite directions. The calculations we present are based on rotational wavepackets that can be created in this manner. As our simulations show, target molecules with opposite sense of rotation are predominantly scattered in opposite directions, opening routes for spatially and quantum state selective scattering of close chemical species. Moreover, two-dimensional state resolved differential cross sections reveal detailed information about the scattering mechanisms, which can be explained to a large degree by a classical vector model for scattering with spinning molecules.

  4. 11th LANSCE School on Neutron Scattering | FAQ's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequently Asked Questions Who can apply? The LANSCE School on Neutron Scattering is intended primarily for graduate students & post-docs in the topical area of that year's school. Undergraduate students applying to the school, who plan on pursuing an advanced degree after graduation, will be taken into consideration. What are the main objectives of the school? to attract new users to the neutron-scattering community, to increase diversity among expert neutron scatterers, to broaden the

  5. A reflective optical transport system for ultraviolet Thomson scattering

    Office of Scientific and Technical Information (OSTI)

    from electron plasma waves on OMEGA (Journal Article) | SciTech Connect A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA Citation Details In-Document Search Title: A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA A reflective optical transport system has been designed for the OMEGA Thomson-scattering diagnostic. A Schwarzschild objective that uses two concentric spherical

  6. Magnetism studies using resonant, coherent, x-ray scattering | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Magnetism studies using resonant, coherent, x-ray scattering Monday, September 10, 2012 - 10:00am SLAC, Bldg. 137, Room 226 Keoki Seu Seminar: With the advent of free electron lasers there has been interest in using coherent x-rays to probe condensed matter systems. Resonant scattering with x-rays allow elemental specificity with magnetic contrast, and coherent light leads to speckle in the scattered pattern due to interference from waves exiting the sample.

  7. Investigation of coercivity mechanism in hot deformed Nd-Fe-B permanent magnets by small-angle neutron scattering

    SciTech Connect (OSTI)

    Yano, M., E-mail: masao-yano-aa@mail.toyota.co.jp; Manabe, A.; Shoji, T.; Kato, A. [Advanced Material Engineering Division, Toyota Motor Corporation, Susono 410-1193 (Japan); Ono, K. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Harada, M. [Toyota Central R and D Labs, Inc., Aichi 480-1192 (Japan); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2014-05-07

    The magnetic reversal behaviors of single domain sized Nd-Fe-B permanent magnets, with and without isolation between the Nd{sub 2}Fe{sub 14}B grains, was clarified using small-angle neutron scattering (SANS). The SANS patterns obtained arose from changes in the magnetic domains and were analyzed using the TeubnerStray model, a phenomenological correlation length model, to quantify the periodicity and morphology of the magnetic domains. The results indicated that the magnetic reversal evolved with the magnetic domains that had similar sized grains. The grain isolation enabled us to realize the reversals of single domains.

  8. Intensity Pattern of Diffuse X-Ray Scattering From Thermally...

    Office of Scientific and Technical Information (OSTI)

    Intensity Pattern of Diffuse X-Ray Scattering From Thermally Populated Phonons in Fcc ... Sponsoring Org: DOE - BASIC ENERGY SCIENCESUNIVERSITY Country of Publication: United ...

  9. Test of factorization in diffractive deep inelastic scattering...

    Office of Scientific and Technical Information (OSTI)

    Test of factorization in diffractive deep inelastic scattering and photoproduction at HERA Citation Details In-Document Search Title: Test of factorization in diffractive deep ...

  10. Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors...

    Office of Scientific and Technical Information (OSTI)

    Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  11. Diffraction scattering computed tomography: a window into the...

    Office of Scientific and Technical Information (OSTI)

    tomography: a window into the structures of complex nanomaterials Citation Details In-Document Search Title: Diffraction scattering computed tomography: a window into the ...

  12. Multiplet resonance lifetimes in resonant inelastic x-ray scattering...

    Office of Scientific and Technical Information (OSTI)

    shallow core levels Citation Details In-Document Search Title: Multiplet resonance lifetimes in resonant inelastic x-ray scattering involving shallow core levels Authors: ...

  13. Neutron inelastic scattering in natural Pb as a background in...

    Office of Scientific and Technical Information (OSTI)

    Inelastic neutron scattering on Pb isotopes can result in gamma rays near the signature ... Country of Publication: United States Language: English Subject: 73; CROSS SECTIONS; ...

  14. Signal evaluations using singular value decomposition for Thomson scattering diagnostics

    SciTech Connect (OSTI)

    Tojo, H., E-mail: tojo.hiroshi@jaea.go.jp; Yatsuka, E.; Hatae, T.; Itami, K. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan); Yamada, I.; Yasuhara, R.; Funaba, H.; Hayashi, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

    2014-11-15

    This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (T{sub e}) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters.

  15. Temperature effects of resonance scattering for epithermal neutrons...

    Office of Scientific and Technical Information (OSTI)

    Title: Temperature effects of resonance scattering for epithermal neutrons in MCNP Authors: Brown, Forrest B 1 ; Kiedrowski, Brian C 1 ; Sunny, Eva E 2 ; Martin, William R ...

  16. Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors...

    Office of Scientific and Technical Information (OSTI)

    Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors Citation Details ... Sponsoring Org: US DOE Office of Science (DOE SC);Laboratory Directed Research and ...

  17. Robert Hofstadter, Electron Scattering, the Structure of the...

    Office of Scientific and Technical Information (OSTI)

    Robert Hofstadter, Electron Scattering, the Structure of the Nucleons, and Scintillation ... After receiving a B.S. from The City College of New York in 1935, Robert Hofstadter ...

  18. Lattice Waves, Spin Waves, and Neutron Scattering

    DOE R&D Accomplishments [OSTI]

    Brockhouse, Bertram N.

    1962-03-01

    Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)

  19. Technical Report: Rayleigh Scattering Combustion Diagnostic

    SciTech Connect (OSTI)

    Adams, Wyatt; Hecht, Ethan

    2015-07-29

    A laser Rayleigh scattering (LRS) temperature diagnostic was developed over 8 weeks with the goal of studying oxy-combustion of pulverized coal char in high temperature reaction environments with high concentrations of carbon dioxide. Algorithms were developed to analyze data collected from the optical diagnostic system and convert the information to temperature measurements. When completed, the diagnostic will allow for the kinetic gasification rates of the oxy-combustion reaction to be obtained, which was previously not possible since the high concentrations of high temperature CO2 consumed thermocouples that were used to measure flame temperatures inside the flow reactor where the combustion and gasification reactions occur. These kinetic rates are important for studying oxycombustion processes suitable for application as sustainable energy solutions.

  20. Assessing Fatigue and Ultimate Load Uncertainty in Floating Offshore Wind Turbines Due to Varying Simulation Length

    SciTech Connect (OSTI)

    Stewart, G.; Lackner, M.; Haid, L.; Matha, D.; Jonkman, J.; Robertson, A.

    2013-07-01

    With the push towards siting wind turbines farther offshore due to higher wind quality and less visibility, floating offshore wind turbines, which can be located in deep water, are becoming an economically attractive option. The International Electrotechnical Commission's (IEC) 61400-3 design standard covers fixed-bottom offshore wind turbines, but there are a number of new research questions that need to be answered to modify these standards so that they are applicable to floating wind turbines. One issue is the appropriate simulation length needed for floating turbines. This paper will discuss the results from a study assessing the impact of simulation length on the ultimate and fatigue loads of the structure, and will address uncertainties associated with changing the simulation length for the analyzed floating platform. Recommendations of required simulation length based on load uncertainty will be made and compared to current simulation length requirements.

  1. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    SciTech Connect (OSTI)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B

    2012-04-30

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  2. Influence of reabsorption and reemission on stimulated Raman scattering of polymethine dyes in multiple scattering media

    SciTech Connect (OSTI)

    Yashchuk, V P; Komyshan, A O; Smaliuk, A P; Prygodiuk, O A; Ishchenko, A A; Olkhovyk, L A

    2013-12-31

    It is shown that reabsorption of the luminescence radiation in the range of its overlapping with the absorption spectrum and the following reemission to a long-wavelength range may noticeably affect the process of stimulated Raman scattering (SRS) in polymethine dyes in multiple scattering media (MSM). This is related to the fact that SRS in such media occurs jointly with the random lasing (RL), which favors SRS and makes up with it a united nonlinear process. Reemission into the long-wavelength spectrum range amplified in MSM causes the RL spectrum to shift to longer wavelengths and initiates the long-wavelength band of RL, in which a main part of the lasing energy is concentrated. This weakens or completely stops the SRS if the band is beyond the range of possible spectral localisation of Stokes lines. This process depends on the efficiency of light scattering, dye concentration, temperature and pump intensity; hence, there exist optimal values of these parameters for obtaining SRS in MSM. (nonlinear optical phenomena)

  3. Anisotropic Elastic Resonance Scattering model for the Neutron Transport equation

    SciTech Connect (OSTI)

    Mohamed Ouisloumen; Abderrafi M. Ougouag; Shadi Z. Ghrayeb

    2014-11-24

    The resonance scattering transfer cross-section has been reformulated to account for anisotropic scattering in the center-of-mass of the neutron-nucleus system. The main innovation over previous implementations is the relaxation of the ubiquitous assumption of isotropic scattering in the center-of-mass and the actual effective use of scattering angle distributions from evaluated nuclear data files in the computation of the angular moments of the resonant scattering kernels. The formulas for the high order anisotropic moments in the laboratory system are also derived. A multi-group numerical formulation is derived and implemented into a module incorporated within the NJOY nuclear data processing code. An ultra-fine energy mesh cross section library was generated using these new theoretical models and then was used for fuel assembly calculations with the PARAGON lattice physics code. The results obtained indicate a strong effect of this new model on reactivity, multi-group fluxes and isotopic inventory during depletion.

  4. Resonant scattering of surface plasmon polaritons by dressed quantum dots

    SciTech Connect (OSTI)

    Huang, Danhong; Cardimona, Dave; Easter, Michelle; Gumbs, Godfrey; Maradudin, A. A.; Lin, Shawn-Yu; Zhang, Xiang

    2014-06-23

    The resonant scattering of surface plasmon-polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In contrast to non-resonant scattering by a localized dielectric surface defect, a strong resonant peak in the spectrum of the scattered field is predicted that is accompanied by two side valleys. The peak height depends nonlinearly on the amplitude of SPP waves, reflecting the feedback dynamics from a photon-dressed electron-hole plasma inside the quantum dots. This unique behavior in the scattered field peak strength is correlated with the occurrence of a resonant dip in the absorption spectrum of SPP waves due to the interband photon-dressing effect. Our result on the scattering of SPP waves may be experimentally observable and applied to spatially selective illumination and imaging of individual molecules.

  5. Methods and apparatus for transparent display using scattering nanoparticles

    DOE Patents [OSTI]

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2016-05-10

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  6. Scattering of particles with internal degrees of freedom

    SciTech Connect (OSTI)

    Slipushenko, S. V.; Tur, A. V.; Yanovsky, V. V.

    2013-08-15

    The scattering of particles with a small number of internal degrees of freedom is considered. Billiard formalism is used to study the scattering of two such structurally complex particles. The main scattering characteristics are found. Various types of scattering modes are revealed. In particular, a mode is detected when the velocity of motion of such particles away from each other is higher than their approach velocity before the collision. The scattering of such particles is shown to occur after a finite number of collisions. A generalized Newton law is proposed for the collision of particles with a small number of degrees of freedom, and the form of the effective coefficient of restitution is found.

  7. Inelastic neutron scattering study on boson peaks of imidazolium-based ionic liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kofu, Maiko; Inamura, Yasuhiro; Podlesnyak, Andrey A.; Ehlers, Georg; Yamamuro, Osamu; Moriya, Yosuke

    2015-07-26

    Low energy excitations of 1-alkyl-3-methylimidazolium ionic liquids (ILs) have been investigated by means of neutron spectroscopy. In the spectra of inelastic scattering, a broad excitation peak referred to as a “boson peak” appeared at 1–3 meV in all of the ILs measured. The intensity of the boson peak was enhanced at the Q positions corresponding to the diffraction peaks, reflecting the in-phase vibrational nature of the boson peak. Furthermore the boson peak energy (EBP) was insensitive to the length of the alkyl-chain but changed depending on the radius of the anion. From the correlation among EBP, the anion radius, andmore » the glass transition temperature Tg, we conclude that both EBP and Tg in ILs are predominantly governed by the inter-ionic Coulomb interaction which is less influenced by the alkyl-chain length. Furthermore, we also found that the EBP is proportional to the inverse square root of the molecular weight as observed in molecular glasses.« less

  8. A Bunch Length Monitor for JLab 12 GeV Upgrade

    SciTech Connect (OSTI)

    Ahmad, Mahmoud Mohamad Ali; Freyberger, Arne P.; Gubeli, Joseph F.; Krafft, Geoffrey A.

    2013-12-01

    A continuous non-invasive bunch length monitor for the 12 GeV upgrade of Jefferson Lab will be used to determine the bunch length of the beam. The measurement will be done at the fourth dipole of the injector chicane at 123 MeV using the coherent synchrotron light emitted from the dipole. The estimated bunch length is 333 fs. A vacuum chamber will be fabricated and a Radiabeam real time interferometer will be used. In this paper, background, the estimated calculations and the construction of the chamber will be discussed.

  9. Depth-dependent ordering, two-length-scale phenomena, and crossover

    Office of Scientific and Technical Information (OSTI)

    behavior in a crystal featuring a skin layer with defects (Journal Article) | SciTech Connect Depth-dependent ordering, two-length-scale phenomena, and crossover behavior in a crystal featuring a skin layer with defects Citation Details In-Document Search Title: Depth-dependent ordering, two-length-scale phenomena, and crossover behavior in a crystal featuring a skin layer with defects Structural defects in a crystal are responsible for the ''two-length-scale'' behavior in which a sharp

  10. 23 V.S.A. Section 1432 Length of Vehicles; Authorized Highways...

    Open Energy Info (EERE)

    23 V.S.A. Section 1432 Length of Vehicles; Authorized Highways Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 23 V.S.A. Section...

  11. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    SciTech Connect (OSTI)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bones toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by plastic deformation at higher structural levels, which occurs by the process of microcracking.

  12. Method for measuring multiple scattering corrections between liquid scintillators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Verbeke, J. M.; Glenn, A. M.; Keefer, G. J.; Wurtz, R. E.

    2016-04-11

    In this study, a time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.

  13. Resonant x-ray magnetic scattering in holmium

    SciTech Connect (OSTI)

    Gibbs, D.

    1991-01-01

    We review the results of resonant x-ray magnetic scattering experiments on the rare earth metal holmium. When the incident incident x-ray energy is tuned near the L{sub III} absorption edge, large resonant enhancements of the magnetic scattering and resonant integer harmonics are observed. These results are analyzed within the theory of x-ray resonance exchange scattering assuming electric dipole (2p {yields} 5d) and quadrupole (2p {yields} 4f) transitions among atomic orbitals. 30 refs., 5 figs.

  14. Long path-length experimental studies of longitudinal phenomena in intense

    Office of Scientific and Technical Information (OSTI)

    beams (Journal Article) | DOE PAGES Long path-length experimental studies of longitudinal phenomena in intense beams This content will become publicly available on March 22, 2017 Title: Long path-length experimental studies of longitudinal phenomena in intense beams Authors: Beaudoin, B. L. [1] ; Haber, I. [1] Search DOE PAGES for author "Haber, I." Search DOE PAGES for ORCID "0000000297978958" Search orcid.org for ORCID "0000000297978958" ; Kishek, R. A. [1] ;

  15. Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated

    Office of Scientific and Technical Information (OSTI)

    Fuel-Based Light Water Reactor Concepts (Conference) | SciTech Connect Conference: Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor Concepts Citation Details In-Document Search Title: Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor Concepts The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities

  16. A Model for Fiber Length Attrition in Injection-Molded Long-Fiber Composites

    SciTech Connect (OSTI)

    TuckerIII, Charles L. [University of Illinois, Urbana-Champaign; Phelps, Jay H [University of Illinois, Urbana-Champaign; El-Rahman, Ahmed Abd [University of Illinois, Urbana-Champaign; Kunc, Vlastimil [ORNL

    2013-01-01

    Long-fiber thermoplastic (LFT) composites consist of an engineering thermoplastic matrix with glass or carbon reinforcing fibers that are initially 10 to 13 mm long. When an LFT is injection molded, flow during mold filling orients the fibers and degrades the fiber length. Fiber orientation models for injection molding are well developed, and special orientation models for LFTs have been developed. Here we present a detailed quantitative model for fiber length attrition in a flowing fiber suspension. The model tracks a discrete fiber length distribution (FLD) at each spatial node. Key equations are a conservation equation for total fiber length, and a breakage rate equation. The breakage rate is based on buckling of fibers due to hydrodynamic forces, when the fibers are in unfavorable orientations. The FLD model is combined with a mold filling simulation to predict spatial and temporal variations in fiber length distribution in a mold cavity during filling. The predictions compare well to experiments on a glassfiber/ PP LFT molding. Fiber length distributions predicted by the model are easily incorporated into micromechanics models to predict the stress-strain behavior of molded LFT materials. Author to whom correspondence should be addressed; electronic mail: ctucker@illinois.edu 1

  17. On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames

    SciTech Connect (OSTI)

    Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2011-02-15

    Large discrepancies among the laminar flame speeds and Markstein lengths of methane/air mixtures measured by different researchers using the same constant-pressure spherical flame method are observed. As an effort to reduce these discrepancies, one linear model (LM, the stretched flame speed changes linearly with the stretch rate) and two non-linear models (NM I and NM II, the stretched flame speed changes non-linearly with the stretch rate) for extracting the laminar flame speed and Markstein length from propagating spherical flames are investigated. The accuracy and performance of the LM, NM I, and NM II are found to strongly depend on the Lewis number. It is demonstrated that NM I is the most accurate for mixtures with large Lewis number (positive Markstein length) while NM II is the most accurate for mixtures with small Lewis number (negative Markstein length). Therefore, in order to get accurate laminar flame speed and Markstein length from spherical flame experiments, different non-linear models should be used for different mixtures. The validity of the theoretical results is further demonstrated by numerical and experimental studies. The results of this study can be used directly in spherical flame experiments measuring the laminar flame speed and Markstein length. (author)

  18. Extracting Scattering Phase-Shifts in Higher Partial-Waves from...

    Office of Scientific and Technical Information (OSTI)

    Extracting Scattering Phase-Shifts in Higher Partial-Waves from Lattice QCD Calculations Citation Details In-Document Search Title: Extracting Scattering Phase-Shifts in Higher...

  19. Measuring the Scatter of the Mass-Richness Relation in Galaxy...

    Office of Scientific and Technical Information (OSTI)

    Measuring the Scatter of the Mass-Richness Relation in Galaxy Clusters in Photometric ... Title: Measuring the Scatter of the Mass-Richness Relation in Galaxy Clusters in ...

  20. A general framework and review of scatter correction methods in x-ray cone-beam computerized tomography. Part 1: Scatter compensation approaches

    SciTech Connect (OSTI)

    Ruehrnschopf, Ernst-Peter; Klingenbeck, Klaus

    2011-07-15

    Since scattered radiation in cone-beam volume CT implies severe degradation of CT images by quantification errors, artifacts, and noise increase, scatter suppression is one of the main issues related to image quality in CBCT imaging. The aim of this review is to structurize the variety of scatter suppression methods, to analyze the common structure, and to develop a general framework for scatter correction procedures. In general, scatter suppression combines hardware techniques of scatter rejection and software methods of scatter correction. The authors emphasize that scatter correction procedures consist of the main components scatter estimation (by measurement or mathematical modeling) and scatter compensation (deterministic or statistical methods). The framework comprises most scatter correction approaches and its validity also goes beyond transmission CT. Before the advent of cone-beam CT, a lot of papers on scatter correction approaches in x-ray radiography, mammography, emission tomography, and in Megavolt CT had been published. The opportunity to avail from research in those other fields of medical imaging has not yet been sufficiently exploited. Therefore additional references are included when ever it seems pertinent. Scatter estimation and scatter compensation are typically intertwined in iterative procedures. It makes sense to recognize iterative approaches in the light of the concept of self-consistency. The importance of incorporating scatter compensation approaches into a statistical framework for noise minimization has to be underscored. Signal and noise propagation analysis is presented. A main result is the preservation of differential-signal-to-noise-ratio (dSNR) in CT projection data by ideal scatter correction. The objective of scatter compensation methods is the restoration of quantitative accuracy and a balance between low-contrast restoration and noise reduction. In a synopsis section, the different deterministic and statistical methods are discussed with respect to their properties and applications. The current paper is focused on scatter compensation algorithms. The multitude of scatter estimation models will be dealt with in a separate paper.

  1. Nonreciprocal wave scattering on nonlinear string-coupled oscillators

    SciTech Connect (OSTI)

    Lepri, Stefano; Pikovsky, Arkady

    2014-12-01

    We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses) system of delay differential equations of neutral type. Nonlinearity of oscillators makes the scattering non-reciprocal: The same wave is transmitted differently in two directions. Periodic regimes of scattering are analyzed approximately, using amplitude equation approach. We show that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions. Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaotic scattering. Moreover, a regime of a chaotic diode, where transmission is periodic in one direction and chaotic in the opposite one, is reported.

  2. Sector 3 : High Resolution X-ray Scattering | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & workshops IXN Group Useful Links Current APS status ESAF System GUP System X-Ray Science Division My APS Portal Sector 3 : High Resolution X-ray Scattering Sector 3 is...

  3. NN inversion potentials intermediate energy proton-nucleus elastic scattering

    SciTech Connect (OSTI)

    Arellano, H.F.; Brieva, F.A.; Love, W.G.; Geramb, H.V. von

    1995-10-01

    Recently developed nucleon-nucleon interactions using the quantum inverse scattering method shed new fight on the off-shell properties of the internucleon effective force for nucleon-nucleus scattering. Calculations of proton elastic scattering from {sup 40}Ca and {sup 208}Pb in the 500 MeV region show that variations in off-shell contributions are determined to a great extent by the accuracy with which the nucleon-nucleon phase shifts are reproduced. The study is based on the full-folding approach to the nucleon-nucleus optical potential which allows a deep understanding of the interplay between on- and off-shell effects in nucleon scattering. Results and the promising extension offered by the inversion potentials beyond the range of validity of the low-energy internucleon forces will be discussed.

  4. Elastic Hadron Scattering on Li Isotopes at Intermediate Energies

    SciTech Connect (OSTI)

    Zhusupov, M.A.; Imambekov, O.; Ibraeva, E.T.

    2005-01-01

    The elastic scattering of hadrons (protons, charged pions, and positively charged kaons) on {sup 6,7,8}Li nuclei is analyzed on the basis of Glauber-Sitenko diffraction theory. A few nuclear-wave-function versions found within two- and three-particle potential cluster models are used in the calculations. It is shown that the application of these wave functions in diffraction theory makes it possible to describe adequately the experimental differential cross sections and analyzing powers in hadron scattering at intermediate energies. In this study, particular attention is given to a comparison of the scattering of different particles on the same target nucleus, as well as to a comparison of scattering of particles of the same sort on different target nuclei.

  5. Magnetism studies using resonant, coherent, x-ray scattering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    where the scattering vector q that can only be reached in reflection. The method is Fourier transform holography, where the exit wave from a sample interferes with a reference...

  6. Time dependence of Bragg forward scattering and self-seeding...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Time dependence of Bragg forward scattering and self-seeding of hard x-ray free-electron lasers Citation Details In-Document Search Title: Time dependence of Bragg ...

  7. Ultraviolet Thomson scattering measurements of the electron feature...

    Office of Scientific and Technical Information (OSTI)

    Title: Ultraviolet Thomson scattering measurements of the electron feature with an energetic 263 nm probe Authors: Ross, J S ; Divol, L ; Sorce, C ; Froula, D H ; Glenzer, S H ...

  8. Elastic Scattering LIDAR Data Acquisition Visualization and Analysis

    Energy Science and Technology Software Center (OSTI)

    1999-10-12

    ELASTIC/EVIEW is a software system that controls an elastic scattering atmospheric Light Detection and Ranging (LIDAR) instrument. It can acquire elastic scattering LIDAR data using this system and produce images of one, two, and three-dimensional atmospheric data on particulates and other atmospheric pollutants. The user interface is a modern menu driven syatem with appropriate support for user configuration and printing files.

  9. General integral relations for the description of scattering states using

    Office of Scientific and Technical Information (OSTI)

    the hyperspherical adiabatic basis (Journal Article) | SciTech Connect General integral relations for the description of scattering states using the hyperspherical adiabatic basis Citation Details In-Document Search Title: General integral relations for the description of scattering states using the hyperspherical adiabatic basis In this work we investigate 1+2 reactions within the framework of the hyperspherical adiabatic expansion method. With this aim two integral relations, derived from

  10. Implementing Rational Surface Locations Measured From Thomson Scattering Into

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementing Rational Surface Locations Measured From Thomson Scattering Into MSTfit by Curtis A. Johnson Senior Thesis (Physics) at the University of Wisconsin-Madison 2014 i Abstract Measurements of rational surface (RS) locations in the Madison Symmetric Torus as measured by Thomson Scattering (TS) have been implemented in the equilibrium reconstruction program MSTfit. Possible correlated errors between diagnostics show a small impact on the equilibrium reconstruction done by MSTfit. TS RS

  11. Inelastic neutron scattering as a possible background for neutrinoless

    Office of Scientific and Technical Information (OSTI)

    double-beta decay experiments (Conference) | SciTech Connect Inelastic neutron scattering as a possible background for neutrinoless double-beta decay experiments Citation Details In-Document Search Title: Inelastic neutron scattering as a possible background for neutrinoless double-beta decay experiments Authors: Boswell, Melissa S [1] ; Devlin, Matthew J. [1] ; Elliott, Steven R [1] ; Fotiadis, Nikolaos [1] ; Hime, Andrew [1] ; Nelson, Ronald O. [1] ; Guiseppe, Vincente E. [2] ; Mei, D. M.

  12. Inelastic neutron scattering as a possible background for neutrinoless

    Office of Scientific and Technical Information (OSTI)

    double-beta decay experiments (Conference) | SciTech Connect Inelastic neutron scattering as a possible background for neutrinoless double-beta decay experiments Citation Details In-Document Search Title: Inelastic neutron scattering as a possible background for neutrinoless double-beta decay experiments × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided

  13. Multiple scattering effects in fission neutron outputs (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Multiple scattering effects in fission neutron outputs Citation Details In-Document Search Title: Multiple scattering effects in fission neutron outputs Authors: Taddeucci, Terry N [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2011-02-24 OSTI Identifier: 1053153 Report Number(s): LA-UR-11-01326; LA-UR-11-1326 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: Fission fprogram Review, ;

  14. Multiplet resonance lifetimes in resonant inelastic x-ray scattering

    Office of Scientific and Technical Information (OSTI)

    involving shallow core levels (Journal Article) | SciTech Connect Multiplet resonance lifetimes in resonant inelastic x-ray scattering involving shallow core levels Citation Details In-Document Search Title: Multiplet resonance lifetimes in resonant inelastic x-ray scattering involving shallow core levels Authors: Wray, L. Andrew ; Yang, Wanli ; Eisaki, Hiroshi ; Hussain, Zahid ; Chuang, Yi-De Publication Date: 2012-11-19 OSTI Identifier: 1101794 Type: Publisher's Accepted Manuscript Journal

  15. Resonances in Coupled ?K??K Scattering from Quantum Chromodynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.; Wilson, David J.

    2014-10-01

    Using first-principles calculation within Quantum Chromodynamics, we are able to reproduce the pattern of experimental strange resonances which appear as complex singularities within coupled ?K, ?K scattering amplitudes. We make use of numerical computation within the lattice discretized approach to QCD, extracting the energy dependence of scattering amplitudes through their relation- ship to the discrete spectrum of the theory in a finite-volume, which we map out in unprecedented detail.

  16. Neutron Scatter Camera for Radiaton Detection - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Energy Analysis Energy Analysis Advanced Materials Advanced Materials Find More Like This Return to Search Neutron Scatter Camera for Radiaton Detection Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (839 KB) Technology Marketing SummarySandia's neutron scatter camera is an innovative design which combines the benefits of gamma ray imaging with fast neutron imaging. The camera

  17. Oak Ridge Neutron Scattering Capabilities Continue to Expand (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Oak Ridge Neutron Scattering Capabilities Continue to Expand Citation Details In-Document Search Title: Oak Ridge Neutron Scattering Capabilities Continue to Expand No abstract prepared. Authors: Ekkebus, Allen E [1] + Show Author Affiliations ORNL Publication Date: 2009-01-01 OSTI Identifier: 948856 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Journal Article Resource Relation: Journal Name: Notiziario Neutroni E Luce di Sincrotrone; Journal Volume: 14;

  18. Observation of the Second Harmonic in Thomson Scattering from Relativistic

    Office of Scientific and Technical Information (OSTI)

    Electrons (Journal Article) | SciTech Connect Journal Article: Observation of the Second Harmonic in Thomson Scattering from Relativistic Electrons Citation Details In-Document Search Title: Observation of the Second Harmonic in Thomson Scattering from Relativistic Electrons A free relativistic electron in an electromagnetic field is a pure case of a light-matter interaction. In the laboratory environment, this interaction can be realized by colliding laser pulses with electron beams

  19. Rapidity divergences and deep inelastic scattering in the endpoint region

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Rapidity divergences and deep inelastic scattering in the endpoint region Citation Details In-Document Search Title: Rapidity divergences and deep inelastic scattering in the endpoint region Authors: Fleming, Sean ; Labun, Ou Z. Publication Date: 2015-05-12 OSTI Identifier: 1179737 Grant/Contract Number: FG02-06ER41449; FG02-04ER41338 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information: Journal Volume: 91;

  20. BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION Citation Details In-Document Search Title: BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is

  1. Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Techniques | Stanford Synchrotron Radiation Lightsource Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic Techniques Wednesday, September 5, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Gang Chen Seminar: Structures at atomic scales are traditionally determined through X-ray crystallography that amplifies scattering intensities by introducing spatial periodicity. For amorphous materials and many macromolecules, such as viruses, proteins and biofilms, it is hard to

  2. Majewski named Fellow of the Neutron Scattering Society of America

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Majewski named Fellow of the Neutron Scattering Society of America Majewski named Fellow of the Neutron Scattering Society of America The Society recognized Majewski for "contributions to our understanding of weakly organized two-dimensional systems, including surfactant molecules found in biological systems." May 9, 2016 Jaroslaw (Jarek) Majewski Jaroslaw (Jarek) Majewski Communications Office (505) 667-7000 The American Physical Society named him as Fellow for his contributions to

  3. Temperature effects of resonance scattering for epithermal neutrons in MCNP

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Temperature effects of resonance scattering for epithermal neutrons in MCNP Citation Details In-Document Search Title: Temperature effects of resonance scattering for epithermal neutrons in MCNP Authors: Brown, Forrest B [1] ; Kiedrowski, Brian C [1] ; Sunny, Eva E [2] ; Martin, William R [2] + Show Author Affiliations Los Alamos National Laboratory [Los Alamos National Laboratory UNIV. OF MICHIGAN [UNIV. OF MICHIGAN Publication Date: 2011-11-10 OSTI

  4. Turbulent pitch-angle scattering and diffusive transport of hard X-ray-producing electrons in flaring coronal loops

    SciTech Connect (OSTI)

    Kontar, Eduard P.; Bian, Nicolas H.; Emslie, A. Gordon; Vilmer, Nicole E-mail: emslieg@wku.edu

    2014-01-10

    Recent observations from RHESSI have revealed that the number of non-thermal electrons in the coronal part of a flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model, in which electrons stream along the loop while losing their energy through collisions with the ambient plasma; additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and other observations that suggest that high-energy electrons are confined to the coronal region of the source, we consider turbulent pitch-angle scattering of fast electrons off low-frequency magnetic fluctuations as a confinement mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop, and hence to an enhancement of the coronal hard X-ray source relative to the footpoints. The variation of source size L with electron energy E becomes weaker than the quadratic behavior pertinent to collisional transport, with the slope of L(E) depending directly on the mean free path ? associated with the non-collisional scattering mechanism. Comparing the predictions of the model with observations, we find that ? ? (10{sup 8}-10{sup 9}) cm for ?30 keV, less than the length of a typical flaring loop and smaller than, or comparable to, the size of the electron acceleration region.

  5. A semianalytic model to extract differential linear scattering coefficients of breast tissue from energy dispersive x-ray diffraction measurements

    SciTech Connect (OSTI)

    LeClair, Robert J.; Boileau, Michel M.; Wang Yinkun [Department of Physics and Astronomy, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada) and Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada); Department of Physics and Astronomy, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada); Department of Physics and Astronomy, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada)

    2006-04-15

    The goal of this work is to develop a technique to measure the x-ray diffraction signals of breast biopsy specimens. A biomedical x-ray diffraction technology capable of measuring such signals may prove to be of diagnostic use to the medical field. Energy dispersive x-ray diffraction measurements coupled with a semianalytical model were used to extract the differential linear scattering coefficients [{mu}{sub s}(x)] of breast tissues on absolute scales. The coefficients describe the probabilities of scatter events occurring per unit length of tissue per unit solid angle of detection. They are a function of the momentum transfer argument, x=sin({theta}/2)/{lambda}, where {theta}=scatter angle and {lambda}=incident wavelength. The technique was validated by using a 3 mm diameter 50 kV polychromatic x-ray beam incident on a 5 mm diameter 5 mm thick sample of water. Water was used because good x-ray diffraction data are available in the literature. The scatter profiles from 6 deg. to 15 deg. in increments of 1 deg. were measured with a 3 mmx3 mmx2 mm thick cadmium zinc telluride detector. A 2 mm diameter Pb aperture was placed on top of the detector. The target to detector distance was 29 cm and the duration of each measurement was 10 min. Ensemble averages of the results compare well with the gold standard data of A. H. Narten [''X-ray diffraction data on liquid water in the temperature range 4 deg. C-200 deg. C, ORNL Report No. 4578 (1970)]. An average 7.68% difference for which most of the discrepancies can be attributed to the background noise at low angles was obtained. The preliminary measurements of breast tissue are also encouraging.

  6. Enhanced reaction rates in NDP analysis with neutron scattering

    SciTech Connect (OSTI)

    Downing, R. Gregory

    2014-04-15

    Neutron depth profiling (NDP) makes accessible quantitative information on a few isotopic concentration profiles ranging from the surface into the sample a few micrometers. Because the candidate analytes for NDP are few, there is little interference encountered. Furthermore, neutrons have no charge so mixed chemical states in the sample are of no direct concern. There are a few nuclides that exhibit large probabilities for neutron scattering. The effect of neutron scattering on NDP measurements has not previously been evaluated as a basis for either enhancing the reaction rates or as a source of measurement error. Hydrogen is a common element exhibiting large neutron scattering probability found in or around sample volumes being analyzed by NDP. A systematic study was conducted to determine the degree of signal change when neutron scattering occurs during analysis. The relative signal perturbation was evaluated for materials of varied neutron scattering probability, concentration, total mass, and geometry. Signal enhancements up to 50% are observed when the hydrogen density is high and in close proximity to the region of analysis with neutron beams of sub thermal energies. Greater signal enhancements for the same neutron number density are reported for thermal neutron beams. Even adhesive tape used to position the sample produces a measureable signal enhancement. Because of the shallow volume, negligible distortion of the NDP measured profile shape is encountered from neutron scattering.

  7. A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing

    SciTech Connect (OSTI)

    Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.; Gore, R. A.; Ristorcelli, J. R.

    2015-09-08

    A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales, as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.

  8. Current sheath formation dynamics and structure for different insulator lengths of plasma focus device

    SciTech Connect (OSTI)

    Seng, Y. S.; Lee, P.; Rawat, R. S.

    2014-11-15

    The breakdown phase of the UNU-ICTP plasma focus (PF) device was successfully simulated using the electromagnetic particle in cell method. A clear uplift of the current sheath (CS) layer was observed near the insulator surface, accompanied with an exponential increase in the plasma density. Both phenomena were found to coincide with the surge in the electric current, which is indicative of voltage breakdown. Simulations performed on the device with different insulator lengths showed an increase in the fast ionization wave velocity with length. The voltage breakdown time was found to scale linearly with the insulator length. Different spatial profiles of the CS electron density, and the associated degree of uniformity, were found to vary with different insulator lengths. The ordering, according to the degree of uniformity, among insulator lengths of 19, 22, and 26?mm agreed with that in terms of soft X-ray radiation yield observed from experiments. This suggests a direct correlation between CS density homogeneity near breakdown and the radiation yield performance. These studies were performed with a linearly increasing voltage time profile as input to the PF device.

  9. Simulation-Length Requirements in the Loads Analysis of Offshore Floating Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Haid, L.; Stewart, G.; Jonkman, J.; Robertson, A.; Lackner, M.; Matha, D.

    2013-06-01

    The goal of this paper is to examine the appropriate length of a floating offshore wind turbine (FOWT) simulation - a fundamental question that needs to be answered to develop design requirements. To examine this issue, a loads analysis of an example FOWT was performed in FAST with varying simulation lengths. The offshore wind system used was the OC3-Hywind spar buoy, which was developed for use in the International Energy Agency Code Comparison Collaborative Project and supports NREL's offshore 5-megawatt baseline turbine. Realistic metocean data from the National Oceanic and Atmospheric Administration and repeated periodic wind files were used to excite the structure. The results of the analysis clearly show that loads do not increase for longer simulations. In regards to fatigue, a sensitivity analysis shows that the procedure used for counting half cycles is more important than the simulation length itself. Based on these results, neither the simulation length nor the periodic wind files affect response statistics and loads for FOWTs (at least for the spar studied here); a result in contrast to the offshore oil and gas industry, where running simulations of at least 3 hours in length is common practice.

  10. Transport of thermal neutrons in D/sub 2/O in the temperature Range 5 to 60/sup 0/C based on a new scattering kernel

    SciTech Connect (OSTI)

    Bansal, R.M.; Kothari, L.S.; Tewari, S.P.

    1980-10-01

    A new scattering kernel for heavy water has been proposed. The kernel takes into account the chemical binding energy effects and also includes the rotational and intramolecular vibrational modes. Using this scattering kernel, various neutron transport processes in the temperature range 5 to 60/sup 0/C have been studied and compared with the corresponding experimental results. The calculated results include total neutron scattering cross section at 20/sup 0/C; asymptotic decay of neutron pulses in the temperature range 5 to 60/sup 0/C and temperature variation of the diffusion coefficient and diffusion cooling coefficient; timedependent spectra inside finite-sized assemblies of heavy water at 20 and 43.3/sup 0/C thermalization time; and diffusion length and space-dependent study in pure and poisoned assemblies of heavy water. The calculated results are in good agreement with the experimental results. At some places notable differences are observed between the results obtained using our scattering kernel and those based on the Honeck kernel.

  11. Laser interferometric method for determining the carrier diffusion length in semiconductors

    SciTech Connect (OSTI)

    Manukhov, V. V.; Fedortsov, A. B.; Ivanov, A. S.

    2015-09-15

    A new laser interferometric method for measuring the carrier diffusion length in semiconductors is proposed. The method is based on the interference–absorption interaction of two laser radiations in a semiconductor. Injected radiation generates additional carriers in a semiconductor, which causes a change in the material’s optical constants and modulation of the probing radiation passed through the sample. When changing the distance between carrier generation and probing points, a decrease in the carrier concentration, which depends on the diffusion length, is recorded. The diffusion length is determined by comparing the experimental and theoretical dependences of the probe signal on the divergence of the injector and probe beams. The method is successfully tested on semiconductor samples with different thicknesses and surface states and can be used in scientific research and the electronics industry.

  12. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    DOE Patents [OSTI]

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  13. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  14. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  15. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  16. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newsom, Rob; Goldsmith, John

    1998-03-01

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  17. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  18. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  19. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  20. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  1. CHARACTERISTIC LENGTH OF ENERGY-CONTAINING STRUCTURES AT THE BASE OF A CORONAL HOLE

    SciTech Connect (OSTI)

    Abramenko, V. I.; Yurchyshyn, V. B.; Goode, P. R.; Ahn, K.; Cao, W.; Zank, G. P.; Dosch, A.

    2013-08-20

    An essential parameter for models of coronal heating and fast solar wind acceleration that rely on the dissipation of MHD turbulence is the characteristic energy-containing length {lambda} of the squared velocity and magnetic field fluctuations (u{sup 2} and b{sup 2}) transverse to the mean magnetic field inside a coronal hole (CH) at the base of the corona. The characteristic length scale directly defines the heating rate. We use a time series analysis of solar granulation and magnetic field measurements inside two CHs obtained with the New Solar Telescope at Big Bear Solar Observatory. A data set for transverse magnetic fields obtained with the Solar Optical Telescope/Spectro-Polarimeter on board the Hinode spacecraft was utilized to analyze the squared transverse magnetic field fluctuations b{sub t}{sup 2}. Local correlation tracking was applied to derive the squared transverse velocity fluctuations u {sup 2}. We find that for u {sup 2} structures, the Batchelor integral scale {lambda} varies in a range of 1800-2100 km, whereas the correlation length sigmav and the e-folding length L vary between 660 and 1460 km. Structures for b{sub t}{sup 2} yield {lambda} Almost-Equal-To 1600 km, sigmav Almost-Equal-To 640 km, and L Almost-Equal-To 620 km. An averaged (over {lambda}, sigmav, and L) value of the characteristic length of u {sup 2} fluctuations is 1260 {+-} 500 km, and that of b{sub t}{sup 2} is 950 {+-} 560 km. The characteristic length scale in the photosphere is approximately 1.5-50 times smaller than that adopted in previous models (3-30 Multiplication-Sign 10{sup 3} km). Our results provide a critical input parameter for current models of coronal heating and should yield an improved understanding of fast solar wind acceleration.

  2. Full-length Gαq-phospholipase C-β3 structure reveals interfaces of the

    Office of Scientific and Technical Information (OSTI)

    C-terminal coiled-coil domain (Journal Article) | SciTech Connect Full-length Gαq-phospholipase C-β3 structure reveals interfaces of the C-terminal coiled-coil domain Citation Details In-Document Search Title: Full-length Gαq-phospholipase C-β3 structure reveals interfaces of the C-terminal coiled-coil domain Phospholipase C-β (PLCβ) is directly activated by Gαq, but the molecular basis for how its distal C-terminal domain (CTD) contributes to maximal activity is poorly understood.

  3. Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding

    SciTech Connect (OSTI)

    Huang, David M.; Chandler, David

    2000-04-01

    The Lum-Chandler-Weeks theory of hydrophobicity [J. Phys. Chem. 103, 4570 (1999)] is applied to treat the temperature dependence of hydrophobic solvation in water. The application illustrates how the temperature dependence for hydrophobic surfaces extending less than 1nm differs significantly from that for surfaces extending more than 1nm. The latter is the result of water depletion, a collective effect, that appears at length scales of 1nm and larger. Due to the contrasting behaviors at small and large length scales, hydrophobicity by itself can explain the variable behavior of protein folding.

  4. Long path-length experimental studies of longitudinal phenomena in intense

    Office of Scientific and Technical Information (OSTI)

    beams (Journal Article) | SciTech Connect Journal Article: Long path-length experimental studies of longitudinal phenomena in intense beams Citation Details In-Document Search This content will become publicly available on March 22, 2017 Title: Long path-length experimental studies of longitudinal phenomena in intense beams Authors: Beaudoin, B. L. [1] ; Haber, I. [1] Search SciTech Connect for author "Haber, I." Search SciTech Connect for ORCID "0000000297978958" Search

  5. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    SciTech Connect (OSTI)

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.

  6. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; et al

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component)more » using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.« less

  7. The AharonovBohm effect in scattering theory

    SciTech Connect (OSTI)

    Sitenko, Yu.A.; Vlasii, N.D.

    2013-12-15

    The AharonovBohm effect is considered as a scattering event with nonrelativistic charged particles of the wavelength which is less than the transverse size of an impenetrable magnetic vortex. The quasiclassical WKB method is shown to be efficient in solving this scattering problem. We find that the scattering cross section consists of two terms, one describing the classical phenomenon of elastic reflection and another one describing the quantum phenomenon of diffraction; the AharonovBohm effect is manifested as a fringe shift in the diffraction pattern. Both the classical and the quantum phenomena are independent of the choice of a boundary condition at the vortex edge, providing that probability is conserved. We show that a propagation of charged particles can be controlled by altering the flux of a magnetic vortex placed on their way. -- Highlights: AharonovBohm effect as a scattering event. Impenetrable magnetic vortex of nonzero transverse size. Scattering cross section is independent of a self-adjoint extension employed. Classical phenomenon of elastic reflection and quantum phenomenon of diffraction. AharonovBohm effect as a fringe shift in the diffraction pattern.

  8. Siegert pseudostate formulation of scattering theory: Two-channel case

    SciTech Connect (OSTI)

    Sitnikov, George V.; Tolstikhin, Oleg I.

    2003-03-01

    Siegert pseudostates (SPS) are a finite basis representation of Siegert states (SS) for finite-range potentials. This paper presents a generalization of the SPS formulation of scattering theory, originally developed by Tolstikhin, Ostrovsky, and Nakamura [Phys. Rev. A 58, 2077 (1998)] for s-wave scattering in the one-channel case, to s-wave scattering in the two-channel case. This includes the investigation of the properties of orthogonality and completeness of two-channel SPS and the derivation of the SPS expansions for the two-channel Green function, wave function, and scattering matrix. Similar to the one-channel case, two types of expansions for the scattering matrix are obtained: one has a form of a sum and requires the knowledge of both the SPS eigenvalues and eigenfunctions, while the other has a form of a product and involves the eigenvalues only. As the size of the basis tends to infinity, the product formulas obtained here in terms of SPS coincide with those given by Le Couteur [Proc. R. Soc. London, Ser. A 256, 115 (1960)] in terms of SS; all the other relations, as far as we know, have no counterparts in the literature. Partial widths of resonances in the case when both channels are open for decay are identified in terms of SPS - a feature that is absent in the one-channel case. The results are illustrated by numerical calculations for two model potentials.

  9. Tapered laser rods as a means of minimizing the path length of trapped barrel mode rays

    DOE Patents [OSTI]

    Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.; Mercer, Ian; Perry, Michael D.

    2005-08-30

    By tapering the diameter of a flanged barrel laser rod over its length, the maximum trapped path length of a barrel mode can be dramatically reduced, thereby reducing the ability of the trapped spontaneous emission to negatively impact laser performance through amplified spontaneous emission (ASE). Laser rods with polished barrels and flanged end caps have found increasing application in diode array end-pumped laser systems. The polished barrel of the rod serves to confine diode array pump light within the rod. In systems utilizing an end-pumping geometry and such polished barrel laser rods, the pump light that is introduced into one or both ends of the laser rod, is ducted down the length of the rod via the total internal reflections (TIRs) that occur when the light strikes the rod's barrel. A disadvantage of using polished barrel laser rods is that such rods are very susceptible to barrel mode paths that can trap spontaneous emission over long path lengths. This trapped spontaneous emission can then be amplified through stimulated emission resulting in a situation where the stored energy available to the desired lasing mode is effectively depleted, which then negatively impacts the laser's performance, a result that is effectively reduced by introducing a taper onto the laser rod.

  10. Infrared Spectroscope for Electron Bunch-length Measurement: Heat Sensor Parameters Analysis

    SciTech Connect (OSTI)

    Domgmo-Momo, Gilles; /Towson U. /SLAC

    2012-09-05

    The Linac Coherent Light Source (LCLS) is used for many experiments. Taking advantage of the free electron laser (FEL) process, scientists of various fields perform experiments of all kind. Some for example study protein folding; other experiments are more interested in the way electrons interact with the molecules before they are destroyed. These experiments among many others have very little information about the electrons x-ray produced by the FEL, except that the FEL is using bunches less than 10 femtoseconds long. To be able to interpret the data collected from those experiments, more accurate information is needed about the electron's bunch-length. Existing bunch length measurement techniques are not suitable for the measurement of such small time scales. Hence the need to design a device that will provide more precise information about the electron bunch length. This paper investigates the use of a pyreoelectric heat sensor that has a sensitivity of about 1.34 micro amps per watt for the single cell detector. Such sensitivity, added to the fact that the detector is an array sensor, makes the detector studied the primary candidate to be integrated to an infrared spectrometer designed to better measure the LCLS electron bunch length.

  11. Bunch length compression method for free electron lasers to avoid parasitic compressions

    SciTech Connect (OSTI)

    Douglas, David R.; Benson, Stephen; Nguyen, Dinh Cong; Tennant, Christopher; Wilson, Guy

    2015-05-26

    A method of bunch length compression method for a free electron laser (FEL) that avoids parasitic compressions by 1) applying acceleration on the falling portion of the RF waveform, 2) compressing using a positive momentum compaction (R.sub.56>0), and 3) compensating for aberration by using nonlinear magnets in the compressor beam line.

  12. The accuracy of climate models' simulated season lengths and the effectiveness of grid scale correction factors

    SciTech Connect (OSTI)

    Winterhalter, Wade E.

    2011-09-01

    Global climate change is expected to impact biological populations through a variety of mechanisms including increases in the length of their growing season. Climate models are useful tools for predicting how season length might change in the future. However, the accuracy of these models tends to be rather low at regional geographic scales. Here, I determined the ability of several atmosphere and ocean general circulating models (AOGCMs) to accurately simulate historical season lengths for a temperate ectotherm across the continental United States. I also evaluated the effectiveness of regional-scale correction factors to improve the accuracy of these models. I found that both the accuracy of simulated season lengths and the effectiveness of the correction factors to improve the model's accuracy varied geographically and across models. These results suggest that regional specific correction factors do not always adequately remove potential discrepancies between simulated and historically observed environmental parameters. As such, an explicit evaluation of the correction factors' effectiveness should be included in future studies of global climate change's impact on biological populations.

  13. The accuracy of climate models' simulated season lengths and the effectiveness of grid scale correction factors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Winterhalter, Wade E.

    2011-09-01

    Global climate change is expected to impact biological populations through a variety of mechanisms including increases in the length of their growing season. Climate models are useful tools for predicting how season length might change in the future. However, the accuracy of these models tends to be rather low at regional geographic scales. Here, I determined the ability of several atmosphere and ocean general circulating models (AOGCMs) to accurately simulate historical season lengths for a temperate ectotherm across the continental United States. I also evaluated the effectiveness of regional-scale correction factors to improve the accuracy of these models. I foundmore » that both the accuracy of simulated season lengths and the effectiveness of the correction factors to improve the model's accuracy varied geographically and across models. These results suggest that regional specific correction factors do not always adequately remove potential discrepancies between simulated and historically observed environmental parameters. As such, an explicit evaluation of the correction factors' effectiveness should be included in future studies of global climate change's impact on biological populations.« less

  14. Comparison between length and velocity gauges in quantum simulations of high-order harmonic generation

    SciTech Connect (OSTI)

    Han, Yong-Chang; Madsen, Lars Bojer

    2010-06-15

    We solve the time-dependent Schroedinger equation for atomic hydrogen in an intense field using spherical coordinates with a radial grid and a spherical harmonic basis for the angular part. We present the high-order harmonic spectra based on three different forms, the dipole, dipole velocity, and acceleration forms, and two gauges, the length and velocity gauges. The relationships among the harmonic phases obtained from the Fourier transform of the three forms are discussed in detail. Although quantum mechanics is gauge invariant and the length and velocity gauges should give identical results, the two gauges present different computation efficiencies, which reflects the different behavior in terms of characteristics of the physical couplings acting in the two gauges. In order to obtain convergence, more angular momentum states are required in the length gauge, while more grid points are required in the velocity gauge. At lower laser intensity, the calculation in the length gauge is faster than that in the velocity gauge, while at high laser intensity, the calculation in the velocity gauge is more efficient. The velocity gauge is also expected to be more efficient in higher-dimensional calculations.

  15. Achromatic recirculated chicane with fixed geometry and independently variable path length and momentum compaction

    DOE Patents [OSTI]

    Douglas, David R.; Neil, George R.

    2005-04-26

    A particle beam recirculated chicane geometry that, through the inducement of a pair of 180 degree bends directed by the poles of a pair of controllable magnetic fields allows for variation of dipole position, return loop radii and steering/focussing, thereby allowing the implementation of independent variation of path length and momentum compaction.

  16. Scattering from Colloid-Polymer Conjugates with Excluded Volume Effect

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xin; Smith, Gregory Scott; Chen, Wei-Ren

    2015-01-01

    This work presents scattering functions of conjugates consisting of a colloid particle and a self-avoiding polymer chain as a model for protein-polymer conjugates and nanoparticle-polymer conjugates in solution. The model is directly derived from the two-point correlation function with the inclusion of excluded volume effects. The dependence of the calculated scattering function on the geometric shape of the colloid and polymer stiffness is investigated. The model is able to describe the experimental scattering signature of the solutions of suspending hard particle-polymer conjugates and provide additional conformational information. This model explicitly elucidates the link between the global conformation of a conjugatemore » and the microstructure of its constituent components.« less

  17. Paper area density measurement from forward transmitted scattered light

    DOE Patents [OSTI]

    Koo, Jackson C.

    2001-01-01

    A method whereby the average paper fiber area density (weight per unit area) can be directly calculated from the intensity of transmitted, scattered light at two different wavelengths, one being a non-absorpted wavelength. Also, the method makes it possible to derive the water percentage per fiber area density from a two-wavelength measurement. In the optical measuring technique optical transmitted intensity, for example, at 2.1 microns cellulose absorption line is measured and compared with another scattered, optical transmitted intensity reference in the nearby spectrum region, such as 1.68 microns, where there is no absorption. From the ratio of these two intensities, one can calculate the scattering absorption coefficient at 2.1 microns. This absorption coefficient at this wavelength is, then, experimentally correlated to the paper fiber area density. The water percentage per fiber area density can be derived from this two-wavelength measurement approach.

  18. A Double Scattering Analytical Model For Elastic Recoil Detection Analysis

    SciTech Connect (OSTI)

    Barradas, N. P.; Lorenz, K.; Alves, E.; Darakchieva, V.

    2011-06-01

    We present an analytical model for calculation of double scattering in elastic recoil detection measurements. Only events involving the beam particle and the recoil are considered, i.e. 1) an ion scatters off a target element and then produces a recoil, and 2) an ion produces a recoil which then scatters off a target element. Events involving intermediate recoils are not considered, i.e. when the primary ion produces a recoil which then produces a second recoil. If the recoil element is also present in the stopping foil, recoil events in the stopping foil are also calculated. We included the model in the standard code for IBA data analysis NDF, and applied it to the measurement of hydrogen in Si.

  19. Scattering from Colloid-Polymer Conjugates with Excluded Volume Effect

    SciTech Connect (OSTI)

    Li, Xin; Smith, Gregory Scott; Chen, Wei-Ren

    2015-01-01

    This work presents scattering functions of conjugates consisting of a colloid particle and a self-avoiding polymer chain as a model for protein-polymer conjugates and nanoparticle-polymer conjugates in solution. The model is directly derived from the two-point correlation function with the inclusion of excluded volume effects. The dependence of the calculated scattering function on the geometric shape of the colloid and polymer stiffness is investigated. The model is able to describe the experimental scattering signature of the solutions of suspending hard particle-polymer conjugates and provide additional conformational information. This model explicitly elucidates the link between the global conformation of a conjugate and the microstructure of its constituent components.

  20. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    SciTech Connect (OSTI)

    Gamboa, E.J.; Huntington, C.M.; Trantham, M.R.; Keiter, P.A; Drake, R.P.; Montgomery, David; Benage, John F.; Letzring, Samuel A.

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  1. Inelastic magnetic neutron scattering in CePd{sub 3}.

    SciTech Connect (OSTI)

    Lawrence, J. M.; Fanelli, V. R.; Goremychkin, E. A.; Osborn, R.; Bauer, E. D.; McClellan, K. J.; Christianson, A. D.; Univ. of California at Irvine; LANL; ORNL

    2008-01-01

    We have performed time-of-flight neutron scattering measurements on a single crystal of the intermediate valence compound CePd{sub 3}. At 10 K, a Kondo-esque inelastic magnetic scattering peak occurs near {Delta}E = 60 meV with maximum intensity for momentum transfer Q near the (1/2, 1/2, 0) zone boundary. Spectral weight is transferred to lower energy as Q varies until at zone center the intensity at 60 meV is considerably weaker. These results are in qualitative accord with predictions of the Anderson lattice. The Q-dependence may resolve an older controversy concerning the low-temperature scattering. We discuss the relationship of these results to our recent results in YbAl{sub 3}.

  2. Barrier distribution of quasi-elastic backward scattering

    SciTech Connect (OSTI)

    Mitsuoka, S.; Ikezoe, H.; Nishio, K.; Watanabe, Y.; Jeong, S. C.; Ishiyama, H.; Hirayama, Y.; Imai, N.; Miyatake, H.

    2009-05-04

    In order to study the nucleus-nucleus interaction in Pb-based cold fusion, we have measured excitation functions for quasi-elastic scattering of {sup 48}Ti, {sup 54}Cr, {sup 56}Fe, {sup 64}Ni, {sup 70}Zn and {sup 86}Kr projectiles on {sup 208}Pb target at backward angles. The barrier distributions were derived from the first derivative of measured quasi-elastic scattering cross sections relative to the Rutherford scattering cross section. The centroids of the barrier distributions show a deviation from several predicted barrier heights toward the low energy side. The shape of the barrier distributions is well reproduced by the results of a coupled-channel calculation taking account of the coupling effects of two phonon excitations of the quadrupole vibration for the projectiles and of the octupole vibration for the {sup 208}Pb target.

  3. A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.; Gore, R. A.; Ristorcelli, J. R.

    2015-09-08

    A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales,more » as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.« less

  4. Micro-focused Brillouin light scattering study of the magnetization

    Office of Scientific and Technical Information (OSTI)

    dynamics driven by Spin Hall effect in a transversely magnetized NiFe nanowire (Journal Article) | SciTech Connect Micro-focused Brillouin light scattering study of the magnetization dynamics driven by Spin Hall effect in a transversely magnetized NiFe nanowire Citation Details In-Document Search Title: Micro-focused Brillouin light scattering study of the magnetization dynamics driven by Spin Hall effect in a transversely magnetized NiFe nanowire We employed micro-focused Brillouin light

  5. Solid phases of spatially nanoconfined oxygen: A neutron scattering study

    SciTech Connect (OSTI)

    Kojda, Danny [Helmholtz-Zentrum Berlin fr Materialien und Energie GmbH, 14109 Berlin (Germany) [Helmholtz-Zentrum Berlin fr Materialien und Energie GmbH, 14109 Berlin (Germany); Freie Universitt Berlin, 14195 Berlin (Germany); Wallacher, Dirk; Hofmann, Tommy, E-mail: tommy.hofmann@helmholtz-berlin.de [Helmholtz-Zentrum Berlin fr Materialien und Energie GmbH, 14109 Berlin (Germany)] [Helmholtz-Zentrum Berlin fr Materialien und Energie GmbH, 14109 Berlin (Germany); Baudoin, Simon; Hansen, Thomas [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France)] [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Huber, Patrick [Technische Universitt Hamburg-Harburg, 21073 Hamburg (Germany)] [Technische Universitt Hamburg-Harburg, 21073 Hamburg (Germany)

    2014-01-14

    We present a comprehensive neutron scattering study on solid oxygen spatially confined in 12 nm wide alumina nanochannels. Elastic scattering experiments reveal a structural phase sequence known from bulk oxygen. With decreasing temperature cubic ?-, orthorhombic ?- and monoclinic ?-phases are unambiguously identified in confinement. Weak antiferromagnetic ordering is observed in the confined monoclinic ?-phase. Rocking scans reveal that oxygen nanocrystals inside the tubular channels do not form an isotropic powder. Rather, they exhibit preferred orientations depending on thermal history and the very mechanisms, which guide the structural transitions.

  6. Design of the polarization multi-pass Thomson scattering system

    SciTech Connect (OSTI)

    Yasuhara, R.; Yamada, I.; Kawahata, K.; Funaba, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Yoshikawa, M.; Morimoto, M.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.; Imai, T. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Minami, T. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2012-10-15

    A novel configuration of the multi-pass Thomson scattering (TS) system is proposed to improve the time resolution and accuracy of electron temperature measurements by use of a polarization control technique. This configuration can realize a perfect coaxial multi-passing at each pass, and the number of round trips is not limited by the optical configuration. To confirm the feasibility of the new method, we installed this system in the GAMMA 10 plasma system. As a result, the integrated scattering signal of the double-pass configuration is about two times larger than that of the single-pass configuration. These results are in good agreement with the design.

  7. Precision electroweak studies using parity violation in electron scattering

    SciTech Connect (OSTI)

    Paschke, Kent D,

    2013-11-01

    The nature of new neutral-current interactions can be revealed at the low-energy precision frontier, where studies of parity-violation in electron scattering will complement the energy-frontier studies at the LHC. Measurements of the parity-violating observable APV - the cross-section asymmetry in the scattering of longitudinally polarized electrons from an unpolarized target - are sensitive to possible contact interactions from new physics at multi-TeV mass scales. The 12 GeV upgrade at JLab and a new, high-intensity beam at Mainz offer opportunities for significant improvements in measurements of electron-electron and electron-quark parity-violating interactions.

  8. Neutron Scattering | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Conference) | SciTech Connect Conference: Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report Citation Details In-Document Search Title: Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report Authors: Mirmelstein, A V ; Podlesnyak, A ; Kolesnikov, A I ; Saporov, B ; Sefat, A S ; Tobin, J G Publication Date: 2014-04-13 OSTI Identifier: 1132013 Report Number(s): LLNL-PROC-653272 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Conference Resource Relation:

  9. Scattering from Star Polymers including Excluded Volume Effects

    SciTech Connect (OSTI)

    Li, Xin; Do, Changwoo; Liu, Yun; Hong, Kunlun; Smith, Greg; Chen, Wei-Ren

    2014-01-01

    In this work we present a new model for the form factor of a star polymer consisting of self-avoiding branches. This new model incorporates excluded volume effects and is derived from the two point correlation function for a star polymer.. We compare this model to small angle neutron scattering (SANS) measurements from polystyrene (PS) stars immersed in a good solvent, tetrahydrofuran (THF). It is shown that this model provides a good description of the scattering signature originating from the excluded volume effect and it explicitly elucidates the connection between the global conformation of a star polymer and the local stiffness of its constituent branch.

  10. Scattering Amplitudes: The Most Perfect Microscopic Structures in the Universe

    SciTech Connect (OSTI)

    Dixon, Lance J.; /CERN /SLAC

    2011-11-04

    This article gives an overview of many of the recent developments in understanding the structure of relativistic scattering amplitudes in gauge theories ranging from QCD to N = 4 super-Yang-Mills theory, as well as (super)gravity. I also provide a pedagogical introduction to some of the basic tools used to organize and illuminate the color and kinematic structure of amplitudes. This article is an invited review introducing a special issue of Journal of Physics A devoted to 'Scattering Amplitudes in Gauge Theories'.

  11. Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors Citation Details In-Document Search Title: Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors Authors: Strigari, Louis E. ; /KIPAC, Menlo Park ; , Publication Date: 2013-10-24 OSTI Identifier: 1097427 Report Number(s): SLAC-PUB-15817 arXiv:0903.3630 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: New J.Phys.11:105011,2009 Research

  12. Nucleon-nucleon scattering in a harmonic potential (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Journal Article: Nucleon-nucleon scattering in a harmonic potential Citation Details In-Document Search Title: Nucleon-nucleon scattering in a harmonic potential Authors: Luu, T ; Savage, M ; Schwenk, A ; Vary, J P Publication Date: 2010-06-02 OSTI Identifier: 1116861 Report Number(s): LLNL-JRNL-435031 DOE Contract Number: W-7405-ENG-48 Resource Type: Journal Article Resource Relation: Journal Name: Physical Review C, vol. 82, N/A, September 30, 2010, pp. 034003 Research Org:

  13. Resonance electronic Raman scattering in rare earth crystals

    SciTech Connect (OSTI)

    Williams, G.M.

    1988-11-10

    The intensities of Raman scattering transitions between electronic energy levels of trivalent rare earth ions doped into transparent crystals were measured and compared to theory. A particle emphasis was placed on the examination of the effect of intermediate state resonances on the Raman scattering intensities. Two specific systems were studied: Ce/sup 3 +/(4f/sup 1/) in single crystals of LuPO/sub 4/ and Er/sup 3 +/(4f/sup 11/) in single crystals of ErPO/sub 4/. 134 refs., 92 figs., 33 tabs.

  14. Positive Scattering Cross Sections using Constrained Least Squares

    SciTech Connect (OSTI)

    Dahl, J.A.; Ganapol, B.D.; Morel, J.E.

    1999-09-27

    A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented.

  15. Neutrino-pair bremsstrahlung from nucleon-nucleon scattering

    SciTech Connect (OSTI)

    Li, Yi; Liou, M. K.; Schreiber, W. M.; Gibson, B. F.

    2015-07-22

    Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering ???? (nnvv, ppvv, and npvv) have recently attracted attention in studies of neutrino emission in neutron stars, because of the implications for the neutron star cooling. The calculated ???? emissivities within the neutron star environment are relatively insensitive to the two-nucleon dynamical model used in the calculations, but differ significantly from those obtained using an OPE model. Purpose: To investigate the free ???? cross sections using a realistic nucleon-nucleon scattering amplitude, comparing the relative sizes of the cross sections for the three processes nnvv, ppvv, and npvv.

  16. Recent progress in electron scattering from atoms and molecules

    SciTech Connect (OSTI)

    Brunger, M. J.; Buckman, S. J.; Sullivan, J. P.; Palihawadana, P.; Jones, D. B.; Chiari, L.; Pettifer, Z.; Silva, G. B. da; Lopes, M. C. A.; Duque, H. V.; Masin, Z.; Gorfinkiel, J. D.; Garcia, G.; Hoshino, M.; Tanaka, H.; Limo-Vieira, P.

    2014-03-05

    We present and discuss recent results, both experimental and theoretical (where possible), for electron impact excitation of the 3s[3/2 ]{sub 1} and 3s?[1/2 ]{sub 1} electronic states in neon, elastic electron scattering from the structurally similar molecules benzene, pyrazine, and 1,4-dioxane and excitation of the electronic states of the important bio-molecule analogue ?-tetrahydrofurfuryl alcohol. While comparison between theoretical and experimental results suggests that benchmarked cross sections for electron scattering from atoms is feasible in the near-term, significant further theoretical development for electron-molecule collisions, particularly in respect to discrete excitation processes, is still required.

  17. Compton scattering from positronium and validity of the impulse approximation

    SciTech Connect (OSTI)

    Kaliman, Z.; Pisk, K.; Pratt, R. H.

    2011-05-15

    The cross sections for Compton scattering from positronium are calculated in the range from 1 to 100 keV incident photon energy. The calculations are based on the A{sup 2} term of the photon-electron or photon-positron interaction. Unlike in hydrogen, the scattering occurs from two centers and the interference effect plays an important role for energies below 8 keV. Because of the interference, the criterion for validity of the impulse approximation for positronium is more restrictive compared to that for hydrogen.

  18. Nature of Coulomb Shifts of Nuclear Scattering Resonances

    SciTech Connect (OSTI)

    Takibayev, N.Zh.

    2005-07-01

    Relations determining the shift of energies and widths of scattering resonances are obtained within the method of evolution in the coupling constant. These relations generalize the well-known relations for the shift of levels in a discrete spectrum. The problem of determining the Coulomb shifts of low-energy resonances manifesting themselves in the cross section for the scattering of some light nuclei is solved. Examples that are of importance for nuclear astrophysics and examples of problems that are associated with the production of chemical elements are considered. The character of Coulomb shifts is studied within simple nuclear models. Respective numerical estimates are given, which agree satisfactorily with experimental data.

  19. Ultraviolet Thomson scattering measurements of the electron feature with an

    Office of Scientific and Technical Information (OSTI)

    energetic 263 nm probe (Journal Article) | SciTech Connect Ultraviolet Thomson scattering measurements of the electron feature with an energetic 263 nm probe Citation Details In-Document Search Title: Ultraviolet Thomson scattering measurements of the electron feature with an energetic 263 nm probe Authors: Ross, J S ; Divol, L ; Sorce, C ; Froula, D H ; Glenzer, S H Publication Date: 2011-06-23 OSTI Identifier: 1091881 Report Number(s): LLNL-JRNL-489959 DOE Contract Number: W-7405-ENG-48

  20. Scattering from Star Polymers including Excluded Volume Effects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xin; Do, Changwoo; Liu, Yun; Hong, Kunlun; Smith, Greg; Chen, Wei-Ren

    2014-01-01

    In this work we present a new model for the form factor of a star polymer consisting of self-avoiding branches. This new model incorporates excluded volume effects and is derived from the two point correlation function for a star polymer.. We compare this model to small angle neutron scattering (SANS) measurements from polystyrene (PS) stars immersed in a good solvent, tetrahydrofuran (THF). It is shown that this model provides a good description of the scattering signature originating from the excluded volume effect and it explicitly elucidates the connection between the global conformation of a star polymer and the local stiffnessmore » of its constituent branch.« less

  1. Diagnostics for the optimization of an 11 keV inverse Compton scattering x-ray source

    SciTech Connect (OSTI)

    Chauchat, A.-S.; Brasile, J.-P; Le Flanchec, V.; Negre, J.-P.; Binet, A.; Ortega, J.-M.

    2013-04-19

    In a scope of a collaboration between Thales Communications and Security and CEA DAM DIF, 11 keV Xrays were produced by inverse Compton scattering on the ELSA facility. In this type of experiment, X-ray observation lies in the use of accurate electron and laser beam interaction diagnostics and on fitted X-ray detectors. The low interaction probability between < 100 {mu}m width, 12 ps [rms] length electron and photon pulses requires careful optimization of pulse spatial and temporal covering. Another issue was to observe 11 keV X-rays in the ambient radioactive noise of the linear accelerator. For that, we use a very sensitive detection scheme based on radio luminescent screens.

  2. Characterization of scatter in digital mammography from physical measurements

    SciTech Connect (OSTI)

    Leon, Stephanie M. Wagner, Louis K.; Brateman, Libby F.

    2014-06-15

    Purpose: That scattered radiation negatively impacts the quality of medical radiographic imaging is well known. In mammography, even slight amounts of scatter reduce the high contrast required for subtle soft-tissue imaging. In current clinical mammography, image contrast is partially improved by use of an antiscatter grid. This form of scatter rejection comes with a sizeable dose penalty related to the concomitant elimination of valuable primary radiation. Digital mammography allows the use of image processing as a method of scatter correction that might avoid effects that negatively impact primary radiation, while potentially providing more contrast improvement than is currently possible with a grid. For this approach to be feasible, a detailed characterization of the scatter is needed. Previous research has modeled scatter as a constant background that serves as a DC bias across the imaging surface. The goal of this study was to provide a more substantive data set for characterizing the spatially-variant features of scatter radiation at the image detector of modern mammography units. Methods: This data set was acquired from a model of the radiation beam as a matrix of very narrow rays or pencil beams. As each pencil beam penetrates tissue, the pencil widens in a predictable manner due to the production of scatter. The resultant spreading of the pencil beam at the detector surface can be characterized by two parameters: mean radial extent (MRE) and scatter fraction (SF). The SF and MRE were calculated from measurements obtained using the beam stop method. Two digital mammography units were utilized, and the SF and MRE were found as functions of target, filter, tube potential, phantom thickness, and presence or absence of a grid. These values were then used to generate general equations allowing the SF and MRE to be calculated for any combination of the above parameters. Results: With a grid, the SF ranged from a minimum of about 0.05 to a maximum of about 0.16, and the MRE ranged from about 3 to 13 mm. Without a grid, the SF ranged from a minimum of 0.25 to a maximum of 0.52, and the MRE ranged from about 20 to 45 mm. The SF with a grid demonstrated a mild dependence on target/filter combination and kV, whereas the SF without a grid was independent of these factors. The MRE demonstrated a complex relationship as a function of kV, with notable difference among target/filter combinations. The primary source of change in both the SF and MRE was phantom thickness. Conclusions: Because breast tissue varies spatially in physical density and elemental content, the effective thickness of breast tissue varies spatially across the imaging field, resulting in a spatially-variant scatter distribution in the imaging field. The data generated in this study can be used to characterize the scatter contribution on a point-by-point basis, for a variety of different techniques.

  3. Length Scale Correlations of Cellular Microstructures in Directionally Solidified Binary System

    SciTech Connect (OSTI)

    Yunxue Shen

    2002-08-01

    In a cellular array, a range of primary spacing is found to be stable under given growth conditions. Since a strong coupling of solute field exists between the neighboring cells, primary spacing variation should also influence other microstructure features such as cell shape and cell length. The existence of multiple solutions is examined in this study both theoretically as well as experimentally. A theoretical model is developed that identifies and relates four important microstructural lengths, which are found to be primary spacing, tip radius, cell width and cell length. This general microstructural relationship is shown to be valid for different cells in an array as well as for other cellular patterns obtained under different growth conditions. The unique feature of the model is that the microstructure correlation does not depend on composition or growth conditions since these variables scale microstructural lengths to satisfy the relationship obtained in this study. Detailed directional solidification experimental studies have been carried out in the succinonitrile-salol system to characterize and measure these four length scales. Besides the validation of the model, experimental results showed additional scaling laws to be present. In the regime where only a cellular structure is formed, the shape of the cell, the cell tip radius and the length of the cell are all found to scale individually with the local primary spacing. The presence of multiple solutions of primary spacing is also shown to influence the cell-dendrite transition that is controlled not only by the processing variables (growth velocity, thermal gradient and composition) but also by the local cell spacing. The cell-dendrite transition was found not to be sharp, but occurred over a range of processing conditions. Two critical conditions have been identified such that only cells are present below lower critics condition, and only dendrites are formed above the upper critics condition. Between these two limits, both cells and dendrites have been found to coexist. In this mixed regime, a critical local spacing is found above which a cell is unstable and forms a dendrite. An analytical expression is developed that relates the critical spacing for the cell-dendrite transition with processing conditions.

  4. Length Scale Correlations of Cellular Microstructures in Directionally Solidified Binary System

    SciTech Connect (OSTI)

    Yunxue Shen

    2002-06-27

    In a cellular array, a range of primary spacing is found to be stable under given growth conditions. Since a strong coupling of solute field exists between the neighboring cells, primary spacing variation should also influence other microstructure features such as cell shape and cell length. The existence of multiple solutions is examined in this study both theoretically as well as experimentally. A theoretical model is developed that identifies and relates four important microstructural lengths, which are found to be primary spacing, tip radius, cell width and cell length. This general microstructural relationship is shown to be valid for different cells in an array as well as for other cellular patterns obtained under different growth conditions. The unique feature of the model is that the microstructure correlation does not depend on composition or growth conditions since these variables scale microstructural lengths to satisfy the relationship obtained in this study. Detailed directional solidification experimental studies have been carried out in the succinonitrile-salol system to characterize and measure these four length scales. Besides the validation of the model, experimental results showed additional scaling laws to be present. In the regime where only a cellular structure is formed, the shape of the cell, the cell tip radius and the length of the cell are all found to scale individually with the local primary spacing. The presence of multiple solutions of primary spacing is also shown to influence the cell-dendrite transition that is controlled not only by the processing variables (growth velocity, thermal gradient and composition) but also by the local cell spacing. The cell-dendrite transition was found not to be sharp, but occurred over a range of processing conditions. Two critical conditions have been identified such that only cells are present below lower critics condition, and only dendrites are formed above the upper critics condition. Between these two limits, both cells and dendrites have been found to coexist. In this mixed regime, a critical local spacing is found above which a cell is unstable and forms a dendrite. An analytical expression is developed that relates the critical spacing for the cell-dendrite transition with processing conditions.

  5. Neutron Scattering Investigation of Phonon Scattering Rates in Ag1-xSb1+xTe2+x (x = 0, 0.1, and 0.2)

    SciTech Connect (OSTI)

    Abernathy, Douglas L [ORNL; Budai, John D [ORNL; Delaire, Olivier A [ORNL; Ehlers, Georg [ORNL; Hong, Tao [ORNL; Karapetrova, Evguenia A. [Argonne National Laboratory (ANL); Ma, Jie [ORNL; May, Andrew F [ORNL; McGuire, Michael A [ORNL; Specht, Eliot D [ORNL

    2014-01-01

    The phonon dispersions and scattering rates of the thermoelectric material AgSbTe$_{2}$ were measured as a function of temperature with inelastic neutron scattering. The results show that phonon scattering rates are large and weakly dependent on temperature. The lattice thermal conductivity was calculated from the measured phonon lifetimes and group velocities, providing good agreement with bulk transport measurements. The measured phonon scattering rates and their temperature dependence are compared with models of phonon scattering by anharmonicity and point defect. We find that these processes cannot account for the large total phonon scattering rates observed, and their lack of temperature dependence. Neutron and synchrotron diffraction measurements on single crystals revealed an extensive nanostructure from cation ordering, which is likely responsible for the strong phonon scattering.

  6. Multi-component modeling of quasielastic neutron scattering from phospholipid membranes

    SciTech Connect (OSTI)

    Wanderlingh, U. DAngelo, G.; Branca, C.; Trimarchi, A.; Rifici, S.; Finocchiaro, D.; Conti Nibali, V.; Crupi, C.; Ollivier, J.; Middendorf, H. D.

    2014-05-07

    We investigated molecular motions in the 0.3350 ps time range of D{sub 2}O-hydrated bilayers of 1-palmitoyl-oleoyl-sn-glycero-phosphocholine and 1,2-dimyristoyl-sn-glycero-phosphocholine in the liquid phase by quasielastic neutron scattering. Model analysis of sets of spectra covering scale lengths from 4.8 to 30 revealed the presence of three types of motion taking place on well-separated time scales: (i) slow diffusion of the whole phospholipid molecules in a confined cylindrical region; (ii) conformational motion of the phospholipid chains; and (iii) fast uniaxial rotation of the hydrogen atoms around their carbon atoms. Based on theoretical models for the hydrogen dynamics in phospholipids, the spatial extent of these motions was analysed in detail and the results were compared with existing literature data. The complex dynamics of protons was described in terms of elemental dynamical processes involving different parts of the phospholipid chain on whose motions the hydrogen atoms ride.

  7. Gamma-ray burst polarization via Compton scattering process

    SciTech Connect (OSTI)

    Chang, Zhe; Lin, Hai-Nan; Jiang, Yunguo

    2014-03-01

    Synchrotron radiation and Compton scattering are widely accepted as the most likely emission mechanisms of some astrophysical phenomena, such as gamma-ray bursts (GRBs) and active galactic nuclei. The measurement of the polarization of photons provides a useful tool to distinguish different emission mechanisms and structures of the emission region. Based on the differential cross section of a polarized photon scattered by an unpolarized electron of any initial momentum, we derive an analytical formula of polarization for beamed photons scattered by isotropic electrons with a power-law distribution. Numerical calculations are carried out in four special cases: electrons at rest, Thomson limit, head-on collision, and monochromatic electrons. It is found that the maximum polarization can be as high as 100% for low energy photons, if the electrons are at rest. Although polarization is highly suppressed due to the isotropic electrons, a maximum value of ?10%-20% can still be achieved. The Compton scattering process can be used to explain the polarization of GRB 041219A and GRB 100826A.

  8. Nonlinear stimulated Brillouin scattering based photonic signal processors

    SciTech Connect (OSTI)

    Minasian, Robert A.

    2014-10-06

    Recent new methods in photonic signal processing based on stimulated Brillouin scattering, that enable the realization of photonic mixers with high conversion efficiency, ultra-wide continuously tunable high-resolution microwave photonic filters and programmable switchable microwave photonic tunable filters, are presented. These processors provide new capabilities for the realisation of high-performance and high-resolution signal processing.

  9. Studying the proton 'radius' puzzle with ?p elastic scattering

    SciTech Connect (OSTI)

    Gilman, R.

    2013-11-07

    The disagreement between the proton radius determined from muonic hydrogen and from electronic measurements is called the proton radius puzzle. The resolution of the puzzle remains unclear and appears to require new experimental results. An experiment to measure muon-proton elastic scattering is presented here.

  10. On the dispersion theory of {pi}{pi} scattering

    SciTech Connect (OSTI)

    Leutwyler, H.

    2007-02-27

    Recent developments in low energy pion physics are reviewed, emphasizing the strength of dispersion theory in this context. As an illustration of the method, I discuss some consequences of the forward dispersion relation obeyed by the isoscalar component of the scattering amplitude.

  11. AXISYMMETRIC SCATTERING OF p MODES BY THIN MAGNETIC TUBES

    SciTech Connect (OSTI)

    Hindman, Bradley W.; Jain, Rekha

    2012-02-10

    We examine the scattering of acoustic p-mode waves from a thin magnetic fibril embedded in a gravitationally stratified atmosphere. The scattering is mediated through the excitation of slow sausage waves on the magnetic tube, and only the scattering of the monopole component of the wave field is considered. Since such tube waves are not confined by the acoustic cavity and may freely propagate along the field lines removing energy from the acoustic wave field, the excitation of fibril oscillations is a source of acoustic wave absorption as well as scattering. We compute the mode mixing that is achieved and the absorption coefficients and phase shifts. We find that for thin tubes the mode mixing is weak and the absorption coefficient is small and is a smooth function of frequency over the physically relevant band of observed frequencies. The prominent absorption resonances seen in previous studies of unstratified tubes are absent. Despite the relatively small absorption, the phase shift induced can be surprisingly large, reaching values as high as 15 Degree-Sign for f modes. Further, the phase shift can be positive or negative depending on the incident mode order and the frequency.

  12. New JLab/Hall A Deeply Virtual Compton Scattering results

    SciTech Connect (OSTI)

    Defurne, Maxime

    2015-08-01

    New data points for unpolarized Deeply Virtual Compton Scattering cross sections have been extracted from the E00-110 experiment at Q2=1.9 GeV2 effectively doubling the statistics available in the valence region. A careful study of systematic uncertainties has been performed.

  13. Elastic Neutron Scattering at 96 MeV

    SciTech Connect (OSTI)

    Hildebrand, A.; Blomgren, J.; Atac, A.; Bergenwall, B.; Johansson, C.; Klug, J.; Mermod, P.; Nilsson, L.; Pomp, S.; Esterlund, M.; Dangtip, S.; Tippawan, U.; Phansuke, P.; Jonsson, O.; Renberg, P.-U.; Prokofiev, A.; Nadel-Turonski, P.; Elmgren, K.; Olsson, N.; Blideanu, V.

    2005-05-24

    A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), has recently been installed at the 20 - 180-MeV neutron beam line of The Svedberg Laboratory, Uppsala. Elastic neutron scattering from 12C, 16O, 56Fe, 89Y, and 208Pb has been studied at 96 MeV in the 10-70 deg. interval. The results from 12C and 208Pb have recently been published,6 while the data from 16O, 56Fe, and 89Y are under analysis. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated normalization uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions, based on phenomenology or microscopic theory. Applications for these measurements are nuclear-waste incineration, single-event upsets in electronics, and fast-neutron therapy.

  14. Operational properties of fluctuation X-ray scattering data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malmerberg, Erik; Kerfeld, Cheryl A.; Zwart, Petrus H.

    2015-03-20

    X-ray scattering images collected on timescales shorter than rotation diffusion times using a (partially) coherent beam result in a significant increase in information content in the scattered data. These measurements, named fluctuation X-ray scattering (FXS), are typically performed on an X-ray free-electron laser (XFEL) and can provide fundamental insights into the structure of biological molecules, engineered nanoparticles or energy-related mesoscopic materials beyond what can be obtained with standard X-ray scattering techniques. In order to understand, use and validate experimental FXS data, the availability of basic data characteristics and operational properties is essential, but has been absent up to this point.more » In this communication, an intuitive view of the nature of FXS data and their properties is provided, the effect of FXS data on the derived structural models is highlighted, and generalizations of the Guinier and Porod laws that can ultimately be used to plan experiments and assess the quality of experimental data are presented.« less

  15. Measurement of carbon condensation using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    SciTech Connect (OSTI)

    Bagge-Hansen, M.; Lauderbach, L. M.; Hodgin, R.; Bastea, S.; Fried, L.; Jones, A.; van Buuren, T.; Hansen, D.; Benterou, J.; May, C.; Graber, T.; Jensen, B. J.; Ilavsky, J.; Willey, T. M.

    2015-06-24

    The dynamics of carboncondensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. As a result, the power-law slope is about –3, which is consistent with a complex disordered, irregular, or folded sp2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.

  16. Improved efficiency of photoconductive THz emitters by increasing the effective contact length of electrodes

    SciTech Connect (OSTI)

    Singh, Abhishek; Surdi, Harshad; Nikesh, V. V.; Prabhu, S. S.; Döhler, G. H.

    2013-12-15

    We study the effect of a surface modification at the interface between metallic electrodes and semiconducting substrate in Semi-Insulating GaAs (SI-GaAs) based photoconductive emitters (PCE) on the emission of Tera-Hertz (THz) radiation. We partially etch out a 500 nm thick layer of SI-GaAs in grating like pattern with various periods before the contact deposition. By depositing the electrodes on the patterned surface, the electrodes follow the contour of the grating period. This increases the effective contact length of the electrodes per unit area of the active regions on the PCE. The maxima of the electric field amplitude of the THz pulses emitted from the patterned surface are enhanced by up to more than a factor 2 as compared to an un-patterned surface. We attribute this increase to the increase of the effective contact length of the electrode due to surface patterning.

  17. Simulating the Effect of Modulated Tool-Path Chip Breaking On Surface Texture and Chip Length

    SciTech Connect (OSTI)

    Smith, K.S.; McFarland, J.T.; Tursky, D. A.; Assaid, T. S.; Barkman, W. E.; Babelay, Jr., E. F.

    2010-04-30

    One method for creating broken chips in turning processes involves oscillating the cutting tool in the feed direction utilizing the CNC machine axes. The University of North Carolina at Charlotte and the Y-12 National Security Complex have developed and are refining a method to reliably control surface finish and chip length based on a particular machine's dynamic performance. Using computer simulations it is possible to combine the motion of the machine axes with the geometry of the cutting tool to predict the surface characteristics and map the surface texture for a wide range of oscillation parameters. These data allow the selection of oscillation parameters to simultaneously ensure broken chips and acceptable surface characteristics. This paper describes the machine dynamic testing and characterization activities as well as the computational method used for evaluating and predicting chip length and surface texture.

  18. Calculation of the Beam Field in the LCLS Bunch Length Monitor

    SciTech Connect (OSTI)

    Stupakov, G.; Ding, Y.; Huang, Z.; /SLAC

    2006-06-07

    Maintaining a stable bunch length and peak current is a critical step for the reliable operation of a SASE based x-ray source. In the LCLS, relative bunch length monitors (BLM) right after both bunch compressors are proposed based on the coherent radiation generated by the short electron bunch. Due to its diagnostic setup, the standard far field synchrotron radiation formula and well-developed numerical codes do not apply for the analysis of the BLM performance. In this paper, we develop a calculation procedure to take into account the near field effect, the effect of a short bending magnet, and the diffraction effect of the radiation transport optics. We find the frequency response of the BLM after the first LCLS bunch compressor and discuss its expected performance.

  19. Contact resistance improvement by the modulation of peripheral length to area ratio of graphene contact pattern

    SciTech Connect (OSTI)

    Cho, Chunhum; Lee, Sangchul; Lee, Sang Kyung; Noh, Jin Woo; Park, Woojin; Lee, Young Gon; Hwang, Hyeon Jun; Ham, Moon-Ho; Kang, Chang Goo; Lee, Byoung Hun

    2015-05-25

    High contact resistance between graphene and metal is a major huddle for high performance electronic device applications of graphene. In this work, a method to improve the contact resistance of graphene is investigated by varying the ratio of peripheral length and area of graphene pattern under a metal contact. The contact resistance decreased to 0.8 kΩ·μm from 2.1 kΩ·μm as the peripheral length increased from 312 to 792 μm. This improvement is attributed to the low resistivity of edge-contacted graphene, which is 8.1 × 10{sup 5} times lower than that of top-contacted graphene.

  20. LOCA rupture strains and coolability of full-length PWR fuel bundles

    SciTech Connect (OSTI)

    Mohr, C.L.; Hesson, G.M.

    1983-03-01

    The LOCA Simulation Program tests sponsored by the United States Nuclear Regulatory Commission are the first full-length nuclear-heated experiments designed to investigate the deformation and rupture characteristics as well as the coolability of nuclear-heated fuel under accident conditions. The results of the seven tests preformed in the program using 32-rod full-length PWR fuel bundles have shown that for a wide range of flow blockage condtions no significant reduction in coolability of the fuel bundle could be found. These results have been confirmed by data from out-of-pile electrically-heated experiments. Although there is a difference between nuclear and electrically-heated test data, the conclusion is still the same. Coolability of a deformed bundle during reflood is dominated by the dispersion of droplets in the deformed zone which provides adequate cooling and which is not reduced by the deformation of the fuel rod cladding.

  1. Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge

    SciTech Connect (OSTI)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas; Aldn, Marcus; Li, Zhongshan E-mail: alpers@ma.tum.de; Moseev, Dmitry; Kusano, Yukihiro; Salewski, Mirko; Alpers, Andreas E-mail: alpers@ma.tum.de; Gritzmann, Peter; Schwenk, Martin

    2015-01-26

    A non-thermal gliding arc discharge was generated at atmospheric pressure in an air flow. The dynamics of the plasma column and tracer particles were recorded using two synchronized high-speed cameras. Whereas the data analysis for such systems has previously been performed in 2D (analyzing the single camera image), we provide here a 3D data analysis that includes 3D reconstructions of the plasma column and 3D particle tracking velocimetry based on discrete tomography methods. The 3D analysis, in particular, the determination of the 3D slip velocity between the plasma column and the gas flow, gives more realistic insight into the convection cooling process. Additionally, with the determination of the 3D slip velocity and the 3D length of the plasma column, we give more accurate estimates for the drag force, the electric field strength, the power per unit length, and the radius of the conducting zone of the plasma column.

  2. Bunch length effects in the beam-beam compensation with an electron lens

    SciTech Connect (OSTI)

    Fischer, W.; Luo, Y.; Montag, C.

    2010-02-25

    Electron lenses for the head-on beam-beam compensation are under construction at the Relativistic Heavy Ion Collider. The bunch length is of the same order as the {beta}-function at the interaction point, and a proton passing through another proton bunch experiences a substantial phase shift which modifies the beam-beam interaction. We review the effect of the bunch length in the single pass beam-beam interaction, apply the same analysis to a proton passing through a long electron lens, and study the single pass beam-beam compensation with long bunches. We also discuss the beam-beam compensation of the electron beam in an electron-ion collider ring.

  3. Full-length high-temperature severe fuel damage test No. 1

    SciTech Connect (OSTI)

    Rausch, W.N.; Hesson, G.M.; Pilger, J.P.; King, L.L.; Goodman, R.L.; Panisko, F.E.

    1993-08-01

    This report describes the first full-length high-temperature test (FLHT-1) performed by Pacific Northwest Laboratory (PNL) in the National Research Universal (NRU) reactor at Chalk River, Ontario, Canada. The test is part of a series of experiments being performed for the NRC as a part of their Severe Fuel Damage Program and is one of several planned for PNL`s Coolant Boilaway and Damage Progression Program. The report summarizes the test design and test plan. it also provides a summary and discussion of the data collected during the test and of the photos taken during the post-test examination. All objectives for the test were met. The key objective was to demonstrate that severe fuel damage tests on full-length fuel bundles can be safely conducted in the NRU reactor.

  4. Quantum Theory of (H,H{Sub 2}) Scattering: Approximate Treatments of Reactive Scattering

    DOE R&D Accomplishments [OSTI]

    Tang, K. T.; Karplus, M.

    1970-10-01

    A quantum mechanical study is made of reactive scattering in the (H, H{sub 2}) system. The problem is formulated in terms of a form of the distorted-wave Born approximation (DWBA) suitable for collisions in which all particles have finite mass. For certain incident energies, differential and total cross sections, as well as other attributes of the reactive collisions, (e.g. reaction configuration), are determined. Two limiting models in the DWBA formulation are compared; in one, the molecule is unperturbed by the incoming atom and in the other, the molecule adiabatically follows the incoming atom. For thermal incident energies and semi-empirical interaction potential employed, the adiabatic model seems to be more appropriate. Since the DWBA method is too complicated for a general study of the (H, H{sub 2}) reaction, a much simpler approximation method, the “linear model” is developed. This model is very different in concept from treatments in which the three atoms are constrained to move on a line throughout the collision. The present model includes the full three-dimensional aspect of the collision and it is only the evaluation of the transition matrix element itself that is simplified. It is found that the linear model, when appropriately normalized, gives results in good agreement with that of the DWBA method. By application of this model, the energy dependence, rotational state of dependence and other properties of the total and differential reactions cross sections are determined. These results of the quantum mechanical treatment are compared with the classical calculation for the same potential surface. The most important result is that, in agreement with the classical treatment, the differential cross sections are strongly backward peaked at low energies and shifts in the forward direction as the energy increases. Finally, the implications of the present calculations for a theory of chemical kinetics are discussed.

  5. Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media

    SciTech Connect (OSTI)

    Tong Zhisong; Korotkova, Olga

    2010-09-15

    The theory of scattering of scalar stochastic fields from deterministic and random media is generalized to the electromagnetic domain under the first-order Born approximation. The analysis allows for determining the changes in spectrum, coherence, and polarization of electromagnetic fields produced on their propagation from the source to the scattering volume, interaction with the scatterer, and propagation from the scatterer to the far field. An example of scattering of a field produced by a {delta}-correlated partially polarized source and scattered from a {delta}-correlated medium is provided.

  6. Complete Monte Carlo Simulation of Neutron Scattering Experiments

    SciTech Connect (OSTI)

    Drosg, M.

    2011-12-13

    In the far past, it was not possible to accurately correct for the finite geometry and the finite sample size of a neutron scattering set-up. The limited calculation power of the ancient computers as well as the lack of powerful Monte Carlo codes and the limitation in the data base available then prevented a complete simulation of the actual experiment. Using e.g. the Monte Carlo neutron transport code MCNPX [1], neutron scattering experiments can be simulated almost completely with a high degree of precision using a modern PC, which has a computing power that is ten thousand times that of a super computer of the early 1970s. Thus, (better) corrections can also be obtained easily for previous published data provided that these experiments are sufficiently well documented. Better knowledge of reference data (e.g. atomic mass, relativistic correction, and monitor cross sections) further contributes to data improvement. Elastic neutron scattering experiments from liquid samples of the helium isotopes performed around 1970 at LANL happen to be very well documented. Considering that the cryogenic targets are expensive and complicated, it is certainly worthwhile to improve these data by correcting them using this comparatively straightforward method. As two thirds of all differential scattering cross section data of {sup 3}He(n,n){sup 3}He are connected to the LANL data, it became necessary to correct the dependent data measured in Karlsruhe, Germany, as well. A thorough simulation of both the LANL experiments and the Karlsruhe experiment is presented, starting from the neutron production, followed by the interaction in the air, the interaction with the cryostat structure, and finally the scattering medium itself. In addition, scattering from the hydrogen reference sample was simulated. For the LANL data, the multiple scattering corrections are smaller by a factor of five at least, making this work relevant. Even more important are the corrections to the Karlsruhe data due to the inclusion of the missing outgoing self-attenuation that amounts to up to 15%.

  7. Linac Coherent Light Source (LCLS) Bunch-Length Monitor using Coherent Radiation

    SciTech Connect (OSTI)

    Wu, Juhao; Emma, P.; /SLAC

    2007-03-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. One of the most critical diagnostic devices is the bunch length monitor (BLM), which is to be installed right after each compressor utilizing coherent radiation from the last bending magnet. We describe the components and the optical layout of such a BLM. Based on the setup geometry, we discuss some issues about the coherent radiation signal.

  8. Charge Transfer Fluorescence and 34 nm Exciton Diffusion Length in Polymers with Electron Acceptor End Traps

    SciTech Connect (OSTI)

    Zaikowski, L.; Mauro, G.; Bird, M.; Karten, B.; Asaoka, S.; Wu, Q.; Cook, A. R.; Miller, J.

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are as large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length LD =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. The efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.

  9. Full-length high-temperature severe fuel damage test No. 2. Final safety analysis

    SciTech Connect (OSTI)

    Hesson, G.M.; Lombardo, N.J.; Pilger, J.P.; Rausch, W.N.; King, L.L.; Hurley, D.E.; Parchen, L.J.; Panisko, F.E.

    1993-09-01

    Hazardous conditions associated with performing the Full-Length High- Temperature (FLHT). Severe Fuel Damage Test No. 2 experiment have been analyzed. Major hazards that could cause harm or damage are (1) radioactive fission products, (2) radiation fields, (3) reactivity changes, (4) hydrogen generation, (5) materials at high temperature, (6) steam explosion, and (7) steam pressure pulse. As a result of this analysis, it is concluded that with proper precautions the FLHT- 2 test can be safely conducted.

  10. Charge transfer fluorescence and 34 nm exciton diffusion length in polymers with electron acceptor end traps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; Karten, Brianne; Asaoka, Sadayuki; Wu, Qin; Cook, Andrew R.; Miller, John R.

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are asmore » large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length LD =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.« less

  11. Long Length Contaminated Equipment Retrieval System Receiver Trailer and Transport Trailer Operations and Maintenance Manual

    SciTech Connect (OSTI)

    DALE, R.N.

    2000-05-01

    A system to accommodate the removal of long-length contaminated equipment (LLCE) from Hanford underground radioactive waste storage tanks was designed, procured, and demonstrated, via a project activity during the 1990s. The system is the Long Length Contaminated Equipment Removal System (LLCERS). LLCERS will be maintained and operated by Tank Farms Engineering and Operations organizations and other varied projects having a need for the system. The responsibility for the operation and maintenance of the LLCERS Receiver Trailer (RT) and Transport Trailer (TT) resides with the RPP Characterization Project Operations organization. The purpose of this document is to provide vendor supplied operating and maintenance (O & M) information for the RT and TT in a readily retrievable form. This information is provided this way instead of in a vendor information (VI) file to maintain configuration control of the operations baseline as described in RPP-6085, ''Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers''. Additional Operations Baseline documents are identified in RPP-6085.

  12. Single-shot electron bunch length measurements using a spatial electro-optical autocorrelation interferometer

    SciTech Connect (OSTI)

    Suetterlin, Daniel; Erni, Daniel; Schlott, Volker; Sigg, Hans; Jaeckel, Heinz; Murk, Axel

    2010-10-15

    A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.

  13. Study of minority carrier diffusion lengths in photoactive layers of multijunction solar cells

    SciTech Connect (OSTI)

    Mintairov, S. A. Andreev, V. M.; Emelyanov, V. M.; Kalyuzhnyy, N. A.; Timoshina, N. K.; Shvarts, M. Z.; Lantratov, V. M.

    2010-08-15

    A technique for determining a minority carrier's diffusion length in photoactive III-V layers of solar cells by approximating their spectral characteristics is presented. Single-junction GaAs, Ge and multi-junction GaAs/Ge, GaInP/GaAs, and GaInP/GaInAs/Ge solar cells fabricated by hydride metal-organic vapor-phase epitaxy (H-MOVPE) have been studied. The dependences of the minority carrier diffusion length on the doping level of p-Ge and n-GaAs are determined. It is shown that the parameters of solid-state diffusion of phosphorus atoms to the p-Ge substrate from the n-GaInP nucleation layer are independent of the thickness of the latter within 35-300 nm. It is found that the diffusion length of subcells of multijunction structures in Ga(In)As layers is smaller in comparison with that of single-junction structures.

  14. Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission

    SciTech Connect (OSTI)

    Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

    2007-10-01

    Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine programs goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

  15. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOE Patents [OSTI]

    Goldstein, Bernard; Dresner, Joseph; Szostak, Daniel J.

    1983-07-12

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant-magnitude surface-photovoltage (SPV) method. An unmodulated illumination provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV. A vibrating Kelvin method-type probe electrode couples the SPV to a measurement system. The operating optical wavelength of an adjustable monochromator to compensate for the wavelength dependent sensitivity of a photodetector is selected to measure the illumination intensity (photon flux) on the silicon. Measurements of the relative photon flux for a plurality of wavelengths are plotted against the reciprocal of the optical absorption coefficient of the material. A linear plot of the data points is extrapolated to zero intensity. The negative intercept value on the reciprocal optical coefficient axis of the extrapolated linear plot is the diffusion length of the minority carriers.

  16. Assessment of Possible Cycle Lengths for Fully Encapsulated Microstructure fueled light water reactor Concepts

    SciTech Connect (OSTI)

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal O. Pasamehmetoglu

    2013-02-01

    The use of TRISO-particle-based dispersion fuel within SiC matrix and cladding materials has the potential to allow the design of extremely safe LWRs with failure-proof fuel. This paper examines the feasibility of LWR-like cycle length for such fuel with the imposed constraint of strictly retaining the original geometry of the fuel pins and assemblies. The motivation for retaining the original geometry is to provide the ability to incorporate the fuel as-is into existing LWRs while retaining their thermalhydraulic characteristics. Another mandatory constraint is use of low enriched uranium (at or below 20 w/o). The feasibility of using this fuel is assessed by looking at two factors: cycle lengths and fuel material failure rates. Other considerations (e.g., safety parameters such as reactivity coefficients, feedback, etc.) were not considered at this stage of the study. The study includes the examination of increases in the TRISO kernel sizes without changing the thickness of any of the coating layers. In addition, cases where the buffer layer thickness is allowed to vary are also considered. The study shows that a nave use of UO2 (even up to 20 w/o enrichment) results in cycle lengths too short to be practical for existing LWR designs and operational demands. Increasing fissile inventory within the fuel compacts shows that acceptable cycle lengths can be achieved. The increase of fissile inventory can be accomplished through multiple means, including higher particle packing fraction, higher enrichment, larger fuel kernel sizes, and the use of higher density fuels (that contain a higher number of U atoms per unit volume). In this study, starting with the recognized highest packing fraction practically achievable (44%), combinations of the other means have been evaluated. The models demonstrate cycle lengths comparable to those of ordinary LWRs. As expected, TRISO particles with extremely large kernels are shown to fail under all considered scenarios. In contrast, the designs that do not depart too drastically from those of the nominal NGNP HTR fuel TRISO particles are shown to perform satisfactorily and display a high rates of survival under all considered scenarios.

  17. Theoretical study of collinear optical frequency comb generation under multi-wave, transient stimulated Raman scattering in crystals

    SciTech Connect (OSTI)

    Smetanin, S N [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-11-30

    Using mathematical modelling we have studied the conditions of low-threshold collinear optical frequency comb generation under transient (picosecond) stimulated Raman scattering (SRS) and parametric four-wave coupling of SRS components in crystals. It is shown that Raman-parametric generation of an octave-spanning optical frequency comb occurs most effectively under intermediate, transient SRS at a pump pulse duration exceeding the dephasing time by five-to-twenty times. We have found the optimal values of not only the laser pump pulse duration, but also of the Raman crystal lengths corresponding to highly efficient generation of an optical frequency comb from the second anti-Stokes to the fourth Stokes Raman components. For the KGd(WO{sub 4}){sub 2} (high dispersion) and Ba(NO{sub 3}){sub 2} (low dispersion) crystals pumped at a wavelength of 1.064 ?m and a pulse duration five or more times greater than the dephasing time, the optimum length of the crystal was 0.3 and 0.6 cm, respectively, which is consistent with the condition of the most effective Stokes anti-Stokes coupling ?kL ? 15, where ?k is the wave detuning from phase matching of Stokes anti-Stokes coupling, determined by the refractive index dispersion of the SRS medium. (nonlinear optical phenomena)

  18. Protein Folding Dynamics Detected By Time-Resolved Synchrotron X-ray Small-Angle Scattering Technique

    SciTech Connect (OSTI)

    Fujisawa, Tetsuro; Takahashi, Satoshi [RIKEN Harima Institute, SPring-8 Center, Laboratory for Biometal Science, Hyogo 679-5148 (Japan); Institute for Protein Research, Osaka University Suita Osaka 565-0871/CREST, JST (Japan)

    2007-03-30

    The polypeptide collapse is an essential dynamics in protein folding. To understand the mechanism of the collapse, in situ observation of folding by various probes is necessary. The changes in secondary and tertiary structures in the folding process of globular proteins, whose chain lengths are less than 300 polypeptides, were observed by circular dichrosim and intrinsic fluorescence spectroscopies, respectively. On the other hand, those in protein compactness could be only detected by using time-resolved synchrotron x-ray small-angle scattering technique. The observed dynamics for several proteins with different topologies suggested a common folding mechanism termed 'collapse and search' dynamics, in which the polypeptide collapse precedes the formation of the native contact formation. In 'collapse and search' dynamics, the most outstanding feature lied in the compactness of the initial intermediates. The collapsed intermediates demonstrated the scaling relationship between radius of gyration (Rg) and chain length with a scaling exponent of 0.35 {+-} 0.11, which is close to the value (1/3) predicted by mechano-statistical theory for the collapsed globules of polymers in poor solvent. Thus, it was suggested that the initial collapse is caused by the coil-globule transition of polymers. Since the collapse is essential to the folding of larger proteins, further investigations on the collapse likely lead to an important insight into the protein folding phenomena.

  19. Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Print...

  20. SSRL School 2007 on Hard X-ray Scattering Techniques in MES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 15-17, 2007 SSRL School on Hard X-ray Scattering Techniques in Materials and Environmental Sciences Group photo taken at the SSRL School on Hard X-ray Scattering Techniques in...

  1. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Wednesday, 25 February 2015 00:00 Plastic solar cells...

  2. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Wednesday, 30 May 2012 00:00 In principle, tri-block copolymers...

  3. X-ray and neutron scattering from nano-mgantic clusters | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray and neutron scattering from nano-mgantic clusters The student will participate in hands on X-ray scattering experiments on bio-inspired inorganic materials (i.e., magnetic...

  4. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  5. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2015-07-14

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  6. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  7. Photovoltaic structures having a light scattering interface layer and methods of making the same

    DOE Patents [OSTI]

    Liu, Xiangxin; Compaan, Alvin D.; Paudel, Naba Raj

    2015-10-13

    Photovoltaic (PV) cell structures having an integral light scattering interface layer configured to diffuse or scatter light prior to entering a semiconductor material and methods of making the same are described.

  8. Study of a scattering shield in a high heat load monochromator...

    Office of Scientific and Technical Information (OSTI)

    Study of a scattering shield in a high heat load monochromator Citation Details In-Document Search Title: Study of a scattering shield in a high heat load monochromator Authors: ...

  9. Small-Angle X-Ray Scattering From RNA, Proteins, And Protein...

    Office of Scientific and Technical Information (OSTI)

    Small-Angle X-Ray Scattering From RNA, Proteins, And Protein Complexes Citation Details In-Document Search Title: Small-Angle X-Ray Scattering From RNA, Proteins, And Protein ...

  10. Combining THz laser excitation with resonant soft X-ray scattering...

    Office of Scientific and Technical Information (OSTI)

    resonant soft X-ray scattering at the Linac Coherent Light Source Citation Details In-Document Search Title: Combining THz laser excitation with resonant soft X-ray scattering ...

  11. Neutron scattering of CeNi at the SNS-ORNL: A preliminary report

    SciTech Connect (OSTI)

    Mirmelstein, A. [Russian Federal Nuclear Center VNIITF, Snezhinsk, Russia; Podlesnyak, Andrey A [ORNL; Kolesnikov, Alexander I [ORNL; Saporov, B. [Oak Ridge National Laboratory (ORNL); Sefat, A.S. [Oak Ridge National Laboratory (ORNL); Tobin, J. G. [Lawrence Livermore National Laboratory (LLNL)

    2014-01-01

    This is a preliminary report of a neutron scattering experiment used to investigate 4f electron behavior in Ce.

  12. XRS 2016 - 8th SSRL School on Synchrotron X-Ray Scattering Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 21-23 2016 BL2-1 Registration closed Agenda 2016 Agenda Maps & Directions Visiting SLAC This school will provide a practical users' guide to planning and conducting scattering measurements at SSRL beam lines, and will cover important techniques including small angle scattering, thin-film scattering, powder diffraction, structure refinement and surface x-ray scattering. The school will address topics that are not commonly included in text books or class lectures, and typically obtained

  13. XRS 2016 - 8th SSRL School on Synchrotron X-Ray Scattering Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This school will provide a practical users' guide to planning and conducting scattering measurements at SSRL beam lines, and will cover important techniques including small angle scattering, thin-film scattering, powder diffraction, structure refinement and surface x-ray scattering. The school will address topics that are not commonly included in text books or class lectures, and typically obtained only through on-the-experiment training. There will be: hands-on sessions at SSRL beam lines a

  14. Study of the nanobubble phase of aqueous NaCl solutions by dynamic light scattering

    SciTech Connect (OSTI)

    Bunkin, N F; Shkirin, A V [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Burkhanov, I S; Chaikov, L L [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Lomkova, A K [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)

    2014-11-30

    Aqueous NaCl solutions with different concentrations have been investigated by dynamic scattering of laser radiation. It is experimentally shown that these solutions contain scattering particles with a wide size distribution in a range of ?10 100 nm. The experimental results indirectly confirm the existence of quasi-stable gas nanobubbles in the bulk of aqueous ionic solutions. (light scattering)

  15. CALIBRATION OF THE MIXING-LENGTH THEORY FOR CONVECTIVE WHITE DWARF ENVELOPES

    SciTech Connect (OSTI)

    Tremblay, P.-E.; Ludwig, H.-G.; Freytag, B.; Fontaine, G.; Brassard, P.; Steffen, M.

    2015-02-01

    A calibration of the mixing-length parameter in the local mixing-length theory (MLT) is presented for the lower part of the convection zone in pure-hydrogen-atmosphere white dwarfs. The parameterization is performed from a comparison of three-dimensional (3D) CO5BOLD simulations with a grid of one-dimensional (1D) envelopes with a varying mixing-length parameter. In many instances, the 3D simulations are restricted to the upper part of the convection zone. The hydrodynamical calculations suggest, in those cases, that the entropy of the upflows does not change significantly from the bottom of the convection zone to regions immediately below the photosphere. We rely on this asymptotic entropy value, characteristic of the deep and adiabatically stratified layers, to calibrate 1D envelopes. The calibration encompasses the convective hydrogen-line (DA) white dwarfs in the effective temperature range 6000 ≤ T {sub eff} (K) ≤15, 000 and the surface gravity range 7.0 ≤ log g ≤ 9.0. It is established that the local MLT is unable to reproduce simultaneously the thermodynamical, flux, and dynamical properties of the 3D simulations. We therefore propose three different parameterizations for these quantities. The resulting calibration can be applied to structure and envelope calculations, in particular for pulsation, chemical diffusion, and convective mixing studies. On the other hand, convection has no effect on the white dwarf cooling rates until there is a convective coupling with the degenerate core below T {sub eff} ∼ 5000 K. In this regime, the 1D structures are insensitive to the MLT parameterization and converge to the mean 3D results, hence they remain fully appropriate for age determinations.

  16. Accurate Development of Thermal Neutron Scattering Cross Section Libraries

    SciTech Connect (OSTI)

    Hawari, Ayman; Dunn, Michael

    2014-06-10

    The objective of this project is to develop a holistic (fundamental and accurate) approach for generating thermal neutron scattering cross section libraries for a collection of important enutron moderators and reflectors. The primary components of this approach are the physcial accuracy and completeness of the generated data libraries. Consequently, for the first time, thermal neutron scattering cross section data libraries will be generated that are based on accurate theoretical models, that are carefully benchmarked against experimental and computational data, and that contain complete covariance information that can be used in propagating the data uncertainties through the various components of the nuclear design and execution process. To achieve this objective, computational and experimental investigations will be performed on a carefully selected subset of materials that play a key role in all stages of the nuclear fuel cycle.

  17. Infrared singularities of scattering amplitudes in perturbative QCD

    SciTech Connect (OSTI)

    Becher, Thomas; Neubert, Matthias

    2013-11-01

    An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficients of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.

  18. Air-core grid for scattered x-ray rejection

    DOE Patents [OSTI]

    Logan, C.M.; Lane, S.M.

    1995-10-03

    The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 {micro}m pore size, 80% open area, and 4 mm thickness. 2 figs.

  19. Air-core grid for scattered x-ray rejection

    DOE Patents [OSTI]

    Logan, Clinton M.; Lane, Stephen M.

    1995-01-01

    The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 .mu.m pore size, 80% open area, and 4 mm thickness.

  20. Neutrino-pair bremsstrahlung from nucleon-nucleon scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Yi; Liou, M. K.; Schreiber, W. M.; Gibson, B. F.

    2015-07-22

    Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering ΝΝνν¯ (nnvv¯, ppvv¯, and npvv¯) have recently attracted attention in studies of neutrino emission in neutron stars, because of the implications for the neutron star cooling. The calculated ΝΝνν¯ emissivities within the neutron star environment are relatively insensitive to the two-nucleon dynamical model used in the calculations, but differ significantly from those obtained using an OPE model. Purpose: To investigate the free ΝΝνν¯ cross sections using a realistic nucleon-nucleon scattering amplitude, comparing the relative sizes of the cross sections for the three processes nnvv¯, ppvv¯, and npvv¯.

  1. Quantum Markovian master equation for scattering from surfaces

    SciTech Connect (OSTI)

    Li, Haifeng; Shao, Jiushu; Azuri, Asaf; Pollak, Eli Alicki, Robert

    2014-01-07

    We propose a semi-phenomenological Markovian Master equation for describing the quantum dynamics of atom-surface scattering. It embodies the Lindblad-like structure and can describe both damping and pumping of energy between the system and the bath. It preserves positivity and correctly accounts for the vanishing of the interaction of the particle with the surface when the particle is distant from the surface. As a numerical test, we apply it to a model of an Ar atom scattered from a LiF surface, allowing for interaction only in the vertical direction. At low temperatures, we find that the quantum mechanical average energy loss is smaller than the classical energy loss. The numerical results obtained from the space dependent friction master equation are compared with numerical simulations for a discretized bath, using the multi-configurational time dependent Hartree methodology. The agreement between the two simulations is quantitative.

  2. Inelastic X-ray Scattering from Shocked Liquid Deuterium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Regan, S. P.; Falk, K.; Gregori, G.; Radha, P. B.; Hu, S. X.; Boehly, T. R.; Crowley, B.; Glenzer, S. H.; Landen, O.; Gericke, D. O.; et al

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Lyα line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×1023 cm-3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

  3. High performance x-ray anti-scatter grid

    DOE Patents [OSTI]

    Logan, Clinton M.

    1995-01-01

    An x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury.

  4. High performance x-ray anti-scatter grid

    DOE Patents [OSTI]

    Logan, C.M.

    1995-05-23

    Disclosed are an x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury. 4 Figs.

  5. Scattering of an ultrasoft pion and the X(3872)

    SciTech Connect (OSTI)

    Braaten, Eric; Hammer, H.-W.; Mehen, Thomas

    2010-08-01

    The identification of the X(3872) as a loosely-bound charm-meson molecule allows it to be described by an effective field theory, called XEFT, for the D{sup *}D, DD{sup *}, and DD{pi} sector of QCD at energies small compared to the pion mass. We point out that this effective field theory can be extended to the sector that includes an additional pion and used to calculate cross sections for the scattering of a pion and the X(3872). If the collision energy is much smaller than the pion mass, the cross sections are completely calculable at leading order in terms of the masses and widths of the charm mesons, pion masses, and the binding energy of the X(3872). We carry out an explicit calculation of the cross section for the breakup of the X(3872) into D{sup *+}D{sup *0} by the scattering of a very low energy {pi}{sup +}.

  6. Telomere length in children environmentally exposed to low-to-moderate levels of lead

    SciTech Connect (OSTI)

    Pawlas, Natalia; Płachetka, Anna; Kozłowska, Agnieszka; Broberg, Karin; Kasperczyk, Sławomir

    2015-09-01

    Shorter relative telomere length in peripheral blood is a risk marker for some types of cancers and cardiovascular diseases. Several environmental hazards appear to shorten telomeres, and this shortening may predispose individuals to disease. The aim of the present cross-sectional study was to assess the effect of environmental exposure to lead on relative telomere length (rTL) in children. A cohort of 99 8-year-old children was enrolled from 2007–2010. Blood lead concentrations (B-Pb) were measured by graphite furnace atomic absorption spectrometry, and blood rTL was measured by quantitative PCR. The geometric mean of B-Pb was 3.28 μg/dl (range: 0.90–14.2), and the geometric mean of rTL was 1.08 (range: 0.49–2.09). B-Pb was significantly inversely associated with rTL in the children (r{sub S} = − 0.25, p = 0.013; in further analyses both log-transformed-univariate regression analysis β = − 0.13, p = 0.026, and R{sup 2}adj 4%; and β = − 0.12, p = 0.056 when adjusting for mothers' smoking during pregnancy, Apgar score, mother's and father's ages at delivery, sex and mother's education, R{sup 2}adj 12%, p = 0.011). The effect of lead remained significant in children without prenatal tobacco exposure (N = 87, r{sub S} = − 0.24, p = 0.024; in further analyses, β = − 0.13, p = 0.029, and R{sup 2}adj 4%). rTL was not affected by sex, the concentrations of other elements in the blood (i.e., cadmium and selenium concentrations), or oxidative injury parameters (total antioxidant status, 8-hydroxydeoxyguanosine and thiobarbituric acid-reactive substances). Lead exposure in childhood appears to be associated with shorter telomeres, which might contribute to diseases, such as cardiovascular disease. The inverse association between blood lead level and the telomeres in children emphasizes the importance of further reducing lead levels in the environment. - Highlights: • This cross-sectional study analyzes the association between environmental lead exposure and telomere length in children. • Blood lead concentrations were inversely associated with relative telomere length in 8-year-old children. • Environmental lead exposure during childhood might contribute to telomere shortening, and in turn, future risk for disease.

  7. 11th LANSCE School on Neutron Scattering | School Abstract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials at the Mesoscale The 11th LANSCE School on Neutron Scattering will focus on science of Materials at the Mesoscale: the influence of surfaces, interfaces, and micro-structure in properties of materials and functionalities. The goal of the 11th School is to convey characterization of the hierarchical structure of materials from the nano- to the meso-scale, and the tailored control of their properties that have impact on the society (e.g. fracking, engineering materials, geological

  8. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOE Patents [OSTI]

    Vo-Dinh, Tuan

    1995-01-01

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devises, in probe array devices.

  9. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1995-03-21

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devices, in probe array devices. 10 figures.

  10. Bragg optics computer codes for neutron scattering instrument design

    SciTech Connect (OSTI)

    Popovici, M.; Yelon, W.B.; Berliner, R.R.; Stoica, A.D.

    1997-09-01

    Computer codes for neutron crystal spectrometer design, optimization and experiment planning are described. Phase space distributions, linewidths and absolute intensities are calculated by matrix methods in an extension of the Cooper-Nathans resolution function formalism. For modeling the Bragg reflection on bent crystals the lamellar approximation is used. Optimization is done by satisfying conditions of focusing in scattering and in real space, and by numerically maximizing figures of merit. Examples for three-axis and two-axis spectrometers are given.

  11. Scattering of radio frequency waves by blobs in tokamak plasmas

    SciTech Connect (OSTI)

    Ram, Abhay K.; Hizanidis, Kyriakos; Kominis, Yannis

    2013-05-15

    The density fluctuations and blobs present in the edge region of magnetic fusion devices can scatter radio frequency (RF) waves through refraction, reflection, diffraction, and coupling to other plasma waves. This, in turn, affects the spectrum of the RF waves and the electromagnetic power that reaches the core of the plasma. The usual geometric optics analysis of RF scattering by density blobs accounts for only refractive effects. It is valid when the amplitude of the fluctuations is small, of the order of 10%, compared to the background density. In experiments, density fluctuations with much larger amplitudes are routinely observed, so that a more general treatment of the scattering process is needed. In this paper, a full-wave model for the scattering of RF waves by a blob is developed. The full-wave approach extends the range of validity well beyond that of geometric optics; however, it is theoretically and computationally much more challenging. The theoretical procedure, although similar to that followed for the Mie solution of Maxwell's equations, is generalized to plasmas in a magnetic field. Besides diffraction and reflection, the model includes coupling to a different plasma wave than the one imposed by the external antenna structure. In the model, it is assumed that the RF waves interact with a spherical blob. The plasma inside and around the blob is cold, homogeneous, and imbedded in a uniform magnetic field. After formulating the complete analytical theory, the effect of the blob on short wavelength electron cyclotron waves and longer wavelength lower hybrid waves is studied numerically.

  12. At Los Alamos's Lujan Neutron Scattering Center, crystallographer Olivier Gourdon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crystallographer keen on showing off the revealing properties of neutrons February 27, 2014 At Los Alamos's Lujan Neutron Scattering Center, crystallographer Olivier Gourdon shows visiting researchers some of the latest tricks that can be performed using this 100-year old multidisciplinary science, which has a spectacular record of demystifying materials as varied as DNA and Martian rocks."Crystallography has the image of an old science. I'm trying to refresh that," said Gourdon, an

  13. Interpolations of nuclide-specific scattering kernels generated with Serpent

    SciTech Connect (OSTI)

    Scopatz, A.; Schneider, E.

    2012-07-01

    The neutron group-to-group scattering cross section is an essential input parameter for any multi-energy group physics model. However, if the analyst prefers to use Monte Carlo transport to generate group constants this data is difficult to obtain for a single species of a material. Here, the Monte Carlo code Serpent was modified to return the group transfer probabilities on a per-nuclide basis. This ability is demonstrated in conjunction with an essential physics reactor model where cross section perturbations are used to dynamically generate reactor state dependent group constants via interpolation from pre-computed libraries. The modified version of Serpent was therefore verified with three interpolation cases designed to test the resilience of the interpolation scheme to changes in intra-group fluxes. For most species, interpolation resulted in errors of less than 5% of transport-computed values. For important scatterers, such as {sup 1}H, errors less than 2% were observed. For nuclides with high errors ( > 10%), the scattering channel typically only had a small probability of occurring. (authors)

  14. White dwarfs as the maximal soft x-ray scatterers

    SciTech Connect (OSTI)

    Akbari-Moghanjoughi, M.; International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum

    2013-09-15

    In this paper, we explore the effect of density on the structure formation and the electromagnetic wave (EMw) elastic scattering on quantum plasmas, using the generalized quantum hydrodynamic model valid for a wide range of the plasma density and relativistic degeneracy. It is found that the electron quantum diffraction effect caused by the Bohm potential has a fundamental effect on the ion correlations in a degenerate electron fluid and crystallization in quantum plasmas in the solid-density regime and beyond. The ion correlations and structure formation are shown to be fundamentally affected by the plasma density and the relativistic degeneracy parameters. Moreover, distinct behavior is shown to exist between the non-relativistic and relativistic matter density regimes, regarding the normalized EMw elastic scattering cross-sections. It is theoretically discovered that the maximal Thomson scattering coincides with the average density of a typical white dwarf corresponding to the soft X-ray wavelength regime. Current research can be very useful in plasma optical diagnostic methods for a wide range of electron number-density from warm dense matter and inertial confinement fusion to the astrophysical compact objects.

  15. Resonances in coupled ?K, ?K scattering from lattice QCD

    SciTech Connect (OSTI)

    Wilson, David J.; Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.

    2015-03-10

    Coupled-channel ?K and ?K scattering amplitudes are determined by studying the finite-volume energy spectra obtained from dynamical lattice QCD calculations. Using a large basis of interpolating operators, including both those resembling a qq-bar construction and those resembling a pair of mesons with relative momentum, a reliable excited-state spectrum can be obtained. Working at m? = 391 MeV, we find a gradual increase in the JP = 0+ ?K phase-shift which may be identified with a broad scalar resonance that couples strongly to ?K and weakly to ?K. The low-energy behavior of this amplitude suggests a virtual bound-state that may be related to the ? resonance. A bound state with JP = 1- is found very close to the ?K threshold energy, whose coupling to the ?K channel is compatible with that of the experimental K*(892). Evidence is found for a narrow resonance in JP = 2+. Isospin3/2 ?K scattering is also studied and non-resonant phase-shifts spanning the whole elastic scattering region are obtained.

  16. Crystal defect studies using x-ray diffuse scattering

    SciTech Connect (OSTI)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.

  17. High Temperature Thermoelectric Oxides Engineered At Multiple Length Scales For Energy Harvesting

    SciTech Connect (OSTI)

    Ohuchi, Fumio; Bordia, Rajendra

    2014-12-20

    Thermoelectric aspects of the processing parameters the n-type relaxors, including SrxBa1-xNb2O6 (SBN100x), Sr2Nb2O7 (SN) and SrBi2Nb2O9 (SBiN), were investigated. A solution combustion synthesis (SCS) route was devised to fabricate SBN, SN and SBiN nanoparticles with excellent phase purity. X-ray photoelectron spectroscopy (XPS) was used to deduce the local cation site occupancy, and detailed thermoelectric transport processes were investigated. Based on the identified behavior, effectiveness of pore formers on the thermoelectric performance was investigated with the goal of decreasing κ through enhanced phonon scattering while preserving the electron transport characteristics.

  18. SU-E-I-07: An Improved Technique for Scatter Correction in PET

    SciTech Connect (OSTI)

    Lin, S; Wang, Y; Lue, K; Lin, H; Chuang, K

    2014-06-01

    Purpose: In positron emission tomography (PET), the single scatter simulation (SSS) algorithm is widely used for scatter estimation in clinical scans. However, bias usually occurs at the essential steps of scaling the computed SSS distribution to real scatter amounts by employing the scatter-only projection tail. The bias can be amplified when the scatter-only projection tail is too small, resulting in incorrect scatter correction. To this end, we propose a novel scatter calibration technique to accurately estimate the amount of scatter using pre-determined scatter fraction (SF) function instead of the employment of scatter-only tail information. Methods: As the SF depends on the radioactivity distribution and the attenuating material of the patient, an accurate theoretical relation cannot be devised. Instead, we constructed an empirical transformation function between SFs and average attenuation coefficients based on a serious of phantom studies with different sizes and materials. From the average attenuation coefficient, the predicted SFs were calculated using empirical transformation function. Hence, real scatter amount can be obtained by scaling the SSS distribution with the predicted SFs. The simulation was conducted using the SimSET. The Siemens Biograph 6 PET scanner was modeled in this study. The Software for Tomographic Image Reconstruction (STIR) was employed to estimate the scatter and reconstruct images. The EEC phantom was adopted to evaluate the performance of our proposed technique. Results: The scatter-corrected image of our method demonstrated improved image contrast over that of SSS. For our technique and SSS of the reconstructed images, the normalized standard deviation were 0.053 and 0.182, respectively; the root mean squared errors were 11.852 and 13.767, respectively. Conclusion: We have proposed an alternative method to calibrate SSS (C-SSS) to the absolute scatter amounts using SF. This method can avoid the bias caused by the insufficient tail information and therefore improve the accuracy of scatter estimation.

  19. Strain rate, temperature and representative length scale influence on plasticity and yield stress in copper

    SciTech Connect (OSTI)

    Dupont, Virginie; Germann, Timothy C

    2011-01-18

    Shock compression of materials constitutes a complex process involving high strain rates, elevated temperatures and compression of the lattice. Materials properties are greatly affected by temperature, the representative length scale and the strain rate of the deformation. Experimentally, it is difficult to study the dynamic microscopic mechanisms that affect materials properties following high intensity shock loading, but they can be investigated using molecular dynamics (MD) simulations. Moreover, MD allows a better control over some parameters. We are using MD simulations to study the effect of the strain rate, representative length scale and temperature on the properties of metals during compression. A half-million-atom Cu sample is subjected to strain rates ranging from 10{sup 7} s{sup -1} to 10{sup 12} s{sup -1} at different temperatures ranging from 50K to 1500K. Single crystals as well as polycrystals are investigated. Plasticity mechanisms as well as the evolution of the micro- and macro-yield stress are observed. Our results show that the yield stress increases with increasing strain rate and decreasing temperature. We also show that the strain rate at which the transition between constant and increasing yield stress as a function of the temperature occurs increases with increasing temperature. Calculations at different grain sizes will give an insight into the grain size effect on the plasticity mechanisms and the yield stress.

  20. Measurement of laminar burning speeds and Markstein lengths using a novel methodology

    SciTech Connect (OSTI)

    Tahtouh, Toni; Halter, Fabien; Mounaim-Rousselle, Christine [Institut PRISME, Universite d'Orleans, 8 rue Leonard de Vinci-45072, Orleans Cedex 2 (France)

    2009-09-15

    Three different methodologies used for the extraction of laminar information are compared and discussed. Starting from an asymptotic analysis assuming a linear relation between the propagation speed and the stretch acting on the flame front, temporal radius evolutions of spherically expanding laminar flames are postprocessed to obtain laminar burning velocities and Markstein lengths. The first methodology fits the temporal radius evolution with a polynomial function, while the new methodology proposed uses the exact solution of the linear relation linking the flame speed and the stretch as a fit. The last methodology consists in an analytical resolution of the problem. To test the different methodologies, experiments were carried out in a stainless steel combustion chamber with methane/air mixtures at atmospheric pressure and ambient temperature. The equivalence ratio was varied from 0.55 to 1.3. The classical shadowgraph technique was used to detect the reaction zone. The new methodology has proven to be the most robust and provides the most accurate results, while the polynomial methodology induces some errors due to the differentiation process. As original radii are used in the analytical methodology, it is more affected by the experimental radius determination. Finally, laminar burning velocity and Markstein length values determined with the new methodology are compared with results reported in the literature. (author)

  1. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOE Patents [OSTI]

    Moore, Arnold R.

    1984-01-01

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV for each wavelength. A drop of a transparent electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 volts couples the SPV to a measurement system. The drop of redox couple solution functions to create a liquid Schottky barrier at the surface of the material. Illumination light is passed through a transparent rod supported over the surface and through the drop of transparent electrolyte. The drop is held in the gap between the rod and the surface. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.

  2. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOE Patents [OSTI]

    Moore, Arnold R.

    1984-02-21

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon, which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV for each wavelength. A probe electrode immersed in an electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 volts couples the SPV to a measurement system. The redox couple solution functions to create a liquid Schottky barrier at the surface of the material. The Schottky barrier is contacted by merely placing the probe in the solution. The redox solution is placed over and in contact with the material to be tested and light is passed through the solution to generate the SPV. To compensate for colored redox solutions a portion of the redox solution not over the material is also illuminated for determining the color compensated light intensity. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.

  3. Critical length for upheaval buckling of straight pipelines buried in ice rich soils

    SciTech Connect (OSTI)

    Quimby, T.B.

    1996-12-01

    Upheaval buckling, a phenomena receiving attention in offshore pipelines, has also been found to be a problem for onshore arctic pipelines buried in ice rich soils. While anticipated in overbend situations, it is also being found in pipelines designed to be straight. Understanding the mechanics and parameters affecting this behavior are essential to properly designing a buried arctic pipeline. This paper introduces the parameters that have led to upheaval buckling in at least one pipeline and describes the operation of a program that computes the critical buckling loads at various pipe lengths for the inception of upheaval buckling in a buried pipeline. The method uses finite elements to solve the eigenvalue problem for the axial stability of a column with flexible lateral restraints. This program can be used to predict critical lengths for straight pipelines that lose some or all of the lateral restraint of soil through erosion or thermal degradation. The results are used to make decisions concerning backfill and restrain design. The effects of soils stiffness are considered. Additional research needs are also discussed.

  4. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    SciTech Connect (OSTI)

    Omar, M.S.

    2012-11-15

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ? A model for a size dependent mean bonding length is derived. ? The size dependent melting point of nanoparticles is modified. ? The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 ?{sup 3} for bulk to 57 ?{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 10{sup ?6} K{sup ?1} for a bulk crystal down to a minimum value of 0.1 10{sup ?6} K{sup ?1} for a 6 nm diameter nanoparticle.

  5. IMPACTS OF REFRIGERANTLINE LENGTH ON SYSTEM EFFICIENCY IN RESIDENTIAL HEATING AND COOLING SYSTEMS USING REFRIGERANT DISTRIBUTION.

    SciTech Connect (OSTI)

    ANDREWS, J.W.

    2001-04-01

    The effects on system efficiency of excess refrigerant line length are calculated for an idealized residential heating and cooling system. By excess line length is meant refrigerant tubing in excess of the 25 R provided for in standard equipment efficiency test methods. The purpose of the calculation is to provide input for a proposed method for evaluating refrigerant distribution system efficiency. A refrigerant distribution system uses refrigerant (instead of ducts or pipes) to carry heat and/or cooling effect from the equipment to the spaces in the building in which it is used. Such systems would include so-called mini-splits as well as more conventional split systems that for one reason or another have the indoor and outdoor coils separated by more than 25 ft. This report performs first-order calculations of the effects on system efficiency, in both the heating and cooling modes, of pressure drops within the refrigerant lines and of heat transfer between the refrigerant lines and the space surrounding them.

  6. Effects of nutrient recycling and food-chain length on resilience

    SciTech Connect (OSTI)

    DeAngelis, D.L.; Bartell, S.M. ); Brenkert, A.L. )

    1989-11-01

    The attempt to explain the observed structure of ecological food webs has been one of the recent key issues of theoretical ecology. Unquestionably, many factors are involved in determining food-web structure. The dissipation of available energy from one trophic level to the next has been emphasized by Yodzis as the major factor limiting the length of food chains. However, Pimm and Lawton and Pimm have argued that a decrease in relative stability with increasing food-chain length may also be a factor. By relative stability (more commonly, resilience), we mean the rate at which a stable ecological system returns to a steady state following a perturbation. Resilience can be defined more precisely as the inverse of the return time T{sub R}, the time it takes a systems to return a specified fraction of the way toward a steady state following a perturbation. Besides its possible significance to food-web structure, ecosystem resilience is a factor of practical importance, since it is a measure of the rate at which the ecosystem can recover from disturbances. Our purpose is to investigate resilience in food-chain and food-web models as nutrient input and the trophic structure are varied and to offer explanations of the observed model behaviors. In this paper we present the basic results by first using a simple abstract food-chain model at steady state and then showing that these results hold for a more complex food-web simulation model without a constant steady state solution.

  7. 2010 American Conference on Neutron Scattering (ACNS 2010)

    SciTech Connect (OSTI)

    Billinge, Simon

    2011-06-17

    The ACNS provides a focal point for the national neutron user community to strengthen ties within this diverse group, while at the same time promoting neutron research among colleagues in related disciplines identified as would-be neutron users. The American Conference on Neutron Scattering thus serves a dual role as a national user meeting and a scientific meeting. As a venue for scientific exchange, the ACNS showcases recent results and provides forums for scientific discussion of neutron research in diverse fields such as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, and elementary excitations, fundamental physics and development of neutron instrumentation through a combination of invited talks, contributed talks and poster sessions. As a super-user meeting, the ACNS fulfills the main objectives of users' meetings previously held periodically at individual national neutron facilities, with the advantage of a larger and more diverse audience. To this end, each of the major national neutron facilities (NIST, LANSCE, HFIR and SNS) have an opportunity to exchange information and update users, and potential users, of their facility. This is also an appropriate forum for users to raise issues that relate to the facilities. For many of the national facilities, this super-user meeting should obviate the need for separate user meetings that tax the time, energy and budgets of facility staff and the users alike, at least in years when the ACNS is held. We rely upon strong participation from the national facilities. The NSSA intends that the American Conference on Neutron Scattering (ACNS) will occur approximately every two years, but not in years that coincide with the International or European Conferences on Neutron Scattering. The ACNS is to be held in association with one of the national neutron centers in a rotating sequence, with the host facility providing local organization and planning assistance. Additional logistical support is being provided this year through a partnership with the conferencing office of the Materials Research Society (MRS). The ACNS, targeting the entire potential neutron North American user community, complements the annual NIST, ANL and LANSCE neutron and scattering schools which give hands-on experience primarily to graduate students who anticipate using neutron scattering in their thesis research. The summer schools are promoted at the ACNS and represent a natural path for students to take after being inspired by the activities of the ACNS.

  8. Superscaling in electron-nucleus scattering and its link to CC and NC QE neutrino-nucleus scattering

    SciTech Connect (OSTI)

    Barbaro, M. B.; Amaro, J. E.; Caballero, J. A.; González-Jiménez, R.; Donnelly, T. W.; Ivanov, M.; Udías, J. M.

    2015-05-15

    The superscaling approach (SuSA) to neutrino-nucleus scattering, based on the assumed universality of the scaling function for electromagnetic and weak interactions, is reviewed. The predictions of the SuSA model for bot CC and NC differential and total cross sections are presented and compared with the MiniBooNE data. The role of scaling violations, in particular the contribution of meson exchange currents in the two-particle two-hole sector, is explored.

  9. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering

    SciTech Connect (OSTI)

    Braicovich, L. Minola, M.; Dellea, G.; Ghiringhelli, G.; Le Tacon, M.; Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B.; Supruangnet, R.

    2014-11-15

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

  10. MODE CONVERSION BETWEEN DIFFERENT RADIAL ORDERS FOR SOLAR ACOUSTIC WAVES SCATTERED BY SUNSPOTS

    SciTech Connect (OSTI)

    Zhao, Hui; Chou, Dean-Yi

    2013-11-20

    We study the mode conversion between different radial orders for solar acoustic waves interacting with sunspots. Solar acoustic waves are modified in the presence of sunspots. The modification in the wave can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave inside and around the sunspot. The wavefunction of the acoustic wave on the solar surface is computed from the cross-correlation function. The wavefunction of the scattered wave is obtained by subtracting the wavefunction of the incident wave from that of the total wave. We use the incident waves of radial order n = 0-5 to measure the scattered wavefunctions from n to another radial order n' for NOAAs 11084 and 11092. The strength of scattered waves decreases rapidly with |?n|, where ?n ? n' n. The scattered waves of ?n = 1 are visible for n ? 1, and significant for n ? 2. For the scattered wave of ?n = 2, only few cases are visible. None of the scattered waves of ?n = 3 are visible. The properties of scattered waves for ?n = 0 and ?n ? 0 are different. The scattered wave amplitude relative to the incident wave amplitude decreases with n for ?n = 0, while it increases with n for ?n ? 0. The scattered wave amplitudes of ?n = 0 are greater for the larger sunspot, while those of ?n ? 0 are insensitive to the sunspot size.

  11. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    SciTech Connect (OSTI)

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  12. Effects of fluid shear stress on polyelectrolyte multilayers by neutron scattering studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Saurabh; Junghans, Ann; Watkins, Erik; Kapoor, Yash; Toomey, Ryan; Majewski, Jaroslaw

    2015-02-17

    The structure of layer-by-layer (LbL) deposited nanofilm coatings consists of alternating polyethylenimine (PEI) and polystyrenesulfonate (PSS) films deposited on a single crystal quartz substrate. LbL-deposited nanofilms were investigated by neutron reflectomery (NR) in contact with water in the static and fluid shear stress conditions. The fluid shear stress was applied through a laminar flow of the liquid parallel to the quartz/polymer interface in a custom-built solid–liquid interface cell. The scattering length density profiles obtained from NR results of these polyelectrolyte multilayers (PEM), measured under different shear conditions, showed proportional decrease of volume fraction of water hydrating the polymers. For themore » highest shear rate applied (ca. 6800 s–1) the water volume fraction decreased by approximately 7%. The decrease of the volume fraction of water was homogeneous through the thickness of the film. Since there were not any significant changes in the total polymer thickness, it resulted in negative osmotic pressures in the film. The PEM films were compared with the behavior of thin films of thermoresponsive poly(N-isopropylacrylamide) (pNIPAM) deposited via spin-coating. The PEM and pNIPAM differ in their interactions with water molecules, and they showed opposite behaviors under the fluid shear stress. In both cases the polymer hydration was reversible upon the restoration of static conditions. Furthermore, a theoretical explanation is given to explain this difference in the effect of shear on hydration of polymeric thin films.« less

  13. Beam splitter and method for generating equal optical path length beams

    DOE Patents [OSTI]

    Qian, Shinan; Takacs, Peter

    2003-08-26

    The present invention is a beam splitter for splitting an incident beam into first and second beams so that the first and second beams have a fixed separation and are parallel upon exiting. The beam splitter includes a first prism, a second prism, and a film located between the prisms. The first prism is defined by a first thickness and a first perimeter which has a first major base. The second prism is defined by a second thickness and a second perimeter which has a second major base. The film is located between the first major base and the second major base for splitting the incident beam into the first and second beams. The first and second perimeters are right angle trapezoidal shaped. The beam splitter is configured for generating equal optical path length beams.

  14. A fast coherent synchrotron radiation monitor for the bunch length of the short CEBAF bunches

    SciTech Connect (OSTI)

    Wang, D.X.; Krafft, G.A.; Price, E.; Wood, P.; Porterfield, D.; Crowe, T.

    1996-04-01

    A novel bunch length monitor for short (down to subpicosecond) electron bunches has been developed in a collaboration between CEBAF and the University of Virginia (UVA), using coherent synchrotron radiation (CSR) detection techniques. The monitor employs a state of the art {open_quote}{open_quote}narrowband{close_quote}{close_quote} GaAs Schottky whisker diode developed by the UVA group, and has the following features: it is non-invasive, compact, and low cost, it has fast rise time, low noise, high sensitivity, and it operates at room temperature. In this paper, the design parameters and performance of the monitor and selected measurement results will be presented. {copyright} {ital 1996 American Institute of Physics.}

  15. Method for using polarization gating to measure a scattering sample

    DOE Patents [OSTI]

    Baba, Justin S.

    2015-08-04

    Described herein are systems, devices, and methods facilitating optical characterization of scattering samples. A polarized optical beam can be directed to pass through a sample to be tested. The optical beam exiting the sample can then be analyzed to determine its degree of polarization, from which other properties of the sample can be determined. In some cases, an apparatus can include a source of an optical beam, an input polarizer, a sample, an output polarizer, and a photodetector. In some cases, a signal from a photodetector can be processed through attenuation, variable offset, and variable gain.

  16. Measurements of the {sup 6}He+p resonant scattering

    SciTech Connect (OSTI)

    Condori, R. Pampa; Lichtenthler, R.; Lpine-Szily, A.; Gasques, L. R.; Morais, M. C.; Scarduelli, V. B.; Leistenschneider, E.; Alcntara-Nez, J. A.; Faria, P. N. de; Mendes Jr, D. R.; Pires, K. C. C.; Shorto, J. M. B.

    2014-11-11

    Measurements of the p({sup 6}He,p) elastic scattering excitation function have been performed in the RIBRAS system using a {sup 6}He secondary beam and a CH{sub 2} polyethylene thick target. The motivation is to observe states of the compound nucleus {sup 7}Li in the excitation energy range of E{sub exc}{sup 7Li}?=?10.8-11.8MeV, where the isobaric analog state of {sup 7}He ground state lies. Excitation functions have been obtained at three laboratory angles ?{sub lab} = 0, 20, and 25 which correspond to ?{sub c.m} = 180, 140, and 130.

  17. Electron muon scattering in the exotic Z(0)' pole

    SciTech Connect (OSTI)

    Diaz, H.; Ravinez, O.; Romero, D.; Reyes, J.

    2009-04-30

    The search for new physics in the future Internacional Linear Collider ILC, implies the existence of new particles, among them, the Z(0)' particle. In this regard, we calculate the e{sup +}+e{sup -}{yields}{mu}{sup +}+{mu}{sup -} scattering cross section near the Z(0)' pole, whitin the contex of the SU(3){sub L}xU(1){sub Y} weak model, which contains exotic leptons, quarks, and bosons (E,J,U,V) with the finality of obtain constraints in the parameters of the model.

  18. Resonant Inelastic Scattering Spectra of Free Molecules with Vibrational Resolution

    SciTech Connect (OSTI)

    Hennies, Franz; Pietzsch, Annette; Berglund, Martin; Foehlisch, Alexander; Schmitt, Thorsten; Strocov, Vladimir; Karlsson, Hans O.; Andersson, Joakim; Rubensson, Jan-Erik

    2010-05-14

    Inelastic x-ray scattering spectra excited at the 1s{sup -1{pi}}* resonance of gas phase O{sub 2} have been recorded with an overall energy resolution that allows for well-resolved vibrational progressions. The nuclear wave packet dynamics in the intermediate state is reflected in vibrational excitations of the electronic ground state, and by fine-tuning the excitation energy the dissociation dynamics in the predissociative B{sup '} {sup 3{Pi}}{sub g} final state is controlled.

  19. IN SITU SURFACE X-RAY SCATTERING STUDIES OF ELECTROSORPTION

    SciTech Connect (OSTI)

    WANG,J.X.; ADZIC,R.R.; OCKO,B.M.

    1998-07-01

    A short review of the application of surface x-ray scattering techniques to the electrode/electrolyte interfaces is presented. Recent results on metal, halide, and metal-halide adlayers with three specific systems: Bi on Au(100) and Au(110); Br on Au(100) and Ag(100); and the coadsorption of Tl with Br or I on Au(111), are given as an illustration. Factors affecting ordering of pure metal and halide adlayers and the metal-halide surface compounds are discussed in some detail.

  20. Analytical evaluation of atomic form factors: Application to Rayleigh scattering

    SciTech Connect (OSTI)

    Safari, L.; Santos, J. P.; Amaro, P.; Jnkl, K.; Fratini, F.

    2015-05-15

    Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.

  1. Single and multiple intrabeam scattering in hadron colliders

    SciTech Connect (OSTI)

    Lebedev, V.; /Fermilab

    2005-01-01

    Single and multiple intra-beam scattering are usually considered separately. Such separation works well for electron-positron colliders but usually yields only coarse description in the case of hadron colliders. Boltzmann type integro-differential equation is used to describe evolution of longitudinal distribution due to IBS. The finite size of the longitudinal potential well, its non-linearity and x-y coupling are taken into account. The model predictions for longitudinal and transverse distributions are compared to the experimental measurements.

  2. Event-Based Processing of Neutron Scattering Data

    SciTech Connect (OSTI)

    Peterson, Peter F.; Campbell, Stuart I.; Reuter, Michael A.; Taylor, Russell J.; Zikovsky, Janik L.

    2015-09-16

    Many of the world's time-of-flight spallation neutrons sources are migrating to the recording of individual neutron events. This provides for new opportunities in data processing, the least of which is to filter the events based on correlating them with logs of sample environment and other ancillary equipment. This paper will describe techniques for processing neutron scattering data acquired in event mode that preserve event information all the way to a final spectrum, including any necessary corrections or normalizations. This results in smaller final errors, while significantly reducing processing time and memory requirements in typical experiments. Results with traditional histogramming techniques will be shown for comparison.

  3. Probing Quark-Gluon Interactions with Transverse Polarized Scattering

    SciTech Connect (OSTI)

    Slifer, K.; Rondon, O. A.; Crabb, D.; Day, D.; Frlez, E.; Lindgren, R.; McKee, P.; Norum, B.; Pocanic, D.; Prok, Y.; Sawatzky, B.; Smith, C.; Tajima, S.; Wang, K.; Zeier, M.; Zhu, H.; Aghalaryan, A.; Asaturyan, R.; Mkrtchyan, H.; Ahmidouch, A.

    2010-09-03

    We have extracted QCD matrix elements from our data on doubly polarized inelastic scattering of electrons on nuclei. We find the higher twist matrix element d{sub 2}-tilde, which arises strictly from quark-gluon interactions, to be unambiguously nonzero. The data also reveal an isospin dependence of higher twist effects if we assume that the Burkhardt-Cottingham sum rule is valid. The fundamental Bjorken sum rule obtained from the a{sub 0} matrix element is satisfied at our low momentum transfer.

  4. ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2010-12-15

    10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  5. ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  6. Role of the laser pulse-length in producing high-quality electron beams in a homogenous plasma

    SciTech Connect (OSTI)

    Upadhyay, Ajay K.; Arun Samant, Sushil; Krishnagopal, Srinivas

    2012-07-15

    In laser wakefield acceleration, the pulse-length of the laser is an important parameter that affects the laser evolution and electron beam injection and acceleration in the bubble regime. Here, we use three-dimensional simulations to find, for a given plasma density, the optimal pulse-length that gives the best quality electron beam. For three different pulse lengths, we study the evolution dynamics of the laser spot-size and quality of the injected electron beam. We find that a pulse-length that is less than the theoretical optimum, {tau}{sub L} = {lambda}{sub p}/{radical}2{pi}c, derived from linear theory, gives the best beam quality. Conversely, our simulations suggest that for a given laser system, with a fixed pulse-length, there is an optimal value of the plasma density that will give the best quality accelerated beams in experiments. For an rms pulse-length of 10 fs (around 24 fs FWHM), this corresponds to a plasma density of around 3.4 Multiplication-Sign 10{sup 18}/cm{sup 3}. For these parameters, we obtain, in a homogenous plasma and with a single laser, an electron beam with an energy of around 700 MeV, an energy-spread less than 2%, and rms normalized emittance of a few {pi} mm-mrad.

  7. Polarization of photons scattered by electrons in any spectral distribution

    SciTech Connect (OSTI)

    Chang, Zhe; Lin, Hai-Nan; Jiang, Yunguo

    2014-01-01

    On the basis of the quantum electrodynamics, we present a generic formalism of the polarization for beamed monochromatic photons scattered by electrons in any spectral distribution. The formulae reduce to the components of the Fano matrix when electrons are at rest. We mainly investigate the polarization in three scenarios, i.e., electrons at rest, isotropic electrons with a power-law spectrum, and thermal electrons. If the incident beam is polarized, the polarization is reduced significantly by isotropic electrons at large viewing angles; the degree of polarization caused by thermal electrons is about half of that caused by power-law electrons. If the incident bean is unpolarized, soft ?-rays can lead to about 15% polarization at viewing angles around ?/4. For isotropic electrons, one remarkable feature is that the polarization as a function of the incident photon energy always peaks roughly at 1 MeV; this is valid for both the thermal and power-law cases. This feature can be used to distinguish the model of the inverse Compton scattering from that of the synchrotron radiation.

  8. Light scattering investigation of phase separation in a micelle system

    SciTech Connect (OSTI)

    Wilcoxon, J.P.; Martin, J.E.; Odinek, J.

    1993-12-31

    We report a real-time, two-dimensional light scattering study of the evolution of structure in a two component nonionic micelle system during phase separation via spinodal decomposition. Our principal finding is that domain growth proceeds much slower than the cube root of time prediction for simple binary fluids. In fact, the growth kinetics can be empirically described as a stretched exponential approach to a pinned domain size. Although the kinetics are not yet understood, this anomalous behavior may be due to the ability of the spherical micelles to reorganize into more complex structures. The domain structure also shows some anomalies. Although at short times the expected structure factor for a critical quench is observed, at long times the structure factor crosses over to the off-critical form. However, in all cases the average scattered intensity is proportional to the cube of the domain size. These findings are discussed in comparison to standard theories of and experimental work on binary fluids.

  9. Tailoring dielectric resonator geometries for directional scattering and Huygens metasurfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campione, Salvatore; Basilio, Lorena I.; Warne, Larry K.; Sinclair, Michael B.

    2015-01-28

    In this paper we describe a methodology for tailoring the design of metamaterial dielectric resonators, which represent a promising path toward low-loss metamaterials at optical frequencies. We first describe a procedure to decompose the far field scattered by subwavelength resonators in terms of multipolar field components, providing explicit expressions for the multipolar far fields. We apply this formulation to confirm that an isolated high-permittivity dielectric cube resonator possesses frequency separated electric and magnetic dipole resonances, as well as a magnetic quadrupole resonance in close proximity to the electric dipole resonance. We then introduce multiple dielectric gaps to the resonator geometrymorein a manner suggested by perturbation theory, and demonstrate the ability to overlap the electric and magnetic dipole resonances, thereby enabling directional scattering by satisfying the first Kerker condition. We further demonstrate the ability to push the quadrupole resonance away from the degenerate dipole resonances to achieve local behavior. These properties are confirmed through the multipolar expansion and show that the use of geometries suggested by perturbation theory is a viable route to achieve purely dipole resonances for metamaterial applications such as wave-front manipulation with Huygens metasurfaces. Our results are fully scalable across any frequency bands where high-permittivity dielectric materials are available, including microwave, THz, and infrared frequencies.less

  10. Inelastic pion scattering by /sup 13/C at low energies

    SciTech Connect (OSTI)

    Mitchell, J.H.

    1987-03-01

    Angular distributions for inelastically scattered pions were obtained for several states in /sup 13/C at an incident energy of 65 MeV. The data include results from both ..pi../sup +/ and ..pi../sup -/ measurements. In addition, ..pi../sup -/ measurements were made at T/sub ..pi../ = 50 MeV at one angle to give a two point fixed-q excitation function. The data are compared to theory and the data of others. As might be expected, medium corrections are shown to be considerably more important at low energies than at resonance. This is true for inelastic transitions of multipolarity 0,2 and 3. Parameters derived from an analysis of elastic pion scattering and SCX data also provide an adequate description of the inelastic transitions. The charge asymmetry in the cross sections for the 9/2/sup +/ state that was seen at resonance persists at these energies. This result is consistent with an impulse approximation treatment of the spin-flip amplitude. This is true even though the incoming energy of the pions is far below the range where the validity of an impulse treatment is expected. 65 refs., 45 figs.

  11. A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope

    Office of Scientific and Technical Information (OSTI)

    Reactor (Journal Article) | SciTech Connect A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope Reactor Citation Details In-Document Search Title: A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope Reactor Neutron scattering at the Oak Ridge National Laboratory dates back to 1945 when Ernest Wollan installed a modified x-ray diffractometer on a beam port of the original graphite reactor. Subsequently, Wollan and Clifford Shull pioneered neutron

  12. On-the-fly generation of differential resonance scattering probability distribution functions for Monte Carlo codes

    SciTech Connect (OSTI)

    Sunny, E. E.; Martin, W. R. [University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor MI 48109 (United States)

    2013-07-01

    Current Monte Carlo codes use one of three models to model neutron scattering in the epithermal energy range: (1) the asymptotic scattering model, (2) the free gas scattering model, or (3) the S({alpha},{beta}) model, depending on the neutron energy and the specific Monte Carlo code. The free gas scattering model assumes the scattering cross section is constant over the neutron energy range, which is usually a good approximation for light nuclei, but not for heavy nuclei where the scattering cross section may have several resonances in the epithermal region. Several researchers in the field have shown that using the free gas scattering model in the vicinity of the resonances in the lower epithermal range can under-predict resonance absorption due to the up-scattering phenomenon. Existing methods all involve performing the collision analysis in the center-of-mass frame, followed by a conversion back to the laboratory frame. In this paper, we will present a new sampling methodology that (1) accounts for the energy-dependent scattering cross sections in the collision analysis and (2) acts in the laboratory frame, avoiding the conversion to the center-of-mass frame. The energy dependence of the scattering cross section was modeled with even-ordered polynomials to approximate the scattering cross section in Blackshaw's equations for the moments of the differential scattering PDFs. These moments were used to sample the outgoing neutron speed and angle in the laboratory frame on-the-fly during the random walk of the neutron. Results for criticality studies on fuel pin and fuel assembly calculations using these methods showed very close comparison to results using the reference Doppler-broadened rejection correction (DBRC) scheme. (authors)

  13. Neutron inelastic scattering in natural Pb as a background in neutrinoless

    Office of Scientific and Technical Information (OSTI)

    double-beta decay experiments (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Neutron inelastic scattering in natural Pb as a background in neutrinoless double-beta decay experiments Citation Details In-Document Search Title: Neutron inelastic scattering in natural Pb as a background in neutrinoless double-beta decay experiments Inelastic neutron scattering on Pb isotopes can result in {gamma} rays near the signature endpoint energy in a number of

  14. Inter-atomic force constants of BaF{sub 2} by diffuse neutron scattering measurement

    SciTech Connect (OSTI)

    Sakuma, Takashi Makhsun,; Sakai, Ryutaro; Xianglian; Takahashi, Haruyuki; Basar, Khairul; Igawa, Naoki; Danilkin, Sergey A.

    2015-04-16

    Diffuse neutron scattering measurement on BaF{sub 2} crystals was performed at 10?K and 295?K. Oscillatory form in the diffuse scattering intensity of BaF{sub 2} was observed at 295?K. The correlation effects among thermal displacements of F-F atoms were obtained from the analysis of oscillatory diffuse scattering intensity. The force constants among neighboring atoms in BaF{sub 2} were determined and compared to those in ionic crystals and semiconductors.

  15. Plasmon enhanced Raman scattering effect for an atom near a carbon nanotube

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bondarev, I. V.

    2015-01-01

    Quantum electrodynamics theory of the resonance Raman scattering is developed for an atom in a close proximity to a carbon nanotube. The theory predicts a dramatic enhancement of the Raman intensity in the strong atomic coupling regime to nanotube plasmon near-fields. This resonance scattering is a manifestation of the general electromagnetic surface enhanced Raman scattering effect, and can be used in designing efficient nanotube based optical sensing substrates for single atom detection, precision spontaneous emission control, and manipulation.

  16. Neutron Scattering Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Spallation Neutron Source (SNS) High Flux Isotope Reactor (HFIR) Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities Neutron Scattering Facilities Print Text Size: A A A FeedbackShare Page This activity supports the operation of two neutron scattering

  17. Mass fractal characteristics of silica sonogels as determined by small-angle x-ray scattering and nitrogen adsorption

    SciTech Connect (OSTI)

    Donatti, D.A.; Vollet, D.R.; Ibanez Ruiz, A.; Mesquita, A.; Silva, T.F.P. [Unesp-Universidade Estadual Paulista, IGCE, Departamento de Fisica, P.O. Box 178 CEP, 13500-970 Rio Claro, Sao Paulo (Brazil)

    2005-01-01

    A sample series of silica sonogels was prepared using different water-tetraethoxysilane molar ratio (r{sub w}) in the gelation step of the process in order to obtain aerogels with different bulk densities after the supercritical drying. The samples were analyzed by means of small-angle x-ray-scattering (SAXS) and nitrogen-adsorption techniques. Wet sonogels exhibit mass fractal structure with fractal dimension D increasing from {approx}2.1 to {approx}2.4 and mass-fractal correlation length {xi} diminishing from {approx}13 nm to {approx}2 nm, as r{sub w} is changed in the nominal range from 66 to 6. The process of obtaining aerogels from sonogels and heat treatment at 500 deg. C, in general, increases the mass-fractal dimension D, diminishes the characteristic length {xi} of the fractal structure, and shortens the fractal range at the micropore side for the formation of a secondary structured particle, apparently evolved from the original wet structure at a high resolution level. The overall mass-fractal dimension D of aerogels was evaluated as {approx}2.4 and {approx}2.5, as determined from SAXS and from pore-size distribution by nitrogen adsorption, respectively. The fine structure of the 'secondary particle' developed in the obtaining of aerogels could be described as a surface-mass fractal, with the correlated surface and mass-fractal dimensions decreasing from {approx}2.4 to {approx}2.0 and from {approx}2.7 to {approx}2.5, respectively, as the aerogel bulk density increases from 0.25 (r{sub w}=66) up to 0.91 g/cm{sup 3} (r{sub w}=6)

  18. Review of the synergies between computational modeling and experimental characterization of materials across length scales

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dingreville, Rémi; Karnesky, Richard A.; Puel, Guillaume; Schmitt, Jean -Hubert

    2015-11-16

    With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends in which predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure–property relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanicsmore » community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to “simply” support experimental work. This is illustrated by examples from several application areas on structural materials. In conclusion this manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.« less

  19. Extending the length and time scales of GramSchmidt Lyapunov vector computations

    SciTech Connect (OSTI)

    Costa, Anthony B.; Green, Jason R.

    2013-08-01

    Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal GramSchmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N{sup 2} (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing GramSchmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for LennardJones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the GramSchmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra.

  20. Review of the synergies between computational modeling and experimental characterization of materials across length scales

    SciTech Connect (OSTI)

    Dingreville, Rémi; Karnesky, Richard A.; Puel, Guillaume; Schmitt, Jean -Hubert

    2015-11-16

    With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends in which predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure–property relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanics community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to “simply” support experimental work. This is illustrated by examples from several application areas on structural materials. In conclusion this manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.

  1. Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments

    Broader source: Energy.gov [DOE]

    Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments presentation at the April 2013 peer review meeting held in Denver, Colorado.

  2. A brief History of Neutron Scattering at the Oak Ridge High Flux...

    Office of Scientific and Technical Information (OSTI)

    Neutron scattering at the Oak Ridge National Laboratory ... diffraction and laid the foundation for an active neutron ... Sponsoring Org: SC USDOE - Office of Science (SC) Country of ...

  3. Plasmon losses due to electron-phonon scattering: The case of...

    Office of Scientific and Technical Information (OSTI)

    Plasmon losses due to electron-phonon scattering: The case of graphene encapsulated in hexagonal boron nitride Prev Next Title: Plasmon losses due to electron-phonon ...

  4. 6th Annual SSRL School on Synchrotron X-ray Scattering, May 29...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation About 6th Annual SSRL School on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application May 29-31 2012...

  5. SSRL School 2007 on Hard X-ray Scattering: Techniques in MES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    peak intensities, A. Vailionis SAXS, J. Pople Tuesday Afternoon, Bulk-Structure Techniques Structure characterization, A. Mehta In-situ scattering, S. Webb Amorphous...

  6. Multigroup computation of the temperature-dependent Resonance Scattering Model (RSM) and its implementation

    SciTech Connect (OSTI)

    Ghrayeb, S. Z.; Ouisloumen, M.; Ougouag, A. M.; Ivanov, K. N.

    2012-07-01

    A multi-group formulation for the exact neutron elastic scattering kernel is developed. This formulation is intended for implementation into a lattice physics code. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. A computer program has been written to test the formulation for various nuclides. Results of the multi-group code have been verified against the correct analytic scattering kernel. In both cases neutrons were started at various energies and temperatures and the corresponding scattering kernels were tallied. (authors)

  7. Neutrino Scattering Results from MiniBooNE R. Tayloe, Indiana U.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ν scattering measurments R. Tayloe, ECT ν workshop, 12/11 1 Neutrino Scattering Results from MiniBooNE R. Tayloe, Indiana U. ECT ν workshop Trento, Italy, 12/11 Outline: ● introduction, motivation ● MiniBooNE experiment ● MiniBooNE measurements, results ● interpretations ● further work ● conclusions ΜΒ ν scattering measurments R. Tayloe, ECT ν workshop, 12/11 2 Neutrino scattering measurements In order to understand ν oscillations, it is crucial to understand the detailed

  8. Proton-Nucleus Scattering Approximations and Implications for LHC Crystal Collimation

    SciTech Connect (OSTI)

    Noble, Robert; ,

    2010-06-07

    In particle accelerators, scattered protons with energies close to the incident particles may travel considerable distances with the beam before impacting on accelerator components downstream. To analyze such problems, angular deflection and energy loss of scattered particles are the main quantities to be simulated since these lead to changes in the beam's phase space distribution and particle loss. Simple approximations for nuclear scattering processes causing limited energy loss to high-energy protons traversing matter are developed which are suitable for rapid estimates and reduced-description Monte Carlo simulations. The implications for proton loss in the Large Hadron Collider due to nuclear scattering on collimation crystals are discussed.

  9. Thermal-Photon and Residual-Gas Scattering in the NLC Beam Delivery...

    Office of Scientific and Technical Information (OSTI)

    We used a modified version of the tracking program DIMAD, which includes a Monte Carlo simulation for the Compton scattering on thermal photons, to calculate the fraction of ...

  10. Monte Carlo Implementation Of Up- Or Down-Scattering Due To Collisions...

    Office of Scientific and Technical Information (OSTI)

    Monte Carlo Implementation Of Up- Or Down-Scattering Due To Collisions With Material At Finite Temperature Citation Details In-Document Search Title: Monte Carlo Implementation Of ...

  11. Experimental methods in the study of neutron scattering at small angles

    SciTech Connect (OSTI)

    Dragolici, Cristian A.

    2014-11-24

    Small angle scattering (SAS) is the collective name given to the techniques of small angle neutron (SANS) and X-ray (SAXS) scattering. They offer the possibility to analyze particles without disturbing their natural environment. In each of these techniques radiation is elastically scattered by a sample and the resulting scattering pattern is analyzed to provide information about the size, shape and orientation of some component of the sample. Accordingly, a large number of methods and experimental patterns have been developed to ease the investigation of condensed matter by use of these techniques. Some of them are the discussed in this paper.

  12. Thermal-Photon and Residual-Gas Scattering in the NLC Beam Delivery

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Thermal-Photon and Residual-Gas Scattering in the NLC Beam Delivery Citation Details In-Document Search Title: Thermal-Photon and Residual-Gas Scattering in the NLC Beam Delivery Without collisions, the largest contribution to the beam lifetime in LEP is Compton scattering off thermal photons. Even if only a few particles are scattered in a single pass, the potential background generated could make this effect important for the NLC as well. We used a

  13. Time-resolved x-ray scattering instrumentation

    DOE Patents [OSTI]

    Borso, C.S.

    1985-11-21

    An apparatus and method for increased speed and efficiency of data compilation and analysis in real time is presented in this disclosure. Data is sensed and grouped in combinations in accordance with predetermined logic. The combinations are grouped so that a simplified reduced signal results, such as pairwise summing of data values having offsetting algebraic signs, thereby reducing the magnitude of the net pair sum. Bit storage requirements are reduced and speed of data compilation and analysis is increased by manipulation of shorter bit length data values, making real time evaluation possible.

  14. In situ resonant Raman scattering and reversible photoinduced structural change in YBa{sub 2}Cu{sub 3}O{sub 6+x}

    SciTech Connect (OSTI)

    Osada, Minoru; Kaell, Mikael; Baeckstroem, Joakim; Kakihana, Masato; Andersen, Niels Hessel; Boerjesson, Lars

    2005-06-01

    We report on bidirectional photoswitching associated with the CuO chains in oxygen-deficient YBa{sub 2}Cu{sub 3}O{sub 6+x} single crystals. By varying the wavelength of light polarized along the CuO chains, the material can be reversibly switched between two metastable states characterized by the existence or absence of a specific Raman scattering resonance. A comparison of the spectral efficiencies for this photoswitching with analogous data for the persistent photoconductivity and photoconductivity quenching effects suggests that the two phenomena have the same microscopic origin. We argue that the effects are due to photoinduced Cu-O charge-transfer excitations, which destabilize chains of different length depending on wavelength, and promote the growth of thermally inaccessible oxygen ordering configurations.

  15. Scattering assisted injection based injectorless mid infrared quantum cascade laser

    SciTech Connect (OSTI)

    Singh, Siddharth Kamoua, Ridha

    2014-06-07

    An injectorless five-well mid infrared quantum cascade laser is analyzed which relies on phonon scattering injection in contrast to resonant tunneling injection, which has been previously used for injectorless designs. A Monte Carlo based self-consistent electron and photon transport simulator is used to analyze the performance of the analyzed design and compare it to existing injectorless designs. The simulation results show that the analyzed design could greatly enhance the optical gain and the characteristic temperatures of injectorless quantum cascade lasers (QCLs) which have typically been hindered by low characteristic temperatures and significant temperature related performance degradation. Simulations of the analyzed device predict threshold current densities of 0.85?kA/cm{sup 2} and 1.95?kA/cm{sup 2} at 77?K and 300?K, respectively, which are comparable to the threshold current densities of conventional injector based QCLs.

  16. Longitudinal target-spin asymmetries for deeply virtual Compton scattering

    SciTech Connect (OSTI)

    Seder, E.; Biselli, A.; Pisano, S.; Niccolai, S.; Smith, G. D.; Joo, K.; Adhikari, K.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Battaglieri, M.; Bedlinskiy, I.; Bono, J.; Boiarinov, S.; Bosted, P.; Briscoe, W.; Brock, J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Carlin, C.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crabb, D.; Crede, V.; D’Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hirlinger Saylor, N.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joosten, S.; Keith, C. D.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L. L.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, W.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Senderovich, I.; Simonyan, A.; Skorodumina, I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tian, Y.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zonta, I.

    2015-01-22

    A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6-GeV electron beam, a longitudinally polarized proton target and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for ep → e'p'y events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q2, xB, t and Φ, for 166 four-dimensional bins. In the framework of Generalized Parton Distributions (GPDs), at leading twist the t dependence of these asymmetries provides insight on the spatial distribution of the axial charge of the proton, which appears to be concentrated in its center. In conclusion, these results bring important and necessary constraints for the existing parametrizations of chiral-even GPDs.

  17. Covariant spectator theory of np scattering: Deuteron quadrupole moment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gross, Franz

    2015-01-26

    The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently frommore » XEFT predictions to order N3LO.« less

  18. Exploring nonsupersymmetric new physics in polarized Moeller scattering

    SciTech Connect (OSTI)

    Chang, W.-F.; Ng, John N.; Wu, Jackson M. S.

    2009-03-01

    We study in an effective operator approach how the effects of new physics from various scenarios that contain an extra Z{sup '} neutral gauge boson or doubly charged scalars, can affect and thus be tested by the precision polarized Moeller scattering experiments. We give Wilson coefficients for various classes of generic models, and we deduce constraints on the parameter space of the relevant coupling constants or mixing angles from the results of the SLAC E158 experiment where applicable. We give also constraints projected from the upcoming 1 ppb JLAB experiment. In the scenario where the extra Z{sup '} is light (M{sub Z{sup '}}<

  19. Detection of volatile organic compounds using surface enhanced Raman scattering

    SciTech Connect (OSTI)

    Chang, A S; Maiti, A; Ileri, N; Bora, M; Larson, C C; Britten, J A; Bond, T C

    2012-03-22

    The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

  20. Dark matter effective field theory scattering in direct detection experiments

    SciTech Connect (OSTI)

    Schneck, K.; Cabrera, B.; Cerdeno, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; Di Stefano, P. C.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, W.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-01

    We examine the consequences of the effective eld theory (EFT) of dark matter-nucleon scattering or current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral di*erences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  1. Edge profile measurements using Thomson scattering on the KSTAR tokamak

    SciTech Connect (OSTI)

    Lee, J. H. Ko, W. H.; Oh, S.; Lee, W. R.; Kim, K. P.; Lee, K. D.; Jeon, Y. M.; Yoon, S. W.; Cho, K. W.; Narihara, K.; Yamada, I.; Yasuhara, R.; Hatae, T.; Yatsuka, E.; Ono, T.; Hong, J. H.

    2014-11-15

    In the KSTAR Tokamak, a Tangential Thomson Scattering (TTS) diagnostic system has been designed and installed to measure electron density and temperature profiles. In the edge system, TTS has 12 optical fiber bundles to measure the edge profiles with 1015 mm spatial resolution. These 12 optical fibers and their spatial resolution are not enough to measure the pedestal width with a high accuracy but allow observations of L-H transition or H-L transitions at the edge. For these measurements, the prototype ITER edge Thomson Nd:YAG laser system manufactured by JAEA in Japan is installed. In this paper, the KSTAR TTS system is briefly described and some TTS edge profiles are presented and compared against the KSTAR Charge Exchange Spectroscopy and other diagnostics. The future upgrade plan of the system is also discussed in this paper.

  2. Dark matter effective field theory scattering in direct detection experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; et al

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. Here. we demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. In conclusion, we discussmore » the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less

  3. Longitudinal target-spin asymmetries for deeply virtual Compton scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Seder, E.; Biselli, A.; Pisano, S.; Niccolai, S.; Smith, G. D.; Joo, K.; Adhikari, K.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; et al

    2015-01-22

    A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6-GeV electron beam, a longitudinally polarized proton target and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for ep → e'p'y events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q2, xB, t and Φ, for 166 four-dimensional bins. In the framework of Generalized Parton Distributions (GPDs), at leading twist the t dependence of these asymmetries provides insight on the spatial distribution of the axialmore » charge of the proton, which appears to be concentrated in its center. In conclusion, these results bring important and necessary constraints for the existing parametrizations of chiral-even GPDs.« less

  4. Event-Based Processing of Neutron Scattering Data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peterson, Peter F.; Campbell, Stuart I.; Reuter, Michael A.; Taylor, Russell J.; Zikovsky, Janik L.

    2015-09-16

    Many of the world's time-of-flight spallation neutrons sources are migrating to the recording of individual neutron events. This provides for new opportunities in data processing, the least of which is to filter the events based on correlating them with logs of sample environment and other ancillary equipment. This paper will describe techniques for processing neutron scattering data acquired in event mode that preserve event information all the way to a final spectrum, including any necessary corrections or normalizations. This results in smaller final errors, while significantly reducing processing time and memory requirements in typical experiments. Results with traditional histogramming techniquesmore » will be shown for comparison.« less

  5. Q-branch Raman scattering and modern kinetic thoery

    SciTech Connect (OSTI)

    Monchick, L.

    1993-12-01

    The program is an extension of previous APL work whose general aim was to calculate line shapes of nearly resonant isolated line transitions with solutions of a popular quantum kinetic equation-the Waldmann-Snider equation-using well known advanced solution techniques developed for the classical Boltzmann equation. The advanced techniques explored have been a BGK type approximation, which is termed the Generalized Hess Method (GHM), and conversion of the collision operator to a block diagonal matrix of symmetric collision kernels which then can be approximated by discrete ordinate methods. The latter method, which is termed the Collision Kernel method (CC), is capable of the highest accuracy and has been used quite successfully for Q-branch Raman scattering. The GHM method, not quite as accurate, is applicable over a wider range of pressures and has proven quite useful.

  6. Calibration of a Thomson scattering diagnostic for fluctuation measurements

    SciTech Connect (OSTI)

    Stephens, H. D.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Holly, D. J.; O'Connell, R.; Reusch, J. A.

    2008-10-15

    Detailed calibrations of the Madison Symmetric Torus polychromator Thomson scattering system have been made suitable for electron temperature fluctuation measurements. All calibrations have taken place focusing on accuracy, ease of use and repeatability, and in situ measurements wherever possible. Novel calibration processes have been made possible with an insertable integrating sphere (ISIS), using an avalanche photodiode (APD) as a reference detector and optical parametric oscillator (OPO). Discussed are a novel in situ spatial calibration with the use of the ISIS, the use of an APD as a reference detector to streamline the APD calibration process, a standard dc spectral calibration, and in situ pulsed spectral calibration made possible with a combination of an OPO as a light source, the ISIS, and an APD used as a reference detector. In addition a relative quantum efficiency curve for the APDs is obtained to aid in uncertainty analysis.

  7. Scattering of matter waves in spatially inhomogeneous environments

    SciTech Connect (OSTI)

    Tsitoura, F.; Krüger, P.; Kevrekidis, P. G.; Frantzeskakis, D. J.

    2015-03-30

    In this article, we study scattering of quasi-one-dimensional matter waves at an interface of two spatial domains, one with repulsive and one with attractive interatomic interactions. It is shown that the incidence of a Gaussian wave packet from the repulsive to the attractive region gives rise to generation of a soliton train. More specifically, the number of emergent solitons can be controlled, e.g., by the variation of the amplitude or the width of the incoming wave packet. Furthermore, we study the reflectivity of a soliton incident from the attractive region to the repulsive one. We find the reflection coefficient numerically and employ analytical methods, which treat the soliton as a particle (for moderate and large amplitudes) or a quasilinear wave packet (for small amplitudes), to determine the critical soliton momentum (as a function of the soliton amplitude) for which total reflection is observed.

  8. Scattering of matter waves in spatially inhomogeneous environments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tsitoura, F.; Krüger, P.; Kevrekidis, P. G.; Frantzeskakis, D. J.

    2015-03-30

    In this article, we study scattering of quasi-one-dimensional matter waves at an interface of two spatial domains, one with repulsive and one with attractive interatomic interactions. It is shown that the incidence of a Gaussian wave packet from the repulsive to the attractive region gives rise to generation of a soliton train. More specifically, the number of emergent solitons can be controlled, e.g., by the variation of the amplitude or the width of the incoming wave packet. Furthermore, we study the reflectivity of a soliton incident from the attractive region to the repulsive one. We find the reflection coefficient numericallymore » and employ analytical methods, which treat the soliton as a particle (for moderate and large amplitudes) or a quasilinear wave packet (for small amplitudes), to determine the critical soliton momentum (as a function of the soliton amplitude) for which total reflection is observed.« less

  9. ASSESSMENT OF POSSIBLE CYCLE LENGTHS FOR FULLY-CERAMIC MICRO-ENCAPSULATED FUEL-BASED LIGHT WATER REACTOR CONCEPTS

    SciTech Connect (OSTI)

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal Pasamehmetoglu; Francesco Venneri

    2012-04-01

    The use of TRISO-particle-based dispersion fuel within SiC matrix and cladding materials has the potential to allow the design of extremely safe LWRs with failure-proof fuel. This paper examines the feasibility of LWR-like cycle length for such a low enriched uranium fuel with the imposed constraint of strictly retaining the original geometry of the fuel pins and assemblies. The motivation for retaining the original geometry is to provide the ability to incorporate the fuel 'as-is' into existing LWRs while retaining their thermal-hydraulic characteristics. The feasibility of using this fuel is assessed by looking at cycle lengths and fuel failure rates. Other considerations (e.g., safety parameters, etc.) were not considered at this stage of the study. The study includes the examination of different TRISO kernel diameters without changing the coating layer thicknesses. The study shows that a naive use of UO{sub 2} results in cycle lengths too short to be practical for existing LWR designs and operational demands. Increasing fissile inventory within the fuel compacts shows that acceptable cycle lengths can be achieved. In this study, starting with the recognized highest packing fraction practically achievable (44%), higher enrichment, larger fuel kernel sizes, and the use of higher density fuels have been evaluated. The models demonstrate cycle lengths comparable to those of ordinary LWRs. As expected, TRISO particles with extremely large kernels are shown to fail under all considered scenarios. In contrast, the designs that do not depart too drastically from those of the nominal NGNP HTR fuel TRISO particles are shown to perform satisfactorily and display a high rates of survival under all considered scenarios. Finally, it is recognized that relaxing the geometry constraint will result in satisfactory cycle lengths even using UO{sub 2}-loaded TRISO particles-based fuel with enrichment at or below 20 w/o.

  10. Extended-soft-core baryon-baryon model. I. Nucleon-nucleon scattering with the ESC04 interaction

    SciTech Connect (OSTI)

    Rijken, Th.A.

    2006-04-15

    The NN results are presented from the extended-soft-core (ESC) interactions. They consist of local and nonlocal potentials due to (i) one-boson-exchanges (OBE), which are the members of nonets of pseudoscalar, vector, scalar, and axial mesons (ii) diffractive exchanges (iii) two-pseudoscalar exchanges (PS-PS), and (iv) meson-pair exchanges (MPE). We describe a fit to the pp and np data for 0{<=}T{sub lab}{<=}350 MeV, having a typical {chi}{sup 2}/N{sub data}=1.155. Here, we used {approx}20 quasi-free physical parameters, which are coupling constants and cutoff masses. A remarkable feature of the couplings is that we were able to require them to follow rather closely the pattern predicted by the {sup 3}P{sub 0} quark-pair-creation (QPC) model. As a result the 11 OBE couplings are rather constrained, i.e., quasi free. Also, the deuteron binding energy and the several NN scattering lengths are fitted.

  11. Poisson's ratio of collagen fibrils measured by small angle X-ray scattering of strained bovine pericardium

    SciTech Connect (OSTI)

    Wells, Hannah C.; Sizeland, Katie H.; Kayed, Hanan R.; Haverkamp, Richard G.; Kirby, Nigel; Hawley, Adrian; Mudie, Stephen T.

    2015-01-28

    Type I collagen is the main structural component of skin, tendons, and skin products, such as leather. Understanding the mechanical performance of collagen fibrils is important for understanding the mechanical performance of the tissues that they make up, while the mechanical properties of bulk tissue are well characterized, less is known about the mechanical behavior of individual collagen fibrils. In this study, bovine pericardium is subjected to strain while small angle X-ray scattering (SAXS) patterns are recorded using synchrotron radiation. The change in d-spacing, which is a measure of fibril extension, and the change in fibril diameter are determined from SAXS. The tissue is strained 0.25 (25%) with a corresponding strain in the collagen fibrils of 0.045 observed. The ratio of collagen fibril width contraction to length extension, or the Poisson's ratio, is 2.1 ± 0.7 for a tissue strain from 0 to 0.25. This Poisson's ratio indicates that the volume of individual collagen fibrils decreases with increasing strain, which is quite unlike most engineering materials. This high Poisson's ratio of individual fibrils may contribute to high Poisson's ratio observed for tissues, contributing to some of the remarkable properties of collagen-based materials.

  12. Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections

    SciTech Connect (OSTI)

    Bootsma, G. J.; Verhaegen, F.; Department of Oncology, Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4 ; Jaffray, D. A.; Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9; Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario M5G 2M9; Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9

    2013-11-15

    Purpose: X-ray scatter is a source of significant image quality loss in cone-beam computed tomography (CBCT). The use of Monte Carlo (MC) simulations separating primary and scattered photons has allowed the structure and nature of the scatter distribution in CBCT to become better elucidated. This work seeks to quantify the structure and determine a suitable basis function for the scatter distribution by examining its spectral components using Fourier analysis.Methods: The scatter distribution projection data were simulated using a CBCT MC model based on the EGSnrc code. CBCT projection data, with separated primary and scatter signal, were generated for a 30.6 cm diameter water cylinder [single angle projection with varying axis-to-detector distance (ADD) and bowtie filters] and two anthropomorphic phantoms (head and pelvis, 360 projections sampled every 1, with and without a compensator). The Fourier transform of the resulting scatter distributions was computed and analyzed both qualitatively and quantitatively. A novel metric called the scatter frequency width (SFW) is introduced to determine the scatter distribution's frequency content. The frequency content results are used to determine a set basis functions, consisting of low-frequency sine and cosine functions, to fit and denoise the scatter distribution generated from MC simulations using a reduced number of photons and projections. The signal recovery is implemented using Fourier filtering (low-pass Butterworth filter) and interpolation. Estimates of the scatter distribution are used to correct and reconstruct simulated projections.Results: The spatial and angular frequencies are contained within a maximum frequency of 0.1 cm{sup ?1} and 7/(2?) rad{sup ?1} for the imaging scenarios examined, with these values varying depending on the object and imaging setup (e.g., ADD and compensator). These data indicate spatial and angular sampling every 5 cm and ?/7 rad (?25) can be used to properly capture the scatter distribution, with reduced sampling possible depending on the imaging scenario. Using a low-pass Butterworth filter, tuned with the SFW values, to denoise the scatter projection data generated from MC simulations using 10{sup 6} photons resulted in an error reduction of greater than 85% for the estimating scatter in single and multiple projections. Analysis showed that the use of a compensator helped reduce the error in estimating the scatter distribution from limited photon simulations by more than 37% when compared to the case without a compensator for the head and pelvis phantoms. Reconstructions of simulated head phantom projections corrected by the filtered and interpolated scatter estimates showed improvements in overall image quality.Conclusions: The spatial frequency content of the scatter distribution in CBCT is found to be contained within the low frequency domain. The frequency content is modulated both by object and imaging parameters (ADD and compensator). The low-frequency nature of the scatter distribution allows for a limited set of sine and cosine basis functions to be used to accurately represent the scatter signal in the presence of noise and reduced data sampling decreasing MC based scatter estimation time. Compensator induced modulation of the scatter distribution reduces the frequency content and improves the fitting results.

  13. Measurement of porosity in a composite high explosive as a function of pressing conditions by ultra-small-angle neutron scattering with contrast variation

    SciTech Connect (OSTI)

    Mang, Joseph Thomas; Hjelm, Rex P; Francois, Elizabeth G

    2009-01-01

    We have used ultra-small-angle neutron scattering (USANS) with contrast variation to measure the porosity (voids and binder-filled regions) in a composite high explosive, PBX 9501, formulated with a deuterated binder. Little is known about the microstructure of pressed PBX 9501 parts and thus how it is affected by processing. Here, we explore the effect of varying the pressing intensity on the PBX 9501 microstructure. Disk-shaped samples of PBX 9501 were die-pressed with applied pressures ranging between 10,000 and 29,000 psi at 90 C. Five samples were prepared at each pressure that differed in the fraction of deuterated binder, facilitating variation of the neutron scattering length density contrast ({Delta}{rho}) and thus, the resolution of microstructural details. The sample composition was determined by calculation of the Porod Invariant as a function of {Delta}{rho} and compared with compositional estimates obtained from the bulk sample density. Structural modeling of the USANS data, at different levels of contrast, assuming both spherical and cylindrical morphologies, allowed the mean size and size distribution of voids and binder-filled regions to be determined. A decrease in the mean diameter of binder-filled regions was found with increasing pressing intensity, while the mean void diameter showed no significant change.

  14. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOE Patents [OSTI]

    Harney, Robert C.; Bloom, Stewart D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  15. Feedback oscillations of stimulated brillouin scattering in plasmas with supersonic flow

    SciTech Connect (OSTI)

    Baumgaertel, K.; Sauer, K.

    1982-11-01

    Long-time stimulated Brillouin scattering oscillations may occur in subcritical plasmas with supersonic flow against the incident wave owing to a feedback of the scattered radiation. They are studied in the frame of both the parametric approximation and the mode-coupling theory.

  16. A neutron imaging device for sample alignment in a pulsed neutron scattering instrument

    SciTech Connect (OSTI)

    Grazzi, F.; Scherillo, A.; Zoppi, M.

    2009-09-15

    A neutron-imaging device for alignment purposes has been tested on the INES beamline at ISIS, the pulsed neutron source of Rutherford Appleton Laboratory (U.K.). Its use, in conjunction with a set of movable jaws, turns out extremely useful for scattering application to complex samples where a precise and well-defined determination of the scattering volume is needed.

  17. Light scattering from laser induced pit ensembles on high power laser optics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feigenbaum, Eyal; Elhadj, Selim; Matthews, Manyalibo J.

    2015-01-01

    Far-field light scattering characteristics from randomly arranged shallow Gaussian-like shaped laser induced pits, found on optics exposed to high energy laser pulses, is studied. Closed-form expressions for the far-field intensity distribution and scattered power are derived for individual pits and validated using numerical calculations of both Fourier optics and FDTD solutions to Maxwells equations. It is found that the scattered power is proportional to the square of the pit width and approximately also to the square of the pit depth, with the proportionality factor scaling with pit depth. As a result, the power scattered from shallow pitted optics is expectedmoreto be substantially lower than assuming complete scattering from the total visible footprint of the pits.less

  18. Light scattering from laser induced pit ensembles on high power laser optics

    SciTech Connect (OSTI)

    Feigenbaum, Eyal [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elhadj, Selim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matthews, Manyalibo J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-01

    Far-field light scattering characteristics from randomly arranged shallow Gaussian-like shaped laser induced pits, found on optics exposed to high energy laser pulses, is studied. Closed-form expressions for the far-field intensity distribution and scattered power are derived for individual pits and validated using numerical calculations of both Fourier optics and FDTD solutions to Maxwells equations. It is found that the scattered power is proportional to the square of the pit width and approximately also to the square of the pit depth, with the proportionality factor scaling with pit depth. As a result, the power scattered from shallow pitted optics is expected to be substantially lower than assuming complete scattering from the total visible footprint of the pits.

  19. Predictions of Transient Flame Lift-Off Length With Comparison to Single-Cylinder Optical Engine Experiments

    SciTech Connect (OSTI)

    Senecal, P. K.; Pomraning, E.; Anders, J. W.; Weber, M. R.; Gehrke, C. R.; Polonowski, C. J.; Mueller, C. J.

    2014-05-28

    A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate, and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.

  20. Predictions of Transient Flame Lift-Off Length With Comparison to Single-Cylinder Optical Engine Experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Senecal, P. K.; Pomraning, E.; Anders, J. W.; Weber, M. R.; Gehrke, C. R.; Polonowski, C. J.; Mueller, C. J.

    2014-05-28

    A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less

  1. Resonant elastic soft x-ray scattering in oxygen-ordered YBa2Cu3O6...

    Office of Scientific and Technical Information (OSTI)

    Resonant elastic soft x-ray scattering in oxygen-ordered YBa2Cu3O6+ Citation Details In-Document Search Title: Resonant elastic soft x-ray scattering in oxygen-ordered...

  2. TSAR2.3. Temporal Scattering And Response

    SciTech Connect (OSTI)

    McLeod, R.R.; Ray, S.L.; Laguna, G.; Allison, M.; Cabral, B.

    1991-12-01

    TSAR2.3 (Temporal Scattering and Response) is a finite-difference time-domain electromagnetics code suite. TSAR2.3 is a software package for simulating the interactions of electromagnetic waves with linear materials through the use of the finite-difference time-domain method. The code suite contains grid generation, grid verification, input-file creation and post-processing utilities. The physics package, written in Fortran 77, can be pre-processed to run on many different architectures including Cray, Vax and many Unix workstations. Tools are provided to easily port the code to new computers. The physics package is an efficient, flexible electromagnetic simulator. A body under study can be represented as a three-dimensional grid of materials with arbitrary linear properties. This grid can be simulated in a number of ways including incident plane waves, dipoles, and arbitrary incident fields. The grid can be terminated with numerous boundary conditions including free-space radiation, electric conductor, or magnetic conductor. Projection to the far-field in both the time and frequency domains is possible. This distribution includes make files for installing and maintaining the entire code suite.

  3. Azimuthal angle dependence of dijet production in unpolarized hadron scattering

    SciTech Connect (OSTI)

    Lu Zhun; Schmidt, Ivan [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Casilla 110-V, Valparaiso (Chile) and Center of Subatomic Physics, Valparaiso (Chile)

    2008-08-01

    We study the azimuthal angular dependence of back-to-back dijet production in unpolarized hadron scattering H{sub A}+H{sub B}{yields}J{sub 1}+J{sub 2}+X, arising from the product of two Boer-Mulders functions, which describe the transverse spin distribution of quarks inside an unpolarized hadron. We find that when the dijet is of two identical quarks (J{sub q}+J{sub q}) or a quark-antiquark pair (J{sub q}+J{sub q}), there is a cos{delta}{phi} angular dependence of the dijet, with {delta}{phi}={phi}{sub 1}-{phi}{sub 2}, and {phi}{sub 1} and {phi}{sub 2} are the azimuthal angles of the two individual jets. In the case of J{sub q}+J{sub q} production, we find that there is a color factor enhancement in the gluonic cross section, compared with the result from the standard generalized parton model. We estimate the cos{delta}{phi} asymmetry of dijet production at RHIC, showing that the color factor enhancement in the angular dependence of J{sub q}+J{sub q} production will reverse the sign of the asymmetry.

  4. An ultra-efficient energy transfer beyond plasmonic light scattering

    SciTech Connect (OSTI)

    Fu, Sze-Ming; Zhong, Yan-Kai; Lin, Albert

    2014-11-14

    The energy transfer between nano-particles is of great importance for, solar cells, light-emitting diodes, nano-particle waveguides, and other photonic devices. This study shows through novel design and algorithm optimization, the energy transfer efficiency between plasmonic and dielectric nano-particles can be greatly improved. Using versatile designs including core-shell wrapping, supercells and dielectric mediated plasmonic scattering, 0.05 dB/μm attenuation can be achieved, which is 20-fold reduction over the baseline plasmonic nano-particle chain, and 8-fold reduction over the baseline dielectric nano-particle chain. In addition, it is also found that the dielectric nano-particle chains can actually be more efficient than the plasmonic ones, at their respective optimized geometry. The underlying physics is that although plasmonic nano-particles provide stronger coupling and field emission, the effect of plasmonic absorption loss is actually more dominant resulting in high attenuation. Finally, the group velocity for all design schemes proposed in this work is shown to be maintained above 0.4c, and it is found that the geometry optimization for transmission also boosts the group velocity.

  5. Elastic scattering of /sup 16/O by /sup 28/Si

    SciTech Connect (OSTI)

    Shkolnik, V.; Dehnhard, D.; Franey, M.A.

    1983-08-01

    Differential cross sections were measured in small angular steps at forward angles for the elastic scattering of /sup 16/O from /sup 28/Si, /sup 29/Si, and /sup 30/Si at E/sub lab/ = 60 MeV and from /sup 28/Si at six other incident energies between 45 and 63 MeV. The angular position of a peak in the diffraction pattern at theta/sub c.m./approx. =75/sup 0/ was measured as a function of the incident energy between 55 and 63 MeV in 0.5 MeV steps. Close fits to these angular distributions and those of other authors at energies between 41 and 81 MeV, some spanning the whole angular range up to 180/sup 0/, and the excitation functions at 90/sup 0/ and 180/sup 0/, were obtained in an optical model analysis. A consistent description of the data was found by the use of a surface-transparent and parity-dependent potential with a real part able to generate a pocket in the total potential. The real and imaginary strengths depend quite strongly and smoothly on the incident energy. This potential shows a transition from surface transparency to strong absorption as E/sub lab/ approaches 81 MeV. The ambiguities in the strengths of the potential are discussed. The broad dispersive potential resonances which are present in several partial waves at every energy are also discussed and their relative importance is examined.

  6. Deeply virtual Compton Scattering cross section measured with CLAS

    SciTech Connect (OSTI)

    Guegan, Baptistse

    2014-09-01

    The Generalized Parton Distributions (GPDs) provide a new description of nucleon structure in terms of its elementary constituents, the quarks and the gluons. Including and extending the information provided by the form factors and the parton distribution functions, they describe the correlation between the transverse position and the longitudinal momentum fraction of the partons in the nucleon. Deeply Virtual Compton Scattering (DVCS), the electroproduction of a real photon on a single quark in the nucleon eN --> e'N'g, is the exclusive process most directly interpretable in terms of GPDs. A dedicated experiment to study DVCS with the CLAS detector at Jefferson Lab has been carried out using a 5.9-GeV polarized electron beam and an unpolarized hydrogen target, allowing us to collect DVCS events in the widest kinematic range ever explored in the valence region : 1.0 < Q2 < 4.6 GeV2, 0.1 < xB < 0.58 and 0.09 < -t < 2.0 GeV2. In this paper, we show preliminary results of unpolarized cross sections and of polarized cross section differences for the DVCS channel.

  7. 2009 International Conference on Neutron Scattering (ICNS 2009)

    SciTech Connect (OSTI)

    Gopal Rao, PhD; Donna Gillespie

    2010-08-05

    The ICNS provides a focal point for the worldwide neutron user community to strengthen ties within this diverse group, while at the same time promoting neutron research among colleagues in related disciplines identified as ?¢????would-be?¢??? neutron users. The International Conference on Neutron Scattering thus serves a dual role as an international user meeting and a scientific meeting. As a venue for scientific exchange, the ICNS showcases recent results and provides forums for scientific discussion of neutron research in diverse fields such as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, and elementary excitations, fundamental physics and development of neutron instrumentation through a combination of invited talks, contributed talks and poster sessions. Each of the major national neutron facilities (NIST, LANSCE, ANL, HFIR and SNS), along with their international counterparts, has an opportunity to exchange information with each other and to update users, and potential users, of their facility. This is also an appropriate forum for users to raise issues that relate to the facilities.

  8. Neutron scattering effects on fusion ion temperature measurements.

    SciTech Connect (OSTI)

    Ziegler, Lee (Bechtel/Nevada, Las Vegas, NV); Starner, Jason R.; Cooper, Gary Wayne; Ruiz, Carlos L.; Franklin, James Kenneth (Ktech Corporation, Albuquerque, NM); Casey, Daniel T.

    2006-06-01

    To support the nuclear fusion program at Sandia National Laboratories (SNL), a consistent and verifiable method to determine fusion ion temperatures needs to be developed. Since the fusion temperature directly affects the width in the spread of neutron energies produced, a measurement of the neutron energy width can yield the fusion temperature. Traditionally, the spread in neutron energies is measured by using time-of-flight to convert a spread in neutron energies at the source to a spread in time at detector. One potential obstacle to using this technique at the Z facility at SNL is the need to shield the neutron detectors from the intense bremsstrahlung produced. The shielding consists of eight inches of lead and the concern is that neutrons will scatter in the lead, artificially broaden the neutron pulse width and lead to an erroneous measurement. To address this issue, experiments were performed at the University of Rochester's Laboratory for Laser Energetics, which demonstrated that a reliable ion temperature measurement can be achieved behind eight inches of lead shielding. To further expand upon this finding, Monte Carlo N-Particle eXtended (MCNPX) was used to simulate the experimental geometric conditions and perform the neutron transport. MCNPX was able to confidently estimate results observed at the University of Rochester.

  9. Enhanced Raman Scattering on In-plane Anisotropic Layered Materials

    SciTech Connect (OSTI)

    Liang, Liangbo; Meunier, Vincent; Sumpter, Bobby G.; Ling, Xi; Lin, Jingjing; Zhang, Shuqing; Mao, Nannan; Zhang, Na; Tong, Lianming; Zhang, Jin

    2015-11-19

    Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the basic charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structure, including orthorhombic black phosphorus (BP) and triclinic rhenium disulphide (ReS2), has attracted great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions due to the anisotropic carrier mobilities of the 2D materials are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials.

  10. Enhanced Raman Scattering on In-plane Anisotropic Layered Materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liang, Liangbo; Meunier, Vincent; Sumpter, Bobby G.; Ling, Xi; Lin, Jingjing; Zhang, Shuqing; Mao, Nannan; Zhang, Na; Tong, Lianming; Zhang, Jin

    2015-11-19

    Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the basic charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structure, including orthorhombic black phosphorus (BP) and triclinic rhenium disulphide (ReS2), has attractedmore » great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions due to the anisotropic carrier mobilities of the 2D materials are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials.« less

  11. Acquisition of an In-House X-ray Scattering Facility for Nanostructure Characterization and Student Training

    SciTech Connect (OSTI)

    Schuller, Ivan K [UC San Diego

    2013-08-02

    This equipment grant was specifically dedicated to the development of a "state of the art" x-ray scattering facility...

  12. Evolution of Elastic X-ray Scattering in Laser-Shocked Warm Dense Li

    SciTech Connect (OSTI)

    Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C; Brown, C; Constantin, C; Glenzer, S H; Khattak, F; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D

    2009-06-02

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4 ns long laser pulses. Separate 1 ns long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-{alpha} photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120{sup o} using a HOPG crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state {bar Z}, and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  13. Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes

    SciTech Connect (OSTI)

    Artemyev, A. V.; Mourenas, D.; Krasnoselskikh, V. V.

    2015-06-15

    In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.

  14. Collision-induced Raman scattering and the peculiar case of neon: Anisotropic spectrum, anisotropy, and the inverse scattering problem

    SciTech Connect (OSTI)

    Dixneuf, Sophie; Rachet, Florent; Chrysos, Michael

    2015-02-28

    Owing in part to the p orbitals of its filled L shell, neon has repeatedly come on stage for its peculiar properties. In the context of collision-induced Raman spectroscopy, in particular, we have shown, in a brief report published a few years ago [M. Chrysos et al., Phys. Rev. A 80, 054701 (2009)], that the room-temperature anisotropic Raman lineshape of Ne–Ne exhibits, in the far wing of the spectrum, a peculiar structure with an aspect other than a smooth wing (on a logarithmic plot) which contrasts with any of the existing studies, and whose explanation lies in the distinct way in which overlap and exchange interactions interfere with the classical electrostatic ones in making the polarizability anisotropy, α{sub ∥} − α{sub ⊥}. Here, we delve deeper into that study by reporting data for that spectrum up to 450 cm{sup −1} and for even- and odd-order spectral moments up to M{sub 6}, as well as quantum lineshapes, generated from SCF, CCSD, and CCSD(T) models for α{sub ∥} − α{sub ⊥}, which are critically compared with the experiment. On account of the knowledge of the spectrum over the augmented frequency domain, we show how the inverse scattering problem can be tackled both effectively and economically, and we report an analytic function for the anisotropy whose quantum lineshape faithfully reproduces our observations.

  15. SSRL School on Synchrotron X-Ray Scattering Techniques in Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL School on Synchrotron X-Ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application Tuesday 21 June 2016 - Thursday 23 June 2016 Tuesday, 21 June 2016 Building 053, Trinity Conference Room (1350) 8:00-8:50 Registration - Coffee and Light Refreshments 8:50-9:00 Introductory Remarks - Michael Toney 9:00-9:35 Introduction to Scattering and Reciprocal Space - Kevin Stone 9:35-10:05 What Does a Scattering Pattern Say About a Sample (Peak Shape, Position,

  16. Small-Angle X-Ray Scattering From RNA, Proteins, And Protein Complexes

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Small-Angle X-Ray Scattering From RNA, Proteins, And Protein Complexes Citation Details In-Document Search Title: Small-Angle X-Ray Scattering From RNA, Proteins, And Protein Complexes Small-angle X-ray scattering (SAXS) is increasingly used to characterize the structure and interactions of biological macromolecules and their complexes in solution. Although still a low-resolution technique, the advent of high-flux synchrotron sources and the development of

  17. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    SciTech Connect (OSTI)

    Meyer, Matthew W.

    2013-03-14

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  18. SANS (small angle neutron scattering) measurement of deuterium-dislocation correlation in palladium

    SciTech Connect (OSTI)

    Heuser, B.J.; Summerfield, G.C.; King, J.S. ); Epperson, J.E. )

    1989-11-01

    Small angle neutron scattering (SANS) measurements have been made on deformed polycrystal palladium samples with and without deuterium dissolved in the solution phase ({alpha}) at room temperature. Concentrations were held constant during SANS experiments by an equilibrium gas pressure cell. The difference scattering cross section for the same sample with and without deuterium loading has a 1/Q behavior (Q=4{pi}/{lambda} sin{theta}/2) at intermediate values of Q. At very low values of Q the dependence is much stronger than 1/Q. The 1/Q behavior is attributed to deuterium trapping close to long dislocation cores forming rod-like scattering structures.

  19. Dynamic neutron scattering on incoherent systems using efficient resonance spin flip techniques

    SciTech Connect (OSTI)

    Hussler, Wolfgang [Heinz Maier-Leibnitz Zentrum, Technische Universitt Mnchen, D-85748 Garching, Germany and Physik-Department E21, Technische Universitt Mnchen, D-85748 Garching (Germany); Kredler, Lukas [Physik-Department E21, Technische Universitt Mnchen, D-85748 Garching (Germany)

    2014-05-15

    We have performed numerical ray-tracing Monte-Carlo-simulations of incoherent dynamic neutron scattering experiments. We intend to optimize the efficiency of incoherent measurements depending on the fraction of neutrons scattered without and with spin flip at the sample. In addition to conventional spin echo, we have numerically and experimentally studied oscillating intensity techniques. The results point out the advantages of these different spin echo variants and are an important prerequisite for neutron resonance spin echo instruments like RESEDA (FRM II, Munich), to choose the most efficient technique depending on the scattering vector range and the properties of the sample system under study.

  20. The role of CP violating scatterings in baryogenesiscase study of the neutron portal

    SciTech Connect (OSTI)

    Baldes, Iason; Bell, Nicole F.; Millar, Alexander; Volkas, Raymond R.; Petraki, Kalliopi E-mail: n.bell@unimelb.edu.au E-mail: kpetraki@nikhef.nl

    2014-11-01

    Many baryogenesis scenarios invoke the charge parity (CP) violating out-of-equilibrium decay of a heavy particle in order to explain the baryon asymmetry. Such scenarios will in general also allow CP violating scatterings. We study the effect of these CP violating scatterings on the final asymmetry in a neutron portal scenario. We solve the Boltzmann equations governing the evolution of the baryon number numerically and show that the CP violating scatterings play a dominant role in a significant portion of the parameter space.

  1. Neutron scattering at the high flux isotope reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Yethiraj, M.; Fernandez-Baca, J.A.

    1995-03-01

    Since its beginnings in Oak Ridge and Argonne in the late 1940`s, neutron scattering has been established as the premier tool to study matter in its various states. Since the thermal neutron wavelength is of the same order of magnitude as typical atomic spacings and because they have comparable energies to those of atomic excitations in solids, both structure and dynamics of matter can be studied via neutron scattering. The High Flux Isotope Reactor (HFIR) provides an intense source of neutrons with which to carry out these measurements. This paper summarizes the available neutron scattering facilities at the HFIR.

  2. Dynamics of water in prussian blue analogues: Neutron scattering study

    SciTech Connect (OSTI)

    Sharma, V. K.; Mitra, S.; Thakur, N.; Yusuf, S. M.; Mukhopadhyay, R.; Juranyi, Fanni

    2014-07-21

    Dynamics of crystal water in Prussian blue (PB), Fe(III){sub 4}[Fe(II)(CN){sub 6}]{sub 3}.14H{sub 2}O and its analogue Prussian green (PG), ferriferricynaide, Fe(III){sub 4}[Fe(III)(CN){sub 6}]{sub 4}.16H{sub 2}O have been investigated using Quasielastic Neutron Scattering (QENS) technique. PB and its analogue compounds are important materials for their various interesting multifunctional properties. It is known that crystal water plays a crucial role towards the multifunctional properties of Prussian blue analogue compounds. Three structurally distinguishable water molecules: (i) coordinated water molecules at empty nitrogen sites, (ii) non-coordinated water molecules in the spherical cavities, and (iii) at interstitial sites exist in PB. Here spherical cavities are created due to the vacant sites of Fe(CN){sub 6} units. However, PG does not have any such vacant N or Fe(CN){sub 6} units, and only one kind of water molecules, exists only at interstitial sites. QENS experiments have been carried out on both the compounds in the temperature range of 260360?K to elucidate the dynamical behavior of different kinds of water molecules. Dynamics is found to be much more pronounced in case of PB, compared to PG. A detailed data analysis showed that localized translational diffusion model could describe the observed data for both PB and PG systems. The average diffusion coefficient is found to be much larger in the PB than PG. The obtained domain of dynamics is found to be consistent with the geometry of the structure of the two systems. Combining the data of the two systems, a quantitative estimate of the dynamics, corresponding to the water molecules at different locations is made.

  3. Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity

    SciTech Connect (OSTI)

    Ahmad, Azeem E-mail: mehtads@physics.iitd.ac.in; Dubey, Vishesh; Mehta, D. S. E-mail: mehtads@physics.iitd.ac.in; Srivastava, Vishal

    2015-03-02

    We demonstrate ultra-high axial-resolution topography and tomography of multilayered objects using pseudo thermal light source, i.e., laser. The longitudinal spatial coherence (LSC) length of light was significantly reduced by synthesizing a pseudo thermal source with the combined effect of spatial, angular, and temporal diversity. Thus, generating a low spatially coherent (i.e., broad angular frequency spectrum) light source having narrow temporal frequency spectrum. The LSC length was reduced less than 10 μm using a very low magnification lens. Experimental results of optical sectioning of multilayer objects with high axial-resolution of the order of 4 μm was achieved which is comparable to broadband light source. The present system does not require any dispersion compensation optical system for biological samples as a highly monochromatic light source is used.

  4. The spin Hall angle and spin diffusion length of Pd measured by spin pumping and microwave photoresistance

    SciTech Connect (OSTI)

    Tao, X. D.; Feng, Z.; Miao, B. F.; Sun, L.; You, B.; Wu, D.; Du, J.; Zhang, W.; Ding, H. F., E-mail: hfding@nju.edu.cn [Department of Physics, National Laboratory of Solid State Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

    2014-05-07

    We present the experimental study of the spin Hall angle (SHA) and spin diffusion length of Pd with the spin pumping and microwave photoresistance effects. The Py/Pd bilayer stripes are excited with an out-of-plane microwave magnetic field. The pure spin current is thus pumped and transforms into charge current via the inverse spin Hall effect (ISHE) in Pd layer, yielding an ISHE voltage. The ISHE voltage can be distinguished from the unwanted signal caused by the anisotropic magnetoresistance according to their different symmetries. Together with Pd thickness dependent measurements of in and out-of-plane precessing angles and effective spin mixing conductance, the SHA and spin-diffusion length of Pd are quantified as 0.0056??0.0007 and 7.3??0.7?nm, respectively.

  5. Systematic analysis of proteindetergent complexes applying dynamic light scattering to optimize solutions for crystallization trials

    SciTech Connect (OSTI)

    Meyer, Arne [University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg (Germany); Dierks, Karsten [University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg (Germany); XtalConcepts, Marlowring 19, 22525 Hamburg (Germany); Hussein, Rana [University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg (Germany); Brillet, Karl [ESBS, Ple API, 300 Boulevard Sbastien Brant, CS10413, 67412 Illkirch CEDEX (France); Brognaro, Hevila [So Paulo State University, UNESP/IBILCE, Caixa Postal 136, So Jos do Rio Preto-SP, 15054 (Brazil); Betzel, Christian, E-mail: christian.betzel@uni-hamburg.de [University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg (Germany)

    2015-01-01

    Application of in situ dynamic light scattering to solutions of proteindetergent complexes permits characterization of these complexes in samples as small as 2 l in volume. Detergents are widely used for the isolation and solubilization of membrane proteins to support crystallization and structure determination. Detergents are amphiphilic molecules that form micelles once the characteristic critical micelle concentration (CMC) is achieved and can solubilize membrane proteins by the formation of micelles around them. The results are presented of a study of micelle formation observed by in situ dynamic light-scattering (DLS) analyses performed on selected detergent solutions using a newly designed advanced hardware device. DLS was initially applied in situ to detergent samples with a total volume of approximately 2 l. When measured with DLS, pure detergents show a monodisperse radial distribution in water at concentrations exceeding the CMC. A series of all-transn-alkyl-?-d-maltopyranosides, from n-hexyl to n-tetradecyl, were used in the investigations. The results obtained verify that the application of DLS in situ is capable of distinguishing differences in the hydrodynamic radii of micelles formed by detergents differing in length by only a single CH{sub 2} group in their aliphatic tails. Subsequently, DLS was applied to investigate the distribution of hydrodynamic radii of membrane proteins and selected water-insoluble proteins in presence of detergent micelles. The results confirm that stable proteindetergent complexes were prepared for (i) bacteriorhodopsin and (ii) FetA in complex with a ligand as examples of transmembrane proteins. A fusion of maltose-binding protein and the Duck hepatitis B virus X protein was added to this investigation as an example of a non-membrane-associated protein with low water solubility. The increased solubility of this protein in the presence of detergent could be monitored, as well as the progress of proteolytic cleavage to separate the fusion partners. This study demonstrates the potential of in situ DLS to optimize solutions of proteindetergent complexes for crystallization applications.

  6. Scattering in graphene associated with charged out-of-plane impurities

    SciTech Connect (OSTI)

    Liu, Yue Goswami, Aditi; Liu, Feilong; Smith, Darryl L.; Ruden, P. Paul

    2014-12-21

    A charged impurity outside the plane of a graphene layer contributes to scattering of electrons (and holes) in the graphene. The interaction occurs through two distinct mechanisms associated with the charge: (1) the (screened) Coulomb potential, and (2) the electric field perpendicular to the graphene plane that causes a spatially varying Rashba spin-orbit interaction. Both types of scattering are examined, with the screened potential self-consistently calculated in nonlinear Thomas-Fermi approximation. Different selection rules for the two mechanisms lead to qualitative differences in the differential scattering cross-sections. Using accepted parameters for the Rashba interaction, the latter is found to make only a very small contribution to the scattering associated with a remote charge.

  7. 5th Annual SSRL School on Synchrotron X-ray Scattering Techniques...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Web | People Search SSRL Go 5th Annual SSRL School on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application June 1-3, 2010...

  8. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined...

  9. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a...

  10. The Mean and Scatter of the Velocity Dispersion-Optical Richness...

    Office of Scientific and Technical Information (OSTI)

    The mean velocity dispersion increases from 202 +- 10 km ssup -1 for small groups to more than 854 +- 102 km ssup -1 for large clusters. We show the scatter to be at most ...

  11. Ab Initio Many-Body Calculations Of Nucleon-Nucleus Scattering

    SciTech Connect (OSTI)

    Quaglioni, S; Navratil, P

    2008-12-17

    We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on {sup 3}H, {sup 4}He and {sup 10}Be and proton scattering on {sup 3,4}He, using realistic nucleon-nucleon (NN) potentials. Our A = 4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-{sup 4}He S-wave phase shifts. We demonstrate that a proper treatment of the coupling to the n-{sup 10}Be continuum is successful in explaining the parity-inverted ground state in {sup 11}Be.

  12. Structure of light neutron-rich nuclei and mechanism of elastic proton scattering

    SciTech Connect (OSTI)

    Ibraeva, E. T.; Zhusupov, M. A.; Imambekov, O.

    2011-11-15

    Differential cross sections for elastic p{sup 6}He, p{sup 8}Li, and p{sup 9}Li scattering at two energies of 70 and 700 MeV per nucleon were calculated within the Glauber theory of multiple diffractive scattering. Threeparticle wave functions ({alpha}-n-n for {sup 6}He, {alpha}-t-n for {sup 8}Li, and {sup 7}Li-n-n for {sup 9}Li) were used for realistic potentials of intercluster interactions. The sensitivity of elastic scattering to proton-nucleus interaction and to the structure of nuclei was explored. In particular, the dependence of the differential cross section on the contribution of higher order collisions, on scattering on the core and peripheral nucleons, and on the contribution of small wave-function components and their asymptotic behavior was determined. A comparison with available experimental data and with the results of calculations within different formalisms was performed.

  13. Mechanism of elastic and inelastic proton scattering on a {sup 15}C nucleus in diffraction theory

    SciTech Connect (OSTI)

    Ibraeva, E. T.; Zhusupov, M. A.; Imambekov, O.

    2012-11-15

    The amplitudes for elastic and inelastic proton scattering on the neutron-rich nucleus {sup 15}C (to its J{sup {pi}} = 5/2{sup +} level in the latter case) in inverse kinematics were calculated within Glauber diffraction theory. First- and second-order terms were taken into account in the multiple-scattering operator. The {sup 15}C wave function in the multiparticle shell model was used. This made it possible to calculate not only respective differential cross sections but also the contribution of proton scattering on nucleons occurring in different shells. The differential cross sections for elastic and inelastic scattering were calculated at the energies of 0.2, 0.6, and 1 GeV per nucleon.

  14. Extracting Scattering Phase-Shifts in Higher Partial-Waves from Lattice QCD

    Office of Scientific and Technical Information (OSTI)

    Calculations (Journal Article) | SciTech Connect Extracting Scattering Phase-Shifts in Higher Partial-Waves from Lattice QCD Calculations Citation Details In-Document Search Title: Extracting Scattering Phase-Shifts in Higher Partial-Waves from Lattice QCD Calculations Authors: Luu, T ; Savage, M J Publication Date: 2011-01-18 OSTI Identifier: 1068270 Report Number(s): LLNL-JRNL-472171 DOE Contract Number: W-7405-ENG-48 Resource Type: Journal Article Resource Relation: Journal Name: Physical

  15. Resonances in Coupled πK-ηK Scattering from Quantum Chromodynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.; Wilson, David J.

    2014-10-01

    Using first-principles calculation within Quantum Chromodynamics, we are able to reproduce the pattern of experimental strange resonances which appear as complex singularities within coupled πK, ηK scattering amplitudes. We make use of numerical computation within the lattice discretized approach to QCD, extracting the energy dependence of scattering amplitudes through their relation- ship to the discrete spectrum of the theory in a finite-volume, which we map out in unprecedented detail.

  16. Coherent Scattering Investigations at the Spallation Neutron Source: a Snowmass White Paper

    SciTech Connect (OSTI)

    Akimov, D. Moscow Engineering Physics Institute , Russia; Bernstein, A. Lawrence Livermore National Laboratory; BarbeauP.,; Barton, P. J. Lawrence Berkeley National Laboratory; Bolozdynya, A. Moscow Engineering Physics Institute , Russia; Cabrera-Palmer, B. Sandia National Laboratories; Cavanna, F. Yale University; Cianciolo, Vince ORNL; Collar, J. University of Chicago, Enrico Fermi Institute; Cooper, R. J. Indiana University; Dean, D. J. Oak Ridge National Laboratory; Efremenko, Yuri University of Tennessee and Oak Ridge National Laboratory; Etenko, A. Moscow Engineering Physics Institute , Russia; Fields, N. University of Chicago, Enrico Fermi Institute; Foxe, M. Pennsylvania State University, University Park, PA; Figueroa-Feliciano, E. Massachusetts Institute of Technology; Fomin, N. University of Tennessee, Knoxville; Gallmeier, F. Oak Ridge National Laboratory; Garishvili, I. University of Tennessee, Knoxville; Gerling, M. Sandia National Laboratories; Green, M. University of North Carolina, Chapel Hill; Greene, Geoffrey University of Tennessee, Knoxville; Hatzikoutelis, A. University of Tennessee, Knoxville; Henning, Reyco University of North Carolina, Chapel Hill; Hix, R. University of Tennessee and Oak Ridge National Laboratory; Hogan, D. University of California-Berkeley; Hornback, D. University of Tennessee and Oak Ridge National Laboratory; Jovanovic, I. Pennsylvania State University, University Park, PA; Hossbach, T. Pacific Northwest National Laboratory; Iverson, Erik B ORNL; Klein, S. R. Lawrence Berkeley National Laboratory; Khromov, A. Moscow Engineering Physics Institute , Russia; Link, J. Virginia Polytechnic Institute and State University; Louis, W. Los Alamos National Laboratory; Lu, W. Oak Ridge National Laboratory; Mauger, C. Los Alamos National Laboratory; Marleau, P. Sandia National Laboratories; Markoff, D. North Carolina Central University, Durham; Martin, R. D. University of South Dakota; Mueller, Paul Edward ORNL; Newby, J. Oak Ridge National Laboratory; Orrell, John L. Pacific Northwest National Laboratory; O'Shaughnessy, C. University of North Carolina, Chapel Hill; Penttila, Seppo Oak Ridge National Laboratory; Patton, K. North Carolina State University, Raleigh; Poon, A. W. Lawrence Berkeley National Laboratory; Radford, David C ORNL; Reyna, D. Sandia National Laboratories; Ray, H. University of Florida, Gainesville; Scholberg, K. Duke University, North Carolina; Sosnovtsev, V. Moscow Engineering Physics Institute , Russia; Tayloe, R. Indiana University; Vetter, K. Lawrence Berkeley National Laboratory; Virtue, C. Laurentian University, Canada; Wilkerson, J. University of North Carolina, Chapel Hill; Yoo, J. Fermi National Accelerator Laboratory; Yu, Chang-Hong ORNL

    2013-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this white paper, we describe how the SNS source can be used for a measurement of coherent elastic neutrino-nucleus scattering (CENNS), and the physics reach of different phases of such an experimental program (CSI: Coherent Scattering Investigations at the SNS).

  17. Neutron Scattering Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science

  18. Net electron-phonon scattering rates in InN/GaN multiple quantum wells: The

    Office of Scientific and Technical Information (OSTI)

    effects of an energy dependent acoustic deformation potential (Journal Article) | SciTech Connect Net electron-phonon scattering rates in InN/GaN multiple quantum wells: The effects of an energy dependent acoustic deformation potential Citation Details In-Document Search Title: Net electron-phonon scattering rates in InN/GaN multiple quantum wells: The effects of an energy dependent acoustic deformation potential The rates of charge carrier relaxation by phonon emission are of substantial

  19. Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other)

    Office of Scientific and Technical Information (OSTI)

    Systems (Technical Report) | SciTech Connect Technical Report: Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other) Systems Citation Details In-Document Search Title: Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other) Systems One of the two major themes of the proposal was to study quantum coherence in stressed hydrogen bond networks. Our experiments on double wall carbon nanotubes and two versions of Nafion, together with earlier work on water confined in

  20. Ray tracing flux calculation for the small and wide angle x-ray scattering

    Office of Scientific and Technical Information (OSTI)

    diffraction station at the SESAME synchrotron radiation facility (Journal Article) | SciTech Connect Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility Citation Details In-Document Search Title: Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility The calculation for the optics of the synchrotron radiation small and